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Preface

Quantum field theory is a monster: Unmanageable in terms of the sheer number of dif-
ferent, sometimes contradictory, principles, formalisms, definitions, and results that have
been amassed in the past 100 years, often without clear relation to each other. It suffers
from mathematical conundrums, incomprehensible heuristic constructions, and being de-
clared hopeless or obsolete once every few years; while at the same time its computational
techniques are being used successfully in ever more remote areas of research.

For the present thesis, this has two consequences: Firstly, I spend extraordinarily much
effort on explaining the background of relevant constructions, discussing their relations and
demonstrating the logical order of their development, as well as the practical applicability
in 150 examples. And secondly, I generally prefer to reference original work, instead of
merely the latest reviews, in order to acknowledge the historical background. At five points,
complete sections are marked as Digression, they are not relevant for the understanding of
the thesis, but contain additional remarks, motivations, or related topics I found interesting.
More than 70 years after its inception, text books about quantum field theory are now

readily available for the general audience, e.g. [1–5], as well as for almost any profession,
from mathematicians [6] over economists [7] to gifted amateurs [8]. Nevertheless, chapter 1 is
a self-contained introduction to make the thesis accessible to readers without a background
in quantum field theory. Conversely, in chapter 2, I review the mathematical formalism,
before introducing the concept of renormalization. The following chapter 3 concerns the
renormalization group, which lies at the heart of the present thesis. Most of my own results
are contained in chapter 4, where I examine different renormalization schemes. Finally,
chapter 5 contains the results of a second research project, concerning transformations of
the field variable.
To make the thesis more accessible to the general audience, I have included a non-technical

abstract in German in the beginning. The appendix is – apart from the bibliography – mostly
for entertainment.
Occasionally, I quote from works in their original language German or French. A friend

mocked this as “a very continental attitude”, a verdict I can live with. The reader can rest
assured that those quotes only serve to illustrate some qualitative remarks of mine, and that
they are completely irrelevant for the main text.

Kreuzberg, October 2022
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Zusammenfassung

Thema dieser Dissertation ist die Renormierung von perturbativer skalarer Quantenfeldtheo-
rie bei großer Schleifenzahl. Der Hauptteil der Arbeit ist dem Einfluss von Renormierungs-
bedingungen auf renormierte Greenfunktionen gewidmet.

Zunächst studieren wir ausführlich Dyson-Schwinger-Gleichungen und die Renormierungs-
gruppe, inklusive der Gegenterme in dimensionaler Regularisierung. Anhand zahlreicher Bei-
spiele illustrieren wir, wie die verschiedenen Größen in konktreten Fällen berechnet werden
und welche Relationen es zwischen ihnen gibt.
Alsdann diskutieren wir, welche Freiheitsgrade ein Renormierungsschema hat und wie diese

mit den Gegentermen und den renormierten Greenfunktionen zusammenhängen. Für unge-
koppelte Dyson-Schwinger-Gleichungen stellen wir fest, dass alle Renormierungsschemata bis
auf eine Verschiebung δ(α, ϵ) des Renormierungspunktes äquivalent sind. Die Verschiebung
zwischen verschiedenen kinematischen Renormierungsschemata ist eine Konstante δ ∈ R.
Die Verschiebung zwischen kinematischer Renormierung und Minimaler Subtraktion ist eine
Funktion der Kopplung α und des Regularisierungsparameters ϵ. Wir leiten eine neuartige
Formel für den Fall einer linearen Dyson-Schwinger Gleichung vom Propagatortyp her. Sie
erlaubt es, die Verschiebung direkt aus der Mellintransformation des Integrationskerns zu
berechnen, ohne die Dyson-Schwinger-Gleichung explizit in Minimaler Subtraktion lösen zu
müssen.
Schließlich berechnen wir obige Verschiebung störungstheoretisch für drei beispielhafte

nichtlineare Dyson-Schwinger-Gleichungen. Wir stellen dabei fest, dass die Koeffizienten der
Reihendarstellung ein ähnliches asymptotisches Wachstum zeigen wie die Koeffizienten der
anormalen Dimension.

