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2D — spatial two dimensional 

3D — spatial three dimensional 

ages — antifungal extracellular vesicles 

AIA — automated image analysis 

EVs — extracellular vesicles 

Fovea — field of view 

IFD — invasive fungal disease 

IFI — invasive fungal infection 

syn. — synonym 

WHO — World Health Organization 

Names of diseases are given according to the International Classification of 
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1 Introduction 
Profound understanding of host-pathogen interaction is the cornerstone of 

proper disease diagnostics, cure and prevention. Alongside molecular mechanisms 
of such interrelationships, the spatiotemporal characteristics (e.g.  cell 
growth, morphology, mutual positioning of interacting components) of undergoing 
processes are often in focus of interest. The standard way to acquire such 
information is microscopy imaging followed by quantitative image analysis. 
During the last century, a plethora of methods and techniques were invented 
to serve this need. Yet, there are many challenges due to the high diversity of 
biological objects and a broad spectrum of questions that might be being asked. 

The current thesis represents an application of quantitative image analysis 
methods to biological problems. The scope of the investigations is quantitative 
measurements of effects that appear during or after interaction between some of the 
cellular components of the innate immune system and pathogenic fungi of a few 
species. 

This chapter is organised as follows: Sections 1.1 and 1.2 briefly introduces 
the biological background and motivation of the topic of this thesis. The section 
describes fungi, their pathogenicity and neutrophils as the component of the 
antifungal immune response. Sections 1.3–1.5 shed light on bioimaging techniques 
used in this work, covering microscopy, biological labelling, image acquisition 
and automated image analysis (AIA). 

1.1 Fungi  and           their    pathogenicity

The fungal kingdom comprises a few million species (a proper 
estimation is a topic of discussion, see (Hawksworth and Lücking, 2017)) 
widely distributed in the environment, among which several hundreds of species 
are considered to be pathogenic for humans (Fisher et al.,  2016), 
causing different types of diseases — mycoses. The estimated burden of 
mycoses to the global human population is varying wildly in the 
number of cases and severity (Bongomin et al.,  2017): from mild chronic 
diseases of the hair, nail and skin affecting about one billion people to 
severe life-threatening conditions (invasive fungal diseases, IFDs) with 
high mortality (well above 30%, (Logan et al.,  2020)) caused by invasive 
fungal infections (IFIs) acquired by a few millions of people annually. 
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Fig. 1.1. Dynamics of some mycoses in Germany for the period 2000–2019. The ICD 10 code transcript: 
B35–B49 Mycoses, B37 Candidiasis, B37.8 Candidiasis of other sites, B37.7 Candidal sepsis, B44 
Aspergillosis, B44.0 Invasive pulmonary aspergillosis, B44.7 Disseminated aspergillosis, T82.7 Infec-
tion and inflammatory reaction due to other cardiac and vascular devices, implants and grafts. Data 
acquired from the database of German Federal Health Monitoring System (Das Informationssystem 
der Gesundheitsberichterstattung des Bundes) located at the web-portal https://www.gbe-bund.de/, 
[Home > Diseases/Health Problems > Diseases in General > Table (ad hoc): Diagnostic data of the 
hospitals by place of residence (ICD10-3-digits, from 2000), [accessed 2022 Mar 10]] 

Paradoxically, the rising number of patients with IFD (e.g. trends in 
Germany represented in Fig. 1.1) is caused by advances in life-saving 
technologies because the predisposing factors leading to IFD include (Brown et 
al., 2012; Enoch et al., 2017) immunosuppressive therapy, which is 
necessary for patients with transplanted organs, and long-term use of 
broad spectrum antibiotics, affecting the equilibrium of the microbial flora. 
Also, prolonged hospitalisation and the usage of medical indwelling devices 
and central venous catheters further increase the risk of such infec-tions. For 
ins-tance, in Germany (see Fig. 1.1) the annual absolute number of candidal 
sepsis (B37.7) cases has the same tendency as the number of infection cases 
caused by indwelling devices (T82.7), the cause relation will be described in the 
further chapter. Another cohort at risk includes (Bongomin et al., 2017) people 
with other immune deficiencies (innate, caused by HIV or chemotherapy) as 
well as hav-ing poorly controlled diabetes, tuberculosis, chronic obstructive 
pulmonary disease (COPD), asthma, cystic fibrosis, and, recently, patients 
with moderate/severe form of COVID-19 infection (Hughes et al., 2020; Casalini
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et al., 2021; Nucci et al., 2021; Basile et al., 2022). Those factors vary 
between countries, regions, and even hospi-tals, which, 
alongside sophisticated diagnostic work‑up, complicate control and cure of 
IFDs (von Lilienfeld-Toal et al., 2019; Donnelly et al., 2020; Lass-Flörll et al., 
2021). 

Epidemiology of mycoses is complicated, partially due to 
persistent neglect of fungi as major pathogens by both the public 
and health authorities(Brown et al., 2012; Fisher et al., 2016; Almeida 
et al., 2019; Rodrigues and Nosanchuk 2020), which leads to a lack of 
accurate statistics for some diseases. Such a problem persists even in well-
developed countries like the Netherlands (Buil et al., 2020) or Germany, 
where IFDs do not belong to the list of reportable infectious diseases 
(Ruhnke et al., 2015; von Lilienfeld-Toal et al., 2019)). 

An additional aspect, which complicates the analysis of 
IFDs dynamics based on public data, is the absence of corresponding nosological 
units in the current Tenth revision of the International 
Classification of Diseases (ICD‑10, (World Health Organization (WHO) 1994)). 
While some IFD names can be found in literature or health authorities' 
reports and guidelines, in the statistical data, it might be hidden in 
larger groups: e.g. invasive candidiasis could be reported as B37 Candidiasis 
or B37.8 Candidiasis of other sites. This situation will be improved 
with the introduction of a new version of this document (ICD‑11, 
(World Health Organization (WHO) 2019)) into practice. For instance, as 
shown in the diagram for Candida infections in Fig. 1.2, IFDs were 
separated into independent categories. It will improve the quality of 
health information and reflect excellent advances made in under-
standing fungal diseases fundamentals (Salazar and Brown 2018a) 
alongside accumulated clinical practice and improved diagnostics(Consortium 
OPATHY and Gabaldón 2019). 

According to standard criteria (Donnelly et al., 2020), an IFD is 
confirmed when at least one of the following conditions is met:

− a presence of fungal cells or hyphae accompanied by evidence of associated
tissue damage are seen during microscopic examination of a patient's sterile,
under health condition, tissue specimen;

− the infectious agent is recovered by culture from such tissue or blood;

− the infectious agent is detected by serological diagnostics;

− the infectious agent is detected by tissue nucleic acid diagnostics.
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Fig. 1.2. A comparison of nomenclatures of Candida infections in two consequent versions of Interna-
tional Classification of Diseases (ICD). * stands for ‘not limited by Candida’. The diagram is based 
on information from ICD 10 / ICD 11 mapping tables located at: https://icd.who.int/browse11/Down-
loads/Download?fileName=mapping.zip 

In conjunction with host factors and clinical features, those indicators are recom-
mended to use in clinical trials, epidemiologic studies, and the evaluation of diagnostic 
tests. 

An IFD starts after a successful fungal invasion. To establish IFI, a fungus 
must fulfil the four criteria (Köhler et al.,  2017): thermal resistance at human body 
temperature, locomotion through or ability to circumvent host defence barriers, 
lysis and absorption of human tissues, and resistance to immune response. Only
a tiny fraction of fungal species has developed this combination. However, this 
minor group from the kingdom Fungi  have become a major threat 
for the immunocompromised people. 

The objectives of the current work are associated with three pathogenic fun-
gal species with different biology that have the most significant contribution to the 
number of IFD cases. 
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1.1.1  Candida  albicans and  Candida  glabrata 

Candida  is a genus of yeasts from the Ascomycota  phylum and the leading 
cause of IFD. Most of the invasive candidiasis (∼ 65%–75%, varying is 
region‑dependent) are associated with C. albicans  and C. glabrata  . Both species 
are harmless commensals of healthy humans but turn pathogenic once local or 
systemic host defence defects occur. 

For both fungi, the infection process starts from adhesion to host 
cells by ex-pressing specific adhesins (Brunke and Hube 2013). After 
attachment, the next step in Candida  pathogenesis is invasion, typically into 
epithelial cell layers and then into the deepest tissues and bloodstream. For 
C. albicans,  invasion can occur via two mechanisms: induced endocytosis by 
host cells or active penetration by fungus hyphae using physical forces and 
biologically active compounds, which is considered the dominant route 
of invasion for this specie. In contras,t C. glabrata  grows typically 
only in the yeast form. A possible route to reach the bloodstream is the 
accidental or iatrogenic breach of natural barriers via trauma, catheters, 
surgery or parenteral nutrition. Also, there is a difference in the nutrition 
process: C. albicans  can consume a broader range of compounds than 
C. glabrata  and can more effectively counteract a decay of avai-
lable micronutrients, which the host actively limits during infections. 
Such plasticity allows C. albicans  to successfully colonise many 
different and changing host niches, while C. glabrata  is striving for a 
more stable environment. In addition, biological and eco-logical differences of 
these species could manifest in their interactions with the human 
immune system (Duggane  t al.,  2015; Johnson et al.,  2016, 2017).

1.1.2           Aspergillus  fumigatus 

Another group from the Ascomycota phylum, which is capable of 
infecting hu-mans, is composed of Aspergillus species. These species cause 
a broad spectrum of diseases in humans: from allergies to highly 
aggressive invasive aspergillosis (Latgé 1999). Most cases of that severe IFD1 
is caused by only single specie — A. fumigatus — a ubiquitous 
soil‑dwelling saprophyte, which utilises humans as only an incidental substrate on 
which is possible to grow. The most common entrance of this infectious agent 
is epithelia of the respiratory tract since A. fumigatus relies on air currents when 
disseminating spores (conidia). 

1The burden on the global human population is conservatively estimated as more than 3×105 
cases annually with a mortality rate 30%–80% (Bongomin et al., 2017). 
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Conidia of A. fumigatus  native (wild) form are pigmented and echinulate 
sphe-roidal structures of 2–3  μm in diameter (Latgé 1999), which are present in 
indoor and outdoor environments at concentrations ranging between 1 and 100 
conidia per m3 but can reach up to 4×107 conidia per m3 in aerosols from 
composting facilities (Wéry 2014). The average person is estimated to inhale 
between ∼ 102 and ∼ 104 of the conidia each day (Köhler et al.,  2017). Like most 
other aerosol particles from inhalable air, the majority of the inhaled conidia are 
captured in the mucus and washed out of the respiratory tract through the mucous 
epithelium's ciliary action. The remaining conidia would be phagocytosed by 
epithelial cells or tissue-resident phagocytic im-mune cells (predominantly 
macrophages). Conidia that escaped clearance start swelling, followed by 
germination on the epithelial surface, which triggers a host danger response 
pathway mediated by the release of antimicrobial effectors and alarmins to initiate 
inflammatory responses and timely neutrophil recruitment (Latgé and Chamilos 
2019), which will eliminate hyphae. The outcome of this pro-cess depends on the 
human immune status.

The success of the fungal invasion and growth in a susceptible host is 
associated with several properties of A. fumigatus, which it has developed to 
survive in a harsh soil environment (Köhler et al., 2017). First off, this fungus is 
well-adapted to high temperatures (above 40 °C) and can decompose and digest 
human body tissues. Then, thigmotropism, the ability to sense and follow contours, 
and the ability of hyphae to survive fragmentation pave the way for angioinvasion 
and dissemination to highly perfused organs, including the brain, the eyes and the 
kidneys. Another component of success is the ability of A. fumi-gatus to mediate a 
human immune response (Stanzani et al., 2005) using defensive toxins, which 
evolutionary developed to counteract protozoans, as well as melanins (pyomelanin 
and 1,8-dihydroxynaphthalene (syn. DHN) melanin), with which that fungus coats 
its conidia for protecting from sunlight and oxidative stress.

1.2 Elements of antifungal host defence 
The bodies of vertebrates are protected from infectious agents, their 

toxins, and the damage they cause, by barrier tissues and immune system, 
composed of various effector cells and molecules (Murphy and Weaver 
2016). The scope of the present work is constrained by the most numerous 
and significant effector cell population involved in the control of many 
fungal infections (Salazar and Brown, 2018) — polymorphonuclear neutrophilic 
granulocytes (neutrophils, (Murphy and Weaver, 2016)). These are the relatively 
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short‑leaving, highly mobile phagocytic cells of leukocytes myeloid lineage, 
which are abundant in the bloodstream and, according to recent discoveries 
(Nicolás-Ávila et al.,  2017; Hidalgo et al.,  2019), resident at varying numbers 
in other healthy, not only hematopoietic, tissues. Along with other tissue-
resident immune cells and epithelial cells, such tissue-resident neutrophils 
contribute to the most immediate immune reaction. The latest part of that 
is recruiting other immune cells by secreting cytokines and chemokines that 
trigger those recruiters' extravasation from vicinal blood vessels and attract them to 
the infection site (Murphy and Weaver 2016). 

To combat pathogens, the neutrophils' antimicrobial armamentarium, 
in addition to phagocytosis, includes several other components: reactive 
oxygen species, antimicrobial peptides, extracellular vesicles (EVs) and 
neutrophil extracellular traps (NETs) (Brinkmann et al.,  2004; Urban et al.,  2006; 
Amulic et al.,  2012; Kolaczkowska and Kubes 2013; Johnson et al.,  2017; 
Allen et al.,  2020). While most listed entities are used by neutrophils specifically 
for pathogen elimination, the functions of EVs — a heterogeneous group of cell-
derived, lipid-bilayer-enclosed particles (Russell et al.,  2019) — are more 
diverse and not associated with immune response only. Such particles are 
released by cells of prokaryotic and eukaryotic organisms for removing waste 
products from the cell, sharing nutrition, carrying and transferring bioactive 
molecules and information, both intercellular and inter-organismal. 

According to the current consensus, EVs can be classified into two distinct 
classes, determined by two major sites of EVs biogenesis (Van Niel et al.,  2018; 
Russell et al.,  2019): exosomes, which originated from the endosomal system, and 
microvesicles (or ectosomes), shed directly from the plasma membrane. Depending 
on the parent cell type and state, EVs will display a set of cell-type-specific 
proteins that account for their specific fates and functions (Van Niel et al.,  2018; 
Russell et al.,  2019). For instance, unstimulated neutrophils release spontaneous 
EVs with anti-inflammatory effects, while the presence of pathogens or their 
metabolites induces the production of pro-inflammatory EVs loaded with 
antimicrobial compounds (Kolonics et al.,  2020). However, EVs' phenotype-function 
interconnections, especially the molecular cargos responsible for specific 
antimicrobial actions of EVs during infection, remain poorly described (Russell 
et al.,  2019; Brakhage et al.,  2021).

The strategy of neutrophils response is orchestrated by biochemical and 
physical cues that deliver information about the properties of confronted pathogen 
and the surrounding microenvironment (Huse 2017; Ley et al.,  2018). However, 
during millions of years of co‑evolution, some pathogens, particularly fungi, have 
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developed mechanisms of reducing or even evading immune response (Maza et al., 
2017; Kernien et al., 2020). To uncover spatiotemporal aspects of this complex 
host-pathogen interplay, a microscopy examination is required. 

1.3 Microscopy 

Microscopy is the broad class of instruments and methods used in multiple 
fields of biology and medicine, which allow acquiring information about biological 
objects in a wide range of scales from ∼1 mm up to ≈1.5 Å (Kato et al.,  2019). The 
goal of a microscopy procedure is to form an image of an object of interest with 
increased size, resolved minute specimen details, and the contrast that is sufficient 
to render the specimen visible to the detector2 (Murphy et al.,  2022). 
Consequently, the resulting image quality can be characterised via magnification 
and resolution. The third fundamental characteristic of an image — contrast — 
describes a difference in luminance or colour between an object of interest and its 
immediate background, i.e. any entities surrounding that object. The influence of 
those characteristics is illustrated in Fig. 1.3.

The choice of the appropriate microscopy technique is determined by the 
object's properties and the type of information that needs to be captured. Two 
major groups of those techniques are most frequently used to investigate a host-
pathogen interaction on a cellular and sub-cellular level. 

a) b) c) 

Fig. 1.3. A synthetic illustration of the influence of optical instrument characteristics on the acquired 
image. a) The image acquired with an instrument with high spatial resolution and contrast. b) The 
image acquired with the same magnification as a) but with a lower spatial resolution, resulting in 
image blurring. c) The image acquired with lower contrast. The Siemens star pattern was generated 
using the code by Hans Strasburger located at [accessed 2022 Mar 10]: http://hans-strasburger. 
userweb.mwn.de/siemens_star.html 

2 a digital or analogue camera, or the human eye 
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1.3.1 Optical microscopy 

Optical microscopy (OM), also referred to as light microscopy, utilises 
electro-magnetic waves of the visible spectrum (visible light) and their ability to 
interact with a specimen through various mechanisms: reflection from the 
surface, absorption, refraction, polarisation, diffraction and fluorescence. This 
family of microscopy has several branches. 

The transmitted light microscopy with brightfield illumination is 
historically the first microscopy technique, which has been widely used for the 
last three centuries for investigations in the microworld. It is suitable for 
observing specimens that alter the transmitted light by adsorption/reflection. 
However, in many cases, there is a negligible difference in light absorption 
between objects of interest and their sur-rounding environment, e.g.  living cells 
and nutrient medium, or their intracellular components and plasma membranes, 
which makes these entities barely detectable and observers can only rely on 
scattered light. 

At the same time, there always exist relative phase shifts among light 
waves governed by refractive index differences between parts of the 
observed specimen. This information can be captured by polarised light 
microscopy, which converts such a shift to brightness changes in the rendered 
image. There are two most common techniques which serve this purpose: phase 
contrast (PhC, (Zernike 1938, 1942)) and differential interference contrast 
microscopy (DIC, (Nomarski 1955, 1960; Allen et al.,  1969)). PhC microscopy 
produces image intensity values that vary as a function of the speci-men's 
optical path length magnitude, whereas DIC utilises optical path length gradi-
ents for contrast rendering. A primary advantage of DIC over PhC is 
utilising the instrument at the full numerical aperture, producing images 
without the ‘halo’ effect, and improved axial resolution (Lang 1971; Murphy and 
Davidson 2012b). In addition, it allows performing optical sectioning. 

However, in many cases, information acquired with transmitted 
light techniques is not enough. To grasp information about the spatial localisation 
of a specific type of molecule, a fluorescence — the ability of some 
molecules, not necessarily molecules of interest, to absorb and subsequently 
reradiate light — can be employed. Fluores-cence microscopy (FM) is the largest and 
most intensively developing branch of OM techniques. It has become an essential tool 
in biology and the biomedical sciences. The most significant part of FM comprehends 
super-resolution techniques, which allow optical imaging with resolution beyond the 
diffraction limit. Some of them can reveal the presence of a single molecule or even 
resolve sub-molecular structures (e.g. (Weisenburger et al., 2017)). Here it is necessary
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to mention that with any of such techniques, a direct image  observation is not 
possible; it requires a detector and a computer to synthesise an image. All 
fluorescence methods require the presence of synthetic or naturally occurring in the 
specimen target-specific fluorescent molecules3 with a high quantum yield4, known 
spectra of absorption5 and reradiation6 (Murphy and Davidson 2012a). 

1.3.2 Electron  microscopy 

A plethora of optical microscopy techniques have been developed to shed 
light on the microworld. However, light is not the only possible carrier of 
information about a specimen. To acquire information from the scales beyond what 
can be attained with light, different electron microscopy (EM) techniques can be 
used. There are two major ones. 

Transmission electron microscopy (TEM) is a microscopy technique 
where an image is formed from the interaction (absorption, scattering, polarisation, 
diffrac-tion) of the electrons with the sample as the beam is transmitted through the 
specimen. There are many TEM variations that differ in image contrast formation. 
These techniques cover a broad range of magnification from ∼ 102 to ∼ 106 with 
resolution up to 1.5 Å in a case with cryogenic transmission electron microscopy 
(cryoTEM, (Kato et al.,  2019)), which allows studying not only subcellular 
components but also perform in situ  analysis of biological macromolecules (e.g.  
membrane proteins) and reveal their structure.

Another technique is scanning electron microscopy (SEM), which uses a 
focused beam of electrons and scans the surface in a raster scan pattern. 
The energy exchange between the electron beam and the specimen results in a 
three-component response, composed of high-energy reflected electrons, emitted 
secondary low-energy electrons and emitted electromagnetic radiation, each of 
which can be detected independently. The resulting image is a map of a signal's 
intensity detected in the raster's nodes,  i.e.  topographical map of the 
surface. This opens the possibility of reconstructing a relief of scanned surface 
(Mignot 2018). With this technique it is possible to achieve a resolution higher 
than 1 nm.

In biological applications for most techniques, sample fixation and staining 
with heavy metals are necessary. For TEM, it is also required to have ultra-thin 
(0.1 μm) slices of the analysed specimen.  

3 termed fluorophores or fluorochromes 
4 defined as the ratio of photon absorption to emission 
5 syn. excitation 
6 syn. emission 
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1.3.3 Biological   staining 

Biological staining is a procedure of some biological specimen 
entity (anything from an ion to a tissue) labelling by attaching or 
depositing in its vicinity a marker with specific property (Richard W. Dapson 
et al.,  2021). It is commonly a chromo-genic agent (e.g.  dye, fluorophore, 
pigment) for an OM or heavy metal particles (atoms, nanoparticles) for an 
EM. The purpose of biological staining is the contrast enhancement of target 
entities. 

The staining procedure and used compounds are 
always task- and target-specific. During that procedure design and 
application, several aspects must be considered. First off, the degree to 
which a target entity is stained compared with non-target adjacent 
structures (selectivity) and the degree to which a staining procedure 
allows to detect of small amounts of a target component (sensitivity) 
(Horobin 2002; Richard W. Dapson et al.,  2021). While physico-
chemical properties of interacting molecules only determine selectivity of 
staining, its sensitivity is inex-tricably linked with a chosen imaging 
technique. Nevertheless, both characteristics can be adjusted during the 
staining process (Horobin 2002). Another group of factors related to 
living samples stained with fluoro-chromes. It is the cytotoxicity of stains 
and the photocytotoxicity of some fluorescent re-porters, which tend to 
react with molecular oxygen to produce free radicals that can damage 
the chemical structure and alter biological functions of proximal 
biomolecules after photoexcitation (Dixit and Cyr 2003; Jensen 2012; Birch et 
al.,  2017; Cavaco et al.,  2020). These effects disrupt cell functions or even 
induce cell death during the imaging process. Additional altering factors can be 
cell receptors' occupation by antibodies used for immunostaining (Cseresnyes 
et al., 2020). All this necessitates further development of label-free imaging 
techniques and appropriate method of image analysis.

1.4  Imaging 

To document and further numerical analysis, an optical image formed by 
an optical system of a microscope needs to be captured. Nowadays, different 
digital detectors are used for this purpose. In the simplest case of an achromatic 
detector, a detected two-dimensional (2D) digital image can be considered as 
the rectangular matrix of size M × N , which contains the result of discretisa-
tion and quantisation of intensity of the optical image (Gonzalez and Woods, 
2018). The number of elements in that matrix (called pixels) is defined in the 
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discretisation process and depends either on the number of possible positions of 
a sensor (number of raster mesh nodes) in case of detection by a single sensor, or 
the number of possible positions and number of sensors in case of a sensor strip 
array, or the number of sensors in the 2D detector array. This parameter 
contributes to the spatial resolution of the acquired image (see Fig. 1.4). 

A single sensor delivers an analogue response signal carrying brightness infor-
mation. To represent it in a digital form a quantisation is required. During this 
process, input analogue (continues) values from a sensor are mapped to output 
values in a finite discrete set of non-negative integer values that typically contains
𝐿𝐿 = 2k equally spaced elements with values in {0, …, 𝐿𝐿 − 1}. This parameter 

defines brightness resolution — the possibility to detect the lowest difference in 
brightness between two spots.

An image, pixels of which can have up to 2k levels of brightness, is 
called ‘k -bit image’. This number is defined by the detector's analogue-to-
digital converter (ADC) architecture. Often, 8-bit or 16-bit representation 
is used; however, the chosen range can be utilised only partially (e. g.,  for
a 12-bit output of ADC, a 16-bit representation will be used). It is evident that 
the highest bit representation allows achieving better brightness resolution, 
higher signal to noise ratio (which is essential for fluorescent imaging) and 
provides more flexibility for image processing operations.

