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Abstract

Since its introduction, the European Emissions Trading Scheme (EU ETS) has
been struggling with an oversupply of emission allowances and a highly volatile al-
lowance price. One reason for the price decline is technological progress and its
demand-reducing effect, which is only partially taken into account in the system.
We propose a simple benchmark approach to endogenously adjust the supply of
allowances to technical progress. Using a non-parametric benchmark approach, we
measure the required adjustment of the allowance supply to avoid a technology-
induced price decline and to maintain the incentive to invest in low-carbon tech-
nologies.
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1 Introduction

Prices vs. quantities? Among economists there is little doubt that a tax or a cap-
and-trade market are effective tools to tackle the negative externality of GHG emissions
(Gugler et al., 2021; Borenstein et al., 2019; Klenert et al., 2018; Howard and Sylvan, 2015;
Aldy and Stavins, 2012; Arrow et al., 1997). Whether to regulate prices or quantities,
however, is less clear. From a theoretical stance, there is no clear preference for one over
the other (Weitzman, 1974). Both, price and quantity regulation, set the incentive for
producers to invest in low-carbon technologies and for consumers to demand low-carbon
products; consequently, both regulatory approaches should have an equivalent potential
(Goulder and Schein, 2013).

Looking at existing cap-and-trade markets, doubts arise as to whether the regulation
of quantities is reasonable (Aldy and Stavins, 2012). According to Weitzman (1974),
price regulation via a carbon tax appears preferable as it is more efficient (Nordhaus,
2007), easier to implement, and less cumbersome to administer (Metcalf, 2019); most
importantly, price regulation maintains the incentive to invest in abatement technologies
as it persistently increases marginal cost. In a cap-and-trade system, the incentive declines
as soon as technical progress in emission abatement is quicker than the cap adjustment
(Ockenfels et al., 2020), which will finally lead to an excess supply of allowances and high
price volatility (Hintermann et al., 2016).

Likewise the price of European Union allowances (EUA) in the European Emission
Trading System (EU ETS) has experienced high volatility, in its young history, leading to
excess supply and an allowance price often close to zero (Abrell et al., 2011). The causes
to be named are manifold: excessive use of Emission Reduction Certificates (ERC), over-
lapping renewable support policies, or exogenous demand shocks. They all reinforce the
downward pressure on the allowance price (Grosjean et al., 2016; Kollenberg and Taschini,
2019). Many policies to fight this side effect have been suggested and scrutinized in the
literature: tightening the cap, allowance banking, backloading of allocated allowances, in-
corporating new sectors, or the Market Stability Reserve (MSR) (Fan et al., 2017; Salant,
2016). Also, it has been recognized that technical progress itself accelerates the accumu-
lation of excess allowances in the EU ETS (Abrell et al., 2011; Aldy and Stavins, 2012;
Weigt et al., 2013; Newell et al., 2014; Koch et al., 2014; Grosjean et al., 2016). But
little attention has been paid to the question of how technology-induced declines in de-
mand for allowances can be counteracted with an appropriate adjustment of the supply
of allowances?

In this paper, we suggest a non-parametric benchmark approach to endogenize the
supply of emission allowances that will help stabilize the allowance price thus keeping the
incentive to invest in low-carbon technology up.

Using Data Envelopment Analysis (henceforth: DEA), we calculate country-specific
efficiency scores as a linear combination of efficient benchmark countries, based on which
we gauge the shift of their individual technology frontier by which the overall supply of
allowances shall be reduced.

As an empirical example, we use data from the European Union Emissions Trading
System (EU ETS) in order to illustrate to what extent our approach can help adjust the
trading cap endogenously.1 Our results indicate that, on average, the allowance reduction
factors range between 2.13% and 2.71% in the second phase and between 2.74% and 3.59%
in the third phase of EU ETS, depending on the policy associated with the respective

1To emphasize, we do not focus on countries’ efficiency level, but on the shifts of their benchmark,
i.e. their individual technology frontier.
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DEA model.
In the following, we first sketch the Emission Trading System of the European Union

(EU ETS) in Section (2). In Section (3), we lay out the basic concept of the endogenous
adjustment model. In Section (4) we explain how to measure technical change. Section
(5) contains the data description. Results are presented in Section (6), followed by a short
discussion and conclusion (Section 7).

2 Managing the Allowance Surplus in the EU ETS

Every allowance trading market such as the EU ETS is based on the ’cap and trade’
principle, where the cap, i.e. the total supply of allowances, determines the total of
permitted emissions in the allowance market of member countries. On the installation
level, each emitter have to submit the number of allowances equivalent to the emissions
they produce. In the EU ETS, the owner of one European Union Allowance (EUA), has
the right to emit one tonne of carbon dioxide equivalents (CO2-eq) (Ellerman et al., 2010).
The system has undergone several phases starting out with a free allocation of allowances
to emitters, gradually substituting the re-partitioning of allowances by a market system.

Since its beginning, a surplus of allowance has accumulated. In 2005 (end of phase
1), the supply of allowances exceeded actual emissions by 4% – accounting for 83 million
excess allowances (Ellerman et al., 2016). In the aftermath of the financial crisis in
2008/2009, overlapping national renewable support policies, an excessive use of Emission
Reduction Certificates (Clean Development Mechanism, CDM), and the introduction of
an EUA banking option had increased the surplus up to 1.8 billion allowances, end of
phase 2 (Ellerman et al., 2016). In phase 3, the initial excess supply of 2 billion EUAs
grew to 2.1 billion in 2013 (European Commission, 2015) and remained at this level during
the whole period of phase 3 (Grosjean et al., 2016). Simultaneously, the allowance price
had dropped significantly and so had the incentive to invest in low-carbon technology
(Salant, 2016).

Ever since, the European Commission (EC) has been trying to solve the problem of
excess allowances introducing a set of counteracting policies (Bocklet et al., 2019): In
2013, an EU-wide cap was set to be reduced by an annual 1.74% (= linear reduction
factor, henceforth: LTF) compared to 2010 (European Commission, 2015). In 2014-2016,
it was decided to backload 900 million allowances to be auctioned in Phase 3. In January
2019, the Market Stability Reserve (MSR), intended as a long-term measure, was designed
to control the annual circulation of allowances and, in the event of a surplus, to transfer
excess allowances to the reserve. Further reforms followed (Beck and Kruse-Andersen,
2018; Kollenberg and Taschini, 2019): The LRF was increased to 2.2% as of 2021, the
MSR intake rate was doubled from 12% to 24% untill 2023 (Kollenberg and Taschini,
2019; Bocklet et al., 2019; Borenstein et al., 2019; Beck and Kruse-Andersen, 2018). All
these measures were implemented to fight the excess supply of EUAs (Flachsland et al.,
2020). Nonetheless, the negative pressure on the allowance price has prevailed.

The Linear Reduction Factor (LRF) is an instrument that comes closest to what
we have in mind in our adjusment mechanism. This reduction factor, however, is fixed
and therefore renders the system inflexible to adjust endogenously to an excess supply
of allowances (Kollenberg and Taschini, 2016): any technical progress that reduces the
demand for allowances more than stipulated by the LRF will lead to an excess supply of
allowances which will affect the allowance price negatively.

