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Abstract
This review is concerned with the nonstationary solidification of three-component systems in
the presence of two moving phase transition regions—the main (primary) and cotectic layers.
A non-linear moving boundary problem has been developed and its analytical solutions have
been defined. Namely, the temperature and impurity concentration distributions were
determined, the solid phase fractions in the phase transition regions and the laws of motion of
their boundaries were found. It was shown that variations in the initial impurity concentration
affect significantly the ratio between the lengths of the two-phase layers. A non-linear liquidus
surface equation is theoretically taken into account as well.
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1. Introduction

The formation of crystals and complex solid phase struc-
tures from a cooled liquid or melt is a fundamental pro-
cess in both industry and nature. Although some processes
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take place in a pure (or almost pure) liquid, most of them
are the crystallization of several different components, for
example, the production of various alloys and the solidific-
ation of lava [1–6]. Some of the fundamental aspects of the
solidification process of multicomponent systems can be iden-
tified from the study of binary systems. In particular, stud-
ies of binary systems explain how the main substance can
displace an impurity, resulting in a region of concentration
supercooling. This leads to an unstable flat crystallization
front [7] and the formation of a two-phase state zone of mat-
ter [8–10]. Even more complex behavior can be observed
for multicomponent systems—several two-phase zones are
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formed, each of which contains solid phases of several
components.

Therefore, studies of binary systems need to generalize to
more complex cases involving the consideration of a large
number of significant components. Although scientists often
study complex multicomponent materials, it is possible to gain
an understanding of the main aspects by considering the crys-
tallization of three major components (for example, the forma-
tion of granite from quartz, feldspar, and mica or the transport
of contaminants and biological organisms in seawater [11]). In
one study, Huppert and Sparks [12] proposed an explanation
for the formation of oceanic basalts as a mixture of chryso-
lite, plagioclase, and pyroxene due to density inversion. It was
important that the density of the melt first decreased due to
crystallization of chrysolite, then increased again when plagio-
clase also underwent phase transition. In addition, the authors
of [13–15] modeled three-component systems and performed
calculations for nickel alloys with the presence of a two-phase
zone. In [16–18] the effect of convection on the crystallization
process of such alloys was shown.

Thus, the study of three-component systems generalizes
the previously developed theory and provides explanations for
many experimental data on the solidification of multicompon-
ent systems. In recent laboratory experiments [19] on the crys-
tallization of two salts dissolved in water, the present role of
a small amount of one salt in the system was revealed (to
eliminate convection in the system, its cooling was done from
the lower boundary side). Based on experimental data presen-
ted in this work, where crystallization with two-phase trans-
ition regions (two-phase zones) was observed, a mathematical
model of such processes was developed and its analytical solu-
tion was obtained.

2. Unsteady solidification of three-component
systems with two-phase zones in the self-similar
regime

2.1. Phase diagram and experimental data

An important part of the model and the key to understand-
ing the solidification of three-component systems is the phase
diagram (see figure 1). It shows the solid and liquid phases
that can be in thermodynamic equilibrium at given component
concentrations and temperatures. For three-component sys-
tems, it would be three-dimensional [20] and for real three-
component systems, it can be very complicated (see [21] and
[22]). In Crane’s [23] model, for example, it included inter-
metallic phases, a peritectic point, and a cotectic point. In
[24, 25] two- and three-dimensional crystallization models
of three-component systems and in [26, 27] multi-component
ones have been studied. We, following [19] and [28], consider
a simplified model based on the assumption that each of the
three components crystallizes separately and displaces all oth-
ers. This case describes many water mixtures, including those
studied in [19]. Such a phase diagram is shown schematically
in figure 2.

Let B and C denote concentrations of substances dissolved
in solvent A (A+B+C= 1). The three angles of the phase

diagram correspond to the pure substances and the vertical axis
to the temperature. Each vertical plane of the phase diagram
for a three-component system describes the phase diagram of
a binary mixture (T∗ is the phase transition temperature of the
pure substance A, the eutectic point EAB of the binary system
has a temperature TABE and an impurity concentration BAB

E ).
The liquidus curves passing in each of the three vertical planes
bound the three liquidus surfaces, the intersection of which
forms the three cotectic curves. These curves extend from the
eutectic points of binary systems (e.g. from the point EAB) and
intersect to give the eutectic point of the ternary system. This
point corresponds to temperature TE and concentrations of
components AE, BE and CE (for a more detailed discussion of
phase diagrams of three-component systems see, for example,
monograph [21]).

The different phases that are observed during the solidific-
ation of a three-component mixture can be defined through
the solidification path on the phase diagram that the system
takes. Let the three-component system be at some point P in
the phase diagram. Cooling of the system leads to a phase
transition of substance A from liquid to solid-state, with dis-
solved impurities being displaced by the growing solid phase
into the liquid part of the system. This increases the concentra-
tions of both components before the phase transition boundary
and, consequently, lowers the phase transition temperature. As
a result, the system undergoes a movement along the liquidus
plane of the phase diagram from the point P towards some
point S located on the cotectic curve. At this time, the solidify-
ing system contains one mentioned region of phase transform-
ation of matter A, called the main two-phase zone. When the
cotectic curve reaches the point S, the phase transition begins
to undergo a component B. The further path of the system in
the phase diagram corresponds to its movement from point S
to point E along the cotectic line, with two regions of phase
transition already existing in the system—the main two-phase
zone (existing on the path P− S−E) and the cotectic two-
phase zone (existing on the path S−E) where substances A
and B undergo the transition from the liquid state to the solid-
state. When the system reaches a point E, a eutectic solid is
formed consisting of components A, B, and C.

The assumption of the total immiscibility of the solid
phases (see [21]) is that the solid phase of component A con-
sists only of pure matter A. Similarly, the solid phases B and
C consist of pure components B and C.

The equation of the liquidus surface passing through the
point T∗ of the angle BAC of the phase diagram is given as a
known function of the phase transition temperature Tp∗ in the
main two-phase zone, which depends on the concentrations B
and C:

T= Tp∗ = F(B,C). (1)

The cotectic line, where the section S−E lies, will be set
as a dependence of the phase transition temperature. In the
cotectic two-phase zone, these functions are also considered
to be known:

T= Tc∗ = Fc
1(B) = Fc

2(C), (2)

2



J. Phys.: Condens. Matter 34 (2022) 383002 Topical Review

Figure 1. A view of a simple ternary phase diagram for the components A, B, C, forming pure crystals, without solid solutions. Thick lines
separate the fields of the corresponding components. Thin solid lines are temperature contours on liquidus surfaces and dashed lines are
temperature contours on liquidus surfaces. (a) Main view of a diagram. (b)–(d) Vertical cross-sections giving the liquid L and solids A, B, C
phases present in equilibrium at a given bulk composition and temperature. (e) Binary phase diagram plotted along the AC-axis..

Figure 2. Phase diagram of a three-component system. Each corner
of the phase diagram corresponds to pure matter A, B or C. The
temperature is plotted on the vertical axis.

here it is assumed that B and C depend on coordinates and
time. To determine the functions F, Fc

1 and Fc
2 it is neces-

sary to know the temperature and concentration values of the
componentsB andC at several points in the phase diagram. So,
for example, in the case of linear functions (see work [28]), we
arrive at:

Tp∗ = T∗ +mBB+mCC,

Tc∗ =−mc
B(B−BE)+ TE =−mc

CC+TABE . (3)

To determine the slope coefficients of the liquidus lines,
it is sufficient to know three points: (B= 0, C= 0, T= T∗—
melting point), (B= BAB

E , C= 0, T= TABE —eutectic point
of binary system), (B= BE, C= CE, T= TE—eutectic point
of three-component system). Substituting now these points
into the expression (3), we find all four liquidus slope

coefficients:mB = (TABE −T∗)/BAB
E ,mC =−mc

C(1+mB/mc
B),

mc
B = (TABE −TE)/(BE−BAB

E ), mc
C = (TABE −TE)/CE.

