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Abstract

Small molecules are key to biomarker discovery, drug development, toxicity screenings of
ecosystems like rivers and lakes, and many more important research areas in multiple
life sciences. Elucidating the exact structure of these metabolites is often crucial in
determining their functionality, however, confident annotation of these structures remains
a major challenge. To analyse and measure samples of small molecules occurring in nature,
mass spectrometry is the currently predominant technique. While mass spectrometry is
used to measure the mass of a compound, tandem mass spectrometry can be used to
additionally measure the mass of its fragments. The resulting spectral data however is
highly non-trivial to interpret, especially translating it back into a molecular structure.
Comparing measured spectra to previously recorded spectra of reference compounds in a
spectral library is a popular approach to structure annotation, but is naturally limited to
those well-known structures. This bottleneck accelerates the development of computational
tools to annotate metabolite structures from mass spectrometry data, which enables rapid,
large-scale structure annotation independent from spectral libraries. As to be expected,
these tools return some proportion of incorrect annotations, which, depending on the
experimental setting, can vastly outnumber correct annotations. As such, scientists using
these tools need to be able to differentiate correct from incorrect annotations.
In this thesis, we establish that hit scores of currently available structure annotation tools
for mass spectrometry data can not be used to separate correct from incorrect annotations.
CSI:FingerID is the currently best-in-class tool for metabolite structure annotation,
predicting a molecular fingerprint that is then used to search structure databases. We
develop an E-value computation that is based on proxy decoys drawn from the PubChem
database and show that this E-value score outperforms the current CSI:FingerID hit score
for the task of separating correct from incorrect annotations. To further improve on this,
we develop a Percolator inspired machine learning approach, where we train linear support
vector machines for this separation task. While many machine learning methods are often
used as uninterpretable black boxes, we take multiple steps to ensure that our confidence
score model is not overfitting as best we can. We enforce directionality of features to adhere
to “common sense” and evaluate our model on artificially noisified data as well as multiple
different collision energies. Features used in the confidence score include scoring features
from CSI:FingerID, quality assessment features of the predicted molecular fingerprint as
well as the E-value score.
The confidence score outperforms the original CSI:FingerID hit score, the E-value score
and all other tools that participated in the CASMI 2016 contest by a wide margin.
Arguably, our confidence score enables confident structure annotation for a relevant portion
of a dataset for the first time. We then integrate the confidence score into SIRIUS,
a software suite combining de novo molecular formula annotation with CSI:FingerID
structure annotation.
We then show the power of this COSMIC (Confidence Of Small Molecule IdentifiCations)
workflow by annotating novel bile acid conjugate structures never reported before in a
mouse fecal dataset. The annotation of nine structures was confirmed by manual evaluation
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and two structures using synthetic standards. In human samples, we annotated and
manually validated 315 molecular structures currently absent from the Human Metabolome
Database. Application of COSMIC to data from 17,400 metabolomics experiments led to
1,715 high-confidence structural annotations that were absent from spectral libraries.



Zusammenfassung

Kleine Moleküle sind der Schlüssel zur Entdeckung von Biomarkern, zur Entwicklung von
Arzneimitteln, zur Untersuchung der Toxizität von Ökosystemen wie Flüssen und Seen und
zu vielen anderen wichtigen Forschungsbereichen in den Biowissenschaften. Die Aufklärung
der genauen Struktur dieser sogenannten Metaboliten ist oft entscheidend für die Bestim-
mung ihrer Funktionalität, doch die sichere Annotation von Metabolitenstrukturen bleibt
eine große Herausforderung. Zur Messung und Analyse von Proben kleiner Moleküle, die
in der Natur vorkommen, ist die Massenspektrometrie die derzeit vorherrschende Technik.
Während mit der einfachen Massenspektrometrie die Masse einer Verbindung gemessen
wird, kann mit der Tandem-Massenspektrometrie zusätzlich die Masse ihrer Fragmente
gemessen werden. Die daraus resultierenden Spektren sind jedoch äußerst schwierig zu
interpretieren, und schwer in eine Molekülstruktur zu übersetzen. Der Vergleich von
gemessenen Spektren mit zuvor aufgezeichneten Spektren von Referenzverbindungen aus
einer Spektrenbibliothek ist ein beliebter Ansatz zur Strukturannotation, ist aber auf
bereits bekannte Strukturen beschränkt. Diese Einschränkung führte zur Entwicklung von
computergestützten Methoden zur Annotation von Metabolitenstrukturen aus Massen-
spektrometriedaten, die eine schnelle, vollautomatische Strukturannotation unabhängig
von Spektralbibliotheken ermöglichen. Erwartungsgemäß liefern diese Methoden einen
gewissen Anteil an inkorrekten Annotationen, welcher je nach Experiment die Zahl der
korrekten Annotationen bei weitem übersteigen kann. Wissenschaftler, die diese Methoden
verwenden, müssen daher in der Lage sein, korrekte von inkorrekten Annotationen
zu unterscheiden. In dieser Arbeit stellen wir fest, dass die Scoringfunktionen der
derzeit verfügbaren Methoden zur Strukturannotation für Massenspektrometriedaten nicht
verwendet werden können, um korrekte von inkorrekten Annotationen zu unterscheiden.
CSI:FingerID ist das derzeit beste Tool für die Strukturannotation von Metaboliten.
Es sagt hierbei einen molekularen Fingerabdruck vorher, der dann zur Suche in
Strukturdatenbanken verwendet wird. In dieser Arbeit entwickeln wir ein Scoring basierend
auf der Berechnung eines E-Values, welches auf Proxy-Decoys aus der PubChem-
Datenbank basiert. Wir zeigen, dass dieser E-Value Score das aktuelle CSI:FingerID Scoring
bei der Aufgabe, korrekte von inkorrekten Annotationen zu unterscheiden, übertrifft.
Um dies weiter zu verbessern, nutzen wir einen von Percolator inspirierten Ansatz
des maschinellen Lernens, bei dem wir lineare Support Vektor Maschinen für diese
Separationsaufgabe trainieren. Während viele Methoden des maschinellen Lernens oft als
uninterpretierbare Blackboxen verwendet werden, ergreifen wir mehrere Maßnahmen, um
sicherzustellen, dass unser Konfidenzscore-Modell so wenig wie möglich überangepasst
wird. Wir erzwingen bestimme Vorzeichen von Featuregewichten, um den „gesunden
Menschenverstand“ abzubilden, und evaluieren unser Modell an künstlich verrauschten
Daten sowie an mehreren unterschiedlichen Kollisionsenergien. Zu den Merkmalen, die in
den Konfidenzscore einfließen, gehören die Bewertungsmerkmale von CSI:FingerID, die
Qualitätsbewertungsmerkmale des vorhergesagten molekularen Fingerabdrucks sowie das
E-Value Scoring.
Der Konfidenzscore übertrifft das ursprüngliche CSI:FingerID Scoring, den E-Value-
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Score und die Scorings aller anderen Methoden, die am CASMI-Wettbewerb 2016
teilgenommen haben, bei weitem. Unser Konfidenzscore ermöglicht nun zum ersten Mal
eine zuverlässige Strukturannotation für einen relevant großen Teil eines Datensatzes.
Anschließend integrieren wir den Konfidenzscore in SIRIUS, eine Software-Suite, die de
novo Molekülformelannotation mit CSI:FingerID Strukturannotation kombiniert.
Zuletzt zeigen wir die Leistungsfähigkeit dieses COSMIC (Confidence Of Small Molecule
IdentifiCations) Workflows, indem wir bisher unbekannte, neuartige Strukturen von
Gallensäurekonjugaten in einem Mausfäkaldatensatz annotieren. Hierbei wurden die
Annotationen von neun Strukturen durch manuelle Auswertung und die von weiteren
zwei Strukturen durch synthetische Standards bestätigt. In menschlichen Proben haben
wir 315 molekulare Strukturen annotiert und manuell validiert, die derzeit in der
Humanmetabolom-Datenbank fehlen. Die Anwendung von COSMIC auf Daten aus
17.400 Metabolom-Experimenten führte zu 1.715 strukturellen Annotationen mit hoher
Verlässlichkeit, die in nicht bereits in Spektrendatenbanken vorhanden sind.
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1 Introduction

Nature is diverse. In fact, it is so diverse and complex, that whole scientific fields emerge,
just to study and understand small parts of it. Some of those fields are called the “-omics”
sciences, each analysing and trying to understand a specific pool of molecules. One of the
oldest “-omics”, genomics, is the study of one of the fundamental parts of evolution and life
as we know it - the genome. It is comprised of DNA, large molecules consisting of only few
different building blocks; A (Adenin), C (Cythosin), G (Guanin) and T (Thymin). From
here, the “workflow of life” begins: DNA is transcribed into RNA, short readouts of specific
parts of the genome; the entirety of RNA created in this fashion is called the transcriptome.
One step further and we arrive at proteins, even smaller molecules translated from RNA,
and generated from a slightly larger building block pool: The 22 proteinogenic amino
acids. Genomics, transcriptomics and proteomics are nowadays considered established
fields, with multiple decades of research conducted on them. Technological advances have
made DNA/RNA sequencing affordable and fast, and the development of computational
tools allows for high-throughput analysis of large data quantities.

By analysing the different molecules mentioned above, one can only obtain a rather static
picture of an organism. The average lifetime of a protein ranges from days to years, while
DNA molecules usually don’t degrade for decades [57, 84]. One can easily imagine the
impact that the availability of such a snapshot has had on the medical, environmental and
agricultural fields, to name just a few. There is however a plethora of remaining problems,
for which a long term, static snapshot is not sufficient. Short term effects of drugs and
toxicology of food or water are just a few examples that require the analysis of a more
short-lived group of molecules - metabolites. Sometimes just consisting of a few atoms,
these molecules allow for a more dynamic insight into the inner workings of an organism.
The set of all metabolites contained in an organism is called the metabolome, and is studied
by the field of metabolomics.

In recent years, research has shown that studying the metabolome can help understand
complex biological systems and interactions [29, 123]. In contrast to proteins or DNA,
metabolites do not consist of a known, small pool of building blocks, but are very diverse
and non-linear. In addition, the metabolome is only partially encoded in our DNA; a
substantial amount of metabolites stems from external sources, like food or cosmetics [23].
These external metabolites however, are not limited to what we willingly and knowingly
consume; metabolites produced by microorganisms inhabiting our digestive system, skin
and lungs have been shown to affect the host’s metabolism as well [129].

This biochemical diversity leads to metabolites being of critical interest in many research
fields: In biomarker discovery, metabolites are used as indicators for conditions of biological
systems, like diseases [74, 191]. In the environmental sciences, water bodies are screened for
toxic metabolites [4], while the food industry screens nutritional items for those metabolites
connected to known diseases.

Metabolomic screenings are usually performed in one of two ways: targeted or
untargeted. Targeted metabolomics describes the rediscovery of a set of specific, already
known molecules, for example contaminants or hazards. If the indicative metabolites for a
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2 1. Introduction

certain condition are unknown, untargeted experiments can be performed to either analyse
quantitative differences between samples or try to elucidate the structure of previously
unknown molecules. This structural elucidation however is very challenging, and many
metabolites still remain unknown [14, 35]. A major reason for that is the aforementioned
structural diversity and short-livedness of metabolites.

Currently, the analysis of metabolites is facilitated by two predominant techniques:
Nuclear magnetic resonance (NMR) and mass spectrometry (MS). Full structural
elucidation of a molecule is only possible with NMR. However, relatively large amounts
of the purified compound are needed, obtaining which can be extremely time- and cost
intensive. Mass spectrometry on the other hand is much more sensitive and better suited
for high-throughput analysis, but interpreting the data remains highly challenging. In
contrast to the full elucidation NMR provides, mass spectrometry only measures the mass
of a molecule and its fragments. Human interpretation of the resulting mass spectra
is highly non-trivial, and requires compound specific expert knowledge and large time
investments.

To alleviate these constraints, a popular method for metabolite identification is to
compare mass spectra to a spectral library, containing spectra of already known reference
molecules from previous measurements. These spectral libraries however only contain
spectra of a small fraction of existing metabolites. In contrast, structure libraries like
PubChem [88] are larger by several orders of magnitude, but a mass spectrum and a
structure are not intrinsically comparable. To this end, many different computational
tools were developed to make this comparison possible, and take advantage of the larger
chemical space structure databases cover.

It should be noted however, that by searching in a database of known compounds, be it
spectral or structure, one can never elucidate a truly novel compound’s structure. While
there are approaches to push that boundary by generating theoretical compound databases
[76], the structural elucidation of novel metabolites is still an ongoing, exciting challenge
in the field of metabolomics [107, 174].

1.1 Contributions of this work

I wrote my Bachelor thesis on a topic very much related to this thesis - the creation of
decoy databases for molecular fingerprints. Later, for my master thesis, I worked on the
separation of chimeric spectra using fragmentation trees implemented in SIRIUS [44]. It
were these first scientific experiences that led to the realisation, that for me as a method
developer, a close bond to experimentalists in the lab is indispensable. For that reason, I
started my time as a PhD student as a member of the International Max Planck Research
school at the Max Planck Institute for Chemical Ecology.
The primary area of research in the group of my supervisor Sebastian Böcker was and
is the in-silico annotation of molecular structures from tandem mass spectrometry data.
When I joined the group, CSI:FingerID coupled with SIRIUS had already established
itself as a major player in the CASMI contests of 2016 and 2017 [148], a blind challenge
for metabolite annotation. Using the de novo molecular formula annotation implemented
in SIRIUS, CSI:FingerID predicts a molecular fingerprint from the input data and then
compares it to structure candidates from a structure database such as PubChem [88] or
HMDB [192]. This workflow produces correct structure annotation rates of up to 74% [47]
when querying biomolecule structure databases. In this thesis, I focus on a problem that
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sits at the end of this workflow, but is of critical importance to enable high-throughput
confident structure annotation: The separation of correct and incorrect annotations and its
relation to false discovery rate estimation. Tools like CSI:FingerID use a scoring method
to rank structure candidates, and return the highest scoring one as the annotation result.
Since a sizeable portion of these annotations are incorrect, users require some metric to
assess their confidence in the annotation. This is of particular importance, because follow
up experiments based on in-silico annotations can be very much time- and cost intensive.
In proteomics, false discovery rate estimations using decoy databases are used to give that
metric [51, 79], this however, cannot be easily transferred to metabolomics. As I continued
to work on creating decoy databases for molecular fingerprints, I realised that the scoring
functions used in all tools that participated in the CASMI contests were unable to separate
correct from incorrect annotations at a level, that would be required to enable sensible false
discovery estimation in the first place. I then started to develop what we call a confidence
score for CSI:FingerID. This would be an additional scoring that is not used to re-rank
structure candidates for a single query, but rank only the top-scoring candidate for each
query based on an assessment of how likely they would be correct annotations. To avoid
overfitting, a common problem in machine learning, I first developed the estimation of an
E-value, using PubChem structures as proxy decoys. This scoring already showed better
separation power than the original CSI:FingerID scoring, but by itself was not able to reach
a satisfying quality level. I then used a very simple machine learning approach utilising
support vector machines, integrated the E-value as one of multiple features and was able to
reach separation levels for correct and incorrect annotations that enable automated, rapid
and confidence structure annotation of metabolites for arguably the first time. To make
sure the model does not overfit on the training data, I artificially introduced different noise
level into evaluation data, and restricted the freedom of the classifier by enforcing feature
directionality. All of this work was done in close collaboration with my supervisor Sebastian
Böcker and my colleagues Kai Dührkop, Markus Fleischauer and Marcus Ludwig.
While this part of my work was focused on theoretical advances and evaluations, I then
showed that the confidence score I developed can be used in practical application. In
close collaboration with Louis-Félix Nothias, the confidence score was used to discover
multiple, previously unknown bile acid conjugate structures. In collaboration with Michael
Witting, I processed ten publicly available datasets where human samples were measured,
and we were able to annotate 315 molecular structures currently missing from the human
metabolome database (HMDB) with high confidence. To showcase the possibility of high-
throughput, confident structure annotation with this workflow, I processed 123 publicly
available datasets consisting of 17,414 LC-MS/MS runs and was able to annotate 1,715
molecular structures with high confidence that were not present in our training data. I
then created a publicly available web-based interface, in which these structures can be
evaluated by experts in the field, or used in future research.
This thesis mainly covers my work on the development of the COSMIC confidence score,
which has been published in 2022. Additionally, I have been involved in the development
of CANOPUS by Dührkop et al. and ZODIAC by Ludwig et al.:

• Hoffmann, M.A., Nothias, LF., Ludwig, M. et al. “High-confidence structural
annotation of metabolites absent from spectral libraries.” Nature Biotechnology 40,
411–421 (2022).
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• Ludwig, Marcus, et al. “Database-independent molecular formula annotation using
Gibbs sampling through ZODIAC.” Nature Machine Intelligence 2.10 (2020): 629-
641.

• Dührkop, Kai, et al. “Systematic classification of unknown metabolites using high-
resolution fragmentation mass spectra.” Nature Biotechnology 39.4 (2021): 462-471.

I presented my work or parts of it in a talk at the annual international conference on
Intelligent Systems for Molecular Biology (ISMB) 2021, at the annual conference of the
Metabolomics Society (Metabolomics) 2021 as well as at Symposia of the International
Max Planck Research School in Jena 2018 and 2019 (best poster award). Together with
Sebastian Böcker, Kai Dührkop, Markus Fleischauer and Marcus Ludwig, I was awarded
the Thuringian Research Prize 2022 for applied research.
Before describing methods, evaluations and conclusions, I’m introducing the broad area
of research. Starting with chemical background knowledge and the analytical technique
called mass spectrometry on which my research is based, I then give a short overview of the
fundamentals of machine learning and statistics that are needed in this thesis. In chapter
4, I will then introduce related work in the field of computational mass spectrometry,
with a focus on SIRIUS and CSI:FingerID, on which my work is build on. The following
chapters are then dedicated to introducing the problem of score separation at length, the
development of the E-value and SVM-based confidence score as well as evaluation and
application. For the remainder of this thesis, I will use “we” as the first person pronoun,
as it is common in scientific literature.



2 Backgrounds in Organic Biochemistry
and Mass Spectrometry

Chemistry is a vast field, branching into many different smaller ones. In this work however,
we are focusing on biochemistry, the study of processes that occur in living organisms. As
we have talked about building blocks before, we are now focusing on a specific one, that
all molecules share: the atom. Atoms are usually displayed as their respective element,
with a specific letter notating it, e.g. C for carbon, H for hydrogen, N for nitrogen, O for
oxygen, P for phosphorus and S for sulphur. Notably, the chemistry studying compounds
that contain carbon is called organic chemistry. An atom consists of protons, neutrons
and electrons, where the amount of protons determines the chemical element, the amount
of neutrons determines the isotope and the amount of electrons determines the charge of
the atom. The sum of protons and neutrons that a molecule consists of, is also called the
atomic mass number, and is displayed on the upper left of the element. Carbon for example
possesses six neutrons and six protons in its most abundant form, resulting in the notation
12C. The mass of an atom is defined by the amount of protons and neutrons it possesses,
called the nominal mass, and is given in Dalton or the unified atomic mass unit (u).
Both are defined as 1

12 of a 12C atom’s mass, which is approximately 1.660539067 · 10−27.
For all atoms except 12C, the atomic mass number differs from its actual mass. This
effect is called the mass defect, and is very important in mass spectrometry. Atoms of
the same element that possess different amounts of neutrons, are called isotopes. The
unstable isotope of carbon, consisting of eight neutrons for example, would be noted as
14C. Isotopes of an element appear in different abundances, depending on the element
itself, and even geographical location. Refer to Table 2 for isotopes and abundances of
some of the most common elements in organic chemistry. Molecules with the same atom
composition, but differing isotopic compositions are called isotopologues. An atom is called
neutral if the same amount of protons and electrons are present, positively charged or cation
if the number of protons exceeds the number of electrons and negatively charged or anion
if vice versa. Atoms that are either positively or negatively charged are called ions.

2.1 Molecules and Ions

Two or more atoms that are connected by a chemical bond are called a molecule. Bonds
between molecules appear with different characteristics, regarding e.g strength and type of
the bond. Covalent bonds are formed when two or multiple atoms share one or multiple
electron pairs. Relevant examples of covalent bond types are sigma bonds and pi bonds.
In this work, the most prevalent bonds are single bonds, consisting of one sigma bond,
double bonds, consisting of one sigma and one pi bond and triple bonds, consisting of
one sigma bond and two pi bonds. Chemical substances that consist of many identical
molecules composed of at least two different elements are called compounds. Throughout
this work, we use the terms “compound” and “molecule” interchangeably, as we are never

5
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element symbol isotopes mass (Da) abundance (%)

carbon C
12C
13C

12.0
13.00335484

98.93
1.07

hydrogen H
1H
2H

1.007825032
2.014101778

99.9885
0.0115

nitrogen N
14N
15N

14.003074
15.000108898

99.636
0.364

oxygen O

16O
17O
18O

15.99491462
16.99913176
17.99915961

99.757
0.038
0.205

phosphorus P 31P 30.973761 100.00

sulphur S

32S
33S
34S
36S

31.972071174
32.9714589098

33.967867
34.96903231

94.99
0.75
4.25
0.01

Table 2.1: Common elements and their isotopes. Table showing the symbol letter,
stable isotopes, isotopic masses and relative abundances of the most common elements in organic
chemistry: carbon, hydrogen, nitrogen, oxygen, phosphorus and sulphur. Values taken from [176]
(masses) and [12] (abundances).

interested in single molecules. The elemental composition of a molecule denotes of how
many of each element it consists of, and is called the molecular formula. The most common
notation of writing molecular formulas is the Hill notation. The amount of carbon atoms
is written first, followed by the amount of hydrogen atoms. After that, all other elements
follow in alphabetical order. The molecular formula of Taurin for example would be given
as C2H7NO3S. In the same fashion that atoms are called ions if they are positively or
negatively charged, molecules can be ionic as well. The charge state of an ion is given
at the upper right of the molecular formula, e.g. CH3COO– for the acetate ion. While
molecular formulas denote the elemental composition of a molecule, they do not contain
information about its constitution, that is the connectivity between atoms. If two molecules
have the same molecular formula, but different constitutions, they are structural isomers of
each other. Molecules with identical molecular formula and constitution can still differ in
their orientation in three dimensional space, and are then called stereoisomers. To denote
the constitution as well as stereochemistry of molecules, the structural formula can be
used. See Fig. 2.1 for an example: butane and isobutane are structural isomers of each
other (a,b), while cis-2-butene and trans-2-butene are stereoisomers of each other (c,d).
Throughout this thesis we will use the term structure instead of constitution, as mass
spectrometry is generally not able to differentiate between stereoisomers of a molecule.
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a)
b)

c) d)

SMILES: CCCC SMILES: CC(C)C

InChI=1S/C4H10/c1-4(2)3/h4H,1-3H3

InChIKey: NNPPMTNAJDCUHE-UHFFFAOYSA-N

InChI: InChI=1S/C4H10/c1-3-4-2/h3-4H2,1-2H3

InChIKey: JDNQMDRQITEOD-UHFFFAOYSA-N

Figure 2.1: Examples for different forms of isomerism and text-based structure
representations. Shown are the structural isomers butane (a) and isobutane (b) with their
respective SMILES, InChI and InChIKey representation, as well as the stereoisomers cis-2-butene
(c) and trans-2-butene (d). The first 14 characters of the InChIKey are marked in green.