We propose to endogenize this adjustment scheme in line with technical change. It
will render the system more flexible and can easily be implemented by imposing yardstick
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competition on the supply of allowances.

3 Endogenous Allowance Adjustment

In this section, we first discuss the role of strategic investment behavior in low-carbon
technologies of two countries. A simple duopoly model will illustrate the negative effect of
technical progress in emission abatement on the incentive to invest further in such tech-
nologies. Moreover, the model shows that positive spillovers from low-carbon investment
of one country to the other will steadily reduce overall efforts to invest in low-carbon tech-
nologies. In a second step, we build an allowance market, based on countries’ (emission)
cost function from the duopoly model.

3.1 Strategic Investment Behavior of Countries

Let us assume two countries that compete for the world demand for goods and services
y.2 For simplicity, we assume production cost per unit output to be zero so that the value
of production in country i is:

ωi = (Ω− yi − yj)yi (1)

where Ω is the price limit with yi and yj as production of goods and services of the
respective country i and j.

Without investing in low-carbon technologies, countries have to buy one allowance per
unit output for price p0. If they invest in low-carbon technologies r, their demand for
allowances shifts down. Hence, they reduce their emission cost permanently.3 This causes
spillover to other countries. A permanent reduction of a country’s demand for allowances
will affect price negatively, from which other countries will benefit. The spillovers affect
country i’s unit (emission) cost:

ci(ri, rj) = p0 − ri − βrj (2)

Unit emission cost c(ri, rj) depend on own investments ri and country j’s investment
rj, with ri, rj > 0 ∧ −1 < β < 1, where spillovers are conditioned by spillover parameter
β. In the second stage, countries maximize the following value function:

ωi(yi, yj, ci) = (Ω− yi − yj − ci)yi −
λ

2
r2i (3)

incurring low-carbon investment cost r2i λ/2. The resulting output reaction function reads
as:

Ri(yj) : yi =
1

3

(
Ω− p0 + (2− β)ri + (2β − 1)rj

)
(4)

which allows us to calculate the first-stage value function based on ω̃i(ri, rj) = [y∗i ]
2−r2i λ/2

and the corresponding first-order condition ∂ω̃/∂ri which is:

2Out model builds on the model by d’Aspremont and Jacquemin (1988). It substantiates R&D
investment behavior in a competitive environment. It was expanded by several authors such as Bloom
et al. (2013); Lin and Saggi (2002), or Grebel and Nesta (2020) who transform the model into a n-firm
oligopoly model.

3To keep the model simply, we do without a dynamic perspective discounting future savings in
emission costs.
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ω̂i(ri, rj)

∂ri
=

2

9

[
(Ω− p0) + ri(2− β)− rj(1− 2β)

]
− λri = 0 (5)

Assuming symmetric countries, equilibrium investment is:

r∗ =
2(p0 − Ω)(β − 2)

2(β − 1)β + 9λ− 4
(6)

which yields optimal production value:

ω∗ =
γ (−2(β − 2)2 + 9γ) (p0− Ω)2

(2(β − 1)β + 9γ − 4)2
(7)

It is easy to show that optimal investment r∗ is monotonously decreasing in β ∈
⟨−1, 1⟩:

∂r∗

∂β
=

2 (2(β − 2)2 − 9γ) (Ω− p0)

(2(β − 1)β + 9γ − 4)2
< 0 (8)

Note that 2(β − 2)2 − 9γ reflects the second-order condition that has to be negative
assuming optimal investment behavior.

Concerning the impact of low-carbon investment on production, the change of ω̃i with
respect to a change in ri can be expressed as:

∂ωi

∂ci

∂ci
∂ri︸ ︷︷ ︸

direct effect

+
∂ωi

∂yi

∂y∗i
∂ri︸ ︷︷ ︸

=0

+
∂ωi

∂yj

∂y∗j
∂ri︸ ︷︷ ︸

strategic effect

= γri (9)

which states that in equilibrium, the marginal cost of investing in low-carbon technology
equals its marginal returns. The first term to the left of the equality in Equation (9)
denotes the direct effect of low-carbon investment ri of country i lowering its marginal
cost per unit output. This component indicates the magnitude of country i’s low-carbon
investment not taking spillovers into account. The second component is equal to zero
because, in the first stage, the country selects its optimal level of R&D so that ∂ωi/∂yj =
0. The third component reflects the strategic component, which leads to the following
inequality:

3γ(Ω− p0)

2(β − 1)β + 9γ − 4︸ ︷︷ ︸
direct effect

+
γ(1− 2β)(Ω− p0)

2(β − 1)β + 9γ − 4︸ ︷︷ ︸
strategic effect

> 0 (10)

As the denominator of both ratios is the second-order condition, it must hold that γ >
2
9
(2 + β(1− β)). Hence, the direct effect is always positive, whereas the indirect effect is

positive for β < 1/2 and negative otherwise. Figure (1) illustrates the relationship between
spillovers β, optimal low-carbon investment r∗ and equilibrium output ω∗. Given the
assumption that countries maximize their value function ωi, which can also be interpreted
as a country’s welfare, positive spillovers will always lead to a decline in low-carbon
investment r∗.

What value spillover parameter β takes, depends on the design of the allowance market
as we investigate in the following.
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Figure 1: Equilibrium values for ω∗ and r∗ given β.
Nore: according to the low-carbon investment reaction functions, for −1 < β < 1/2, behavior is
subsitutive, for 1/2 ≤ β < 1, investment behavior is complementary. Irrespective of the strategic
behavior, the total production value ω∗ increases, while the level of investments r∗ will decline with
increasing spillovers β.

3.2 The Market for Allowances

The demand for allowances of the two countries derives from their productive output y.
Suppose one unit of output y generates one unit of emissions q, where aggregate demand
for allowances QD depends on the price of allowances p as well as the efforts of countries
i and j emission abatement efforts ri and rj, respectively:

QD = QD(p, ri, rj) (11)

Since the supply of allowances is fixed, we can state that in equilibrium:

QS = S0 (12)

Without any investment in low-carbon technologies, the market clears with price p0.
If countries invest in low-carbon technologies, they can permanently reduce their demand
for allowances per unit output, which is tantamount to saying that through low-carbon
investments the demand curve shifts downward lowering the price for allowances per-
manently, ceteris paribus. Hence, countries benefit from positive spillovers of the other
country’s low-carbon investment activities.