Let’s go into more detail about the experimental data [19].
In this work, the mixture H2O-KNO3-NaNO3 was considered
because, firstly, it is transparent and easy to observe visu-
ally; secondly, its phase diagram is simple enough, so that the
experiment is close to theory; thirdly, the temperatures of the
eutectics and the liquidus surfaces do not differ much from
room temperature, so that no special equipment is needed;
fourthly, concentrations in the liquid phase can be accurately
measured. The system has a eutectic temperature of−19.0 ◦C
and salt concentrations can be determined through measure-
ment of calcium and sodium ions by spectroscopy.

Figure 3 shows the pictures of the process. In the first photo,
the eutectic phase is almost invisible but the two-phase zone
is visible. In the second one, the whole solid is already clearly
distinguishable from the two-phase zone.

An important result of this work is the time-dependent
boundary positions obtained from the experiment (figure 4)
as well as the temperature distribution in the zones (figure 5).
Figure 4 clearly shows that the system goes into self-similar
mode after some time after the start of the process. Figure 5
introduces several conclusions: firstly, the temperature at the
boundary between the main two-phase zone and the liquid
remains practically constant; secondly, the temperature inside
the two-phase zones and in the solid changes according to an
almost linear law along the coordinate and its slope remains
almost constant everywhere except the liquid phase.

2.2. Mathematical model of the process

Let us consider the process of directional crystallization of a
three-component system from a cooled boundary z= 0 (see
figure 6). In these processes frequently encountered in metal-
lurgy [19, 29–31]) and geophysics [32], the boundary tem-
perature TB provides four regions of purely solid and liquid
phases, cotectic and main two-phase zones [19]. These four
regions are separated by three movable boundaries hp(t), hc(t)
and he(t) (see figure 6). Hereinafter, the indices p, c and e
denote the values in themain two-phase zone, the cotectic two-
phase zone and the solid phase, respectively.

3
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Figure 3. Photos of experiment 7 in [19]. The left photo shows the process after 5.1 h, the boundary of the two-phase zone is at 4.7 cm, the
eutectic zone is 0.3 cm and almost invisible. On the right, after 82.5 h, the eutectic front has grown to 2.7 cm, the two-phase zone to 14.4 cm.

Figure 4. Boundary positions according to experiment 7 in [19] in
logarithmic coordinates. Here h, hC and hE are boundary positions
between liquid phase and main two-phase zone, main and cotectic
zone, cotectic two-phase zone and solid phase, respectively.

The heat and mass transfer equations and boundary con-
ditions can be derived from the same assumptions as in the
binary two-phase model [33]. The unknown parameters are
temperature T, concentrations of components A, B andC, frac-
tions of solid phases φA, φB and φC, fraction of liquid phase χ
and boundary positions hp, hc and he. It is assumed that there
are no flows in the liquid and the impurity distribution coef-
ficient corresponds to the formation of pure solid component
phases [23].
Boundary conditions far from the crystallization front can

be written as:

B= B∞, C= C∞, T= T∞, z→∞. (4)

Equations of heat and mass transfer in a liquid are:

∂Bℓ

∂t
= DB

∂2Bℓ

∂t2
,

∂Cℓ

∂t
= DC

∂2 Cℓ

∂t2
, z> hp(t), (5)

∂Tℓ
∂t

= κℓ
∂2 Tℓ
∂t2

, z> hp(t), (6)

Figure 5. Temperature distribution according to experiment 7 in
[19] for different time points (numbers at the curves). The red circles
indicate the position of the boundary between the liquid phase and
the main two-phase zone, the green squares indicate the phase
interface between the main and cotectic zones, the blue triangles
illustrate the boundary between the cotectic and eutectic zones.

χ= 1 (φA = φB = φC = 0), z> hp(t), (7)

where Di is the diffusion coefficient of component i (i=B or
i=C), κℓ is the thermal diffusivity coefficient of the fluid. In
these equations, we neglect thermodiffusion effect [34, 35] due
to its insignificant contribution.
Boundary conditions at the phase interface between the

main two-phase zone and the liquid can be written as:

ρsLφ
−
AP

dhp
dt

= km

(
∂Tp
∂z

)∣∣∣
h−p

− kℓ

(
∂Tℓ
∂z

)∣∣∣
h+p
, z= hp(t),

(8)

Bpbφ
−
AP
dhp
dt

= DBχ
−
P

(
∂Bp
∂z

)
|h−p −DB

(
∂Bℓ

∂z

)
|h+p , z= hp(t),

(9)

Cpbφ
−
AP
dhp
dt

= DCχ
−
P

(
∂Cp
∂z

)
|h−p −DC

(
∂Cℓ

∂z

)
|h+p , z= hp(t),

(10)
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Figure 6. Schematic diagram of the solidification process of a
three-component system along the spatial axis z; hp, hc and he show
the positions of the phase transition boundaries as functions of time
t. The shaded areas denote the amount of solid phase components A,
B and C (B and C are dissolved in solvent A, A+B+C= 1).

Tℓ = Tp = Tpb = Tp∗ = F(Bpb,Cpb),

Bℓ = Bp = Bpb, Cℓ = Cp = Cpb, z= hp(t),
(11)

∂Tℓ
∂z

∣∣∣
h+p

=
∂F
∂z

∣∣∣
h+p
, z= hp(t), (12)

here φ−
AP and χ−

P are the values of solid phase fraction of the
component A and liquid phase on the left side of the bound-
ary, Tpb, Bpb and Cpb are values of temperature and com-
ponent concentrations at the boundary z= hp(t), respectively.
The expression (11) includes the local thermodynamic equi-
librium condition meaning that the temperature at the bound-
ary is equal to the phase transition temperature of the liquidus
surface. The last relation (12) represents a limit equilibrium
condition at the boundary.

Let’s assume that thermal properties of all solid phases are
the same, but different from liquid phase properties. Thermo-
physical properties in two-phase zones can be written as:

km = kℓχ+ kAφA+ kBφB+ kCφC = kℓχ+ ks(1−χ), (13)

ρmcm = ρℓcℓχ+ ρscs(1−χ). (14)

In addition, we take one value for the latent heat of solidifica-
tion for all components (L= LA = LB = LC).
The heat and mass transfer equations in the main (primary)

two-phase zone can be written as:

ρmcm
∂Tp
∂t

=
∂

∂z

(
km

∂Tp
∂z

)
+L

∂φA
∂t

, hc(t)< z< hp(t),

(15)

χ
∂Bp
∂t

= DB
∂

∂z

(
χ
∂Bp
∂z

)
+Bp

∂φA
∂t

, hc(t)< z< hp(t),

(16)

χ
∂Cp
∂t

= DC
∂

∂z

(
χ
∂Cp
∂z

)
+Cp

∂φA
∂t

, hc(t)< z< hp(t),

(17)

Tp = Tp∗ = F(Bp,Cp), hc(t)< z< hp(t), (18)

χ+φA = 1 (φB = φC = 0), hc(t)< z< hp(t). (19)

Boundary conditions between two mushy zones take the
form:

ρsL(−χ−
C +χ+

C )
dhc
dt

= km(χ
−
C )

(
∂Tc
∂z

)
|h−c − km(χ

+
C )

(
∂Tp
∂z

)
|h+c ,

z= hc(t), (20)

[
−Bcb(χ−

C −χ+
C )+−φ−

BC

] dhc
dt

= DBχ
−
C

(
∂Bc
∂z

)∣∣∣
h−c

−DBχ
+
C

(
∂Bp
∂z

)∣∣∣
h+c
, z= hc(t),

(21)

Ccb(−χ−
C +χ+

C )
dhc
dt

= DCχ
−
C

(
∂Cc
∂z

)∣∣∣
h−c

−DCχ
+
C

(
∂Cp
∂z

)∣∣∣
h+c

,

z= hc(t), (22)

Tp = Tc = Tcb = F(Bcb,Ccb) = Fc
1(Bcb) = Fc

2(Ccb), z= hc(t),
(23)

Cp = Cc = Ccb, Bp = Bc = Bcb, z= hc(t), (24)

∂Fc
1

∂z

∣∣∣
h+c

=
∂Fc

2

∂z

∣∣∣
h+c
, z= hc(t), (25)

here χC and φBC are the values of phase fractions at the inter-
face, the symbols ‘+’ and ‘−’ denote the side of the interface
at which the value is taken, Tcb, Bcb and Ccb are the temperat-
ure and component concentrations at the interface z= hc(t).