To study spatial properties of biological objects in three dimensions, 2D 
imaging techniques in conjunction with optical cross-section are used. Another 
irreplaceable method for studying processes in live systems is time-lapse imaging, 
where image acquisition is performed with any of the above-mentioned OM methods 

a) b) 

Fig. 1.4. A synthetic illustration of the influence of detector resolution. a) The image acquired using 
a detector with a resolution matched the optical resolution of the microscope. b) The image acquired 
with the same magnification as a) but using a low-resolution detector. 
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at regular time intervals. The time step is usually defined by kinetic of observing the 

process and must, according to the sampling theorem7  and Nyquist's discovery 

(Nyquist interval), be at least two times shorter than characteristic time after 

which changes in observing system can be detected. 

1.5 Automated image analysis 

Automated image analysis (AIA) has become an irreplaceable toolkit in 
biolog-ical research, especially for high throughput experiments. Most often, AIA 
aiming entities attribution (classification), localisation, counting, measurement and 
temporal characterisation. In comparison with a human operator, it allows to 
extract meaningful information from imaging data much faster, with high 
consistency and without operator errors, i.e.  once an algorithm is designed, its 
output does not depend on operator experience. However, in most cases, AIA 
designed in assumption that uniformity of imaging procedures has been maintained 
between experiments and all possible mistakes during image acquisition were avoided 
(North 2006). 

A generic AIA workflow algorithm is composed of the following core 
operational blocks: (i) image pre-processing, (ii) objects segmentation and, if 
necessary, tracking, (iii) features extraction, and (iv) analysis. Depending on the 
task and used approach, some blocks can be omitted or merged into one. 
Considering the diversity of such studies, further description will be constrained by 
cell and cell population analysis.

The purpose of pre-processing (i) is the transformation of an image in such a 
way that the resulting image is more suitable than the raw one for further 
processing. These operations may include noise reduction, contrast enhancement, 
illumination cor-rection, image sharpening and deconvolution, which is particularly 
important in the case of fluorescence images. 

The segmentation (ii) partitions an image into individual objects (cells/sub-
cellular components and background). Additionally, a tracking procedure can be 
employed if temporal changes in detected objects are to be investigated. To perform 
any analysis, segmented cells needs to be described (iii) in some way. 

Depending on the purpose of analysis and cell peculiarities, such a 
description (feature space) may include information about cell shape, pixels colour/
spectral composition and/or their distribution patterns, texture, structural or surro- 

7 widely known as the Whittaker–Kotel'nikov–Shannon theorem (Meijering 2002) 
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unding elements (membrane, nuclei etc.). In case of cellular motility phenoty-
ping or morphodynamic analysis a tracking data must be used. 

In the most straightforward, trajectory-focused, approach only 
coordinates of segmented cell centroids are used to perform cell motility 
phenotyping via cellular trajectories description or migration speed 
distribution (e.g.  (Beltman et al.,  2009; Mokhtari et al.,  2013; Letendre et al.,  
2015; Svensson et al.,  2018)). 

In a more advanced, morphology-focused approach (Held et al.,  
2010; Driscoll et al.,  2011; Gordonov et al.,  2016), for each segmented cell and 
at each time point, morphological features are extracted based on 
which a morphological state is identified. After feature extraction the 
subsequent temporal analysis is performed. Such an analysis usually 
assumes that cell morphology dictates by distinct cellular states and then 
investigate how the morphological states evolve (e.g.  cellular 
morphodynamics in mi-tosis). The morphology-focused feature extraction
could be performed considering a cell as a whole object or utilises 
descriptors of subcellular component movement, e.g.  plasma membrane 
(Machacek and Danuser 2006; Tsygankov et al.,  2014; Barry et al.,  2015; Ma 
et al.,  2018; Imoto et al.,  2021), which can raise amount of information 
about intracellular processes available for the analysis. However, such detailed 
description is hardly suitable for use in high-throughput live cell 
experiments where tens or hundreds of cells need to be imaged 
simultaneously, because this approach requires imaging with a high 
magnification as well as a high spatial and temporal resolution, which would 
permit accurate detection of subcellular components.

While trajectory-focused or morphology-focused analysis operates 
with individual cells, the third approach is focused on description of cell 
population as a single object which evolving over the time (e.g. (Taylor et al., 
2013)).  

Based on extracted features, a cell population can be analysed (iv). In 
most cases, the analysis can follow either of three ways. The first one, 
exploratory analysis, is used to reveal the cell population's structure by 
identifying a group of cells (data clustering) that are similar in some sense, 
followed by identification of biologically relevant basis for their similarities 
within detected clusters and divergence between them. The second scenario 
implies a quantitative comparison of morphological cell characteristics in popu-
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populations under different experimental conditions. The third way lies in detecting 
specific predefined phenotypes (i.e. classification) joint with statistical analysis 
of detected groups. Generally, the AIA workflow algorithm design is heuristic, 
and a certain amount of trials and errors usually is required before a variant, 
which yields acceptable results, is selected. A vigorously growing since 
1960th multitude of image processing and computer vision algorithms 
(Gonzalez and Woods 2018), making the choice of basic algorithms and 
methods, which would be used for a particular problem solving, largely 
subjective. Nowadays, researchers often tend to choose deep-neural-
networks-based approaches (Goodfellow et al.,  2016), which are shown to 
be quite effective in clas-sification (or labelling) problems and 
implemented in some ready-to-use tools designed explicitly for biomedical 
images (e.g. CellPose (Stringer et al., 2021), InstantDL (Waibel et al.,  2021)). 
However, despite the favour of researchers acquired by those techniques, the 
classical image analysis and computer vision algorithms are still in demand for 
at least exploratory or comparative analysis based on interpretable des-
criptors (e.g. a comparison of morphology between cell populations). 

1.6 Aims and objectives of this work 

This work aims to broaden knowledge about the neutrophil biology 
in their interaction with fungi species that most frequently causes IFDs. 
The questions that were addressed include the alteration of neutrophil morphology 
after interaction with Candida  fungi (see Chapter 1.1.1), revealing factors 
which modulate the production and composition of neutrophil-derived EVs (see 
Chapter 1.2) and analysing their activity against A. fumigatus  (see 
Chapter 1.1.2). Alongside fundamental interests, those questions have important 
applied aspects in the medicine of IFD. In particular, for diagnostic purposes 
and infection process monitoring. 

The objectives of this work include the acquisition of quantitative evidence 
of different changes in neutrophils morphodynamics after interaction with
C. albicans or C. glabrata and their metabolites in whole blood infection assay.
Another part of the work is devoted to the quantitative analysis of the
influence of neutrophil‑derived extracellular vesicles (EVs) on the deve-
lopment of A. fumigatus  hyphae and their interaction with developed hyphae.



Introduction 22 

The objectives of this work were achieved by: 

1. the development of effective segmentation and tracking algorithm which

is capable of working with low-contrast cell images, produces accurate cell

contours and provides data about positions of clusters, which would improve

further analysis;

2. the development of a new stack of evaluation procedures to demonstrate

the effectiveness of segmentation and tracking algorithm in nuances;

3. the development of novel workflow algorithm for analysis of neutrophil

continuous morphological spectrum without consensus-based manual anno-

tation;

4. the development of an algorithm for analysis of A. fumigatus hyphae growth

using 2D transmitted light microscopy data;

5. the spatial analysis of the interaction of EVs with A. fumigatus hyphae based

on 4D (spatial coordinates and colour) microscopy data.



2 Overview of manuscripts 

Status 
Published in Cytometry Part A, 2021; 99: 1218–1229. 

Summary 
We present a fully revised version of our algorithm for migration and 

interac-tion tracking (AMIT), which includes a novel segmentation approach 
and a new cluster detection and splitting method. We demonstrate that it can 
detect almost all cells within the field of view and provides accurate splitting of 
transient clusters in label-free time-lapse microscopy data. Furthermore, the 
substantially improved ex-traction of cell migration information by the revised 
version of AMIT is more than two orders of magnitude faster than the previous 
implementation, which makes it feasible to process time-lapse microscopy data
at higher spatial and temporal resolutions. 
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Status 
Published in Computational and Structural Biotechnology Journal, 2022;

20: 2297-2708. 

Summary 
In this feasibility study, we presented a method for the quantitative 

assessment of static and dynamic changes in external morphology of neutrophils 
that have been exposed to pathogens or their metabolites based on label-free time-
lapse microscopy data. As the model system, we used in vitro  whole blood 
infection assay with C. albicans  and C. glabrata  as infectious agents. The method 
utilises a 1-class classifier as the novelty detector, which allows identifying cells 
in an infected sample which differ from cells in non-infected (mock) samples. Then 
we demonstrated that using this information it is possible to identify infection 
scenarios for C. albicans  and C. glabrata  with accuracies well above 75%, while 
the accuracy of identifying mock-infected samples reached 100%. 
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Status 
Published in mBio, 2020; Vol. 11, Issue 2, e00596-20. 

Summary 
Here we provide the first ex vivo insights into neutrophil-derived 

extracellular vesicle formation by human neutrophils confronted with the A. fu-
migatus . We uncover a novel role of the conidial pigment DHN melanin in the 
modulation of the kinetics of the release and the protein cargo of neutrophil-
derived EVs secreted by neutrophils in response to A. fumigatus presence. We 
demonstrate that these EVs are enriched in antimicrobial peptides and exhibit 
dose- and strain-dependent fungistatic effects via inhibiting the hyphal growth 
and promoting cell damage by delivering antifungal cargo. 
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Abstract

In biomedical research, the migration behavior of cells and interactions between vari-

ous cell types are frequently studied subjects. An automated and quantitative analy-

sis of time-lapse microscopy data is an essential component of these studies,

especially when characteristic migration patterns need to be identified. Plenty of

software tools have been developed to serve this need. However, the majority of

algorithms is designed for fluorescently labeled cells, even though it is well-known

that fluorescent labels can substantially interfere with the physiological behavior of

interacting cells. We here present a fully revised version of our algorithm for migra-

tion and interaction tracking (AMIT), which includes a novel segmentation approach.

This approach allows segmenting label-free cells with high accuracy and also enables

detecting almost all cells within the field of view. With regard to cell tracking, we

designed and implemented a new method for cluster detection and splitting. This

method does not rely on any geometrical characteristics of individual objects inside a

cluster but relies on monitoring the events of cell–cell fusion from and cluster fission

into single cells forward and backward in time. We demonstrate that focusing on

these events provides accurate splitting of transient clusters. Furthermore, the sub-

stantially improved quantitative analysis of cell migration by the revised version of

AMIT is more than two orders of magnitude faster than the previous implementation,

which makes it feasible to process video data at higher spatial and temporal

resolutions.

K E YWORD S

image processing, label-free imaging, segmentation, tracking

1 | INTRODUCTION

Image-based systems biology is a modern approach that comprises

(i) automated analysis of experimental image data, (ii) quantification of

biological processes in the image data, and (iii) mathematical modelingIvan Belyaev and Jan-Philipp Praetorius contributed equally.
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and computer simulation of the biological system to generate new

hypotheses that can be tested in experiment [1]. To make optimal use

of this iterative cycle between experiment and theory, it is absolutely

necessary to work as accurately as possible in each of these three

areas. In this study, we focus on improving the automated analysis of

image data and, in particular, on the enhanced and fast segmentation

of label-free cells for automated tracking in live-cell imaging data.

Existing cell segmentation and tracking approaches (for an over-

view see [2, 3]) often rely on fluorescent staining of cells. However, it

is well known that staining of cells may provoke cell death during

time-lapse imaging sessions and may directly affect their interaction

behavior (see, for example [4]). Such observations give rise to the

development of methods that are capable of analyzing label-free

microscopy data. In practice, this is realized along two different direc-

tions that are based on either classical image processing (CIP) tech-

niques or machine learning (ML) approaches. Supervised ML

algorithms of deep neural networks are known to be extremely data

hungry, because the success of the training process strongly depends

on the quantity of training data as well as on the quality of their anno-

tation. While training of deep neural networks can be realized in an

automatized fashion, that is, based on training data with fluorescently

labeled cells in combination with third party software [5], this is not

an option in cases where the viability, appearance and interaction

behavior of cells is altered by the fluorescent labeling. Therefore, in

such situations the training data must be annotated manually, which is

known to be a very subjective, error-prone, and time-consuming pro-

cess. The high-quality annotation of a sufficient data volume is typi-

cally the main bottleneck of realizing deep learning approaches [6, 7].

In contrast, approaches based on unsupervised ML as well as CIP do

not have such restrictions, but do require careful engineering of vari-

ous parameters, for example, for thresholding or morphological filtering.

This calibration procedure, which can benefit as well from some anno-

tated image data, makes unsupervised ML and CIP the methods of

choice for exploratory analyses and/or experiments with restricted data

volumes. Following such an approach, we developed an algorithm for

migration and interaction tracking (AMIT) that enables tracking of label-

free immune cells in time-lapse microscopy data (video data).

The first version of AMIT [8, 9]—referred to as AMIT-v1—was

extended by its second version—referred to as AMIT-v2—for the

enhanced recognition of cell tracks as a whole by the identification

and improvement of various sources for track fragmentation [10]:

(i) detection of spreading cells with low contrast and (ii) optimization

of the gap size parameter value, which defines the acceptable number

of missing cell positions between fragments of the same track. The

enhanced track recognition in AMIT-v2 yielded a significant increase

in performance over AMIT-v1; for example, the average length of cell

tracks was increased by more than a factor 2 [10].

However, a third source of track fragmentation has not yet been

addressed: high cell densities can lead to frequent cell–cell contacts

that then appear as transient clusters in image sequences. Splitting

these clusters inevitably results into occasional mismatching of track

fragments when trying to resolve the composition of the cellular clus-

ter. The difficulty with this source of error is that it cannot be solved

by fine-tuning the parameters, because it is inherently related to the

nature of the implemented segmentation algorithm. In previous versions

of AMIT, cell segmentation relied on a Gaussian mixture model (GMM)

in the space of variances of pixel intensities in space and time. For exam-

ple, variances in the pixel intensity are low in space and time for back-

ground pixels, whereas pixels associated with moving cells strongly vary

both in their spatial and temporal intensities. This ML-supported image

analysis is very well suited for the tracking of label-free cells with a high

degree of morphological variability as individual objects. However, the

analysis is less well-suited for accurate segmentation of cell borders and

for splitting clusters of cells; one of the reasons being that this pixel-

based approach may require down-sampling of high-resolution image

data to limit computation times. As a consequence, low-contrast periph-

eral structures, such as lamellipodia, can give rise to track fragmentation

due to missing nearest-neighbor associations between objects in consec-

utive image frames as well as incorrect estimation of the cell centroid.

Additionally, under-detection of cellular processes may induce distortions

in the quantitative analyses of cell morphology.

To prevent these shortcomings and to ensure a more accurate

follow-up analysis, we have revised this algorithm once more. The

revised version, which we refer to as AMIT-v3, includes an entirely

new segmentation approach that can accurately segment label-free

cells in high-resolution transmitted-light bright-field microscopy

images at significantly reduced computation times.

2 | MATERIALS AND METHODS

2.1 | Segmentation and tracking in previous
versions of AMIT

We advanced AMIT-v1 [8, 9] to AMIT-v2 [10] by improving the

recognition of whole tracks. We briefly summarize the segmentation

and tracking of cells by the following six steps:

1. Regionsofinterest (ROIs) are detected and assigned by a GMM

according to the spatiotemporal variances of pixel intensities to the

classes: ‘background’, ‘static objects’,or ‘moving objects’.
2. All ROIs of the class ‘moving objects’ are distinguished by a

second GMM based on their area into one of the three classes:

‘noise’, ‘single cells’, or ‘cell clusters’.
3. Cellscandynamically change their morphological state, for example,

appearing as spreading cells [11, 12]. In the previous step, this

morphological state is observed to be associated with low contrast

‘static objects’ and altered motility characteristics. Spreading cells

are therefore segmented by an additional procedure, similar to step

2, where input images are generated from a disjunction of masks

for ‘static objects’ and ‘moving objects’. All ROIs that are detected

in this way, but are not obtained from step 2, are considered and

treated as spreading cells.

4. AllROIsof the classes ‘single cells’ and ‘spreading cells’ are tracked

across consecutive time frames by the nearest-neighbor association

(NNA) approach.
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5. ROIsof the class ‘cell clusters’ are split into single cells via ellipse

fitting, where the number of cells in a cluster is inferred from the

area size of the cluster under consideration and the number of its

overlapping single cells in the preceding and/or subsequent time

frames. The tracklets of the split cells are joined to the tracklets of

their corresponding single cells.

6. Celltracklets are linked into longer tracks by optimizing a distance

graph. A user-defined parameter for the maximum gap size limits the

acceptable number of missing cell positions between fragments of

the same track.

2.2 | Revision of the segmentation algorithm in
AMIT-v3

The detection of ROIs is extended by a newly designed segmentation

approach that forms the core of AMIT-v3. This algorithm works with

single-channel grayscale images, processes every frame of a video

individually, and consists of four steps:

1. image contrast enhancement using top- and bottom-hat

transformations,

2. suppression of background variation by an adaptive Wiener filter,

3. detection of regions with relatively high intensity variation by uti-

lizing a standard deviation filter followed by a binarization with a

hard threshold,

4. morphological filtering to suppress objects on the frame borders,

remove small objects, and smooth object contours by erosion and

opening.

The procedural independence of single frame processing allows

for the parallel processing of images.

The intermediate results of the segmentation process are shown in

Figure S1. The detailed descriptions of the applied operations can be

found elsewhere [13]. The binarization threshold as the most critical

parameter can be adjusted using a visual tool accessible in the activated

debug mode. The parameters of other filters operators (except the Wiener

filter, see Table S1) can be changed via configuration file. Current default

parameters allow acceptable segmentation (see Section 3) for bright-field

microscopy images with a resolution �0.4 μm/pixel. To increase the preci-

sion of the segmentation for a particular experimental setup, fine-tuning

of these parameters can be done with manually segmented data. An

example of such optimization is shown in the Appendix S1.

AMIT-v3 can deal with situations where imaging dishes contain

structural elements, for example, grid lines, which need to be removed

in order to avoid segmentation artifacts. Detailed information on this

removal of grid structures is provided in the Appendix S1.

2.3 | Revision of the tracking algorithm in AMIT-v3

After revision of the segmentation algorithm, we altered the concep-

tual dependence of tracking in previous AMIT versions on the object

type, that is, on whether the object is a single non-spreading cell, a

single spreading cell, or a cluster. This revision was necessary, because

the GMM that classifies objects based on their area occasionally

confuses spreading cells with cell clusters. In addition, it may occur

that two or occasionally more cells overlap and cannot be separated

from each other by the image processing methods implemented in

AMIT-v2, which can lead to erroneous identifications. To address

these situations and improve the detection of tracks as a whole, we

implemented a new method in AMIT-v3, allowing the user to choose

via a configuration file between the new cluster detection method

and the old GMM-based approach.

The new cluster detection method in AMIT-v3 is based on the

fusion-and-fission-tracking of ROIs and is organized as follows: All

frames of a video are analyzed one after the other in subsequent

pairs: (1st, 2nd), (2nd, 3rd), and so on. Within each pair of frames, the

predecessors-successors relationship for each segmented ROI is ana-

lyzed and recorded. We consider a ROI as a cluster, if (i) it overlaps

with at least two ROIs from the previous frame and (ii) its size of inter-

section with each of them exceeds a certain threshold that is defined

by the user. The choice of this threshold depends on the time resolu-

tion of time-lapse imaging as well as the activity of the cells. This

allows preventing false overlap detections for data with low time res-

olution (see Figure S2). Each joining or splitting event leads to an ID

change for the current ROI. The result is a set of tracklets in which

each object is assigned a type, that is, a ‘single cell’ or a ‘cell cluster’.
Based on this information, a map of detected clusters is generated for

each frame. A second set of cluster maps is produced by the same

sequence of operations but for the images in reversed order. In the

end, the final maps of clusters are generated for each frame by com-

bining the clusters identified in the forward and backward maps.

We illustrate this algorithm using synthetic examples. In the initial

step, every object in the first frame is detected and labeled by a

unique ID resulting in a label matrix L0 (Figure 1(A)). The maximal ID

value for this frame is stored in a variable countIDs to count the num-

ber of unique tracks. In addition, the list of pixels of each object with

the corresponding ID is collected and stored in the structure objList0.

In the next step, the same sequence of operations is applied to

the second frame and the results are stored in the corresponding label

matrix L1 (Figure 1(B)) and list objList1. Object labels in L0 and L1 are

independent in this step. Next, for every object on L1 the inter-

section (Isc) with objects from L0 is analyzed and informs the decision

about the current object's ID, because several different outcomes are

possible (Figure 1(C), (D)). If Isc is empty (case I), the value of countIDs

is incremented and the ROI receives an ID = countID. This case corre-

sponds to the first appearance of a cell within the imaging area. A

new ID is also assigned if Isc encloses at least two elements with ID>0

(case III), which is indicative for clustering of cells. If Isc consists of

one element only (cases II and IV), a respective ROI on L1 inherits the

ID of this element. Finally, the uniqueness of the IDs on L1 is checked.

If more than one ROI has the same ID, which is indicative for cluster

splitting (Figure 1(D), case IV), then every ROI receives a new ID

(Figure 1(E)) and the value of countIDs is incremented. During this

analysis, the information about clustering and cluster splitting events
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is stored in the list objList1. Later it will be combined with objList0 to

have a temporary database of all ROIs. This step is repeated for each

pair of consecutive frames. Then, all pixels of ROIs identified as clus-

ters are placed as foreground in corresponding pre-initialized empty

frames. In the same way, the maps of the detected clusters are built

for the image sequence in backward order. The algorithm provides an

image for each frame, in which all already segmented ROI are identi-

fied as single cell or cluster.

In the last step, the inclusive disjunction (logical OR) of each map

of the forward projection is formed with the corresponding map of

the backward projection to obtain the final map of clusters for each

frame (Figure S3). In addition, the number of cells forming a detected

cluster is recorded.

2.4 | AMIT-v3 applies hierarchical cluster splitting
based on watershed segmentation

Previous versions of AMIT could not deal with splitting clusters con-

sisting of more than just a few cells. This resulted in artifacts

prohibiting the recognition of whole tracks, which prevented a correct

quantitative analysis. The reason for this issue is associated with the

incorrect assignment of cell IDs in two consecutive frames, which was

based on a bipartition graph, that is, cells within a cluster were associ-

ated to those cells that were the closest in the previous frame. We

observed that artifacts are likely to occur for clusters of more than

four cells. In cases where the assignment between a single cell and its

predecessor objects was incorrect, the track ends abruptly, and a new

track starts in the next frame.

To prevent the occurrence of incorrect assignments of cells

within a cluster, we followed an entirely new approach in AMIT-v3.

We developed a hierarchical algorithm consisting of several steps

(Figure 2). An important requirement for this approach is the accurate

detection of clusters as well as the correct determination of the num-

ber of cells within each cluster. The number of cells within a cluster

forms the basis for further splitting by watershed segmentation. Every

cluster is processed independently within an area restricted by the

corresponding bounding box using the cut-out of the original gray-

scale image. The three steps of the hierarchical cluster splitting are

detailed in the subsequent sections.

2.4.1 | Step 1: Single-cell segmentation

The first step of hierarchical cluster splitting deals with the analysis of

cases where boundaries between cells within a cluster are easily dis-

tinguishable. On the cut-out of the respective grayscale image, con-

trast enhancement will be performed to emphasize the boundaries of

every cell. To restrict the noise level, Gaussian filtering is applied,

followed by Canny edge detection of the cell boundaries and

F IGURE 1 The scheme of cluster detection for two consecutive frames. (A) The first frame with all ROIs labeled (L0). (B) The second labeled
frame (L1). (C) Intersection of the two frames, where only object contours are shown for the second frame. (D) The second frame with object IDs
inherited from the first frame. (E) Final labels for the second frame after enforcing uniqueness of the object IDs. The ROI with ID = 6 will be
identified as a cluster. Roman numbers I–IV indicate different cases for ID assignment
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morphological closing and opening operations to fill holes and to

remove small artifacts. To ensure that the detected objects overlap

with the original binary cluster detection region, a binary overlap is

performed between these two images. At this point, the number of

underlying objects resulting from the single-cell segmentation will be

compared with the number of known cells for the corresponding clus-

ter. In case the two numbers are equal, watershed segmentation will

be executed with seed regions as obtained from the single-cell seg-

mentation (see Figure 2, left column).

