

TU Ilmenau | Universitätsbibliothek | ilmedia, 2023
http://www.tu-ilmenau.de/ilmedia

Eichfelder, Gabriele; Warnow, Leo

An approximation algorithm for multi-objective optimization problems using a
box-coverage

Original published in: Journal of global optimization. - Dordrecht [u.a.] : Springer Science +

Business Media B.V. - 83 (2022), 2, p. 329-357.

Original published: 2021-11-24

ISSN: 1573-2916
DOI: 10.1007/s10898-021-01109-9
[Visited: 2022-10-26]

This work is licensed under a Creative Commons Attribution 4.0
International license. To view a copy of this license, visit
https://creativecommons.org/licenses/by/4.0/

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1007/s10898-021-01109-9
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Global Optimization (2022) 83:329–357
https://doi.org/10.1007/s10898-021-01109-9

An approximation algorithm for multi-objective optimization
problems using a box-coverage

Gabriele Eichfelder1 · Leo Warnow1

Received: 29 October 2020 / Accepted: 29 October 2021 / Published online: 24 November 2021
© The Author(s) 2021

Abstract
For a continuous multi-objective optimization problem, it is usually not a practical approach
to compute all its nondominated points because there are infinitelymany of them. For this rea-
son, a typical approach is to compute an approximation of the nondominated set. A common
technique for this approach is to generate a polyhedron which contains the nondominated set.
However, often these approximations are used for further evaluations. For those applications
a polyhedron is a structure that is not easy to handle. In this paper, we introduce an approxi-
mation with a simpler structure respecting the natural ordering. In particular, we compute a
box-coverage of the nondominated set. To do so, we use an approach that, in general, allows
us to update not only one but several boxes whenever a new nondominated point is found.
The algorithm is guaranteed to stop with a finite number of boxes, each being sufficiently
thin.

Keywords Multi-objective optimization · Approximation algorithm · Nondominated set ·
Enclosure · Box-coverage

Mathematics Subject Classification 90C26 · 90C29 · 90C59 · 65K05

1 Introduction

The aim ofmulti-objective optimization is tominimize not only one but multiple objectives at
the same time. Usually, it is not possible to find a feasible point that minimizes all objectives
as these are conflicting. Hence, a commonly used approach is to find so-called nondominated
points in the criterion spacewhich belong to so-called efficient solutions in the decision space.
The set of all these nondominated points is called nondominated set or Pareto front. Given an
efficient solution, it is not possible to find a feasible point that leads to an improvement for any

B Leo Warnow
leo.warnow@tu-ilmenau.de

Gabriele Eichfelder
gabriele.eichfelder@tu-ilmenau.de

1 Technische Universität Ilmenau, P.O. Box 10 05 65, 98684 Ilmenau, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-021-01109-9&domain=pdf
https://orcid.org/0000-0002-1938-6316
http://orcid.org/0000-0002-2177-8466

330 Journal of Global Optimization (2022) 83:329–357

objective without deteriorating another. For an introduction to multi-objective optimization
see [9,30,32].

In general, there is an infinite number of nondominated points for a continuous multi-
objective optimization problem. Thus, a common technique is to compute a (finite)
approximation of the nondominated set. In [34] a survey of such techniques including a clas-
sification can be found. There are basically two kinds of approximations. On the one hand,
there are approaches which compute a finite number of nondominated points to represent
the whole nondominated set which we refer to as representation approach (e.g., [4,16,42]).
On the other hand, there are approaches which compute a set (instead of a finite number
of points) that contains the nondominated set which we refer to as coverage approach. A
common technique for coverage approaches is to combine inner and outer approximations
(e.g., [11,26,36]) . This is sometimes referred to as sandwiching, see [1].

Those sandwiching techniques using inner and outer approximations lead to a polyhedron
which contains the nondominated set. For representing such polyhedra, usually their vertices
are used. Hence, updating such polyhedral approximations is a constant change of comput-
ing inner and outer approximations and recomputing at least some of the vertices from a
hyperplane representation, see for instance [8,11].

Another approach are coverages that consist of boxes. Boxes can be easily represented
by their corners, which we refer to as lower and upper bound. Thus, one can expect that
updating (a collection of) boxes requires less effort than updating a polyhedron. Moreover,
boxes respect the natural ordering. This is an advantage for applications that perform further
computation based on the approximation.

For example, one could think of fields as mixed-integer multi-objective optimization
where the nondominated set for the mixed-integer problem can be computed by comparing
the nondominated sets of the multi-objective optimization problems that arise by fixing the
values of the integer variables.

Another field is set optimization where values of set-valued objective functions have
to be compared, see [24]. Robust approaches for handling uncertainties in multi-objective
optimization lead to such set optimization problems, see [21]. For instance, for the upper-
type set relation comparing compact sets corresponds to comparing Pareto fronts, for which
coverages can be used, see for example [13].

Thereby, boxes can be compared more easily than general polyhedra. Moreover, in case
these coverages are not exact enough, it is important to be able to improve those iteratively.
In view of this, we are able to present such a guarantee for our coverage approach which we
call Halving Theorem.

An example for a box-coverage is presented in [19] for bi-objective problems and has
been extended in [27] to tri-objective problems. The approach in [27] is to split a given box
into seven subboxes using update points that are computed using a lexicographic ε-constraint
scalarization. Boxes are removed if they do not contain any feasible points. Otherwise they are
split again until their maximum width is smaller than a given tolerance. In [5] an algorithm
to generate a box-coverage for bi-objective integer programs is presented. This algorithm
also uses the approach to divide a given box into (two) subboxes. The update point, which
decideswhere the box is split, is computed using an approach related to the Pascoletti–Serafini
scalarization. It also takes into account the integrality of the problem to avoid working with
infeasible subboxes. To the best of our knowledge there is no generalization of the approaches
from [27] and [5] for an arbitrary number of objective functions.

Another approach for a box-based approximation, mainly focused on discrete tri-objective
problems, is given in [6]. It is different from the approaches described above as all boxes
have the same lower bound. In other words, only the upper bounds of the boxes are updated.

123

Journal of Global Optimization (2022) 83:329–357 331

Moreover, the boxes are allowed to intersect. As a result, a single update point, i.e., a non-
dominated point, can lead to a split of multiple boxes and, consequently, redundant subboxes.
However, approaches how to remove redundancy are presented as well.

In [25] a concept of search regions related to those from [6] and so-called local upper
bounds are presented. They can be used for any number of objective functions and in par-
ticular for (non-discrete) multi-objective optimization problems. In [38] and very recently in
[7] representation approaches that inherently also generate a box approximation have been
presented, where [7] demonstrates the use of such approaches in radiotherapy planning as a
real world application.

For completeness, we want to mention that branch–and–bound algorithms usually use
boxes in the decision space and some of these algorithms also generate boxes in the criterion
space, see [14,15,31,35]. However, we want to focus here on working in the criterion space
without creating any substructure in the decision space.One reason for our focus on a criterion
space based method is that the computation time of branch-and-bound approaches in the
decision space increases quite fast when the number of decision variables increases. Since
our algorithmworks in the criterion space, its computation time depends more on the number
of objectives than on the number of decision variables. Hence, our algorithm focuses on such
cases where there are more decision variables than objective functions whereas branch–and–
bound approaches as those from [14,15,31,35] are alternatives in case that the dimension of
the decision space is relatively small. Some of these methods like [14,35] are also limited to
purely box-constrained optimization problems. Our approach works for an arbitrary feasible
set as long as it is compact.

In this paper,we introduce a newapproximation algorithm formulti-objective optimization
problems using the bound concepts from [25] to compute a box-coverage of the nondom-
inated set. To the best of our knowledge, we are the first to present a box approximation
concept for an arbitrary dimension of the criterion space involving both upper and lower
bound improvements with an exact bound on the number of iterations needed. Moreover, we
show that in every iteration a certain improvement of the approximation can be guaranteed,
which we refer to as Halving Theorem. While we recommend our algorithm most of all for
convex multi-objective optimization problems, i.e., problems where all objective and con-
straint functions are smooth and convex, the theoretical results presented in this paper still
hold when assuming continuous objective functions and a compact feasible set. In particular,
the presented algorithm needs to solve a large number of single-objective optimization prob-
lems that are derived from the original multi-objective optimization problem. It is crucial
for the performance of the algorithm that a fast and reliable solver for these single-objective
subproblems is available. A well-known class of optimization problems for which such a
solver is available are smooth convex problems. In case the problems are nonconvex, a suit-
able global solver needs to be used. Hence, the reader should be aware that while in theory
the algorithm presented in this paper works even under weaker assumptions the best solvers
for the subproblems exist for smooth convex optimization problems.

The remaining paper is structured as follows. We start in Sect. 2 with some notations and
definitions. We also present the problem formulation (MOP) and characterize the kind of
approximation that we aim for. In Sect. 3 we discuss the approach to characterize the boxes
of our approximation using lower and upper bounds based on the concepts from [25]. Then,
in Sect. 4 we introduce our new algorithm to compute the box-based approximation of the
nondominated set including a detailed discussion of its properties, such as finiteness. Finally,
in Sect. 5 some numerical results for using our algorithm to compute an approximation are
presented.

123

332 Journal of Global Optimization (2022) 83:329–357

2 Notations and definitions

For a positive integer n ∈ N we use the notation [n] := {1, . . . , n}. All relations in this paper
are meant to be read component-wise, i.e., for x, x ′ ∈ R

n it is

x ≤ x ′ ⇔ xi ≤ x ′
i for all i ∈ [n],

x < x ′ ⇔ xi < x ′
i for all i ∈ [n].