2.2 Bioinformatics-driven Molecule Representations

While the structural formula discussed in the previous section is relatively easily readable
for a human, computers require a different structural representation more optimised for
machine reading. The two important representations used in this work, are the text-based
SMILES [183] and InChI [68] formats. Both systems represent the molecule as a string,
which is very favourable for database storing and reading. The SMILES of a molecule is
a sequential string, where specific symbols are used to denote atoms, bonds and charge
states. The elemental symbol is used to describe atoms, while different bond types have
different symbols as well (e.g. “-” for single bonds, “=” for double bonds and “#” for triple
bonds). Ring type structures are encoded by numerical labels, and side-chains or other
branching structures by parenthesis. Implicit single bonds and hydrogen atoms are usually
omitted in this representation. One specific problem with SMILES however is, that there
are multiple SMILES expressions describing the same molecular structure. An example
for this are CCCN and C(N)CC, both describing propylamine. Efforts have been made to
develop a canonical SMILES, but failed to find a unique representation for every molecule
[111, 119]. Even though no official canonical SMILES exists, implementations like the
PubChem chemical structure standardisation [88] can be used. The IUPAC International
Chemical Identifier, or InChI for short, creates a unique atom ordering by using graph
isomorphism algorithms [68]. Contrary to the sequential SMILES representation, the InChI
is composed of layers. The main layer contains the molecular formula as well as information
about atom connectivity and hydrogen atom presence. Following layers then describe
charge state and stereochemistry of the molecule. As the full InChI of a molecule can be
quite long, the InChIKey was introduced as a compact, 27 character hashed representation
of the InChI. It consists of three blocks separated by a hyphen. In this work only the
first, 14 character long, block of the InChiKey is used, as that is where the molecules
constitution is encoded. See Fig. 2.1 for examples of InChI and SMILES representations.
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2.2.1 Molecular Similarity and Molecular Fingerprints

The text-based formats for molecular structure representations described above are a good
way to quickly check a pair of molecules for identity. They are however unfit to infer how
similar they are beyond this binary identity. Molecular fingerprints were developed for this
very task, and are a widely used molecule representation in cheminformatics. Essentially,
a molecular fingerprint is a vector of fixed size, in which each bit encodes a predefined
molecular property. Molecular properties can range from the presence/absence of specific
atoms or substructures, over chemical properties, to more complex information like atom
neighbourhoods. Examples for fingerprint types encoding substructure information are
PubChem CACTVS [180] and MACCS [49]. Extended connectivity fingerprints (ECFP)
[134] are an example for neighbourhood-defining types. Many popular cheminformatics
libraries, like CDK [157, 189], RDKit or OpenBabel [121], contain one or multiple methods
for fingerprint computation from text-based structure representations like SMILES.
Fingerprint performance is heavily dependent on how well the defined molecular properties
of a fingerprint type fit to the data they are applied to [13, 42, 120, 188].

It should be noted that the fingerprint representation is not lossless, as the original
molecule’s structure can not be reconstructed from it. Furthermore, most fingerprints
are binary, meaning that they don’t encode for the frequency that a molecular property
appears in a molecule. “Counting” fingerprints exist, but can still not encode the relative
or absolute position of substructures. The vector representation that fingerprints offer
allows for very fast comparisons of molecules. A common metric used to compare two
fingerprints is the Tanimoto coefficient [186]:

Tanimoto(A,B) =
|A ∩B|
|A ∪B|

(2.1)

where A and B are defined as a set of molecular properties.
This is of particular interest for the biochemical field, since similar structural features be-
tween two molecules can be a sign for similar biochemical activity. This structure/function
relationship is called “structure activity relationship” [22, 77, 85, 185]. The prediction
of a molecule’s biochemical activity based on its (sub)-structure is done using QSAR
(quantitative structure activity relationship) models [43, 116, 188]. There are many
biological applications for rapid molecule comparison, many of them making use of virtual
screening [187]. Here, large databases of molecular fingerprints are compared to a query
molecule and only those database molecules that pass a certain similarity threshold are
retained for further analysis.
We want to point out here, that while the Tanimoto coefficient is widely adopted, its
performance varies greatly based on the fingerprint type used, as well as size of the molecule.
See Fig. 2.2 for an example of intuitively very similar molecules with a very low Tanimoto
coefficient. Alternative similarity measures exist in the form of the cosine similarity, Dice
coefficient and Soergel distance [8].
From a computer science perspective, it is intuitive to interpret a molecule’s structure
as a graph, where atoms represent vertices and bonds represent edges. The similarity of
two molecules could then be measured as the minimum amount of edges that need to be
removed from the two graphs to be isomorphic, with hydrogen atoms not being considered.
This problem is called the “Maximum Common Edge Subgraph” (MCES) problem, which
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Tanimoto (MACCS fingerprint): 0.48

MCES similarity: 2

Figure 2.2: Example for a pair of molecules with low Tanimoto similarity but high
MCES similarity. Edges that need to be removed to reach MCES distance of two are coloured
in magenta, MACCS fingerprints were used to compute the Tanimoto.

is unfortunately NP-hard due to it being a generalisation of subgraph isomorphism [7].
For molecule pairs that are very similar to each other however, it can be used in a manual
fashion to provide better similarities than the Tanimoto coefficient (Fig. 2.2).

2.3 Metabolites

Metabolites are a class of small molecules that are intermediate or end products of a
living organism’s metabolism. While there is no clear cut definition of what constitutes
a metabolite, they are usually small molecules (below 1000 Da) that do not consist of
a small pool of building blocks. The entirety of an organism’s metabolites is called the
metabolome, and provides a close snapshot of the phenotype [130]. As an exception, small
peptides consisting of only few amino acids are also sometimes considered metabolites,
even though they consist of well defined building blocks. In the same fashion, lipids,
which are also part of the metabolome, are studied in a distinct field of study, lipidomics,
as their very regular and linear structure sets them apart from most other metabolites.
Metabolites vary greatly in structure, size and biochemical functionality and thus cover a
large chemical feature space. We distinguish between primary metabolites and secondary
metabolites. Primary metabolites are usually those involved in the organism’s reproductive
functions, growth and other “housekeeping” functions, while secondary metabolites are
more specifically tailored to certain ecological niche functions or dealing with environmental
stress. Primary metabolites are often shared between many different species, while
secondary metabolites are more specific to an organism’s environmental condition. A term
often used synonymously with “metabolite” in the literature is natural product, however
it usually refers to secondary metabolites. A natural product is defined as an organic
compound that is produced by a living organism. Secondary metabolites are highly
important for multiple scientific and economic fields [87, 113]. Many secondary metabolites
remain unidentified [9, 123].

2.4 Mass Spectrometry

One of the two predominant techniques to analyse metabolites is mass spectrometry (MS).
It requires only small amounts of sample and can measure different molecule species
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simultaneously. It is fit for high-throughput analysis, especially when compared to the
other popular technique: nuclear magnetic resonance (NMR). Mass spectrometry is only
able to measure ions, and thus all molecules need to be ionised before they can be
detected by the mass spectrometer. Ions can be single- or multiply charged, as a mass
spectrometer measures the mass-to-charge ratio (m/z) of an ion. Through this thesis, all
ions will be single-charged, making it so the molecule’s mass and its m/z are identical
and used synonymously here. Even though it is highly sensitive, mass spectrometry
does not measure singular ions, but all ions belonging to the same compound. Mass
spectrometers have evolved to become very accurate measurement instruments, however
they can naturally only provide accuracy to a certain degree. Since mass spectrometer’s
mass accuracy is relative to the measured ion’s mass, we use parts per million (ppm)
to specify an instrument’s accuracy. Modern instruments reach accuracies of 1 ppm or
even lower. The resolution of a mass spectrometer describes its ability to distinguish
between signals of very similar mass, but produced from different compounds. Mass
spectrometry measurements are usually categorised into low-resolution and high-resolution.
The computational approaches described in this thesis all rely on high-resolution data, as
overlapping signals produced by different compounds are in general hard to process.
A mass spectrometer consists of three major components: The ion source, mass analyser
and detector. As mentioned above, all molecules need to be ionised before the measurement,
which takes place at the ion source. Ionisation can either be soft, if the analyte molecule
stays intact during the process, or hard if the analyte fragments. Commonly used
techniques are electron ionisation (EI) [196] for hard, and electrospray ionisation (ESI)
for soft ionisation. Following ionisation, ions enter the mass analyser, which is the central
unit of a mass spectrometer. Ions are guided using electric fields, which is also why
uncharged molecules cannot be measured. The general purpose of the mass analyser is to
separate ions according to their masses. Many different mass analyser types exist, such
as time-of-flight (TOF), quadropole or Orbitraps. An easy to understand example of how
a mass analyser separates ions based on mass, can be given for a time-of-flight analyser:
Ions are accelerated in a tube by an electric field through the same potential, resulting
in identical kinetic energy for all ions with identical charge. As a result, the velocity of
an ion is only determined by its mass; an ion with lower mass has a higher velocity than
one with higher mass. After reaching the end of the tube, ions are detected by the mass
detector. Intuitively, ions arriving at the mass detector at the same time should have the
same mass, and the total flight time of an ion until it is detected by the mass detector can
be used to infer its mass. The output of this measurement is called a mass spectrum. In
principle, it consists of a list of m/z values with their corresponding ion signal intensities
as measured by the mass detector. Mass spectra can be visualised as a 2-dimensional plot,
where m/z values and corresponding intensities make up the axes.

2.4.1 Ionisation Modes and Adducts

Mass spectrometry experiments can be carried out in either positive ion mode or negative
ion mode, which refers to the charge that the ions carry after ionisation. The ion mode to be
used is mostly dependent on the analyte. In positive ion mode, molecules are protonated,
that is a proton (H+) is added to the molecule. In negative ion mode molecules are
deprotonated, as they lose a proton. A common notation for protonated ions is ([M+H]+),
where “M” denotes the neutral molecule. Likewise, ([M – H]– ) is used for deprotonated
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ions. Depending on the analyte, other ionic species can form non-covalent bonds with
the analyte ion and form an adduct. Common adducts include potassium ([M + K]+) and
sodium ([M + Na]+) adducts in positive mode, as well as chlorine ([M + Cl]– ) adducts in
negative mode. Depending on sample type as well as ionisation type and mode, the ratio
of adducts in an experiment can vary greatly.

2.5 Tandem Mass Spectrometry

Even though mass spectrometers are capable of separating ion species in a sample based
on their masses, there are certain limitations to it. Compounds with similar or identical
nominal masses (isobaric compounds) or structural isomers are not differentiable by a
standard mass spectrometry setup. To this end, tandem mass spectrometry (MS/MS)
was introduced as an analytical technique. Its basic setup consists of two coupled
mass spectrometers with a collision cell in between. Compounds are isolated based
on mass by the first mass spectrometer, and then fragmented by introducing them to
the collision cell. Fragment masses are then recorded by the second mass spectrometer
and saved as the tandem mass spectrum (MS² spectrum or MS/MS spectrum). As
spectra produced in this manner are highly reproducible, tandem mass spectrometry is
widely used to aid in structural identification of unknown compounds. A commonly
used fragmentation technique is called collision induced dissociation (CID). Here, the
collision cell is filled with a noble gas, with which the analyte ions collide as they are
passing through. This collision triggers a chemical reaction in which the analyte ion
is fragmented. This fragmentation process is highly dependent on structure as well as
collision energy (ce), given in electronvolt (eV). The collision energy is influenced by
how fast analyte ions are moving through the collision cell and can be an important
experimental parameter in MS/MS analysis. While certain compounds fragment very
well even in lower collision energy settings, others might require higher collision energies
to show sufficient fragmentation. The fragmentation process itself is highly complex and
not fully understood. Fragmentation reactions can be cleavages of bonds, but also complex
rearrangements of the structure [103]. In the common case of a single-bond cleavage, the
ion fragment carrying the charge is called fragment or product ion, while the uncharged ion
fragment is called loss. As only charged compounds can be detected by mass spectrometry,
the loss is not recorded in the resulting MS² spectrum but can only be inferred. If an ion
of the analyte ion species is not fragmented, it is called a precursor ion. The quality of
a MS² spectrum is sometimes measured by the amount of fragment peaks recorded above
a certain ion signal intensity threshold (commonly referred to as noise threshold). To
increase the number of peaks in a MS² spectrum, spectra of multiple measurements with
varying collision energies can be recorded and combined. See Fig. 2.3 for a depiction of
a Tandem mass spectrometry setup. Instead of isolating one ion species by mass first,
approaches exist in which all ions in a larger mass range are fragmented at once [21]. The
resulting spectra contain fragment masses from multiple precursor ions, and are generally
much harder to interpret, especially for in-silico methods.

2.6 Chromatography

As discussed in the previous section, isolating ion species can be tricky in real-world
experimental conditions. This is especially true for more complex sample types containing



12 2. Backgrounds in Organic Biochemistry and Mass Spectrometry

+ - + -

+
+ +
+

+
+

+

+

++

+

+

+
+

+

+

++

++

+

+

+

+
+

+

++

+ +

+

+
+

+ +

mass

in
te

ns
ity

+

+

+

+ +

+

+

+

+

+

+

++

+

mass

in
te

ns
ity

+

+ +

+

+

+ +

+

+

+
+

+

ion source

mass analyser mass analyser

collision cell

mass spectrum MS² spectrum

detector

Figure 2.3: Schematic of a tandem mass spectrometry setup. Ions of different species
are introduced and measured in the first mass analyser. Then, a mass spectrum is recorded.
Ion species are filtered by their mass/charge values, and introduced into the collision cell, where
they are fragmented. Fragments are then lead into the second mass analyser, where the MS/MS
spectrum is recorded.

a high number of different metabolites (e.g. fecal or blood samples). Here, commonly
occurring and highly abundant metabolites can drown out the signal of low abundant
metabolites. Furthermore, if two metabolites with a sufficiently similar mass are measured,
the mass spectrometer might not be able to isolate one from the other and fragment
both ion species at the same time, resulting in a usually hard to interpret chimeric
spectrum. Therefore, a chromatography step is often introduced prior to the mass
spectrometry analysis. In essence, chromatography adds a second dimension to separating
ion species from each other, which is most commonly polarity or structural volume. We
differentiate between gas chromatography (GC) and liquid chromatography (LC). Coupled
with a mass spectrometry setup, we talk about gas chromatography-mass spectrometry
(GC-MS) and liquid chromatography-mass spectrometry (LC-MS). In metabolomics, liquid
chromatography is often the chromatographic method of choice because it only requires
the analyte to be soluble, while GC requires the analyte to be volatile [54]. Liquid
chromatography consists of a mobile phase (the analyte in solution) and a stationary
phase (also called matrix ). As the mobile phase travels through the stationary phase,
molecules interact with it based on structure, volume or other properties. This prolongs
the time that it takes for a molecule to travel through the stationary phase completely.
This travel time is called retention time and can be used as orthogonal information for the
structural elucidation of unknown metabolites. Unfortunately, LC measurements of the
same analyte solution can return varying results, mostly because of the high sensitivity of
the system in regards to matrix type, containment from previous measurements or wear
of use [193]. The retention time is still widely used as orthogonal information to aid in
structural elucidation. Going back to the start of this section, liquid chromatography
is helpful in separating metabolites with extremely similar masses, but very different
structural properties (resulting in a large retention time difference). However, it is still
not unusual for multiple ion species to have basically indistinguishable retention times and
masses [125].



3 Machine Learning and Statistics

3.1 Machine Learning

Machine learning is a rapidly growing field in computer science, in which a system uses
training data to “learn” and then predict properties of the input data supplied to it. In
this chapter we are going to introduce and focus on the task of classification in supervised
machine learning and introduce support vector machines as our method of choice.

3.1.1 Supervised Machine Leaning and Classification

Supervised machine learning describes a machine learning setup, in which the training data
for a system is labeled and then used to calculate a mapping function for unlabeled input
data. Data in this context describes a set of variables, called features, and is usually given
in the form of vectors. Depending on the initial nature of the data, transforming it into a
vector can be more or less challenging. To give an intuitive example, we can think of this
problem: Given the colour of a tree leaf, predict the number of days until it falls of its
branch. The features here could be the RGB values corresponding to the leaf’s primary
colour, which are trivially easy to transform into a vector. Next, we are looking at the
same problem, but instead of the colour of a leaf, we are given the structure of the leaf’s
veins. Transforming this graph-like information into a vector can be a lot more difficult.
The output of the machine learning system, the prediction, can take different ranges.
Following our example from above, predicting the remaining lifespan of a leaf can return
any numerical value in [0,∞). However if we reformulate our problem to just the question
of if the leaf’s lifespan is more likely to be one, two or five days, our prediction will have to
fall into one of these finite bins. This is called classification, and we differentiate between
regular classification (two-class) and multi-class classification (three or more classes). In
this thesis, we are going to focus on regular, two-class classification where class labels are
in {−1, 1}.
Returning to the start of this section, finding a function that maps input training features
to class labels is the core part of classification. This function needs to be optimised for the
empirical loss, which denotes the divergence of predicted versus true labels on the training
data. Given a training data set of size n, one can easily find a polynomial function of
degree n that produces a perfect labelling and as such would be considered a perfect
mapping function on the training data. However, if applied to a different data set, this
function would likely severely underperform for data points not contained in the training
data. This effect is called overfitting and is of central importance when evaluating classifier
performance. A classifier function not only needs to perform well on its training data, but
also on novel data points. This desired effect is called generalisation.
To achieve this, we can use a regulariser, which is essentially a penalty term. The regulariser
is often a norm of the mapping function. Additionally, it might be beneficial or even
necessary to restrict the space of functions to those with a lower degree.
In this thesis, we lean on the commonly used notation found in Friedman et al. [58]. We

13



14 3. Machine Learning and Statistics

denote the training data matrix (also often called feature matrix) X as a n ×m matrix,
where n is the amount of feature vectors in the training data set and m is the length of the
feature vectors. X[i, j] then denotes the value of feature j in feature vector i. Similarly,
Y denotes the matrix of all training labels y. In the case of binary classification, Y is
n × 1 dimensional and can be written as a vector. The matrix of predicted labels ŷ is
denoted as Ŷ and the learned mapping function as f . The regulariser is the norm of the
learned function f and is written as ∥f∥r. Our task of finding the predictor function f
that minimises the sum of empirical loss L and the regulisation term ∥f∥r can now be
formalised as:

min
f∈F

L(Y, f(X)) + ∥f∥r (3.1)

F here is the set of all functions that are permitted, for example all linear functions.
Next, we are giving a short overview of popular machine learning strategies and formally
introduce Support Vector machines.

3.1.2 Linear Support Vector Machines

Historically, separating data points of two classes has been described geometrically, rather
than the loss and regularisation minimisation we introduced earlier. In three-dimensional
space, one can imagine the classifier being represented by a hyperplane, where data points
belonging to the first class lie on one side and data points belonging to the second class
lie on the other side. The learning task would then be to find the hyperplane that best
separates the data. Mathematically, a hyperplane is defined as a set of points that satisfy
β0 + β · x = 0, where β0 is the offset of that hyperplane from the origin (also called bias)
and β is the normal vector to the hyperplane. β and β0 are often denoted as w and
b in literature, to better reflect their interpretation of “weight” and “bias”. We are not
using that notation to stay consistent with [58]. The first model developed to find such a
hyperplane was the Perceptron [137], which iteratively updates feature weights to minimise
the distance that misclassified data points have to the separating hyperplane. This iterative
algorithm however only converges, if the training data can be fully linearly separated.
Additionally, if multiple solutions exist to separate the data, one will be returned based
on parameter initialisation, not optimal generalisation ability. To remedy these issues, the
Optimal Separating Hyperplane [171, 172] was introduced, which maximises the distance
between the closest data points of each class in the training data. The slab-like space
between the separating hyperplane and these closest data points is called the margin, and
by maximising it a unique solution is returned. The corresponding optimisation problem
for maximising the margin M over n training data points is:

max
β0,β

M

subject to
yi(xiβ + β0)

∥β∥
≥ M, i = 1, ..., n

(3.2)

Since the distance of any given point xi from the separating hyperplane is defined by β·x−β0

∥β∥ ,
the constraints ensure that every data point is at least distance M from the hyperplane.
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Because of β0 and β being scaling invariant in eq. 3.2, we arbitrarily define ∥β∥ = 1
M , to

arrive at the equivalent optimisation problem of

min
β0,β

1

2
∥β∥2

subject to yi(xiβ + β0) ≥ 1, i = 1, ..., n

(3.3)

With that, we have solved one of the problems of the original perceptron, receiving a unique
solution when solving this convex optimisation problem. The second problem, which is non-
convergence if data is not fully linearly separateable however still exists. For that reason,
the concept of soft margin [33] was introduced. The fundamental idea is to allow training
data points to lie within in the margin, or on the wrong side of it, which essentially means
to allow misclassification. Intuitively, these misclassified data points need to be penalised,
for which slack variables ξi are defined. We integrate the sum over all slack variables into
the optimisation problem, and arrive at:

min
β0,β

1

2
∥β∥2 + C

n∑︂
i=1

ξi

subject to yi(xiβ + β0) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., n

(3.4)

One can easily see, that the constant C here controls the scaling of misclassification
penalisation, a smaller C results in a larger margin, but more misclassifications, while a
larger C results in less misclassifications but a smaller margin. The empirical loss function
of a SVM is called the hinge loss LH , defined as:

LH(y, ŷ) = max(0, 1− ŷ · y) ŷ ∈ R, y ∈ {−1, 1} (3.5)

The hinge loss for a point in the training data is equal to its slack variable ξi. From eq. 3.5
we can see, that the hinge loss is zero for training data points that lie outside of the margin
but on the correct side of the hyperplane. See Fig. 3.1 for a visualisation of the concepts
explained here. A common variation of the standard SVM model is to use quadratic hinge
loss instead, which, analogous to eq. 3.4, can be expressed as:

min
β0,β

1

2
∥β∥2 + C

n∑︂
i=1

ξ2i

subject to yi(xiβ + β0) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., n

(3.6)

Training data points lying either within the margin or lying outside the margin but on
the incorrect side of the hyperplane are called support vectors, and fully describe the
prediction function. This becomes more clear if the optimisation problem is transferred to
its Lagrangian dual form [144], that can also be used to calculate the distance of a new
data point to the hyperplane without explicitly computing it.

3.1.3 Kernel SVMs and Deep Neural Networks

Kernel SVMs
In the previous paragraph, we introduced the soft margin SVM as a means to find a
separating hyperplane even if the training data is not fully linearly separable. In practice,
there might be cases where training data points are intuitively impossible to sensibly
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β

Figure 3.1: Schematic of a linear support vector machine. The separating hyperplane
(solid black line) divides the space into two sides. Dashed black lines span the slab-like margin,
coloured yellow. Orange and blue circles mark training data points belonging to either class 1
or -1. Data points within the margin or outside of the margin but on the incorrect side of the
hyperplane have a non-zero hinge loss equivalent to their distance to the correct side of the margin
(magenta lines). All points on the correct side of the margin have a hinge loss of zero. β is the
normal vector orthogonal to the hyperplane.

separate by using a hyperplane at all. In these cases, it is common to transform the input
space to a space of a higher dimension, where linear separability is possible again, see
Fig. 3.2 for an example of such a transformation. Because of the high dimensionality of
the resulting vectors, the computations performed on them in classifier training can lead
to extreme computation costs. As a way to alleviate this, one can use kernels, which are
functions that return the dot product of the high-dimensional, transformed vectors but
take the lower-dimensional, original data points as input. This way, one does not have to
actually apply the transformation into a higher-dimensional space. Since in this thesis we
restrict ourselves to linear SVMs, we again point the interested reader to [58] for a much
more exhaustive introduction to kernels.