2.4.2 | Step 2: Distance transformation

In cases where the membrane of the respective cells within a cluster

is blurred or not detectable, single-cell segmentation alone is not

enough to obtain the correct number of seed regions. Sometimes

only, a tiny connection remains between two or more cells within a

cluster. For these and all other remaining connections, where the

number of seed regions does not match the known number of single

cells within a cluster, a distance transformation is applied. This proce-

dure requires a binary image as input and computes for each fore-

ground pixel the distance to the next background pixel with an

appropriate distance metric. In order to substantiate step 2 qualitatively,

the distance transformation is performed on both the original binary

image and the resulting mask from step 1. The results of the two parallel

processes usually differ only very slightly and usually reach the required

number of markers, so that step 2 is aborted, and a watershed segmenta-

tion is performed. In AMIT-v3, we used Euclidean distance metric and

then normalized all distances relative to the maximum distance. Next, we

thresholded all distances by setting the associated pixels to background

pixels, if the underlying distance from the foreground to the next back-

ground pixel is shorter than a certain threshold. Here we chose a thresh-

old of 40% of the normalized distances. For some clusters, especially for

those that are circular-shaped, this step must be repeated until the num-

ber of seed regions matches the number of known cells within a cluster,

or until the number of repetitions reaches a predefined maximal number.

In most cases, the required number of seed regions for a cluster is

achieved by the distance transformation and the splitting process can be

completed (see Figure 2, central column).

2.4.3 | Step 3: Random seed region generation

However, in some cases, the required number of seed regions may

not be obtained, and, in these cases, we randomly generate seed

regions according to the known number of cells within the cluster

F IGURE 2 Pipeline of the
hierarchical cluster splitting based
on watershed segmentation. The
input image is obtained from an
overlay of the binary mask with
the original grayscale image. The
process is aborted when the
number of seed regions that can
be clearly distinguished

corresponds to the known
number of single cells within the
underlying cluster. These seed
regions are then used for
watershed segmentation and
allow for the cluster splitting
[Color figure can be viewed at
wileyonlinelibrary.com]
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under consideration (see Figure 2, right column). For up to five known cells

in a cluster, the random seed regions are extracted from the top/bottom/

right/left-most point and the center point inside the cluster. If there are

more cells in the cluster, the additionally required seed regions are

extracted completely randomly from the cluster. This procedure is, how-

ever, just an exception handling if the conventional methods do not work

and was rarely necessary for the data analyzed in this work.

Once all seed regions have been initialized, we perform cluster

splitting through the watershed segmentation. The obtained seed

regions are used as markers for a marker-based watershed segmenta-

tion, which is performed on the original binary mask of the current

cut-out image. This results in splitting the cut-out mask into as many

regions as there are cells in the cluster, as known from the cluster

detection algorithm. Finally, the split cut-out image is placed at its

respective position within the original full-size image.

In previous versions of AMIT, handling of single cells and clusters

was done differently. For cell clusters, a graph-based splitting and

tracking was performed, which occasionally lead to artifacts in situa-

tions with more than four individual cells within a cluster. In contrast,

a reliable and simple NNA method was used for single cells. Our new

approach is based on splitting all existing clusters into single cells. All

single cells are then tracked by the NNA method, making the error-

prone graph-based approach obsolete.

2.5 | Statistical analysis

For the statistical analysis of the differences between the two algo-

rithms AMIT-v2 and AMIT-v3 as well as between the three algorithms

MU-Lux-CZ, SegNet and AMIT-v3, we applied the Quade comparison

test with post-hoc analysis [14]. We apply this test, because all the data

that need to be compared have a non-replicated complete block design,

where the algorithms define groups in the data and blocks are formed

either by individual cells in the context of segmentation or by videos in

the context of tracking. The null-hypothesis of this test is that, apart

from individual properties of the analyzed objects (corresponding to

the individual cells in the context of segmentation or videos in the con-

text of tracking), the location parameter of an analyzed property distri-

bution is the same for each algorithm. For comparisons of more than

two groups, the obtained p values were adjusted by the Holm method

[15]. All operations were done using the R package “PMCMRplus” [16].
The pairwise dissimilarity between segmentation characteristics

of AMIT-v3 in comparison to the other algorithms were computed

using the R implementation [17] of Hedges' g effect size statistics [18]

for paired measurements [19]. The ranges of effect size magnitudes

are referred to as negligible j g j <0:2 , small for j g j <0:5 , medium

for j g j <0:8 and large for j g j ≥0:8 [20].

2.6 | Data and software availability

The data set in this study comprises seven videos of polymorphonu-

clear neutrophils (PMN) obtained by bright-field time-lapse microscopy,

which is provided as Supplementary Data Set 1 for download at:

https://asbdata.hki-jena.de/BelyaevPraetoriusEtAl2020_CytoA/Supple

mentary_Data_Set_1.zip.

Each video comprises 1 h of recording and includes a manually

tracked ground truth, which was generated in our previous study [8]. Man-

ually segmented images for 300 cells from three different videos with vari-

ous average intensities are provided as Supplementary Data Set 2 for

download at: https://asbdata.hki-jena.de/BelyaevPraetoriusEtAl2020_Cyt

oA/Supplementary_Data_Set_2.zip.

The third version of our Algorithm for Migration and Interaction

Tracking (AMIT-v3) is available as open-source C++ implementation

from GitHub: https://github.com/applied-systems-biology/amit.

Results of the Cell Track Challenge can be found at the corresponding

website: http://celltrackingchallenge.net/participants/HKI-GE/.

3 | RESULTS

To evaluate the performance of AMIT-v3, we present the results of a

quantitative comparison with AMIT-v2 regarding the accuracy of seg-

mentation, capability to detect every ROI, and the tracking quality.

The video data for migrating PMN at various cell densities (see

Figure S4) are provided as Supplementary Data Set 1, and the evalua-

tion metrics are presented in Figure 3. The choice of parameters for

segmentation and tracking algorithms was determined based on two

videos (1 and 4) that serve as training data sets for our evaluation.

Video 4 contains the most common special cases (spreading and non-

spreading cells, colliding cells and small clusters), while video 1 con-

tains the grid lines (hemocytometer grid) mentioned in the methods

chapter. Therefore, five out of the seven videos for which we pres-

ented evaluation results can be counted as a test set.

The segmentation accuracy was evaluated by comparing the

results generated by AMIT-v2 and AMIT-v3 with those obtained from

manually segmented images. The manually segmented images repre-

sent the ground truth (GT) data and consist of 300 cell images from

three different videos with various average intensities (Supplementary

Data Set 2). To make the GT data set as diverse as possible and to

avoid self-correlation, every 10th–15th frame from each set was cho-

sen corresponding to time gaps between images of about 2 min for a

time step of 10 s between consecutive frames. For the quantitative

characterization of the segmentation accuracy, we computed the fol-

lowing three complementary measures: Jaccard index, relative over-

detected area (OA) and relative under-detected area (UA). The com-

putation of these measures is depicted in Figure 3(A) indicating that

high values for the Jaccard index and low values for OA and UA are

desirable. As can be seen in Figure 4, the segmentation accuracy as

measured by the Jaccard index for AMIT-v3 is significantly higher

compared to AMIT-v2, which is driven by UA values being much

lower for AMIT-v3 with a large effect size (see Table S3). In Figure 5,

we show a typical example for the segmentation of a single cell in sev-

eral subsequent frames. It is clear that AMIT-v3 provides more consis-

tent high-quality results and allows the extraction of morphological

information with only minimal distortions. Based on visual inspection
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in comparison with the ground truth segmentation and the segmenta-

tion provided by AMIT-v3 (see Figure S11), it can be concluded that

the values for OA and UA will further decrease with increasing image

resolution.

In addition to the improved cell shape recognition, our new seg-

mentation method detects more ROIs in every video, which is indica-

tive for the increase of the total coverage ratio (Figure 6(A)), that is,

the ratio between a number of GT points associated with any ROI and

a total number of GT points. There were only a few non-associated

points per video that typically are scattered near the frame borders.

For videos 1 to 3, the majority of missing points are localized on grid

lines, because the separation of cells from grid lines is not always suc-

cessful. This can also be seen in the aggregated plots of detected posi-

tions in Figure S5.

Next, we evaluated the performance of cluster detection that is

based on the fusion-and-fission-tracking of ROIs (see Section 2)

instead of the area-based GMM classifier. It was done by first deter-

mining GT clusters as ROI on segmented images enclosing at least

two GT points. Then, we compared this data with the output of the

cluster detection routine and counted the number of clusters that

were truly positive, falsely positive and falsely negative detected.

Based on these values we calculated the precision and recall charac-

terizing the performance of the cluster detector. As can be seen in

Figure 6(B), for most videos, the majority of clusters were detected

correctly. We only encountered issues with detecting and splitting the

clusters that (i) exist from the first frame or until the last frame or

(ii) involve complex cell interactions as the one exemplified in

Figure S6.

We then compared the results produced by the tracking proce-

dures of AMIT-v2 and AMIT-v3 relative to the GT data. While existing

evaluation approaches do only allow for measuring the performance

of the tracking part [10, 21], we here designed a new tracking evalua-

tion tool, which enables validation of the trajectory reconstruction

and the segmentation simultaneously. The procedure is based on the

fact that for perfect tracking, every segmented ROI at every time

point should enclose only one GT track point. There are three input

arguments: GT tracks, tracking data with the list of associated ROI

pixels, that is, the system tracks (ST) generated by the two versions of

AMIT, and a 2D array of zeros (an empty frame L) with the size equal

to the single frame size. All data from the first to the last time point

are processed iteratively in the following way: For each time point, all

entries of ST with respective time values are selected. Then, the con-

vex hulls of the corresponding ROI in L are filled by their IDs. After-

wards, every GT point for the current time frame is associated with a

ST or the background (ID = 0) as depicted in Figure 3(B). Next, all

pixels in the temporary label image L are set to zero and the process is

repeated for the next time point. The result is a table of ST-GT associ-

ations, which allows computing two quality measures for the tracking

results [10]: (i) the track fragmentation error (TFE), which is the aver-

age number of ST associated to a single GT track, and (ii) the track

F IGURE 3 Evaluation metrics for the quantitative validation of AMIT-v3. (A) Schematic calculation of the segmentation accuracy measures:
Jaccard index (J), relative over-detected area (OA) and relative under-detected area (UA). GT stands for manually annotated ROIs and Seg
represents the automated segmentation. (B) Scheme of assignment of GT tracks and system tracks (ST) for a single video frame. The background
pixels are assigned ID = 0

F IGURE 4 Results of the evaluation of segmentation accuracy for
two test videos. The distributions represent the accumulation of GT
objects. The length of whiskers corresponds to one interquartile
range. All characteristics are significantly different (p � 10�6)
between AMIT-v2 and AMIT-v3. The effect size for the Jaccard index
and UA is large, whereas for OA it is negligible (for details see
Sections 2 and 2.5 and Table S3)
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merging error (TME), which indicates the average number of GT tracks

associated with single ST. For a fair comparison of the two AMIT ver-

sions, we used convex hulls of segmented ROIs within the procedure

of associating ST and GT. This allows eliminating the differences in

cases where AMIT-v2 detects only peripheral structures of cells (see

Figure 5, second column).

For a perfect tracking procedure, every ST track must be associ-

ated to only one GT and must have the same duration as the entire

GT track; thus, perfect tracking would yield: TFE = 1 and TME = 1.

As shown in Figure 6(A), the average TFE increases for AMIT-v3.

There are two sources of that type of error: clusters that enter and

leave the field of view as such (Figure S3) and clusters composed of

overlaying cells (for an example see Video S1). For the latter case, the

3rd step in the cluster splitting procedure was applied (see Section 2),

which implies random seed regions placement for the subsequent water-

shed segmentation. Of course, random seed regions for the cluster split-

ting algorithm cannot guarantee correct cluster splitting. Also, if long-

lasting clusters exist for an extended time, the splitting procedure gener-

ates ROIs that might not overlap in consequent frames. As a result, the

tracking procedure generates several short tracks for cells within such a

cluster. At the same time, with AMIT-v3 we were able to acquire tracks

with comparable or better average TME (Figure 6(A)) compared to

AMIT-v2. In addition, due to improved cell detection in AMIT-v3, we

were able to detect substantially more track fragments (see Figures S7

and S8). All these improvements make the tracking results of AMIT-v3

more reliable and more accurately reflecting the reality.

F IGURE 5 Comparison of single cell
segmentation within four consecutive
time frames (1–4). In the upper row, the
original images are shown. The middle
row represents the original images in
pseudocolors after contrast
enhancement. In the bottom row,
segmentation results of AMIT-v2 (solid
blue masks) and AMIT-v3 (yellow

outlines) are shown for visual comparison
exemplifying the improvement by the
new segmentation algorithm

F IGURE 6 (A) Comparison of the object detection ability by the total coverage (TC) rate and tracking performance by the track merging error
(TME) and the track fragmentation error (TFE). The statistical difference between AMIT-v2 and AMIT-v3 for TC has p-value p = 0.013 and for
TFE p = 0.065, while this is only p = 0.265 for TME for the test data (videos 2, 3, 5–7). For details see Sections 2 and 2.5. (B) Cluster detection
quality of AMIT-v3 in terms of recall and precision
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Going beyond the comparison between AMIT-v3 and AMIT-v2,

we took part in the Cell Tracking Challenge (CTC: http://

celltrackingchallenge.net/) [3, 22], where various microscopy data sets

generated by different imaging modalities are provided as training and

test sets. For the training set a manual annotation is provided by the

CTC organizers as ground truth, which was obtained via manual anno-

tation by independent experts with a background in biology. Once an

algorithm's parameters have been adjusted utilizing the training set,

the tracking results for the test set can be submitted to the CTC orga-

nizers for evaluation. The algorithm's performance is evaluated for cell

segmentation and tracking by three generalized measures ranging

from 0 (lowest) to 1 (highest) scores. These measures are [21]:

(i) segmentation accuracy (SEG), which is based on Jaccard index and

indicates how well the segmented regions of the cells match the

actual cell boundaries, (ii) detection accuracy (DET), which scores

detection and linking errors, and (iii) tracking accuracy (TRA), which

evaluates the ability of the algorithm to track objects over time. For

the evaluation of AMIT-v3 we have chosen two data sets that are

referred to as Fluo-N2DH-GOWT1 and PhC-C2DH-U373, respec-

tively, and all values given below were taken from the CTC website in

March 2021.

The first data set on GFP-labeled mouse stem cells was recorded

with a time step of 5 minutes over 92 frames and with a spatial reso-

lution of 0.24 μm per pixel. According to the CTC organizers, the per-

formance of AMIT-v3 on the test data yielded the following values for

the three performance measures: SEG = 0.820, DET = 0.837 and

TRA = 0.833. Even though these values are lower than those for the

best three algorithms in the CTC (with performance measures

between 0.91 and 0.98), this outcome can be easily explained by the

following main reason: The mother-daughter association of dividing

cells is not captured by AMIT-v3, as this algorithm was developed for

migration scenarios of non-mitotic cells and thus without capturing

mother-daughter associations.

We applied AMIT-v3 to the second data set of the CTC, which

contains glioblastoma astrocytoma U373 cells that were recorded by

transmitted-light phase-contrast microscopy with a time step of

15 minutes over 115 frames and with a spatial resolution of 0.65 μm

per pixel. In this case, the CTC organizers evaluated the results of cell

tracking on the test data by the performance measures with values:

SEG = 0.615, DET = 0.981 and TRA = 0.978. The best three algo-

rithms in the CTC have values for the segmentation accuracy

SEG = 0.922–0.924 and the relatively low score for AMIT-v3 is

directly related to the relatively low resolution of the images, which in

some cases led to low intensity variations between the cell contour

and the background. For the training set we utilized parameter values

that prevent the over splitting of cells; however, these parameter

values must have led to false positives associated with background

pixels that were erroneously assigned pixels of cells. On the other

hand, AMIT-v3 performed very well on the cell detection and tracking

as can be seen from the high values of DET and TRA being close to

those for the best three algorithms in the CTC with ranges

DET = 0.984–0.991 and TRA = 0.979–0.982 for this data set of non-

dividing cells.

Next, we performed the comparison in a reversed way by apply-

ing two established algorithms to our in-house video data:

(i) Algorithm MU_Lux-CZ [23], which combines a marker-controlled

watershed transformation with a convolutional neural network (CNN)

and was rated one of the best algorithms in the CTC challenge.

(ii) Algorithm SegNet [24], which is a widely used deep convolutional

encoder-decoder architecture for image segmentation. Both algo-

rithms are learning-based approaches and necessarily require training

data. These were obtained by manually annotating 300 cells that were

randomly chosen from three different videos of our in-house data. As

we used these three videos also for the evaluation of the algorithms'

performance, it needs to be stressed that the two neural network

approaches should have a clear advantage compared to AMIT-v3,

because for the latter the training set includes cells from only one

video, whereas in the training of the neural networks we used the

300 annotated single cells from three different videos. We trained

the two algorithms individually for each of our three in-house video

data. To prevent overfitting associated with the small amount of train-

ing samples, we performed data augmentation during the training pro-

cess. We then compared both algorithms with AMIT-v3 (see Figure 4

and Figure S13). The Jaccard index as the most import metric for an

algorithm's segmentation performance reveals that AMIT-v3 per-

formed significantly better (p � 10�5) than MU-Lux-CZ (with large

effect size) and SegNet (with medium effect size) (see Figure S13A,

Table S3). The relatively high Jaccard index for AMIT-v3 is mainly due

to the relatively low OA value. In addition, visual inspection of the

results revealed that the applied learning-based methods either

completely miss some ROIs, as is the case for MU-Lux-CZ, or split a

single ROI into several ROIs, as frequently observed for SegNet.

A quantitative analysis reveals that MU-Lux-CZ overlooks roughly

20% of the cells from the training set, whereas SegNet splits about

40% of the cells into more than one ROI (see Figure 13B).

4 | DISCUSSION

This computational article describes a method of cell segmentation

that considerably improves our algorithm for migration and interaction

tracking (AMIT) with regard to tracking of label-free immune cells in

bright-field time-lapse microscopy images. A recently identified source

of track fragmentation is associated with high cell densities leading to

frequent cell–cell contacts that then appear as transient clusters in

image sequences [10]. The splitting of these clusters inevitably results

in occasional mismatching of track fragments when trying to resolve

the cellular cluster composition. The difficulty with this source of error

is that it cannot be solved by fine-tuning the algorithm parameters,

because it is inherently related to the nature of the implemented seg-

mentation algorithm in previous versions of AMIT. The new algorithm

for cell segmentation in AMIT-v3 is associated with a noticeably

increased Jaccard index (see Figure 4) and the fast and robust detec-

tion of virtually all cells within the field of view. As a consequence,

substantial improvement at the level of cell segmentation enabled us

to simplify the subsequent tracking procedure by skipping the
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previously used optimization procedure for a distance graph and leading

to a reduction of the TME in AMIT-v3 (see Figure 6(A) and Figure S9A).

Fragmentation of tracks into seemingly independent tracklets makes

it impossible to follow cells over sufficiently long periods of time to study

particular interaction events at the individual cell level. This prohibits the

identification and quantification of cause-effect relations, for example, in

the context of rare events like dumping of pathogens that were

phagocytosed by PMN [25] or in order to quantitatively distinguish the

immune response against various pathogens in a comparative fashion

[26]. In this regard, the newly implemented cell segmentation in AMIT-v3

offers entirely new possibilities for advanced bioimage analysis of cell

characteristics [27]. In the future, this feature needs to be extended for

studies of interactions between immune cells and pathogens, because

the qualitative and quantitative impact of labeling cell membranes was

recently shown in the context of host-pathogen interactions [4]. While

this analysis was done only for endpoint images of phagocytosis assays,

we expect that a segmentation approach similar to the Hessian-based

filtering [28], which has been shown to be successful in large-scale

phagocytosis studies [29], can also be applied to host-pathogen

interaction dynamics in AMIT. Another option for tracking host-pathogen

interactions in a label-free manner may be pursued by the application of

deep learning methods.

Once the whole tracks of migrating cells are reconstructed by AMIT,

various possibilities for further quantitative analyses exist [30], such as

computing a range of measures to distinguish [31–36] and model [34,

37–40] migration behavior. Moreover, the enhanced segmentation by

AMIT-v3 enables a more accurate analysis of cell shape dynamics, for

example, based on Fourier transformation of the cellular segmentation

outline in 2D [41, 42] or spherical harmonics transformation of the cell

surface in 3D [43].

Thus, AMIT-v3 yields whole tracks over long periods of time and

allows extracting cell morphology at each time step. Remaining errors in

the cell tracking are rare, but may be the result of long-lasting clusters of

many cells. This limitation is due to multiple fusion and fission of

interacting cells that are in close vicinity (for an example see Video S1),

which makes it difficult—even by visual inspection for identifying ground

truth tracks—to determine the correct number of cells in such clusters

and to split them. To tackle these exceptional situations, we implemented

a heuristic approach based on hierarchical cluster splitting method.

However, it might still not be possible to correctly estimate the position

of every cell within a cluster. If this turns out to be the case, we

recommend excluding long-lasting clusters based on the list of clusters

that is provided by AMIT-v3. Another limiting factor is associated with

clusters that exist from the first frame or until the last frame (see Figure

S6). These will be detected as single cells by the design of the cluster

detection procedure. Generally, in order to avoid that these exceptional

situations occur, it is recommended that image acquisition will always be

performed with the technically highest possible temporal and spatial

resolution. As high-resolution imaging will improve the segmentation

accuracy, this will be indirectly beneficial for the cluster detection and

splitting (see Figure S9B and

C). This recommendation is supported by the fact that the

computational performance of AMIT-v3 is tremendously improved

compared to previous versions of AMIT. For the same hardware con-

figuration (Intel Core i7-4790, 16 GB RAM) we observed computation

times to be reduced by a factor of �600 per video. Since memory

resources are not increased in AMIT-v3, this opens the possibility to

analyze high-resolution images on average workstations or even lap-

tops. The main reason for this improvement over previous versions of

AMIT as well as other recently published algorithms [44–46] is that

ROI segmentation in AMIT-v3 does not anymore rely on a computa-

tionally expensive pixel-wise approach. Thus, high-throughput experi-

ments may be performed with high resolution and will still be

automatically analyzed within acceptable computation times. Another

factor which contributes to high performance of AMIT-v3 is that it is

implemented in the machine-oriented programming language C++.

This will also allow for the possibility to integrate AMIT into high-

performance frameworks like MISA++ [47], which combines highly

efficient C++ algorithms with user-friendly plugins for ImageJ appli-

cation via standardized components for parallelization and handling of

data and parameters.

In summary, AMIT-v3 is capable to track cells in 2D image data

that contain fluorescently labeled as well as unlabeled cells gener-

ated by various microscopy techniques, such as bright-field, differen-

tial interference contrast or phase contrast imaging. Moreover, our

algorithm can be adjusted to any experimental data set with relative

ease for two reasons: (i) AMITV-v3 does not require data annotation,

which is mandatory for learning-based approaches [5] and (ii) AMIT-

v3 requires only two main parameters that can be interactively

adjusted, that is, the thresholds for segmentation and for the Canny

filter during tracking. Since AMIT-v3 was developed for monitoring

migration scenarios [8, 10] as well as host-pathogen confrontation

assays [9] of non-mitotic cells, we did not expect it to achieve a top

ranking in the CTC challenge on datasets where mother-daughter

association of dividing cells occurs, although it still performed satis-

factorily. Furthermore, AMIT-v3 proved to be the best method on

the in-house data compared to two established ML-based

approaches. These features make AMIT-v3 an excellent choice for

exploratory analyses and experiments with limited amounts of image

data for unlabeled cells.
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a b s t r a c t

Rapid identification of pathogens is required for early diagnosis and treatment of life-threatening blood-
stream infections in humans. This requirement is driving the current developments of molecular diagnos-
tic tools identifying pathogens from human whole blood after successful isolation and cultivation. An
alternative approach is to determine pathogen-specific signatures from human host immune cells that
have been exposed to pathogens. We hypothesise that activated immune cells, such as neutrophils,
may exhibit a characteristic behaviour — for instance in terms of their speed, dynamic cell morphology
— that allows (i) identifying the type of pathogen indirectly and (ii) providing information on therapeutic
efficacy. In this feasibility study, we propose a method for the quantitative assessment of static and mor-
phodynamic features of neutrophils based on label-free time-lapse imaging data. We investigate neu-
trophil activation phenotypes after confrontation with fungal pathogens and isolation from a human
whole-blood assay. In particular, we applied a machine learning supported approach to time-lapse micro-
scopy data from different infection scenarios and were able to distinguish between Candida albicans and
C. glabrata infection scenarios with test accuracies well above 75%, and to identify pathogen-free samples
with accuracy reaching 100%. These results significantly exceed the test accuracies achieved using state-
of-the-art deep neural networks to classify neutrophils by their morphodynamics.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Candida bloodstream infections (BSI) are the most common
form of invasive candidiasis and constitute the fourth leading
cause of nosocomial invasive infections in Intensive Care Units
(ICUs) patients in the US [1]. The study on Extended Prevalence
of Infection in Intensive Care (EPIC II) revealed that the prevalence

of Candida BSI was 6.9 per 1000 patients with an associated mor-
tality rate of around 43% compared to 27% caused by bacterial
BSI [2]. Among hospitalised patients, Candida species present the
most frequent isolated fungal BSI pathogens [3]. In particular, C. al-
bicans and C. glabrata are responsible for the majority of Candida
cases worldwide, where C. albicans is the predominant species with
50% of cases, while C. glabrata is responsible for 15–25% of invasive
Candida infections in the US and Northern Europe [4]. These statis-
tical data imply that methods for the fast and reliable diagnosis are
urgently needed to allow for an early start of targeted treatments.