For l, u ∈ R
n with l ≤ u we denote by [l, u] := {

y ∈ R
n

∣∣ l ≤ y ≤ u
}
the box with lower

bound l and upper bound u. As already mentioned in the introduction, we focus on multi-
objective optimization problems.We denote by fi : R

n → R, i ∈ [m] the objective functions
and by S ⊆ R

n the feasible set. We also write f = (f1, . . . , fm) : R
n → R

m . Then, our
multi-objective optimization problem is given as

min
x

f (x) s.t. x ∈ S (MOP)

where all functions fi , i ∈ [m] are assumed to be continuous and S is assumed to be a
nonempty, compact set. Since f (S) is bounded, it holds that

∃ z, Z ∈ R
m : f (S) ⊆ int(B) with B := [z, Z]. (2.1)

We assume in the following that such a box B is known. While there is no need to assume
convexity of the objective functions fi , i ∈ [m] and the set S for the theoretical results in
this paper, one needs to be able to solve a single-objective subproblem related to (MOP),
see (SUP(l, u)) on page 13. Fast and reliable solvers for such optimization problems are
available for example when assuming convexity of the objective functions fi , i ∈ [m] and
the set S. The corresponding subproblems are then single-objective convex optimization
problems where every locally optimal solution is also a globally optimal solution. Hence,
from a practical point of view, we recommend to use our algorithm first of all for smooth
convex multi-objective optimization problems. We discuss this in more detail in Sect. 5.
However, for the theoretical results of our paper we stick with the weaker assumptions of
continuous objective functions and a compact feasible set S.

As the different objective functions of (MOP) are usually competing with each other, in
general it is not possible to find a feasible point that minimizes all objectives at the same
time. Thus, we use the following optimality concepts.

Definition 2.1 A point x̄ ∈ S is called an efficient solution for (MOP) if there exists no x ∈ S
with fi (x) ≤ fi (x̄) for all i ∈ [m] and with f j (x) < f j (x̄) for at least one j ∈ [m]. It is
called a weakly efficient solution for (MOP) if there exists no x ∈ S with fi (x) < fi (x̄) for
all i ∈ [m].

For a given ε > 0 we call x̄ ∈ S an ε-efficient solution for (MOP) if there exists no
x ∈ S with fi (x) ≤ fi (x̄) − ε for all i ∈ [m] and with f j (x) < f j (x̄) − ε for at least one
j ∈ [m]. It is called a weakly ε-efficient solution for (MOP) if there exists no x ∈ S with
fi (x) < fi (x̄) − ε for all i ∈ [m].
We use a related concept in the criterion space, called dominance.

Definition 2.2 Let y1, y2 ∈ R
m and 	∈ {≤,≥}. Then y2 is dominated by y1 with respect

to 	 if y1 �= y2, y1 	 y2. For a set N ⊆ R
m a vector y ∈ R

m is dominated given N with
respect to 	 if

∃ ŷ ∈ N : ŷ �= y, ŷ 	 y.

123

Journal of Global Optimization (2022) 83:329–357 333

If y is not dominated given N w.r.t. 	, it is called nondominated given N with respect to
	. Analogously, for ≺ ∈ {<,>} we say y2 is strictly dominated by y1 with respect to ≺ if
y1 ≺ y2 and a vector y ∈ R

m is strictly dominated given a set N ⊆ R
m with respect to ≺ if

∃ ŷ ∈ N : ŷ ≺ y.

If y is not strictly dominated given N w.r.t. ≺, it is called weakly nondominated given N
with respect to ≺.

In general, the specification of the relation 	/≺ is left out if it is known by context. As
the images f (x̄) of efficient solutions x̄ ∈ S are nondominated given f (S) w.r.t. ≤, they are
called nondominated points of (MOP). We denote by E the set of efficient solutions (also
efficient set) and by N the set of nondominated points (also nondominated set) of (MOP),
i.e., N := {

y ∈ R
m

∣∣ y = f (x), x ∈ E} ⊆ R
m . Also, for an arbitrary ε > 0, we denote the

ε-nondominated set for (MOP) by

Nε := {
y ∈ R

m
∣∣ y = f (x), x is an ε-efficient solution for (MOP)

}

and the weakly ε-nondominated set for (MOP) by

Nw
ε := {

y ∈ R
m

∣∣ y = f (x), x is a weakly ε-efficient solution for (MOP)
}
.

In this paper we focus on the criterion space and hence, on finding an approximation of the
setN . As already mentioned in the introduction, we aim for a box-based coverage ofN . The
concept of an enclosure, as presented in [12], realizes such a box-based coverage.

Definition 2.3 Let L,U ⊆ R
m be two finite sets with

N ⊆ L + R
m+ and N ⊆ U − R

m+. (2.2)

Then L is called lower bound set, U is called upper bound set, and the set A which is given
as

A = A(L,U) := (L + R
m+) ∩ (U − R

m+) =
⋃

l∈L

⋃

u∈U ,
l≤u

[l, u] (2.3)

is called approximation or enclosure of the nondominated set N given L and U .

For an illustration of this concept, see Fig. 1. In this figure, the nondominated setN is given
in orange and the sets L = {l1, l2} and U = {u1, u2} are lower and upper bound sets as in
Definition 2.3. The box structure of the corresponding approximation A can also be seen.

We aim for an approximation of certain quality. For this reason, we use a quality criterion
that is presented in [12]. There, the authors suggest to generalize the quality citerion given
by the interval length u − l of enclosing intervals [l, u] from single-objective optimization
to the so-called width w(A) of the enclosure A with respect to the direction of the all-ones
vector e, i.e., to define w(A) as the optimal value of

sup
y,t

‖(y + te) − y‖√
m

s.t. y, y + te ∈ A, t ∈ R+. (2.4)

This definition arises quite naturally, which we want to explain briefly. By Definition 2.3,
we have N ⊆ A. Besides that, it is also reasonable to aim for an approximation A that only
consists of points that are at least approximately nondominated. For example, we can demand
that for some ε > 0 we have that y ∈ Nε for all y ∈ A∩ f (S). A sufficient criterion for this
to hold would be that for any y ∈ A we have that y − εe /∈ A. In other words, the quality of

123

334 Journal of Global Optimization (2022) 83:329–357

Fig. 1 Illustration of approximationA for L = {l1, l2} and U = {u1, u2}

the approximation A can be defined as the largest ε > 0 such that there exists some y ∈ A
with y + εe ∈ A. This leads exactly to the definition of w(A) from (2.4). Moreover, this
relation between A and Nε is also shown in [12, Lemma 3.1]. In particular, for any ε > 0
and an approximation A with w(A) < ε it holds that A ∩ f (S) ⊆ Nε.

A similar result can be obtained for the polyhedral approach from [11] for convex multi-
objective problems that generates an inner approximation P i and an outer approximation
Po of the nondominated set. It is shown in [11, Theorem 4.3] that for the nondominated
set NP i of P i it holds that NP i ⊆ Nw

ε . Thereby, ε is an upper bound on the distance
between any vertex v of the polyhedral approximation and the boundary of f (S). More
precisely, denote by V the vertex set of the polyhedron and choose a fixed interior point
p ∈ f (S) + R

m+. Then, for each v ∈ V and its corresponding (unique) boundary point
bv := λv + (1− λ)p ∈ f (S) + R

m+, λ ∈ (0, 1) it holds that the distance d(v, bv) is at most
ε.

In [12] the authors have also shown that there is an equivalent formulation of (2.4) that
better fits the box-approximation concept. They denote the shortest edge of a box [l, u] by

s(l, u) := min
i∈[m] (ui − li)

and show in [12, Lemma 3.2] that the widthw(A) of an enclosureA equals the optimal value
of

sup
l,u

s(l, u) s.t. l ∈ L, u ∈ U , l ≤ u.

Wewant to remark that [12] presents a branch-and-bound framework in the decision space
while we focus on the criterion space. For our paper, we only make use of their enclosure
concept and the corresponding quality measure w.

3 Computing lower and upper bounds

In this section, we present an approach on how to choose and how to compute the lower and
upper bound sets L andU . A suitable concept for both are the so-called Local Upper Bounds
(LUB). We use them as given in [25].

123

Journal of Global Optimization (2022) 83:329–357 335

f1

f2

z

Zu1

u2

u3

f(S)

Fig. 2 Illustration of lower search region, lower search zone and local upper bounds

Definition 3.1 A set Y ⊆ R
m is called stable with respect to 	∈ {≤,≥} if no element of Y

dominates another, i.e., y1 � y2 for all y1, y2 ∈ Y with y1 �= y2.

Analogously to the concept of dominance, the specification of the order relation 	 is often
left out if it is known by context. It is easy to see that the nondominated setN is a stable set
w.r.t. ≤.

Definition 3.2 Let N ⊆ f (S) be a finite and stable (w.r.t. ≤) set. Then the lower search
region for N is s(N) := {

y ∈ int(B)
∣∣ y′

� y for every y′ ∈ N
}
and the lower search zone

for some u ∈ R
m is c(u) := {

y ∈ int(B)
∣∣ y < u

}
. A set U = U (N) is called local upper

bound set given N if

1. s(N) = ⋃
u∈U (N) c(u),

2. c(u1) �⊂ c(u2) for all u1, u2 ∈ U (N).

Each point u ∈ U (N) is called a local upper bound (LUB).

Given the set N , the search region s(N) contains all potentially nondominated points in
int(B) given N w.r.t. ≤ without N itself. The latter because (just by the definition) it always
holds N ∩ s(N) = ∅. In other words, s(N) contains all elements y ∈ int(B)\N that are not
dominated by any y′ ∈ N . Hence, dominance in the context of local upper bounds is always
dominance w.r.t.≤ and also stable always means stable w.r.t.≤. It is known that for any finite
and stable set N ⊆ f (S) the local upper bound set U (N) is uniquely determined and finite,
see [12].

For an illustration of the concept of local upper bounds, see Fig. 2. For a stable set
N = {y1, y2} ⊆ R

2 a local upper bound set U (N) = {u1, u2, u3} is shown and also the
lower search zone c(u2) and the lower search region s(N) are highlighted.

The following lemma presents a relation between local upper bound sets and upper bound
sets as presented in Definition 2.3.

Lemma 3.3 Let N ⊆ f (S) be a finite and stable set. Then it holds

N ⊆ cl(s(N)) =
⋃

u∈U (N)

cl(c(u)) ⊆
⋃

u∈U (N)

{u} − R
m+ = U (N) − R

m+.