Ein zweites, nachgeordnetes Thema der vorliegenden Arbeit sind Diffeomorphismen der
Feldvariable in einer Quantenfeldtheorie. Wir präsentieren eine Störungstheorie des Diffeo-
morphismusfeldes im Impulsraum und verifizieren, dass der Diffeomorphismus keinen Ein-
fluss auf messbare Größen hat. Weiterhin untersuchen wir die Divergenzen des Diffeomor-
phismusfeldes und stellen fest, dass die Divergenzen Wardidentitäten erfüllen, die die Ab-
wesenheit dieser Terme von der S-Matrix ausdrücken. Trotz der Wardidentitäten bleiben
unendlich viele Divergenzen unbestimmt, damit ist die Diffeomorphismustheorie perturbativ
unrenormierbar.
Den Abschluss der vorliegenden Arbeit bildet ein Kommentar über die numerische Qua-

dratur von Periodenintegralen.
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Abstract

This thesis concerns the renormalization of perturbative quantum field theory. More pre-
cisely, we examine scalar quantum fields at high loop order. The bulk of the thesis is devoted
to the influence of renormalization conditions on the renormalized Green functions.

Firstly, we perform a detailed review of Dyson-Schwinger equations and the renormal-
ization group, including the counterterms in dimensional regularization. Using numerous
examples, we illustrate how the various quantities are computable in a concrete case and
which relations they satisfy.
Secondly, we discuss which degrees of freedom are present in a renormalization scheme,

and how they are related to counterterms and renormalized Green functions. We establish
that, in the case of an un-coupled Dyson-Schwinger equation, all renormalization schemes
are equivalent up to a shift δ(α, ϵ) in the renormalization point. The shift between different
kinematic renormalization points is a constant δ ∈ R. The shift between kinematic renor-
malization and Minimal Subtraction is a function of the coupling α and the regularization
parameter ϵ. We derive a novel formula for the case of a linear propagator-type Dyson-
Schwinger equation. It allows us to compute the shift directly from the Mellin transform of
the kernel, without explicitly solving the Dyson-Schwinger equation in Minimal Subtraction.
Thirdly, we compute the shift perturbatively for three examples of non-linear Dyson-

Schwinger equations. We find that the series coefficients show a similar asymptotic growth
as the coefficients of the anomalous dimension.
A second, smaller topic of the present thesis are diffeomorphisms of the field variable in

a quantum field theory. We present the perturbation theory of the diffeomorphism field in
momentum space and find that the diffeomorphism has no influence on measurable quanti-
ties. Moreover, we study the divergences in the diffeomorphism field and establish that they
satisfy Ward identities, which ensure their absence from the S-matrix. Nevertheless, the
Ward identities leave infinitely many divergences unspecified and the diffeomorphism theory
is perturbatively unrenormalizable.
Finally, we remark on a third topic, the numerical quadrature of Feynman periods.
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Populärwissenschaftliche Zusammenfassung

Der Haupttext dieser Arbeit mag abschnittsweise technisch erscheinen. Aus diesem Grunde
fassen wir die Kernaussagen hier qualitativ zusammen, ohne auf die mathematischen Details
einzugehen.