Various animal models have been used to study invasive Can-
dida infections, such as fruit fly, zebrafish and mouse. In contrast,
human whole-blood infection (WBI) models enable analysing
host-pathogen interactions in a setting similar to in vivo BSI [5].
The human WBI models allowed (i) identifying virulence factors
[6], (ii) analysing immune responses including time-resolved data

https://doi.org/10.1016/j.csbj.2022.05.007
2001-0370/� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
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on immune cell activation and pathogen status [7], and (iii) testing
potential therapeutic approaches [8,9]. We have previously studied
BSI by combining the human WBI model with the quantification of
immune processes by virtual infection modelling [5,10]. In this
context, we found that neutrophils play a central role in the
defence against C. albicans BSI. Moreover, we have performed
extensive comparative analyses for the two species C. albicans
and C. glabrata and found that they are differentially recognised
by neutrophils using live cell imaging combined with automated
image analysis [11–14] and computational modelling [15–18]. This
motivated us to study the possibility of automatically identifying
the type of pathogen in BSI based on neutrophil morphological
properties.

In this feasibility study, we combine the human WBI model
with live cell imaging of primary neutrophils and computational
analysis to extract features that allow us to detect BSI caused by
C. albicans and C. glabrata. The central hypothesis is that (i) neu-
trophils in a human WBI model respond with morphological
changes to the presence of pathogens and (ii) these changes are
pathogen-specific. To advance the development of rapid and reli-
able diagnostic methods, we are investigating the potential of the
automated characterisation of neutrophil activation phenotypes
for human Candida BSI. From a technical point of view, this study
exploits our recent developments regarding the analysis of live cell
imaging data with respect to tracking of unlabelled cells over
extended times [19] and segmenting cells with high accuracy for
dynamical changes of their morphology (morphodynamics) [20].
Features of immune cells under different stimuli that have been
previously studied include (i) changes in cell size [21], (ii) modifi-
cations of membrane topography [22,23] and (iii) variations in the
migration behaviour [24]. Our study utilizes features based on the
cell morphodynamics and provides a fully automated pipeline
based on live cell imaging data of unlabelled primary neutrophils
in order to distinguish the two scenarios of Candida BSI.

2. Materials and Methods

2.1. Ethics statement

This study was conducted in accordance with the Declaration of
Helsinki. All protocols were approved by the Ethics Committee,
University Hospital Jena (permit number: 273–12/09).

2.2. Fungal strains and culture

GFP-expressing C. albicans [5] and C. glabrata [25] strains were
routinely used in all experiments. C. albicans and C. glabrata were
seeded in yeast extract–peptone–dextrose medium (YPD medium:
2% D-glucose, 1% peptone, and 0.5% yeast extract, in water) and
grown overnight at 30 �C and 37 �C, respectively, in a shaking incu-
bator. Both fungal species were reseeded in fresh YPD medium,
grown until they reach the mid-log phase followed by harvesting
in HBSS.

2.3. Whole-blood infection model

To avoid anticoagulation and not influence complement activa-
tion, human peripheral blood from healthy donors was drawn in
Hirudin S-monovettes� (Sarstedt) after informed consent. Whole-
blood infection assay was performed as described previously, using
an inoculum that allows rapid innate immune activation but pre-
cludes unspecific effects on adaptive immune cells [5]. In brief,
HBSS (mock-infected control), C. albicans or C. glabrata were added
in a final concentration of 1�106 fungal cells per 1 ml of whole
blood and then incubated for 1 h at 37 �C on a rolling mixer. After

incubation, samples were used directly for neutrophil isolation
with sequential live cells imaging of neutrophils.

2.4. Isolation of human neutrophils

Untouched neutrophils were isolated from either mock- or Can-
dida-infected blood using MACSxpress Whole Blood Neutrophil
Isolation Kit according to the instructions from the manufacturer
(Miltenyi Biotec). Remaining erythrocytes were lysed for 5 min
with ACK Lysing Buffer (Life Technologies) and purity of neu-
trophils was checked at flow cytometry to be >95% (see Supple-
mentary Fig. 1). For this, neutrophils were stained with mouse
anti-human CD66b antibody (BD Biosciences Cat# 561649, RRID:
AB_10897169) for 20 min at 4 �C and measured with the BD FACS-
CantoTM II system and the BD FACSDivaTM software (both BD Bio-
sciences). In parallel, staining with the appropriate isotype
control antibody (BD Biosciences Cat# 560861, RRID:
AB_10926214) was performed to ensure specificity of antibody
binding. FlowJo10 software was used for analysis. Obtained neu-
trophils were resuspended in RPMI 1640 with 5% heat-
inactivated human serum and used for live cell imaging.

2.5. Live cell imaging and Time-lapse microscopy

Live cell imaging was performed by adding 4�105 neutrophils
isolated either from mock-, C. albicans- or C. glabrata-infected
human blood in a l-dish (ibidi) in a total volume of 2 ml RPMI
1640 containing 5% heat-inactivated human serum. 2.5 ng/ml of
propidium iodide (PI, Sigma) was added into the medium to distin-
guish viable cells from dead ones. PI stains only nucleic acids in
dying cells characterized by leak in the plasma membrane. There-
fore, death of a neutrophil or a fungal cell can be identified in the
video by the respective cell/fungus turning red fluorescent. Neu-
trophils were incubated in an environmental control chamber at
37 �C and 5% CO2. Images were acquired every 7 s with a Zeiss
LSM 780 confocal microscope, which was focused on the bottom
of the dish. Cells behaviour was monitored with a 20x microscope
objective (Zeiss Plan-APOCHROMAT 20x/0.8NA) using a differen-
tial interference contrast (DIC) setting with illumination by
488 nm laser. Image size was 2048 by 2048 px with the scale
0.208 lm/px.

2.6. Segmentation and tracking of neutrophils

For cell detection and tracking we used our Algorithm for
Migration and Interaction Tracking (AMIT, [13,14,19]) in its latest
release of the third version [20] that is available from our GitHub
repository: https://github.com/applied-systems-biology/amit.
AMIT enables automated segmentation and tracking of label-free
cells from microscopy data. In addition, it provides the possibility
to eliminate track segments associated with long-lasting clusters
of cells that may be indistinguishable by eye. This post-
processing procedure is necessary, because the extraction of unbi-
ased information about the morphology of individual cells inside
such clusters is impossible. The maximal possible track duration
is about 30 min corresponding to the 260 frames of recorded video
with a frame rate of about one frame per seven seconds.

2.7. Measurement of neutrophil speed

The instantaneous cell speed was calculated from consecutive
time steps in lm/min for each cell track. These instantaneous
speed values were used to compute the arithmetic mean speed
value per cell. The latter was collected from all cell tracks of a video
as a representative speed value distribution. In addition, for every
video, the set of instantaneous cell speeds was split into two sub-
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sets by a cell morphology detector. As explained in detail below,
this detector distinguishes between cells with non-spreading mor-
phology (N-morphology) and spreading morphology (S-
morphology) and enables to numerically distinguish the measured
neutrophil speed for these two morphology states.

2.8. Extraction of gradient-based cell features

For each frame in a video from time-lapse microscopy, we
applied a morphological contrast enhancement [26] and contrast-
limited adaptive histogram equalisation [27] as a pre-processing
step, followed by gradient detection with the Sobel operator [28]
to compute an intensity gradient magnitude map per image. After-
wards, all values were normalised to the maximal value of the gra-
dient amplitude for a given video (see Supplementary Fig. 2) and
for each previously segmented neutrophil, the value range of
[10th, 80th] percentiles in the pixel intensity was used as a
descriptor of cell surface roughness. This feature is also referred
to as pHG-descriptor, since it is based on the percentiles of the his-

togram for the normalised gradient magnitudes.

2.9. Data set organisation and sampling procedures

After cell tracking and feature extraction, each video was repre-
sented by a track file consisting of a table that contains the descrip-
tion of each cell at every time point. The various analyses of the
video data were then made based on this table.

For the evaluation of the robustness of the N-morphology
detector, we performed Monte-Carlo simulations by randomly
selecting 1.8�103 cells per iteration from every video of the
mock-infected samples. These were used in the calibration set,
while the video data of samples infected by Candida composed
the test set. The number of 1.8�103 cells was chosen, because it
corresponds approximately to the number of cells in the episodes
of the first 5 min of the video with lowest cell concentration.
Including data from each donor was necessary for the compensa-
tion of variations between videos regarding illumination issues
that were not fully compensated during extraction of gradient-
based cell features.

In the population-based analysis of snapshots, information
about each video was split into two parts corresponding, respec-
tively, to the first 42 frames (� 5-minutes-episodes) and the fol-
lowing 218 frames (� 25-minutes-episodes) of a video. Then, for
the N-morphology detector calibration, we randomly selected the
1.8�103 cells from the 5-minutes-episodes of each video of
mock-infected samples. The 25-minutes-episodes composed the
test set and was used for the estimation of spreading cell fraction
in each sample (see subsection 3.3) and instantaneous speed anal-
ysis (see subsection 3.4).

The morphodynamics analysis was performed on the complete
videos (30 min) of Candida-infected samples. In these analyses of
tracked cells, we compared characteristic distributions (see sub-
sections 3.4 and 3.5). In order to reduce the influence of individual
samples we used a fixed number of instances (complete cell tracks
or track fragments) that were randomly selected from each video
in the following way: (i) the characteristics of interest were sorted
in ascending order, where multiway sorting was applied in the case
of more than one descriptor; (ii) the desired number of instances
was derived by generating random indexes from a uniform distri-
bution covering the whole range of the initial vector indices. This
strategy yields statistically representative sampling.

2.10. Detection of cells with N-morphology

For the detection of cells based on specific descriptors, a single-
class classifier was created using the method of Data Driven Soft
Independent Modelling of Class Analogy (DD SIMCA) [29,30],
which is a modification [31] of the classical SIMCA [32] approach.
SIMCA is a well-known tool for pattern recognition in many
research and industrial applications (for example, see [33–38]).
The DD SIMCA method utilises a decomposition of data by princi-
pal component analysis (PCA) [39] for a description of the target
class data structure within a multicollinear feature space combined
with the statistics of two distances that are used to characterise
variability inside the calibration set (see Supplementary Fig. 3).
The first distance refers to the position of an object (the point in
a multivariate feature space which represents a real object) rela-
tive to the model (orthogonal distance, OD) and the second dis-
tance refers the displacement between the projection of the
object onto the model and the centre of this model (score distance,
SD). The statistics of these distances are used to establish two
rules: (i) a decision rule for the detection of extreme/unusual
objects, i.e. objects that do not follow major trends in the calibra-
tion data grasped by the principal components, and (ii) an accep-
tance rule for the classification of new objects. Both rules impose
a comparison of the respective statistics of the distances with
regard to critical values. While the classical SIMCA relies on F-
statistics of OD and utilises parameters of the calibration data set
(number of samples and variables) together with the number of
chosen components in the PCA model for the computation of crit-
ical values, the DD SIMCA employs scaled chi-squared distributions
of OD and SD for the calibration set in the estimation of critical val-
ues. Respecting the data structure makes the latter method more
suitable for statistical unmixing of multivariate distributions of
data.

In the present study, we applied this method in the following
unsupervised way: (i) PCA was performed for the whole calibration
data set comprising cells from mock-infected samples with N-
morphology being the dominant form. The analysis of PCA results
revealed that the first and second principle components are
enough to describe more than 90% of total variation in data on
mock-infected samples (see Supplementary Fig. 3). We therefore
limited the number of principle components in the model to two.
(ii) An outlier border was determined using the outlier significance
level c ¼ 0:01, which specifies the probability that at least one
point from the data will be erroneously considered as an outlier
[30]. (iii) All data points beyond the outlier border were considered
to be outliers and were removed from the calibration data set, i.e.
we performed multidimensional distribution unmixing and
obtained a representative purified population of cells with N-
morphology. This filtered calibration set was then used for the final
model calibration and acceptance area determination. (iv) In the
classification procedure, all data points within the acceptance area
were assigned to be cells with N-morphology, while all other cells
were considered to have S-morphology.

All operations were done using the R package ‘mdatools’ [40].

2.11. Automated classification of infection scenarios

To automatically classify the various infection scenarios, we
applied a two-step procedure: (i) each instance, i.e. a video frame
in the population-based analysis of snapshots or a cell track in
the morphodynamics analysis, was classified by a Bayesian classi-
fier [41] after pre-calibration by a calibration set. (ii) A video was
assigned to a certain infection scenario based on a majority voting
by the individually classified instances.

We used the R package ‘naivebayes’ [42] to perform the Baye-
sian classification (in case of multiple descriptors a naïve form).
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2.12. Comparison of cell characteristics for different infection scenarios

We used the multiple quantile comparison method [43]. This
method utilises a combination of the Harrell-Davis quantile esti-
mator [44] and a bootstrapping to determine the confidence inter-
val (CI) for the difference between quantiles of the distributions to
be compared. The difference in certain quantiles of any two distri-
butions is considered to be significant in frequentist sense at con-
fidence level a.

All computations were done with the R package ‘WRS20 [45].

2.13. Multiple group comparison test

In cases where the data have a non-replicated complete block
design we used the Quade test with post-hoc analysis [46]. This
method is a generalisation of the signed paired rank test for three
or more groups, where the null-hypothesis says that, apart from
donor effects, the location parameter of the analysed property is
the same for each infection scenario. The obtained p-values were
adjusted by the Holm method [47].

All operations were done using the R package ‘‘PMCMRplus”
[48].

2.14. Effect size statistics

To numerically characterise a magnitude of difference between
conditions and be able to compare it between different character-
istics (median fraction of spreading cells per frame and average
speed) we used the common language effect size (CLES), which
expresses the probability that a randomly selected score from
one group will be greater than a randomly sampled score from
another one [49]. The values were computed with the R package
‘canprot’ [50] using empirical probability density functions.

In addition, we computed the difference between distributions
via Hedges g effect size statistics [51] for paired measurements
[52] and computed the standard deviations for each group individ-
ually. For this we used the R package ‘effsize’ [53].

2.15. Confidence intervals for proportions

We applied the method of Wilson’s confidence interval compu-
tation for single proportions [54,55] using the R package ‘PropCIs’
[56]. The input arguments included: (i) confidence level a (proba-
bility of type I error, set to a = 0.05), (ii) total numberH of entities
to be examined and (iii) number of ‘successes’ h. For the interval
estimation of the fraction of cells with morphodynamics that is
considered to be specific for a true infection scenario in a given
sample, h corresponds to the number of such cells among all H
examined cells. See the following sub-section for more details.

2.16. Post-hoc analysis of errors of type II

In addition to Wilson’s confidence intervals we computed the
probability for making an error of type II regarding the evaluation
of two alternative hypotheses about pathogen-specific morphody-
namics. The null-hypothesis corresponds to the statement that a
pathogen-specific morphodynamics does not exist; therefore, frac-
tions of cells with C. albicans- and C. glabrata-specific morphody-
namics are expected to be equal 0.5 in each sample. The
alternative corresponds to the hypothesis that a pathogen-
specific morphodynamics does exist; therefore, observed fractions
of cells with specific morphodynamics for a given infection sce-
nario must be greater than 0.5. For samples where the detected
fraction of cells specific for a given pathogen is less than 0.5, the
probability of error type II for a given set of hypotheses cannot
be computed.

The probability was computed using a one-sample single side
test for proportions [57] as implemented in the R package
‘MKPower’ [58].

3. Results

Our results are based on time-lapse imaging data of live unla-
belled neutrophils, recorded over a period of 30 min with a frame
rate of about one frame per seven seconds (260 frames in total) (for
details see subsection 2.5). These cells were isolated from human
whole-blood infection (WBI) assays (see subsection 2.3) with
either of two Candida species — C. albicans or C. glabrata — and
were compared to neutrophils from mock-infected blood. In total
we have acquired blood samples from 9 healthy donors that were
each subdivided to separately study and compare the three infec-
tion scenarios.

3.1. Neutrophils exhibit morphological signatures induced by
pathogen-interaction in human whole blood

Visual inspection of the video data revealed the existence of two
types of dynamically appearing cell morphologies. In Fig. 1, we
provide a typical example for a neutrophil that dynamically
changes its morphology into the state of a spreading cell (S-
morphology) and back into the morphology of a non-spreading cell
(N-morphology) via a sequence of intermediate states. Thus, in a
first approximation, the cell population C tið Þ in video frame i can
be considered as a mixed distribution of cells composed of two
morphologies: CðtiÞ ¼ SðtiÞ þ NðtiÞ, where SðtiÞ and NðtiÞ denote
the number of cells with S- and N-morphology, respectively, at
time point ti. The fraction of cells exhibiting S-morphology is
defined by.

rðtiÞ � SðtiÞ=CðtiÞ ð1Þ
with 0 � r tið Þ < 1. In agreement with previous findings that pecu-
liar morphological patterns are a sign of neutrophil activation
[23], we observed that cells with S-morphology were only rarely
present (r tið Þ � 1) among neutrophils isolated from mock-
infected blood (see Supplementary video set 1). In contrast, the
occurrence of cells with S-morphology was observed more fre-
quently and for a larger cell fraction after confrontation with either
C. albicans or C. glabrata. This observation motivated us to design a
workflow for the automated identification of neutrophil morphol-
ogy and the quantitative comparison of infection scenarios by the
occurrence of cells with S-morphology.

3.2. Automated classification yields highly robust predictions of
neutrophil morphology

We performed the segmentation and tracking of neutrophils
with our software tool AMIT [13,14], which was recently enhanced
to recognise whole cell tracks [19]) and to additionally extract
morphological information on dynamically changing cell shapes
[20]. In particular, the distinction between S- and N-morphology
of neutrophils required the identification of descriptors that are
sensitive to the size and surface texture of cells and robust against
varying and uneven illumination in the images as well as against
inaccuracies in the cell segmentation. Considering these require-
ments as well as the non-rigidness of neutrophil shapes, two ade-
quate descriptors were identified: (i) the cell’s footprint area and
(ii) the intensity-gradient of segmented neutrophils (for details
see subsection 2.8).

Using these descriptors, we built a one-class classifier for neu-
trophils with N-morphology acting as a novelty detector, i.e. all
cells rejected by the classifier were considered to be cells with S-
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morphology. This approach elegantly circumvents the necessity of
manual distinction between S- and N-morphology for every cell,
which is labour-intensive and could easily result in a bias of the
classifier. Thus, we here use our observational knowledge that neu-
trophils with N-morphology are the predominant type within
mock-infected samples. The one-class classifier corresponds to a
statistical procedure for the unmixing of the morphology distribu-
tion and allows the estimation of r tið Þ for every frame in a video
(for details see subsection 2.10).

The robustness of our classifier regarding estimation of r tið Þ
was checked by performing Monte-Carlo simulations with 103 rep-
etitions, where the N-morphology detector was calibrated using an
equal number of randomly selected cells from each mock-infected
sample (for details see subsection 2.9). This detector was used for
cell classification in videos with neutrophils isolated from C. albi-
cans and C. glabrata WBI. For every cell the received labels, i.e. S-
or N-morphology, were recorded before counting how often each
cell was assigned to be a cell with S-morphology. We then analysed
the statistics of cells being associated with that class in at least one
of iteration during the simulations (Fig. 2). For every infected sam-
ple, more than 80% of such cells received that label 103 times
(Fig. 2, see also Supplementary Fig. 4). This supports the robustness
of the classifier outcome with regard to providing a trustworthy
estimate of r tið Þ. Supplementary video set 2 visualises the classifi-
cation results from a single iteration for various videos.

3.3. Donor variability obscures predictions based on classification by
neutrophil morphology

Based on our one-class classifier, we addressed our hypothesis
that the three scenarios — mock-infection, C. albicans infection
and C. glabrata infection — may be distinguishable by the fre-
quency of neutrophils occurring in the S- or N-morphology. For this
analysis every video was divided into two episodes with durations
of 5 and 25 min, which were used for the calibration of the
N-morphology detector and for the characterisation of samples
via the distributions of values r tið Þf g (for details see subsection
2.9). Taking into account fluctuations of r tið Þ caused by cell migra-
tion in and out of the field of view, we focused on the median as the
indicator of central tendency of the r tið Þf g -distribution for the
25-minutes-episodes. The classification results are summarised
per donor in Fig. 3a and reveal quantitative differences between
the three infection scenarios (see Fig. 3b and Table 1). The statisti-
cal differences per infection scenario support our hypothesis

regarding the pathogen-specific morphological changes of neu-
trophils in a human WBI assay.

Next, we implemented a Bayesian classifier with majority vot-
ing to identify infection scenarios based on r tið Þf g-distributions
(for details see subsection 2.11). We performed simulations with
leave-one-out cross-validation (LOOCV) [41], where we performed
93 iterations for the three infection scenarios with nine samples
each by fixing one sample from every infection scenario as test
sample and using all other samples for classifier calibration. This
approach allows imitating large sample populations and measur-
ing the classifier performance in the case of low sample numbers.

The classifier was evaluated by the observed successful classifi-
cation ratio (OSCR), which equals the fraction of correctly assigned
samples for a given class. As can be seen in Fig. 3c, our classification
procedure recognises mock-infected samples with OSCR = 1, which
confirms that the classifier can successfully distinguish infected
and non-infected samples. However, as can be inferred from
Fig. 3a, distinguishing between different infection scenarios is
obscured by the donor variability. In fact, for C. albicans infection
we obtained the reduced value of OSCR = 0.89, while for C. glabrata
infection the performance dropped to OSCR = 0.67. As shown in
Fig. 3b, the medians of the r tið Þf g-distributions were not suited
for achieving a clear distinction between the two infection scenar-
ios. The LOOCV reveals that this is also true for the mock-infected
samples (see Fig. 3d), as can be seen from the reduction of the cer-
tainty measure by about 11% (compare Fig. 3c and d). Nevertheless,
these overall promising findings prompted us to advance our anal-
ysis from a population-based analysis of snapshots to the analysis
of individual cell tracks including aspects of morphodynamics.

3.4. Neutrophil speed is inadequate for discrimination of Candida
infection scenarios

Visual inspection of the video data gives the impression that,
depending on the infection scenario with either of the two Candida
species, the morphodynamics of neutrophils may be different (see
Supplementary video set 1). In particular, neutrophils seem to (i)
experience differently long episodes in the state of S-morphology
and (ii) migrate slower when in the state of S-morphology com-
pared to N-morphology. We hypothesised that a specific morpho-
dynamics behaviour of neutrophils may be induced upon contact
with a particular pathogen in human whole blood and speculated
that the discrimination of infection scenarios may be improved
by accounting for dynamic effects.

Fig. 1. Time-dependent change of a single neutrophil during 20 consecutive frames
(arrows indicate the time ordering). Cells in sub-images B3–E3 can be considered as
spreading cells (S-morphology).

Fig. 2. Fraction of cells repeatedly identified as exhibiting S-morphology in each
repetition of the Monte-Carlo simulations. Each sample includes O(104) segmented
cell images.
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To quantify these observations, we first computed the average
speed for each neutrophil from its individual cell track for each
donor and infection scenario. However, as shown in Fig. 4a, there
is no evidence for a clear pathogen-specific impact on the average
neutrophil speed. On first sight, this finding may seem contradic-
tory to a previous study where the average neutrophil speed was
reported to be a suitable discrimination feature [24]. However,
while that study was performed in the context of the myelodys-
plastic syndrome, the sample average neutrophil speed (Fig. 4b)
is evidently not an adequate discrimination feature in the present
context of Candida BSI, because this measure appears to be less
pathogen-sensitive than the dynamic change in cell morphology
(Fig. 3b). This was also confirmed by a quantitative comparison
of effect size measures (see Table 1 and subsection 2.14) and con-
sidering our results on the morphology-based classification of
infection scenarios (Fig. 3d).