Proof We only need to show N ⊆ cl(s(N)). So let ȳ ∈ N be a nondominated point of
(MOP) and assume ȳ /∈ s(N). Then there exists some y′ ∈ N ⊆ f (S) with y′ ≤ ȳ. This

123

336 Journal of Global Optimization (2022) 83:329–357

f1

f2

z

Z

l1

l2

l3

Fig. 3 Illustration of upper search region, upper search zone and local lower bounds

implies that y′ = ȳ because otherwise ȳ would be dominated by y′. Since y′ ∈ N ⊆ int(B),
there exists ε > 0 such that Bε(y′) := {

y ∈ R
m

∣∣ ∥∥y − y′∥∥ ≤ ε
√
m

} ⊆ int(B).
Hence, for yk := y′ − ε

k e, k ∈ N we have that (yk)k∈N ⊆ Bε(y′) ⊆ int(B). Moreover, it
holds that yk < y′ for all k ∈ N. This implies that (yk)k∈N ⊆ s(N), because otherwise there
exists y′′ ∈ N and an index k ∈ N with y′′ ≤ yk < y′, which contradicts the assumption that
N is stable. Thus, we obtain that ȳ = y′ = limk→∞ yk ∈ cl(s(N)). ��
Hence, U = U (N) is an upper bound set in the sense of Definition 2.3 for any finite and
stable set N ⊆ f (S).

This concept leads to upper bounds for the nondominated set of (MOP). Now, we show
how to use it to gain lower bounds. This is one of the main differences when comparing our
approach to that in [25] where only the local upper bounds are used. To distinguish between
the local upper bounds and the closely related local lower bounds, which we present in the
next definition, we use upper case notation instead of lower case notation for the search region
and search zones.

Definition 3.4 Let N ⊆ int(B) be a finite and stable (w.r.t ≥) set. Then the upper search
region for N is S(N) := {

y ∈ int(B)
∣∣ y′

� y for every y′ ∈ N
}
and the upper search zone

for some l ∈ R
m is C(l) := {

y ∈ int(B)
∣∣ y > l

}
. A set L = L(N) is called local lower

bound set given N if

1. S(N) = ⋃
l∈L(N) C(l),

2. C(l1) �⊂ C(l2) for all l1, l2 ∈ L(N).

Each point l ∈ L(N) is called a local lower bound (LLB).

In the context of local lower bounds, dominance is always dominance w.r.t. ≥ and stable sets
are stable w.r.t. ≥ as well.

In Fig. 3 an illustration of the concept of local lower bounds is given for the same setting
as in Fig. 2. We have the same stable set N = {y1, y2} ⊆ R

2, a local lower bound set
L(N) = {l1, l2, l3}, the upper search zone C(l2), and the upper search region S(N).

Next, we show that for some specific sets N the local lower bound set L(N) is indeed a
lower bound set in the sense of Definition 2.3.

Lemma 3.5 Let N ⊆ int(B) be a finite and stable (w.r.t. ≥) set such that for every y ∈ N
there is no ŷ ∈ f (S) with ŷ ≤ y, ŷ �= y. Then L = L(N) is a lower bound set in the sense
of Definition 2.3.

123

Journal of Global Optimization (2022) 83:329–357 337

Proof Let ȳ ∈ N ⊆ f (S) ⊆ int(B) be a nondominated point of (MOP). Then for every
y′ ∈ N it holds y′ = ȳ or y′

� ȳ. Hence, using Definition 3.4, we have N ⊆ N ∪ S(N) ⊆
cl(S(N)), where N ⊆ cl(S(N)) can be shown using similar arguments as in the proof of
Lemma 3.3. Finally, this leads to

N ⊆ cl(S(N)) =
⋃

l∈L(N)

cl(C(l)) ⊆
⋃

l∈L(N)

{l} + R
m+ = L(N) + R

m+

and L = L(N) is a lower bound set in the sense of Definition 2.3. ��
In particular, for any finite and stable set N ⊆ int(B)\(f (S)+(Rm+\{0})) the assumptions

of Lemma 3.5 are satisfied. As we need this result later in Sect. 4 (Lemma 4.4), we briefly
summarize the relation between local lower and local upper bound sets and bound sets as
given in Definition 2.3.

Corollary 3.6 Let N 1 ⊆ f (S) be a finite and stable set w.r.t. ≤ and N 2 ⊆ int(B)\(f (S) +
(Rm+\{0})) a finite and stable set w.r.t ≥. Then U (N 1) is an upper bound set and L(N 2) is a
lower bound set in the sense of Definition 2.3.

For Definitions 3.2 and 3.4 one does not necessarily need to assume N to be stable. In par-
ticular, let N ⊆ f (S) be an arbitrary set and denote by N̂ :={

y ∈ N
∣∣ y

}
y is nondomindated

given N . Then it is known from [25, Remark 2.2] that s(N) = s(N̂). This also implies
U (N) = U (N̂). This holds analogously for the upper search regions and the corresponding
local lower bound sets.

In the following, we present a method to compute local upper and local lower bounds.
To provide initial local lower bound and local upper bound sets, we set U (∅) = {Z} and
L(∅) = {z}. It is easy to see that these sets satisfy Definitions 3.2 and 3.4. The sets L and
U are then updated using points y ∈ int(B) to obtain smaller search regions. As updating
these sets is done by using projections, we use here the following notation from [25]. For
y ∈ R

m, α ∈ R and an index i ∈ [m] we define
y−i := (y1, . . . , yi−1, yi+1, . . . , ym)� as well as

(α, y−i) := (y1, . . . , yi−1, α, yi+1, . . . , ym)�.

Using this notation, Algorithm 1 shows an updating procedure for local upper bound sets
as presented in [25, Algorithm 3]. We briefly explain the algorithm after the forthcoming
Lemma 3.7.

Due to the close relation between local upper bounds and local lower bounds, the concept
of Algorithm 1 can also be used for updating local lower bound sets. To do so, one simply
has to replace every < by > and every ≤ by ≥. This leads to the updating procedure as given
in Algorithm 2.

In Sect. 4 we present our new algorithm to generate a box-coverage of the nondominated
set N . The properties of this algorithm, e.g., finiteness, are highly depending on the properties
of the updating procedures for local lower and local upper bounds. For this reason, we discuss
those properties in the remaining part of this section. Due to the analogies of both procedures,
we focus on local upper bounds and Algorithm 1.

Our Algorithm 1 slightly differs from [25, Algorithm 3]. Compared to the original algo-
rithm, we do not assume the update point y ∈ f (S) to be nondominated given N . However,
the algorithm still works correctly. For any update point y that is nondominated given N the
correctness of the algorithm is shown in [25]. For update points y that are dominated given
N the correctness of the algorithm is shown in the following lemma.

123

338 Journal of Global Optimization (2022) 83:329–357

Algorithm 1 Updating a local upper bound set
Input: Local upper bound set U (N) and update point y ∈ f (S)

Output: Updated local upper bound set U (N ∪ {y})
procedure UpdateLUB(U (N), y)

A = {
u ∈ U (N)

∣∣ y < u
}

for i ∈ [m] do
Bi = {

u ∈ U (N)
∣
∣ yi = ui and y−i < u−i

}

Pi = ∅
end for
for i ∈ [m] do

for u ∈ A do
Pi = Pi ∪ {(yi , u−i)}

end for
end for
for i ∈ [m] do

Pi = {
u ∈ Pi

∣∣ u � u′ for all u′ ∈ Pi ∪ Bi , u′ �= u
}

end for
U (N ∪ {y}) = (U (N)\A) ∪ ⋃

i∈[m] Pi
end procedure

Algorithm 2 Updating a local lower bound set
Input: Local lower bound set L(N) and update point y ∈ int(B)

Output: Updated local lower bound set L(N ∪ {y})
procedure UpdateLLB(L(N), y)

A = {
l ∈ L(N)

∣∣ y > l
}

for i ∈ [m] do
Bi = {

l ∈ L(N)
∣∣ yi = li and y−i > l−i

}

Pi = ∅
end for
for i ∈ [m] do

for l ∈ A do
Pi = Pi ∪ {(yi , l−i)}

end for
end for
for i ∈ [m] do

Pi = {
l ∈ Pi

∣∣ l � l ′ for all l ′ ∈ Pi ∪ Bi , l ′ �= l
}

end for
L(N ∪ {y}) = (L(N)\A) ∪ ⋃

i∈[m] Pi
end procedure

Lemma 3.7 Let N be a finite and stable set,U = U (N)a local upper bound set, and y ∈ f (S)

dominated given N. ThenAlgorithm 1 returns the (unchanged) setU = U (N) = U (N∪{y}).

Proof As y ∈ f (S) is dominated given N , there exists y′ ∈ N with y′ ≤ y, y′ �= y. This
implies that y /∈ s(N) and by property (i) of U = U (N) being a local upper bound set this
implies that there exists no u ∈ U (N) with y ∈ c(u). Hence, there exists no u ∈ U (N) with
y < u and for Algorithm 1 this means that A = ∅. As a result, the algorithm returns the same
(unchanged) set U = U (N). We already discussed that this is the same local upper bound
set as U (N ∪ {y}), see also [25, Remark 2.2]. ��
This holds analogously for Algorithm 2. As already mentioned, new local upper bounds are
generated using projections. We briefly explain how this works.

First, all local upper bounds u ∈ U (N) that are strictly dominated by the update point
y are added to the set A. These are the only local upper bounds that are possibly updated

123

Journal of Global Optimization (2022) 83:329–357 339

by Algorithm 1. The sets Bi , i ∈ [m] contain all local upper bounds that are dominated but
not strictly dominated by y. The sets Pi , i ∈ [m] contain the projections of the (old) local
upper bounds u ∈ A to the i-th component of y, i.e., (yi , u−i). In other words, those sets
Pi , i ∈ [m] contain all candidates for possible new local upper bounds. Then, in the last
for loop, redundant candidates are filtered out of each of the sets Pi , i ∈ [m]. Finally, the
new local upper bound set U (N ∪ {y}) is computed out of the old set U (N) by removing
the old local upper bounds contained in A and adding the (filtered) candidates from the sets
Pi , i ∈ [m].