Now, we take a closer look at countries’ cost function in Equation (2). Rewriting this
equation with its equilibrium values by dividing by p0 yields:

c(r∗i , r
∗
j )

p0
= 1− r∗i

p0
− β

r∗j
p0

= 1− δ (13)

where δ indicates the reduction of unit cost in percent. By construction, the reduction
of unit cost is tantamount to a reduction in the demand for allowances per unit output.
Consequently, the demand for allowances reduces from qi = yi assuming no investment
to qi = (1 − δ)yi when both countries i and j invest r∗ in low-carbon technologies. In a
symmetric duopoly model of the allowance market, aggregate demand thus reduces to:
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Q∗
D = 2q∗ = 2(1− δ)y∗ (14)

This inevitably leads to a decline in the allowance price, given a constant supply
of allowances. To avoid positive spillovers, the supply of allowances would need to be
adjusted accordingly:

Q∗
S = (1− δ)S0 (15)

With adjustment, the investing country would decrease its unit cost, whereas the
emission cost of the not investing country would remain the same, ceteris paribus. In
this case, the reduction of the allowance supply neutralizes positive spillovers, as if β in
Equation (13) were set to zero. The investment of country j in low-carbon technology
would not affect country i’s emission cost, vice versa. Unless both countries compete
on the goods market, country j’s low-carbon investment would have no pecuniary effect
on country i. The downside of this scenario is that it does not put any competitive
pressure on country i with regard to the abatement of emissions. In order to do so, the
design of the adjustment procedure must allow for negative spillovers (β < 0). This can
be achieved by applying a yardstick competition approach suitable to re-partition the
allowance supply of individual countries according to their relative achievements in the
abatement of emissions.

The technology-induced permanent reduction in allowances δ is the sum of country-
individual abatement efforts: δ =

∑
i δi for i ∈ {1, 2}. As for stabilizing the price of

allowances ∆QD = ∆QS, it must hold that

QD

∑
i

δi = QS

∑
i

αi (16)

where αi expresses the reduction of allowances attributed to country i. Note that this
requires that every country receives a certain share in total allowances. If αi = δi, there
will be no competition between countries, because then β = 0. Instead, if we set the
country-specific allowance supply in the subsequent period to:

qi,t1 = qi,t0(1−∆QD/QD), (17)

we create negative spillovers to the country with the lower efficiency gains in emission
abatement. The total abatement success expressed as arithmetic mean of emission re-
duction is ∆QD/QD. Suppose country i is the low performing country, then it holds
that

δi/qi < ∆QD/QD < δj/qj (18)

In other words, reducing the allowance supply in both countries by the average techni-
cal progress (= CO2 reduction) will generate an excess demand for allowances in country i
and an excess supply of allowances in country j. Since the overall reduction of allowances
is equivalent to the overall reduction in allowance demand, the allowance price will remain
unchanged.

With respect to the strategic behavior of countries, this leads to the following game.
Assuming a symmetric case qi = qj with p0 = 1, the corresponding pay-off matrix is
reported in Table (1). The Nash equilibrium in this payoff matrix is δi = d > 0 and
δj = d > 0. Both countries have the incentive to invest in low-carbon technology because
of negative spillovers from the other country (β < 0).
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country j

δj = d > 0 δj = 0

co
u
n
tr
y
i

δi = d > 0 0 ; 0 +1
2d ; −1

2d

δi = 0 −1
2d ; +1

2d 0 ; 0

Note: Parameter d represents the achieved reduction in CO2

by the respective country. The Nash equilibrium in this payoff
matrix is δi = d > 0 and δj = d > 0, both countries have the
incentive to invest in low-carbon technology, because of negative
spillovers from the other country (β < 0).

Table 1: Additional gain in allowance supply.

Our concept compares to the EU ETS in this respect that the Linear Reduction Factor
(LRF) stipulates a certain reduction d, but in contrast to our model d is fixed. All member
countries have to reduce their annual emissions by the LRF. If one country manages to
reduce their emissions even further, the additional reduction has no negative effect on
other countries. Conversely, it induces positive spillovers, since more allowances are freed
causing a downward pressure on the allowance price, while leaving the allowance supply
unadjusted to the extra technical progress of countries.

An endogenous adjustment of the allowance supply (i.e. and endogenous d) will sta-
bilize the allowance price; the redistribution of extra CO2 abatement gains, as suggested
by Equation (17), creates negative spillovers (β < 0). Thus, the incentive to invest in
low-carbon technologies is maintained.

It has to be stressed that the adjustment mechanism also works in the opposite direc-
tion, unless such mechanism is restricted by authority. If average emissions increased, the
endogenous adjustment of allowances would lead to an increase in the allowance supply
according to Equation (17), although the allowance price would remain the same, ceteris
paribus.

Hence, even in times of crisis when energy supply is scarce forcing countries to switch
to more carbon-intensive technologies, the proposed adjustment mechanism still works
without impairing the incentive to invest in low-carbon technologies. Such investment
would remain the dominant strategy. With regard to a seemingly unstoppable climate
change, however, an increase in allowance supply because of an increase in demand ∆QD

appears infeasible. In the next subsection, we show how to implement our concept.

4 Measuring Technical Change

The main requirement for the implementation of our endogenous adjustment model is
the calculation of technical shifts. To do so, we proceed again in two steps. First, we
explain how to measure countries’ relative efficiency while taking the heterogeneity of
countries’ production system into account. Second, we use countries’ individual bench-
mark efficiency, i.e. the virtual benchmark level on the technology frontier, to calculate
technical shifts. To emphasize, it is not the main objective to measure the distance of
inefficient countries to their reference point on the frontier. We only need to measure effi-
ciency scores at a given time in order to compute actual shifts in the technology frontier
according to which the supply of allowances has to be adjusted.
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4.1 Relative Efficiency

To measure relative efficiency, we use a non-parametric approach also know as Data
Envelopment Analysis (DEA) that we will explain by means of an example. For doing
so, we expand the model from above beyond the duopoly case.4 Let us assume five
countries A, B, C, D, and E. All countries produce output Y using input L (=labor),
while simultaneously emitting CO2. Table (2) describes countries’ production systems
at time t0. Among all five countries, country E performs best in terms of emitting the

CTRY L CO2 Y L
Y r L

Y

CO2
Y rCO2

Y

A 45 140 100 0.45 1 1.40 5
B 50 120 100 0.50 2 1.20 3
C 130 130 100 1.30 4 1.30 4
D 100 50 100 1.00 3 0.50 2
E 140 45 100 1.40 5 0.45 1

sum (avg) 465 485 500 (0.93) (0.97)

Note: initial values in period t0; L = labor endowment; CO2 = emissions of countries in line with the LRF; Y =
output; L/Y= labor input coefficient; rL/Y = country ranking according to labor coefficient; CO2/Y = emissions per
unit output; rCO2

= country ranking according to labor input coefficient.

Table 2: Countries’ production system at time t0.

lowest amount of CO2 per unit output Y , i.e. CO2/Y = 0.45. If we assume that all
remaining countries would have to meet the same environmental standards, the resulting
demand for allowances whould be

∑
i Yi · 0.45 = 225 instead of 4855 The corresponding

δ would then be 1− 225/485 = 54% and each country would receive only 54 allowances.
As a consequence, the allowance price would increase substantially. These consequence,
Without delving into that discussion any further, high-income countries, such as A or B
with a per capita income (Y/L) of 2.22 and 2, respectively, would probably not readily
accept.

In Figure (2), we transform the figures in Table (2) into a diagram, with the coefficients
CO2/Y and L/Y depicted on the horizontal and the vertical axis, respectively. Comparing
all countries, there is no country that outperforms any other country, except for country
C. Country C is dominated by country B as well as country D, because it emits more
CO2 and employs more labor L per unit output than either of countries B and D. When
connecting all not dominated countries by a line, as show in Figure (2), they altogether
define an efficiency (or technology) frontier. All countries to the right of this frontier,
i.e. country C, are inefficient according to the Pareto-Koopmans6 criterion.