Grundsätzlich handelt die Dissertation von Quantenfeldtheorie, das ist die Beschreibung
von Feldern, die den Prinzipien der Quantenmechanik unterliegen. Man kann sich ein Quan-
tenfeld grob als ein Feld vorstellen, das die Wahrscheinlichkeit für das Antreffen eines Teil-
chens, des Quants, angibt. Quantenfelder können mit anderen Quantenfeldern interagieren.
In dieser Dissertation betrachten wir ausschließlich den Fall, dass ein einziges Feld mit sich
selbst interagiert. Anschaulich bedeutet das, dass ein Quant des besagten Feldes, während
es sich bewegt, weitere Quanten desselben Feldes aussenden oder einfangen kann.
Um eine Quantenfeldtheorie zu konstruieren, beschreibt man die Ausbreitung und Wech-

selwirkung der Teilchen mit Hilfe einer sogenannten Lagrangedichte (def. 6). Darin sind alle
möglichen Prozesse aufgeführt, an denen ein Teilchen teilnehmen kann, und jeder von ihnen
ist mit einer sogenannten Kopplungskonstante gewichtet.
Viele Interaktionen von Quanten können als Streuprozesse (section 1.2.5) verstanden wer-

den: Eine gewisse Gruppe von Quanten stößt zusammen, dabei kommt es zu eine Wechselwir-
kung und möglicherweise werden einige Quanten dabei absorbiert oder entstehen neu. Das
Verhalten solcher Streuprozesse ist in den Greenfunktionen G(n) (def. 46) kodiert: G(n) ist im
Prinzip die Wahrscheinlichkeit dafür, dass ein Prozess stattfindet, an dem n Quanten betei-
ligt sind. Folglich ist eines der primären Ziele der Quantenfeldtheorie, die Greenfunktionen
G(n) zu berechnen.
Bei der Berechnung der Greenfunktionen gibt es einen Stolperstein: Die Lagrangedich-

te enthält gewisse Parameter – die Kopplungskonstanten – deren Zahlenwert man zunächst
nicht kennt. Wenn man nun eine Greenfunktion berechnet, dann enthält auch diese Funktion
die unbekannten Kopplungskonstanten, und folglich kann man mit dieser Greenfunktion kei-
ne Wahrscheinlichkeit für einen konkreten Streuprozessen vorhersagen. Abhilfe schafft eine
Prozedur namens Renormierung (section 2.2): Man berechnet einige der Greenfunktionen
und misst dann die betreffenden Wahrscheinlichkeiten in einem Experiment. Dadurch erhält
man eine Gleichung – die Renormierungsbedingung – für die unbekannten Kopplungskon-
stanten. Wenn man diese Gleichung löst, erfährt man den Wert der Kopplungskonstanten
und kann fortan die Wahrscheinlichkeit für alle anderen Streuprozesse vorhersagen. Dieses
konkrete Verfahren nennt sich kinematische Renormierung (def. 91), es gibt aber auch ande-
re Renormierungsschemata. Die Greenfunktionen, bei denen die Kopplungskonstanten durch
ihren physikalischen Wert ersetzt wurden, bezeichnet man als renormierte Greenfunktionen

G
(n)
R (def. 90).
Im Zuge der Renormierung tritt ein technisches Problem auf: Viele der rechnerischen

Größen sind unendlich. Diese Divergenzen (section 2.3.1) kann man intuitiv verstehen: Ein
Quant ist ein punktförmiges Teilchen ohne räumliche Ausdehnung. Naiv betrachtet dürfte
es daher nie zu Wechselwirkungen kommen: Die Quanten sind zu klein, um sich jemals zu
treffen. Andererseits wissen wir aus Experimenten, dass sehr wohl Wechselwirkung zwischen
Quanten stattfindet.
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Populärwissenschaftliche Zusammenfassung