Deep Neural Networks
As previously mentioned, in this thesis we focus on linear support vector machines.
Nevertheless, we want to give a short introduction to arguably the most popular and
well known machine learning method in use currently: Deep Neural Networks (DNN).
Historically, neural networks were created to be modelled after the human brain, where
neurons are connected in a network. The earliest work on this was published by McCulloch
and Pitts [102], who introduced the “McCulloch - Pitts Neuron”. Neurons are inspired by
their biological counterparts, they take weighted input from different sources and compute
an output via a (usually) non-linear function called the activation function. The most
common activation function today is called the rectified linear unit (ReLU) [60], while the
sigmoid function was most commonly used before that. Neurons are organised in layers,
hence the name neural network. The first layer is called the input layer and encodes input
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Figure 3.2: Example of data points that are not linearly separateable in one dimen-
sion (a), but easily separateable in two dimensions after applying a quadratic transformation (b).
Green line depicts a possible separating hyperplane.

data in some form of vectorised representation. The last layer is called output layer and
encodes the outcome (e.g. the predicted class in the case of binary classification). The
layers in between the input and the output layer are called hidden layer, and signify some
embedding of the input. A neural network is called deep, if at least two hidden layers exist.
The way that layers and neurons are organised, is called the architecture of the network. A
commonly used network architecture are feedforward neural networks, in which information
flows one-directional from input layer to output layer. Over time, the idea of emulating
the brain structure for neural networks diminished, as concepts that clearly differ from
the way biological neural networks work, proved effective for deep neural network training.
One of the most prominent examples is the backpropagation algorithm by Werbos et al.
[184], which was later popularised by Rumelhart and Parker [122, 139]. The strength of
the deep neural network model lies in its flexibility. Depending on the general architecture,
and number of layers and neurons used, one can easily design a DNN for most problems.
On the flipside, it is also very easy to design a DNN that just memorises training data
and thus performs very poorly at generalising. Additionally, the internal representations
of the input space used in the hidden layers can not be easily interpreted [159, 162, 195].
These properties are the main reason we are not using DNNs in this thesis. Obviously the
field of DNN research contains much more than what we outlined here, we recommend the
review by Schmidhuber [143] for a more extensive overview.

3.1.4 Evaluating Classifier Performance and Interpretability

As introduced earlier, the main goal of training a classifier is to create as much
generalisation as possible and reduce overfitting to a minimum. In training, we minimise
the empirical loss, in evaluation however that is not an intuitive or helpful metric to
evaluate a classifier’s performance. Using the metrics we now introduce directly as loss
functions during training however is not possible, because they are not differentiable.

Evaluation metrics
As a short reminder, in two-class classification each instance belongs to one of two classes
(we use “1” and “-1” as exemplary positive and negative class labels here). For each instance,
the classifier then assigns a predicted label. This prediction can lead to the following four
cases: An instance belonging to class “1”, that had its class label predicted correctly, is



18 3. Machine Learning and Statistics

FP
TP

FN

TN

FP

FP
FP

TP

TP

TP

FN

FN

FN

FN

TN

TN

TN

TN

TN

TP

TP

FN
po

si
tiv

e 
cl

as
s 

pr
ed

ic
te

d negative cla
ss predicted

pr
ed

ict
ion

 fu
nc

tio
n

Figure 3.3: Depiction of the outcome of two-class classification. Data points belonging
to the positive class (blue) or negative class (orange) can either be predicted correctly (TP or TN
respectively) or incorrectly (FN or FP respectively).

called a true positive (TP), while one that had its class label predicted incorrectly is called
a false negative (FN). An instance belonging to class “-1” that was predicted as “1” is called
a false positive (FP), while one that was predicted as “-1” is called a true negative (TN).
These four cases are commonly visualised as a 2x2 matrix, called the confusion matrix, see
Fig. 3.3 for a depiction of this paragraph.

We can now use these cases to establish the following, frequently used classifier
performance metrics: The accuracy is calculated as (TP + TN)/(TP + FP + TN + FN)
and describes the percentage of instances for which the label was predicted correctly. Its
main drawback is being unfitting for cases in which class distribution is very lopsided.
Here, prediction results for the majority class will drown out those of the minority class.
In these scenarios we can measure precision, recall and F1-value. Precision is defined as
TP/(TP+FP ) and describes the percentage of correct classifications between all instances
assigned the positive class label. Its counterpart, recall, is defined as TP/(TP +FN) and
describes the percentage of instances belonging to the positive class that were correctly
predicted. We can then calculate the harmonic mean of precision and recall to obtain the
F1 score, which is defined as 2·precision·recall

precision+recall .

Receiver operating characteristic
The receiver operating characteristic (ROC) is a visualisation method widely used to
evaluate classifier performance. It shows false positive rate (FPR), which is defined as
FP/(TN + FP ), against recall (often labeled “true positive rate” (TPR)), for varying
discriminative thresholds. The area under curve (AUC) can then be computed as a
quantitative measure for classifier performance, where a perfect classifier would reach an
area under curve of 1.0, and a classifier assigning labels randomly one of 0.5.

Independent and holdout datasets
Since we want to evaluate a classifier based on its ability to generalise, a common evaluation
strategy is to simply evaluate its performance on a dataset that diverges from the training
data in all relevant properties (called evaluation data set or test dataset). A dataset
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adhering to these restrictions is called an independent dataset. In real-world scientific
appliance however, this is often extremely difficult or impossible to obtain. Given for
example a training dataset consisting of mass spectrometry measurements of hospitalised
patients. A truly independent dataset would likely need to be measured by a different
scientist, on a different machine, at a different time of day, under different climatic
conditions and so on. For that reason, datasets are usually called independent if they
sufficiently diverge from the training dataset. A different strategy is the holdout method,
in which part of the training data is omitted from training, and then used as an evaluation
dataset. This is generally less preferred than independent datasets, but is still popular
because of its simplicity in terms of implementation and data availability.

Cross-validation
Cross-validation is a method deployed to improve evaluation quality on imperfect
independent and holdout datasets. Here, the data is partitioned into n folds of sufficiently
similar size. One fold is then used as the test dataset, while the remaining ones are
concatenated and used as the training dataset. This process is then repeated n times,
so that every fold served as the testing set once. This reduces the risk of overestimated
classifier performances being just the result of creating a partition containing only “easy”
predictions. Usually, the number of folds is set to five or ten, which results in five or ten
trained classifiers each with their own respective training and test partition. Depending
on the training data, the partitioning into folds might require some additional constraints
instead of just splitting randomly. This is especially the case if duplicate data points are
part of the training set, as these need to always be grouped together in either the training
or test partition.
As described, an independent dataset should not contain any data points also contained
in the training dataset. In the case of overlapping data points, we can use the cross-
validation setup described above. For every data point in the independent dataset that is
also contained in the training dataset, we predict its label using a cross-validation classifier
that contained this data point in its testing partition only.

Classifier interpretability
The evaluation metrics introduced in the above subsections are commonly applied to
predictors of all popular machine learning approaches. Trained classifiers are given novel
input data, and are then evaluated on their label-predicting performance. Here, we
now want to introduce a concept that evaluates a classifier’s quality data-free, which we
call classifier interpretability. As discussed, the main goal is to train a classifier with
high generalisation and low overfitting. Instead of using evaluation data to test for that
property, it might also be helpful to evaluate the “knowledge system” that comprises the
classifier directly. The feasibility of this approach varies greatly between machine learning
models, and can only really be applied to relatively simple models. In the example of
linear support vector machines, we can evaluate the trained feature weights. Since the
prediction function of a linear SVM is just a linear combination of feature weights and
the corresponding input feature values, we can perform simple checks to assess if the
classifier contradicts with “common sense”. Be reminded that a linear SVM assigns the
positive class label if the linear combination of features and their corresponding weights
is higher than some numeric threshold, which means that positive feature weights “push”
for the positive class, while negative feature weights do the same for the negative class.
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The higher the absolute value of a feature weight, the more impactful it is on the overall
classification result. To give an example, let there be a classifier that is trained to predict
if a person is going to be a billionaire in the next five years, and one of the features chosen
is the person’s monthly income. Intuitively, this monthly income should most likely be
assigned a positive feature weight. If however, we see that the trained classifier assigned a
negative weight (translating to “The higher your income, the less likely it is to become a
billionaire”), we can use that information as a sanity check. In this particular example, the
training data might have only contained low-earning lottery winners as examples for the
positive class, resulting in high overfitting and low generalisation. It should be understood
that this strategy needs to be applied with utmost care, as oftentimes correlations might
be too complex to understand intuitively.

3.2 False Discovery Rates

The false discovery rate (FDR) is an important metric in life science research. It is
defined as FP/(FP + TP ). Many large industries and academic fields focus on the search
for something novel, be that new drug leads, novel biomarker for common diseases or
previously unknown structures present in our very own metabolome. In most of these
fields, the discovery of only one relevant novel compound is already considered a huge
success, and the product of extremely high time and financial investment. It is also
understood that the amount of currently unknown, but interesting biomolecules is very
high, which is why preventing false positives is of much more relevance than preventing
false negatives. A false positive biomarker candidate for example, can easily consume
multiple years of research time before it is determined as such. As a result, detecting and
discarding false positives is an extremely important task in many of these workflows, be
they experimental or computational. In this thesis, we focus on false discovery rates for
computational methods, where often thousands to millions of candidates are processed in
some way at the same time. The output of such methods is usually a list of candidates
(e.g. structures predicted for input data), that are ranked by an associated score. Since
conceptually the “quality” of a candidate declines the lower its score, it is common practice
to find a score threshold t at which the FDR for the sublist containing all candidates with
score t or higher does not exceed a fixed threshold. The false discovery rate is always a
property of a candidate list, rather than a singular candidate. To express the FDR-level
of such a singular candidate, one can use the q-value, which is defined as the lowest FDR
at which this candidate is still contained in the sublist defined by the score threshold t.

3.2.1 Estimating False Discovery Rates

To calculate the FDR of a candidate list as described above, one needs to know the true
label of a candidate. In application this is usually not the case, the FDR then needs to be
estimated. This estimated FDR must then be validated against exact FDR values, which is
of course only possible in evaluation where the true labels are known. Over time, multiple
approaches for estimating the FDR of candidate lists have been developed, many of them
are based on the computation of the p-value as a measurement of statistical significance.
In our context of scored candidates, the p-value is defined as the probability of obtaining
a score, or a more extreme one, randomly. P-values are calculated for each candidate
individually, and such must be corrected against multiple testing. By multiplying the p-
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value of a candidate with the total amount of candidates tested, we obtain the E-value,
which denotes the amount of expected random candidates with a certain score or higher.
Computing p-values or E-values for candidates is non-trivial, see Section 6.1 for an overview
on FDR estimation in proteomics and metabolomics.





4 Related Work: Computational Mass
Spectrometry

In this chapter we give a brief introduction on the advances in the field of computational
mass spectrometry in recent years. In particular, we introduce methods to annotate
molecular formulas and structures to tandem mass spectra. These methods are used as a
foundation for the work presented later in this thesis.

4.1 Annotation and Identification

Before diving further into this chapter, we want to pay special attention to a specific part of
the vocabulary used, which is the distinction between molecule identification and molecule
annotation. Both expressions describe the process of trying to find the ground truth
about a compound’s molecular formula or structure, we are however deliberately using
molecule annotation over identification. The reason is, that computer driven methods
simply annotate the result of a computation to a query spectrum, which makes no promise
about its correctness. Using the term “identification” might imply that the given result
has been irrefutably proven against the ground truth.
In mass spectrometry, certain guidelines exist on how to judge the quality of an annotation.
These are mostly based on the experimental level that was performed to ascertain the
annotation [56].

4.2 Data Preprocessing

Data quality in mass spectrometry can greatly vary depending on instrument and setup
used. As we are introducing computational methods to handle and interpret this data, it
is important to understand that a high level of data quality is essential for a successful
analysis. Since many different setups are used in application, it is important to preprocess
and standardise incoming data. Different instruments for example produce varying levels of
noise, which might need to be filtered prior [142, 190]. Other common steps of preprocessing
LC-MS/MS data include baseline correction [11, 175], feature detection, integration and
grouping [37, 86, 91, 110] as well as retention time alignment [71, 92]. While noise removal
and baseline correction are primarily used to remove low quality parts of the data, feature
grouping and retention time alignments can be seen as a way to enhance a molecule’s
measurement data.
Peaks are firstly output as a distribution over m/z values rather than a single value, which
is called profiled mode. Peak picking describes the process of assigning a singular m/z value
to a peak, which results in a centroided spectrum. Data preprocessing is often performed
internally by tools like OpenMS [138], MZmine 2 [127] or SIRIUS 4 [47].

23
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4.3 De Novo Molecular Formula Annotation

Molecular formula annotation is oftentimes the first step performed on the way to a
molecule’s structural elucidation. It can be used as guiding information in experimentally
driven structure elucidation using NMR, but also aids in restricting the search space
for computer driven structure library search [47]. Molecular formula annotation can be
performed by searching a molecular formula database based on e.g. the molecule’s mass,
or de novo, which is independent of existing databases. While querying existing molecular
formula databases can be done very fast, it restricts the search space to the size of the
database. Even the largest molecular formula databases are considered vastly incomplete,
which supports the need for de novo annotation. Here, dynamic programming can be used
to enumerate all possible molecular formulas given a compound’s mass and an alphabet of
atoms that it might consist of [19, 45]. However, even for extremely small allowed mass
deviations and an alphabet constrained to only the essential atoms biomolecules exist
of, one can observe a combinatorial explosion of the search space [16]. This observation
makes de novo molecular formula annotation a non-trivial problem. While heuristics exist
to constrict the search space yet again, the true molecular formula might be omitted in
the process [89]. Regardless of how the set of “allowed” molecular formulas is generated,
candidates are then scored and ranked to determine the hopefully correct molecular formula
candidate. This can either be done using MS1 data alone using the molecule’s isotope
pattern [3, 18, 20, 98] (see next section for details) or by incorporating available MS/MS
data [16, 17, 47, 104]. Depending on the analysis, using the context between molecules
can prove beneficial for molecular formula annotation. If molecular formulas are to be
determined for multiple molecules contained in the same LC-MS/MS run, co-occurrences
and common biotransformations can be taken into account to guide annotations [101, 136].

4.3.1 Isotope Pattern Analysis

As introduced earlier in this thesis, elements can occur as isotopes. The occurrence of
isotopologues can also be measured in mass spectrometry, as isotopologues with sufficiently
different masses produce different peaks. Isotopologues with extremely similar masses are
commonly measured as one peak. A common notation is to name the isotopologue with
the lowest mass the monoisotopic peak [20], the set of all isotopologues containing exactly
one additional neutron the M + 1 peak, the set of all isotopologues containing exactly
two additional neutrons the M + 2 peak and so on. Consecutive isotope peaks differ by
about m/z = 1 for single charged compounds, making the isotope pattern easily visually
distinguishable. The absence of an isotopic pattern for a measured peak can also indicate a
noise peak or low data quality, and can help distinguish real metabolites from background
noise or contamination. The measured isotope pattern of a compound can now be compared
against the expected, simulated isotope pattern for a molecular formula candidate [20, 47].
Polynomial expansion methods [28] as well as Fourier transform methods [133] can be used
to calculate masses and intensities of a molecular formula candidate’s isotopic pattern. To
ensure comparability to measured isotope patterns, isotopologues with very similar masses
can be merged [20, 90]. Isotope pattern analysis as described, is integrated into SIRIUS
4, which considers relative and absolute errors when comparing masses and intensities
between measured and simulated isotope patterns. Analysing the isotope pattern of a
compound can also help to constraint the elemental alphabet and with that restrict the
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amount of molecular formula candidates that have to be considered for molecular formula
annotation [47].

4.3.2 Fragmentation Trees

Fragmentation trees were introduced by Böcker et al. to provide a representation of a
molecule’s fragmentation based on its MS/MS spectrum. In this thesis, we are specifically
interested in how fragmentation trees can be used to aid molecular formula annotations.
For that, all possible molecular formula candidates that fit the precursor peaks mass are
enumerated, and a fragmentation tree is constructed for each of them. Fragmentation trees
are then scored by a maximum a posteriori estimator, which results in a ranked list of
molecular formula candidates [16]. Fragmentation trees are directed, acyclic graphs, where
a node represents a peak in the MS/MS spectrum, and an edge represents a loss between
two peaks. Every peak in the underlying MS/MS spectrum can only be represented by one
node. The root of a fragmentation tree is annotated with a molecular formula candidate
representing (“explaining”) the parent peak. Non-root peaks are annotated with molecular
formulas explaining the specific peak’s mass. A molecular formula annotated to a node
of a fragmentation tree, usually has to be a subformula of the formula annotated to the
parent node. As follows from previous sections, the mass of a peak can almost always
be explained by multiple (and in most cases many) molecular formulas, which makes the
process of finding the “best” annotations difficult.
To compute the fragmentation tree for a given molecular formula candidate, we first have
to construct a fragmentation graph. A fragmentation graph is again a directed, acyclic
graph where a node represents a peak in the MS/MS spectrum, and an edge represents
a loss between two peaks. Different from a fragmentation tree, there is no limit as to
how many nodes can represent the same peak. The nodes of the fragmentation graph can
now easily be created as exactly the set of all possible molecular formulas for all peaks
in the spectrum (except for the precursor peak, for which the molecular formula is fixed).
Edges are now drawn between subformulas, completing the fragmentation graph. To now
compute the fragmentation tree based on the fragmentation graph, requires solving an NP-
hard problem, called the MAXIMUM COLOURFUL SUBTREE problem [17]. Luckily,
metabolites measured on high resolution mass spectrometers produce fragmentation graph
instances that can mostly be solved by Integer Linear Programming (ILP) [131] in a timely
manner. If mass or elemental composition of a metabolite prevent the fast computation of
its fragmentation trees, heuristics can be employed to solve the exact problem for only the
high-ranked candidates.
Fragmentation trees do not try to represent the exact ground truth of the fragmentation
process, as the exact chemical processes of fragmentation are not fully understood yet. See
Fig. 4.1 for an example of a fragmentation tree representing a MS/MS spectrum.

4.4 Spectral Library Search

As introduced in previous sections, one of the fundamentals of what makes mass
spectrometry such a widely used analysing technique is the reproducibility of the resulting
spectra. Especially for GC-MS and EI measurements, spectra of the same compound
measured on different setups usually are extremely similar [55]. The same is true for LC-
MS spectra, although to a lesser degree. Fragmentation spectra produced by the Orbitrap’s
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Figure 4.1: Fragmentation tree example. Example of a fragmentation spectrum (a) and the
corresponding fragmentation tree (b). Each node in the tree corresponds to exactly one peak in the
spectrum. An edge between two nodes in the fragmentation tree is labeled with the loss between
the two molecular formulas. The mass of this loss corresponds to the mass difference between the
two peaks in the spectrum.

“higher-energy C-trap dissociation” (HCD) can produce slightly different fragments and
intensities than those produced by regular collision induced dissociation [75]. The same
is true even for instruments that use very similar fragmentation methods, but from
different vendors [118]. Additionally, collision energy settings are not perfectly accurate
between machines of different vendors and can further lead to small dissimilarities [161].
Nevertheless, spectral library search has been a widely adopted technique for tandem
mass spectrometry annotation for decades, as the approach is very simple technically.
Here, the measured spectrum of interest is compared against a database of previously
measured spectra, called the spectral library. To be efficient, only spectra of a close
enough precursor mass are used for this. The similarity measure usually employed is
called the cosine similarity or cosine score, and is calculated by first binning the spectra
into vectors of mass and intensity tuples, then normalising intensities and calculating the
dot product. As such, the cosine similarity is between zero and one for orthogonal and
identical vectors respectively.
Over time, modifications to the cosine score have been adopted to combat a major problem:
A spectrum often contains of only few high-intensity peaks, and many more low-intensity
peaks. Cosine scores as calculated above would be dominated by only a few peaks in
the spectrum, and fail to take smaller peaks into account. Transforming peak intensities
by taking the square root alleviates this problem, and often shows better performance
[73, 156]. Additionally, the precursor peak is often removed from both spectra.
While calculating the cosine score is generally simple, interpreting it is often not. As
long as the spectral library contains spectra with a similar enough precursor mass, a best
matching spectrum is always going to be returned. Choosing a cosine score threshold for
which spectral matches are to be considered significant however, often involves extensive
knowledge about the currently measured experimental data, as well as the spectral library.
Scheubert et al. [141] recently developed a false discovery estimation approach for spectral
library search to tackle the problem of false positive hits. One of the main ideas relies on
the target-decoy approach, which is commonly used in proteomics. Here, a second spectral
library is constructed in-silico, containing artificial spectra that cannot be produced by
real-world compounds, but are still very similar to the ones contained in the target spectral
library. Both databases are then searched for spectral matches to estimate the probability
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that a hit in the target database is in fact a false positive (target-decoy).
Publicly accessible data repositories for MS/MS data include MassBank [73], HMDB
[192] and GNPS [177]. GNPS in particular allows the upload of uncurated datasets
by its users, combined with analysis workflows to aid in structure elucidation [117].
A visualisation technique that gained a lot of popularity in recent years involves the
generation of molecular networks [109, 177, 182]. These networks show the relationship
of compounds in one or multiple datasets, by creating a graph in which compounds are
connected by edges denoting similarity (usually via cosine score). This helps to identify
compound cluster in the dataset, and creates knowledge about biochemical reactions in the
sample, as for example simple biotransformations can be hypothesised about using mass
differences [168]. The process of using known spectral library hits in a molecular network
to annotate unknowns or validate annotation results of in-silico methods is called network
propagation [36, 94, 152]. Common spectral patterns between entries in a spectral library
can be extracted by MS2LDA [169, 170], an unsupervised machine learning method, and
manually annotated with structural properties. This can aid in partially annotating query
spectra, that show such a known pattern.

While spectral library search is a powerful tool, it also comes with limitations. First, every
compound contained in a spectral library needs to be measured in its pure, uncontaminated
form to create a “reference standard” [149]. Depending on the compound, this process can
be extremely cost- and labor intensive, or straight up impossible with current experimental
methods. Despite spectral libraries growing over the past years [73, 163, 174, 177, 192],
compared to the realm of all known molecular structures (PubChem for example contains
over 110 million compounds), they are still vastly incomplete. As a result, the correct
structure candidate for a query spectrum is not contained in the spectral library for a large
majority of detected compounds [35]. In this thesis, we are mostly picturing structure
library search as superior over spectral library search, however we want to stress that both
approaches have their merits and should not be seen as mutually exclusive.