The degree of country C’s inefficiency can be calculated as its distance to the frontier.
Yet, it is unclear which of all reference points on the technology frontier is the ’right’ one
to use as a benchmark for country C. The calculation itself can be performed using a
non-parametric approach, also known as Data Envelopment Analysis (DEA).7 Whether
a comparison of an inefficient country with a dominating one is considered legitimate,
is subject of political discussion, a discussion we do not intend to lead here. Once the

4Grebel and Nesta (2020) show how such kind of duopoly model can be extended to the n-country
case.

5Thereby we assuming that one unit of CO2 equals one allowance.
6See Charnes et al. (1978, p.433).
7The underlying mathematical formulation we provide in Appendix (A).
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Figure 2: Non-parametric benchmark for country C.

political process has come to a consensus on the direction of economic/technical change,
it can be translated into the corresponding (directional) DEA-model.

As there is no general political consensus to the best of our knowledge, we, instead
consider a selection of possible policy directions by choosing various (directional) DEA
models, which we label CCR, UEN, and UEM.8 Suppose the political consensus would
prescribe to achieve higher employment of input factors (L in our example) by reducing
CO2 emissions, even though it would go along with a lower labor productivity, the UEM
model by Sueyoshi and Goto (2012) whould select country E as benchmark for country C
(Figure 2, arrow labeled UEM).9 Weighing the efficiency of both, input L and bad output
CO2 equally, the frontier value cb00 , i.e. the linear combination of two countries (=virtual
production system) B and D will be virtual benchmark as to be computed with Charnes
et al. (1978)’s CCR model (Figure 2, arrow labeled CCR). If the political consensus takes
a somewhat intermediate position with respect to environmental and labor efficiency, the
virtual benchmark for country C would be the location on the frontier to which the arrow
labeled UEN points at, in Figure (2).10

Before we can calculate shifts of the technology frontier t0, required for the compu-
tation of the endogenous adjustment of bad output CO2, we need to calculate countries’
efficiency scores for each of the models we employ in our analysis. For simplicity, we start

8The accronyms are taken from the respective literature as specified later.
9The UEM model is named after the nomenclature by Sueyoshi and Goto (2012, 2013) who call it

united efficiency under managerial disposability. For our purposes, it suffices to note that it is a directional
approach favoring the abatement of bad output (i. e. emissions) as indicated by the arrow labeled UEM
in Figure (2).

10Also, the UEN model is named accordingly as in Sueyoshi and Goto (2012, 2013), which in full is:
united efficiency under natural disposability. Here, it suffices to note that the UEN model implies a less
strict virtual benchmark than the UEM model, but a more stringent one than the CCR model.
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with the traditional Charnes et al. (1978) DEA model (CCR). The underlying mathemat-
ical model is explained in Section (A).

Calculating the level of inefficiency for country C with the CCR model delivers an

efficiency score ξc0 = 0.61, which denotes the ratio Ocb00 /OC. Hence, country C would
need to reduce input L and CO2 emissions by (1 − ξc0) = 39% in order to meet its
benchmark level cb00 = (0.79, 0.79). The remaining DEA models are to be interpreted
likewise.

4.2 Technology Shifts

Now, we turn to the measurement of technology shifts, which is required for the calculation
of the endogenous parameter α. As is the case in phase III (2013-2020) of the EU ETS,
where the European Commission set the minimum shift of the frontier in terms of CO2

reduction to an annual LRF of 1.74%, measured against emissions in 2011, we start
with the same idea stipulating a certain shift of the frontier. For better legibility, we
multiply the LRF of the EU ETS by factor 10 assuming a LRF of 17.4%. Suppose all
countries in our example manage to reduce their emissions in line with the LRF, the
technology frontier in Figure (2) would shift to the left as illustrated in Figure (3). Table
(3) documents the corresponding values.The frontier in t1, as depicted in Figure (3), is

CTRY L CO2,LRF Y L
Y

CO2
Y

A 45 115.64 100 0.45 1.16
B 50 99.12 100 0.50 0.99
C 130 107.38 100 1.30 1.07
D 100 41.30 100 1.00 0.41
E 140 37.17 100 1.40 0.37

sum (avg) 465 400.61 500 (0.93) (0.8)

Notes: values in period t1; L = labor endowment; CO2,LRF = CO2 emissions of countries in line with the LRF; Y =
output; L/Y= labor input; CO2/Y = emissions per unit output.

Table 3: Countries’ production system at time t1.

still formed by benchmark countries AL, BL, DL, and EL with subscript L indicating the
shift of the frontier equivalent to a LRF of 17.4%. Remember that in this scenario it holds
that α = LRF.

Suppose country B achieved a greater technology shift than stipulated by the LRF in
t1 thus reaching a higher efficiency level B1 than in BL, the reduction of the allowance
cap would also need to go beyond the stipulated LRF reduction (i.e. α > LRF) to
keep the price level unchanged. In Table 4, we document the corresponding emission
levels. Column CO2,LRF, which is equivalent to the equally-labeled column in Table (3),
reports the CO2 emissions that are efficient according to the LRF, column SH indicates
the corresponding country share in total CO2 emissions. If a country manages to decrease
its emissions even further, as country B in our example does, the actual emissions at
the end of period t1 will then be 373.5 units of CO2 (column B+), tantamount to a
further reduction of −27.1 allowances. To stabilize the price of allowances, we therefore
need to reduce total supply to 373.49 allowances. To impose our reduction scheme, we
suggest to redistribute the additional reduction of −27.1 allowances according to the
stipulated emission structure of countries as indicated by column SH. This would lead
to an additional reduction of allowances as reported in column ∆, resulting in the final
distribution of allowances as in column REP.
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Figure 3: Technology shift and policy tools

Resuming the previous discussion, whether our adjustment mechanism imposes com-
petition among countries: If the required reduction of allowances were only taken away
from country B, i.e. the country that achieved an excess reduction, the incentive to invest
in low-carbon technology would be forgone. Country B would no longer have an incentive
to invest as much in low-carbon technologies. As soon as we reward country B for its
additional efforts in emission abatement and simultaneously create a negative spillover to
remaining countries, we generate competitive pressure between countries.