Thus, for a local upper bound u ∈ U (N ∪ {y}) it is either u ∈ U (N) or u = (yi , u′−i) for
some i ∈ [m] and u′ ∈ U (N). For the latter case we call u′ the parent of u. Otherwise u is
its own parent.

Lemma 3.8 Let u ∈ U (N ∪ {y}) be a local upper bound. Then its parent u′ ∈ U (N) is
unique.

Proof If u is its own parent, i.e., u ∈ U (N), then there is nothing to show. Hence, we consider
the case u /∈ U (N) and assume that there are two different parents u1, u2 ∈ A ⊆ U (N) of u
with u1 �= u2. Then there exist i, j ∈ [m] with u = (yi , u1−i) = (y j , u2− j). If i = j we have

u1i �= u2i and without loss of generality we assume u1i < u2i . But then c(u1) ⊂ c(u2) which
contradicts property (ii) of Definition 3.2 for U (N) to be a local upper bound set. If i �= j
it is u2i = yi and u1j = y j which contradicts u1, u2 ∈ A. Thus, there exists only one unique
parent u′ of u. ��

These parents do not only exist for local upper bounds u ∈ U (N ∪ {y}) but also for the
candidates for local upper bounds of N ∪ {y} contained in the sets Pi , i ∈ [m] before the
filtering step in the last for loop. Of course this holds for updates of the local lower bound
set as well.

For an illustration of the update procedures, see Fig. 4. For the stable set N = {y1}, a
local upper bound set U (N) = {u1, u2}, and a local lower bound set L(N) = {l1, l2} are
already computed. The point y2 is then added to the set N and the bounds are updated using
Algorithms 1 and 2. As a result, the local upper bound set is updated to U (N ∪ {y2}) =
{u1 = u1,1, u2,1, u2,2}, and the local lower bound set is updated to L(N ∪ {y2}) = {l1 =
l1,1, l2,1, l2,2}. One can see that l2 is the parent of l2,1 and l2,2 and that u2 is the parent of
u2,1 and u2,2. All remaining bounds (i.e., u1, l1) are their own parents. For consistency their
names are changed as well. Using this way of assigning a numeration to the local lower and
local upper bounds also encodes the parents of the bounds.

4 Computing the box-coverage

In this section, we present our new algorithm to compute an approximation of the nondom-
inated set of (MOP) with a guaranteed improvement in each iteration. The approach is to
use local lower bound sets and local upper bound sets as presented in Sect. 3 to compute the
approximation in the form of a box-coverage. First, we discuss the initialization of these sets.

4.1 Initialization

We initialize L = L(∅) = {z} and U = U (∅) = {Z} with z, Z ∈ R
m from (2.1). These first

bounds should be chosen as tight as possible. For this reason, we use the ideal and anti-ideal

123

340 Journal of Global Optimization (2022) 83:329–357

(a) (b)

(c) (d)

Fig. 4 Illustration of update procedure based on Algorithms 1 and 2

points, i.e.,

z̄ ∈ R
m with z̄i = min

{
fi (x)

∣∣ x ∈ S
} ∀i ∈ [m],

Z̄ ∈ R
n with Z̄i = max

{
fi (x)

∣∣ x ∈ S
} ∀i ∈ [m].

Then, as the ideal and anti-ideal point are not satisfying (2.1), we introduce a small offset
σ > 0 and define with respect to e as the all-ones vector

z := z̄ − σe and Z := Z̄ + σe. (4.1)

Those are now suited as initial local lower and local upper bounds. Both the ideal and the
anti-ideal point can be hard to compute. However, any choice of z, Z ∈ R

m that satisfies
(2.1) can be used for initialization.

4.2 Updating the boxes

Next, we provide amethod to shrink boxes [l, u]with s(l, u) > ε. To shrink a box, we need to
improve at least one of its bounds l and u. Therefore, our aim is to find a new nondominated
point in [l, u]. This nondominated point is then chosen as an update point for Algorithms 1
and 2. As a result, the old box [l, u] is replaced by new, smaller boxes, see Fig. 4. In the
following, we formalize this approach. Let l, u ∈ R

m with l < u. Then the search for a

123

Journal of Global Optimization (2022) 83:329–357 341

nondominated (update) point is performed by solving the optimization problem

min
x,t

t s.t. f (x) − l − t(u − l) ≤ 0,

x ∈ S, t ∈ R.
(SUP(l, u))

It is crucial for the performance of our algorithm that the (SUP(l, u)) can be solved fast
and reliable. This is possible for instance in the case of smooth and convex subproblems
(SUP(l, u)). We recommend to take this into account when choosing a solver to solve the
subproblems within our overall algorithm. However, the following theoretical results do not
require convexity but only continuous objective functions and a compact feasible set S. The
following lemma is based on [18, Proposition 2.3.4 and Theorem 2.3.1].

Lemma 4.1 Let l, u ∈ R
m with l < u. Then there exists an optimal solution (x̄, t̄) for

(SUP(l, u)).

In [33] it is shown that for every optimal solution (x̄, t̄) of (SUP(l, u)) the point x̄ ∈ S
is a weakly efficient solution for (MOP). Thus, f (x̄) is weakly nondominated given N . To
perform an update step with Algorithms 1 or 2, i.e., to obtain a new local upper bound or
local lower bound set, we need an update point y ∈ R

m that is nondominated and not only
weakly nondominated. In case all objective functions fi , i ∈ [m] are strictly convex and the
feasible set S is convex as well, any weakly nondominated point is also nondominated, see
[3].

For our general setting, examples on how to find a nondominated point ȳ ≤ y given
y ∈ f (S) can be found in [4,10]. Another example for bi-objective problems can be found in
[5], where the authors used a Pascoletti-Serafini scalarization and encountered the problem
of needing to derive a nondominated point of a weakly nondominated point as well. For
our implementation, we use a subproblem as formulated in [41]. Let y ∈ f (S) be a weakly
nondominated point of (MOP). Then according to [41, Theorem 2] any optimal solution
x̄ ∈ S of

min
m∑

i=1

fi (x) s.t. f (x) ≤ y, x ∈ S (GNP(y))

is efficient for (MOP). Thus, ȳ := f (x̄) is a nondominated point with ȳ ≤ y.

4.3 Main algorithm

Our new algorithm BAMOP to generate a box-coverage is presented as Algorithm 3. The
algorithmbasicallyworks as follows: It loops through all boxes [l, u]with l ≤ u and s(l, u) >

ε. Then, a new point to update the bound sets is computed using themethods described above.
The whole procedure is repeated until finally all boxes and hence the approximationA given
L and U are sufficiently small, i.e., w(A) ≤ ε.

In Algorithm 3 there is a case distinction concerning the computation of the update point
for Algorithms 1 and 2. The reason for that is that in order to compute an approximation
with w(A) ≤ ε, we need the boxes to get thinner. To do so, we guarantee that at least in one
dimension the box length is halved, see Theorem 4.2.

Before we present that theorem, we briefly illustrate a single update step of the algorithm
in Fig. 5. Using the notation from Algorithm 3, one case is ŷ = ȳ, i.e., on the connection
line between l and u there is a nondominated point ŷ ∈ N . The illustration shows that in this

123

342 Journal of Global Optimization (2022) 83:329–357

Algorithm 3 Box Approximation for (MOP)
Input: Tolerances ε > 0 and τ > 0, initial bounds z, Z from (2.1)
Output: Lists L,U of lower and upper bounds

procedure BAMOP(ε, τ, z, Z)
Initialize L = {z}, U = {Z}, done = false
repeat

done = true
L loop = L
for l ∈ L loop do

if ({l + εe} + int(Rm+)) ∩U �= ∅ then
done = false
Uloop = U
for u ∈ ({l + εe} + int(Rm+)) ∩Uloop do

Solve (SUP(l, u)) with optimal solution (x̂, t̂)
and set ŷ := l + t̂(u − l)

Solve (GNP(y)) with optimal solution x̄ and set ȳ := f (x̄)
if t̂ > 0.5 and ȳ �= ŷ then

Define step length t̄ := max{0.5, t̂ − τ }
L = UpdateLLB(L, l + t̄(u − l)))

else
L = UpdateLLB(L, ȳ)
U = UpdateLUB(U , ȳ)

end if
end for

end if
end for

until done == true
end procedure

(a) (b)

Fig. 5 Two update scenarios from Algorithm 3

case the boxes [l1, u1] and [l2, u2] have indeed at least one dimension that is at most half the
length of [l, u].

The case t̂ > 0.5with ŷ �= ȳ is shown in Fig. 5b. This case corresponds to the if clause from
Algorithm 3. Again, we consider the connection line between l and u and by the definition of
t̄ it holds that l+ t̄(u−l) ≥ l+0.5(u−l) = 0.5(l+u). Thus, the new boxes [l1, u] and [l2, u]
are at most half the length of [l, u] in at least one dimension. Moreover, there is no y ∈ f (S)

with y ≤ a + t̄r . This is because we use the small offset τ > 0 to ensure t̄ < t̂ and (x̂, t̂)

123

Journal of Global Optimization (2022) 83:329–357 343

(a) (b)

Fig. 6 Two subsequent update steps from Algorithm 3 with l = l3

is an optimal solution of (SUP(l, u)). This can be used together with Corollary 3.6 later in
Theorem 4.4 to proof that valid bound sets as needed for Theorem 2.3 are generated. Please
be aware that this also implies that, in general, for the local upper bound set U = U (N 1)

and the local lower bound set L = L(N 2) in Algorithm 3 it holds that N 1 �= N 2.
Next, we discuss the development of the sets L and U , see Fig. 6. Let l = l3 ∈ L loop be

the lower bound selected for the current outer for loop in Algorithm 3.We haveU = Uloop =
{u1, u2, u3} and assume that the inner for loop first selects u2 and then u3 (and finally u1

which is not part of the illustration). During the first run of the inner for loop with u = u2

we find the update point ŷ ∈ N . Using Algorithms 1 and 2, this leads to the projections as
shown in Fig. 6. For the lower bounds none of the children of l3 is part of the updated lower
bound set L = {l1, l6, l7, l5}. The updated upper bound set is U = {u1, u4, u5, u3}.