4.5 Structure Database Search

As mentioned in the last section, databases containing structural information of compounds
are many orders of magnitude larger than spectral databases. PubChem [88], one of
the largest publicly available structure databases, contains 110 million compounds of 277
million substances (as of January 2022). Even though the majority of these compounds
are not relevant in the context of metabolomics (because they don’t naturally appear in
biological samples), the subset of biologically relevant compounds still contains hundreds
of thousands of structures [10, 47]. Obviously the limitation of not being able to
elucidate truly novel structures not contained in the database also applies here. It can
be tackled by generating in-silico databases containing artificially generated structures
[27, 40, 62, 76, 128]. Since it is much easier to artificially create molecular structures than
it is to generate sensible spectra, this approach is much more feasible for structure library
search.
The main problem to overcome when attempting mass spectrometry driven structure
library search is, that measured spectra and molecular structures are not inherently
comparable, and thusly need to be transformed. We differentiate between the following
thee approaches to this problem [14]:
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4.5.1 MS/MS Spectra Simulation for Database Structures

Transforming structures into spectra or alternatively spectra into structures are two
intuitive approaches to enable comparability. Here, we first describe the idea of predicting
or simulating a MS/MS spectrum for a given molecular structure. This simulated spectrum
can then be matched against a spectral library as described earlier. Since the fragmentation
process of molecules in mass spectrometry is far from fully understood, creating models
that accurately produce a theoretical MS/MS spectrum for a compound is very challenging.
A relatively simple approach is called “rule-based”, and describes the process of specific,
well-defined fragmentation rules to a given structure. These rules are generated from the
literature, and are generally highly curated. This approach is severely limited by the
amount of publicly observed and understood fragmentation processes and additionally can
not produce relative peak intensities [83]. “Mass Frontier” and “ACD/MS Fragmenterm”
are examples for commercial rule-based fragmentation tools, however the produced spectra
are usually not suited for comparison to measured spectra because of the missing peak
intensities [83]. Quantum-computing-based cheminformatics approaches which try to
predict the MS/MS spectrum ab initio exist [179], but require tens to hundreds of CPU
hours for the prediction of one spectrum. Additionally, the predicted spectrum showed
no pronounced advantage in comparison to CFM-ID, which is also faster [154]. CFM-ID
(competitive fragmentation modelling), a machine learning and stochastic-based method,
models the fragmentation process using Markov-Chains [1, 2, 41]. Bonds or rings in
the molecule’s structure can be broken or disconnected depending on chemical properties
that describe the bonds strength. CFM-ID utilises a neural network for its predictions.
Although the calculated MS/MS spectra are not extremely similar to the experimentally
produced ones, they still perform well for the task of molecular structure elucidation.

4.5.2 Combinatorial Fragmentation of Structures

Combinatorial fragmentation describes the process of generating hypothetical fragments
from a structure by bond breakage, hydrogen rearrangements or other rule sets. The
resulting fragments are then used to annotate peaks of a measured query spectrum. While
this method was initially used to annotate the fragmentation of known compounds [66, 69],
MetFrag [140, 194] was the first method to use combinatorial fragmentation to annotate
any given spectrum by searching in a structure database. Since version 2.2 [140], MetFrag
also uses metascores to influence structure candidate rankings, see Section 4.8 for an
introduction to metascores. The two main components of combinatorial fragmentation
annotation methods is the efficient generation of fragments and the scoring function used
to compare them to a measured query spectrum. The generation of fragments is usually
done non-exhaustive and requires some thought as to speed up computation times. It is
easy to understand that multiple different sets of successive fragmentations can lead to
the same fragment, which is why MAGMa [132] hashes previously generated fragments
to avoid duplicity. Scoring of generated fragments is usually done by assigning a cost to
bond cleavages, depending on the bond’s type. MetFrag uses bond dissociation energies
while MAGMa and MIDAS [181] use a simple predefined bond-cost model. MetFrag
was later combined with MassBank [73] spectral library search by Gerlich et al. in
the form of MetFusion [59], which aimed to combine the advantages of both database
searches. MAGMa was further improved by Verdegem et al. by creating MAGMa+ [173],
a wrapper script for MAGMa that optimises the parameters used in the scoring function
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based on the current query using machine learning. MS-FINDER [166], developed by
Tsugawa et al., introduced rules for hydrogen rearrangement during fragmentation and
also uses the amount of database occurrences of a structure candidate as a metascore.
DEREPLICATOR+ [106], an extension of DEREPLICATOR [105], restricts the set of
bonds that can be fragmented to C-C, N-C and O-C, and more importantly reports a false
discovery rate estimation for annotations. This estimation is target-decoy-based, decoy
spectra are generated with randomly sampled peaks from a reference spectra library. It is
important to note however, that the estimated FDRs that are reported were not evaluated
on their ability to reflect the true FDR. MolDiscovery [30] was introduced as a successor
to DEREPLICATOR+, which included a more efficient algorithm for fragmentation graph
construction.

4.5.3 Structural Feature Prediction from MS/MS Spectra

While the previous approaches were based on transforming structural information to a
representation more comparable to a spectrum, here are others that try to predict the
structure directly from the MS/MS spectrum. This would alleviate the need for even a
structure database, and enable truly novel annotations. However, this task is extremely
difficult, and so far no existing method is able to fully de novo predict a structure
directly from an MS/MS spectrum [38]. Instead, predefined structural properties are
being predicted, in the form of molecular fingerprints. These fingerprint vectors can be
examined for the presence or absence of certain functional groups, structural backbones and
other biochemical properties which can aid experts even if a full elucidation is impossible.
Additionally, calculating the molecular fingerprint for structures in a structure database is
trivial, allowing for a comparison of the predicted fingerprint with fingerprints of known
structures. FingerID was developed in 2012 by Heinonen et al. [67], and uses kernel-based
support vector machines (SVMs) to predict molecular fingerprints for MS/MS spectra.
Later, Shen et al. combined fragmentation tree kernels with the probability product
spectrum kernels used in FingerID [150]. Afterwards, Dührkop et al. improved the scoring
function and extended the space of molecular properties that could be predicted, resulting
in CSI:FingerID, which is widely used today [46]. SIMPLE [114] is also based on multiple
kernel learning, and additionally promises higher classifier interpretability. Brouard et al.
developed Input Output kernel regression (IOKR) [24–26], which is based on the same
principle, but directly learns a mapping from fragmentation spectra to structure without
explicitly predicting a fingerprint. Spectra and structures are mapped directly instead,
based on a learned mapping function. In a similar fashion, ADAPTIVE [115] employs
message passing neural networks to learn a mapping from structure to molecular vector,
and then deploys IOKR to learn a mapping from spectra to molecular vector. ChemDistiller
[93] combines combinatorial fragmentation and fingerprint-based predictions to increase
annotation rates. MSNovelist [158] uses fingerprints predicted by CSI:FingerID as input
for a recurrent neural network (RNN). It then predicts structures in the form of SMILES,
this is done de-novo and shows promising results in evaluation.

4.6 CSI:FingerID

As introduced in the previous section, CSI:FingerID is a method that predicts molecular
fingerprints from input MS/MS data, and compares them to molecular fingerprints
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of structure database candidates. Combined with SIRIUS (see Section 4.3.2), it
uses combinatorial optimisation as well as machine learning to elucidate an unknown
compound’s structure. First, the MS/MS spectrum is transformed into a fragmentation
tree. Then, kernel SVMs predict the presence or absence of predefined molecular properties
of the molecular fingerprint. The calculated fragmentation tree serves two purposes:
Information contained in it can be used as input for the SVMs predicting the fingerprint
in the form of kernels. Multiple kernels are computed based on spectral information as
well as information about edges, nodes and paths in the fragmentation tree. Then, these
kernels containing (partially) orthogonal information about the spectrum are combined
into a single kernel using multiple kernel learning. Dührkop et al. used ALIGNF [34] and
ALIGNF+ [151] to compute kernel weights. An individual SVM is then trained for each
molecular property of the molecular fingerprint, however, all SVMs use the same combined
kernel. The second benefit of calculating the fragmentation trees for a spectrum, is to
restrict the search space of the structure database as described below.

Structure database search
Without additional information about the query compound, every method comparing
the input spectrum (or in this case the predicted molecular fingerprint) to candidates
in a structure database, would need to perform this comparison for each candidate in
the database. Depending on database size (PubChem for example contains over 100
million structures) and the complexity of the scoring function, this can lead to strenuous
computation times. If the molecular formula of the query compound is known however,
we can restrict our search to only the subset of structure candidates sharing this formula.
Molecular formula candidates can be calculated using SIRIUS and ranked by score. We
can then perform structure database search for each (sufficiently high-ranked) candidate
individually. As mentioned earlier, computing the (binary) molecular fingerprint for a
given structure is trivial.
Over time, different scoring functions that compare predicted fingerprints to database
fingerprints have been proposed. In this thesis, we use the two latest scoring functions
that were introduced by Dührkop et al. [46] and Ludwig et al. [100] respectively. The
“Modified Platt scoring” from [46] combines Platt probabilities [126] with sensitivity and
specificity of the predictors for the individual molecular properties.
Let F = (x1, ..., xn) ∈ {0, 1}n be a binary candidate fingerprint present in the structure
database and let F ′ = (p1, ..., pn) ∈ [0, 1]n be the Platt probabilities of the predicted
molecular fingerprint. Additionally, sensi shall denote the sensitivity and speci shall
denote the specificity of the predictor of the ith molecular property. Then, the Modified
Platt score between the two fingerprints is given as:

n∏︂
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1− pi)

3
4 · (1− speci)

1
4 if pi < 0.5 and xi = 0

p
3
4
i if pi < 0.5 and xi = 1

(1− pi)
3
4 if pi ≥ 0.5 and xi = 0

p
3
4
i · (1− sensi)

1
4 if pi ≥ 0.5 and xi = 1

(4.1)

Compared to the Platt scoring, the Modified Platt scoring offers no statistical
interpretation, but outperformed previous scorings [46]. The Modified Platt scoring
assumes independence between the molecular properties of a fingerprint, which is an
assumption that does not hold. A trivial example to give would be that a structure
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encoded as a molecular property might be a substructure of a different molecular property.
Thus, these positions in the fingerprint can not be independent.

The “Covariance score” introduced by Ludwig et al. in [100] is based on Bayesian networks,
and assumes dependence between fingerprint positions. Nodes in the Bayesian network
are molecular properties represented as binary random variables that encode presence and
absence of the property. To keep the problem computationally tractable, the network
topology is forced to be tree based. The tree topology is then derived based on mutual
information between molecular properties, using deterministic “anchor” fingerprints from
a structure database. Furthermore, covariances between nodes are computed as follows.
Let X,Y be binary random variables denoting molecular properties, then the covariance
is defined as:

cov(X,Y ) = E(XY )− E(X)E(Y )

= P(X,Y )− (P(X) · P(Y ))
(4.2)

For a tree T , a root node r and a set of edges E, the joint distribution can be given as:

P(X1, ..., Xn) = P(Xr) ·
∏︂
i,j∈E

P(Xi, Xj)

P(Xi)
(4.3)

The marginal probabilities P(X) and P(Y ) are known from the Platt probability
estimate. In the scoring phase, joint probabilities P (X,Y ) are computed for each
edge, using both the covariance as well as the marginal probabilities from the predicted
fingerprint. Ludwig et al. suggest either using one global tree structure for all queries
and fingerprints, or determining an individual tree structure for each different molecular
formula. Both approaches outperform the Modified Platt scoring on cross-validated
training data. Using individual trees, this new scoring outperforms the Modified Platt
scoring on independent data. See Fig. 4.2 for an overview of the CSI:FingerID workflow.

4.7 Compound Class Prediction

While molecular structure databases are orders of magnitude larger than most spectral
libraries, they still do not cover all biomolecules that may be contained in a biological
sample. Complete coverage of the biochemical space by these libraries is not something
that is expected within the intermediate future, if at all. Consequently, many compounds
in a sample can not be fully structurally elucidated by spectral library search or structure
library search alike. Instead, one can focus on determining the compound classes contained
in a sample. Compound classes are chemical classifications that go beyond the simple
presence or absence of certain substructures like in molecular fingerprints. While knowing
the class of a compound entails less information than knowing its full structure, it still
contains valuable information like general chemical properties or certain substructure
information. Note that a compound can and in most cases will belong to multiple chemical
classes. Databases like ChEBI [64] or the MeSH thesaurus [135] contain compound class
annotations for a rather small fraction of structures. To assign classes to all structures
independently of their presence in these databases, ClassyFire [39] deterministically assigns
them based on various substructure features and logical expressions. In 2021, Dührkop
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et al. presented CANOPUS [48], an approach to compound class assignment directly
from LC-MS/MS data that is implemented into SIRIUS. CANOPUS uses the molecular
fingerprint predicted by CSI:FingerID as input for a Deep Neural Network, which then
predicts the compound classes for a given query spectrum. Dührkop et al. show, that
CANOPUS outperforms the following other methods for compound class assignment:
Direct prediction [167], which describes the one-step prediction of a compound class from
the MS/MS data without the intermediate step of fingerprint prediction and k-Nearest
Neighbour for either spectral library [6, 99] or structure database search [52, 167].
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Figure 4.2: The CSI:FingerID workflow. In the training phase, fragmentation trees are
constructed for each MS/MS spectrum in the training dataset (a). Then, all-against-all kernel
matrices are computed and combined into a single kernel (b). Next, fingerprints are computes
for the molecular structures corresponding to the the training spectra (c). For each position
in the molecular fingerprint, an individual SVM is trained (d). In the prediction phase, the
fragmentation tree for an unknown query spectrum is computed (e), as well as kernel similarities
to the training data (f). The SVMs trained in the training phase now predict the molecular
fingerprint of the query (g). Finally, in the scoring phase, fingerprints are computed for each
structure candidate in a structure database (h). Every candidate is then compared and scored to
the predicted fingerprint (i), and a sorted list of structure candidates is returned (j).



4.8 Metascores 33

4.8 Metascores

In previous sections, we introduced various methods to compare spectral information to
structural information, which use scoring methods to rank structure candidates based
on this comparison. The term “Metascore” describes such a scoring function that not
only takes into account the measured spectral data, but uses additional, non-experiment
related information to rank structure candidates. Prominent examples of this are the
citation frequency of a structure candidate or its production volume [96]. The underlying
principle here, is the assumption that frequently cited compounds are more likely to be
present in a given sample compared to lesser cited compounds. One should be aware
of the implications that using such a metascore brings. First, by using a metascore on
for example the citation frequency, a method is practically blind to novel or very rarely
occurring structures if another candidate that is highly cited exists. Secondly, evaluation
results can be misleading. In contests like CASMI [148], compounds which query spectra
are presented to the different tools need to be somewhat easily obtainable and have their
molecular structure known. As a consequence, these structures are often highly cited which
inflates annotation rates for tools employing metascores.
We want to make the reader especially aware of the fact, that metadata is very different
from metascores, and that these two should not be mistaken for one another. Metadata
includes for example the experimental parameters used, like the MS instrument type or the
column type used in chromatography. This kind of information is experiment related, and
can be very helpful for annotating structures, for example by estimating the mass accuracy
of an instrument by its model.





5 Datasets, Databases and Evaluation
Principles

In this chapter we introduce the datasets and databases used in evaluations throughout
this thesis. Additionally, we describe in details how the CSI:FingerID version used in this
thesis was trained, as most of our work is based on it.

5.1 MS/MS Reference Datasets and Noise Addition

For evaluations, we limited ourselves to MS/MS spectra recorded in positive ion mode,
as there are generally more such spectra available. This is not a restriction of COSMIC,
and the publicly available version can also process negative ion mode data. Evaluations
were carried out using reference measurements, as we do not know the correct answers for
biological datasets.

For the CASMI 2016 evaluation, MS/MS spectra were downloaded from the CASMI
web page (http://casmi-contest.org/2016/). MS/MS spectra were measured on a Q
Exactive Plus Orbitrap (Thermo Fisher Scientific, Bremen, Germany) with 20/35/50 HCD
nominal collision energies. Twenty-two mixes of synthetic standards were measured in one
LC-MS run each, using data-dependent acquisition mode and inclusion lists. Each mix
contained between 10 and 94 compounds. A reversed phase C18 column was used. See
[148] for details. In full, MS/MS data of 127 compounds measured in positive ion mode
were provided as part of the contest. Fragmentation spectra from different collision energies
were merged.

To train CSI:FingerID, we used a combined dataset from MassBank [73], GNPS [177]
and the NIST 2017 database (National Institute of Standards and Technology, v17).
Reference MS/MS data were measured on different high-resolution instruments from
multiple vendors. The CSI training dataset contains 16,703 structures with 23,965
independent MS/MS measurements. Some additional experiments experiments in this
thesis were conducted using a newer version of CSI:FingerID. This version was trained
on the New CSI training dataset, containing 26,432 independent MS/MS measurements
of 18,970 structures. Experiments performed on this new dataset are labeled as such. As
an independent dataset, we used the commercial MassHunter Forensics/Toxicology PCDL
library (Agilent Technologies, Inc.) with 3,243 structures and 3,462 independent MS/MS
measurements, all measured on an Agilent QTOF instrument. Unlike the commercially
available library, these mass spectra were not curated. When discussing reference dataset
evaluations, independent MS/MS measurements will be referred to as “compounds” for the
sake of brevity.

Previous evaluations of CSI:FingerID [46, 47] were carried out using fragmentation
spectra that merged all available collision energies. Here, we also want to evaluate
COSMIC’s power if query spectra are recorded at a single collision energy, since LC-MS/MS
datasets are often recorded in this way. To this end, we compiled fragmentation spectra
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sets for both training and independent data using single collision energies, namely, 10 eV,
20 eV and 40 eV. To ensure that COSMIC results are comparable between different collision
energies, we only used those compounds for which all three collision energies are available.
In the independent data, this is the case for all compounds; but in the training data,
only NIST entries pass this criterion. Hence, the COSMIC training dataset exclusively
contains spectra from NIST, all of which were measured on an Orbitrap instrument; and
consequently, all cross-validation results on this dataset exclusively use MS/MS data from
Orbitrap instruments. In case the NIST library did not contain fragmentation spectra for
the exact collision energies 10 eV, 20 eV and 40 eV, we allowed for a deviation of up to
4 eV; in case fragmentation spectra for more than one collision energy were present in this
interval, we used the one with collision energy closest to the desired one. Finally, merged
spectra were generated by combining these three spectra (pseudo-ramp spectra).

Fragmentation spectra in reference libraries often have much better quality (more
signal peaks, fewer noise peaks, better signal-to-noise) than fragmentation spectra from
a biological LC-MS/MS run. To simulate this effect in our reference datasets, we “added
noise” to each fragmentation spectrum. Distorting spectra followed comparable principles
as the generation of decoy spectra [141]: We distorted spectra similar to what we expect for
experimental spectra. For example, adding noise peaks with (uniform) random mass will
result in spectra which are notably different from experimental ones [141]. We simulated
two noise models, medium noise and high noise.

• We simulated a global mass shift (bias) by drawing a random number δ∗ from
N (0, σ2

mb), then shifting every peak mass m by δ∗m. The standard deviation σmb
was chosen as σmb = (10/3) · 10−6 (medium noise) or σmb = (15/3) · 10−6 (high
noise), so that the 3σmb interval represents a 10 ppm shift for medium noise and a
15 ppm shift for high noise.

• We simulated individual mass deviations by drawing, for each peak with mass m
individually, a random number δ from N (0, σ2

md) and shifting the peak by δ m. The
standard deviation σmd was chosen so that the 3σmd interval represents a 10 ppm
shift for medium noise and a 20 ppm shift for high noise.

• We simulated intensity variations in the spectrum: Each peak intensity was
multiplied by an individual random number ϵ drawn from N (1, σ2

id). Variance was
chosen as σ2

id = 1 for medium noise and σ2
id = 2 for high noise. Furthermore,

0.03 times the maximum peak intensity of the spectrum was subtracted from each
peak intensity. If a peak intensity fell below the threshold of one thousands of the
maximum intensity in the spectrum, the peak was discarded.

• Finally, we added “noise peaks” to the spectrum. As uniformly choosing the mass
of a noise peak would result in peaks which are too easy to spot and sort out
by our subsequent analysis [141], we instead used peaks that appeared in other
measured spectra. In preprocessing, a pool of “noise peaks” was gathered from the
fragmentation spectra, using all peaks that did not have a molecular subformula
decomposition of the known molecular formula of the precursor. For each spectrum,
αn of these “noise peaks” were added to the spectrum, where n is the number of peaks
in the spectrum and α = 0.2 for medium noise, α = 0.4 for high noise. Intensities
of “noise peaks” were adjusted for maximum peak intensities in the contributing and
receiving spectrum.
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Parameters for medium noise and high noise were chosen in a way that the similarity
between the original spectrum and the distorted spectrum reached a particular level,
measured by the cosine score (dot product): For the cosine score, we allowed a mass
deviation of 7 ppm when matching peaks. Precursor ion peaks were not considered for
cosine score calculation, as their high intensities overshadow the lower intensity peaks. For
medium noise, the cosine score between the original and the distorted spectrum had median
value 0.880. For high noise, the median cosine score was 0.714. Datasets with different
noise level were used for evaluations only, but not to train CSI:FingerID or individual
confidence score SVMs.

Adding noise to the fragmentation spectra may result in an empty or almost empty
spectrum, which would be regarded insufficient for structure annotation in applications.
To this end, we removed fragmentation spectra with at most one peak. To ensure that
evaluation results are comparable between collision energies and noise levels, we discarded
the compound from all libraries if a fragmentation spectrum with at most one peak resulted
for at least one collision energy and noise level. Doing so, 3,314 compounds were removed
from the COSMIC training dataset and 171 compounds from the independent dataset.
Substantially more compounds were removed from the COSMIC training dataset because
many training dataset spectra have only few peaks, increasing chances that noisy spectra
contain at most one peak. Here, 10 eV noisy spectra contain at most one peak for 75 % of
the 3,314 removed compounds; 20 eV noisy spectra for 27%; and 40 eV noisy spectra for
11 % (a compound can exhibit sparse spectra for more than one collision energy).

This resulted in eight libraries, four libraries with 4,046 compounds each for the COSMIC
training dataset, and four libraries with 3,291 compounds each for the independent dataset.
Notably, the COSMIC training dataset is a proper subset of the CSI training dataset; if we
simply speak about “training data”, this refers to the full CSI training dataset and includes
the COSMIC training dataset. Recall that the COSMIC training dataset contains Orbitrap
MS/MS data only, whereas the independent dataset contains QTOF MS/MS data only.

5.2 Biological Datasets

• For the mice fecal dataset, we analysed LC-MS/MS data of 278 samples from a
public metabolomics dataset (MassIVE data repository, id no. MSV000082973). This
dataset comes from a previously published study [165]; LC-MS/MS experiments were
conducted on a Q Exactive Orbitrap instrument (Thermo Fisher Scientific, Bremen,
Germany). See [70] for more technical dataset details.

• For the human dataset, we analysed ten MassIVE datasets from the Mas-
sIVE data repository (id nos. MSV000083559, MSV000079651, MSV000080167,
MSV000080469, MSV000080533, MSV000080627, MSV000081351, MSV000082261,
MSV000082629, MSV000082630). The dataset contains fecal, plasma, urine, lips,
tongue and teeth samples from humans; all acquired on Q Exactive Orbitrap
instruments (Thermo Fisher Scientific, Bremen, Germany) in positive ion mode.
Runs were acquired using C18 RP Ultra High Performance Liquid Chromatography
(UHPLC). Only files with extensions “.mzML” or “.mzXML” were considered, and
LC-MS runs containing spectra in profiled mode were discarded. This resulted in
2,666 LC-MS/MS runs being processed.
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• For the Orbitrap dataset, we followed the idea of “flipping the workflow” and
reanalysing public data at a repository scale: We restricted ourselves to MassIVE
datasets measured on a Q Exactive Orbitrap instrument (Thermo Fisher Scientific,
Bremen, Germany), as this instrument had the largest number of MassIVE datasets.
We applied no other constraints with regards to analysed organism, LC setup etc,
resulting in 264 public MassIVE datasets (downloaded Feb 20, 2020). MassIVE
datasets containing only spectra in profiled or negative ion mode were discarded,
leaving us with 123 MassIVE datasets. Sample types range from environmental to
natural products and include biological samples from at least 30 different species,
covering diverse genera and phyla. Only files with extensions “.mzML” or “.mzXML”
were considered, and LC-MS/MS runs containing spectra in profiled or negative
ion mode were discarded, leading to 17,414 LC-MS/MS runs being processed. See
Table A.1 for a list of all MassIVE datasets.