Thus, while a speed-based classification of infection scenarios
will not yield acceptable accuracies, we still wanted to validate

our impression from the visual inspection that there are differ-
ences in the morphodynamics of neutrophils for the two Candida
species. To this end, neutrophils were first classified as being either
in the S- or N-morphology followed by the computation of the
instantaneous speed distributions for each infection scenario with
the two Candida species. As can be seen in Fig. 5a and b, the major-
ity of neutrophils with S-morphology are indeed statistically
slower, which has also been confirmed by a comparison of the dis-
tributions using the multiple quantile comparison method [59] to
compute the difference D between consecutive percentiles of the
respective distributions for the two Candida infection scenarios
(Fig. 5c). Another evidence for a speed difference between spread-
ing cells and non-spreading ones is a near-monotonical decline
(Spearman’s q = � 0.74) of the average speed per cell with increas-
ing fraction of spreading cells (Fig. 5d). Thus, while the visual
impression could be confirmed, we still have to conclude that neu-
trophil speed is not an adequate feature for discrimination of WBI
with different Candida species.

Fig. 3. a) Box diagrams for the fraction of spreading cells per video frame (260 frames in total) for each donor. b) Median value of the distributions in a) per donor. **
p = 0.0027, *** p � 10�4 (Quade test with post-hoc analysis and p adjustment by Holm). The effect size statistics is listed in the Table 1. c) Confusion matrix for the results of
the Bayesian classifications based on individual frames. Each cell of the matrix represents the ratio of proper sample classifications (numerator) for given infection scenarios
over all iterations (denominator). d) Confusion matrix for the results of a sample classification based on description of whole video data.

Table 1
Comparison of effect sizes expressed via common language effect size (CLES) and Hedge’s gj j for median fraction of spreading cells (CLESfrac, gfrac

�
�

�
�) and for average speed per

sample (CLESspeed, gspeed

�
�

�
�). Details about calculations are described in paragraph Effect size statistics in Materials and Methods section.

Pair for comparison CLESfrac CLESspeed gfrac�
� �

� gspeed�
� �

�

‘mock’–‘C. albicans’ 1 0.91 3.18 1.58
‘mock’–‘C. glabrata’ 1 0.94 5.47 2.13
‘C. albicans’–‘C. glabrata’ 0.90 0.63 1.67 0.35

I. Belyaev, A. Marolda, Jan-Philipp Praetorius et al. Computational and Structural Biotechnology Journal 20 (2022) 2297–2308

2302



Manuscripts 47 

Fig. 4. Diagrams of the average speed per cell (a) and per donor (b). The number of data points per sample is O(104), length of whiskers is not larger than 1.5 interquartile
interval. For data in (b) the Quade statistical test was applied with post-hoc analysis and p adjustment by Holm: * p = 0.1265, ** p = 0.0224, *** p = 0.0011. The effect size
statistics is listed in the Table 1.

Fig. 5. Distributions of instantaneous speed for spreading and non-spreading neutrophils for a joint sample sets after confrontation with (a) C. albicans and (b) C. glabrata.
Each joint sample set (represented by an individual curve) includes 9 � 103 data points composed of data from randomly selected 1 � 103 spreading cells (dashed lines) or an
equal amount of non-spreading cells (solid lines) from each video. c) Shift functions presented by the difference between deciles of distributions in (a) and (b), respectively.
The whiskers indicating the 0.95 bootstrap CI (for details see subsection Comparison of cell characteristics for different infection scenarios in the Materials and Methods section).
d) Scatter diagram demonstrating the correlation between the median fraction of spreading cells per frame and median average speed per cell for the same sample.

I. Belyaev, A. Marolda, Jan-Philipp Praetorius et al. Computational and Structural Biotechnology Journal 20 (2022) 2297–2308

2303



Manuscripts 48 

3.5. Evidence for the existence of pathogen-specific morphodynamics
of neutrophils

Next, we computed neutrophil morphodynamic features based
on the information from the previous classification of neutrophil
morphology states. Using this information every tracked cell can
be characterised by a frequency of transitions to the spreading
state, the total amount of time a cell exists in that state, and the
duration of its longest spreading episode. Here, in order to reduce
too short cell tracks and by that the noise in the data, we restricted
the analysis to cells that were observed for at least 90 s (13 frames)
and that switched at least once to the spreading morphology with
a maximal duration of at least 28 s (4 frames). These restrictions
excluded only 20% of neutrophils in samples infected by the Can-
dida species (see Supplementary Fig. 5). As shown in Fig. 6, the
visual impression that neutrophils tend to exhibit the S-
morphology for longer episodes after confrontation with C. glabrata
compared to the infection with C. albicans could be quantitatively
confirmed. As can be seen in Fig. 6, the total duration of spreading
episodes per track (Fig. 6b) and the maximal duration of spreading
episodes per track (Fig. 6c) showed statistical differences between
infection scenarios. These were considered relevant for distin-
guishing between infection scenarios, although these characteris-
tics may be susceptible to donor-specific variability (see

Supplementary Fig. 6). To perform the classification task based
on neutrophil morphodynamics, we used a combination of naïve
Bayes classifier for individual track classification followed by a
majority voting for the whole sample classification (for details
see subsection 2.11). Thus, a test sample was assigned to one of
the infection scenarios based on majority fraction of tracked cells
being identified as C. albicans-specific or C. glabrata-specific. For
classifier evaluation, we used the LOOCV per condition sampling
procedure (with 92 iterations in total).

Using this morphodynamics-based classification we reached
OSCR = 1 for the C. albicans-infected samples, which is higher
than in the population-based analysis of snapshots. However,
for the C. glabrata-infected samples the OSCR remains roughly
the same: OSCR = 0.63. Since the maximal duration of spreading
episodes per track is a characteristic that is robust against track
fragmentation, which may be caused by track interruptions due
to long-lasting clusters, we also used this feature alone in the
Bayesian classifier. The OSCR raised to OSCR = 0.78 for C. glabrata,
while the quantitative results for C. albicans remained the same
(Fig. 7a). Finally, in Fig. 7b the typical detected fraction (mean
value over all iterations) of cells with morphodynamics specific
for the true infection scenario is shown for every donor and infec-
tion scenario. In addition, for every infection sample we per-
formed an interval estimation (defined via Wilson’s confidence

Fig. 6. Comparison of morphodynamics descriptors for joint populations of C. albicans- or C. glabrata-infected neutrophils by a box plot with whiskers indicating the whole
range of values as well as decile-difference diagrams with whiskers indicating 0.95 bootstrap CI (see subsection Comparison of cell characteristics for different infection scenarios
in the Materials and Methods section). All diagrams were built using balanced sampling (for details see subsection Data set organisation and sampling procedures in the
Materials and Methods section). a) Distributions of the normalised number of transitions between non-spreading and spreading state. b) Distributions of the total amount of
time that cells remain in state with S-morphology. c) Distributions of durations of the longest spreading episode per cell track.
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interval, for details see subsection 2.15) of the fraction of cells
with morphodynamics that can be considered specific for the true
infection scenario. For instance, for the C. glabrata-infected sam-
ple from the donor with ID 2, which was represented by about
200 cells in the video, � 52% of all cells were characterised by
the morphodynamics analysis to be specific for the C. glabrata
rather than the C. albicans infection scenario. However, the corre-
sponding confidence interval extends to values below 50% indi-
cating that there is a probability that the fraction of cells in the
whole blood sample with C. glabrata-specific morphodynamics
equals that of C. albicans. We in fact estimated this probability
to equal 91% in the case of blood donor with ID 2 (for details
see subsection 2.16). In contrast, for blood donors with ID 5
and ID 9, this probability is estimated to be 0% and 11%, respec-
tively. Moreover, for six out of the nine blood donors, the proba-
bility of having an equal number of cells showing C. glabrata and
C. ablicans morphodynamics for a true infection scenario with
C. albicans is well below 35%.

Taken together, while we cannot rule out misclassifications of
infection scenarios with C. albicans and C. glabrata, taking into
account the morphodynamics of neutrophils does improve the
classification accuracy (Fig. 7b) compared to the static analysis
(Fig. 3c) from 67% to 78% for C. glabrata and from 89% to 100% for
C. albicans.

3.6. White-box approach passes deep neural network challenge

Finally, we challenged our white-box approach for identifying
the pathogen-specific morphodynamics of neutrophils based on
the two descriptors ‘neutrophil footprint area’ and ‘intracellular
intensity-gradient’. To this end, we applied state-of-the-art deep
neural network technique by evaluating the classification results
of a long short-term memory (LSTM) network [60] for data from
the nine donors with a leave-one-out cross-validation (LOOCV)
[41] (see Blood sample classification using Deep Learning techniques
in the Supplementary materials). Overall, we achieved test accura-
cies (ACC) well below 65% from 7000 image sequences obtained
from each class (two infection scenarios and the mock-infected
samples). In particular, this LSTM-based-approach yielded only
moderate values of ACC = 0.7 for mock-infected samples,

ACC = 0.63 for C. albicans-infected and ACC = 0.48 for C. glabrata-in-
fected samples. The corresponding confusion matrix (Supplemen-
tary Fig. 8e) reveals the difficulties of the LSTM to discriminate
the neutrophil morphodynamics between infection scenarios with
C. glabrata and C. albicans.

4. Discussion

The application of imaging technologies is an essential compo-
nent of disease diagnosis and treatment monitoring of patients
with life-threatening bloodstream infections. It encompasses a
wide range of tools and methods utilised to examine an organism
at different levels ranging from the detection of infection foci in a
whole organ by computed tomography to identifying pathogens by
means of microscopy with high spatial and temporal resolution. In
particular, modern label-free methods have a promising potential
in the future, among which various types of spectral imaging
including Raman spectroscopy, Fourier transform infrared (FTIR)
spectroscopy, or matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry (MALDI-ToF MS) providing informa-
tion about the molecular composition of individual cells. Even
though the efficiency of these spectroscopy techniques has been
demonstrated for fungal cultures (e.g., [61–63]), limitations for
their application in the rapid identification of pathogens in human
blood remain. In particular, methods based on cell cultivation
require more than 24–48 h, which can lead to fatal delays in initi-
ating pathogen-specific therapy. Moreover, for pathogen concen-
trations in the sample well below the observed median
concentration in clinical samples, which is only 1 CFU/mL for Can-
dida bloodstream infections [64], cell cultivation for pathogens
may not even be successful. Therefore, since immune cells like
neutrophils must have sensed the infection-causing pathogens in
patient blood, these interactions are hypothesised to induce mea-
surable changes in the readily available neutrophils that may allow
for the indirect identification of pathogens. For example, as was
recently shown applying Raman spectroscopy, neutrophils that
were first isolated from human whole-blood and subsequently
confronted in vitro with Gram-positive bacteria (Staphylococcus
aureus), Gram-negative bacteria (Escherichia coli), and fungal
pathogens (C. albicans) could be distinguished by their molecular

Fig. 7. a) Confusion matrix for sample classification results based on the fraction of neutrophil tracks with pathogen-specific morphodynamics. b) The typically detected
fraction of cells with pathogen-specific morphodynamics in a given sample. The mean value is computed over all iterations and the whiskers indicate 0.95 CI for the detected
fraction (see Confidence intervals for proportions in the Materials and Methods section). The number indicates a probability of the error type II for fraction of neutrophils with C.
albicans- or C. glabrata-specific morphodynamics in a given sample. The symbol NA was used where the computation of this probability is not possible. For further details see
subsection Post-hoc analysis of errors of type II in the Materials and Methods section.
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fingerprint [65]. The present study advances along these lines
while optimizing various aspects: (i) we investigated activation
phenotypes of isolated neutrophils after confrontation with patho-
gens in the human whole-blood assay to more realistically mimic
pathogen detection for bloodstream infections, (ii) we focused on
fungal pathogens and the distinction of two species from the Can-
dida genus that require different treatment strategies, and (iii) we
decided for the commonly available imaging technique of time-
lapse microscopy to investigate the pathogen-specific morphody-
namics of neutrophils as activation phenotype.

We developed an effective method for the automated compara-
tive analysis of morphological and behavioural changes in neu-
trophils using live-cell imaging data. As a model system we used
the humanWBI assays with twomost common fungal bloodstream
pathogens — C. albicans and C. glabrata. We started with visual
inspection of the acquired videos revealing that in Candida-
infected samples neutrophils with spreading (S-) morphology
appear more often, whereas in mock-infected samples neutrophils
with non-spreading (N-) morphology is the dominant morphotype.
Based on this observation, we constructed an N-morphology detec-
tor (one-class classifier), which was calibrated fully automatically
and, therefore, free from operator errors. We could also demon-
strate that the classifier outcome is weakly depending on the cells
used in the calibration (Fig. 2 and Supplementary Fig. 4). Using this
classifier, we were able to estimate the fraction of neutrophils with
S-morphology over the whole observation period (Fig. 3). In addi-
tion, we showed that the fraction of neutrophils with
S-morphology is statistically higher for infection scenarios with
C. glabrata (Fig. 3b), suggesting the possibility for rapid differentia-
tion between blood samples infected by the two Candida species
(Fig. 3c and d).

Based on the classifier outcome and the tracking data, we per-
formed an extended analysis of the behaviour of neutrophils from
Candida-infected samples. We showed that in our experimental
conditions the average neutrophil speed per sample is not a reli-
able marker of infection (Fig. 4), although there is a difference in
neutrophil speed when comparing N- and S-morphology (Fig. 5).
In contrast, regarding the morphodynamics of neutrophils, we
quantitatively confirmed the observation that long-lasting spread-
ing episodes are more often appearing for infection scenarios with
C. glabrata than C. albicans (Fig. 6), which leads to the improvement
of infection recognition in our WBI assays (Fig. 7a). However, we
cannot assert an observation of pathogen-specific morphodynam-
ics of neutrophils unequivocally due to sample and donor variabil-
ities (Fig. 7b) as well as the number of blood samples. For example,
as indicated by a power analysis (significance level a = 0.05,
expected power of 0.8), approximately 1000 blood donors would
be required for a statistically definitive conclusion that at least
54% of neutrophils, which corresponds to the average fraction
detected in our experiments, exhibit C. glabrata-specific morpho-
dynamics in a C. glabrata-infected sample. While recruiting this
large number of blood donors is clearly beyond the scope of our
feasibility study, we inferred the following analysis pipeline for
the best classification results: (i) calibration of the one-class classi-
fier based on static features of neutrophils from non-infected sam-
ples, (ii) classification of samples being infected or not based on the
fraction of spreading cells, (iii) including neutrophil morphody-
namics to distinguish between samples from different infection
scenarios.

In this study, we applied our Algorithm for Migration and Inter-
action Tracking (AMIT, [13,14,19]) in its latest release of the third
version [20]. The performance of AMIT with regard to the auto-
mated segmentation and tracking of label-free neutrophils was
previously found to outcompete established learning-based algo-
rithms [20], such as MU_Lux-CZ [66] and SegNet [67]. Neverthe-
less, in the present study we checked whether deep neural

networks can improve the distinction of infection scenarios by C.
albicans and C. glabrata based on a long short-termmemory (LSTM)
network [60], which we applied to classify the time-series of
neutrophils with dynamically changing morphology. However,
this black-box-approach yielded relatively moderate test
accuracies (ACC) with values well below 65% compared to
our white-box approach that is based on the two descriptors
‘neutrophil footprint area’ and ‘intracellular intensity-gradient’
and achieved values well above 75% for the two infection
scenarios and 100% for mock-infected samples. We speculate
that this may be explained by peculiarities of the LSTM
network architecture, which may be unable to grasp sufficient
information about aperiodic spreading events from relatively
short sequences.

In further studies, instead of increasing the complexity of analysis
pipelines, we consider improving the cell description by adding
information about intensity and amount of neutrophilderived trail
formation [68,69] and neutrophil autofluorescence [70,71]. This could
be tested after modification of the image acquisition step implying
detection of transmitted light images by a high-resolution camera
with a high readout speed (or global shutter) at intervals of one
second or shorter. This would allow eliminating cell-movementas-
sociated blurring effects and by that improve the accuracy in image
processing with regard to cell segmentation and tracking as well as
morphological information. Besides, it would pave the way for
detailed analysis of dynamic transitions between the two states of N-
and S-morphology, as well as performing comparative analyses of
potentially different S-morphologies under various conditions. In
addition, high-speed imaging would enable estimating within-donor
heterogeneity, which is particularly essential regarding the
neutrophil population microheterogeneity, i.e. existence of neutrophil
sub-sets with different functions, distinct morphology as well as
receptor repertoires [72–74]. Extension of this feasibility study to a
larger cohort of blood donors and inclusion of BSI patients will be the
next step for exploring the potential of this approach for translational
research.
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ABSTRACT Polymorphonuclear granulocytes (PMNs) are indispensable for control-
ling life-threatening fungal infections. In addition to various effector mechanisms,
PMNs also produce extracellular vesicles (EVs). Their contribution to antifungal
defense has remained unexplored. We reveal that the clinically important
human-pathogenic fungus Aspergillus fumigatus triggers PMNs to release a dis-
tinct set of antifungal EVs (afEVs). Proteome analyses indicated that afEVs are en-
riched in antimicrobial proteins. The cargo and the release kinetics of EVs are modu-
lated by the fungal strain confronted. Tracking of afEVs indicated that they
associated with fungal cells and even entered fungal hyphae, resulting in alterations
in the morphology of the fungal cell wall and dose-dependent antifungal effects. To
assess as a proof of concept whether the antimicrobial proteins found in afEVs
might contribute to growth inhibition of hyphae when present in the fungal cyto-
plasm, two human proteins enriched in afEVs, cathepsin G and azurocidin, were het-
erologously expressed in fungal hyphae. This led to reduced fungal growth relative
to that of a control strain producing the human retinol binding protein 7. In conclu-
sion, extracellular vesicles produced by neutrophils in response to A. fumigatus infec-
tion are able to associate with the fungus, limit growth, and elicit cell damage by
delivering antifungal cargo. This finding offers an intriguing, previously overlooked
mechanism of antifungal defense against A. fumigatus.

IMPORTANCE Invasive fungal infections caused by the mold Aspergillus fumigatus
are a growing concern in the clinic due to the increasing use of immunosuppressive
therapies and increasing antifungal drug resistance. These infections result in high
rates of mortality, as treatment and diagnostic options remain limited. In healthy in-
dividuals, neutrophilic granulocytes are critical for elimination of A. fumigatus from
the host; however, the exact extracellular mechanism of neutrophil-mediated anti-
fungal activity remains unresolved. Here, we present a mode of antifungal defense
employed by human neutrophils against A. fumigatus not previously described. We
found that extracellular vesicles produced by neutrophils in response to A. fumigatus
infection are able to associate with the fungus, limit growth, and elicit cell damage
by delivering antifungal cargo. In the end, antifungal extracellular vesicle biology
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provides a significant step forward in our understanding of A. fumigatus host patho-
genesis and opens up novel diagnostic and therapeutic possibilities.

KEYWORDS Aspergillus fumigatus, azurocidin, cathepsin G, extracellular vesicle,
fluorescent image analysis, fungi, microvesicle, neutrophils, polymorphonuclear
leukocytes

The clinical management of invasive aspergillosis, a severe systemic infection mainly
caused by the ubiquitous saprophytic fungus Aspergillus fumigatus, is a challenging

endeavor. Invasive aspergillosis is characterized by high mortality rates related to the
difficult diagnosis, the occurrence of resistance to antifungals, and the lack of novel
antifungal therapies (1–6). Invasive aspergillosis can occur in patients with congenital
or therapy-induced myeloid cell defects, whereas healthy individuals that continuously
inhale fungal spores (conidia; 2 to 3 �m) usually remain symptom free. Data from
neutropenic mice and patients have shown that polymorphonuclear granulocytes
(PMNs) are indispensable for antifungal defense (7–16); however, the exact mechanism
of PMN-dependent fungal killing remains unresolved.

PMNs orchestrate immune surveillance against pathogenic fungi via oxidative burst
(14, 17, 18), degranulation (19, 20), phagocytosis (21), cytokine release (7), and extra-
cellular trap formation (11, 16, 22, 23). Neutrophil extracellular traps are only slightly
fungistatic, and this alone does not explain the full antifungal activity of PMNs (22, 23).
In addition to these effector mechanisms, PMNs also produce PMN-derived extracellular
vesicles (EVs), which represent extracellular phosphatidylserine-containing micropar-
ticles (50 nm to 1 �m) that elicit pleiotropic immunomodulatory effects in recipient
host cells (24–28). PMN-derived EVs serve many functions in vivo (29–32), including
antibacterial (33–35) and antiviral (36) defense, and have been used as diagnostic
markers for sepsis (37). Previous work also indicated that opsonization of bacteria is
required for the production of antibacterial PMN-derived EVs (34).

In this report, we demonstrate the immune functionality of PMN-derived EVs against
the important filamentous fungal pathogen A. fumigatus. We phenotypically charac-
terized the EVs produced by PMNs in response to A. fumigatus infection and further
detail the properties, locations, and antifungal effects of these EVs on the fungus.

RESULTS
PMNs release EVs in response to A. fumigatus infection. The confrontation of

PMNs with A. fumigatus conidia is known to result in the rapid internalization of the
fungus and the production of reactive oxygen intermediates and neutrophil extracel-
lular traps over time (22, 38). In response to opsonized bacterial pathogens, neutrophils
have been shown to release antibacterial EVs (34, 39), yet the role of EVs in antifungal
defense in mammals remains unexplored. As such, we enriched and characterized
PMN-derived EVs produced from viable human PMNs (�95% purity, �98% viability)
during infection with opsonized wild-type (wt) A. fumigatus conidia (see Fig. S1A in the
supplemental material). To limit PMN apoptosis and the subsequent production of
apoptotic bodies, we first determined the apoptotic fate of PMNs over the course of
interaction with A. fumigatus by monitoring propidium iodide (PI) and annexin V
staining of cells using flow cytometry (Fig. 1A). Both EVs and apoptotic cells expose on
the outer leaflet of the cell membrane phosphatidylserine, which can be detected by
annexin V. However, in contrast to apoptotic bodies, EVs remain intact and thus
impermeable to PI (24–28). By size discrimination using flow cytometry, we could also
distinguish between cellular apoptosis and the release of apoptotic bodies (annexin
V-positive and PI-positive [PI�] EVs) (Fig. 1A and Fig. S1B to E). Coincubation of human
PMNs with fungi for 4 h at a multiplicity of infection (MOI) of 5 conidia to 1 PMN
triggered minimal cell death in the PMN population (�10%) and limited apoptotic body
release compared to an MOI of 10 (Fig. 1A). An MOI of 5 was thus used throughout the
remainder of the study to phenotypically characterize PMN-derived EVs.
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We were particularly interested in the phosphatidylserine-containing and PI-
negative fraction of EVs, which was previously linked to host immunity and which can
be interrogated by flow cytometry (24–28). Labeling of EVs with cell surface markers for
the �-chain of the integrin receptor CR3 (CD11b) and the tetraspanin CD63 revealed an
increase in the size of the populations of EVs produced in response to infection with wt
A. fumigatus (antifungal EVs [afEVs]) relative to the size of the populations of sponta-
neously released EVs (sEVs) from uninfected cells (Fig. 1B to E; Fig. S1F and G and S2A
and B). When we compared the afEV formation induced by stimulation of PMNs with
wt and pksP mutant conidia, which lack the pigment and the virulence determinant
dihydroxynaphthalene melanin (25, 40–43), we discovered that melanin-deficient
conidia doubled the production of EVs analyzed here (Fig. 1C to E). This finding
suggests that fewer EVs are produced against melanized wt conidia, consistent with a
known repressive role for dihydroxynaphthalene melanin against the host immune
response during infection (44). For clarity, we have defined EVs induced by wt conidia

FIG 1 A. fumigatus induces EV release by human neutrophils. (A) Time course of apoptotic body (APB) occurrence (green lines)
and fungus-induced cell death (teal lines) at MOIs of 5 and 10 (n � 10 [15] and n � 12 [17] for apoptotic body counts for MOIs
of 5 and 10, respectively; n � 4 [20] and n � 5 [15] for viability data for MOIs of 5 and MOI 10, respectively) (numbers in
brackets are total number of technical replicates). (B) Percentage of apoptotic bodies per total number of EVs. (C to E) Time
course of total EV release and the levels of the EV surface markers annexin V (n � 27 [40] for sEVs, n � 16 for afEVs and pksP
EVs) (C), CD11b (n � 23 for sEVs, n � 16 for afEVs and pksP EVs) (D), and CD63 (n � 13 for sEVs, n � 9 for afEVs and pksP EVs)
(E). sEVs were collected from uninfected cells. Symbols represent significant differences between pksP EVs and afEVs (*), pksP
EVs and sEVs (�), afEVs and sEVs (x). The data in panels A and B to E are presented as the medians and interquartile ranges
of the absolute numbers of EVs per 107 PMNs. P values were determined by the Mann-Whitney test. *, P � 0.05; **, ��, and
xx, P � 0.01; *** and xxx, P � 0.001. (F to M) Cryo-TEM images of sEVs (F to I) and afEVs (J to M) at 2 h postinteraction.
Representative images display sEVs (G to I) and afEVs (K to M) with different appearances. Bars, 200 nm.
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as antifungal EVs (afEVs), EVs induced by pksP mutant conidia as pksP EVs, and
spontaneously produced EVs as sEVs. Despite this major difference in EV production,
PMN viability was similar for wt and pksP mutant conidium-infected cells (Fig. S2C);
however, pksP conidia did exhibit higher opsonization (Fig. S2D) (42). The vesicular
nature of the detected EVs was verified by detergent treatment using 1% (vol/vol)
Triton X-100, which led to the disappearance of the signals for both annexin V and EV
surface marker staining (Fig. S1F and G). Cryo-transmission electron microscopy (cryo-
TEM) imaging (Fig. 1F to M) confirmed a heterogeneous population of circular struc-
tures with lipid bilayers for both afEVs and sEVs (26, 45). Both types of EVs appeared to
contain cargo with different spatial organizations (Fig. 1G to I and K to M), including
practically empty EVs (Fig. 1G and K), granular structures (Fig. 1H and L), and a
homogeneous distribution of cargo (Fig. 1I and M). The meaning of the different grade
of granularity awaits further attention.

afEVs are enriched for antimicrobial proteins. We next addressed the cargo of
EVs in response to infection. We purified proteins from afEVs, pksP EVs, and sEVs
from about 10 liters of fresh human blood. Equal amounts of protein were labeled
with tandem mass tags (TMT) or left unlabeled for a subsequent label-free quan-
tification (LFQ), followed by detection with nanoscale liquid chromatography (nLC)-
tandem mass spectrometry (MS/MS); see the two data sets at https://doi.org/10
.6084/m9.figshare.11973174). LFQ analysis revealed an expanded proteome in the afEVs
and pksP EVs compared to the sEVs, which is suggestive of additional functionality
(Fig. 2A). We next compared (i) pksP EVs and afEVs, (ii) afEVs and sEVs, and (iii) pksP EVs
and sEVs. We observed that the afEVs and pksP EVs were, again, quite different from the
sEVs, but even the afEVs differed from the pksP EVs (Fig. 2B to D). Analysis using the
TMT method of quantification also indicated differences in each population, consistent
with the LFQ data (Fig. S3A to C). Since EVs are often enriched for membrane proteins,
we next predicted transmembrane domain-containing proteins using three different

FIG 2 Analysis of the EV proteome by LC-MS/MS reveals that neutrophil-derived EVs retain a core
proteome cargo after infection. (A) Venn diagram (created with Venny [version 2.1.0] software) indicating
the overlap of proteins identified from each EV population using label-free quantification. (B to D)
Volcano plots comparing proteins identified in afEVs, pksP EVs, and sEVs using the LFQ-based proteomics
method.
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tools (TMHMM [46], SignalP [47], and WoLF PSORT [48]) and identified 17 proteins in the
TMT data set and 29 proteins in the LFQ data set (Table S1).