As the run of the inner for loop with u = u2 is finished, the algorithm continues with
the run of the inner for loop with u = u3 ∈ Uloop �= U . Even if l = l3 /∈ L , it is still the
parameter l for (SUP(l, u)). However, for the same reason (i.e., l3 /∈ L) it is not considered
in the update of the lower bound set L using Algorithm 2. This is an important mechanism
to keep in mind. At the end of this run of the inner for loop it is L = {l1, l6, l8, l9, l5} and
U = {u1, u4, u6, u7}.

4.4 Halving property and convergence

In this section we proof some important properties of Algorithm 3, such as finiteness and
correctness. A key property is presented in the following theorem, which shows that with
every run of the repeat loop the width of the boxes is in some sense halved.

Theorem 4.2 (Halving Theorem) Let ε, τ > 0 and z, Z ∈ R
m be the input parameters for

Algorithm 3. Moreover, let Lstart and Ustart be the local lower bound and local upper bound
sets at the beginning of some iteration of Algorithm 3, i.e., at the beginning of some run of
the repeat loop. Accordingly denote by Lend,Uend the sets at the end of this iteration. Then
for every le ∈ Lend and every ue ∈ Uend with le ≤ ue there exist ls ∈ Lstart and us ∈ Ustart

with

1. ls ≤ le ≤ ue ≤ us ,
2. (ue − le)i ≤ max{ε, 0.5(us − ls)i } for at least one index i ∈ [m].

123

344 Journal of Global Optimization (2022) 83:329–357

Proof Suppose that there exist le ∈ Lend and ue ∈ U end with le ≤ ue such that for all
ls ∈ Lstart and us ∈ U start one of the statements (i) or (ii) is violated.

We denote by P(le), P(ue) ⊆ R
m the sets containing all elements of the parent history

of le and ue within the current iteration, i.e., their parents, their parents parents and so on.
By Theorem 3.8 we have that

∣∣P(le) ∩ L
∣∣ = 1 and

∣∣P(ue) ∩U
∣∣ = 1 (4.2)

at any point of the current iteration, i.e., for L and U at any point of time. In particular, this
holds for the local lower and local upper bound sets at the beginning of the current iteration.
Thus we let ls ∈ Lstart ∩ P(le) and us ∈ U start ∩ P(ue).

The update procedures for local upper bound and local lower bound sets, i.e., Algorithms 1
and 2, always ensure that the local lower and local upper bounds are not getting worse. In
particular, for lc, l p ∈ P(le) and uc, u p ∈ P(ue) with l p being the parent of lc and u p being
the parent of uc it holds that

lc ≥ l p and uc ≤ u p. (4.3)

By the definition of the parent history and using that L and U are only updated using Algo-
rithms 1 and 2, this also implies that

ls ≤ l ≤ le ∀l ∈ P(le) and us ≥ u ≥ ue ∀u ∈ P(ue). (4.4)

In particular, we have ls ≤ le ≤ ue ≤ us and hence (i) is satisfied. Thus, (ii) has to be
violated. As a result, it holds that

(ue − le)i > ε for all i ∈ [m]. (4.5)

Using the notation of Algorithm 3, in particular denoting by l and u the corresponding
iteration variables of the for loop, at some point of the current run of the repeat loop it is
l = ls because L loop = Lstart. Now, fix l = ls for the outer for loop and consider the inner
for loop. By (4.2), we have that there exists a unique u ∈ Uloop ∩ P(ue). In the following,
we consider Algorithm 3 at the point of time where this specific assignment of l and u is
present. It is important to mention that u is not necessarily the first upper bound chosen by
the inner for loop. For this reason, the sets L and U may have been updated several times
which could lead to l /∈ L and/or u /∈ U , see also Fig. 6. However, we know from (4.2) and
(4.3) that at this point of the algorithm where l and u are assigned as described above, there
exist l ′ ∈ L ∩ P(le) and u′ ∈ U ∩ P(ue) with

l ′ ≥ l and u′ ≤ u. (4.6)

Together with (4.4), we obtain that

l = ls ≤ l ′ ≤ le and u ≥ u′ ≥ ue. (4.7)

For the remaining part of this proof, we discuss all possible update steps for the fixed
assignment of l and u. In total, there are ten cases, see also Fig. 7. In the following, we
always refer to the case numbering from that figure.

First, we consider the case (A), i.e., t̂ > 0.5 and ȳ �= ỹ. This case is also shown in Fig. 5b.
With t̄ := max{0.5, t̂ − τ } it is l < l + t̄(u − l) =: y′. We start with (A.1), i.e., l ′ < y′.
In this setting the update procedure for L , i.e., Algorithm 2, removes l ′ and creates m new
candidates for lower bounds

li := (l ′1, . . . , l ′i−1, li + t̄(ui − li), l
′
i+1, . . . , l

′
m)� for all i ∈ [m].

123

Journal of Global Optimization (2022) 83:329–357 345

Fig. 7 Case distinction for Theorem 4.2

At least one of these candidates (the child of l ′ which is part of the parent history P(le)) is
indeed added to the new local lower bound set L . Thus, there exists an index i ∈ [m] such
that li ∈ L after executing Algorithm 2. By (4.4) we have that le ≥ li and together with (4.7)
and again (4.4) we obtain that

(ue − le)i ≤ (u − li)i=ui−li − t̄(u − l)i=(1−t̄)(u − l)i ≤ 0.5(u − l)i ≤ 0.5(us − ls)i

As a result, (ii) would be satisfied which contradicts our assumption.
Next, we consider case (A.2), i.e., l ′ �< y′, which implies that there exists an index i ∈ [m]

with l ′i ≥ y′
i . Using (4.7), this implies again with (4.4) that

(ue − le)i ≤ (ue − l ′)i ≤ ui − y′
i = ui − li − t̄(u − l)i ≤ 0.5(u − l)i ≤ 0.5(us − ls)i

which contradicts our assumption as well.
This concludes case (A). For case (B) let t̂ ≤ 0.5 or ȳ = ŷ. First we discuss case (B.1),

this is, t̂ ≤ 0. In this case it is ȳ ≤ l ≤ l ′. By Theorem 3.4 (ii) there is also no l∗ ∈ L with
l∗ ≤ l ′, l∗ �= l ′ and in particular no l∗ ∈ L with l∗ < ȳ. Thus, the local lower bound set L is
not updated in this step and only the local upper bound set has to be considered.

In case (B.1.1) with ȳ < u′, Algorithm 1 removes the upper bound u′ from the local upper
bound set and creates m new candidates

ui := (u′
1, . . . , u

′
i−1, ȳi , u

′
i+1, . . . , u

′
m)� for all i ∈ [m].

At least one of these candidates (as part of the parent history P(ue)) is added to the updated
set of local upper bounds. Thus, there exists an index i ∈ [m] such that ui ∈ U after the
updating procedure. Using (4.4), we obtain

(ue − le)i ≤ (ui − l)i = ȳi − li ≤ 0 < ε.

Again, (ii) would be satisfied, which contradicts our assumption.
Next, we consider case (B.1.2). As ȳ �< u′, there exists an index i ∈ [m] such that ȳi ≥ u′

i .
Using (4.7), this leads to

(ue − le)i ≤ (u′ − l)i ≤ ȳi − li ≤ 0 < ε

123

346 Journal of Global Optimization (2022) 83:329–357

and contradicts our assumption that (ii) is not satisfied.
This concludes case (B.1) and we continue with case (B.2). Consequently, for the remain-

ing part of this proof we have that t̂ > 0. We start with case (B.2.1), i.e., ȳ = ŷ, see Fig. 5a.
First, we consider case (B.2.1.1) with l ′ < ȳ < u′. In this setting, the updating procedures
Algorithms 1 and 2 remove l ′ and u′ from L and U and create m new candidates

li := (ȳi , l
′−i), ui := (ȳi , u

′−i) for all i ∈ [m]. (4.8)

Again, at least one of these candidates is contained in the updated local lower and local upper
bound sets because it is part of the parent history P(le) or P(ue), respectively. Hence, there
exist i, j ∈ [m] with li ∈ L and u j ∈ U after the updating procedures. For i = j we have
(u j − li)i = ȳi − ȳi = 0 < ε which contradicts our assumption. Thus, we only consider
i �= j . Using (4.4), (4.7), and ȳ = ŷ, we obtain

(ue − le) j ≤ (u j − li) j = l j + t̂(u − l) j − l ′j ≤ l j + t̂(u − l) j − l j = t̂(u − l) j ,

(ue − le)i ≤ (u j − li)i = u′
i − li − t̂(u − l)i ≤ ui − li − t̂(u − l)i = (1 − t̂)(u − l)i .

It is either t̂ ≤ 0.5 or (1 − t̂) < 0.5. Hence, there exists ι ∈ {i, j} with
(ue − le)ι ≤ 0.5(u − l)ι ≤ 0.5(us − ls)ι

which contradicts our assumption.
Next, we consider case (B.2.1.2) with l ′ < ȳ �< u′. Consequently, there exists an index

j ∈ [m] with ȳ j ≥ u′
j . For the set L , we know that l ′ is removed and Algorithm 2 computes

m new candidates, see (4.8). Again, there exists an index i ∈ [m] such that li ∈ L after the
updating procedure. For i = j we have that (u′ − l j) j = u′

j − ȳ j ≤ 0 which contradicts our
assumption. For i �= j , using (4.4), (4.7), and ȳ = ŷ, we obtain

(ue − le) j ≤ (u′ − li) j ≤ l j + t̂(u − l) j − l ′j ≤ l j + t̂(u − l) j − l j = t̂(u − l) j ,

(ue − le)i ≤ (u′ − li)i ≤ u′
i − li − t̂(u − l)i ≤ ui − li − t̂(u − l)i = (1 − t̂)(u − l)i .