The enforced incentive structure thus imposed is revealed when subtracting column
REP from column B+. This yields column INC (=incentive) which states the negative
spillovers country B imposes on remaining countries. Though country B does not earn
the full amount of allowances it saved by its additional abatement efforts (i.e. 27.1), it
receives a fraction of 20.4 allowances, which it can sell to remaining countries, while
the latter suffer from the negative externality of country B’s success in CO2 abatement.
Although they managed to comply with the LRF, they nevertheless will have to buy
allowances from country B. Hence, countries not trying to excel in CO2 abatement run
the risk to be made worse off by other countries.11

5 Data

In this section, we apply our adjustment scheme to empirical data. To model countries’
production systems, we follow the usual procedure in environmental DEA studies and
use labor, capital and energy consumption as inputs, GDP as good outputs and green

11It must be emphasized here that a free auction system does not allow for a reallocation of allowances
between countries unless it is deliberately integrated into the EU ETS. Hence, β = 0 in the case of
non-integration.
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CTRY CO2,LRF SH B+ ∆ REP INC

A 115.6 29% 115.6 −7.8 107.8 −7.8

B 99.1 25% 72.0 −6.7 92.4 20.4

C 107.4 27% 107.4 −7.3 100.1 −7.3

D 41.3 10% 41.3 −2.8 38.5 −2.8

E 37.2 9% 37.2 −2.5 34.7 −2.5

tot(avg) 400.6 100% 373.5 −27.1 373.5 0.0

Notes: CO2.LRF = emissions = allocated allowances in t1 according to the LRF (compare column ‘CO2’ in Table 3);
SH = country shares in CO2.LRF; B

+= frontier shift beyond the LRF, BL to B1; ∆ = redistribution of allowances
(-27.1) according to country shares SH; REP: final amount of reallocated allowances by country; INC = incentive
(i.e. negative externality) imposed by excessive progress of country B on remaining countries.

Table 4: Redistribution of allowance supply in t1.

house gases i.e. CO2 as bad output (Färe et al., 2004; Kumar, 2006; Zhou et al., 2010;
Matsumoto et al., 2020) as well as the capacity in fossil and nuclear power production. We
use non-renewable energy production capacity, instead of energy consumption, assuming
that only renewable energy technology are sustainable, in the long run. In other words,
increasing the use of non-renewable production capacities, be it fossil or nuclear power,
will worsen countries’ efficiency.12

The data we use are publicly available and come from three sources. Information on
countries’ production system such as labor, capital stock, and GDP, we retrieved from
Penn World Table (PWT) for which Feenstra et al. (2015) give a detailed description.
Information about countries’ energy system such as CO2 emissions, fossil and other non-
renewable energy production capacity (FOSCAP) are extracted from OECD.Stat and
Eurostat respectively.

We choose the variable POP (=population in mil.) from PWT as a proxy for countries’
labor force (L). With regard to capital (K) and GDP (Y), we select the variable rkna
(=Capital stock at constant 2017 national prices in mil. 2017 US$) and rkna (=real GDP
at constant 2017 national prices in mil. 2017 US$) from PTW. We use CO2 emissions, in
thousands tonne, from the OECD as a proxy for bad output. The non-renewable energy
production capacity (FOSCAP) in MW includes all energy capacities not classified as
renewable. The data set ranges from the year 2003 to 2018. We take a three year moving
average to smooth the data and to reduce idiosyncratic time effects.

Table 5 reports the descriptive statistics of our data that show a significant difference
in countries size and their corresponding relative emissions intensity measured as the
ratio of CO2 to GDP. Moreover, the higher GDP relates to higher CO2 emission and
non-renewable energy capacity which represent the null-joint set and the disposability
conditions discussed in the Appendix C.

6 Results

We first calculate countries’ relative efficiency scores; as mentioned, these scores we need
in order to calculate the frontier shift which we are actually interested in. We will also

12The production of nuclear waste also is a bad output. In account of not all countries being endowed
with nuclear power, nuclear waste incurs only in countries with nuclear power. For technical reasons,
as DEA requires positive vectors in inputs, good as well as in bad outputs, nuclear waste cannot enter
the models as a bad output. Alternatively, we summarize all non-renewable electrical energy production
capacities under the variable FOSCAP.
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Variables n Mean SD Min Max

K (×109) 322 4,751 6,098 150 20,701
L 322 20.548 24.363 0.458 83.124
Y (×109) 322 826 1,061 31 4,290
CO2 322 159,351 200,233 7,183 877,997
FOSCAP 322 23018.7 28354.5 61.466 102241

Note: K: capital stock at constant 2017 national prices in bn. 2017 US$; L: population in mil.; Y: real GDP at constant
2017 national prices in bn. 2017 US$: CO2:carbon dioxide emissions in thousands tonne; FOSCAP: non-renewable
energy production capacity in MW.

Table 5: Descriptive statistics

consider country size by distinguishing between constant returns to scale (CRS) and vari-
able returns to scale (VRS). The DEA models that we run can be consulted in Appendix
(A). Aside from the traditional models, the CCR model with constant returns to scale by
Charnes et al. (1978) and the BCC-model with variable returns to scale by Banker et al.
(1984), we also apply the directional approaches from Sueyoshi and Goto (2012, 2013).
As previously mentioned, we label their models as they do: unified natural disposibility
(UEN) and unified managerial disposability (UEM), respectively. Because the first phase
of the EU ETS was a pilot phase, isolated from the second and third phases in almost
every dimension of the EU ETS structure (Grosjean et al., 2016), we consider only the
second and the third phase until 2018.

We present the resulting efficiency scores as annual averages over the whole time span
from 2008 to 2018 in Table (6). The results are multiplied by one hundred and rounded.
Countries with an average efficiency score of 100 represent benchmark countries through-
out the whole time span. All countries with an efficiency score of 100 are technically
efficient and they form the set of countries that serve as benchmark countries for all re-
maining, inefficient countries. For the latter to be technically efficient, they have to reduce
their CO2 emissions, accordingly.13 Denmark, for instance, would need to reduce its CO2

emissions, on average, to 80% according to the CCR model. The scores show that coun-
tries significantly differ in terms of efficiency in low-carbon production. According to the
CCR model (first column Table 6) countries such as Ireland, Luxembourg, Poland, and
Sweden are technically efficient with an average efficiency score of 100%. On the other
hand, the efficiency scores of Belgium, Czech Republic, and Slovenia range between 57%
to 67% according to the CCR model. In order to be technically efficient, these countries
would need to reduce their CO2 emissions by (1−ξ%), i.e. by (1−.57) to (1−.67), to reach
their benchmark levels. The direction itself, as pointed out in Section (3) and illustrated
by Figure (2) depends on the directional distance function implicit in the respective DEA
model and is subject to political discussion.

The annual virtual CO2 benchmark is determined by multiplying actual emissions by
the contemporaneous efficieny score:

TDEA
jt = CO2jt ∗ ξjt (19)

which yields the virtual CO2 benchmark Tjt, calculated by the specific DEA model, for
country j at time t. As final step, we now have to calculate the virtual technology shift
of countries’ benchmark levels for each of the six models. The shift δDEA

jt of the virtual

13Note that it is the distance to the technology frontier, which decides about what variable has to be
changed. To what extent CO2 emissions and other inputs have to be reduced depends on the respective
DEA model. For simplicity, we neglect remaining inputs.
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CTRY CCR BCC UENc UEMc UENv UEMv

AUT 97 100 99 100 99 100
BEL 67 76 78 83 78 81
CZE 58 59 59 62 59 62
DEU 82 100 85 100 81 100
DNK 80 81 87 87 87 88
ESP 75 89 85 93 87 97
EST 69 100 59 100 45 48
FIN 81 82 79 79 70 71
FRA 86 100 92 100 94 100
GBR 81 100 87 100 88 99
GRC 54 56 67 68 70 76
HUN 75 76 77 77 81 99
IRL 100 100 100 100 98 99
ITA 79 97 88 98 92 100
LTU 89 100 90 100 89 96
LUX 100 100 100 100 100 100
LVA 86 100 92 100 100 100
NLD 83 97 86 98 84 93
POL 100 100 100 100 69 100
PRT 80 81 88 89 96 100
SVK 68 72 70 70 70 75
SVN 57 72 71 76 74 75
SWE 100 100 100 100 100 100

Note: The efficiency scores indicate annual averages over the whole time span from 2008 to 2018. For each year, the
best practice frontier is constructed against which inefficient countries are compared. Each column refers to a specific
DEA model. The CRS models, not taking country size into account, are CCR, UENc, and UEMc, the VRS models
doing so are labeled BCC, UENv, and UEMv.