Formell gesehen kann man den Widerspruch auflösen, wenn man annimmt, dass die Teil-
chen nicht nur unendlich klein sind, sondern gleichzeitig eine unendlich hohe Wechselwir-
kungsrate haben, falls sie sich doch einmal treffen. Der Formalismus der Renormierung er-
laubt es, mit derartigen unendlichen Größen zu arbeiten. Bei manchen Quantenfeldtheorien

ist garantiert, dass ein messbares Endergebnis – also eine renormierte Greenfunktion G
(n)
R –

niemals eine der unendlichen Größen enthält, sondern stets einen sinnvollen endlichen Wert
hat. Solche Theorien heißen renormierbar (section 2.3). Vermutlich ist das Auftreten von
Divergenzen lediglich ein Artefakt unseres etwas unbeholfenen Formalismus, bei dem wir die
Theorie aus Streuprozessen zwischen punktförmigen Teilchen aufbauen (section 3.2.3). In
Wirklichkeit ist jedes Quant von einer ausgedehnten Wolke aus anderen Quanten umgeben,
die auch an Wechselwirkungen teilnehmen, und bekommt dadurch eine effektive Größe, die
verschieden von Null ist.
Im Detail handelt diese Dissertation davon, dass verschiedene mögliche Renormierungs-

bedingungen letztendlich zu denselben physikalischen Vorhersagen für renormierte Green-

funktionen G
(n)
R führen. Für die oben beschriebene kinematische Renormierung ist das na-

heliegend – es sollte keinen Unterschied machen, ob man beispielsweise einen Streuprozess
bei einer anderen Energie oder einem anderen Winkel der beteiligten Teilchen als Refe-
renz nimmt. Allerdings ist es auch möglich, eine abstraktere Renormierungsbedingung zu
wählen, die darauf abziehlt, lediglich die Divergenzen aus der Theorie zu entfernen, ohne
dabei eine konkrete physikalische Interpretation vorzugeben. Dieses Renormierungsschema
heißt Minimale Subtraktion (def. 108), und sie hat zwei Effekte: Erstens erhält man, vergli-
chen mit kinematischer Renormierung, einen anderen Zahlenwert der Kopplungskonstanten,

und zweitens hat die renormierte Greenfunktion G
(n)
R eine andere Form. In der vorliegenden

Dissertation wird demonstriert, dass, abgesehen von gewissen Sonderfällen, die Ergebnisse
für kinematische Renormierung und für Minimale Subtraktion äquivalent sind (section 4.4).
Die Minimale Subtraktion entspricht dann einer kinematischen Renormierung bei einer ge-
wissen Energie δ, deren Wert wir für einige Beispielsysteme bestimmen (section 4.5).
Das Ergebnis hat keinerlei Anwendung in der Industrie oder im Alltag. Allerdings ist es

nützlich für theoretische Berechnungen in der Quantenfeldtheorie, denn wir erhalten dadurch
eine größere Freiheit bei der Wahl der Renormierungsbedingungen. Ohne systematisch da-
nach zu suchen, sind wir auf zwei Fälle gestoßen, in denen die Berechnung der Greenfunktion
in jeweils einem bestimmten Schema sehr viel einfacher ist als in anderen (section 4.2.4). Die
betreffende Quantenfeldtheorie ist – wie alle Theorien, die in dieser Dissertation behandelt
werden – ein extrem vereinfachtes Beispielsystem. Die realen Fälle in der Natur sind sehr
viel komplizierter und man sollte nicht erwarten, dass bestimmte Renormierungsschemata zu
derartig einfachen Lösungen führen. Nichtsdestotrotz ist die Äquivalenz von Renormierungs-
schemata auch dort von Bedeutung, beispielsweise für die Frage, welche Terme bei Quan-
tenkorrekturen den größten Einfluss haben und welche eher vernachlässigt werden können
(section 6.2.1).
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1. Introduction to perturbative quantum field
theory

1.1. Conventions

The following notation and conventions should be familiar to the physicist reader.
Definitions will be indicated by “:=”, where A := B means that A is defined to be

equal to B. The real numbers are R, the natural numbers N do not include zero, and
N0 = N∪ {0}. The sign ∝ means “exactly proportional to”, while ∼ denotes “of the order”

or “approximately proportional to”. With
!
= we denote “is demanded to be equal”. The

center dot · is used to visually highlight a multiplication. It does not indicate a special type
of multiplication, such as a scalar product between vectors.
Integrals act as operators on products to the right of them, but not on sums:∫︂

dx
(︂
f(x)g(x) + h(x)

)︂
̸=
∫︂

dx f(x)g(x) + h(x) =

(︃∫︂
dx f(x)g(x)

)︃
+ h(x).