In comparison to sEVs, both afEVs and pksP EVs contained a broader spectrum of
proteins and, more importantly, larger amounts of antimicrobial peptides, such as
neutrophil elastase (NE), myeloperoxidase (MPO), cathepsin G, azurocidin, and defensin
1 (Table 1). CD11b and CD63 were enriched in afEVs and pksP EVs compared to sEVs,
thus confirming the flow cytometry data (Fig. 1D and E; see the two data sets at
https://doi.org/10.6084/m9.figshare.11973174). In addition, afEVs contained larger
amounts of metabolic enzymes, such as glucose-6-phosphate isomerase and transke-
tolase, the cell surface glycoprotein CD177, and F-actin. Proteins of the antimicrobial
calprotectin complex (S100-A8, S100-A9) exhibited the highest absolute abundance in
afEVs (see the two data sets at https://doi.org/10.6084/m9.figshare.11973174). Finally,
afEVs and pksP EVs were more similar in protein content in comparison to that in sEVs
(Table 1; see the two data sets at https://doi.org/10.6084/m9.figshare.11973174).

The comparison of the proteins from all EV subsets revealed that 60 proteins were
shared between all groups, suggesting that these proteins are part of the core EV
protein set. Gene Ontology (GO)-term enrichment analysis of the 60 shared proteins
revealed the overrepresentation of proteins involved in Fc� receptor signaling, Arp2/3
complex-mediated actin nucleation, the interleukin-8 signaling pathway, cytoskeletal
rearrangements, and the positive regulation of actin polymerization (Fig. 2; Fig. S3D). In
comparison to the findings described in the literature, we found 164 proteins in
common between the study of Timar et al. (34) and this study. We detected 118
proteins unique to the study of Timar et al. (34) and 448 proteins unique to our study
using LFQ-based proteomics. Infection with wt or pksP conidia led to the formation of
afEVs and pksP EVs with distinct proteome cargos, characterized by increased levels of
antimicrobial peptides and metabolic proteins. These findings suggest an antimicrobial
function for afEVs.

afEVs influence fungal growth by inhibition of hyphal extension. To prove a
potential antifungal activity of afEVs, we collected afEVs and pksP EVs from PMNs,
coincubated them in different concentrations with resting conidia, and monitored
fungal growth by confocal laser scanning microscopy (CLSM) (Fig. 3A and Fig. S4A and
B). The area of objects (single hyphae or clusters) was considered the growth measure.
The concentration of EVs was measured in “doses” and is more fully described in
Materials and Methods. One dose of EVs was defined as the number of pksP EVs
produced by 107 PMNs infected with pksP mutant conidia at 2 h postinfection. At this
time point, we found a relatively large amount of produced EVs (Fig. 1C) associated
with a relatively low fraction of apoptotic bodies (Fig. 1B). The doses for each condition
were normalized according to abundance from the observations in Fig. 1C. The afEVs
generated by PMNs infected with wt conidia strongly inhibited the growth of wt and
pksP hyphae in all donors when higher doses of EVs were applied (Fig. 3B to E and
Fig. S4C to F). These experiments revealed donor heterogeneity in response to four
different blood donors, suggesting that the antifungal potential of EVs may differ
between individuals. Higher (triple) doses of pksP EVs, as well as lower (single) doses of

TABLE 1 Selected examples of differentially produced proteins with known antimicrobial
activity

UniProt accession no. Protein

TMT ratio

pksP EVs/afEVs afEVs/sEVs pksP EVs/sEVs

A0A0U1RRH7 Histone H2A 1.32 14.08 18.55
U3KQK0 Histone H2B 1.12 6.27 7.04
P68431 Histone H3.1 0.82 16.84 13.79
P08246 Neutrophil elastase 0.62 4.64 2.86
P05164 Myeloperoxidase 1.19 2.16 2.57
P08311 Cathepsin G 0.73 3.07 2.24
P20160 Azurocidin 0.70 3.46 2.41
P59665 Defensin 1 2.04 13.41 27.37
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afEVs, were efficient in the growth arrest of hyphal filaments for one donor only
(Fig. 3D; Fig. S4E). The antifungal effects of afEVs for all donors were not due to the
delayed germination of conidia but, rather, resulted from the inhibition of hyphal
extension (Fig. 3A and F; Fig. S4A, B, and G). Interestingly, sEVs had no impact on the
growth of fungi (Fig. 3G). Thus, PMNs produce tailored afEVs with distinct functional
properties in response to coincubation with A. fumigatus.

afEVs associate with fungal cells. As discussed above, we observed that afEVs are
capable of arresting fungal growth. To study the interactions of afEVs with fungi, we
collected three-dimensional (3D) confocal fluorescent image stacks of wt hyphae
coincubated with afEVs and pskP hyphae coincubated with pksP EVs after 20 h of
incubation. We quantified the interactions of EVs and hyphae using 3D image analysis
to evaluate the densities of EVs within (inside) calcofluor white-stained hyphae (in
which the EV volume inside the hyphae was normalized to the hyphal volume)
compared to the corresponding EV densities outside the hyphal cell wall deter-
mined by staining. The densities of EVs inside the hyphae (indicating an association
with or internalization of the EVs) were significantly higher than the EV densities
outside the hyphae (in which EVs were unassociated with the hyphae) for both wt
and pksP hyphal filaments (Fig. 4A; see the first two movies at https://doi.org/10
.6084/m9.figshare.11973174). The 3D image analysis of the fluorescence signals re-

FIG 3 afEVs elicit antifungal effects on wt fungus. (A) Representative bright-field images after 10 h of incubation of wt fungal
hyphae with afEVs and pksP EVs. Single (1�) or triple (3�) doses of EVs were applied. (B to E) Growth of wt fungal hyphae after
10 h of coincubation with afEVs and pksP EVs derived from four different donors. The size of the hyphae was assessed by
automated analysis of 2D image data, and the results are displayed as the median hyphal area in each field of view; data are
represented as medians and interquartile range of the median hyphal area in each field of view (n � 10 fields of view per
condition per time point). (F) Representative growth curves of the wt fungal strain in the presence and the absence of EVs for
the donor for which the results are shown in panel D. (G) Effects of sEVs on wt conidia compared to those of afEVs on wt
conidia (n � 3 independent experiments, 20 fields of view per experiment per condition). P values were determined by the
Mann-Whitney test. n.s., not significant; *, P � 0.05; ***, P � 0.001; ****, P � 0.0001.
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vealed the extensive binding of EVs induced by conidia of both fungal strains to
hyphae, despite the interrogation of equal volumes of EVs and hyphae (Fig. S5A and B).

We further assessed the ability of afEVs to associate with hyphae by evaluating the
volume of hypha-associated EVs, which were defined as the sum of the volumes of
afEVs bound to the cell wall or internalized into hyphae (see the first two movies at
https://doi.org/10.6084/m9.figshare.11973174). The ability of afEVs to associate with
hyphae was mainly dependent on the intrinsic properties of the donors’ afEVs
(Fig. S5C), while the relative volume density of afEVs had a much smaller effect (Fig. S5D
and E). We next defined hypha-associated DNA staining as PI� signals colocalized with
hyphae, which is indicative of hyphal cell damage. The amount of hypha-associated
DNA staining from hyphae incubated with afEVs was significantly larger than the
amount of hypha-associated DNA staining from control hyphae grown alone, as
quantified by the hypha-associated DNA staining-positive volume normalized to the
hyphal volume (Fig. 4B; see the second movie at https://doi.org/10.6084/m9.figshare
.11973174). The 3D image analysis also showed that PI� staining of hyphae was
associated with the interaction of hypha-associated EVs. In fact, more than 60% of the
volume of PI� hyphae was associated with hypha-associated EVs (Fig. S5E; see the
second movie at https://doi.org/10.6084/m9.figshare.11973174). All donor EVs were
capable of eliciting PI staining of hyphae, but the extent of this effect was donor
dependent (Fig. S5E). Our data imply that afEVs are antifungal and appear to cause cell

FIG 4 Effect of afEVs on hyphae. (A) Density of afEVs and pksP EVs inside and outside of wt and pksP
mutant hyphae. (B) The fraction of PI-stained hyphae indicates permeable fungal hyphae and provides
an estimation of the hypha-associated DNA signals in wt and pksP hyphae treated with afEVs and pksP
EVs, respectively, compared to those in untreated control hyphae. The data in panels A and B for the EV
groups were derived from 3 independent experiments (n � 13 and 21 technical replicates for pksP and
wt, respectively). The data in panel B for the controls are representative of those from 1 experiment
(n � 5 technical replicates). P values were determined by the Mann-Whitney test. n.s., not significant; *,
P � 0.05; **, P � 0.01; ***, P � 0.001. (C) SEM images of 50-h-old cultures of wt hyphae treated with afEVs
(bottom) versus healthy hyphae grown alone (top). Samples were immobilized on filter membranes with
a defined pore size of 5 �m (black circles). Bars, 50 �m. SEM images represent observations from 2
independent experiments with 3 technical replicates.
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damage in a process likely associated with the physical interaction of hyphae and afEVs.
In support of this finding, hyphae also appear to undergo hyperbranching away from
the afEV layer in response to treatment (see the third movie at https://doi.org/10.6084/
m9.figshare.11973174), again suggesting antifungal activity.

The effect of afEVs on fungi led us to test for physical long-term alterations of cell
wall morphology. To visualize these changes, we obtained scanning electron micros-
copy (SEM) images of wt hyphae at 50 h after afEV treatment. The treated hyphal
filaments (Fig. 4C) were again shorter, further confirming the antifungal nature of afEVs.
Additional imaging showed slight alterations in the porousness of the cell surface,
which included ruffling and invaginations that were not observed in hyphae grown
without afEVs (Fig. S6).

Next, we took advantage of a previously reported mitochondrial green fluorescent
protein (GFP) cell death reporter strain (AfS35/pJW103) produced to monitor the
granulocyte killing of A. fumigatus (49). In this strain, a mitochondrion-localized GFP
indicates filamentous, healthy mitochondria in living fungi, but the mitochondria
become fragmented upon initiation of cell death pathways and ultimately lose their
fluorescence at later time points. Using this strain, we were able to observe mitochon-
drial fragmentation and the limited growth of 20-h-old hyphae challenged with afEVs
or an H2O2 control (3 mM) but not of those challenged with pksP EVs or sEVs (Fig. 5).
These results are consistent with a potential fungicidal activity for afEVs and agree with
the results from Fig. 3.

To further support our findings of afEVs in association with fungal cells, we per-
formed 3D image analysis of afEV entry into GFP-expressing hyphae. The data obtained
demonstrated that afEVs could be incorporated into the fungal cytoplasm (Fig. 6A to D;
see the second movie at https://doi.org/10.6084/m9.figshare.11973174). Furthermore,
we were able to differentiate four locations of EV-fungal interactions: (i) the largest
fraction of afEVs, 50 to 70% (referred to as type I afEVs), were cell wall-associated EVs;
(ii) afEVs embedded into the cell wall amounted to 0.5 to 2.5% of the EVs; (iii) 15 to 45%
of the afEVs were found to be located at the interface between the cell wall and the
cytoplasm; and (iv) intracytoplasmic afEVs represented 0.2 to 3% of all afEVs (Fig. 6A to
D; see also the second movie at https://doi.org/10.6084/m9.figshare.11973174).

afEV proteins are toxic to fungal cells. We next assessed whether the antimicro-
bial proteins found in afEVs might contribute to the growth inhibition of hyphae when
expressed heterologously in the fungus. The genes of two of these human proteins,
cathepsin G and azurocidin, were selected because both proteins were enriched in
afEVs and are also known to have antifungal effects. For example, cathepsin G knockout
mice are highly susceptible to A. fumigatus infection (50, 51). The genes encoding these
proteins were placed under inducible expression in A. fumigatus hyphae (Fig. S7A and
B). As a control, we also placed the human retinol binding protein 7 (RBP7), a protein
detected in EVs with no expected antifungal activity, under inducible expression in A.
fumigatus hyphae as well (strain AfRBP7). Addition of the inducer doxycycline to
cultures of the transgenic A. fumigatus strains (strains AfcathG and Afazuro) led to a
massive growth reduction, whereas the control RBP7 strain (AfRBP7) revealed no
change in dry weight (Fig. 7A and B). These findings are consistent with a potential
activity of EV cargo proteins in limiting fungal growth when active in the fungus. The
presence of the human proteins in hyphae after induction with doxycycline was
confirmed by liquid chromatography (LC)-mass spectrometry (MS) measurements of
fungal protein extracts (Fig. 7C).

DISCUSSION

Neutrophils are critical for the elimination of A. fumigatus from the human host (52);
however, the exact extracellular mechanisms of how PMNs kill A. fumigatus hyphae are
not known (52). A. fumigatus-triggered neutrophil extracellular traps are slightly fun-
gistatic but do not account for the full activity of neutrophils (22, 23). Here, we show
that ex vivo-applied human EVs triggered by wt conidia (afEVs) inhibit the growth of
hyphae and elicit cell damage, adding a new mode of antifungal defense against A.
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fumigatus. These results are consistent with previous findings from PMN-derived EVs
showing antibacterial effects against Staphylococcus aureus (34). We speculate that
afEVs are produced primarily as a result of fungus-driven PMN activation, as apoptotic
bodies accounted for less than 10% of the total EV population.

afEV production was increased in response to A. fumigatus infection, as confirmed by
flow cytometry. EVs increased with kinetics different from those previously reported for
anti-S. aureus PMN-derived EVs, where maximum production was observed at 20 min
(34). The interaction of PMNs with A. fumigatus conidia resulted in an enrichment of
CD63 on afEVs, which was not observed in antibacterial EVs (34) and which is typically
found only on EVs smaller than 100 nm. afEVs were also enriched in MPO, NE, and

FIG 5 afEVs kill fungal hyphae. AfS35/pJW103 hyphae expressing a mitochondrial GFP reporter (green)
grown for 20 h were stained with calcofluor white (blue) and incubated with sEVs, afEVs, pksP EVs, or
3 mM H2O2 as a positive control for cell death induction or left untreated and then monitored by CLSM.
A healthy filamentous mitochondrial network is shown in green in an untreated sample. A fragmented
mitochondrial network indicates cell death, as seen when 3 mM H2O2 was used as a positive control for
cell death. Images are representative of those from 4 separate experiments with samples from different
donors. Bars, 10 �m.
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cathepsin G, consistent with their antifungal function. Interestingly and further sup-
porting the importance of the afEV cargo was the finding that cathepsin G, NE, and
calprotectin knockout mice are all highly susceptible to infection with A. fumigatus (11,
50). It is possible that these proteins serve an EV-independent role in host defense;
however, many of these proteins have been shown to be associated with EVs in our
study and previous studies (26, 34).

Our proteomic analysis of EVs indicated that afEVs and pksP EVs contained an
expanded proteome compared to that in sEVs; however, nearly all proteins from afEVs
were found in pksP EVs. Despite this overlap, the abundance of these cargo proteins

FIG 6 afEVs are internalized into the fungal cell wall and cytoplasm. afEV internalization into fungi was analyzed by 3D quantitative
analysis of z-stacks with GFP-expressing A. fumigatus after 20 h of coincubation. (A, B) (Left) Representative cross sections of z-stacks
showing lateral (X and Y) and axial (Z) dimensions of a hypha with internalized afEVs (A) and the corresponding control hypha (B).
Internalized afEVs are in red (Alexa Fluor 647), the fungal cell wall is in blue (calcofluor white), and the fungal cytoplasm is in green
(GFP). The image intensity was inverted. The darkest color corresponds to the highest fluorescence intensity. Bars, 2 �m. (Right)
Histograms display the specificity of the signal of the Alexa Fluor 647 dye used to stain afEVs. As seen in the control z-stack, there is
unspecific Alexa Fluor 647 staining, likely due to dye aggregation. (C) Schematic diagram of a cross section of hyphae and different
stages of afEV internalization. afEVs were located in 4 areas, as indicated by the graphical representation. (D) Overview from the 3D
image analysis of different locations of afEVs. Data are representative of those from 3 independent experiments with a total of 25
z-stacks.
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was quite different. These results are consistent with a hypothesis that the abundance
of EV cargo proteins dictates the antifungal nature of that EV population. Our results
also suggest that the cargo of afEVs is tailored to the pathogen, as wt and pksP conidia
elicited different responses. It is important to note that the pksPmutant utilized in these
studies is not a knockout but instead was derived from a UV-mutagenized strain (53).
Previous work has indicated that the phenotypes observed with this strain are due to
the inactivation of pksP and that they could be fully complemented by the wt pksP gene
(42, 53). Our findings also suggest a novel function for the fungal virulence factor
dihydroxynaphthalene melanin (54, 55) in modulating EV biogenesis and protein cargo.
Melanized conidia are less opsonized than nonmelanized conidia and, as a conse-
quence, show reduced phagocytosis by neutrophils, which might lead to lower levels
of EV production (42). This hypothesis is also supported by the observation that CD11b
and CD63 receptors are differentially expressed on the surface of neutrophils during
confrontation with pksP and wt conidia.

Our results demonstrate that afEVs associate with fungal hyphae, as evidenced by
the high proportion of EVs colocalized with the cell wall of the fungus. In addition, since
EVs were found intracellularly, inhibition and killing of the fungus might be due to a
combination of these adherence and penetration mechanisms. Although we do not
know the mechanisms that govern EV uptake, one hypothesis is that the Fc� receptor
found on the surface of EVs directs the EVs to opsonized fungal surfaces to facilitate
entry. Once associated, the exact cargo that is required for the observed antifungal
activity is also unknown at this time, but we suspect that it is due to a combination of
factors. Human primary neutrophils cannot be genetically manipulated, so as a proof of

FIG 7 The intracellular production of human azurocidin and cathepsin G proteins is toxic to A. fumigatus.
(A) A. fumigatus wt and mutant strains Afazuro, AfcathG, and AfRBP7 harboring the human azurocidin,
cathepsin G, and RBP7 genes, respectively, under the control of the tetON promoter. The cultures were
grown for 24 h in the absence or the presence of doxycycline (DOX). (B) Biomass measurement of wt and
A. fumigatus mutant strains Afazuro, AfcathG, and AfRBP7 with and without doxycycline. Data are
representative of those from 3 independent experiments with 3 technical replicates. P values were
determined by the Mann-Whitney test. ns, not significant; **, P � 0.01; ***, P � 0.001. (C) Detection of
proteins produced in the A. fumigatus mutant strains. The bar plot shows the abundance level of the
azurocidin protein for the Afazuro strain, the cathepsin G protein for the AfcathG strain, and RBP7 for the
AfRBP7 strain, based on the intensity of the precursor ion. The data were generated from 3 analytical
replicates.
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principle, we instead created A. fumigatus strains that produce cathepsin G and
azurocidin using an inducible promoter system. The production of these proteins in the
fungus clearly led to a massive growth defect, suggesting that delivery of these cargos
could contribute to antifungal activity; however, this experiment offers only a proof of
principle. In addition, we observed that fungal hyphae move away from afEVs by
hyperbranching, suggesting that the fungus actively avoids afEVs. This finding is
consistent with other observations of hyperbranching away from neutrophils during
infection (56).

Our 3D image analysis and work with a mitochondrial GFP reporter strain illustrated
the potential of afEVs to induce fungal cell damage, while they also revealed the afEV
association with hyphae and a possible fungicidal capacity. Interestingly, PMN-
generated reactive oxygen species (ROS) were recently shown to induce fungal cell
death (14), and perhaps there is a connection between ROS-induced fungal cell death
and afEV toxicity. More work will be required to fully elucidate the mechanism of fungal
killing by afEVs. Our data did show that the intracellular production of antimicrobial
peptides could contribute to a severe inhibition of fungal growth. On the other hand,
neutrophil EV-associated effector functions are also known to contribute to innate
immune pathology. For example, the surface-bound neutrophil elastase of EVs has
been shown to cause extracellular matrix destruction and disease in the lungs of
patients with chronic obstructive pulmonary disease (57).

In conclusion, our results suggest that human PMNs release afEVs in response to an
A. fumigatus infection. These EVs contain a cargo of antimicrobial proteins that inhibit
hyphal growth and kill hyphae. We envision that the analysis of EVs produced in
bronchoalveolar lavage fluid represents a potentially useful tool for diagnostic and/or
prognostic markers of invasive aspergillosis. Although we hypothesize that afEVs serve
as an important factor in the control of pathogenesis during A. fumigatus infection,
much work remains to be done to completely unveil the function of these important
intercellular mediators.

MATERIALS AND METHODS
Ethics statement. This study was approved by the Institutional Review Board of the Jena University

Hospital (approval numbers 2395-10/08 and 5074-02/17) in agreement with the Declaration of Helsinki.
Informed consent was obtained for study participation. PMNs were isolated from fresh venous blood
collected from healthy adult volunteers after obtaining written consent.

Strains, growth conditions, and fungal biomass determination. A. fumigatus ATCC 46645, the
GFP-expressing strain AfS148 (58), the melanin-free pksPmutant (53), and the mitochondrial GFP reporter
strain AfS35/pJW103 (49) were maintained on malt extract (Sigma-Aldrich) agar plates supplemented
with 2% (wt/vol) agar for 5 days at 37°C. When appropriate, A. fumigatus ATCC 46645 and the overex-
pression strains A. fumigatus Afazuro, AfcathG, and AfRBP7 were cultivated on Aspergillus minimal
medium (AMM) for 3 days at 37°C, as described previously (59). All conidia were harvested in sterile
deionized water, filtered through 40-�m-pore-size cell strainers (BD Biosciences, Heidelberg, Germany),
washed, and resuspended in deionized sterile water. Spore suspensions were counted in a Thoma
chamber and stored at 4°C for no longer than 1 week. Freshly harvested spore suspensions were used
for each experiment.