The relation (25) is the limiting equilibrium condition for
the interface between two two-phase zones. Mathematically,
it means that the crystallization at the liquidus surface moves
to the cotectic line smoothly [28] and tangentially. Physic-
ally, this condition shows that there is no oversaturation of the
second solidification component B at the boundary.
In the cotectic two-phase zone, the heat-mass transfer

equations are:

ρmcm
∂Tc
∂t

=
∂

∂z

(
km

∂Tc
∂z

)
+ L

∂(φA+φB)

∂t
, he(t)< z< hc(t),

(26)

5
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χ
∂Bc
∂t

= DB
∂

∂z

(
χ
∂Bc
∂z

)
+Bc

∂(φA+φB)

∂t
− ∂φB

∂t
,

he(t)< z< hc(t), (27)

χ
∂Cc
∂t

= DC
∂

∂z

(
χ
∂Cc
∂z

)
+Cc

∂(φA+φB)

∂t
, he(t)< z< hc(t),

(28)

Tc = Tc∗ = Fc
1(Bc) = Fc

2(Cc), he(t)< z< hc(t), (29)

χ+φA+φB = 1 (φC = 0), he(t)< z< hc(t). (30)

Note that the formation of the solid phase of component B
leads to a decrease in the concentration of this component in
the liquid. Ratio (29) shows that crystallization proceeds along
the cotectic line.
Heat and mass conditions at the solid phase boundary

read as:

ρsLχ
+
E
dhe
dt

= ks

(
∂Ts
∂z

)
|h−e − km(χ

+
E )

(
∂Tc
∂z

)
|h+e , z= he(t),

(31)

c
[
Bs−φ−

BE−Bc(1−χ+
E )+φ+

BE

] dhe
dt

=−DBχ
+
E

(
∂Bc
∂z

)
|h+e ,

z= he(t), (32)

[
Cs−φ−

CE−Cc(1−χ+
E )
] dhe
dt

=−DCχ
+
E

(
∂Cc
∂z

)
|h+e , z= he(t),

(33)

Tc = Ts = Fc
1(BE) = Fc

2(CE) = TE, z= he(t), (34)

Cc = Cs = CE, Bc = Bs = BE, z= hc(t). (35)

Here χ+
E and φ+

BE are values of phase fractions to the right of
the boundary, φ−

BE and φ
−
CE are to the left of the boundary, TE,

BE and CE are temperature and concentration values of com-
ponents at the boundary z= he(t), correspond to the eutectic
point of the three-component system, respectively.
The heat condition equation in a solid can be written as:

∂Ts
∂z

= κs
∂2 Ts
∂z2

, 0< z< he(t). (36)

Apart from that, we have the following:

φA+φB+φC = 1 (χ= 0), 0< z< he(t), (37)

and at the cooled boundary:

Ts = TB < TE, z= 0. (38)

Diffusion in the solid phase is neglected.

2.3. Linear temperature profile and integration of diffusion
equations in two-phase zones

According to the experimental data, the temperature field in
the two-phase zones and solid phase is practically a linear
function of the spatial coordinate z (that is shown in figure 5).
This occurs quite frequently in problems of this type (see, for
example, [36–39]) and can be explained by the fact that the
relaxation time of the temperature field is a few orders of mag-
nitude smaller than the relaxation time of the diffusion fields
and the interphase boundary motion. Therefore, the temperat-
ure field in the main two-phase zone at hc(t)< z< hp(t) will
be considered as a linear function:

Tp(z, t) = T1(t)+ T2(t)z, (39)

where T1 and T2 are time dependent functions defined by the
solution.

Using this dependence it is possible to integrate the diffu-
sion equations in the main two-phase zone (16) and (17) in a
general form. Neglecting the first term in equation (15) due to
very fast relaxation of the temperature field and using expres-
sion (39), from (15) we obtain:

T2(t)
∂φA
∂z

=− L
ks− kl

∂φA
∂t

. (40)

Substituting (39) and (40) into (16) and (17), we arrive at
the expressions for the component concentration fields as:

Bp(z, t) =
Bpb+ b2TDφA

1−φA
, Cp(z, t) =

Cpb+ c2TDφA
1−φA

,

TD =
DBL
ks− kl

, (41)

where we assumed the case DB = DC (Bpb and Cpb are con-
centration values at the boundary z= hp and φA = 0, respect-
ively). In addition, we suppose that the concentrations of the
components B and C are linear along the spatial coordinate
z with gradients B2(t) = b2 T2(t) and C2(t) = c2T2(t) propor-
tional to the temperature gradient, i.e.Bp(z, t) = B1(t)+B2(t)z
andCp(z, t) = C1(t)+C2(t)z (B1 andC1 are linear terms in the
z expansion).

Taking (39) into account, let us substitute the concentration
fields (41) into (3), and obtain an expression for the solid phase
fraction in the main two-phase zone in a form:

φA(z, t) =
T1 + zT2 −T∗ −mBBpb−mCCpb

T1 + zT2 −T∗ +TD
, (42)

where the expressionmBb2 +mCc2 = 1 follows from (41) with
account of equation (39). Combining (41) and (42), we can
find b2 and c2 as:

b2 =
Bpb

mBBpb+mCCpb
, c2 =

Cpb
mBBpb+mCCpb

.

6
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Substituting these values and (42) into (41) we arrive at the
final expressions for the concentrations of the components in
the main (primary) two-phase zone:

Bp(z, t) =
Bpb(T1 − T∗ + zT2)
mBBpb+mCCpb

, Cp(z, t) =
Cpb(T1 − T∗ + zT2)
mBBpb+mCCpb

.

(43)

Due to the fact that the impurity diffusion in the liquid phase
at z⩾ hp(t) directly follows the boundary displacement hp (see
[19]), we will take the following boundary conditions for the
concentration at z= hp(t) instead of (9) and (10):

(Bpb−B∞)
dhp
dt

=−DB
∂Bp
∂z

, (Cpb−C∞)
dhp
dt

=−DC
∂Cp
∂z

,

(44)

where B∞ and C∞ are the values of impurity concentrations
in the liquid far away from the boundary z= hp(t).

Substituting the distribution (43) into the boundary condi-
tions (44) we obtain (DB = DC):

Cpb =
C∞

B∞
Bpb. (45)

Combining (45) with the first equations in (43) and (44),
we have:

(Bpb−B∞)(mBB∞ +mCC∞)
dhp
dt

=−DBB∞T2. (46)

Equating (3) to the boundary temperature Tpb at z= hp and
using (45), we express the boundary concentration value of
component B:

Bpb =
(Tpb−T∗)B∞

mBB∞ +mCC∞
. (47)

Substituting Bpb from the last expression into (46), and the
distribution (39) into the boundary point z= hp, we find the
time dependences of the temperature field in the main two-
phase zone as:

T1(t) = Tpb− hp(t)T2(t),

T2(t) =
1
DB

(mBB∞ +mCC∞ +T∗ −Tpb)
dhp
dt

.

Due to the practically constant temperature boundary value
Tpb (see [19] and figure 5), the solution of the heat conduction
equation at z> hp(t) can be represented as:

Tℓ(z, t) = T∞ +(Tpb−T∞)
erfc(z/2

√
κℓt)

erfc(hp(t)/2
√
κℓt)

, (48)

where T∞ is the temperature in the unperturbed part of the
fluid and κℓ is its thermal diffusivity coefficient. Note specific-
ally that the solution (48) is valid only for a constant temper-
ature Tpb or for weak temporal oscillations.