Table 6: Average annual efficiency score ξ in %.

technology frontier of country j simply calculates as the difference of successive annual
virtual CO2 benchmarks. Note that we decided not to use the Malmquist-index, measured
as a geometric mean of piecewise shifts of the technology frontier, as it does not account
for the full extent of the shift in terms of a country’s virtual benchmark CO2 levels. For
δDEA
jt < 0, the frontier shift is progressive reducing the demand for allowances by country j
persistently, for δDEA

jt > 0, it is regressive. Again, whether a regressive shift of a country’s
virtual benchmark should be allowed, is subject to political discussion. In times of crisis,
when a supply shock impacts negatively on countries’ environmental performance, it is
a conceivable option; from a purely environmental viewpoint, however, only progressive
shifts should be allowed for.

When allowing only progressive frontier shifts, the aggregate amount of the endogenous
allowance adjustment calculates as:

∆DEA
t =

n∑
j

δDEA
jt · I(δjt < 0) (20)

with I is an indicator function to capture whether δDEA
jt > 0. In order to calculate annual

allowance reduction factors, we divide Equation (20) by
∑N

jt CO2jt.
Table (7) reports the overall annual reduction of allowances according to our endoge-

nous allowance adjustment scheme compared to the previous year. As we can see, the
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year CCR BCC UENc UEMc UENv UEMv

2008 -1.81 -1.84 -1.86 -2.03 -1.89 -1.80
2009 -2.51 -3.50 -3.09 -2.14 -3.56 -3.35
2010 -2.09 -2.69 -2.39 -1.86 -2.78 -2.59
2011 -3.07 -3.28 -3.14 -2.61 -3.26 -2.89
2012 -2.23 -2.19 -2.11 -1.99 -2.08 -2.04
2013 -3.02 -3.21 -2.96 -2.98 -3.02 -2.89
2014 -2.74 -3.30 -2.75 -2.39 -3.11 -3.01
2015 -5.96 -3.13 -4.69 -2.38 -2.90 -2.68
2016 -4.37 -2.85 -3.84 -2.40 -2.67 -2.51
2017 -3.23 -2.30 -2.88 -2.31 -2.25 -2.18
2018 -2.22 -2.18 -2.31 -2.37 -2.10 -2.09

Note: The reduction factors are in % as compared to the previous year’s emissions. Each column refers to the underlying
DEA model. The column labeled CCR, for instance, indicates that, in 2008, allowances should have been reduced by
1.81% when applying the Charnes et al. (1978) model with constant returns to scale. Furthermore, we only allow for
progressive shifts of the frontier in this table, i.e. δDEA

jt > 0.

Table 7: Annual allowance reduction factors in % of previous year’s emissions.

endogenous allowance adjustment scheme suggests substantial allowance reduction rates
throughout the study period, specially from 2013 onwards. For instance, according to the
CCR model, in 2015 the emission cap should have been reduced by 5.96% compare to
total emissions in 2014. In the second phase, there was no allowance reduction mecha-
nism under EU ETS, although technical progress called for strong reductions throughout,
according to Table (7). Comparing the DEA models, there is considerable variation in
reduction rates. The variations are due to the different adjustment directions stipulated
by the respective DEA models. Consequently, efficiency scores will differ and therewith
reduction rates.

As the percentage changes refer to the previous year, it does not yet tell us whether
the reductions go beyond the LRF of the EU ETS, since the LRF of 1.74 % refers to the
EU aggregate emissions in 2010. To illustrate the additional reduction of allowances, we
compute the difference between our endogenous reduction factor and the LRF:

αDEA
t =

−LRFt +∆DEA
t∑N

jt CO2jt

(21)

where ∆DEA
t denotes the amount of allowances to be reduced when applying the en-

dogenous adjustment factor and LRFt denotes the amount of allowances to be reduced
according to the official LRF. Table (8) summarizes the additional reduction of allowances
in percent of previous year’s allowances according to Equation (21).

In the third phase, we find the highest additional reduction rates for the CCR model. It
assumes constant returns to scale, in other words, it ignores country size when calculating
efficiency scores. In general, we observe that constant-returns-to-scale models appear
stricter than those with variable returns to scale. The CCR model in 2015, for instance,
suggests an additional reduction of 4.09%, whereas the BCC model suggests an additional
reduction of 1.26%, only.

In a more aggreated form, Table 9 compares average allowance reduction factors be-
tween the second and the third phase of the EU ETS. In 2008 to 2012, the results indicate
that the emission cap could have been reduced by a further 2.13% to 2.71 % for each year
compare to the previous year depending on the specific DEA models. In 2013 to 2018,

16



Year CCR BCC UENc UEMc UENv UEMv

2008 -0.23 -0.26 -0.28 -0.45 -0.31 -0.22
2009 -0.91 -1.90 -1.49 -0.55 -1.96 -1.75
2010 -0.43 -1.03 -0.73 -0.20 -1.12 -0.92
2011 -1.37 -1.58 -1.44 -0.90 -1.55 -1.19
2012 -0.47 -0.43 -0.36 -0.23 -0.32 -0.28
2013 -1.25 -1.44 -1.19 -1.22 -1.25 -1.12
2014 -0.92 -1.48 -0.94 -0.58 -1.30 -1.20
2015 -4.09 -1.26 -2.82 -0.51 -1.03 -0.81
2016 -2.46 -0.94 -1.93 -0.50 -0.77 -0.60
2017 -1.30 -0.37 -0.94 -0.37 -0.31 -0.25
2018 -0.29 -0.25 -0.38 -0.44 -0.16 -0.16

Note: Each column refers to a specific DEA model. The CCR column, for instance, indicates that the allowances should
have been reduced by an additional 4.09% in 2015, when applying the Charnes et al. (1978) model with constant returns
to scale. Only progressive shifts of the frontier where allowed so that all country-specific shifts are less or equal to zero.

Table 8: Additional reduction of allowances (δDEA
t − LRFt) in %.

the cap reduction factors are even stricter ranging between 2.47% and 3.59%.
The average efficiency scores from the DEA show that the EU member countries differ

significantly in efficiency. The resulting allowance reduction scheme (Figure 4 and Table
7) indicate that the allowance reduction factor should have been higher than the existing
LRF. Overall, the results show that due to technical change the supply of allowances
should have been lower, in all years, across all policy regimes.

Model 2008-2012 2013-2018

CCRin -2.34 -3.59
BCCin -2.70 -2.83
UEN -2.52 -3.24
UENvrs -2.71 -2.68
UEM -2.13 -2.47
UEMvrs -2.53 -2.56

Note: The column labeled 2008-2012 indicates annual averages and, for example, suggests that the cap should have
been lowered by 2.34% on average, when applying the CCR model. In 2013-2018, the supply of allowances should have
been 3.59% lower under the CCR model, on average.