Again, it is either t̂ ≤ 0.5 or (1 − t̂) < 0.5 and there exists ι ∈ {i, j} with
(ue − le)ι ≤ 0.5(u − l)ι ≤ 0.5(us − ls)ι

which contradicts our assumption.
Case (B.2.1.3), i.e., l ′ �< ȳ < u′, can be shown analogously. There exists an index i ∈ [m]

with l ′i ≥ ȳi . Moreover, u′ is updated by Algorithm 1. As a result, m new candidates for
local upper bounds are computed, see (4.8). Again, there exists an index j ∈ [m] such that
u j ∈ U after the updating procedure. For i = j we have that (ui − l ′)i = ȳi − l ′i ≤ 0 which
contradicts our assumption. For i �= j , using (4.4), (4.7), and ȳ = ŷ, we obtain

(ue − le) j ≤ (u j − l ′) j ≤ l j + t̂(u − l) j − l ′j ≤ l j + t̂(u − l) j − l j = t̂(u − l) j ,

(ue − le)i ≤ (u j − l ′)i ≤ u′
i − li − t̂(u − l)i ≤ ui − li − t̂(u − l)i = (1 − t̂)(u − l)i .

Consequently, there exists ι ∈ {i, j} with
(ue − le)ι ≤ 0.5(u − l)ι ≤ 0.5(us − ls)ι

which contradicts our assumption.
Now, we consider case (B.2.1.4) with l ′ �< ȳ �< u′. In this case, there exist i, j ∈ [m] with

l ′i ≥ ȳi and ȳ j ≥ u′
j . For i = j this implies (u′ − l ′)i ≤ 0 and (ii) would be satisfied. This

123

Journal of Global Optimization (2022) 83:329–357 347

contradicts our assumption. For i �= j , using (4.7) and ȳ = ŷ we have that

(ue − le) j ≤ (u′ − l ′) j ≤ l j + t̂(u − l) j − l ′j ≤ l j + t̂(u − l) j − l j = t̂(u − l) j ,

(ue − le)i ≤ (u′ − l ′)i ≤ u′
i − li − t̂(u − l)i ≤ ui − li − t̂(u − l)i = (1 − t̂)(u − l)i .

Again, there exists ι ∈ {i, j} with
(ue − le)ι ≤ 0.5(u − l)ι ≤ 0.5(us − ls)ι

which contradicts our assumption.
This concludes case (B.2.1) and we continue with case (B.2.2), i.e., t̂ ≤ 0.5. In case

(B.2.2.1), i.e., ȳ < u′, the upper bound u′ is still removed (and m candidates created) as in
(4.8). Again, there exists j ∈ [m] such that u j ∈ U after the update procedure. Thus, using
(4.4), (4.7), and that ȳ ≤ ŷ, we have that

(ue − le) j ≤ (u j − l ′) j ≤ ȳ j − l j ≤ l j + t̂(u − l) j − l j

= t̂(u − l) j ≤ 0.5(u − l) j ≤ 0.5(us − ls) j

which contradicts our assumption.
Finally, we consider case (B.2.2.2) with ȳ �< u′. Then there exists an index j ∈ [m] with

ȳ j ≥ u′
j . Using the same arguments as before, this implies that

(ue − le) j ≤ (u′ − l ′) j ≤ ȳ j − l j ≤ l j + t̂(u − l) j − l j

= t̂(u − l) j ≤ 0.5(u − l) j ≤ 0.5(us − ls) j

which contradicts our assumption as well.
We considered all cases shown in Fig. 7. For all these cases, our assumption that (ii) is not

satisfied does not hold. Hence, we have to reject our assumption and Theorem 4.2 is shown.
��

With Theorem 4.2 we can show that Algorithm 3 is finite. In particular, the next lemma
provides an upper bound on the number of iterations (i.e., the number of runs of the repeat
loop). This bound depends on z, Z ∈ R

m from (2.1) and thus they should be chosen tight as
discussed on page 12.

Lemma 4.3 Let ε, τ > 0 and z, Z ∈ R
m be the input parameters for Algorithm 3. Moreover,

define

Δ := ‖Z − z‖∞ and κ :=
⌈
m log2

(
Δ

ε

)⌉
+ 1.

Then the number of iterations, i.e., the number of runs of the repeat loop, is bounded by
max{κ, 1}, and hence, Algorithm 3 is finite.

Proof If κ ≤ 1 then Δ ≤ ε and Algorithm 3 ends after the first iteration.
Hence, we consider the case κ > 1 and define l1 := z, u1 := Z and for k ≥ 1 let Lk,Uk be

the local lower bound and local upper bound sets at the beginning of iteration k. By Theorem
4.2, for all k > 1, all lk ∈ Lk , and all uk ∈ Uk there exist lk−1 ∈ Lk−1, uk−1 ∈ Uk−1, and
an index i k ∈ [m] such that

(uk − lk)i k ≤ max{ε, 0.5(uk−1 − lk−1)i k }. (4.9)

123

348 Journal of Global Optimization (2022) 83:329–357

Suppose that Algorithm 3 has more than κ iterations. Then there exist lκ ∈ Lκ and uκ ∈ U κ

with lκ +εe < uκ (being equivalent to εe < uκ −lκ). For every k ∈ {2, 3, . . . , κ} let i k ∈ [m]
be the index from the iterative application of (4.9) starting with k = κ . We define

n(i) :=
∣∣∣
{
k ∈ {2, 3, . . . , κ} ∣∣ i k = i

}∣∣∣ for all i ∈ [m].

As κ − 1 = ⌈
m log2

(
Δ
ε

)⌉
there exists at least one index ī ∈ [m] with n(ī) ≥ log2

(
Δ
ε

)
.

Iteratively using (4.9), this implies that

(uκ − lκ)ī ≤ 2
− log2

(
Δ
ε

)

(u1 − l1)ī ≤ ε

Δ
Δ = ε

which contradicts εe < uκ − lκ . As a result, there cannot be more than κ iterations and
Algorithm 3 is finite. ��

So far, we have shown that Algorithm 3 generates a local lower bound set L and a local
upper bound setU and stops after finitely many iterations. Next, we use Theorem 3.6 to show
that these sets L and U are in fact lower and upper bound sets in the sense of Theorem 2.3.

Lemma 4.4 The output sets L and U of Algorithm 3 are lower bound and upper bound sets
in the sense of Theorem 2.3.

Proof As the output set U is a local upper bound set and L is a local lower bound set, there
exist N 1, N 2 ⊆ int(B) with U = U (N 1) and L = L(N 2). First, we discuss the local upper
bound set U . The algorithm starts with U (∅) = {Z}. After that, the local upper bound set is
only updated using points ȳ = f (x̄) ∈ N computed fromoptimal solutions x̄ of (GNP(f (x̂)).
As a result, it is N 1 ⊆ N (or N 1 = ∅) and in particular N 1 ⊆ f (S).

Next, we consider the local lower bound set L . The algorithm starts with L(∅) = {z}. For
all further updates of the set there are two cases. The first case is that L is updated within
the if part of the if clause, i.e., using y := l + t̄(u − l) with the notation from Algorithm
3. Thereby, it holds that t̄ < t̂ with (x̂, t̂) being an optimal solution of (SUP(l, u)). Thus,
there exists no y′ ∈ f (S) with y′ ≤ y which implies y /∈ f (S) + R

m+. The second case
is that L is updated by Algorithm 2 using an update point ȳ = f (x̄) ∈ N computed from
an optimal solution x̄ of (GNP(f (x̂)). Again, it is ȳ /∈ f (S) + (Rm+\{0}). Hence, we have
N 2 ⊆ int(B)\(f (S) + (Rm+\{0})) (or N 2 = ∅).

By Theorem 4.3 we have that Algorithm 3 is finite and so N 1 and N 2 are finite sets as
well. Moreover, without loss of generality, we can assume that the sets N 1 and N 2 are stable,
see page 10 or [25, Remark 2.2]. Together with Theorem 3.6 this implies that L and U are
lower and upper bound sets in the sense of Theorem 2.3. ��

Finally, we can use all of the results from above to show that Algorithm 3 generates an
approximation A of the nondominated set N of (MOP) with width w(A) ≤ ε.

Theorem 4.5 Let ε, τ > 0 and z, Z ∈ R
m be the input parameters and L,U ⊆ R

m be the
output sets of Algorithm 3. Then A = (L + R

m+) ∩ (U − R
m+) is an approximation of the

nondominated set N of (MOP) with w(A) ≤ ε.

Proof ByLemma 4.4 the sets L andU are lower and upper bound sets in the sense of Theorem
2.3. Hence,A is an approximation of the nondominated setN given L andU . Moreover, we
have shown in Theorem 4.3 that Algorithm 3 is finite, i.e., it terminates after finitely many
iterations. This implies that at some point the repeat loop begins and ends with done == true.

123

Journal of Global Optimization (2022) 83:329–357 349

Thus, for all l ∈ L the if clause is not satisfied, i.e., for all u ∈ U there exists at least one
index i ∈ [m] with

li + ε �< ui ⇔ ε ≥ ui − li .

As a result, the approximation A has a width w(A) ≤ ε. ��

5 Numerical results

In the following, we present numerical results for selected test instances. All numerical tests
have been performed using MATLAB R2018b on a machine with Intel Core i9-10920X
processor. The average of the results of bench(5) is: LU = 0.0470, FFT = 0.0559, ODE =
0.0137, Sparse = 0.0885, 2-D = 0.2302, 3-D = 0.2117. It provides a rough idea of the machine
performance, in particular for comparing the results using other machines. Please be aware
that these results are version specific according to the MATLAB documentation, see [29].

In this section we mainly focus on convex problems (MOP), i.e., such problems with
convex objective functions fi , i ∈ [m] and a convex set S ⊆ R

n . The big advantage of this
setting is that also all single-objective subproblems like (SUP(l, u)) are convex problems and
can be solved by any local solver. To solve (SUP(l, u)) and (GNP(y)) we use the local solver
fmincon. For the initialization, we provide z, Z as in (4.1) with σ = 10−6 unless stated
otherwise. We also fix τ = 10−6 for Algorithm 3. We also discuss two nonconvex examples
in this section. In case we only use a local solver for the subproblems we will no longer have
a guarantee to obtain a valid approximation for those.