Taking the equality of heat fluxes at z= hp(t) (φA = 0),
∂Tℓ/∂z= ∂Tp/∂z, from (39) and (47) we obtain an equation

that links two unknown parameters such as the boundary pos-
ition hp(t) and the temperature Tpb:

(T∞ −Tpb)DB√
πκℓt(mBB∞ +mCC∞ +T∗ −Tpb)

= erfc

(
hp(t)
2
√
κℓt

)
exp

(
h2p
4κℓt

)
dhp
dt

. (49)

Because the relaxation time of the temperature field in the
cotectic two-phase zone is much shorter than the relaxation
time of the diffusion fields, we consider the temperature in the
zone as linear in spatial coordinate (see figure 5):

Tc(z, t) = T3(t)+ zT4(t). (50)

Mathematically, this expression for temperature approx-
imately satisfies the heat transfer equation (26). In addition,
the component concentrations and temperature in the cotectic
two-phase zone are related by the equation (3). Taking (50)
into account, we obtain:

Bc(z, t) =− 1
mc
B
(T3 + zT4 −TE)+BE,

Cc(z, t) =− 1
mc
C

(T3 + zT4 −TABE ). (51)

As previously, we omit the left-hand side of equation (15)
and consider the linearity of the temperature profile. This
yields a relationship similar to (40) as:

T4
∂(1−φA−φB)

∂z
=− L

ks− kℓ

∂(1−φA−φB)

∂t
. (52)

Now, combining (27), (28), (51) and (52), we obtain the
following concentration distributions in the cotectic two-phase
zone:

Bc(z, t) =
TD(χ−χ−

C )/m
c
B+Bcbχ

−
C +φ−

BC−φB
χ

, (53)

Cc(z, t) =
TD(χ−χ−

C )/m
c
C+Ccbχ

−
C

χ
, (54)

where χ−
C = 1−φ−

AC−φ−
BC, χ(z, t) = 1−φA(z, t)−φB(z, t),

Bcb and Ccb are concentration values at z= hc(t), φ
−
AC and

φ−
BC mean φA and φB, respectively, to the left of the bound-

ary z= hc(t).
Experimental data show that the temperature field in the

solid phase and both two-phase zones are almost the identical
linear function. Thus, we consider the case where T1 = T3 and
T2 = T4.

By equating the distributions (43) and (53) or (54) at
z= hc(t) (either of these can be used) with the expression
for T1, we can find the interface coordinate of the two phase
zones as:

hc(t) = hp(t)+
mc
CC∞T∗ +TABE R−Tpb(mc

CC∞ +R)
(mc

CC∞ +R)T2
, (55)

where R= mBB∞ +mCC∞.

7
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Substituting hc from (55) into (42) at z= hc, we obtain the
solid phase fraction to the right of the interface:

φ+
AC = 1−

(BpbR+TDB∞)(mc
CC∞ +R)

B∞[(TABE −T∗ +TD)R+TDmc
CC∞]

. (56)

The fractions distributions χ of liquid phase, φA and φB of
solid phase in the cotectic zone are determined by equations
(51), (53) and (54). By equating the left-hand sides of these
expressions, we arrive at:

φB(z, t) = φ−
BC+

(
Bcb−

TD
mc
B

)
χ−
C

+
(T1 + zT2 −TE−mc

BBE+TD)(TD−mc
CCcb)

mc
B(T1 + zT2 −TABE +TD)

χ−
C ,

(57)

φA(z, t) = 1−φB(z, t)−
(TD−mc

CCcb)χ
−
C

T1 + zT2 −TABE +TD
. (58)

The boundary values φ−
AC and φ−

BC to the left of the bound-
ary z= hc(t) are found explicitly from the boundary conditions
(21) and (22) of the mass balance at z= hc(t). Assuming the
distributions (43) and (51), DB = DC and T2 = T4, we rewrite
these equations as:

mc
BR
(
Bcb(φ

+
AC−φ−

AC−φ−
BC)+φ−

BC

) dhc
dt

= DBT2
(
(1−φ+

AC)m
c
BB∞ +(1−φ−

AC−φ−
BC)R

)
, (59)

mc
CRCcb(φ

+
AC−φ−

AC−φ−
BC)

dhc
dt

= DBT2
(
(1−φ+

AC)m
c
CC∞ +(1−φ−

AC−φ−
BC)R

)
. (60)

Finally, we obtain:

χ−
C =

mc
Cχ

+
C

(
RCcb

dhc
dt +DBT2 C∞

)
R(mc

CCcb
dhc
dt −DBT2)

, (61)

φ−
BC =

DBT2(χ
+
Cm

c
BB∞ +χ−

C R)

mc
BR

dhc
dt

−
mc
BR

dhc
dt Bcb(χ

−
C −χ+

C )

mc
BR

dhc
dt

, (62)

φ−
AC = 1−φ−

BC−χ−
C . (63)

We especially note that from the continuity of concentra-
tions at z= hc follows BcbC∞ = CcbB∞ (according to expres-
sions (43)).

The temperature distribution Ts(z, t) in the solid phase (at
0< z< he(t)) is linear and almost coincides with the temper-
ature profile in both two-phase zones. Therefore, we have:

Ts(z, t) = TB+
TE−TB
he(t)

z, T1(t)+ he(t)T2(t) = TE,

whence it follows that:

he(t) =
TE−T1
T2

= hp(t)+
TE−Tpb

T2
. (64)

Due to the same temperature slope TE−TB = T2 he, we
define the boundary solid phase—cotectic zone as:

he(t) =
TE−TB
Tpb−TB

hp(t). (65)

Eliminating he from expressions (64) and (65), we find the
law ofmotion of the two-phase zone-liquid boundary (at a con-
stant value of Tpb):

hp(t) =
√
αDBt+ hp(0), α=

2(Tpb−TB)
R+T∗ −Tpb

. (66)

Substituting hp from (66) into (49), we obtain the temper-
ature Tpb (hp(0) = 0):

T∞ −Tpb
Tpb−TB

√
αDB

πκℓ
= erfc

(√
αDB

4κℓ

)
exp

(
αDB

4κℓ

)
.

Specifically, it follows from the expressions (55), (65) and
(66) that all boundaries move in proportion to the square root
of time.

Considering that Tpb−TB = T2 hp and dhp/dt=
αDB/(2hp), we rewrite the boundary velocity between
zones as:

dhc
dt

=
DB

hp
P, P=

mc
CC∞(T∗ −TB)+R(TABE −TB)
(R+T∗ −Tpb)(mc

CC∞ +R)
. (67)

Further, we can find the exact expressions for the solid
phase fractions φ−

AC and φ−
BC in the form:

φ−
BC = Ccb(φ

+
AC− x)

B∞(1−φ+
AC)+ (1− x)R/mc

B

C∞(1−φ+
AC)+ (1− x)R/mc

C

+Bcb(x−φ+
AC),

φ−
AC = x−φ−

BC,

x=
C∞(Tpb− TB)(1−φ+

AC)+R(Tpb− TB)/mc
C−PRCcbφ

+
AC

(Tpb− TB)R/mc
C−PRCcb

.

The boundary values of φ+
AE and φ+

BE (of the solid phase
fraction to the right of the solid phase—cotectic zone bound-
ary) are easily found by substituting z= he(t) into the distri-
butions (57) and (58). The values of φ−

AE, φ
−
BE and φ−

CE left of
the boundary can be obtained from the mass balance condition
(32) and (33) at z= he(t):

φ−
BE =− DBχ

+
E T2

mc
Bdhe/dt

+BEχ
+
E +φ+

BE, χ+
E = 1−φ+

AE−φ+
BE,

φ−
CE =− DCχ

+
E T2

mc
Cdhe/dt

+CEχ
+
E , φ−

AE = 1−φ−
BE−φ−

CE.