Table 9: Average reduction factors in % for the second and third phase.

7 Discussion/Conclusion

A cap-and-trade market will always suffer from an oversupply of allowances if allowances
freed up by technical change are not taken into account by the trading system. The debate
among economists and policymakers shows that continuous actions are necessary to avoid
the incentive-reducing tendency of technical progress in the system. So it is not surprising
that the EU ETS has experienced several amendments to tackle the issue of excess supply.
Various measures were introduced such as the MSR or the LRF. All these measures help
to reduce the oversupply of allowances to some extent. However, the critique we take up
in this paper is that these measures do not generate any competitive pressure between
countries in emission abatement.
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We propose an endogenous adaptation scheme that can help overcome the challenges
of a continuous, technological progress reducing the incentive for further low-carbon in-
vestments. The mechanism itself is rather simple: reduce the supply of allowances by the
amount to which they are set free by countries’ abatement efforts; thus we compensate
for any technology-induced reduction in the demand for allowances.

To measure shifts of the best-practice frontier (i.e., the shift of countries’ virtual
benchmark technologies) we apply a non-parametric approach (DEA). Shifts of the frontier
yield country-specific reduction schemes; they deliver the required reduction of the total
allowance supply necessary to stabilize the allowance price.

With regard to the EU ETS, as it stands, it does not contain any yardstick competition
on the country level. Countries operate independently from each other with respect
to the reduction of emissions/allowances. Therefore, it is not enough to implement an
endogenous allowance supply adjustment scheme, although this alone would help stabilize
the allowance price. Without generating negative spillovers there will be no competitive
pressure between countries, i.e. β in our model would remain zero despite adjusting the
supply of allowances for technical progress. Some kind of award and punishment system
would be required on the country level.

As for the implementation of the system, consensus on the fairness of the system
among participating countries is key to successful implementation. That is why, first and
foremost, the heterogeneity of countries must be reflected accordingly. Countries with
a large share in high-carbon industries, for example, must not be discriminated per se
against countries with a low share of such industries, vice versa. The necessary considera-
tion of the heterogeneity of countries can be realized by a non-parametric approach. With
such approach, the heterogeneity can be modeled as fine-grained as required. Arguably,
the most pressing question that would need to be answered is how much heterogeneity
should be allowed for? The more heterogeneity is considered, the lower the incentive to
invest in low-carbon technologies. In DEA, the heterogeneity expresses in the number of
inputs and outputs employed in the computation of relative performance measures (effi-
ciency scores). The more inputs and outputs we allow, the more benchmarks will emerge.
Allowing for the maximum amount of heterogeneity will make all countries efficient and
thus stifle any incentive to compete.

Another point to discuss is whether, under such incentive system, countries would
simply follow the benchmark country with the highest relative CO2 emissions to avoid
competition. From our point of view, it seems rather unlikely that a country transforms
its industry structure solely to avoid competition for allowances. Especially since the LRF
still exists to force countries into a ‘clean’ future. Our concept can only set an additional
incentive for countries to go beyond the LRF.

Apart from all the implementation issues and additional research required for practical
implementation, we believe that our endogenous adjustment system including a reward
and punishment system on the country-level can help speed up the transformation toward
a clean and green economy.
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Appendix

A Methodology

Regarding the measurement of productivity as we use in our empirical study, various
methods of parametric and non-parametric measurement methods can be found in the
literature. Knittel (2002), for instance, applies a stochastic frontier analysis (parametric
approach) to the coal producing industry. Fried et al. (2008) provide an in-depth overview
on the details of this approach. Non-parametric approaches, i. e. data envelopment
analysis (DEA) are addressed by Emrouznejad and Yang (2018). Zhou et al. (2008)
collect many examples of DEA-based studies in energy and environmental economics. We
choose the later approach because DEA allows an easy way to account for heterogeneity
of countries and, as suggested in our endogenous cap adjustment model, facilitates the
implementation of yardstick competition as motivated by Shleifer (1985) & Cantner and
Kuhn (1999).

A.1 Classical DEA Models

The concept of measuring firms’ productive efficiency against an efficiency frontier, as
illustrated in the main text, goes back to Farrell (1957). The first using the term ‘Data
Envelopment Analysis’ (DEA) were Charnes et al. (1978), who developed the well-known
CCR14 model to measure relative productive efficiency of decision making units (DMU),
in our case, the DMUs are countries. Assuming that a DMU’s size would not play a role,
they constructed their model based on constant returns to scale (Førsund and Sarafoglou,
2002). In a further extension of this model, Banker et al. (1984) suggested a DEA model
taking variable returns to scale (VRS) into account, a model which has become known as
BCC model.

The corresponding mathematical formulation is given by Equation (23). It contains
both the CCR and the BCC model. The latter just adds the inequality labeled VRS,15

which has to be canceled to represent the CCR model. Using the same notation as
Sueyoshi and Goto (2013) or Grebel (2019), we write the linear program as a system
of equations with slack variables denoted d instead of inequalities, describing a set of n
DMUs (j=1,· · · ,n) that produces a vector of s outputs (Gj = (g1j, g2j, · · · , gsj)T ) while
employing a vector of m inputs (Xj = (x1j, x2j, · · · , xmj)

T ). This is tantamount to saying
that every DMU employs a technology T , expressed as a vector (x,y), apt to produce
output y:

T = {(x, y) : x can produce y} (22)

If according to model (23) ξ = 1, the DMU under consideration is technically efficient,
because their is no linear combination of existing technologies T that dominates the
technology of the respective DMU according to the Pareto-Koopman criterion. If ξ < 1,
the DMU is considered inefficient.

Along with the efficiency score ξ, the minimization problem in Equation (23) delivers
the optimal weights (λ = (λ1, λ2, · · · , λn)

T ), i.e the vector of structural variables that
projects inputs and output(s) of the DMU onto the best-practice frontier formed by

14Labels derive from the initials of the authors.
15Because the sum of weights

∑n
j λj must equal to 1, a small DMU, such as a small country, must not

be compared to a large country.
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benchmark countries.16 For the example in Section (3), the efficiency score of country C,
ξ = 0.61, is less than 1, it therefore is inefficient and would need to reduce its current level
of inputs by 39% in order to meet its virtual benchmark level determined by the weighted
linear combination of its relative benchmark country B (λB = 0.41) and D (λD = 0.58).

min ξ + ϵ

[
m∑
i=1

Rx
i d

x
i +

s∑
r=1

Rg
rd

g
r

]
(23)

s.t.
∑n

j=1 xijλj + dxi = ξxik (i = 1, · · · ,m) (I)∑n
j=1 grjλj − dgr = grk (r = 1, · · · , s) (G)∑n
j=1 λj = 1 (VRS)

λj ≥ 0 0 ≤ θ ≤ 1, dxi ≥ 0 dgr ≥ 0

A.2 Disposability of Bad Outputs

Both of the classical DEA models make assumptions about the underlying technology
of a production system. This includes not only the assumption about returns to scale,
asking to what extent size matters, the models also hypothesize about the disposability
of inputs, good, and bad outputs.