First, in Sect. 5.1 we present the numerical results for BAMOP as given in Algorithm 3.
Then, in Sect. 5.2, we present and discuss the results for a modified version of the algorithm.
Please be aware that while our algorithmworks for problems (MOP)with an arbitrary number
of objective functions, in this section we focus on bi- and tri-objective examples since for
those exampleswe can also provide a visualization of the results. In Test Instance 4we discuss
the results for an optimization problem with more than three objectives. The generated data
and the MATLAB files are available from the authors on reasonable request.

5.1 Results for BAMOP

Test Instance 1 First, we consider a convex, box-constrained problem. The second objective
function is the so-called Brent function, see [2,22].

min f (x) :=
(

2x21 + x22
(x1 + 10)2 + (x2 + 10)2 + e

(−x21−x22
)
)

s.t. x ∈ [−5, 0]2. (Br)

We execute the algorithm for ε = 1 and ε = 5. The results are shown in Fig. 8. For ε = 1
the structure of the nondominated set is easily recognizable. However, this is also the case
for ε = 5.

The computation time is about 0.59 seconds for ε = 5 and about 2.33 seconds for ε = 1.
Hence, the quality improvement from ε = 5 to ε = 1 requires (roughly) four times the
computation time. We further investigate the computation time in the next test instance.

123

350 Journal of Global Optimization (2022) 83:329–357

Fig. 8 Numerical results for (Br)

Table 1 Numerical results for (Jin1)

n ε Time (Total) # Calls fmincon Time fmincon

2 0.1 0.751 24 0.681

10 0.1 0.592 24 0.521

50 0.1 1.251 24 1.178

2 0.01 6.162 300 5.886

10 0.01 7.320 300 7.048

50 0.01 14.659 300 14.358

2 0.001 59.462 2928 57.084

10 0.001 116.206 2928 113.777

50 0.001 265.222 2928 262.683

Test Instance 2 For the next example, we consider a scalable test problem from [23] that was
also used in [39].

min f (x) :=

⎛

⎜⎜⎜⎜
⎝

1
n

n∑

i=1
x2i

1
n

n∑

i=1
(xi − 2)2

⎞

⎟⎟⎟⎟
⎠

s.t. x ∈ [0, 1]n . (Jin1)

The results, in particular the computation time, for different choices of n and ε are shown
in Table 1. Those are computed using MATLAB’s Run and Time feature. This causes some
overhead which should be taken into account when comparing results. Table 1 shows that
increasing n or ε also increases the computation time. Also, the overall computation time of
Algorithm 3 is basically the computation time for solving the subproblems (SUP(l, u)) and
(GNP(y)), i.e., the time used for fmincon in our example. Thus, it is important to carefully
choose a suitable solver for these subproblems.

In Fig. 9 the results for ε = 0.1 and ε = 0.01 are shown. Together with the results shown
in Table 1 this motivates that the parameter ε should be chosen carefully and with respect to
the scale of the optimization problem.

123

Journal of Global Optimization (2022) 83:329–357 351

Fig. 9 Numerical results for (Jin1)

Table 2 Numerical results for
(Ex5.1) with ε = 0.1

a 5 7 10 20

Time 65.0054 80.6611 93.6614 123.2805

Test Instance 3 The following tri-objective example can be found in [8] and depends on a
parameter a > 0.

min f (x) := x s.t.

(
x1 − 1

1

)2

+
(
x2 − 1

a

)2

+
(
x3 − 1

5

)2

≤ 1. (Ex5.1)

The parameter a controls the scale of the ellipsoid constraint function and, hence, the steep-
ness of the nondominated set. In [8] the authors present an approach of vertex selection for
a polyhedral approximation algorithm from [28]. They demonstrate that their modification’s
computation time is only slightly effected by the choice of a.

In contrast, for our algorithm the choice of a has a noticeable influence on the computation
time, see Table 2. However, this is not surprising. Increasing the parameter a also increases
the size of the initial box [z, Z]. In particular, we have z2 = 1− a − σ and Z2 = 1+ a + σ .
Thus, we can expect that more subboxes need to be computed to generate an approximation
A with w(A) ≤ ε = 0.1.

For an illustration of the result for a = 5, see Fig. 10. Besides the illustration for ε = 0.1
we also included the result for ε = 0.5 where the box structure can be seen more clearly.

Test Instance 4 As mentioned in the beginning of this section, our algorithm is not restricted
to bi- and tri-objective problems that we use here mainly to be able to visually represent the
numerical results. The following test instance is convex and has a scalable number m ≤ n
of objectives. It can be found in various formulations, for example in [20,39]. The objective
functions f j : R

n → R, j ∈ [m] are given by
f j (x) := (x j − 1)2 +

∑

i∈[n],i �= j

x2i .

The test instance is then given as

min f (x) s.t. x ∈ [−1000, 1000]n, f j (x) ≤ 1 ∀ j ∈ [m]. (ZLT1)

123

352 Journal of Global Optimization (2022) 83:329–357

Fig. 10 Numerical results for (Ex5.1)

We added the constraints f j (x) ≤ 1, j ∈ [m] to allow a tight initial box [z, Z] with Z j :=
1 + σ for all j ∈ [m]. Adding these constraints has no impact on the nondominated set of
(ZLT1) since even without these constraints the nondominated set is contained in [0, 1]m .
For all choices of m we fixed ε = 0.2 and n = 100.

For m = 2 and m = 3 the computation times are 2.46 and 4.64 seconds. But then, with
increasing m, they increase quite fast to 15.05 seconds for m = 4 and 122.25 seconds for
m = 5. When choosing ε = 0.1 we only need 22.90 seconds for m = 3 but more than 3600
seconds (which we used as a time limit) for m = 4.

This example demonstrates that due to the fact that our algorithm is a criterion space
algorithm, its computation time highly depends on the number of objectives. Moreover, the
computation time increases drastically with the number of objectives in this example. This
might seem surprising, since byTheorem4.3 it is known that themaximal number of iterations
of our algorithm depends linearly on the number of objective functions. The reason for the
increase in computation time is that, in general, with each iteration the number of lower and
upper bounds increases which implies that the iterations get more time consuming.

Test Instance 5 The next example is scalable in the decision space and nonconvex. It can be
found in [20,39,40] and is a generalization of an example from [17].

min f (x) :=

⎛

⎜⎜⎜⎜
⎝

1 − exp

(
−

n∑

i=1

(
xi − 1√

n

)2)

1 − exp

(
−

n∑

i=1

(
xi + 1√

n

)2)

⎞

⎟⎟⎟⎟
⎠

s.t. x ∈ [−4, 4]n . (MOP2)

As already mentioned at the beginning of this section, we keep using the local solver
fmincon to solve all single-objective (nonconvex) subproblems. As a result, there is no
longer a guarantee that our algorithm computes a valid approximation of the nondominated
setN . To ensure that all theoretical results hold, a suitable (global) solver for the nonconvex
subproblems (SUP(l, u)) and (GNP(y)) would be necessary. However, for this example it
turns out that our algorithm is still computing a valid result. This is also the case for other
examples which are only “slightly” nonconvex. If one aims for a guaranteed valid approx-
imation of the nondominated set, algorithms as those presented in [14,31,35,42,43] should
be considered. Note that the algorithms from [14], [31] and [35] also have the advantage that

123

Journal of Global Optimization (2022) 83:329–357 353

Fig. 11 Numerical results for (MOP2)

they compute not only an approximation of the nondominated set but also a representation or
coverage of the set of (ε-) efficient solutions. On the other hand, these algorithms are often
limited in the size of n.

For the dimension we choose n = 100. In Fig. 11 the results for ε = 0.1 and for ε = 0.01
are shown. The computation time for ε = 0.1 is about 1.8 s while for ε = 0.01 it is about
24.3 s. Considering Fig. 11, one has to decide whether the increase in computation time is
worth the improvement of the result.

Test Instance 6 While in the previous example our algorithm delivered a valid approximation
of the nondominated set, we nowpresent another nonconvex test instance from [37]where our
algorithm combined with the local solver fmincon failed to provide a valid approximation.
The test instance is given as

min f (x) := x s.t. − x21 − x22 + 1 + 0.1 cos

(
16 arctan

(
x1
x2

))
≤ 0,

(x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5,

x ∈ [0, π]2.
(Tan)

We set the tolerance ε = 0.1 and for the initial box [z, Z] we choose z = (−σ,−σ)� and
Z = (1.3 + σ, 1.3 + σ)�.

The result for using fmincon is shown in Fig. 12 on the left. On the right the result
for using GlobalSearch instead of fmincon to solve the subproblems is shown. This
actually returns a valid approximation of the nondominated set of (Tan). Hence, in this
example more effort is needed to obtain a valid approximation by BAMOP.

5.2 Results for BAMOPwith selection criterion

For this section, we consider a modification of BAMOP (Algorithm 3). More precisely, we
replace the inner for loop for the upper bounds by a selection criterion for a single upper
bound. For the selection criterion, we use the shortest edge s(l, u). More precisely, given
l ∈ L we select an upper bound u ∈ ({l + εe} + int(Rm+)) ∩Uloop with

s(l, u) ≥ s(l, u′) for all u′ ∈ ({l + εe} + int(Rm+)) ∩Uloop.

123

354 Journal of Global Optimization (2022) 83:329–357

Fig. 12 Numerical results for (Tan)

Fig. 13 Comparison of BAMOP and BAMOPS for (Ex5.1)

We refer to this modified version of Algorithm 3 as BAMOPS. Please be aware that for this
modification finiteness of the algorithm is no longer guaranteed by Theorem 4.3. However,
if BAMOPS terminates then for the computed approximation A it still holds w(A) ≤ ε.

We consider again the tri-objective optimization problem (Ex5.1) from Test Instance
3. For fixed ε = 0.1 we compare the computation time of BAMOP and BAMOPS for
a ∈ {1, 3, 5, 7, . . . , 25}. The results are presented in Fig. 13. For better comparison, the
dashed line represents half the computation time of BAMOP. Thus, for this specific instance
BAMOPS is roughly twice as fast as BAMOP. Please be aware that the computation time of
BAMOP for Test Instance 3 on page 24 is longer because of the overhead introduced by the
Run and Time feature.

Also for other test instances with m > 2 we obtained a significant reduction of the
computation time when using BAMOPS instead of BAMOP.