An integral without explicit integration domain is meant to cover the complete space.
In this thesis, we assume a flat D-dimensional spacetime. A point in this spacetime is a

D-vector, that is an ordered tuple

x :=
(︁
x0,x

)︁
:=
(︁
x0, x1, . . . , xD−1

)︁
,

consisting of one time coordinate x0 and a (D − 1)-dimensional vector x which denotes the
position in space.

Definition 1. The D-dimensional real vector space together with the pseudo scalar
product eq. (1.1) is called Minkowski space MD. The Minkowski metric is the D ×D-
matrix

η := diag (1,−1, . . . ,−1) =

⎛⎜⎜⎜⎝
1 0 . . . 0
0 −1 . . . 0
...

. . .
...

0 . . . 0 −1

⎞⎟⎟⎟⎠ .

The magnitude of a vector is given by the scalar product

xy :=

D−1∑︂
i=0

D−1∑︂
j=0

xiηijy
j =

D−1∑︂
i=0

xiyi =: xiy
i. (1.1)
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1. Introduction to perturbative quantum field theory

Here, we have introduced Einstein’s sum convention: If an index (the i in the last formula)
appears twice, it is being summed over. Equation (1.1) is a pseudo scalar product, it can
take positive and negative values.
Occasionally, we use Euclidean spacetime, where the metric is 1D×D = diag (1, . . . , 1).

The transition between Euclidean and Minkowski metric is formally achieved by exchanging
x0 = t↔ iτ . This can be interpreted as continuation to imaginary times, and is called Wick
rotation.

Definition 2 ([10, 11]). Let η be the Minkowski metric (def. 1). A Lorentz transforma-
tion is a transformation of coordinates x′µ = Λµνxν , where the transformation matrix
satisfies

ΛµρΛ
ν
σηµν = ηρσ, or short ΛT ηΛ = η.

Transformations between different inertial frames are given by the group of Lorentz trans-
formations. In D = 4 spacetime dimensions, a Lorentz transformation has 6 parameters,
representing rotations around 3 axes and changes in the relative velocity along 3 axes. The
Lorentz group is closely related to causality [12].

Definition 3 ([13]). A Poincaré transformation is a transformation of coordinates
x′µ = Λµνxν+aµ, where Λ is a Lorentz transformation (def. 2) and a is a D-dimensional
constant vector.

We use natural units, that is, we choose the units such that the speed of light is c = 1 and
the reduced Planck constant [14] is ℏ = 1. Thereby, all quantities we encounter have the
same unit, which one can choose to be mass.

Definition 4. If, in natural units, a quantity has the unit (mass)n for some n, we say
it has mass dimension n. Equivalently, the unit (length)n amounts to a mass dimension
−n.

A Fourier transform involves a factor 2π, which we include into the momentum-integral,

f̃(k) =

∫︂
dx f(x)eikx ⇔ f(x) =

∫︂
dk

2π
f(k)e−ikx.

Definition 5 ([15]). Let ν ∈ R and −ν /∈ N0. The Euler Gamma function is defined as

Γ(ν) :=

∞∫︂
0

dt tν−1e−t.
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1.1. Conventions

For later use, we note here two formulae regarding the D-dimensional Fourier transforms
of a monomial. Let ν ∈ C with real part −ν /∈ N0 and ν −D/2 /∈ N0, and n ∈ N, then [16,
pp. 155, 163] ∫︂

dDk

(2π)D
1

(k2)ν
e−ikx =

1

4νπ
D
2

Γ
(︁
D
2 − ν

)︁
Γ(ν)

(x2)ν−
D
2 (1.2)∫︂

dDk

(2π)D
(k2)ne−ikx = (−1)n(∂µ∂µ)nδ(x), n ∈ N.