5.3 Structure Databases

Different from previous studies [46, 47] where structures were derived from InChI
(International Chemical Identifier) strings, molecular structures were standardised using
the PubChem standardisation procedure [88]. In particular, a canonical tautomeric form
was chosen, as solvent, temperature, and pH in the sample influence the dominating
tautomeric species. Standardisation of compounds not in PubChem was carried out
using the web service at https://pubchem.ncbi.nlm.nih.gov/rest/pug/. Unfortunately,
PubChem standardisation has changed multiple times over the last years without further
noticing of users; to this end, it is possible that some non-PubChem compounds were
standardised slightly differently than structures from the MS/MS training data.
We searched in the following structure databases with COSMIC:

• For the CASMI 2016 evaluation [148], we downloaded structures from the CASMI
2016 results web page (http://casmi-contest.org/2016/). Candidate structures
were provided as part of the blind contest and originally retrieved from ChemSpider
[124].

• The biomolecule structure database is a union of several public structure database
including HMDB [192], ChEBI [64], KEGG [81, 82] and UNPD [61]. The resulting
database contains 391,855 unique structures of biomolecules and compounds that
can be expected to be present in biological samples.

• The HMDB structure database [192] was downloaded Aug 8, 2018 and contains
113,983 compounds, and 95,980 unique structures with mass up to 2000 Da.

• The PubChem structure database [88] was downloaded Jan 16, 2019, and contains
97,168,905 compounds, and 77,153,182 unique covalently-bonded structures with
mass up to 2000 Da. We added all missing structures from the biomolecule structure
database, which resulted in a total of 77,190,484 unique structures.

• A combinatorial database of 28,630 bile acid conjugate structures was generated with
SmiLib v2.0 [145, 146], downloaded from http://melolab.org/smilib/. SmiLib
generates chemical structures by combining scaffolds and building blocks provided as
SMILES (Simplified Molecular Input Line Entry Specification). A list of initial bile

https://pubchem.ncbi.nlm.nih.gov/rest/pug/
http://casmi-contest.org/2016/
http://melolab.org/smilib/
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acid “scaffolds” that represent common steroid cores (i.e. cholic acid, deoxycholic acid,
hyocholic acid, chenodeoxycholic acid) was curated.These scaffolds were modified
manually with common phase II metabolism reactions and resulted in 322 scaffolds.
Scaffolds were combined with 91 building blocks, including proteinogenic and non-
proteinogenic amino acids, along with their N-hydroxylated and N-methylated
version, and acyls moieties. Stereochemical information was removed prior to the
database generation with SmiLib. Notably, the bile acid conjugate structure database
also contains unconjugated bile acids; for the sake of brevity, we will nevertheless
speak about “bile acid conjugates” without explicitly mentioning this fact. The bile
acid conjugate database was designed and generated by Louis-Felix Nothias

5.4 Training CSI:FingerID and Structure–disjoint Evaluation

We trained an array of Support Vector Machines (SVM) for fingerprint prediction from
MS/MS data as described in [46, 47, 150]. Training of CSI:FingerID was carried out
using merged spectra with all available collision energies from the CSI training dataset.
In contrast, single collision energy and merged spectra libraries as well as noisified spectra
were not used when training CSI:FingerID, but only in validation of COSMIC. We used
PubChem-standardised structures [63] when computing the molecular fingerprint of a
compound. In evaluations, we used the CSI:FingerID “Covariance score” from [100] to
rank candidates, comparing the probabilistic query fingerprint and each structure candidate
fingerprint. A hit was regarded as correct if the PubChem-standardised structures of query
and top rank were identical.

As noted above, all evaluations were carried out structure-disjoint. For the tenfold cross-
validation, we partitioned the training data into ten disjoint batches of almost identical size,
ensuring that all fragmentation spectra from compounds with identical structure (such as
L-threose and D-erythrose) end up in the same batch: Otherwise, L-threose could be part
of the training data when evaluating on D-erythrose, and vice versa. For each batch, we
trained the fingerprint SVM array using the remaining nine batches; we evaluated on the
tenth batch. In this way, we ensured that all compounds are novel for CSI:FingerID: For
each query, MS/MS training data for the corresponding structure, including independent
MS/MS measurements, were not available for CSI:FingerID.

CSI:FingerID evaluations on the independent dataset were again executed structure-
disjoint: We additionally trained an SVM array using the complete CSI training dataset.
Given an MS/MS query from the independent data, we checked if the structure of the
query is also part of the training data: If so, we used the appropriate SVM array from
cross-validation for fingerprint prediction; otherwise, we used the SVM array trained on
the complete training data. Again, this ensured all structures being novel in evaluation.
Most evaluations in this thesis and in [70] were performed with CSI:FingerID version 1.2.0.
Evaluations that were performed with a newer version of CSI:FingerID are labelled as such.
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In this chapter, we introduce the COSMIC (Confidence Of Small Molecule IdentifiCations)
confidence score for CSI:FingerID. Its purpose is to assign confidence to structure
annotations of LC-MS/MS data given by CSI:FingerID. For that, we computed E-values,
which were then integrated as features into a simple support vector machine model. Our
approach is inspired by Percolator [78, 155], which is used in Proteomics.
In the next section, we are first going to introduce the role that score separation and
false discovery rate estimation play in computational metabolomics. We then establish
that the scoring models used in widely adopted structure elucidation tools are unfit to
separate correct and incorrect annotations. Next, we show the development of the COSMIC
confidence score, and evaluate it extensively. Our results show, that our model outperforms
aforementioned scoring models by a wide margin for this specific task. We establish this
for different noise levels and collision energy settings of the input data, to more accurately
reflect real-world settings.

6.1 False Discovery Rates in Computational MS

False discovery rate (FDR) control plays an important role in computational mass
spectrometry, where tens of thousands of spectra are annotated with structure candidates
in a single analysis run. Naturally, a large chunk of these annotations are incorrect due to
various reasons, leaving researchers in need of some metric by which they can decide on
those annotations, that are trustworthy enough to further analyse. FDR control allows us
to focus on sublists of annotations that contain a controlled ratio of incorrect annotations
(false positives). Since a true FDR can only be calculated when the ground truth about
the query spectrum’s structure is known, in practice we are looking for a way to estimate
this FDR. Estimating FDRs is a task that is present in many parts of computational
mass spectrometry, in proteomics and metabolomics as well as in spectral and structure
library search. Depending on the biological data that is being analysed (e.g. peptides
vs metabolites), as well as data representations (e.g. spectra vs fingerprints), accurate
estimation of FDRs can be of highly varying difficulty.

6.1.1 FDR Estimation in Proteomics

Since peptides are linear combinations of amino acids, which is a relatively simple building
block structure, FDR estimation in proteomics is well established. A commonly used
approach is called “target-decoy”, and involves the construction of a decoy database which
is then used to estimate the amount of false positives [32, 51, 80, 108]. A decoy database
has to adhere to certain properties to be effective. In short, all candidates contained
have to be incorrect candidates, but they still have to be sufficiently similar to potentially
correct ones. Effectively, one has to create “convincing fake” peptides to populate the decoy
database, which is commonly done by e.g. inverting the peptide sequence of entries in the
target database. Searching a query in either both target and decoy database separately or
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concatenating them first allows for FDR estimation based on the number of decoy hits.

Percolator
Percolator [78, 155] is a machine learning-based approach, that works as a post-processor
of the target-decoy approach. A support vector machine is trained to differentiate between
correct and incorrect peptide-spectrum-matches (PSMs). Hereby, the PSMs derived from
the decoy database search are used as negative training samples, and high-scoring PSMs
from the target database as positive training samples. Notably, the classifier is re-trained
for each individual dataset which removes the need for a well generalising model.

6.1.2 FDR Estimation in Metabolomics

In contrast to peptides, most metabolites do not possess a linear building block structure.
In fact, they arguably don’t consist of building blocks at all. This makes FDR estimation
significantly harder, since there is no equivalent of reverting a peptides amino acid sequence
for metabolites. As a result, creating decoy spectra or decoy structures to import the
target-decoy approach from proteomics is highly non-trivial. For spectral library search,
Scheubert et al. [141] developed a method to create high quality decoy spectra based on
fragmentation trees. For structure library search however, the challenge of creating sensible
decoy structures or fingerprints remains unsolved. In the following, we are focusing on FDR
estimation for structure library search specifically.

6.2 A New task - Score Separation

In this section we are going to introduce the concept of score separation, and how it differs
from the traditional task of annotation. Methods in computational mass spectrometry
that annotate a structure to an MS/MS input spectrum, all require a scoring function,
that is used to rank potential structure candidates for a singular query. The more often
the correct candidate is ranked at the top of the list, the better the score’s performance.
This task is called the annotation task. We have introduced multiple examples in previous
sections, such as the scoring functions for MetFrag, MAGMa+ and CSI:FingerID. These
scoring functions are evaluated based on their ability to correctly annotate, for example
in the CASMI contests [147, 148]. The annotation performance of a scoring function is
designed to differentiate locally between structure candidates for a specific query spectrum.
As such, the score’s ranges can vary greatly between instances, and not be comparable
globally between instances.
CSI:FingerID’s performance for the annotation task lies between 45%-75% correct
annotations, depending on input spectra and structure database used [46, 70, 100, 148].
While it is currently the best-in-class method for annotation, its performance is still far
from a perfect, 100% annotation rate. This introduces the need for a second task, the
separation task.

6.2.1 The Importance of a Score that Separates

An untargeted metabolomics MS/MS experiment usually contains hundreds to thousands
of compounds that are in need of structural elucidation. When a researcher uses tools such
as CSI:FingerID, MetFrag or MAGMa+, oftentimes more than half of annotations returned
are incorrect. For experiments involving in-silico generated structure databases for the
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discovery of truly novel compounds, the portion of incorrectly annotated compounds can
far exceed 90%, simply because these databases are non-exhaustive and the actual novel
structure of the query compound is not contained. To give a practical example: When
searching 10,000 query MS/MS spectra in a structure database, a method might return
10,000 structure annotations, of which only 10 are actually correct. The capability of
separating these 10 correct annotations from the many thousand incorrect annotations is
what we call score separation. Score separation is a global property of a scoring function:
Instead of ranking candidate structures for a single query, we now want to rank the
top-scoring candidates of each query. The top-ranked candidate together with its query
fragmentation spectrum is called a hit; it can be either the correct candidate (correct hit)
or an incorrect candidate (incorrect hit). Ideally, all the instances in which the annotation
task produced a correct hit, would receive a high score, while the incorrect hits received
a low score. We could then sort this list of hits by score, and choose a score threshold
at which an acceptably low fraction of incorrect hits is contained in the resulting sublist
(that is, a low FDR).

Separation before Estimation
Circling back to the beginning of this section, it is critical to understand that our ability
to estimate the FDR is practically irrelevant if the underlying score does not sufficiently
separate correct from incorrect annotations. To give an example: if scores of correct and
incorrect hits were randomly ordered – by a poorly separating scoring function, with a
correct annotations rate of 50% – then even if we had the perfect FDR estimation method,
it would only ever return FDRs of 50% on average, which would be an accurate FDR
estimate, but useless in practice. Therefore, we need to evaluate the separation ability of
scoring functions used by existing structure annotation tools before we can move forward.

6.2.2 Evaluating Score Separation

When evaluating the separation performance of a score, it is helpful to first visualise
the score distributions for correct and incorrect hits. For that we can plot the kernel
density estimates of these score distributions. Naturally, a score that separates well would
produce two distributions that overlap as little as possible. See Fig. 6.1 for exemplary
score distributions of scores that do not separate well. We remind the reader that for
each query we are only interested in the score of the hit (the highest scoring candidate).
If one were to plot all candidates and their scores for all queries, they would naturally
find themselves with a significantly larger amount of incorrect annotations than correct
annotations (Fig. 6.2 (b,c)). Individually normalised, this distribution would give the idea
that correct and incorrect annotations are somewhat well separated (Fig. 6.2 (a)), when
in fact this is only because correct candidates receive a much higher score than randomly
drawn incorrect candidates. In the context of separation, the score of a correct hit only
competes with the scores of all other hits, not all candidates.

While this visualisation helps to get a initial feeling for how well a score separates, more
sophisticated approaches are needed for proper evaluation. We are given a list of hits, one
for each query, ordered by score. Each hit can either be positive (correct annotation) or
negative (incorrect annotation). Varying a score threshold, we can modify the number of
hits reported to the user; our goal is to report all positives and to reject all negatives.
True positives (TP) and false negatives (FN ) are positives (correct hits) which pass or
do not pass the threshold; similarly, false positives (FP) and true negatives (TN ) are
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Figure 6.1: Exemplary score distributions with low separation. Positive ion mode.
CASMI 2016 challenge data. Candidates retrieved by molecular formula. Searching the biomolecule
structure database (n = 123 queries). Kernel density estimates of the score mixture distribution
(correct and incorrect hits) for CFM-ID (a) and CSI:FingerID (b), ensuring structure–disjoint
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6400 6600 6800 7000 7200

Score

D
en

si
ty

incorrect candidates

correct candidates

6400 6600 6800 7000 7200

Score

0

1000

2000

3000

4000

5000

C
ou

nt
s

incorrect candidates

correct candidates

7000 7050 7100 7150 7200
Score

0

5

10

15

20

25

30

35

40

incorrect candidates

correct candidates

C
ou

nt
s

a

b

c

Figure 6.2: Score distribution of correct and incorrect molecular structure candidates,
using CASMI 2016 contest results for CSI:FingerID. Histogram plots displaying all queries
and all candidates of CASMI 2016 (positive ion mode) simultaneously. There are 120 correct
candidates but 123 551 incorrect candidates, so incorrect candidates are three orders of magnitude
more common. We plot scores of the original CSI:FingerID submission for CASMI 2016; since
CASMI rules required that scores of all candidates are positive, an arbitrary constant value of 10,000
was added to each score. (a) Score distributions when both distributions have been normalised
individually. (b) Score distributions without normalisation; correct candidates are practically
invisible in this plot. (c) Zoom-in into (b): We observe numerous incorrect candidates with scores
as high as correct candidates.
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incorrect hits which pass or do not pass the threshold. For any score threshold, we plot
the true positive rate TP/(TP + FN ) (ratio of reported correct hits among all correct
hits) against the false positive rate FP/(FP +TN ) (ratio of reported incorrect hits among
all incorrect hits), resulting in a Receiver Operating Characteristic (ROC) plot. The Area
Under Curve (AUC) of the ROC curve is the integral of the ROC curve; the random score,
corresponding to a random ordering of hits, reaches AUC 0.5. A method may reach AUC
below 0.5, meaning that the hit score performs worse than random. A score that separates
perfectly would reach an AUC of 1.0. Different from binary classification, we must not
invert “predictions” to reach a better AUC: Logic dictates that the directionality of the hit
score (such as, “high scores are good”) is fixed by the candidate annotation task.

HOP plots While ROC curves are a highly used and well established evaluation metric
in binary classification, they fall short for this kind of evaluation. While it is certainly
possible to evaluate annotation and separation task independently of each other with the
metric introduced previously, it is of high importance to evaluate them in conjunction. A
method that for 10, 000 query spectra only returns one correct hit can easily produce an
AUC of 1.0, while the annotation performance of only 0.01% correct annotations would
not be visible in the ROC plot. Conversely, a method can report an annotation rate of
75% or above, and produce an AUC of 0.6 or worse.
We introduce hop plots (inspired by the hop plant Humulus lupulus ranking to a
supporting wire) to integrate this information: We again vary the score threshold but
normalise reported correct hits and incorrect hits by the total number of hits (queries)
N = TP + FN + TN + FP , plotting TP/N vs. FP/N . The resulting curve starts in
the origin (0, 0) and ends in some point (x, y) ∈ [0, 1]2 with x + y = 1, where y is the
ratio of correct hits for the complete list of queries. The hop curve lies in the lower-left
triangle; random ordering of hits corresponds to a straight line from the origin to some
point (x, y) with x + y = 1. For perfect results, the hop curve is a straight line between
the origin and (0, 1); in the worst case, it is a straight line from the origin to (1, 0). Hop
plots allow us to answer questions such as, “If I fix a certain false discovery rate, how many
true discoveries will a method return?”. A zoom-in allows us to compare methods in the
particularly interesting region close to the origin. Both ROC curves and hop plots allow us
to visually compare the performance of a method for different datasets in one plot; here,
the total number of hits N is different for each curve.
We can calculate the area under curve of a hop plot by mirroring the curve at
the line x + y = 1 before taking the integral. A method with identification rate
y ∈ [0, 1] for the complete list of queries will have area under curve between y2 and
y2 + 2(1− y)y = 1− (1− y)2, with random ordering reaching area y2 + (1− y)y = y. But
much like the area-under-curve of a ROC curve, this number does not tell us whether a
method performs well at the (highly relevant) lower-left or the (mostly irrelevant) upper-
right of the curve; hence, we refrain from reporting hop plot area-under-curve.
Besides ROC curves, precision-recall curves are frequently used to asses the performance of
a binary classifier. Similar to ROC curves, precision-recall curves are not appropriate for
the identification task, since “recall” is normalised to the number of correct identifications,
which is usually different for two methods. As “precision” equals one minus FDR,
“precision” can directly be read from a hop plot, too. See Fig. 6.3 for a comprehensive
example on hop plots in contrast to ROC and precision-recall curves.
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Figure 6.3: Introducing hop plots. (a) Hop plots allow us to simultaneously assess a methods
annotation rate and its power to separate correct and incorrect hits. Two methods with identical
annotation rate will end up in the same point (x, y) with x + y = 1, see methods I and III;
these methods can differ substantially in their separation power. The plot shows which method
performs best for a desired number of correct annotations (horizontal lines, not shown), incorrect
annotations (vertical lines, not shown), or false discovery rate (FDR, dashed lines). For example, if
we are willing to accept three incorrect annotations from a total of N = 100 queries, then method
IV clearly outperforms method I; this ordering is reversed if we consider all queries (x + y = 1).
FDR levels correspond to lines through the origin; a hop curve may cross or touch some FDR
line multiple times, or only in the origin. We report the maximum number of correct annotations
among all crossing points. For example, method II returns 55 hits (44 correct, 11 incorrect) at
FDR 20 % (star). We are usually interested in small FDR values such as FDR 10 %, so a zoom-in
shows where different curves cross the corresponding FDR lines: For example, method III returns
11 hits (all correct) at FDR 5% (triangle, zoom-in), and method II returns 15 hits (14 correct) at
FDR 10 % (square, zoom-in). (b) ROC plot and (c) precision-recall curve for the data shown in (a).
Both plots (b) and (c) hide the information that method II is by far the most powerful method.
(d) Bar plots for four FDR levels. Notably, the information from the bar plot can directly be read
from the hop plot: We mark the corresponding values by star, triangle and square, compare to the
corresponding marks in (a).
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6.2.3 Evaluating Score Separation for Popular Structure Library Search
Tools

With the evaluation tools necessary to evaluate both annotation and separation task, we
can do so for existing methods. As mentioned before, the CASMI 2016 contest was designed
to compare only the annotation capabilities of methods [148]. We now extend this to
include the separation task. Scores of MetFrag, MAGMa+ and CFM-ID were downloaded
from the CASMI 2016 results web page (http://casmi-contest.org/2016/, category
2, automated methods). We only considered tools that scored all candidates. As some
percentage of challenge compounds in CASMI 2016 were part of the CSI:FingerID training
dataset that was used for the original submission, annotation results for CSI:FingerID
are inflated. For that reason we recomputed scores for CSI:FingerID using a structure
disjoint cross-validation setup. We computed scores for the structure-disjoint evaluation
of CSI:FingerID using CSI:FingerID 1.2.0.
We used hit scores (score of the top-ranked candidate for each query) to order hits.
We remind the reader, that we assume knowledge about the molecular formula of query
compounds, and as such we restricted the set of candidate structures to those with the
correct molecular formula for all tools. We want to evaluate the annotation and separation
task independently of the task of correctly identifying a compound’s molecular formula.
In practice, molecular formulas can be established using SIRIUS 4 [47] and potentially
ZODIAC [101].
We performed evaluation using either all ChemSpider [124] candidates, or restricting the
search to those ChemSpider candidates that are simultaneously found in our biomolecule
structure database. In four cases, this resulted in an empty list of candidates, and these
queries were excluded from evaluation. In 13 cases, the set of candidates did no longer
contain the correct structure; these queries were not excluded from evaluation. While these
queries don’t affect the comparison of annotation rates between tools and would usually be
removed, they do affect the separation performance. As expected [14], MetFrag, MAGMa+
and CFM-ID profit more from restricting the set of candidates than CSI:FingerID [46];
hence, annotation rates varied less than those reported in the CASMI evaluation [148].
In fact, even randomly choosing one of the remaining candidates resulted in a decent
annotation rate when searching the biomolecule structure database: In 38 cases, only
a single candidate remained; and in 33 cases, the candidate list contained two or three
structures. Even if there is only a single candidate, the score an in-silico tool assigns to
this candidate is important information, as we use it to order hits. In practice, one would
in most cases use the biomolecule structure database over ChemSpider or PubChem for
annotation of metabolites. We show performances on ChemSpider to evaluate search tool
performances on harder instances of the problem, as the candidate lists here are usually
much larger. As can be seen in the hop plots of Figure 6.4, none of the hit scores of existing
methods are capable of adequately separating correct from incorrect hits. When searching
the biomolecule structure database, Fig.6.4 (a), no method evaluated is able to return a
meaningful amount of hits for FDR levels 5%, 10% and 20%, see Fig. 6.5 for a bar plot
visualisation. When searching ChemSpider, no tool is able to return any hits for any FDR
level below 40%. Recall however, that none of the tools evaluated here were designed for
the separation task, and as such it is not surprising that they perform poorly for it. To
this end, our findings must not be misunderstood as a critique against these tools or their
developers.

http://casmi-contest.org/2016/
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Figure 6.4: Hop plots showing separation by hit score for different in-silico tools, using
the CASMI 2016 contest submissions. Positive ion mode, candidates retrieved by molecular
formula. (a) searching the biomolecule structure database, N = 123 queries; (b) searching in
ChemSpider, N = 127 queries. FDR levels shown as dashed lines; FDR levels are exact, not
estimated. The blue dashed line in (a) indicates random scores, resulting in random ordering of
candidates and hits; the red star in (a) is the best possible search result.
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Figure 6.5: Bar plots showing the ratio of correct annotations for different in-silico
tools and fixed FDR levels, using the CASMI 2016 contest submissions. Positive ion
mode, candidates retrieved by molecular formula, searching the biomolecule structure database,
N = 123 queries; FDR levels are exact.