8
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Figure 7. Temperature distribution according to the developed
theory and the experimental data (black circles) of [19] (experiment
7) at different points in time (numbers at the curves). The system
parameter values are taken from [19, 28].

Figure 8. Impurity concentrations of components B and C
(B corresponds to KNO3, C to NaNO3) and solid phase fraction of
component A in two-phase state zones as a function of spatial
coordinate. The vertical line shows the position of the interface
between the two-phase zones.

Thus, the problem of directional solidification of a three-
component system can be solved analytically using small,
physically explainable and experimentally consistent
assumptions.

Figures 7 and 8 show distributions of temperature, com-
ponent concentrations and solid phase fraction for the system
H2O-KNO3-NaNO3 with thermophysical parameters given in
table 1. The temperature field inside the solid phase and the
two-phase zones, due to its fast relaxation, is well described
by linear dependences, deviation fromwhich is observed in the
liquid phase due to themovement of interphase boundaries and
the constancy of the temperature T∞ maintained in the liquid.
As expected, the solid phase fractions decrease with increas-
ing spatial coordinate in both two-phase zones, cotectic and
main, in agreement with the heat and mass transfer equations.
The concentration of component C decreases with increasing
spatial coordinate due to displacement of impurity by grow-
ing solid phase. Its change is shown in figure 9. In contrast,
the concentration of component B has a weakly pronounced
maximum (see figure 10), which is located at the interface of

Table 1. Thermophysical properties and control parameters of the
system H2O(A)-KNO3(B)-NaNO3(C) (from experiment 7 in [19]).

Parameter Value

Impurity distribution coefficient (k) 2.8× 10−10

Melting temperature of component A (T∗, ◦ C) 0
Temperature of the cooled boundary (TB, ◦ C) −23.3
Temperature at the eutectic point of a three
component system (TE, ◦ C)

−19

Temperature at the eutectic point of a binary system
A−B (TABE , ◦ C)

−5

Concentration of component B at the eutectic point
of a three-component system (BE, at%)

0.06

Concentration of component C at the eutectic point
of a three component system (CE, at%)

0.37

Concentration of component B at the eutectic point
of a binary system A−B (BAB

E , at%)
0.1

Initial liquid temperature (T∞, ◦ C) 20
Initial concentration of component B (B∞, at%) 0.035
Initial concentration of component C (C∞, at%) 0.152

Figure 9. The concentration of component C (corresponding to
NaNO3) as a function of spatial coordinate z and time t. The points
N, O, P and K, L,M lie on planes t= 104 and t= 105 s, respectively.
The values of the parameters of the system are taken from [19, 28].

the two-phase zones (this behavior has been previously docu-
mented experimentally [19]). This function is increasing in the
cotectic zone and decreasing in the main zone (distributions
(43) and (51); [28] shows that mB, mC and mc

B are negative).
This behavior is explained by the fact that in the two-phase
cotectic zone the component B undergoes a phase transition
into a solid state, which leads to a decrease in its concentra-
tion as it approaches the he front.

3. Non-linearities in phase diagram curves
and temperature during the solidification of
three-component systems with two-phase zones

The method derived in the previous section for solving
the problem of directional solidification of three-component
systems with two-phase zones includes the assumption of
linearity of the liquidus surface and temperatures in the zones.

9
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Figure 10. The concentration of component B (corresponding to
KNO3) as a function of spatial coordinate z and time t. The points N,
O, P and K, L, M lie on planes t= 104 and t= 105 s, respectively.
The values of the parameters of the system are taken from [19, 28].

Therefore, the next step is to develop a solution that describes
the process more accurately and takes into account some
nonlinearities.

3.1. Analytical solution with non-linear liquidus surface
equations and cotectic curve (similar temperature profile)

We consider the same process as in the previous section, but
with some modifications—the liquidus surface equations will
be investigated in a general form that does not imply linearity
in impurity concentrations.

The phase transition temperature Tp∗ in the main two-phase
zone depends on the concentrations of the components B and
C and has the following form:

T= Tp∗ = F(B,C). (68)

In a cotectic two-phase zone, temperature and impurity
concentrations can be written as:

T= Tc∗ = Fc
1(B) = Fc

2(C). (69)

In the case of linearity of the liquidus surface, we have:

Tp∗ = T∗ +mBB+mCC,

Tc∗ =−mc
B(B−BE)+ TE =−mc

CC+TABE . (70)

In addition, we use the linearity of the temperature profile
in the two-phase zones and solids:

Tp(z, t) = T1(t)+ T2(t)z. (71)

As noted earlier, the concentration field in the main two-
phase zone instead of (16) and (17) will be described by the
Scheil equations [40, 41]:

∂

∂t
((1−φA)Bp) = 0,

∂

∂t
((1−φA)Cp) = 0. (72)

The equations are good approximations for many experi-
ments (see, e.g. [29, 31]), because in such situations impurity
transport is almost independent of diffusion flux and mainly
depends on its displacement by the growing solid phase.

Integration of equations (72) defines the concentration dis-
tributions in the main two-phase zone as implicit functions of
spatial coordinate and time (instead of 43):

Bp(z, t) =
Bpb

1−φA
, Cp(z, t) =

Cpb
1−φA

. (73)

At any point of the considered two-phase zoneC/B= Cpb/Bpb
(constants Bpb and Cpb represent values of B and C at the
boundary z= hp(t), where φA = 0).

Substituting the distributions (71) and (73) into the equation
(68) defining the liquidus surface we determine the solid phase
fraction distribution φA, which can be easily expressed as an
inverse function z= z(φA, t):

T1 +T2z= F

(
Bpb

1−φA
,
Cpb

1−φA

)
≡ G(φA). (74)

Note that the dependence on the constants Bpb andCpb is omit-
ted here.

The boundary conditions at z= hp(t) are written as
(see (44)):

(Bpb−B∞)
dhp
dt

=−DB
∂Bp
∂z

, (Cpb−C∞)
dhp
dt

=−DC
∂Cp
∂z

,

(75)

where B∞ andC∞ represent the values of B andC in the liquid
phase away from the boundary hp, and DB and DC are the dif-
fusivity of substances B and C, respectively.

Further we obtain the relation between the boundary con-
centration values as:

Cpb =
DBpbC∞

Bpb(D− 1)+B∞
, D=

DB

DC
. (76)

The expression (76) is simplified and has the form of the
ratio B/C already obtained above in the case of coincident dif-
fusion coefficients (Cpb/Bpb = C∞/B∞).

Considering that:

∂Bp
∂z

=
Bpb

(1−φA)2
∂φA
∂z

,
∂Cp
∂z

=
Cpb

(1−φA)2
∂φA
∂z

, (77)

we find the relationship between the temperature gradient
and the velocity of the main two-phase liquid boundary from
expressions (74) and (75) in a form:

T2(t) =
B∞ −Bpb
DBBpb

(
dG
dφA

)
φA=0

dhp
dt

. (78)

As before, the solution of the heat equation in the liquid at
z> hp(t) will be given as:

Tℓ(z, t) = T∞ +(Tpb−T∞)
erfc (z/

√
4κℓt)

erfc (hp/
√
4κℓt)

, (79)

where κℓ is the thermal diffusivity coefficient of the fluid.

10
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Equating now the temperature gradients defined by the dis-
tributions (71) and (79) at z= hp(t), we obtain the relation
between Bpb and hp (noting that Tpb = G(0)):

(T∞ −G(0))DBBpb√
πκℓt

= erfc

(
hp√
4κℓt

)
exp

(
h2p
4κℓt

)(
dG
dφA

)
φA=0

dhp
dt

, (80)

which is a generalised expression (49). Parameters G(0) and
dG/dφA at φA = 0 depend only on the boundary value of
the impurity concentration Bpb according to expressions (74)
and (76).