The D-dimensional Euclidean Gaussian [17] integral is∫︂
dDk

(2π)D
eiαk

2−ikx =

(︃
i

4πα

)︃D
2

e−
ix2

4α . (1.3)
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1. Introduction to perturbative quantum field theory

1.2. From classical field theory to perturbative QFT

This thesis concerns perturbative quantum field theory (QFT). Before we discuss the tech-
nical points, the present section is a brief introduction to the subject. The content is readily
available in any QFT course or textbook, such as [1, 3–5]. The reader familiar with the
basics is invited to skip directly to section 1.3.

1.2.1. Classical field theory

Colloquially, a field is an object which takes a value depending on a point in spacetime. In
the present thesis, we almost exclusively consider scalar fields, this means that the value of
the field is a single, real number (as opposed to a vector or a matrix) at each point. More
formally, a field is a function ϕ : MD → R. A field theory is a set of fields, together with
so-called equations of motion which describe the behaviour of these fields.

One way to specify a field theory is through the corresponding Lagrangian density, short
Lagrangian. It contains the field variables and information about how the fields interact
with themselves or with each other.

Definition 6. A Lagrangian is a function L with the following properties:

1. L(x) can depend on x, on ϕ(x), and on finitely many derivatives of ϕ(x), all
evaluated at the same spacetime point x (“locality”).

2. L(x) is a scalar under Poincaré transformations (def. 3), L(x) ↦→ L(Λx).

3. L(x) depends on the field ϕ(x) only via the value ϕ(x) itself and its first derivatives
∂µϕ(x), not via higher derivatives of ϕ(x).

4. L(x) has mass dimension (def. 4) D in a D-dimensional spacetime. Equivalently,
the action (def. 7) carries no units.

We write L(x) or equivalently L(ϕ, ∂µϕ) for L(x, ϕ(x), ∂µϕ(x)).

We restrict ourselves to Lagrangians that do not depend on x explicitly. Property 2 implies
that the field variables are representations of the Poincaré group (def. 3). A closer inspec-
tion of the structure of this group [11] reveals that fields, and in a quantum theory their
corresponding particles, can be classified according to a half-integer parameter spin and a
real, non-negative parameter mass. Property 3 is subtle. At this point, we take it as an
axiom without obvious physical reason, but we will explore the motivation and implications
in section 2.4.

Definition 7. The action is the D-dimensional spacetime integral of the Lagrangian,

S[ϕ] :=

∫︂
dDx L(x).
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1.2. From classical field theory to perturbative QFT

Example 1: Free scalar field, Lagrangian.

The Lagrangian density of the free scalar field reads

L =
1

2
∂µϕ(x)∂

µϕ(x)− 1

2
m2ϕ2(x).

In this,

• The prefactors 1
2 are convention.

• The first summand, 1
2∂µϕ(x)∂

µϕ(x), is called kinetic term. For each field, a La-
grangian density needs to have one kinetic term, which is the product of two field
variables and involves at least one derivative.

• The second summand, 1
2m

2ϕ2(x), is called mass term. It is quadratic in the field
without derivative. The constant m ∈ R has mass dimension (def. 4) [m] = 1.
The mass term is optional, fields can be massless.

Both summands in the free Lagrangian density are quadratic in the field variable. Since
the Lagrangian has mass dimension [L] = D, the field variable must have mass dimension

[ϕ] =
D − 2

2
.

The Lagrangian of a free field theory is quadratic in the field variables, it can be expressed
with a differential operator ŝ in the form

L =
1

2
ϕŝϕ. (1.4)

Definition 8. The offshell variable sp is the Fourier transform of the free field differ-
ential operator from eq. (1.4),

sp · eipx := ŝeipx,

Amomentum p is said to be onshell if sp = 0, otherwise p is called offshell. For numbered
momenta, we use the shorthand notation si+j := spi+pj .