For biomass determination, 108 conidia/ml were inoculated in 100 ml AMM, supplemented with
10 �g/ml doxycycline when needed for induction of the tetracycline-controlled transcriptional activation
(tetON) promoter, and grown at 37°C at 200 rpm for 24 h. Mycelia were collected, washed, filtered through
Miracloth, and dried at 60°C for 3 days before weighing.

Opsonization of fungi. Fresh venous blood was drawn from adult male healthy volunteers, aged 20
to 35 years, after they provided informed written consent and used for preparation of normal human
serum (NHS). The volunteers had not taken any anti-inflammatory medications for �10 days and had not
consumed alcohol for �3 days prior to donation. NHS was obtained by pooling serum prepared from
fresh venous blood from seven healthy human donors. The serum was stored at �80°C until use. The
conidia were opsonized in 50% (vol/vol) NHS and 50% (vol/vol) Hanks’ balanced salt solution (HBSS)
(HyClone, GE Healthcare) for 1 h at 37°C at 500 rpm in duplicate. The conidia were pelleted by
centrifugation at 16,000 � g at 4°C for 10 min and subsequently washed three times with HBSS prior to
confrontation assays with PMNs.

To measure C3 deposition on the conidial surface after opsonization, the conidia were washed three
times with Dulbecco’s phosphate-buffered saline (DPBS) and then incubated with a 1:1,000 dilution of
polyclonal goat anti-human C3 serum (Comptech) in 3% (wt/vol) bovine serum albumin (BSA) for 1 h at
room temperature (RT). This was followed by addition of a 1:400 dilution of Alexa Fluor 647-conjugated
donkey anti-goat IgG (Invitrogen) secondary antibody in 3% (wt/vol) BSA for 1 h at RT. The fluorescence
of 10,000 conidial cells was measured by flow cytometry (with a BD LSR II flow cytometer), and the
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median fluorescence intensity of each conidial population was calculated using FlowJo software (Becton,
Dickinson, USA).

PMN isolation. PMNs were isolated from fresh venous blood from healthy adult volunteers with a
purity above 95% and a viability at 98% as previously described in detail (26) with slight modifications,
as follows: blood was collected in K2EDTA BD Vacutainer tubes (BD Biosciences), and Biocoll separation
solution (Biochrom; GE Healthcare) or PolymorphPrep solution (Progen) was used for gradient centrif-
ugation. Neutrophil purity was determined using an antibody cocktail, as follows: CD3-phycoerythin
(clone SK7; dilution, 1:50), CD14-V500 (clone M5E2; dilution, 1:200), CD16-allophycocyanin (APC)-Cy7
(clone 3G8; dilution, 1:50), CD19-Alexa Fluor 700 (clone HIB19; dilution, 1:100), CD56-fluorescein isothio-
cyanate (FITC) (clone NCAM16.2; dilution, 1:100), and CD66b-peridinin chlorophyll protein (PerCP)-Cy5.5
(clone G10F5; dilution, 1:66), obtained from BD Pharmingen, and CCR3-APC (clone 5E8; dilution, 1:40),
obtained from BioLegend. The cells (1 � 106) were blocked with 5% (vol/vol) mouse serum and then
stained for CCR3 for 10 min at 37°C. Subsequently, an antibody cocktail mix was applied for staining of
the remaining antigens from the above-mentioned panel for an additional 30 min at RT. For cell damage
assays at each time point, 2 � 106 neutrophils in 200 �l of HBSS were incubated with PI (5 �g) and Alexa
Fluor 647-annexin V (5 �l) for 15 min at RT. Then, the cells were centrifuged at 400 � g for 5 min and
resuspended in 500 �l DPBS. The fluorescence of 104 gated neutrophils was measured by flow cytometry
with a BD LSR II flow cytometer (BD Biosciences) and BD FACSDiva software (version 8.0.1; BD Biosci-
ences). The data were analyzed with FlowJo software.

EV isolation and characterization. EVs were prepared by following a procedure described by Timar
et al. (34) with slight modifications. PMNs at a density of 1 � 107 cells/ml were confronted with opsonized
wt A. fumigatus ATCC 46645 or opsonized A. fumigatus pksP mutant conidia at an MOI of 10 or 5 in HBSS
with Ca2� and Mg2� (HyClone, GE Healthcare) on a linear shaker (100 rpm) at 37°C for 4 h. EVs produced
by uninfected PMNs (sEVs) served as a negative control. At the selected incubation time points, PMNs
were sedimented for 10 min at 1,000 � g at 4°C on 45° fixed-angle rotor (model FA-45-30-11; Eppendorf).
The supernatant was filtered by gravity through sterile polyvinylidene difluoride (PVDF) 5.0-�m-pore-size
Millex syringe filters (Merck-Millipore). The EV suspensions were stained with a cocktail of fluorescence-
conjugated monoclonal antibodies (PerCP-Cy5.5-anti-human CD63 [clone H5C6; BioLegend], RPE-CD11b
[Dako], and FITC-annexin V [BioLegend]) for 20 min at RT and centrifuged on a 45° fixed-angle rotor
(model FA-45-30-11; Eppendorf) for 20 min at 4°C at 19,500 � g. Corresponding single-stained antibody
isotype controls were also prepared (PerCP-Cy5.5 mouse IgG1, � isotype [clone MOPC-21; BioLegend];
mouse IgG1, � isotype RPE-CD11b [Dako]). After centrifugation, the supernatant was carefully aspirated
and EV pellets were resuspended in the original incubation volume in HBSS.

The size distribution of PMN-derived EVs was recorded with a Nanotrac Flex 180° dynamic light
scattering system (Microtrac) at 22°C. At least 20 measurements per sample were performed, and the
average hydrodynamic radius was calculated with the sphere approximation using FLEX11 software.

Flow cytometry measurements of EVs were conducted on a BD LSR Fortessa flow cytometer using BD
FACSDiva software (version 8.0.1) (BD Biosciences), applying an optimized EV flow protocol (60). Briefly,
pure HBSS was used to record instrument noise. The upper size limit detection threshold was set by
fluorescent rainbow particles with a midrange intensity and a size of 3.0 to 3.4 �m (BioLegend)
resuspended in HBSS. Stained EV suspensions were enumerated in the fluorescent gate above the gate
of the negative isotype-labeled controls. Once measured, samples were treated with 1% (vol/vol) Triton
X-100 to verify the vesicular nature of the detected events. Detergent-resistant events (false positives)
were subtracted from the total measured events using FlowJo software (version 10.0.7) from TreeStar.

Electron microscopy (cryo-TEM and SEM). For ultrastructural investigations, isolated EVs were
imaged by cryo-transmission electron microscopy (cryo-TEM), and the effects of EVs on fungi were
studied by scanning electron microscopy (SEM).

For cryo-TEM imaging, sEVs and afEVs collected at the time point of 2 h were freshly prepared using
neutrophils from the same male donor and immediately subjected to imaging. Five microliters of purified
pelleted EVs in HBSS was applied to carbon-coated copper grids (type R1.2/1.3; Quantifoil Micro Tools
GmbH), and the excess liquid was blotted automatically for 2 s from the reverse side of the grid with a
strip of filter paper. Subsequently, the samples were rapidly plunged into liquid ethane (cooled to
�180°C) in a cryobox (Carl Zeiss NTS GmbH). Excess ethane was removed with a piece of filter paper. The
samples were transferred with a cryo-transfer unit (Gatan model 626-DH) into the precooled cryo-TEM
(Philips model CM 120), operated at 120 kV, and viewed under low-dose conditions. The images were
recorded with a 2k complementary metal oxide semiconductor (CMOS) camera (model F216; TVIPS,
Gauting, Germany).

SEM analysis was used to investigate the effect of the afEVs on the growth of A. fumigatus. Therefore,
wt conidia were coincubated with the triple dose of PMN-derived EVs for 50 h in HBSS at 37°C in the dark.
At the end of the coincubation time, samples were fixed in 2.5% (vol/vol) glutaraldehyde in HBSS on
Isopore membrane TMTP filters with a pore size of 5 �m (Merck-Millipore) for 30 min, followed by
washing thrice with HBSS buffer (for 10 min each time). Then, the samples were dehydrated in ascending
ethanol concentrations (30, 50, 70, 90, and 96% [vol/vol]) for 10 min at each concentration by thoroughly
rinsing the membranes and soaking up the liquids with blotting paper. Subsequently, the ethanol was
changed to hexamethyldisilazane (Merck) in two steps (50%, 96% [vol/vol]), and the samples were air
dried. Afterwards, the samples were sputter coated with gold (thickness, approximately 4 nm) using an
SCD005 sputter coater (Bal-Tec, Liechtenstein) to avoid surface charging and investigated with a field
emission (FE) SEM LEO-1530 Gemini microscope (Carl Zeiss NTS GmbH).

LC-MS/MS-based proteome analysis of EVs. For proteome analysis of EVs, purified sEVs, afEVs, and
pksP EVs were collected from a pool of 20 different donors in HBSS and stored at �80°C for no longer
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than 1 week prior to protein extraction. EV suspensions were concentrated on 3-kDa-molecular-mass-
cutoff polyethersulfone (PES) membrane centrifugal filters (VWR International) for 5 min at 14,000 rpm at
4°C (Sigma 3-KIS centrifuge). Samples were snap frozen in liquid N2 and delipidated by protein
precipitation, based on the protocol of Wessel and Flügge (61). Proteins were resolubilized in 50 �l
50 mM triethyl ammonium bicarbonate (TEAB) in 1:1 trifluoroethanol (TFE)-H2O and denatured for 10 min
at 90°C. Protein quantification was performed using a Direct Detect system (Merck-Millipore). Each
sample was set to 40 �g of total protein in 100 �l in 100 mM TEAB. Proteins were reduced with 10 mM
Tris(2-carboxyethyl)phosphine (TCEP) at 55°C for 60 min and alkylated with 12.5 mM iodoacetamide (IAA)
at RT for 30 min in the dark. Proteins were digested for 2 h at 37°C with C-type lysozyme (Lys-C) and for
16 h at 37°C with trypsin gold (both from Promega). For TMT 6-plex labeling (Thermo Fisher Scientific,
Waltham, MA), the digested peptides were treated according to the manufacturer’s instructions. Labeled
peptides were pooled and fractionated offline on HyperSep strong-cation-exchange (SCX) columns
(Thermo Fisher Scientific).

LC-MS/MS analyses and protein database searches were performed as described by Baldin et al. (62)
with the following modifications. Gradient elution using eluent A (0.1% [vol/vol] formic acid in water) and
eluent B (0.1% [vol/vol] formic acid in 90:10 acetonitrile-water [vol/vol]) was as follows: 0 to 4 min at 4%
eluent B, 15 min at 5.5% eluent B, 30 min at 7% eluent B, 220 min at 12.5% eluent B, 300 min at
17% eluent B, 400 min at 26% eluent B, 450 min at 35% eluent B, 475 min at 42% eluent B, 490 min at
51% eluent B, 500 min at 60% eluent B, 515 to 529 min at 96% eluent B, and 530 to 600 min at 4% eluent
B. Precursor ions were measured in full scan mode within a mass range ofm/z 300 to 1,500 at a resolution
of 140,000 full width at half maximum (FWHM) using a maximum injection time of 120 ms and an
automatic gain control (AGC) target of 3 � 106 (TMT) or 1 � 106 (LFQ). The isolation width was set to m/z
0.8 (TMT) or 2.0 (LFQ) atomic mass units. Tandem mass spectra were searched for by the use of Proteome
Discoverer (PD) software (version 2.1; Thermo Fisher Scientific, Waltham, MA) against the UniProt
database of Homo sapiens (as of 22 August 2016) using the algorithms of the programs Mascot (version
2.4.1; Matrix Science), Sequest HT, and MS Amanda (63). Dynamic modifications were oxidation of Met
(LFQ) and a TMT 6-plex reaction at Tyr (not considered for quantification). Static modifications were the
carbamidomethylation of Cys by iodoacetamide (LFQ) and a TMT 6-plex reaction at Lys and the peptide
N terminus. The TMT significance threshold for differentially abundant proteins was set to factor of �1.5
(up- or downregulation). The data were further manually evaluated based on the average reporter ion
count (�2 for medium confidence, �4 for high confidence). Furthermore, the average variability was
observed as a function of the differential regulation and the reporter ion count. Label-free quantification
was performed by the precursor ions area method of PD software (version 2.1). The mass tolerance was
set to 2 ppm, and the signal-to-noise ratio had to be above 3. The abundance values were normalized
based on the total peptide amount. The significance threshold for differential protein abundance was set
to a factor of �2.0 (up- or downregulation).

Functional annotation of the EV proteome. The data set of differentially regulated proteins was
filtered by the human serum proteome represented by Piper and Katzmann (64) and, in addition, by
keratin, epidermal proteins, and complement component 5�, which were not considered for the
proteome comparison. The filtering and the overlap analyses were performed in R using the packages
provided by Bioconductor software (65). The GO-term enrichment analysis of the overlapping proteins
of the TMT data sets was performed using the FungiFun2 tool (66). The results contain categories
determined by Fisher’s exact test and Benjamini-Hochberg-corrected P values below 0.05.

Analysis of heterologously expressed human azurocidin and cathepsin G. Protein preparation,
LC-MS/MS analysis, and a database search for the identification of proteins were essentially performed
as previously described (62), except for the following changes. The LC gradient elution was as follows:
0 min at 4% eluent B, 5 min at 5% eluent B, 30 min at 8% eluent B, 60 min at 12% eluent B, 100 min at
20% eluent B, 120 min at 25% eluent B, 140 min at 35% eluent B, 150 min at 45% eluent B, 160 min at
60% eluent B, 170 to 175 min at 96% eluent B, and 175.1 to 200 min at 4% eluent B. Mass spectrometry
analysis was performed on a QExactive HF instrument (Thermo Fisher Scientific) at a resolution of 120,000
FWHM for MS1 scans and 15,000 FWHM for MS2 scans. Tandem mass spectra were searched against the
UniProt database (7 August 2018; https://www.uniprot.org/proteomes/UP000002530) of Neosartorya
fumigata (Af293) and the human protein sequences of azurocidin, cathepsin G, and RBP7, using
Proteome Discoverer (PD) software (version 2.2; Thermo Fisher Scientific) and the algorithms of Sequest
HT (a version of PD software [version 2.2]) and MS Amanda (version 2.0) software. Modifications were
defined as dynamic Met oxidation and protein N-terminal acetylation as well as static Cys carbamidom-
ethylation.

Determination of EV effects on fungi by CLSM. For determining the effects of EVs on fungi, EVs
were dosed according to cell equivalents. One EV dose was defined as the number of EVs produced by
107 PMNs infected with pksP mutant conidia at an MOI of 5 at 2 h postinfection, which represented the
maximal observed production of EVs (Fig. 1C) and which corresponded to approximately 109 EVs/ml by
nanoparticle tracking analysis with a Malvern NS300 instrument (camera setting, 14; detection threshold,
4). At this time point, pksP conidia stimulated double the amount of EVs as wt conidia and 12-fold more
than sEVs from the same number of cells. Consequently, the doses were adjusted to appropriately
compare equal numbers of EVs. Freshly prepared and portioned EVs were coincubated with 30 �l of a
suspension of 106 conidia/ml in HBSS in 12-well chambers (Ibidi GmbH). A confocal laser scanning
microscopy (CLSM) system (Zeiss LSM 780; Carl Zeiss SAS) was employed; see “CLSM setup” below for
details. Images were acquired once per hour from 10 different fields of view per well in a microtiter plate.
The two-dimensional (2D) confocal images were recorded at a pixel size of 208 by 208 nm, whereas 3D
image stacks had a voxel volume of 0.025 (19 samples) or 0.034 (15 samples) �m3.
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After 20 h, the samples were stained with annexin V-FITC (dilution, 1:60; BioLegend), PI (to a final
concentration of 0.0167 �g/�l), and calcofluor white (to a final concentration of 0.167 �g/�l) in order to
assess EV entry into hyphae and to collect image z-stacks by CLSM. When the GFP-expressing A.
fumigatus strain AfS148 was used, the staining cocktail consisted of annexin V-Alexa Fluor 647 and
calcofluor white, whereas PI staining was omitted in order to avoid spectral overlaps.

For investigation of EV-mediated fungal killing, we took advantage of a previously described
mitochondrial GFP-expressing reporter strain, AfS35/pJW103 (49). When growing normally, this fungal
strain shows a normal filamentous network of mitochondria, indicated by mitochondrion-specific fluo-
rescence. For these experiments, 106 conidia/ml of strain AfS35/pJW103 were grown in HBSS in 8-well
chambers (Ibidi GmbH) for 20 h prior to coincubation with freshly prepared EV fractions. Here, we used
EVs collected from equal amounts of PMNs (107 PMNs). A CLSM system (Zeiss LSM 780; Carl Zeiss SAS)
was used to monitor mitochondrial fragmentation (GFP signal) and cell growth (calcofluor white) over
time. As a control, cell death was initiated using 3 mM H2O2, which causes the mitochondria to undergo
fusion and form punctate structures within 1 h and then fade in fluorescence signal over time (49).

CLSM setup. The imaging data were collected with a Zeiss LSM 780 confocal laser scanning
microscope (Carl Zeiss SAS). Images were taken using either a 10� (numerical aperture [NA], 0.4) or a
20� (NA, 0.7) objective lens in an inverted configuration, resulting in a total magnification of �100 or
�200, respectively. In order to measure the point-spread function of the CLSM system, 5 �l of the blue,
green, and deep-red calibration beads from a PS-Speck microscope point source kit (diameter, 170 nm;
Invitrogen) was resuspended in the staining cocktail. The bead mixture was imaged under the same
conditions applied for the z-stacks of the hypha-EV system. Individual 3D bead images were averaged per
color by the use of the HuygensPro program, and the resulting 3D bead images were used to distill the
measured point-spread function for all three colors. For the imaging of hyphae and EVs, the CLSM
objective lens and stage were preheated to 37°C for 3 to 5 h prior to image scanning. Bright-field images
were acquired from 10 different fields of view per well once per hour for 15 time points using a 20� (NA,
0.8) dry objective at 37°C in 5% (vol/vol) CO2 atmosphere.

For the z-stacks, images were collected at an axial separation that was set according to the Nyquist
criterion for the shortest wavelength, using the same z-step size for all channels. The axial range was
adjusted to the thickness of the observed cells.

3D image analysis of EV internalization. For a quantitative analysis of the afEV-hypha interactions,
the 3D shape of each object type was reconstructed based on four-dimensional (3D plus color)
fluorescence images using the following procedure: the images were deconvolved using the HuygensPro
program (Scientific Volume Imaging, Hilversum, The Netherlands) with a measured point spread function
(PSF) (see “CLSM setup” above) that was recorded individually for each fluorescence channel. The
deconvolved images were transferred to Imaris software (Bitplane, Zürich, Switzerland) for 3D recon-
struction. The basic object types (hyphae, DNA, EVs) were reconstructed in Imaris software using
manually adjusted templates. The reconstructed hyphae included objects only from the calcofluor white
channel (see “Determination of EV effects on fungi by CLSM” above) that were larger than 20 �m3 and
that had no surface points on the sample border. The reconstruction process is presented in the first and
second movies at https://doi.org/10.6084/m9.figshare.11973174. The control samples and those with
GFP fluorescence were reconstructed using the same procedure. Hypha-associated DNA and hypha-
associated EVs were identified by using a binary mask of the hyphae (channel 4; see the second movie
at https://doi.org/10.6084/m9.figshare.11973174). Only those objects that were located either on the
border or inside the hyphae, as identified by a threshold of the mean value of the calcofluor white
fluorescence signal above 5 � 10�10, were considered hypha associated. The binary mask of hypha-
associated EVs was used to select hypha-associated DNA that interacted with EVs (hypha-associated
DNA, mean value for the binary mask of hyphae; see the second movie at https://doi.org/10.6084/m9
.figshare.11973174). Finally, the total volume of each object class at every field of view was computed.
Additionally, the EV volume inside the hyphae was computed over the regions that were double positive
for annexin V (EVs) and calcofluor white (hyphae), whereas the EV volume outside the hyphae was
defined as the volume that was positive for annexin V but not calcofluor white. The EV densities inside and
outside the hyphae were then defined as follows: EV density inside hyphae � (EV volume inside hyphae/
hyphal volume) and EV density outside hyphae � [(EV volume outside hyphae)/(sample volume � hyphal
volume)]. The sample volumewas estimated based on the voxel size and the number of voxels in each sample
(automatically performed by Imaris software).

Automated 2D image analysis of hyphal growth. For quantitative analysis of hyphal growth in
bright-field microscopy images, the area of the regions of interest (ROI) corresponding to the conidia and
the hyphae was computed automatically for each image. The image analysis algorithm was implemented
in Matlab (Matlab 2017a; MathWorks). The code is available from the authors upon request. The
procedure included (i) binarization of the image data, (ii) binary image enhancement, (iii) selection of
the ROI based on morphological filtering, (iv) image postprocessing and filtering, and (v) measurement
of the area of the ROI. Two of the original image sections, together with the resulting images after
application of the aforementioned steps, are illustrated in Fig. S4A in the supplemental material. All
parameters of the algorithm were adjusted to minimize the detection of noise and of out-of-focus
objects, and the adjustment was confirmed by visual inspection of the images. The image data were
saved in 16-bit CZI format and loaded into Matlab using the bfopen script from the Open Microscopy
Environment (https://www.openmicroscopy.org/site/support/bio-formats5.3/developers/matlab-dev
.html).

The images were processed in five steps. In step 1, binarization was performed using the function
imbinarize from the Matlab ImageProcessing tool box with the following parameters: the adaptive

Neutrophil Antifungal Extracellular Vesicles ®

March/April 2020 Volume 11 Issue 2 e00596-20 mbio.asm.org 15



Manuscripts 69 

threshold type, a sensitivity factor for adaptive thresholding of 0.45, and a foreground darker than the
background (ForegroundPolarity � dark). In step 2, enhancement of the binary image included the
following steps: majority filter, which sets a pixel value to 1 if five or more pixels in its 3-by-3
neighborhood have values of 1 and to 0 otherwise; hole filling inside the ROI; and object removal for ROIs
with an area of less than 200 pixels, which corresponds to the minimal area of resting conidia. The
resulting image is referred to as image S. Step 3 was selection of the ROI, in which image S was split into
two masks, masks M and S=, based on the object area, where image M contained all ROIs with an area
of less than 1,000 pixels, which corresponded to resting, swollen, and germinated conidia, as well as parts
of vesicle clumps, and image S=, which was all remaining large ROIs, which corresponded to hyphae;
removal of all ROIs from mask M with a solidity value below 0.85, corresponding to vesicle clumps (the
resulting mask is referred to as mask M=); and combination of masks M= and S= into one mask, mask R,
by the logical sum operation of masks M= and S=. Step 4 was image postprocessing and filtering,
consisting of the morphological closing of mask R with two line elements (10 pixels long; orientations,
45° and 135°) to connect broken contours and removal of all ROIs for which the 1st percentile of their
Feret diameters was less than 17 pixels (the size of resting conidia). Removal of these ROIs removes the
remaining vesicle clumps which have regions thinner than 17 pixels. For Feret diameter calculation, the
tool box Feret diameter and oriented box was used (David Legland, https://www.mathworks.com/
matlabcentral/fileexchange/30402-feret-diameter-and-oriented-box). Step 5 consisted of measurement
of the area of the ROI, in which the area of each object was computed using the function regionprops
with the parameter FilledArea and the median of the areas of all ROIs in an image was used to
characterize fungal coverage in the image.