The mass transfer equations (27) and (28) in the two-phase
cotectic zone hc(t)< z< hp(t) are also written in Scheil form:

∂

∂t
(χBc)+

∂φB
∂t

= 0,
∂

∂t
(χCc) = 0, (81)

where the liquid phase fraction is χ(z, t) = 1−φA(z, t)−
φB(z, t). Integration of equations (81) gives the concentration
distributions in the cotectic zone:

Bc(z, t) =
Bcb(1−φ−

AC−φ−
BC)+φ−

BC−φB
1−φA−φB

, (82)

Cc(z, t) =
Ccb(1−φ−

AC−φ−
BC)

1−φA−φB
, (83)

where Bcb and Ccb are the values of B and C on the boundary
z= hc, and φ−

AC and φ−
BC are the fraction values of φA and φB

computed on the left side of this boundary, respectively.
By equating the concentration ratios at the boundary z=

hp and taking into account the expression (76), we obtain the
boundary value Ccb that depends only on Bcb and Bpb:

Ccb =
DBcbC∞

Bpb(D− 1)+B∞
. (84)

As in previous section, we assume that the temperature field
in the cotectic zone is described by the distribution (74) with
constant coefficients T1 and T2. Equating (68) and (74) at z=
hc(t), we have:

F(Bcb,Ccb)≡ f(Bcb,Bpb) = T1 +T2hc(t).

Assuming that T1 = Tpb−T2hp(t) = G(0)−T2hp(t) (this
follows from the substitution (74) at the boundary point z=
hp), we determine the interface coordinate of the two phase
zones as:

hc(t) = hp(t)+
f(Bcb,Bpb)−G(0)

T2(t)
. (85)

Equating the temperature to the cotectic temperature (69)
at the boundary z= hc(t), we obtain two equations:

f(Bcb,Bpb) = Tc1(Bcb), f(Bcb,Bpb) = Tc2(Ccb) = Tc2(Bcb,Bpb).
(86)

The first of these equations defines the dependence Bcb =
Bcb(Bpb), and the second one determines the function Tc2 .

Substituting z= hc(t) into the temperature distribution in
the main two-phase zone and considering expression (85), we
find the equation defining the boundary value of the solid
phase fraction φA = φ+

AC to the right of the interface between
the two-phase zones:

f(Bcb,Bpb)≡ f1(Bpb) = G(φ+
AC). (87)

Note that φ+
AC depends only on the boundary value Bpb.

The distributions of the fractions φA and φB in the cotectic
zone can be easily found as inverse functions from the equality
of expressions (69) and (71) at all points of this region:

T1 + zT2 = Fc
1(φA,φB), T1 + zT2 = Fc

2(φA,φB), (88)

where the expressions (82) and (83) are taken into account.
The temperature field in the solid phase at 0< z< he(t) is

represented by (71):

Ts(z, t) = T1 +T2z= TB+
TE−TB
he(t)

z, T1 + heT2 = TE,

where

he(t) =
TE−T1
T2

= hp(t)+
TE−G(0)

T2
. (89)

Taking the equality TE−TB = T2he into account, we obtain
the moving coordinate of the boundary solid phase—cotectic
zone:

he(t) =
TE−TB
G(0)−TB

hp(t). (90)

By equating the expressions (89) and (90) and considering
the temperature gradient (78), we obtain a differential equation
for the boundary hp(t). Integrating this equation, we have:

hp(t) =
√
β2
p t+ hp(0), βp =

√
2(G(0)−TB)DBBpb

(B∞ −Bpb)(dG/dφA)φA=0
.

(91)

Considering now that at the initial time hp = 0, from (85),
(90) and (91) we express the coordinates of the moving
boundaries as:

he(t) = βe
√
t, hc(t) = βc

√
t, hp(t) = βp

√
t, (92)

where

βe = βp
TE−TB
G(0)−TB

, βc = βp+
2(f(Bcb,Bpb)−G(0))DBBpb
(B∞ −Bpb)βp(dG/dφA)φA=0

.

Expressions (92), as in the case of linearity of the liquidus
surface, show the proportionality to the square root of time.
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Combining now the expressions (80) and (92), we obtain
a transcendental equation for the constant Bpb. After a minor
transformation, we have:

2(T∞ −G(0))DBBpb
(B∞ −Bpb)

√
πκℓβp

= erfc

(
βp√
4κℓ

)
exp

(
β2
p

4κℓ

)(
dG
dφA

)
φA=0

.

(93)

The boundary values φ−
AC and φ−

BC are determined from the
boundary conditions at z= hc(t) from expressions (21) and
(22). Calculating now the derivatives in the right-hand sides
of these equations using the expressions (74), (77) and (69),
(71), given the relations (78) and (92), we find boundary val-
ues for the solid phase fraction as:

φ−
AC = x−φ−

BC, φ−
BC =

1
x1

(
Bpbx2 −

1− x
(dFc

1/dB)Bcb

−Bcb(φ+
AC− x)x1

)
, (94)

where

x=
1+(DCcbx1φ

+
AC−Cpbx2)(dFc

2/dC)Ccb
1+DCcbx1(dFc

2/dC)Ccb
,

x1 =
βcBpb

βp(B∞ −Bpb)(dG/dφA)φA=0
, x2 = (1−φ+

AC)
−1
(
dG
dφA

)−1

φ+
AC

,

and the lower indices at the derivatives indicate their calcula-
tion points.

The boundary values of the fractions φ+
AE and φ+

BE to the
right of the solid phase-cotectic zone boundary are defined by
equations (88) at z= he(t), and the boundary values of the frac-
tions φ−

BE and φ−
CE (φ−

AE = 1−φ−
BE−φ−

CE) to the left of this
boundary can be found from the mass balance boundary con-
ditions (32) and (33). Calculating the gradients in the right-
hand sides of these expressions using the relations (69), (71),
and considering the expressions (78) and (92), we arrive at the
result as:

φ−
BE = φ+

BE+(1−φ+
AE−φ+

BE)

[
BE+

q
(dTc1/dB)BE

]
, (95)

φ−
CE = (1−φ+

AE−φ+
BE)

[
CE+

q
D(dTc2/dC)CE

]
, (96)

where

q=
(B∞ −Bpb)βp

Bpbβe

(
dG
dφA

)
φA=0

.

Thus, the solution of the problem describing the solidifica-
tion of three-component systems in the presence of two mov-
ing phase transition regions for the liquidus surface in the gen-
eral case, is completely defined by expressions (68), (69), (71),
(73), (76), (78), (79), (82)–(84), (86)–(88) and (91)–(96). We
note specifically that the linear temperature profile in the solid
phase and two-phase zones, as already mentioned, is quite
often observed in laboratory and field observations, and has a

Figure 11. Phase diagram [19] of the crystallization process for the
system H2O-KNO3-NaNO3 in orthogonal coordinates. The data are
taken from [42] and [43]. The thin dotted and solid lines are
approximate cotectic curves based on the available data.

simple physical explanation. The second theoretical simplific-
ation, using the Scheil equations, demonstrates that actually,
it does not affect the obtained results because the dominant
factor is the displacement of impurity by the growing solid
phase.

As noted above, linear liquidus functions (70) do not always
satisfactorily describe experimental data (see figure 11). For
many processes in metallurgy and geophysics, there are
deviations from such linear relationships (see, for example,
[19, 44, 45]). The simplest way to solve the problem is to
approximate these deviations by quadratic liquidus equations.
Thus, for example, for the ternary systems, the following
dependencies can be used instead of the equation (70):

Tp∗ = F(B,C) = T∗ +mBB+mCC+ nBB
2 + nCC

2 + nBCBC

= G(φA), (97)

Tc∗ = Fc
1(B) =−mc

B(B−BE)+ TE+ ncB(B−BE)
2, (98)

Tc∗ = Fc
2(C) =−mc

CC+TABE + ncCC
2, (99)

where nB, nC, nBC, ncB and ncC are the quadratic coefficients
of the liquidus surface (in (97) the relations (73) are con-
sidered). In this situation, the solid phase fraction distribu-
tions φA(z, t) and φB(z, t) in the main and cotectic two-phase
zones are solutions of the square equations obtained by sub-
stituting the explicit dependencies G(φA), Fc

1(B) and F
c
2(C)

into equations (74) and (88), while the boundary value φ+
AC is

determined from quadratic equation (87). To define the three
coefficients included in the expressions (97)–(99), as in the lin-
ear case, we have three points—the melting point, the eutectic
point of the binary system and the eutectic point of the tern-
ary system. The remaining coefficients should be determined
from additional measurements.