Example 2: Scalar field, field differential operator.

The Lagrangian from example 1 amounts to the field differential operator ŝ = −∂µ∂µ−
m2 and the offshell variable sp = p2 −m2. A particle is onshell if p2 = m2.
The corresponding massless theory is obtained by setting m = 0, i.e.

L = −1

2
ϕ∂µ∂

µϕ, ŝ = −∂µ∂µ, sp = p2.

9



1. Introduction to perturbative quantum field theory

Any summand of higher than second power represents an interaction between fields. We
only consider interactions that are monomials in the field, which amounts to a Lagrangian

L =
1

2
∂µϕ(x)∂

µϕ(x)− 1

2
m2ϕ2(x)−

∞∑︂
n=3

λn
n!
ϕn(x). (1.5)

Here, the parameters λn are called coupling constants. In classical field theory they take
a pre-defined finite numerical value. From now on, we will mostly skip the argument (x),
understanding that all terms in a Lagrangian are to be evaluated at the same point.

Example 3: ϕn theory, Lagrangian.

The so-called ϕn theory is a model with only a single interaction monomial ∝ ϕn. The
most popular examples are ϕ3- and ϕ4 theory. The Lagrangian of ϕn theory is

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − λn

n!
ϕn.

Following def. 6 and example 1, we conclude the mass dimension of the coupling constant

[λn] = D − nD − 2

2
, ⇒ [λ3] = 3− 1

2
D, [λ4] = 4−D.

Example 4: Liouville theory, Lagrangian.

A typical example of non-polynomial interaction are theories of Liouville-type [18]

L =
1

2
∂µϕ∂

µϕ− c exp(λ · ϕ).

In this case [ϕ] = D−2
2 and [λ] = 2

D−2 and [c] = D.

The classical equations of motion can be obtained by requesting that the action (def. 7)
be invariant under infinitesimal changes of the field ϕ,

δS[ϕ]
!
= 0. (1.6)

A series expansion of the Lagrangian in the field variable, assuming the properties of def. 6
are fulfilled, leads to the Lagrangian equation of motion,

∂ L
∂ϕ
− d

dxµ

(︃
∂ L

∂(∂µϕ)

)︃
= 0. (1.7)

Here, all functions and derivatives are to be taken at the same spacetime point. This is a
second order partial differential equation, it requires two initial conditions: The field ϕ(0,x)
at the starting time and its time derivative ∂0ϕ(0,x) =: ϕ̇(0,x), both for the complete space.
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1.2. From classical field theory to perturbative QFT

Example 5: Free scalar field, classical solution.

The free Lagrangian from example 1 results in

∂ L
∂ϕ

= −m2ϕ,
∂ L

∂(∂µϕ)
= ∂µϕ

and the Lagrangian equation of motion is the Klein-Gordon equation [19–21](︁
∂µ∂

µ +m2
)︁
ϕ(x) = 0. (1.8)

Its solutions in infinitely large spacetime are superpositions of plane waves of the form

ϕ(x) = A · sin (k · x) +B · cos(k · x), (1.9)

where A and B are arbitrary constants and k2−m2 = 0. The last equation means that
k is onshell (def. 8). Since eq. (1.8) is a linear partial differential equation, any sum
of such solutions is a solution as well. Physically, this means that any number of such
waves can exist simultaneously without disturbing each other, there is no interaction
between them, the theory is a free field as claimed.
We remark that a mode expansion, that is, an expansion into fundamental solutions of

the differential operator, is fruitful in field theory much more generally. For example, the
quasinormal modes [22] framework allows to treat the behaviour of the electromagnetic
field (example 7) in finite size cavities. Also dissipation can be included by allowing for
complex energies k0, which effectively give rise to exponentially decaying solutions. In
QFT, this amounts to unstable particles, see [23].