123

Journal of Global Optimization (2022) 83:329–357 355

6 Conclusions

We presented a new algorithm to compute an approximation of the nondominated set of
(MOP) in the form of a box-coverage. This algorithm has been proven to compute an approxi-
mationAwithwidthw(A) of atmost ε for any predefined ε > 0 after finitelymany iterations.
In particular, we have shown that an improvement in every iteration can be guaranteed (see
Theorem 4.2) and provided an upper bound for the number of iterations needed (see Lemma
4.3).

Algorithm 3 can theoretically be used for a huge class of problems. Practically, one needs
to be able to solve the single-objective subproblems fast and reliably. This is possible for
instance for smooth convex optimization problems for which such solvers are available. Even
for nonconvex problems our algorithm is able to obtain valid approximations when using a
local solver for the subproblems as demonstrated in Sect. 5. If one wants to guarantee that
BAMOP computes a valid approximation in the nonconvex case, a suitable global solver is
necessary. In this case one might also consider using other approaches like those from [12],
[14], [31] and [42]. In Sect. 5.1 we illustrated the algorithm on six different test instances.
As the results have shown, the parameter ε should be chosen carefully and with respect to
the range of the objective values. There is a significant trade-off between the approximation
quality, i.e., the choice of ε, and the computation time for the algorithm.

We found out that the computation time of Algorithm 3 mainly depends on the compu-
tation time that is needed for solving the subproblems (SUP(l, u)) and (GNP(y)). Thus, an
interesting question for further research would be how often these subproblems have to be
solved. This could then be used to estimate the overall computation time. In particular, a
relation between the amount of decreasing the value of ε and the resulting increase in the
number of evaluations of the subproblems would be of great interest.

Moreover, the modification of Algorithm 3 that we presented in Sect. 5.2 seems to be
promising in view of the computation time. However, we loose the Halving Theorem with
this modification. Still, it should be further investigated. In particular, one should check
if this modification can still be proofed to terminate after finitely many iterations. Also,
working with other selection criteria, e.g., based on the Hypervolume Indicator [44], should
be examined.

Acknowledgements This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)—Project-ID 432218631. We thank the two anonymous referees for their remarks and comments
that helped us to improve the quality of this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bokrantz, R., Forsgren, A.: An algorithm for approximating convex pareto surfaces based on dual tech-
niques. INFORMS J. Comput. 25(2), 377–393 (2013)

123

http://creativecommons.org/licenses/by/4.0/

356 Journal of Global Optimization (2022) 83:329–357

2. Branin, F.H.: Widely convergent method for finding multiple solutions of simultaneous nonlinear equa-
tions. IBM J. Res. Dev. 16(5), 504–522 (1972)

3. Burachik, R.S., Kaya, C.Y., Rizvi, M.M.: A new scalarization technique to approximate pareto fronts of
problems with disconnected feasible sets. J. Optim. Theory Appl. 162(2), 428–446 (2013)

4. Burachik, R.S., Kaya, C.Y., Rizvi, M.M.: A new scalarization technique and new algorithms to generate
pareto fronts. SIAM J. Optim. 27(2), 1010–1034 (2017)

5. Doğan, S., Özlem, K., Ulus, F.: An exact algorithm for biobjective integer programming problems (2019).
https://arxiv.org/abs/1905.07428

6. Dächert, K., Klamroth, K.: A linear bound on the number of scalarizations needed to solve discrete
tricriteria optimization problems. J. Glob. Optim. 61(4), 643–676 (2014)

7. Dächert, K., Teichert, K.:An improved hyperboxing algorithm for calculating a Pareto front representation
(2020). https://arxiv.org/abs/2003.14249

8. Dörfler, D., Löhne, A., Schneider, C., Weißing, B.: A Benson-type algorithm for bounded convex vector
optimization problems with vertex selection (2020). http://arxiv.org/abs/2006.15600

9. Ehrgott, M.: Multicriteria Optimization. Springer (2005)
10. Ehrgott, M., Ruzika, S.: Improved ε-constraint method for multiobjective programming. J. Optim. Theory

Appl. 138(3), 375–396 (2008)
11. Ehrgott, M., Shao, L., Schöbel, A.: An approximation algorithm for convex multi-objective programming

problems. J. Glob. Optim. 50(3), 397–416 (2010)
12. Eichfelder, G., Kirst, P., Meng, L., Stein, O.: A general branch-and-bound framework for continuous

global multiobjective optimization. J. Glob. Optim. 80(1), 195–227 (2021)
13. Eichfelder, G., Niebling, J., Rocktäschel, S.: An algorithmic approach to multiobjective optimization with

decision uncertainty. J. Glob. Optim. 77(1), 3–25 (2019)
14. Evtushenko, Y., Posypkin, M.: A deterministic algorithm for global multi-objective optimization. Optim.

Methods Softw. 29(5), 1005–1019 (2013)
15. Fernández, J., Tóth, B.: Obtaining the efficient set of nonlinear biobjective optimization problems via

interval branch-and-bound methods. Comput. Optim. Appl. 42(3), 393–419 (2007)
16. Fliege, J., Vaz, A.I.F.: A method for constrained multiobjective optimization based on SQP techniques.

SIAM J. Optim. 26(4), 2091–2119 (2016)
17. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization.

Evol. Comput. 3(1), 1–16 (1995)
18. Göpfert, A., Riahi, H., Tammer, C., Zalinescu, C.: Variational Methods in Partially Ordered Spaces.

Springer (2003)
19. Hamacher, H.W., Pedersen, C.R., Ruzika, S.: Finding representative systems for discrete bicriterion

optimization problems. Oper. Res. Lett. 35(3), 336–344 (2007)
20. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable

test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)
21. Ide, J., Köbis, E., Kuroiwa, D., Schöbel, A., Tammer, C.: The relationship between multi-objective

robustness concepts and set-valued optimization. Fixed Point Theory Appl. 2014(83) (2014). https://
doi.org/10.1186/1687-1812-2014-83

22. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimization problems. Int.
J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)

23. Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multi-objective opti-
mization: why does it work and how? In: Proceedings of the 3rd annual conference on genetic and
evolutionary computation, GECCO’01, pp. 1042–1049. Morgan Kaufmann Publishers Inc. (2001)

24. Khan, A.A., Tammer, C., Zălinescu, C.: Set-valued Optimization. Springer (2015)
25. Klamroth, K., Lacour, R., Vanderpooten, D.: On the representation of the search region in multi-objective

optimization. Eur. J. Oper. Res. 245(3), 767–778 (2015)
26. Klamroth, K., Tind, J., Wiecek, M.M.: Unbiased approximation in multicriteria optimization. Math.

Methods Oper. Res. (ZOR) 56(3), 413–437 (2003)
27. Kuhn, T., Ruzika, S.: A coverage-based box-algorithm to compute a representation for optimization

problems with three objective functions. J. Glob. Optim. 67(3), 581–600 (2016)
28. Löhne, A., Rudloff, B., Ulus, F.: Primal and dual approximation algorithms for convex vector optimization

problems. J. Glob. Optim. 60(4), 713–736 (2014)
29. MATLAB: Matlab bench documentation. https://www.mathworks.com/help/matlab/ref/bench.html.

Accessed 25 June 2020
30. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer (1998)
31. Niebling, J., Eichfelder, G.: A branch-and-bound-based algorithm for nonconvex multiobjective opti-

mization. SIAM J. Optim. 29(1), 794–821 (2019)
32. Pardalos, P.M., Žilinskas, A., Žilinskas, J.: Non-Convex Multi-Objective Optimization. Springer (2017)

123

https://arxiv.org/abs/1905.07428
https://arxiv.org/abs/2003.14249
http://arxiv.org/abs/2006.15600
https://doi.org/10.1186/1687-1812-2014-83
https://doi.org/10.1186/1687-1812-2014-83
https://www.mathworks.com/help/matlab/ref/bench.html

Journal of Global Optimization (2022) 83:329–357 357

33. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42(4), 499–
524 (1984)

34. Ruzika, S., Wiecek, M.M.: Approximation methods in multiobjective programming. J. Optim. Theory
Appl. 126(3), 473–501 (2005)

35. Scholz, D.: The multicriteria big cube small cube method. TOP 18(1), 286–302 (2009)
36. Shao, L., Ehrgott, M.: An objective space cut and bound algorithm for convexmultiplicative programmes.

J. Global Optim. 58(4), 711–728 (2013)
37. Tanaka, M., Watanabe, H., Furukawa, Y., Tanino, T.: GA-based decision support system for multicriteria

optimization. In: 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent
Systems for the 21st Century, vol. 2, pp. 1336–1561. IEEE (1995)

38. Teichert, K.: A hyperboxing pareto approximation method applied to radiofrequency ablationtreatment
planning. Ph.D. Thesis, Technical University of Kaiserslautern (2014)

39. Thomann, J., Eichfelder, G.: Numerical results for the multiobjective trust region algorithm MHT. Data
in Brief 25, 104103 (2019)

40. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, analyses, and new inno-
vations. Ph.D. Thesis, Air Force Institute of Technology, USA (1999)

41. Wendell, R.E., Lee, D.N.: Efficiency in multiple objective optimization problems. Math. Program. 12(1),
406–414 (1977)

42. Žilinskas, A.: A one-step worst-case optimal algorithm for bi-objective univariate optimization. Optim.
Lett. 8(7), 1945–1960 (2013)

43. Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-
objective Lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul.
21(1–3), 89–98 (2015)

44. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case
study. In: Parallel Problem Solving from Nature—PPSN V, Lecture Notes in Computer Science, vol.
1498, pp. 292–301. Springer (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	An approximation algorithm for multi-objective optimization problems using a box-coverage
	Abstract
	1 Introduction
	2 Notations and definitions
	3 Computing lower and upper bounds
	4 Computing the box-coverage
	4.1 Initialization
	4.2 Updating the boxes
	4.3 Main algorithm
	4.4 Halving property and convergence

	5 Numerical results
	5.1 Results for BAMOP
	5.2 Results for BAMOP with selection criterion

	6 Conclusions
	Acknowledgements
	References