12
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Figure 12. Distribution of the solid phase fraction in the two-phase
zones at time t= 105 s. The vertical line shows the position of the
interface between the two phase zones. Areas I and II represent the
cotectic and main two-phase zones, respectively.

Figure 13. Interfacial boundary coordinates vs. time (the symbols
show experimental data [19]).

Figures 12 and 13 show solid phase distributions and
interface dynamics for a H2O−KNO3 −NaNO3 salt solution
which thermal properties are given in table 1. We also used
the same solution in the previous section as the considering
substance (with C∞ = 15.2wt% NaNO3 and B∞ = 3.5wt%
KNO3). Calculations account for the deviation from the linear
phase diagram by using the principal term of small order in the
relation (97) proportional to C2 (parameters nB = 0, nBC = 0,
ncB = 0, ncC = 0, and nC =−6.8× 10−3 ◦Cwt%2 was determ-
ined from the experimentally known phase transition temper-
ature Tpb =−6.3 ◦C at the boundary z= hp(t) [19]).

Figure 13 illustrates the movement of interphase boundar-
ies according to expressions (92), and one can see that almost
half of the entire phase transition region is a cotectic two-
phase zone even with a small amount of component B in the
system. During the solidification of multicomponent solutions

and melts, the entire phase transition region consists of several
phase transition regions of their components. In this case, as
expressions (91) and (92) show, the external boundaries hp(t)
and he(t) of the total phase transition region do not depend on
the parameters of the cotectic zone, but are determined only
by the system operating parameters (TB, T∞, B∞, C∞) and
the type of phase diagram. This means that the laws of motion
of the external boundaries defined by expressions (92) will be
valid for multicomponent systems. Note also that the addition
of impurity in the system leads to a decrease in the phase trans-
ition temperature G(0) at the two-phase zone-liquid boundary
and, according to expressions (91) and (92), to a slowermotion
of both boundaries of the entire phase transition region.

3.2. Analytical solution with non-linear liquidus surface
equations and cotectic curve (different temperature profiles)

The experiment shows (see e.g. figure 5) that the temperat-
ure profiles in the zones are slightly different from each other,
although they have an almost linear form. To take into account
this more general case, we carry out another study extending
the results already obtained and allowing us to make more
accurate calculations for the solidification process of mul-
ticomponent systems.

We will assume that the crystallization process has self-
similar properties (see (55), (65) and (66) or (92)), so we rep-
resent the boundary positions and the self-similar variable η in
the form:

he(t) = 2λe
√
κℓt, hc(t) = 2λc

√
κℓt, hp(t) = 2λp

√
κℓt,
(100)

η =
z

2
√
κℓt

. (101)

Here λe, λc, and λp are the parabolic growth rate constants to
be determined as the problem solution.

We suggest that the temperature fields are linear in η. In
addition, we use the equations for the concentration fields in
the Scheil form ((73) and (81)). Then the temperature and con-
centrations will be obtained explicitly:

Tp(η) = T1 + ηT2 = F(B,C), (102)

Bp(η) =
Bpb

1−φA(η)
, Cp(η) =

Cpb
1−φA(η)

, (103)

in the main two-phase zone λc < η < λp, and:

Tc(η) = T3 + ηT4 = Fc
1(B) = Fc

2(C), (104)

Bc(η) =
Bcb(1−φ−

AC−φ−
BC)+φ−

BC−φB(η)

1−φA(η)−φB(η)
, (105)

Cc(η) =
Ccb(1−φ−

AC−φ−
BC)

1−φA(η)−φB(η)
, (106)

13
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in the cotectic two-phase zone λe < η < λc, and in the solid
phase:

Ts(η) = TB+
TE−TB

λe
η. (107)

The boundary conditions (8)–(11) in self-similar variables
are:

Tℓ = Tp = Tpb = F(Bpb,Cpb), (108)

dTℓ
dη

=
dTp
dη

, φA = 0, (109)

2κℓλp(Bpb−B∞) =−DB
dB
dη

, 2κℓλp(Cpb−C∞) =−DC
dC
dη

,

(110)

and we have considered the most common case where φA = 0
with η = λp.

Combining the expressions (102) and (108), we find T1

and Tpb:

T1 = F(Bpb,Cpb)−λpT2, Tpb = F(Bpb,Cpb). (111)

The derivatives of the concentrations with respect to the
self-similar variable η are:

dBp
dη

=
Bpb

(1−φA)2
dφA
dη

,
dCp
dη

=
Cpb

(1−φA)2
dφA
dη

. (112)

Substituting this into the boundary conditions (110), we
express Cpb through Bpb:

Cpb =
DBpbC∞

Bpb(D− 1)+B∞
, D=

DB

DC
. (113)

Equations (102) and (103) determine implicitly the solid
phase fraction φA(η) in the main two-phase zone:

T1 + ηT2 = F

(
Bpb

1−φA
,
Cpb

1−φA

)
≡ G(φA), (114)

and

dφA
dη

= T2

(
dG
dφA

)−1

.

Substituting (112) into (110) at φA = 0, we arrive at the
expression for T2:

T2 =
2κℓλp(B∞ −Bpb)

DBBpb

(
dG
dφA

)
φA=0

. (115)

We obtain the relation between the unknown parameters
Bpb and λp from (79), (102), (109) and (115) as:

(T∞ −G(0))DBBpb√
πκℓ

= λp(B∞ −Bpb)erfc(λp)exp(λ
2
p)

(
dG
dφA

)
φA=0

. (116)

λc = λp+
1
T2

[
F

(
Bpb

1−φ+
AC

,
Cpb

1−φ+
AC

)
−G(0)

]
. (117)

At the boundary between the zones η = λc, we have:

Tp = Tc,
Bpb

1−φ+
AC

= Bcb,
Cpb

1−φ+
AC

= Ccb, φ+
BC = 0.

(118)

Substituting (102) and (104) into (118), we get explicit
expressions for T3, Ccb and φ+

AC:

T3 = T1 +λc(T2 −T4), Ccb = Bcb
Cpb
Bpb

, φ+
AC = 1−

Bpb
Bcb

.

(119)

In addition, the ratios (102) and (104) at η = λc allow us to
find the equation for Bcb = Bcb(Bpb):

F

(
Bcb,

Cpb
Bpb

Bcb

)
= Fc

1(Bcb). (120)

Now, from this equation, we can conclude that λc defined
by the expression (117) depends only on Bpb and λp.

The boundary conditions (20)–(22) at η = λc in self-similar
variables are:

2λcκℓρsL
(
φ+
AC−φ−

AC−φ−
BC

)
=
[
(1−φ+

AC)kℓ +φ+
ACks

]
T2

−
[
(1−φ−

AC−φ−
BC)kℓ +(φ−

AC+φ−
BC)ks

]
T4, (121)

2λcκℓ

DB

(
Bcb(φ

+
AC−φ−

AC)+ (1−Bcb)φ
−
BC

)
= BcbT2

(
dG
dφA

)−1

φ+
AC

−
(
1−φ−

AC−φ−
BC

)
T4

(
dFc

1

dBc

)−1

Bcb

,

(122)

2λcκℓ

DC
Ccb
(
φ+
AC−φ−

AC−φ−
BC

)
= CcbT2

(
dG
dφA

)−1

φ+
AC

−
(
1−φ−

AC−φ−
BC

)
T4

(
dFc

2

dCc

)−1

Ccb

,

(123)

where

dBc
dη

= T4

(
dFc

1

dBc

)−1

,
dCc
dη

= T4

(
dFc

2

dCc

)−1

.