6.2.4 Designing a Confidence Score for CSI:FingerID

From this section onward, we are going to focus on improving the score separation for
CSI:FingerID, the current best-in-class tool for structure annotation from LC-MS/MS data.
As we have established in the previous section, scoring functions developed and optimised
for the annotation task, often perform poorly for the separation task. There is however
no need for a score to perform well in annotation and separation, if we just separate the
tasks and look at them individually. As such, we are not changing the hit scoring function
currently used by CSI:FingerID, but instead develop a separate scoring that we name the
COSMIC confidence score or just confidence score for the sake of brevity. This confidence
score is decoupled from the annotation task, and can be seen as an additional scoring
layer that is performed after the annotation task is completed. It should be interpreted
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as the answer to the question “Given the annotation output for a query (a ranked list of
structure candidates), how sure are we that the top ranked structure candidate corresponds
to a correct structure annotation?”. It is critical to understand that the confidence score
does not re-rank structure candidates for a singular query. In the following sections, we
introduce two designs for such a confidence score, one that is E-value-based, and one that
is SVM-based inspired by Percolator.

6.3 E-values

The p-value of a score is the probability that a score this high or higher would be expected
by chance; the E-value is the expected number of random hits with this score or higher. As
mentioned earlier, since no methods for creating sensible decoy structures or fingerprints
exist, we have to rely on proxy decoys as discussed below. However, there is still a large
incentive to this approach over machine learning-based ones - the absence of overfitting.
From here on out, we use “E-value score” and “calibrated score” synonymously.

6.3.1 E-value Estimation

We suggest to use the distribution of scores of PubChem [88] candidates as a proxy for the
score distribution of incorrect hits. We empirically established that scores of an individual
MS/MS query roughly followed a log-normal distribution; for other queries, the score
distribution was multimodal (See Fig. 6.6). In particular, a small fraction of candidates
had a much higher score than expected from the single log-normal distribution; ignoring
this would result in inflated calibrated scores.

The log-normal distribution is a reasonable proxy if there are only few samples available.
To model multimodal distributions as well as distributions that deviate from the log-normal
distribution, we suggest to use a kernel density estimate of the probability density function.
Clearly, we do not have to “compute” the kernel density; instead, we want to know the
E-value under the resulting distribution. For the ease of presentation, we do not use
log-normal kernel functions but instead, model the log-transform of the scores by normal
kernel functions, which is mathematically equivalent. Let yi := lnxi for i = 1, . . . , n be
the log-scores of the PubChem “proxy decoys” excluding the hit score, and let y := lnx be
the log-score of the hit. We first determine the bandwidth of the kernel function; we use
Silverman’s rule of thumb [153], first determining the standard deviation σ̂ of the sample
y1, . . . , yn, then setting

h := 1.059223841 · σ̂n−1/5.

We also tested a variation of Silverman’s rule of thumb, called “nrd0”, in which

h := 0.9 · n−1/5A.

with

A = min(σ̂,
Interquartile range

1.34
).

Both variants showed the same level of separation power in evaluation (Fig. 6.7). For
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Figure 6.6: Examples of CSI:FingerID score distributions. Shown are kernel density
estimates of candidate scores searching in PubChem. We find that unimodal score distributions
(a–c) are often similar to a log-normal distribution (“kernel density estimate”); for comparison,
we show the log-normal distribution with parameters fitted by Maximum Likelihood estimation
(“ML estimate”). Other score distributions are clearly multimodal (d–f). (a) PyroGlu-Trp,
C16H17N3O4, 4 862 candidates, NIST 1632483. (b) 3-Methyl-L-histidine, C7H11N3O2, 3 503
candidates, NIST 1346484. (c) 1,3-Benzodioxole-5-propanamine, C12H17NO2, 15 786 candidates,
NIST 1306465. (d) N-(2-Hydroxyethyl)-5(6)-epoxy-8Z,11Z,14Z-eicosatrienamide, C22H37NO3,
471 candidates, NIST 1139175. (e) Methanone, C24H22FNO2, 156 candidates, NIST 1300971.
(f) Benzeneethanamine, C18H22BrNO3, 483 candidates, NIST 1380115. Numbers of candidates
from PubChem.
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where m is the number of candidates in the biomolecule structure database.

6.3.2 Evaluation of E-value Separation

Evaluation of score separation by the calculated E-values was carried out on the COSMIC
training dataset as well as the independent dataset (see Chapter 5 for dataset details).
For a query fragmentation spectrum, we again assume to know its molecular formula, and
we obtained candidates from the structure databases using this molecular formula. For
325 compounds in the COSMIC training dataset and 278 compounds in the independent
data, this resulted in an empty candidate list when querying the biomolecule structure
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Figure 6.7: ROC plot of E-value estimations using either the basic Silverman’s rule of thumb
or the “nrd0” variant. Merged collision energies, new CSI training dataset, no artificial noise.

database; these compounds were excluded from evaluation, leaving us with 3,721 queries
in cross-validation and 3,013 queries for independent data. Removing these compounds
is reasonable, as the corresponding queries would not return a score at all, making it
irrelevant for separation. For 845 compounds in the COSMIC training dataset and 521
compounds in the independent data, the correct structure is not present in the biomolecule
structure database; these compounds were not excluded, as they are relevant for separation.
We ensured structure-disjoint evaluation (all compounds novel) both for CSI:FingerID and
the COSMIC confidence. As stated in Chapter 5, we evaluate score separation for different
levels of noisified spectra, as well as for four different collision energies. For the sake of
visual clarity and brevity, we show ROC plots for the independent dataset at medium noise
here, additional data can be found in the Appendix.
ROC plots in Fig. 6.8 show, that E-values calculated from the proxy decoys drawn from

PubChem separate correct from incorrect hits generally better than the CSI:FingerID score.
This improvement however is moderate at best, as AUCs for the E-value score are reported
between 0.71 and 0.74. In each plot, all curves end in the same number of correct hits
(1,829 for (a), 1,901 for (b), 1,765 for (c), 1,948 for (d)), so a hop plot would not contain
additional information. We note that E-values calculated in this fashion show improved
separation power over the CSI:FingerID score, but still do not perform the separation
task well enough for practical appliance. We conjecture that this is mostly due to the
proxy decoys drawn from PubChem. Many structures contained in PubChem are not
biologically relevant or even of organic nature, so our decoys might not be similar enough
to structures in the biomolecule structure database. Additionally, for some percentage of
queries PubChem only contains a low number of structures, making it much harder to
estimate a sensible kernel density.
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Figure 6.8: ROC plots showing E-value score performance. (a–d) Comparison of
CSI:FingerID score and E-value score. ROC curves, structure-disjoint evaluation, independent
data and medium noise, biomolecule structure database, N = 3013. (a) 10 eV, (b) 20 eV, (c) 40 eV,
(d) merged spectra (“all collision energies”)

6.4 Support Vector Machine Approach - the COSMIC
Confidence Score

As the calculation of E-values alone is not sufficient for reasonable separation between
correct and incorrect hits, we now introduce a Percolator [78, 155] inspired approach
utilising SVMs. Different from there but similar to [5, 112], we do not train a classifier for
an individual LC-MS run to “boost” annotation rates; instead, we train classifiers only once
using the reference measurements, which are then applied to the biological data. As noted
by Käll et al. [78], this approach is highly prone to overfitting: Characteristics of correct
and incorrect hits may vary between experiments, instrument types, compounds present
in the sample, and others. Here, we have taken extensive measures to counter overfitting,
such as “noisifying” spectra and the restriction to linear Support Vector Machines. Using
a simpler machine learning model such as a SVM allows us to spot and analyse overfitting
effects to some degree, as described in Chapter 3.

We repeated the following for each collision energy (10 eV, 20 eV, 40 eV, and merged
spectra), and trained individual SVMs using spectra without added noise from that energy
as training data. Features of the linear SVMs are shown in Table 6.1. All features were
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individually standardised. Parameter C ∈ {10−5, 10−4, ..., 105} of each SVM was chosen
by a nested cross-validation. We used quadratic hinge loss and l2 regularisation. SVMs
were trained using LIBLINEAR [53].

For each collision energy, we trained three classifiers: (i) When searching PubChem,
we used all appropriate features (all but features 20–22) from Table 6.1. Searching the
biomolecule structure database, not all queries result in two or more candidates; but some
features from Table 6.1 require a candidate list of at least size two, such as the difference
between score of highest-scoring vs. runner-up candidate. To this end, we trained two
classifiers for the biomolecule structure database: (ii) The regular SVM assumes that
there are at least two candidates; it uses all features from Table 6.1 but is trained only on
the appropriate subset of the training data. (iii) The single-candidate SVM uses only the
appropriate sub-features (all but Features 1–4, 10, 13) but can be trained using all training
data: For instances with two or more candidates, we uniformly selected one candidate.
When training the COSMIC confidence score SVMs, all CSI:FingerID fingerprint
predictions of training spectra were carried out structure-disjoint using CSI:FingerID
cross-validation models. The COSMIC training dataset was then partitioned for tenfold
cross-validation in the same fashion as for CSI:FingerID training. Hence, cross-validation
evaluation of the COSMIC confidence score is again structure-disjoint, and all compounds
are novel. Similar to above, we also ensured structure-disjoint evaluations on the
independent dataset, by choosing the appropriate SVM from cross-validation for computing
the confidence score. We map decision values to posterior probability estimates using Platt
probabilities [126]. Platt [126] proposed to use a sigmoid function as an approximation of
posterior probabilities: P(y = correct | x) ≈ PA,B(f) ≡ 1

1+exp(Af+B) , where f = f(x) ∈ R
is the decision value for hit x, and y ∈ {correct, incorrect} its label. We estimated
parameters A,B ∈ R using maximum likelihood [95, 126] as implemented in LIBSVM
[31]

Unlike Percolator, we do not learn a confidence score for individual LC-MS datasets. We
do so because it is non-trivial to generate reasonable decoys for small molecules and, more
importantly, since incorrect hits in the target database are often not random (Fig. 6.14) [15].
Also unlike Percolator, we do not use our scores to rerank candidates [78, 155]: All of our
candidates share the same molecular formula, fragmentation tree and predicted fingerprint;
these features are meaningless for reranking. To this end, curves of CSI:FingerID and the
COSMIC confidence score in hop plots always end in the same point (x, y) with x+ y = 1.

6.4.1 Overfitting Analysis and Enforced Directionality

The resulting linear classifiers showed clear signs of overfitting, when interpreting feature
weights as introduced in Section 3.1.4. For example, some features received weights that
were counter-intuitive, such as negative weight for the quality of the SIRIUS fragmentation
tree or the CSI:FingerID score. Recall that the actual hit was chosen by CSI:FingerID as
the candidate with the highest score; hence, logic dictates that the CSI:FingerID score
of the hit must not receive a negative weight when deciding whether a hit is correct or
incorrect. The same is true for selecting the best fragmentation tree by SIRIUS. To this end,
we enforced directionality of the features: For each feature, we decided manually whether
a high value of the feature would increase or decrease our confidence in an annotation. For
example, a high CSI:FingerID score should clearly increase our confidence, and so should a
small E-value. See Table 6.1 for enforced directions. Notably, enforcing directionality can
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Table 6.1: Features of the COSMIC confidence score and classifier weights for merged
spectra. Features 1–19 are used for PubChem and biomolecule structure confidence scores,
features 20–22 are exclusive to the biomolecule structure confidence scores. For the linear SVM
trained using merged spectra (all collision energies), we provide classifier weights for PubChem
(“PC”), biomolecular structure database with one candidate (“bio1”) and two or more candidates
(“bio2+”). Clearly, features that require at least two candidates cannot be used for classifier “bio1”.
Unless explicitly stated otherwise, we consider the candidate list from PubChem for the PubChem
classifier, and the candidate list from the biomolecular structure database for the biomolecular
structure classifier. CSI:FingerID scores are Modified Platt score and Covariance score. Multiple
structures in the candidate list represented by the same fingerprint were treated as a single entry.
Column ‘∆’ shows if we enforced a feature to have positive (‘P’) or negative (’N’) weight in the
classifier. Features are individually normalised.

Classifier weights
# ∆ bio2+ bio1 PC Name Description
1 P 0.1452 0.1167 Log Score Diff. 1 Difference between log scores of highest-

scoring vs. runner-up candidate, Modified
Platt score

2 P 0.0000 0.0386 Score Diff. 1 Difference between scores of highest-scoring
vs. runner-up candidate, Modified Platt score

3 P 0.1104 0.1167 Log Score Diff. 2 Difference between log scores of highest-
scoring vs. runner-up candidate, Covariance
score

4 P 0.0013 0.0316 Score Diff. 2 Difference between scores of highest-scoring
vs. runner-up candidate, Covariance score

5 P 0.0861 0.0424 0.0340 Modified Platt Score Modified Platt score of highest-scoring candi-
date

6 P 0.0139 0.0000 0.0000 Covariance Score Covariance score of highest scoring candidate
7 N −0.0701 −0.2975 −0.0096 Calibrated Mod.

Platt
Calibrated score of highest scoring candidate
using Modified Platt scores

8 N −0.0237 −0.1039 0.0000 Calibrated
Covariance

Calibrated score of highest scoring candidate
using Covariance scores

9 P 0.0185 0.0137 0.0149 FT Explained
Intensity

Sum of normalised peak intensities in the
input spectrum which are “explained” by the
SIRIUS fragmentation tree

10 N −0.0753 −0.0900 Log No. Candidates Logarithm of candidate list size
11 P 0.0000 0.0000 0.0000 FT Score Score of the SIRIUS fragmentation tree
12 P 0.0000 0.0000 0.0000 Fingerprint Quality “Quality” of the predicted fingerprint, mea-

sured as
∑︁

i max{1 − pi, pi} for predicted
fingerprint (p1, . . . , pn)

13 N −0.0423 0.0000 Tanimoto Sim.
runner-up

Tanimoto Similarity between highest-scoring
and runner-up candidate

14 P 0.0012 0.0000 0.0000 Tanimoto Sim.
predicted

Tanimoto Similarity between predicted fin-
gerprint and highest-scoring candidate finger-
print

15 P 0.0178 0.0449 0.0234 FP Length Pred. Cardinality of predicted fingerprint, only
properties with posterior probability at least
0.5 are counted

16 P 0.0569 0.1178 0.0314 FP Length Hit Cardinality of highest ranked candidate’s
fingerprint

17 P 0.0907 0.0718 0.0480 Rescoring 1 Score of the highest-scoring covariance can-
didate when scored with the Modified Platt
scoring method

18 P 0.0243 0.0000 0.0000 Rescoring 2 Score of the highest-scoring Modified Platt
candidate when scored with the covariance
scoring method

19 N 0.0000 0.0000 −0.0294 Rescoring Calibrated Calibrated score of highest scoring Modified
Platt scoring candidate, when scored with the
covariance scoring

20 P 0.0119 0.0219 Score Diff Bio Pub Score difference of the top hit in the
biomolecular structure database and Pub-
Chem, Modified Platt scoring

21 P 0.0133 0.0257 Score Diff Bio Pub Score difference of the top hit in the
biomolecular structure database and Pub-
Chem, covariance scoring

22 −0.1119 −0.4195 Log No. Cand. PC Logarithm of candidate list size in PubChem
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Figure 6.9: Comparison of SVMs trained with different β-values. Hop plot, structure-
disjoint cross-validation, New CSI training dataset, merged spectra, no artificial noise, biomolecule
structure database, CSI:FingerID version 2.0.0

be achieved by a regular SVM optimisation without additional constraints, allowing us to
use established SVM solvers: For each feature with enforced directionality, we augmented
one training sample where the corresponding feature was set to a large (positive or negative)
value ±β, whereas all other features were kept at zero; the sample received a positive label
(correct hit). If the absolute feature value β > 0 is large enough, then an optimal solution
must use the feature in the desired direction; the actual value β is of minor importance
due to the hinge loss of SVM optimisation. To avoid potential numerical instabilities when
finding the solution, β should not be chosen too large. Here, we used β = 107; using
other absolute feature values, such as β = 1010 resulted in basically identical models, and
differences are of no practical consequence (Fig. 6.9). Notably, some features received
non-zero weights for the classifier with enforced directionality, despite the fact that these
features received “counter-intuitive” weights in the unrestricted optimisation: For example,
feature “FP Length Hit” was repeatedly given negative weight in cross-validation but had
high positive weight if we enforced directionality (unrestricted weight −0.00165, restricted
weight 0.0568 in the same cross-validation fold).

The resulting classifier’s feature weights as well as the enforced direction for each feature
can be found in Table 6.1. We observed that the classifier using enforced directionality
showed decreased evaluation performance compared to the unrestricted version (Fig. 6.10).
We argue that this is a clear sign for our previous assumption that the unintuitive
unrestricted feature weights are indeed contributing to overfitting.

To give a qualitative analysis of the features based on prior knowledge, in the following
we give description and justification of directionality for the most impactful features
grouped by category.
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Figure 6.10: Comparison of SVMs trained with unrestricted feature directionality
and restricted feature directionality. ROC curves, structure-disjoint cross-validation, merged
spectra, no artificial noise, biomolecule structure database, N = 3607, CSI:FingerID version 2.0.0

(Log) Score difference
The score difference between the top-scoring candidate and the runner-up candidate is
an intuitive and very effective feature (see its high weight in Table 6.1). Assuming the
structure candidate list is comprehensive enough, a high score difference implies, that the
predicted fingerprint has much higher similarity to the top-scoring structure candidate,
than to any other. Vice versa, if this score difference is small, multiple candidate structures
seem to be very similar in their fingerprint representation and the confidence that one
of these candidates specifically is the correct one should be lower. For that reason, we
enforced a positive feature weight.

Modified Platt score, Covariance score and Rescoring
The raw hit scores of CSI:FingerID using either the Modified Platt scoring or the
Covariance score for the high-scoring structure candidate. We use both scorings because
of instances in which the top-scoring structure candidate differs between the two. In these
cases, we additionally score the top-scoring candidate of each scoring with the respective
second scoring. Since a higher score should correlate to higher fingerprint similarity and
as such higher structural similarity, we enforced a positive feature weight.

Calibrated Modified Platt score and Covariance score
This feature group contains the E-value estimates that we introduced earlier. Again, we
use both scorings to spot potentially slightly orthogonal information. Since conceptually
a small E-value corresponds to a higher probability of a top-scoring structure candidate
to be correct, we enforced negative feature weights.
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Fragmentation Tree score and Explained Intensity
The score of the fragmentation tree computed by SIRIUS as well as the sum of normalised
peak intensities of the peaks explained by it. These features assesses the quality of
the fragmentation tree and how well it represents the given input spectrum. As kernels
computed on the fragmentation are used in fingerprint prediction, this has a direct influence
on the predicted fingerprint. Since a higher fragmentation tree score and a higher amount
of explained intensity correlates to higher quality of the predicted fingerprint, we enforced
positive feature weights.

Fingerprint cardinality features
The cardinality of a fingerprint is defined as the number of positions with values greater or
equal 0.5. This cardinality can be interpreted as a measure of how well a fingerprint model
is able to represent a molecular structure. A lower cardinality corresponds to a weaker
representation and forces the comparison of structures via their fingerprint representations
to be more coarse-grained. Because of that, we enforced positive feature weights.

Predicted fingerprint quality
The predicted fingerprint is not binary, but contains posterior probabilities for each
molecular property. The closer a posterior probability is to 0 or 1, the more confident the
CSI:FingerID SVM predicting this position should be. Therefore, the more of these
confident positions a predicted fingerprint contains, the higher its quality. We use∑︁

imax{1 − pi, pi} for predicted fingerprint (p1, . . . , pn) as such a quality measurement,
and as such enforced positive feature weight.

(Log) candidate list size
The larger the size of the structure candidate list for a given query, the harder the
problem. This is true for both annotation and separation, as can be seen in the evaluation
on PubChem, where candidate lists are usually much larger than in the biomolecular
structure database. As a larger amount of candidates generally increases the chance of
a random, incorrect structure receiving a very high score, we enforced negative feature
weight.

Log PubChem candidate list size
This feature is exclusive to searching in the biomolecule structure database. The size of
the PubChem candidate list likely influences the quality of the E-value estimation. We
remind the reader, that we use PubChem structures as proxy-decoys. We did not enforce
a directionality for this feature. One might expect that a larger number of decoys is
beneficial for our E-value estimation. Because of the presumed low quality of our decoys
however, we are not confident enough to assign a directionality.

We observe that the (calibrated) CSI:FingerID scores, score differences´between hit and
runner-up, and the number of candidates turned out to be highly important features.
Other features, such as a simple quality measure for the predicted molecular fingerprint or
the score of the fragmentation tree, received weights close to zero. This is not unexpected,
as much information is shared between these features, rendering some of them obsolete.
We want to remind the reader that the feature weight directionality we enforced is derived
from what we consider “closest to common sense” and is dependent on our interpretation of
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Figure 6.11: Classifier weights of the COSMIC confidence score. Shown are classifier
weights for searching the biomolecular structure database with two or more candidates (“bio2+”
in Table 6.1). CSI:FingerID scores are Modified Platt score from Dührkop et al. (Proc Natl Acad
Sci USA 112, 12580–12585, 2015) and Covariance score from Ludwig et al. (Bioinformatics 34,
i333â€“i340, 2018). Shown are weights for 10 eV, 20 eV, 40 eV and pseudo-ramp spectra (“Merged”,
all collision energies). Weights for each classifier are normalised to unit norm. We observe that
classifiers for 10 eV, 40 eV and merged spectra have similar weights, whereas the classifier for 20 eV
distributes weights more uniformly among similar features.

the data structures. Classifier weights are similarly distributed between different collision
energies (Fig. 6.11), with an exception of the 20 eV classifier which shows a more uniform
weight distribution amongst similar features.

6.4.2 Confidence Score Evaluation

When compared to the separation performance of the original CSI:FingerID score as well
as the E-value score, the SVM-based COSMIC confidence score shows much improved
separation (Fig. 6.12). We again evaluated on the structure disjoint COSMIC training
dataset as well as the Agilent independent dataset on three noise levels and four collision
energies. For the sake of visual clarity and brevity, we show ROC plots only for the
independent dataset at medium noise here, additional data can be found in the Appendix.

As we have stressed throughout this thesis, our main goal is to detect and prevent
overfitting of the machine learning classifier, to ensure that we trained a model that
generalises well outside of our established reference data. To that end, we evaluated the
COSMIC confidence score on our cross-validated training dataset as well as the Agilent
independent dataset for three different artificial noise levels (Fig. 6.13, for details on
the generation of the datasets, see Chapter 5). As a short reminder, reference datasets
generally consist of very high-quality spectra that one would very rarely observe in real-
world measured data. While there is no metric on how “similarly low-quality” the noisified
spectra generated in this thesis are to those real-world measurements, we conjecture that
evaluating on them still gives valuable insight on the generalisation ability of the classifier.
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Figure 6.12: ROC plots evaluating confidence score performance. (a–d) Comparison
of CSI:FingerID score, E-value score and SVM-based COSMIC confidence score. ROC curves,
structure-disjoint evaluation, independent data and medium noise, biomolecule structure database,
N = 3013. (a) 10 eV, (b) 20 eV, (c) 40 eV, (d) merged spectra (“all collision energies”)

For a query fragmentation spectrum, we again assume to know its molecular formula, and
we obtained candidates from the structure databases using this molecular formula. For 325
compounds in the COSMIC training dataset and 278 compounds in the independent data,
this resulted in an empty candidate list when querying the biomolecule structure database;
these compounds were excluded from evaluation, leaving us with 3,721 queries in cross-
validation and 3,013 queries for independent data. For 845 compounds in the COSMIC
training dataset and 521 compounds in the independent data, the correct structure is not
present in the biomolecule structure database; these compounds were again not excluded.
We ensured structure-disjoint evaluation (all compounds novel) both for CSI:FingerID and
COSMIC.