Stating that a production technology T = {(x, g, b) : x can produce (g, b)} means that
a vector b of bad outputs is defined weakly disposable, because it can only be reduced to
the extent to which the vector of good outputs y is reduced. This can be expressed in
line with Shephard (1970) as:

(x, y, b) ∈ T ∧ (x, ξy, ξb) ∈ T, (24)

where parameter ξ indicates the reduction parameter for bad and good output.
In our example, when applying the CCR model, we consider bad output CO2 as

strongly disposable, because the CCR model, as well as the BCC model, assumes that
bad output CO2 can be reduced per unit of good output. In other words, bad output is
strongly or freely disposable in the CCR case.17

This treatment, however, may be misleading (Pittman, 1983). It still is an ongoing
discussion how to incorporate bad outputs into DEA. In activity analysis, to treat in-
puts and good outputs as strongly disposable while assuming bad outputs to be weakly
disposable appears reasonable. Färe et al. (1989) point out that a substantial body of
literature considers bad outputs weakly disposable (Färe et al., 1993; Ball et al., 1994;
Chung et al., 1997; Tyteca, 1996, 1997). Others, such as Korhonen and Luptacik (2004),
assume strong disposability of bad outputs, or propose, as Yang et al. (2007) and Jin
et al. (2014) do, an individual treatment of bad outputs in accordance with bad outputs’
technological specificity (Yang et al., 2007; Jin et al., 2014). A frequently cited example

16In all DEA models presented here, it is required that all vectors are strictly positive. As mentioned,
all linear programs use a series of slack variables for inputs (dxi ), good outputs (dgi ) and in later models
bad outputs (dbi ). The scalar ϵ balances the impact of the inefficiency score and the amount of slacks for
the degree of technical efficiency. We follow the standard procedure and set this scalar to a very small non-
Archimedian number (ϵ = 10−6). The weights R in the objective functions above rescale slack variables
d according to the range of inputs, good and bad outputs such as Rx

i = (m + s + h)−1(max{xij |j =
1, · · · , n} − min{xij |j = 1, · · · , n})−1 and Rg

r = (m + s + h)−1(max{grj |j = 1, · · · , n} − min{grj |j =
1, · · · , n})−1.

17Note that strong disposability is expressed by inequalities in the model.
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advocating weak disposability of bad outputs is the case of coal-fired power plants that,
even in the case of a technically efficient production, cannot reduce the emission of CO2

because burning coal always emits CO2.
Conversely, performing the analysis we have in mind on the country level, it appears

plausible to assume strong disposability of bad outputs. If we are convinced that fossil
fuels can be replaced by renewable energies, we implicitly assume that bad outputs must
be strongly disposable in the long run. Otherwise, a zero-emission world is inconceiv-
able. Consequently, we assume that technological change can be directed toward strong
disposability of bad outputs.

Recent extensions of the disposability concept, such as proposed by Sueyoshi and Goto
(2012), allows us to take an intended directional technological progress as benchmark. A
DMU can either adapt to environmental policy constraints as insinuated with the arrow
labeled UEN in Figure (2) by reducing bad outputs when increasing good outputs, or it
could even spend additional resources, in our example labor L, to advance low-carbon
technology as alluded by the arrow labeled UEM.

Sueyoshi and Goto (2012) denote their disposability concept unified natural dispos-
ability (UEN) and unified managerial disposability (UEM). Natural disposability implies
that a DMU has to reduce a directional vector of bad outputs while increasing a vector of
good outputs. In line with Sueyoshi and Goto (2013, 2012) or Grebel (2019), the following
model measures the unified efficiency under natural disposability of DMU k:18

UENk = 1−

ξ + ϵ
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max ξ + ϵ
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]
s.t.

∑n
j=1 xijλj + dxi = xik (i = 1, · · · ,m) (I)∑n
j=1 grjλj − dgr − ξgrk = grk (r = 1, · · · , s) (G)∑n
j=1 bfjλj + dbf + ξbfk = bfk (f = 1, · · · , h) (B)∑n
j=1 λj = 1 (VRS)

λj ≥ 0, ξ = URS, dxi ≥ 0, dgr ≥ 0, dbf ≥ 0.

In analogy to Sueyoshi and Goto (2012, 2013) and Grebel (2019), DMU j out of a set of
n DMUs (j=1,· · · ,n) produces a vector of s good outputs (Gj = (g1j, g2j, · · · , gsj)T ), a vec-
tor of h bad outputs (Bj = (b1j, b2j, · · · , bhj)T ) while employing a vector ofm inputs (Xj =
(x1j, x2j, · · · , xmj)

T ). The vector of unknown structural variables (λ = (λ1, λ2, · · · , λn)
T )

projects the inputs and the good outputs of an inefficient DMU onto the best-practice
frontier formed by benchmark countries as illustrated in Figure (2).

In contrast to the CCR and the BCC model, the UEN model positions the efficiency
parameter ξ into the inequalities for good (G) and bad (B) outputs, which stipulates a
certain direction of technological change. With regard to disposability, inputs are as-
sumed to be strongly disposable and bad outputs can be disposed of in the direction(
(1− ξ)bkf , (1 + ξ)gkr

)
. Compare also Figure (2) for illustration.

The concept of managerial disposability differs only in one detail: the input inequalities
(I), written in slack form, flip. This is indicated by the negative sign in front of dxi . The

18As in the CCR, slack variables, including the slacks for bad output dbf , are rescaled as in Sueyoshi

and Goto (2013) with Rb
f = (m+ s+ h)−1(max {bfj |j = 1, · · · , n} −min {bfi|j = 1, · · · , n})−1.
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reverse inequality allows for inputs such as labor and capital to be increased without loss
of efficiency, as long as there is a reduction of bad output. The corresponding model
(UEM) based on managerial disposability calculates the efficiency score ξ of DMU j as in
the following:

UEMk = 1−

ξ + ϵ


m∑
i=1

Rx
i d

x
i +

s∑
r=1

Rg
rd

g
r +

h∑
f=1

Rb
fd

b
f
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with: max ξ + ϵ
[∑m

i=1R
x
i d

x
i +

∑s
r=1R

g
rd

g
r +

∑h
f=1R

b
fd

b
f

]
s.t.

∑n
j=1 xijλj − dxi = xik (i = 1, · · · ,m) (I)∑n
j=1 grjλj − dgr − ξgrk = grk (r = 1, · · · , s) (G)∑n
j=1 bfjλj + dbf + ξbfk = bfk (f = 1, · · · , h) (B)∑n
j=1 λj = 1 (VRS)

λj ≥ 0, ξ = URS, dxi ≥ 0, dgr ≥ 0, dbf ≥ 0.

So far, the DEA models presented in this subsection calculate the DMU-specific virtual
benchmark technology. Yet, we have not calculated the shift of the piece-wise technology
frontier. As illustrated in Figure (3), to calculate shifts, we need DMU-specific benchmark
values calculated on the grounds of the respective policy regime implicit to each DEA
model. Overall, we have three models, each of which in two different versions when
considering constant (CRS) and variable (VRS) returns to scale.
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