It is now easy to express φ−
AC, φ

−
BC and T4 from equations

(121)–(123). The solid phase fractions φA(η) and φB(η) in
the cotectic zone can be found from equations (104)–(106).
Moreover, by equating the temperature distribution at η = λe
to the known temperature at the eutectic point of the ternary
system E, we obtain three equations to determineφ+

AE,φ
+
BE and

λe. For example, for λe we have:

λe =
TE−T3
T4

. (124)

14
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The solid phase fractions φ−
AE, φ

−
BE and φ−

CE left of solid
phase boundaries η = λe can be found as before from the
boundary conditions (32) and (33):

φ−
BE =

DB

2λeκℓ

(
1−φ+

AE−φ+
BE

)
T4

(
dFc

1

dBc

)−1

BE

−BE
(
φ+
AE+φ+

BE− 1
)
+φ+

BE, φ−
AE = 1−φ−

BE−φ−
CE,

(125)

φ−
CE =

DC

2λeκℓ

(
1−φ+

AE−φ+
BE

)
T4

(
dFc

2

dCc

)−1

CE

−CE
(
φ+
AE+φ+

BE− 1
)
. (126)

In order to obtain the second relation between Bpb and λp,
we use the heat balance condition (31) at the solid phase/
cotectic two-phase interface:

2λeκℓρsL
(
φ+
AE+φ+

BE− 1
)

= T4

[(
1−φ+

AE−φ+
BE

)
kℓ +

(
φ+
AE+φ+

BE

)
ks−

TE−TB
TE−T3

ks

]
.

(127)

Thus, the two unknowns Bpb and λp can be found from
equations (116) and (127), the remaining process paramet-
ers are determined from expressions (102)–(107), (111)–(115)
and (121)–(126).

We use the quadratic dependences for the liquidus surface,
as in the previous section, to obtain specific results:

Tp∗ = TM+mBB+mCC+ nCC
2, hc(t)< z< hp(t),

Tc∗ =−mc
B(B−BE)+ TE

=−mc
CC+ ncCC

2 +TABE he(t)< z< hc(t).

Remind that from the three points of the liquidus sur-
face and the value Tpb ≈−6.3 ◦C we find the expansion
coefficients:

mB =
TABE −TM
BAB
E

, mC =
TE−TM−mBBE− nCC2

E

CE
,

mc
B =

TABE −TE
BE−BAB

E

, mc
C =

TABE −TE+ ncCC
2
E

CE
,

nC =
1

C∞(C∞ −CE)

(
T∗ −TM−mBB∞

−(TE−TM−mBBE)
C∞

CE

)
,

ncC =
B2
∞

BcbC∞(BcbC∞ −CEB∞)

×
(
TM+mBBcb+mCBcb

C∞

B∞

+nCB
2
cb
C2
∞

B2
∞

+
BcbC∞

CEB∞

(
TABE −TE

)
−TABE

)
.

Figure 14. Temperature profiles for different time values (numbers
at the curves). The circles show the experimental data (experiment
7, [19]). Icons on the curves are the positions of the main two-phase
zone-liquid boundary (shaded circles), cotectic two-phase
zone-main two-phase zone (shaded squares) and cotectic two-phase
zone-liquid.

Figure 15. Distribution of the solid phase fraction in the two-phase
zones at time t= 105 s. The vertical line shows the position of the
interface between the two phase zones. Areas I and II respectively
represent the cotectic and main two-phase zones.

Figures 14–16 show the obtained temperature, phase frac-
tion and concentration distributions, respectively, for the sys-
tem H2O−KNO3 −NaNO3 whose thermophysical paramet-
ers are given in table 1. Figure 14 shows the temperature
profiles in all solidification regions for different solidification
times (similar to figure 7). Figure 15 is given to compare the
distribution of phase fractions with similar data from more
specific cases. Figure 16 shows distributions of impurity con-
centrations for various values of the initial concentration of
component B. It can be seen that its variation does not strongly
affect the pure solid-liquid boundaries (left and right bound-
aries of all curves), but it significantly changes the position of
the boundary between the two two-phase zones.
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Figure 16. The concentrations of the components B and C in the
zones at time t= 105 s. The vertical dashed lines mark the position
of the boundary between the two two-phase zones at different values
of B∞ (numbers next to the lines), whereas the solid phase
boundary he ≈ 2.94 cm and the liquid phase hp ≈ 8.7 cm remain
virtually unchanged at different B∞.

We conclude the section by summarizing the results. The
assumptions about the linearity of the liquidus surface and
temperature were excluded from the model of directional
solidification of three-component systems with two-phase
zones, which allowed us to obtain a more mathematically rig-
orous and extensible method for solving such problems. The
obtained analytical solution complements the already existing
experimental data, numerical solutions, and less precise solu-
tions of the second section. In addition, it has been shown that
the theoretical approach described in this section can be used
for multicomponent systems. In this case, the laws of motion
for liquid phase/two-phase and solid phase/two-phase bound-
aries will be the same as for the three-component system; only
the number of two-phase state zones will change. The results
obtained in this section are in good agreement with experi-
mental data and can be used for predicting the behavior and
description of the crystallization process, including the distri-
bution of impurities in the solidified samples.

4. Conclusion

In the present paper, the problem of three-component crys-
tallization systems with two-phase zones—main and cotectic
zones—was considered. The strong nonlinearity of the model
in such processes makes it impossible to find an analytical
solution in a general form. Several assumptions, consistent
with the physical properties of the process and experimental
data, were proposed in this paper. The liquidus surface was
assumed to be linear and characterized the phase transition
temperature dependence on the system components concen-
trations; moreover, the temperature linearity in the two-phase
zones and the solid was assumed and their profiles were con-
sidered to coincide. As a result, an analytical solution of the
equations of heat andmass transfer in the two-phase zones was
obtained, making it possible to find distributions of temperat-
ure and concentrations of all components in all regions, shares
of solid phases in both two-phase zones, velocities, and laws of

motion of interphase boundaries. During the solution process,
it was shown that the process is self-similar if the temperat-
ure at the liquid phase/main two-phase zone boundary is con-
stant. Moreover, it was shown that the concentration of com-
ponents that start to solidify in the cotectic two-phase zone has
a weakly pronounced maximum at the interface of two-phase
zones.

Let us especially note in conclusion that the theory of
ternary melt crystallization with two two-phase layers in the
steady-state manner (solidification velocity is constant) was
detailed and discussed in [46]. The readers can find in this
article a mathematical model of the steady-state solidifica-
tion process with main and cotectic two-phase regions and a
method for solving this non-linear solidification model with
constant velocity. Note that exact analytical solutions of the
non-linear model were derived in [46] in a parametric form.
So, for example, it was shown that the crystallization velocity
is entirely defined by temperature gradients in the solid and
liquid layers. This growth law is identical to cases of binary
melt crystallization with a two-phase layer. Also, it was shown
that the liquid composition of the main dissolved impurity
reduces in the cotectic and main regions, while the second
(cotectic) impurity concentration increases in the cotectic
region, attains a maximum value, and reduces in the main two-
phase region. For more details of this quasi-stationary theory,
we refer the interested reader to the theory [46].

The theory of directional crystallization of ternary melts
with main and cotectic two-phase layers developed in this
paper takes into account only the basic features of the solid-
ification process. In future studies, this theory can be gener-
alized to nonlinear heat and mass transfer in the two-phase
region [34, 35, 47], the presence of melt flows [48–51], the
morphological instability of the interfaces [51–54], stochastic
temperature fluctuations, and the joint realization of bulk
and directional solidification [55–58]. Such a generalization
can be made by analogy with the theory developed in these
works for the solidification of binary melts with a two-phase
region. In addition, the analysis of the solid phase frac-
tion distribution during solidification can be performed using
CALPHAD [59, 60].
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