First we can observe that separation performance between training set (Fig. 6.13 (a-
c)) and independent evaluation dataset (Fig. 6.13 (d-f)) is similar. Much improved
performance on the training dataset compared to the independent dataset can often be
understood as a sign of overfitting. In this case, the much better annotation performance
of CSI:FingerID on the independent dataset over the training dataset, might just hint at
the training dataset consisting of harder instances instead. Second, we can observe that
separation performance of the COSMIC confidence score as well as annotation performance
of CSI:FingerID are dependent on the collision energy settings on which the measurements
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Figure 6.13: Hop plots evaluating confidence score performance. (a–f) Evaluation
of COSMIC confidence score: Hop plots for different collision energies, biomolecule structure
database. (a–c) Structure-disjoint cross-validation, queries are Orbitrap MS/MS data, N = 3, 721.
(d–f) Independent data with structure-disjoint evaluation, queries are QTOF MS/MS data,
N = 3, 013. (a,d) No added noise, (b,e) medium noise, (c,f) high noise. FDR levels shown as
dashed lines; FDR levels are exact, not estimated

were recorded. Notably, the “all collision energies” spectra classifier outperformed the
singular collision energy ones on every dataset and noise level. Third, the classifier trained
on “all collision energies” seems to be most robust to increased noise in query spectra.
Compare the classifier trained on 10 eV spectra only in Fig. 6.13 (d) and Fig. 6.13 (e) for
an example of a classifier that is much more susceptible to noise. Notably, the “all collision
energies” model returns close to 30% of queries with an FDR of 10% for high noise level
independent data.
Inevitably, some incorrect hits received a high confidence score and, hence, would be
wrongly regarded as “probably correct”. Fig. 6.14 shows the nine incorrect hits with highest
confidence scores when searching independent data with medium noise. In seven of nine
cases, the true structure was not contained in the biomolecule structure database. In all
nine cases, the true structure was highly similar to the corresponding hit. In practice,
we conjecture that incorrect hits that receive a high confidence score often are very
close to the desired true structure. In contrast, the bottom nine incorrect hits generally
showed little structural similarity to the corresponding true structures (Fig. 6.15). Notably,
the confidence score machine learning model has not been trained taking this structural
similarity into account. Next, we evaluated the impact of precursor mass and number of
structure candidates per query on the separation power of the confidence score. We showed
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Figure 6.14: Examples of incorrect annotations with highest confidence scores. Queries
are cross-validation data, merged spectra, medium noise, biomolecule structure database, structure-
disjoint evaluation. Evaluations were carried out using reference spectra, so the true structure
behind each query spectrum is known to us, but not known to CSI:FingerID or the confidence
score. Each query spectrum is annotated with the structure top-ranked by CSI:FingerID; this pair
is called “hit”, and can be either correct (annotation is identical to the true structure) or incorrect.
All hits were then ordered by confidence score; it is inevitable that some incorrect hits will receive
a high confidence score. Out of the 151 hits with confidence score above 0.8862, 142 were correct
(not shown here) and only 9 were incorrect (a–i). Incorrect annotation (CSI:FingerID top-ranked
structure) on the right and corresponding true structure on the left. Incorrect annotations may
or may not be structurally similar to the true structure, compare to Fig. 6.15. Notably, the nine
incorrect annotations with highest confidence score (a–i) show very high structural similarity to
the corresponding true structures. This is particularly noteworthy as the confidence score machine
learning model has not been trained taking into account this structural similarity. If incorrect
hit i is at rank n, this implies that n − i of the n − 1 top-ranked hits are correct and only i − 1
are incorrect, corresponding to exact FDR (i − 1)/(n − 1). For example, only 8 out of 150 hits
with highest confidence score were incorrect (exact FDR 5.33 %), for confidence score threshold
0.8863. “Confidence rank” is the rank of the (incorrect) hit in the complete ordered list of hits,
and “PubChem CID” is the PubChem compound identifier number. Instances where the true
structure was not contained in the biomolecule structure database are marked by an asterisk.
For these instances, a correct annotation by CSI:FingerID is impossible; at the same time, it is
highly challenging for the confidence score to identify these hits as “incorrect”. In seven cases,
molecular graphs of the incorrect hit and true structure differ by the theoretical minimum of two
edge deletions. Query spectra: (a) NIST 1210761/62/64, (b) NIST 1617825/29/34, (c) NIST
1320583/85/91, (d) NIST 1429464/65/71, (e) NIST 1483460/63/69, (f) NIST 1247455/57/63,
(g) NIST 1480825/30/34, (h) NIST 1418771/73/80, (i) NIST 1276453/55/59.
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that mass has no pronounced impact on the separation between correct and incorrect
annotations (Fig. 6.16 (a)), while the amount of structure candidates has a strong impact
(Fig. 6.16 (b)). Similar to this observation, CSI:FingerID annotation rates are also only
minorly affected by mass, but majorly impacted by the amount of candidate structures
(Fig. 6.16 (c,d)).

Obviously, performance of CSI:FingerID as well as the confidence score is heavily
dependent on the quality of the input spectra, which is why we noisified evaluation data as
introduced earlier. In addition to the lower quality of real-world biological data compared
to reference data, which we tried to emulate using these noisified spectra, data is also
often preprocessed using noise baselines that are too high, or were simply chosen for a
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Figure 6.15: Examples of incorrect annotations with lowest confidence scores. Queries
are cross-validation data, merged spectra, medium noise, biomolecule structure database, structure-
disjoint evaluation. (a–i) Incorrect hits with lowest confidence scores. Top-ranked structure on
the right and corresponding true structure on the left. “PubChem CID” is PubChem compound
identifier number. Instances where the true structure was not contained in the biomolecule
structure database are marked by an asterisk. For (g), the structure of the top hit is not contained
in PubChem; we report the KNApSAcK compound identifier (“C_ID”) instead. For (a) and (e),
molecular graphs of incorrect hit and true structure differ by the theoretical minimum of two edge
deletions. For (a), the query spectrum was heavily distorted, and only 8.6% of peak intensities
were explained by the fragmentation tree. For (e), the three top-ranked candidates — including
the correct one — were structurally highly similar and received almost identical CSI:FingerID
score. Hence, COSMIC rightfully showed little confidence in these (incorrect) hits. Query
spectra: (a) NIST 1544714/19/23, (b) NIST 1322859/64/69, (c) NIST1627646/51/56, (d) NIST
1462584/87/93, (e) NIST 1340388/91/96, (f) NIST 1320854/56/62, (g) NIST 1386503/07/12,
(h) NIST 1305770/72/78, (i) NIST 1325235/37/43.
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Figure 6.16: Effect of query compound mass and number of candidates on confidence
scores. Independent data, merged spectra (N = 3013), structure-disjoint evaluation, medium
noise, biomolecule structure database. (a,b) Confidence score of correct and incorrect annotations
when varying query mass ranges (a) and number of candidates (b). Solid lines show median values,
colored areas indicate first (25 %) and third (75%) quartiles. (c,d) Number of correct and incorrect
annotations for varying query mass ranges (c) and number of candidates (d). One compound with
mass below 100 Da omitted from (a,c). Only few compounds exist above 500 Da and with more
than 100 candidates, so curves (a,b) should be interpreted with care in these regions.

different purpose. This leads to spectra containing only very few peaks. To investigate
how the separation performance of the confidence score is impacted by the number of peaks
in a spectrum, we binned query spectra into three categories (up to 2 fragments, 3 to 5
fragments, 6 or more fragments), based on the number of peaks in the query spectrum
with relative intensity at least 5 %. The number of intense peaks in a query spectrum has
a clear impact on CSI:FingerID’s annotation performance, but a weaker impact on the
confidence score’s separation performance (Fig. 6.17).

The evaluations carried out above all queried the biomolecule structure database, as
that is the setting one would mostly use in practice. Nevertheless, we also evaluated the
separation performance of the COSMIC confidence score when querying PubChem. We
use the same four collision energy settings and the same three noise levels, and assume the
molecular formula to be known. ROC curves are again only shown for the independent
dataset, medium noise. While the COSMIC confidence score still outperforms the original
CSI:FingerID score and the E-value score on separation (Fig. 6.18 (a-d)), the performance
difference is less pronounced. Notably, while the E-value score still outperforms the
CSI:FingerID scoring on the bottom left part of the ROC curve, its AUC is lower. In
general, separation performance of the confidence score is (expectedly) much worse when
querying PubChem over the biomolecule structure database (Fig. 6.18 (e-j)).
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Figure 6.17: Evaluation of separation vs. number of intense peaks in the query
spectrum. Independent data, 10 eV structure-disjoint evaluation, medium noise, searching the
biomolecule structure database.
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Figure 6.18: Evaluation of E-value and confidence score performance searching
PubChem. (a–d) Comparison of CSI:FingerID score, calibrated score and COSMIC confidence
score. ROC curves, structure-disjoint evaluation, independent data, medium noise, N = 3013.
(a) 10 eV, (b) 20 eV, (c) 40 eV, (d) merged spectra (“all collision energies”). Notably, E-values
sometimes result in worse separation than the CSI:FingerID score. (e–j) Evaluation of the COSMIC
confidence score: Hop plots for different collision energies; notably, these result in substantially
different annotation rates. (e–g) Structure-disjoint cross-validation, N = 3721. (h–j) Independent
data with structure-disjoint evaluation, N = 3013. (e,h) No added noise, (f,i) medium noise,
(g,j) high noise.
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6.4.3 Evaluation Against other in-silico Tools

We now compare the separation power of the SVM-based COSMIC confidence score against
other in-silico tools using the CASMI 2016 contest data (Fig. 6.19, see Subsection 6.2.3 for
evaluation setup details). Both for ChemSpider and the biomolecule structure database, we
used the confidence score variant for searching the biomolecule structure database; this is
reasonable as the number of ChemSpider candidates is often substantially smaller than the
number of PubChem candidates. We use the confidence score model for “merged spectra”.
Using the COSMIC confidence score, we correctly annotated 57 hits (46.3% of queries)
with FDR below 10 % (Fig. 6.19 (a),(c)) searching the biomolecule structure database (123
queries), and 16 (12.6% of queries) hits with FDR 0% searching ChemSpider [124] (127
queries, Fig. 6.19 (b)). This is a substantial improvement over the separation power of
previous hit scores. As a reminder, no other scoring we evaluated was able to annotate
more than even 3% for 10% FDR on the biomolecule structure database.
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Figure 6.19: Hop and bar plots showing separation by hit score for different in-
silico tools, using the CASMI 2016 contest submissions. Positive ion mode, candidates
retrieved by molecular formula. (a) searching the biomolecule structure database, N = 123 queries;
(b) searching in ChemSpider, N = 127 queries. FDR levels shown as dashed lines; FDR levels are
exact, not estimated. The blue dashed line in (a) indicates random scores, resulting in random
ordering of candidates and hits; the red star in (a) is the best possible search result. (c) Bar plots
showing the ratio of correct annotations for different in-silico tools and fixed FDR levels, using the
CASMI 2016 contest submissions. Positive ion mode, candidates retrieved by molecular formula,
searching the biomolecule structure database, N = 123 queries; FDR levels are exact
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6.4.4 Evaluation against Spectral Library Search

We also evaluated the dereplication power of COSMIC in comparison to spectral library
search. Dereplication in our case describes the task of annotating already known structures
to query spectra. Since we are not searching for novel structures, the smaller size of a
spectral library is not an issue here. The true structure we are trying to annotate is in
most cases contained in the spectral library. As introduced in Section 4.4, the cosine
score used to measure similarity between spectra (the annotation task) is also frequently
used as a metric of score separation for spectral library search. Here, we evaluate the
separation power of the COSMIC confidence score in a setting that resembles a spectral
library search setup. For this evaluation, CSI:FingerID and the confidence score were
trained without cross-validation, and query spectra came from the independent dataset.
Hence, this evaluation is not structure-disjoint, but still spectrum-disjoint: Not a single
query spectrum is part of the training data. To evaluate against spectral library search, we
generated two spectral libraries based on the CSI training dataset: One library with merged
spectra, and one library with spectra at individual collision energies as well as merged
spectra. We searched merged query spectra in the first library, and query spectra containing
a single collision energy in the second library. Merged spectra are identical to those used
for training CSI:FingerID, see above; this library contains 23,965 spectra. The second
library contains all available fragmentation spectra at all available collision energies, plus
the merged spectra, and contains 189,979 spectra. Notably, the spectral library contains
MS/MS data from QTOF and Orbitrap instruments, whereas all query MS/MS spectra are
QTOF data. We argue that this resembles how searching in a public or commercial spectral
library is executed in practice. The situation is clearly different for an in-house spectral
library, but such libraries are usually one to two orders of magnitude smaller. To ensure a
fair comparison with COSMIC, spectral library search candidates were restricted to those
with the correct molecular formula for each query; in practice, this information is usually
not available, and spectral library search may perform worse than reported here. In case the
spectral library did not contain at least one candidate with the correct molecular formula
of the query, an incorrect annotation with score zero was assumed. We want to remind
here, that an incorrect annotation with score zero is beneficial for separation evaluation.
We evaluated both the standard cosine score, as well as a cosine score using the square root
of intensities (see Section 4.4 for details). One may expect that targeting novel compounds
(the true purpose of the COSMIC confidence score) instead of dereplication comes at a
price: The biomolecule structure database is more than an order of magnitude larger than
GNPS [177] and NIST spectral libraries, which make up the spectral libraries, and we
cannot rely on direct spectral comparison. Somewhat unexpectedly, COSMIC annotated
substantially more compounds for all reasonable FDR levels, see Fig. 6.20: At FDR 5 %,
COSMIC outperformed library search 1,415 to 52 hits at 20 eV and 1701 to 1 hits using
merged spectra, respectively. Notably, COSMIC correctly annotated compounds with
high confidence although query spectrum and reference spectrum were (highly) dissimilar,
with cosine scores between 0.06 and 0.63 (Fig. 6.21). We also observe that separation
using the original CSI:FingerID score is much better than in structure-disjoint evaluations
(Figs. 6.19 and 6.13). We attribute this increased separation power to the overlap in
structures between training and evaluation data: Structures for which a fragmentation
spectrum is present in the training data of CSI:FingerID often receive high CSI:FingerID
hit scores, comparable to library search.
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Figure 6.20: Comparison to spectral library search and separation without structure-
disjoint evaluation. Query spectra (independent dataset) distorted with medium noise; COSMIC
is searching the biomolecule structure database. ROC curves (a+d), hop plots (b+e) and bar plots
(c+f) for collision energy 20 eV (a–c) and merged spectra (d–f). Bar plots (c+f) for FDR levels
5 %, 10 %, 20 %, and 30%. There is no overlap in fragmentation spectra between training data
and independent data, but we do not remove training data for which we find the same structure
in the independent dataset. To this end, 2,192 of the N = 3, 013 structures from the independent
dataset (72.75 %) are also present in the spectral library. We compare search performance and
separation of COSMIC, the CSI:FingerID score and spectral library search. All three methods
utilise basically the same MS/MS data. For spectral library search, we compute the normalised
dot product using either regular peak intensities, or the square root of peak intensities (“Spectral
library search sqrt”) [156]. Spectral library search candidates were restricted to those with the
correct molecular formula for each query. Query spectra are QTOF MS/MS data, whereas the
spectral library contains a mixture of QTOF and Orbitrap MS/MS data. The spectral library is
16-fold smaller than the biomolecule structure database, giving library search a large competitive
edge in evaluation. Notably, COSMIC results in substantially more correct annotations than
library search for all reasonable FDR levels; FDR levels are exact, not estimated. For spectral
library search, markers show commonly used cosine score thresholds 0.9 (triangle) and 0.8 (square),
respectively. Finally, stars indicate best possible annotation results, for CSI:FingerID/COSMIC
and library search.
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Figure 6.21: Mirror plots of low-scoring library hits that were correctly annotated
with high confidence using COSMIC. Shown is the query spectrum (bottom) from the
independent dataset, plus the top-scoring reference spectrum (top) from the spectral library, that
is, the CSI:FingerID training dataset without merging spectra. Cosine scores were calculated
using regular intensities (cosine) as well as square root of intensities (cosine-sqrt). All query spectra
consist of a single 20 eV collision energy measurement with medium noise added. Reference spectra
consist of a single collision energy measurement with no added noise; shown is the spectrum with
the highest cosine, among all spectra in the spectral library for this compound. (a) Spectra of
Thiophanate, PubChem CID 3032792, molecular formula C14H18N4O4S2. Reference spectrum
NIST 1191658, query spectrum Agilent PCDL 345. Correct COSMIC annotation with confidence
0.9092, cosine 0.0637, cosine-sqrt 0.3165. (b) Spectra of Chlorbufam, PubChem CID 16073,
molecular formula C11H10ClNO2. Reference spectrum NIST 1537783, query spectrum Agilent
PCDL 3113. Correct COSMIC annotation with confidence 0.9347, cosine 0.1949, cosine-sqrt
0.3523. (c) Spectra of Duloxetine, PubChem CID 60835, molecular formula C18H19NOS. Reference
spectrum NIST 1245947, query spectrum Agilent PCDL 2545. Correct COSMIC annotation
with confidence 0.9283, cosine 0.5197, cosine-sqrt 0.4767. (d) Spectra of Proscillaridin, PubChem
CID 5284613, molecular formula C30H42O8. Reference spectrum NIST 1519862, query spectrum
Agilent PCDL 781. Correct COSMIC annotation with confidence 0.9720, cosine 0.6312, cosine-sqrt
0.4852. Unlike the commercial Agilent library, the query spectra shown here are uncurated and
artificial noise was added.

6.4.5 FDR Estimation Using the COSMIC Confidence Score

At the beginning of this chapter, we introduced the task of score separation as a requirement
for useable FDR estimation. Now that the COSMIC confidence score allows us to decently
separate correct from incorrect hits, we can aim to transform it into sensible FDR estimates.
We remind the reader, that while the COSMIC confidence score lies in the interval between
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Figure 6.22: False discovery rate estimation. Q-Q plot of true vs. estimated q-values with
no added noise, medium noise, and high noise. (a–d) cross-validation, N = 3721. (a) 10 eV, (b)
20 eV, (c) 40 eV, (d) merged spectra. (e–h) Independent data, N = 3013. (e) 10 eV, (f) 20 eV,
(g) 40 eV, (h) merged spectra. The “step” at the beginning of most curves in (e–h) is not an issue
of FDR estimation, but due to the fact that no non-zero (true) q-values below this exist in the
dataset.

zero and one, they are not to be interpreted as probabilities and as such hold no confound
statistical meaning. We now show how to transform COSMIC confidence scores to FDR
estimates. The confidence score is an estimated posterior probability of the hit to be
correct; to this end, it is one minus the posterior error probability for this hit. Hence,
we can use the confidence score to estimate the FDR of the top k hits [50, 141]: Let pj
be the posterior error probability for hit j for j = 1, . . . , n, and assume that the hits are
ordered by confidence score, so pj ≤ pj+1. Viewing the annotations as (not necessarily
independent) Bernoulli trials, the expected number of incorrect annotations for the top k
hits is

∑︁k
j=1 pj , and the expected false discovery rate is

ˆ︁FDRk =
1

k
·

k∑︂
j=1

pj . (6.2)

Since hits have been ordered by posterior error probability, FDR estimates ˆ︁FDRk are
monotonically increasing, so ˆ︁FDRk is also the q-value estimate for hit k.

We evaluate the accuracy of our FDR estimates by plotting exact q-values against
estimated q-values in a Q-Q-plot (Fig. 6.22); this has to be carried out using reference
data where exact FDR values can be calculated. Unfortunately, estimated FDRs using
this method are of mediocre quality. In particular, estimates for independent data were
highly conservative: estimated q-values were much larger than true q-values. Consequently,
confidence score values must still be treated as a score, but not as the probability that the
annotation is correct.
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Figure 6.23: COSMIC confidence score vs. exact FDR and ratio of annotated
compounds. Independent data (Agilent, QTOF), 20 eV, medium noise, N = 3, 013. We vary
the confidence score threshold and present the resulting exact FDR (a) and the ratio of annotated
compounds (b). Dashed lines indicate COSMIC confidence score thresholds of 0.94, 0.64, 0.34,
and 0.14, corresponding to exact FDR levels of roughly 5%, 10%, 20%, and 30%, respectively.
The spike for high thresholds beyond 0.9 is an artifact of the small number of hits that pass
this threshold; hence, a few incorrect hits with high confidence score can lead to high FDR. In
practice, confidence scores depend on numerous factors such as the overall quality of the data and
the identity of the query compounds. Hence, these thresholds come with no guarantee in either
direction: For example, in the CASMI 2016 dataset, a smaller confidence score threshold of 0.53
corresponded to exact FDR 10 %, and using the abovementioned threshold of 0.64 would have
returned fewer hits than possible. Nevertheless, these thresholds may serve as a starting point for
practitioners.

To give practitioners an initial starting point for interpreting the confidence score in
practice, we give a suggestion for rule of thumb thresholds in Fig. 6.23.

6.4.6 The COSMIC Workflow

In the previous chapters, we focused on developing the COSMIC confidence score, which
can be used to better separate correct from incorrect hits. This confidence score is now
integrated into the COSMIC workflow, that combines it with the selection or generation of
a structure database and searching in that structure database with CSI:FingerID. COSMIC
can process data at a repository scale, allowing us to repurpose the quickly-growing public
metabolomics data. Doing so, COSMIC may allow us to flip the metabolomics workflow.
(Fig. 6.24): We may concentrate on metabolites annotated with high confidence, without
the need for intricate prior experiments, and try to develop a biological hypothesis from
these annotations. Annotated fragmentation spectra can subsequently be searched in other
datasets via “classical” spectral library search at the repository scale [178], allowing a more
comprehensive annotation of public metabolomics datasets.
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Figure 6.24: COSMIC workflow. (a) Select or create a structure database; this can be an
existing structure database such as the Human Metabolome Database, or generated explicitly
for this purpose. (b) Select or measure an LC-MS/MS dataset or select a complete data
repository (data repurposing). (c) Data processing through SIRIUS. (d) Structure annotation
of fragmentation spectra through CSI:FingerID; only the candidate top-ranked by CSI:FingerID
is considered. We stress that at this point, there is no ordering of hits. (e) Each hit (structure
annotation) is assigned a confidence score; annotations are then ordered by confidence, allowing
users to concentrate on high-confidence annotations. (f) High-confidence annotations can be used
to develop or test a biological hypothesis. (g) Detailed confidence score computation for the
structure annotation of a spectrum (hit) applied in (e), including feature calculation (magenta
arrows), E-value estimation, selection and application of the appropriate Support Vector Machine,
and Platt scaling. Notably, COSMIC can annotate metabolites at an early stage of a biological
analysis.