Generation of transgenic A. fumigatus strains. For expression of the human azurocidin gene
(AZU1), the human cathepsin G gene (CTSG), and the human retinol binding protein 7 gene (RBP7) in A.
fumigatus, a tetracycline-controlled transcriptional activation (tetON) system was used (67). The human
azurocidin, cathepsin G, and retinol binding protein 7 cDNA sequences obtained from the NCBI database
were codon optimized for A. fumigatus using the GENEius tool (https://www.eurofinsgenomics.eu/en/
gene-synthesis-molecular-biology/geneius/) and synthesized together with the tef terminator (Eurofins
Genomics). Each of the genes was PCR amplified from the corresponding synthetic template using the
Phusion Flash high-fidelity PCR master mix (Thermo Fisher Scientific) with the primer pairs Azu_polictail_f
and tef_r for azurocidin, cathG_polictail_f and tef_r for cathepsin G, and RBP7_polictail_F and tef_r for
RBP7 (Table S2). The tetON promoter cassette was amplified from plasmid pSK562 with primers
ptetOn_pYES2tail_F and pOliC_R, while the pyrithiamine resistance cassette (ptrA) was amplified from
plasmid pSK275 with primers ptrA_teftail_F and ptrA_pYES2tail_R. Plasmid pYES2 was used as the
backbone vector and amplified with primers pYES2_r and pYES2_f. The tetON cassette, each of the three
human genes, and the ptrA cassette were assembled with the pYES2 backbone using the NEBuilder HiFi
DNA assembly master mix (New England Biolabs) according to the manufacturer’s instructions. The
resulting 10-kb plasmids were sequenced and subsequently used to transform A. fumigatus ATCC 46645
as previously described (59). Transformants were selected with 0.1-�g/ml pyrithiamine.

Southern blot analysis to confirm genetic manipulation of the A. fumigatus strains was carried out as
described before (68). For Northern blot analysis, 16-h-old precultures were treated with 10-�g/ml
doxycycline. Mycelia were harvested at 3 h after the addition of doxycycline. RNA extraction and
detection of RNA by Northern blotting were carried out as previously described (68).

Data availability. The mass spectrometry proteomics data have been deposited in the ProteomeX-
change Consortium via the PRIDE partner repository with the data set identifier PXD005994 (69).
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4 Discussion 

Host-pathogen interactions are among most complex biological processes. The 
study of these processes is essential for our understanding of infectious disease, as 
well as their diagnostics, treatment, and prevention. To uncover spatiotemporal 
aspects of those interactions, different microscopy techniques are used followed by 
quantitative image analysis. The dynamic growth number of automated image 
analysis tools specifically developed for these tasks and data reflects the importance 
and high demand for such information. While some analyses, e.g.  cell count or cell 
lineage trajectory detection, have become routine and could be done using dedicated 
proprietary or open-source software, others require de novo  design of workflow 
algorithm. 

The current work is devoted to the development of new workflow algorithms 
and software for quantitative analysis of effects occurring in the interaction of 
several most common pathogenic fungi (see Chapter 1.1) with the human innate 
immune system (see Chapter 1.2) and consists of two parts described in three 
publications. 

4.1   C. albicans and  C. glabrata alter neutrophil morphodynamics
differently 

The first part is focused on numerical analysis of changes in neutrophils mor-
phodynamics after interaction with C. albicans  or C. glabrata and their metabolites 
in whole blood infection assay using time-lapse microscopy data with the aim to 
contribute to an understanding of the interaction of those pathogens with 
components of the human innate immune system, neutrophils in particular. In 
preliminary exper-iments, it was observed that (i) neutrophils from infected samples 
tend to exhibit spreading morphology more often than those from mock-infected 
samples and (ii) neutrophils from C. glabrata  infected samples tend to stay longer 
in the spreading form than those from C. albicans  infected ones, i.e.  neutrophils 
demonstrate different morphodynamics in different infection scenario. To perform 
quantitative measure-ments of those effects, a new workflow algorithm was 
designed.

4.1.1 Neutrophil segmentation and tracking 

At the first step, each neutrophil within FoV must be accurately segmented

and tracked. For these purposes, new methods were developed and implemented 
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differently the previously developed Algorithm for Migration and Interaction 
Tracking (AMIT) (Brandes et al.,  2015, 2017; Al-Zaben et al.,  2019). The 
full description of this new implementation can be found in my first-author 
publication ((Belyaev et al.,  2021), pp 27–39 in this dissertation). The distinct 
feature of this method is the accurate seg-mentation and tracking of cells with 
non-rigid shape in a population with a continuous spectrum of transition phases 
between spreading and non-spreading morphological appearances. These 
improvements were achieved, among other things, by the imple-mentation of a 
fusion-and-fission cluster detection approach, which does not rely on geometrical 
features of a single cell (e.g. footprint area) and, therefore, prevents frag-
mentation of individual spreading cells, which can be as large as two or three 
non‑spreading cells in close proximity. 

Further tracking improvement is possible by implementing a machine learning 
algorithm that would distinguish cell clusters composed of cells in close proximity 
(CP‑clusters) from those consisting of a cell on top of a cell (CT-clusters). This would 
pave the way to process those clusters by different algorithms. While CP-clusters 
should be processed as previously implemented in AMIT (or alternatively, as shown 
in Fig 4.1), CT‑clusters might be processed differently: ether by tracking them 
independently without splitting or by implementing additional cluster split-
ting algorithm which may reconstruct contours of cells within such a cluster. 
However, I think that such an oper-ation is possible to perform correctly 
for two-cell CT-clusters in high contrast DIC images only.  

Fig. 4.1. An alternative approach for cluster splitting implemented using the Matlab Image processing 
toolbox in an earlier prototype of the segmentation algorithm (unpublished). 
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4.1.2 Analysis of neutrophil morphodynamics 

The neutrophil morphodynamics was described using the morphology-
focused feature extraction paradigm (see Chapter 1.5). To identify the 
morphological state of neutrophils in each time point, the one class classifier DD 
SIMCA (Pomerantsev 2008; Pomerantsev and Rodionova, 2014) was used. This 
method allowed to build the model of non-spreading neutrophils using unlabelled 
data from mock-infected samples, despite the fact that neutrophils in this infection 
scenario may rarely exhibit spreading morphology as well (see pp. 41–52 in this 
dissertation). With this approach, we quantita-tively confirmed and described the 
observed difference in neutrophil morphodynamics after in vitro  whole blood 
infection assay ether with  C. albicans  or  C. glabrata  . 

In addition, we demonstrated a way to use this measurable difference to 
distinguish between neutrophil populations affected by the two Candida  species. 
However, considering the characteristics of the feature distributions,  i.e.  spreading 
cell fractions per frame and morphodynamical characteristics, it would be 
reasonable to refer to them as Bayesian biomarkers. Rather than providing 
a binary diagnostic outcome, these features indicate the probability of the 
specific pathogen presence. Going fur-ther, we speculated that morphodynamics 
could be used as an additional biomarker for rapid diagnostic/monitoring 
purposes, especially when the concentration of an analyte (fungal cells, their 
nucleic acids or metabolites) in patients' blood is below the bottom sensitivity 
limits of existing diagnostical tests. For example, T2Candida — the FDA and 
CE approved test for Candida  species detection in blood — requires the presence 
of at least 1 CFU/mL (Mylonakis et al.,  2015; Clancy et al.,  2018; Clancy and 
Nguyen 2019). However, it was estimated that up to 50% of patients with can-
didemia have concentrations below this limit at the early stage of disease (Pfeiffer 
et al.,  2011), which reduces the chance for pathogen detection and identification. 
In such cases, neutrophils can be considered as primary sensors, and their 
morphodynamics may be regarded as a proxy signal, which can be detected 
with a higher probability. Yet, this approach must be evaluated in 
experiments with blood of patients with con-firmed candidemia, because, in my 
opinion, the applied whole blood infection (WBI) assay (Hünniger et al.,  2014) is 
merely replicating the acute reaction of the healthy immune system to a massive 
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invasion of pathogens (concentration of fungal cells is ~105 times higher 
than clinically observed values) and unable to replicate changes in neu-trophil 
population structure and biochemical background occurring in the course of the 
real disease (Yamashiro et al.,  2001; Pillay et al.,  2010; Leliefeld et al.,  2015; 
Silvestre-Roig et al.,  2016; Hong 2017; Tak et al.,  2017; Fraser et al.,  2018; Yang et 
al.,  2019). In fact, that WBI assay was designed to guarantee an acquisition
of reliable statistics of phagocytosis events using flow cytometry. An alternative 
and more realistic model would be an multiorgan-on-chip assembly8 (Picollet-
D’hahan et al., 2021; Ingber 2022), which must include at least blood circulatory 
system, hematopoietic organoid, liver, kidney and elements of central as well as 
peripheral nervous system which are also involved in the immune response (Felten 
et al.,  1987; Kenney and Ganta 2014; Godinho-Silva et al.,  2019). Ideally, all 
components of a single assembly must be raised from cells of a single 
immuno-competent donor using pluripotent (or induced pluripotent in case of an 
adult donor) stem cell technology (Kim et al.,  2020). 

In addition, some other questions remain open. The first one is related 
to a possible difference in external morphology of spreading neutrophils in 
different infection scenarios (e.g.  dynamics of protrusions formation (Hind et al., 
2016) and neutrophil trails production (Hong 2018)), which could be 
answered with an improved imaging technique, e.g.  using de Sénarmont
or Brace–Koehler compensators (Murphy and Davidson, 2012b), which offer 
the introduction of bias retardation much more precisely than it is possible with 
the used system that relies on the translation of the objective Nomarski prism 
across the optical pathway. In addition to an improved rendering of fine 
morphological structures in resulting images, this method can be easily 
standardised, which would lead to the high reproducibility of results in other 
laboratories. The second question is related to the stability of these characteristics 
within the same pop-ulation, i.e. would we observe the same statistics in different 
parts of the same sample. Based on that result, it would be possible to 
estimate a minimal blood volume for such an analysis. However, this analysis 
would require a new microscopy design which would allow simultaneous imaging 
of several FoV with high spatial and temporal resolutions with sufficiently 
high magnification to grasp details of neutrophil external morphology.
And finally, a molecular mechanism responsible for differences in their morpho-
dynamics is as of yet unknown, even at the hypothesis level. 

8 syn. ‘patient-on-chip’ platform or ‘body-on-chips’ multi-organ systems 
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4.2 Human neutrophils produce antifungal extracellular vesicles 
 against A. fumigatus 

The second part of this thesis is covered by the publication (Shopova et al., 
2020, pp. 54–72 in this dissertation) where we reveal that the clinically 
important human-pathogenic fungus A. fumigatus triggers neutrophil to release a 
distinct set of antifungal EVs (afEVs). With multiple techniques, we 
demonstrated that afEVs could suppress the growth of hyphae or damage 
developed ones. The quantitative analysis of some effects was done using AIA. 
While a growth kinetics analysis based on 2D transmitted light time-lapse 
microscopy data could be performed in a fully automated manner, the 
reconstruction of 3D structures of hyphae and afEVs based on 4D micros-copy 
data (3 spatial coordinates plus colour) was operator-aided due to variation in 
fluorescent intensity of hyphae between experimental runs. It is likely due to 
the fact that during staining, we rely on diffusion of colourants rather than 
intensive mechanical mixing to prevent the destruction of floating afEVs and 
hyphae layer in liquid media as it is depicted in the Fig. 4.2. 

Lately, it occurs that propidium iodide positive (PI+) signal is associated not 
exclusively with DNA. In literature and manufacturer’s guideline (Suzuki et al., 
1997; invitrogen 2006), it is indicated that PI binds to the nucleotide pair of 
guanine and cytosine, therefore stains not only the DNAs but also the RNAs, 
necessitating treat-ment with nucleases to distinguish between RNA and 
DNA staining. Consequently, most PI+ entities in our samples represent cytoplasm  

Fig. 4.2. The schematic illustration of a state of a colloidal suspension of hyphae and EVs in the 
Hanks' Balanced Salt Solution (HBSS) at 0 h, after ~ 1 h and 15 h of co‑incubation. Created with 
BioRender.com. 
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a) b) 

Fig. 4.3. Characterisation of PI+ signal. a) localisation of PI probe around a hypha in a sample treated 
with afEVs. Blue colour corresponds to the calcofluor-white-positive signal, which marks polysaccha-
rides in the fungal cell wall, red to the PI+ signal, indicating nucleic acids' presence. For illustration 
purposes, intensities were inverted: darker colour — higher intensity. b) envelopes of voxels' intensity 
normalised histograms for hyphae‑associated PI+ signal, extracted using reconstructed 3D volumes, 
in a single control and treated samples. For details of the reconstruction, see the p. 68. 

with dissolved RNA located in and around damaged hyphae (see Fig. 4.3 a). 
Also, such an interpretation aligns with the ratio between the amount of 
DNA and the cytoplasm. In addition, it seems that all PI+ entities in the 
control samples and most of the entities in the treated samples have
non-specific PI bonding, because for the specific bonding the intensity of 
fluores-cence is 20–30 fold higher (invitrogen, 2006). Some qualitative 
comparisons are pre-sented in Fig. 4.3 b. However, for a proper 
quantitative comparison, the fluorescence detector and image processing 
pipeline have to be calibrated using reference standards (Resch-Genger and 
DeRose, 2010; Kedziora et al., 2011). Nevertheless, these misinter-pretations and 
overlooked occurrences do not obscure that afEVs cause hyphal damage. 
However, the results in the respective publication were acquired in
an artificial environment: we observed a delay of development and 
degradation of hyphae in a concentrated emulsion of afEVs produced by 
neutrophils isolated from healthy donors' blood. In future experiments, it would be 
interesting to see real-time neutrophils action against developing hyphae using 
organ-on-chip models (e.g. (Hoang et al., 2022)) and lattice light-sheet 
microscopy aided by artificial intelligence, which would allow to detect neutrophil 
aggregation around hyphae and capture these events in greater details. 



5 Summary 
The rising number of invasive fungal infections increases the burden in the 

health care systems worldwide. Proper diagnostics, curing and prevention necessitate 
a deep understanding of the interaction of pathogenic fungi with the human 
organism. An infectious process unfolds in time and on different spatial scales — 
tissue, cellular and molecular. Microscopy imaging followed by automated image 
analysis has become an irreplaceable tool for discovering spatiotemporal aspects of 
this complex interaction. Nowadays, plenty of microscopy techniques and image 
analysis methods have been invented to serve these needs. However, quite often, it is 
necessary to improve existing instruments or create a new one to untangle yet 
another conundrum in host-pathogen interactions. 

The current thesis is focused on developing analytical tools for quantitative 
analysis of the interaction of human neutrophils with three pathogenic fungi 
(Candida albicans, C. glabrata  and  Aspegilus fumigatus ), which together cause 
the majority of invasive fungal disease cases. 

The first part of the work is devoted to analysing neutrophil 
morphodynamics alteration caused by either C. albicans  or C. glabrata.  During 
microscopy examination of neutrophils isolated from the blood after whole blood 
infection assay with one of those two pathogens, it was found that neutrophils 
affected by those fungal pathogens exhibit a spreading morphology more often than 
neutrophils from mock-infected samples. More-over, neutrophils from C. glabrata  -
infected samples tend to be in spreading mode for a more extended time interval in 
comparison to those infected with C. albicans  . To measure these effects 
quantitatively, a novel workflow algorithm was invented (Belyaev et al., 2022). 

In the first step, neutrophils need to be segmented and tracked. For this 
purpose, we deeply redesigned the Algorithm for Migration and Interaction 
Tracking (AMIT, (Brandes et al., 2015, 2017; Al-Zaben et al., 2019)) and made it 
capable of handling transmitted light microscopy data of a cell population with 
a continuous spectrum of morphological sates. This was achieved via 
(i) replacement of segmentation based on Gaussian mixtures models by 
morphological enhancement followed by thresholding of an image local intensity 
standard deviation map, and (ii) implementation of fusion-and-fission cluster 
detection and splitting subroutine. The modified algorithm (Belyaev et al., 2021) has 
shown a noticeable improvement in cell detection and tracking quality in our in-house
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data and demonstrated a moderate performance on public data sets. In addition 
to improved performance, AMIT‑v3 has a low computational cost and, therefore, 
can be executed on an average workstation or even a laptop, which makes it 
suitable for imaging data from high throughput experiments and makes it a method 
of choice for quick exploratory analysis of new experimental setups. 

In the second step, every neutrophil in each sample was described using the 
morphology-focused feature extraction paradigm. To identify neutrophil 
morphological state in each time point, the one class classifier and several 
morphological descriptors were used (Belyaev et al.,  2022). With this approach, we 
quantitatively described neutrophil morphodynamics and confirmed the observed 
difference after in vitro  whole blood infec-tion assay with either C. albicans  or 
C. glabrata  . In addition, we demonstrated a way to use this measurable
difference to distinguish between neutrophil populations affected by two close
Candida  species. Additional experiments are necessary to understand how this
effect is distributed across the general human population and what changes
could be detect in the neutrophil populations of real patients.

The final part of this thesis is devoted to the quantitative analysis of the 
antifun-gal activity of fungal-induced neutrophil-derived extracellular vesicles 
(afEVs) against A. fumigatus.  In particular, using 2D time-lapse transmitted light 
microscopy in con-junction with automated image analysis, we demonstrated that 
afEVs inhibit hyphae development. However, this effect is concentration and donor-
dependent due to variation of afEVs composition. In addition, using 4D fluorescence 
microscopy followed by recon-struction of 3D sample structure and quantitative 
analysis, we have shown that afEVs could erode hyphae cell wall, leading to 
cytoplasm leakage and osmotic collapse of hyphae. The hyphae erosion and collapse 
were additionally proven using scanning electron microscopy. 

All presented workflow algorithms and tracking software could be used in 
other projects with minimal adjustment. However, the results of the presented 
projects were acquired for entirely artificial conditions, which cannot replicate 
infection processes and immune reactions in the human organism. Future 
experiments must be conducted using ‘body-on-chips’ multi-organ systems and 
artificial-intelligence-guided imaging. Such an approach would extend knowledge 
about fungal disease development on different organ-isational scales (local group of 
cells — tissue — organ — organism) simultaneously. Then acquired results would 
have a higher potential for translation into clinical practice. 



6 Zusammenfassung 
Die steigende Zahl invasiver Pilzinfektionen erhöht die Belastung für die Ge-

sundheitssysteme weltweit. Eine angemessene Diagnostik, Heilung und Prävention 
er-fordern ein tiefes Verständnis der Interaktion pathogener Pilze mit dem men-
schlichen Organismus. Ein infektiöser Prozess entfaltet sich in der Zeit und auf 
verschiedenen räumlichen Ebenen - gewebebezogen, zellulär und molekular. Die 
mikroskopische Bildgebung mit anschließender automatisierter Bildanalyse ist zu 
einem unersetzlichen Instrument für die Entdeckung der räumlich-zeitlichen Aspekte 
dieser komplexen In-teraktion geworden. Heutzutage gibt es eine Vielzahl von 
Mikroskopietechniken und Bildanalyseverfahren, die diesen Anforderungen gerecht 
werden. Oftmals ist es jedoch notwendig, bestehende Instrumente zu verbessern oder 
neue zu entwickeln, um ein weiteres Rätsel der Wirt-Pathogen-Interaktionen zu 
lösen. 

In der vorliegenden Arbeit geht es um die Entwicklung von 
Analyseinstrumenten für die quantitative Analyse der Interaktion menschlicher 
Neutrophiler mit drei path-ogenen Pilzen (C. albicans, C. glabrata und
A. fumigatus), die zusammen die meisten invasiven Pilzerkrankungen verursachen. 

Der erste Teil der Arbeit befasst sich mit der Analyse der durch C. albicans 
oder C. glabrata verursachten Veränderungen der Morphodynamik der 
Neutrophilen. Bei der mikroskopischen Untersuchung von Neutrophils, die nach 
einem Vollblutinfek-tionstest mit einem dieser beiden Erreger aus dem Blut isoliert 
wurden, wurde fest-gestellt, dass Neutrophils, die von diesen Pilzerregern befallen 
sind, häufiger eine spreizende Morphologie aufweisen als Neutrophils aus mock-
infizierten Proben. Darüber hinaus neigen Neutrophils aus mit C. glabrata infizierten 
Proben im Vergleich zu mit C. albicans infizierten Proben dazu, sich über einen 
längeren Zeitraum auszubreiten. Um diese Effekte quantitativ zu messen, wurde ein 
neuer Workflow-Al-gorithmus entwickelt (Belyaev et al., 2022).

Im ersten Schritt müssen die Neutrophils segmentiert und verfolgt werden. Zu 
diesem Zweck haben wir den Algorithmus für Migration und Interaktionsverfolgung 
(AMIT, (Brandes et al., 2015, 2017; Al-Zaben et al., 2019)) grundlegend überarbeitet 
und ihn in die Lage versetzt, Durchlichtmikroskopiedaten einer Zellpopulation mit 
einem kontinuierlichen Spektrum morphologischer Zustände zu verarbeiten. Dies 
wurde erreicht durch (i) den Ersatz der Segmentierung auf der Grundlage von 
Gaußschen Mischungsmodellen durch morphologische Verbesserung, gefolgt von einer
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Schwellen-wertberechnung einer Karte der lokalen Intensitätsstandardabweichung 
eines Bildes, und (ii) die Implementierung einer Unterroutine zur Erkennung von 
Clustern durch Fusion und Spaltung. Der geänderte Algorithmus (Belyaev et al.,  
2021) hat die Qualität der Zellerkennung und -verfolgung in unseren eigenen Daten 
deutlich verbessert und eine mäßige Leistung in öffentlichen Datensätzen gezeigt. 
Zusätzlich zur verbesserten Leistung hat AMIT-v3 einen geringen Rechenaufwand 
und kann daher auf einer durchschnittlichen Workstation oder sogar einem Laptop 
ausgeführt werden, was es für die Abbildung von Daten aus Experimenten mit 
hohem Durchsatz geeignet macht und es zu einer Methode der Wahl für die schnelle 
Sondierungsanalyse neuer Versuchsauf-bauten macht. 

Im zweiten Schritt wurde jede PMN in jeder Probe mithilfe des Paradigmas 
der morphologieorientierten Merkmalsextraktion beschrieben. Um den 
morphologischen Zustand der Neutrophilen zu jedem Zeitpunkt zu bestimmen, 
wurden ein Klassifikator und mehrere morphologische Deskriptoren verwendet 
(Belyaev et. al., 2022). Mit diesem Ansatz konnten wir die Morphodynamik der 
PMN quantitativ beschreiben und die beobachteten Unterschiede nach einem
In-vitro-Vollblutinfektionstest mit C. albicans  oder C. glabrata  bestätigen. Darüber 
hinaus haben wir eine Möglichkeit aufgezeigt, diesen messbaren Unterschied zu 
nutzen, um zwischen neutrophilen Populationen zu unterscheiden, die von zwei 
nahe beieinander liegenden Candida-Spezies befallen werden. Weitere Experimente 
sind notwendig, um zu verstehen, wie dieser Effekt in der allgemeinen menschlichen 
Bevölkerung verteilt ist und welche Veränderungen in den 
Neutrophilenpopulationen echter Patienten festgestellt werden könnten. 

Der letzte Teil dieser Arbeit widmet sich der quantitativen Analyse der 
antimy-kotischen Aktivität von pilzinduzierten, neutrophilen extrazellulären 
Vesikeln (afEVs) gegen A. fumigatus . Insbesondere konnten wir mit Hilfe der
2D-Zeitraffer-Durchlicht-mikroskopie in Verbindung mit einer automatisierten 
Bildanalyse zeigen, dass afEVs die Hyphenentwicklung hemmen. Dieser Effekt ist 
jedoch konzentrations- und do-norabhängig, da die Zusammensetzung der afEVs 
variiert. Mit Hilfe der 4D-Fluo-reszenzmikroskopie, gefolgt von der Rekonstruktion 
der 3D-Probenstruktur und der quantitativen Analyse, konnten wir außerdem 
zeigen, dass afEVs die Zellwand der Hyphen erodieren können, was zum Austreten 
von Zytoplasma und zum osmotischen Kollaps der Hyphen führt. Die Erosion und 
der Kollaps der Hyphen wurden zusätzlich mit Hilfe der Rasterelektronen-
mikroskopie nachgewiesen.



Zusammenfassung 83 

Alle vorgestellten Workflow-Algorithmen und Tracking-Software könnten mit 
minimalen Anpassungen auch in anderen Projekten eingesetzt werden. Allerdings 
wurden die Ergebnisse der vorgestellten Projekte unter völlig künstlichen 
Bedingungen gewonnen, die die Infektionsprozesse und Immunreaktionen im 
menschlichen Organis-mus nicht nachbilden können. Künftige Experimente müssen 
unter Verwendung von "Body-on-Chips"-Multi-Organ-Systemen und mit Hilfe von 
künstlicher Intelligenz ges-teuerter Bildgebung durchgeführt werden. Ein solcher 
Ansatz würde das Wissen über die Entwicklung von Pilzkrankheiten auf 
verschiedenen organisatorischen Ebenen (lokale Zellgruppe — Gewebe — Organ — 
Organismus) gleichzeitig erweitern. Die gewonnenen Ergebnisse hätten dann ein 
größeres Potenzial für die Umsetzung in die klinische Praxis. 
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