7 Practical Application

In this section we now apply the COSMIC workflow to real-world biological data to prove
its capabilities of finding truly novel structures, as well as to demonstrate its potential
in large-scale annotation studies. We present one use case where we search for novel bile
acid conjugates in mouse fecal data, one use case where we process human-related public
datasets to annotate structures missing from HMDB [192] and finally one where we process
123 public datasets in a repository-scale annotation study.

7.1 Data Preprocessing

SIRIUS 4 [47] was used to process LC-MS/MS runs and MassIVE datasets provided
in mzML or mzXML format. Feature detection in SIRIUS 4 is similar in spirit to a
targeted analysis: Instead of searching for all features in a run, SIRIUS first collects all
fragmentation spectra and their precursor information, then searches for features that
are associated with those fragmentation spectra (precursor ions, adduct ions, isotope
peaks). Adducts and isotopes were detected using predefined lists of mass differences.
Fragmentation spectra assigned to the same feature (precursor ion) are merged using
an agglomerative clustering algorithm based on cosine distance. Compounds with mass
beyond 700 Da were discarded to avoid high running time. MassIVE datasets that exceeded
600 LC-MS/MS runs were split to reduce memory consumption.

We use both isotope patterns and fragmentation patterns to determine the molecular
formula de novo using SIRIUS 4 with default parameters and mass accuracy 10 ppm.
CSI:FingerID with default parameters was used to rank structure candidates. We use
SIRIUS default soft thresholding of molecular formulas when querying CSI:FingerID
structure candidates. For confidence score computation, we restrict the candidate list to
those candidates with the same molecular formula as the highest-scoring candidate (hit).
We used the highest-scoring structure candidate and the corresponding fragmentation tree,
isotope pattern and structure candidate list features for COSMIC.

For the mice fecal dataset, SIRIUS results were imported into GNPS, and data were
further annotated and explored by performing feature-based molecular networking and
spectral library search on GNPS.

7.2 Annotation of Novel Bile Acid Conjugates

Bile acids are amphipathic molecules that act as signalling molecules in many organisms
[72], and facilitate the solubility of lipids in the small intestine. Bile acids and their
conjugates are very structurally diverse, and their quantification profile is considered highly
species-dependent [164]. Recently, three previously unknown bile acid conjugates were
discovered [129], supporting the hypothesis that additional novel conjugations of amino
acids to bile acid core structures exist.

73
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We explored this hypothesis applying COSMIC to a public mice fecal metabolomics
dataset. Plausible bile acid conjugate structures were computed by combinatorially adding
amino acids to bile acid cores, yielding 28,630 plausible bile acid conjugates (see Chapter 5).
The COSMIC workflow was then applied to search the combinatorial bile acid conjugate
structure database. For the mice fecal dataset, MS/MS measurements were taken with a
collision energy of 30 eV; we used the closest COSMIC version trained on 40 eV spectra.
The output of this workflow is an ordered list of 1,456 COSMIC structure annotations
(“MS features”, see Hoffmann et al. [70]). In case multiple compounds were annotated
with the same structure (for example, compounds being present in multiple runs, and
different adducts of the same compound), entries in the COSMIC output were merged and
represented by the hit with the highest confidence. This reduces the output to 626 unique
structure annotations. Of these, 113 were present in PubChem. Here, we concentrated on
the 513 “truly novel” bile acid conjugates.

The top 12 most confident bile acid conjugate annotations (Fig. 7.1) were manually
inspected and their fragmentation spectra interpreted by Louis-Felix Nothias for validation.
Nine of these annotations were found to be consistent, and one was found to be inconsistent
with the fragmentation analysis. Annotations of two “truly novel” bile acid conjugates,
tryptophan (Trp) and phenylalanine (Phe) conjugates of chenodeoxycholic acid (CDCA),
were verified by comparing their fragmentation spectra and retention times with those of
synthetic standards. Manual inspection and verification as well as the spectral comparison
with synthetic standards was performed by Louis-Felix Nothias. MASST [178] was
used to find samples of species that contain the novel bile acid conjugate structures in
public mass spectrometry datasets, including MassIVE-GNPS [177], MetaboLights [65] and
Metabolomics Workbench [160]. In addition to the MASST search, Louis-Felix Nothias
carried out a statistical analysis of the novel bile acid conjugate’s quantification profile in
mice with a high fat diet, see Hoffmann et al. [70] for more technical details.

7.3 Annotating Structures Missing from HMDB

The Human Metabolome Database (HMDB) [192] contains the by far most comprehensive
collection of molecular structures found in or on the human body, with version 4.0
embracing 114,265 structures. Yet, certain molecular structures connected to human
metabolism may currently be missing from this database. To test this hypothesis, we
searched the human dataset against the biomolecule structure database; this comprises
ten MassIVE datasets [177] with 2,666 LC-MS/MS runs from different sources (serum,
plasma, lips, tongue, teeth, fecal, urine). To estimate a reasonable COSMIC confidence
score cut-off, we made use of our reference data evaluation results. In our evaluation using
independent data, collision energy 20 eV and medium noise, a confidence score threshold
of 0.64 corresponded to FDR 10 % (see Fig. 6.23). Our implicit assumption is that for the
biological data, this threshold will correspond to a similar FDR. It must be understood
that we cannot guarantee a similar FDR for structure annotations, given our inability to
accurately estimate FDR. Clearly, numerous hits with confidence below this threshold will
nevertheless be correct.

We searched the human dataset against the biomolecule structure database; this resulted
in 114,012 hits. Multiple hits can annotate the same structure; for example, these hits may
originate from different LC-MS/MS runs or different adducts. Hence, we report unique
structures instead, where the hit with the highest confidence is used as a representative
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Figure 7.1: Applying COSMIC to discover novel bile acid conjugates in a mice fecal
dataset. Top 12 highest-scoring COSMIC annotations of “truly novel” bile acid conjugates. Bile
acid conjugates which are also present in PubChem are omitted from the list; see Hoffmann et al.
[70] for the complete list. For each bile acid conjugate we report its chemical name, putative
structure, molecular formula, and adducts of annotations for this structure. In addition, we report
the confidence scores for each annotation. We also report species and number of datasets with
spectral matches from a MASST search. Two annotations verified by authentic standards are
highlighted in green, the single incorrect annotation in red.

for that structure. This resulted in 24,554 unique structures being annotated, of which
3,167 (12.9%) were present in the CSI training dataset. We now filter the 24,554
structure annotations for high confidence (score threshold 0.64), resulting in 911 structure
annotations. Of these high-confidence annotations, 475 (52.1 %) were present in the CSI
training dataset, leaving us with 436 (47.9 %) high-confidence novel structure annotations.
Finally, we excluded all hits with structures in the HMDB structure database, resulting in
21,128 unique structure annotations, 436 high-confidence structure annotations, and 315
high-confidence structure annotations without reference MS/MS data (Fig. 7.2). Of the 315
novel structures, 48 were proteinogenic peptides (peptides made from proteinogenic amino
acids), which are not considered novel metabolite structures. Text-based lists including all
structures shown in Fig. 7.2 are available from [70].

We searched 14-character InChIKeys of all 267 novel metabolite structures in the current
version of HMDB (Feb 2021) and found that at least 23 of these structures are present in
the current HMDB version. The exact number may be slightly higher, as structures from
the current HMDB version were not standardised using the PubChem standardisation
procedure. Notably, the recent inclusion of structures in HMDB does not mean that
reference MS/MS data are available for these structures. It does however indicate, that
many of the novel structures are indeed present in human samples. Michael Witting
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manually verified the 315 structures by checking common neutral losses and fragments,
and by comparison of spectra against reference spectra from similar compounds. Hits are
available from https://bio.informatik.uni-jena.de/cosmic/; users can view, discuss
and verify annotated structures there. Based on characteristic fragmentation patterns,
different acyl-carnitines and N-acyl-amino acids not part of HMDB were annotated. N-
acyl amino acids play an important biochemical role in mitochondria [97]. From 30 spectra
annotated as acyl-carnitines with high confidence, 21 were presumably correct based on
manual verification. The verification of this analysis was performed by Michael Witting,
see Hoffmann et al. [70] for details.

7.4 Repository-scale Annotation

In the previous two applications, we used the COSMIC workflow to annotate structures
in a sort of confined context, focusing on either Bile Acid conjugates or structures in
human samples. To demonstrate that COSMIC can be applied at a repository scale,
we searched the Orbitrap dataset with 17,414 LC-MS/MS runs against the biomolecule
structure database; this resulted in 979,521 hits. Again, multiple hits can annotate
the same structure; the above hits correspond to 77,932 unique annotated structures, of
which 8,172 (10.5 %) were present in the CSI training dataset. We now filter the 77,932
structure annotations for high confidence (score threshold 0.64), resulting in 3,530 structure
annotations. Of these high-confidence structure annotations, 1,815 (51.4%) were present in
the CSI training dataset, leaving 1,715 (48.6 %) high-confidence novel structure annotations
(Fig. A.8). Again, all hits of the Orbitrap dataset can be accessed via a web interface
available from https://bio.informatik.uni-jena.de/cosmic.

https://bio.informatik.uni-jena.de/cosmic/
https://bio.informatik.uni-jena.de/cosmic
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Figure 7.2: The 315 molecular structure not contained in HMDB annotated with high
confidence in the human dataset. Confidence score threshold 0.64 was used. For none of these
structures, reference MS/MS data are available. Structures are shown with identification number
(ID), molecular formula and COSMIC confidence score. Structures present in the latest version
of HMDB (Feb 2021) are marked by an asterisk. Colours indicate compound classes. Notably, 48
compounds were annotated as proteinogenic peptides; these structures were absent from HMDB
but are clearly no novel metabolite structures. Lipid structures must be interpreted with some
care: It is understood that neither COSMIC nor any other method can deduce, say, the position
of the double bond in a carbon chain from MS/MS data alone; rather, this happens to be the
candidate present in our biomolecule structure database.
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In this thesis, we presented the COSMIC (Confidence Of Small Molecule IdentifiCations)
confidence score, a machine learning-based approach that assigns confidence to structure
annotations by CSI:FingerID. Integrated into SIRIUS, it is part of the COSMIC workflow.
We established that hit scores returned by popular tools such as CSI:FingerID, MetFrag,
MAGMa+ and CFM-ID are unable to separate correct from incorrect annotations. The
COSMIC confidence score outperforms these hit scores by a wide margin for the task
of score separation. On the CASMI 2016 contest data, our confidence score was used to
correctly annotate over 46% of queries with a false discovery rate below 10% when searching
the biomolecule structure database. In comparison, no other scoring method was able to
correctly annotate even 5% of queries below a FDR of 10%. We extensively evaluated the
COSMIC confidence score on training data as well as independent data. Since reference
data used in training and evaluation datasets is usually of higher quality than real-world
data from actual complex mixtures, we artificially noisified evaluation data. We showed
that the separation power of the COSMIC confidence score is only minorly affected when
presented with this noisified data. Reference spectra are often also measured using multiple
collision energies, which can then be combined for structure elucidation. We evaluated
the COSMIC confidence score for four different collision energy settings, and show that
measuring multiple collision energies is consistently beneficial for annotation as well as
separation performance.
Rather surprisingly, COSMIC outperformed spectral library search for dereplication, even
though it was neither designed nor optimised for this task. On the independent dataset,
COSMIC correctly annotated over 40% of queries below an FDR of 5%, while spectral
library search correctly annotated below 2% of queries.
The COSMIC confidence score is based on linear support vector machines. This simple
machine learning model was deliberately chosen to retain classifier interpretability and
reduce overfitting. SVMs were trained for four collision energy settings individually. We
developed an E-value estimation using proxy decoys from PubChem, which on its own
showed improved separation power over the CSI:FingerID hit scoring. We integrated
these estimated E-values into our SVM-based models as features. Other features are
strongly intertwined with SIRIUS and CSI:FingerID, such as the relative percentage of
peak intensities explained by the fragmentation tree of a molecular formula candidate
and many structure candidate list features. The first support vector machine models we
trained showed clear signs of overfitting. In particular, feature weight signs often defied
common sense, which we corrected by enforcing feature directionality. This was only
possible because of the simple, interpretable classifier. We showed that in those cases,
where incorrect annotations received a high confidence score, the incorrect structure and
the true structure are exceedingly similar. On the contrary, incorrect annotations receiving
a very low confidence score proved to be very dissimilar from the true structure. We showed
that the confidence score is not restricted to very small masses or a high number of peaks
in the spectrum.
The COSMIC confidence score offers no statistical interpretability. We showed how to

79



80 8. Conclusion

transform confidence values into FDR estimates, but unfortunately these estimates are of
poor quality. This however does not impede COSMIC’s ability to rapidly test biological
hypotheses and even annotate previous unknown, truly novel structures. We demonstrated
this by processing publicly available mice fecal data, and searching fingerprints in a
structure database of hypothetical bile acid conjugate structures. Of the twelve novel
structures that were assigned the highest confidence, two were experimentally verified
by synthesis and another nine were manually validated by an expert. This automated
discovery of novel structures was performed within mere weeks, and up until validation
done completely in-silico. We then showed the power of the COSMIC workflow on a
larger, fully automated scale. We processed ten datasets containing measurements of
samples taken from humans, and were able to annotate 267 metabolite structures that were
missing from the Human Metabolome Database (HMDB). Lastly, we processed 123 publicly
available datasets consisting of 17,414 LC-MS/MS runs in a repository-scale annotation
study. We did not restrict ourselves to specific species or compound classes, and were able
to annotate 1,715 novel structures with high confidence. These annotations are accessible
for the community via a dedicated website, where one can rate and comment on annotation
results. The COSMIC workflow is integrated in SIRIUS and available to the public.

Ongoing Research and Future Work

While the COSMIC confidence score already is a large performance increase over existing
scorings for hit separation, multiple improvement opportunities exist. Parallel to the work
shown in this thesis, Dührkop et al. presented CANOPUS [48], a method that predicts
compound classes for an LC-MS/MS spectrum without the need of structure databases.
CANOPUS results may also be used as features in the COSMIC SVMs in the future,
to assess if the compound class of the hit structure and the compound class predicted
by CANOPUS match. In a similar spirit, Kai Dührkop also implemented “Epimetheus”
into SIRIUS, which uses combinatorial fragmentation to assess how well a CSI:FingerID
structure candidate fits to the input spectrum. For that, in-silico generated substructures
are matched to the spectrum peaks and a scoring is used to evaluate the match. This
scoring could also be integrated into COSMIC as a feature, to have a more direct relation
to the input data.
When we applied COSMIC to real-world biological data, the correct molecular formula is
not known to us, like it is in evaluation. In this thesis we used the predicted fingerprint and
fragmentation tree features of the molecular formula candidate that produced the highest
scoring structure candidate. A different approach would be to merge structure candidate
lists of all molecular formulas that lie above some threshold. This would make sense,
because the confidence score can be somewhat influenced by the size and completeness of
the structure candidate lists. We have already started implementation of this approach
and integrated it into SIRIUS, large scale evaluations of it are however still to be done.
Similarly, it might make sense to train additional SVM models for different structure
candidate list sizes. Currently, we differentiate between list sizes of one and “two or more”
solely based on some features being incomputable for size one lists. Since the completeness
of a large list is often times much higher than the completeness of a small list, we conjecture
that the feature weight of for example the “Score Diff” feature could highly vary between
different list sizes.
COSMIC was designed to be structure-precise, meaning that if multiple structure
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candidates exist, that are extremely similar to the top scoring candidate, it will usually
receive a very low confidence. This makes sense, as mass spectrum and molecular
fingerprint are also near indistinguishable in those cases. In application however, the
approximate structure of a query spectrum can be very valuable information. In the
future, we want to implement such an “approximate structure mode” into SIRIUS, which
would merge structure candidates that are very similar to each other into a cluster and
treat them as a singular candidate.
Fleming Kretschmer is currently working on predicting the retention time of small
molecule structures, which could lead to important orthogonal information on structure
candidates. Some structures that are very similar in two-dimensional space exhibit
distinguishable retention times. This information could then also be used in COSMIC
as a feature. Just like how the bile acid conjugate study was conducted, we are looking
for other metabolites that consist of larger building blocks and can be combinatorially
constructed to generate novel compound structure databases. Searching publicly available
datasets in these novel structure databases might reveal more truly novels and aid in
the understanding of biological processes. In addition to creating hypothetical structure
databases combinatorially, we are also trying to create hypothetical novel structures using
machine learning, specifically autoencoder. On a bigger scale, our next project is what
we internally call “Project Harvester”. Using the COSMIC workflow, we want to process
all available public LC-MS/MS datasets and use hits with high confidence as additional
training data for CSI:FingerID and COSMIC. Even if some annotations are incorrect, we
conjecture that the molecular fingerprint is sufficiently similar to what would be the true
structure’s fingerprint. In that fashion, available training data for CSI:FingerID and other
machine learning approaches in the field could be greatly increased. Going back to the
topic of my masters thesis, chimeric spectra are still highly present in every day LC-MS/MS
data with currently no good way to resolve them. The approach we used in my masters
thesis showed promise, but we were lacking real-world evaluation data to further develop
and evaluate the approach. Michael Witting in Munich has declared his interest in the
topic, and might be able to measure some data in the near future.





9 Data and Code Availability

9.1 Data Availability

Input mzML/mzXML files are available at MassIVE (https://massive.ucsd.edu/) with
accession nos. MSV000082973 (mice fecal dataset); MSV000084630 (mass spectrometry
analysis of the synthetic standards for Phe-CDCA and Trp-CDCA); MSV000083559,
MSV000079651, MSV000080167, MSV000080469, MSV000080533, MSV000080627,
MSV000081351, MSV000082261, MSV000082629, MSV000082630 (human dataset).
See Appendix Table A.1 for accession numbers of the Orbitrap dataset. The bile
acid conjugate structure database is available at https://github.com/lfnothias/
Combinatorial_BileAcids_DB_COSMIC. Spectral libraries generated from the high-
confidence COSMIC annotations of the mice fecal, human and Orbitrap datasets
are available from https://bio.informatik.uni-jena.de/cosmic/. For further data
availability of spectra involved in the manual verification of the bile acid conjugates, we
refer to [70].

9.2 Code Availability

COSMIC is written in Java, and is integrated into the current release version of SIRIUS
4; it is open source under the GNU General Public License (version 3). It is available for
Windows, macOS X, and Linux operating systems. We also provide source code, executable
binaries, living documentation, training videos, sample data as well as the public part of the
training data on the SIRIUS website (https://bio.informatik.uni-jena.de/sirius/);
a source copy is hosted on GitHub (https://github.com/boecker-lab/sirius/). Scripts
for generating the bile acid conjugate structure database are available from https://
github.com/lfnothias/Combinatorial_BileAcids_DB_COSMIC.
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Figure A.1: (a–d) Comparison of CSI:FingerID score and E-value score. ROC curves, structure-
disjoint evaluation, independent data and no artificial noise, biomolecule structure database, N =
3013. (a) 10 eV, (b) 20 eV, (c) 40 eV, (d) merged spectra (“all collision energies”)
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Figure A.3: (a–d) Comparison of CSI:FingerID score, E-value score and SVM-based COSMIC
confidence score. ROC curves, structure-disjoint evaluation, independent data and no artificial
noise, biomolecule structure database, N = 3013. (a) 10 eV, (b) 20 eV, (c) 40 eV, (d) merged
spectra (“all collision energies”)
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Figure A.2: (a–d) Comparison of CSI:FingerID score and E-value score. ROC curves, structure-
disjoint evaluation, independent data and high noise, biomolecule structure database, N = 3013.
(a) 10 eV, (b) 20 eV, (c) 40 eV, (d) merged spectra (“all collision energies”)
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Figure A.4: (a–d) Comparison of CSI:FingerID score, E-value score and SVM-based COSMIC
confidence score. ROC curves, structure-disjoint evaluation, independent data and high noise,
biomolecule structure database, N = 3013. (a) 10 eV, (b) 20 eV, (c) 40 eV, (d) merged spectra
(“all collision energies”)
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Figure A.5: Hop plots of E-value scores for different collision energies. Independent data with
structure-disjoint evaluation, no artificial noise, queries are QTOF MS/MS data, N = 3, 013. FDR
levels shown as dashed lines; FDR levels are exact, not estimated
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Figure A.6: Hop plots of E-value scores for different collision energies. Independent data with
structure-disjoint evaluation, medium noise, queries are QTOF MS/MS data, N = 3, 013. FDR
levels shown as dashed lines; FDR levels are exact, not estimated
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Figure A.8: The 1,715 novel molecular structures annotated with high confidence in
the Orbitrap dataset. Confidence score threshold 0.64 was used. Structures are shown with
identification number (ID), molecular formula and COSMIC confidence score. Colours indicate
compound classes. Lipid structures must again be interpreted with some care.
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Figure A.9: The 1,715 novel molecular structures annotated with high confidence in
the Orbitrap dataset (cont.).
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Figure A.10: The 1,715 novel molecular structures annotated with high confidence in
the Orbitrap dataset (cont.).
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Figure A.11: The 1,715 novel molecular structures annotated with high confidence in
the Orbitrap dataset (cont.).
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Figure A.12: The 1,715 novel molecular structures annotated with high confidence in
the Orbitrap dataset (cont.).



Table A.1: MassIVE accession numbers for the Orbitrap dataset. Corresponding
mzML/mzXML files are available from MassIVE (https://massive.ucsd.edu/).

MSV000084873, MSV000084753, MSV000084744, MSV000084741, MSV000084738,
MSV000084674, MSV000084630, MSV000084628, MSV000084585, MSV000084576,
MSV000084556, MSV000084312, MSV000084289, MSV000084278, MSV000084237,
MSV000084143, MSV000084132, MSV000084119, MSV000084118, MSV000084117,
MSV000084112, MSV000084107, MSV000084102, MSV000084072, MSV000084062,
MSV000084045, MSV000084030, MSV000084020, MSV000084016, MSV000083889,
MSV000083888, MSV000083791, MSV000083773, MSV000083749, MSV000083705,
MSV000083660, MSV000083651, MSV000083647, MSV000083632, MSV000083631,
MSV000083612, MSV000083541, MSV000083523, MSV000083522, MSV000083521,
MSV000083483, MSV000083481, MSV000083482, MSV000083475, MSV000083472,
MSV000083471, MSV000083470, MSV000083469, MSV000083411, MSV000083396,
MSV000083395, MSV000083387, MSV000083383, MSV000083372, MSV000083365,
MSV000083306, MSV000083300, MSV000083275, MSV000083274, MSV000083272,
MSV000083134, MSV000083110, MSV000083106, MSV000083098, MSV000083094,
MSV000083083, MSV000083077, MSV000083073, MSV000082999, MSV000082952,
MSV000082869, MSV000082650, MSV000082649, MSV000082647, MSV000082633,
MSV000082618, MSV000082616, MSV000082614, MSV000082612, MSV000082608,
MSV000082602, MSV000082582, MSV000082480, MSV000082463, MSV000082433,
MSV000082402, MSV000082385, MSV000082384, MSV000082383, MSV000082382,
MSV000082380, MSV000082379, MSV000082378, MSV000082377, MSV000082331,
MSV000082157, MSV000082086, MSV000082085, MSV000082084, MSV000082083,
MSV000082082, MSV000082081, MSV000080249, MSV000082048, MSV000081957,
MSV000081952, MSV000081949, MSV000081808, MSV000081804, MSV000081492,
MSV000081482, MSV000081456, MSV000081097, MSV000080905, MSV000080630,

MSV000080628, MSV000079900, MSV000081160

https://massive.ucsd.edu/
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