Example 6: Interacting scalar fields, classical equations of motion.

ϕn theory from example 3 leads to the equation of motion(︁
∂µ∂µ +m2

)︁
ϕ(x) +

λ

(n− 1)!
ϕn−1(x) = 0.

Liouville theory from example 4 produces ∂µ∂µϕ(x) + λ exp (λ · ϕ(x)) = 0.
Both differential equations are non-linear in the field variable ϕ(x), a superposition

of two solutions is not a solution. Hence, they describe a field with self-interaction, not
a free field. One can obtain a perturbative solution in terms of iterated integrals by
recursively inserting the Green functions (eq. (1.23)) of the free field, see e.g. [24].

Example 7: Classical electrodynamics.

The electromagnetic field describes many familiar phenomena in physics, such as light,
heat radiation, radio waves, or the binding between atoms. Due to its high popularity,
we will occasionally use it as an example. Classical electrodynamics can be formulated in
terms of a scalar potential Φ(x) and a vector potential A(x). In the relativistic formula-
tion, the two are merged into the 4-component vector potential Aµ(x) := (Φ(x),A(x)).

11



1. Introduction to perturbative quantum field theory

The field strength tensor Fµν := ∂µAν − ∂νAµ is a 4 × 4-matrix, its entries are the
classical electric field E and magnetic field B:

Fµν =

⎛⎜⎜⎝
0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0

⎞⎟⎟⎠ .

Recall that we defined the speed of light to be c = 1, otherwise, the E-fields appear as
Ej

c in Fµν . The Lagrangian of electrodynamics is

L = −1

4
FµνF

µν .

Let ϵµνρσ be a completely antisymmetric tensor with ϵ1234 = 1. The Euler Lagrange
equations of motion (eq. (1.7)) arising from L are the vacuum Maxwell equations [25]

∂µF
µν = 0, ∂µϵ

µνρσFρσ = 0.

In terms of E and B, the first equation reads ∇ · E = 0,∇ × B − ∂tE = 0, and the
second equation is ∇ ·B = 0,∇×E+ ∂tB = 0.
The electromagnetic field interacts with fermions, most notable electrons. In classical

electrodynamics, they appear as point charges or continuous charge densities. For later,
it will be useful to introduce a fermionic field ψ(x) which carries a charge e ∈ R and a
mass m ∈ R+. This field is Dirac spinor [26], it is a vector in spinor space, operated on
by the Dirac matrices γµ, and ψ̄ := ψ†γ5 is the adjoint spinor. The Lagrangian of the
fermion field is

L = ψ̄ (iγµ∂µ −m)ψ.

The coupling between the electromagnetic and the fermionic field has a particular
structure, called gauge-covariant derivative, which will be motivated in example 127,

Dµ := ∂µ − ieAµ.

The Lagrangian of the electromagnetic field, coupled to the fermion field, is then

L = ψ̄ (iγµDµ −m)ψ − 1

4
FµνF

µν .

The equations of motion (eq. (1.7)) arising from this Lagrangian are the Dirac equation
for the fermion field, and the Maxwell equations for the electromagnetic field, where the
fermion density ψ̄ψ appears as a source term:

(iγµ∂µ −m)ψ(x) = 0

∂µϵ
µνρσFρσ = 0, ∂µF

µν = eψ̄ψ.

12



1.2. From classical field theory to perturbative QFT

For the construction of a quantum field theory, we need the Hamiltonian description of
classical field theory. To this end, we introduce the canonical conjugate momentum field,

π :=
∂ L

∂(∂0ϕ)
, (1.10)

where ∂0ϕ =: ϕ̇ is the time-derivative of ϕ. We assume that eq. (1.10) is invertible so that
we can express ϕ̇ as a function of π.

Definition 9. The Hamiltonian density is defined as the Legendre transform (to be
defined in def. 53) of the Lagrangian density,

H(x) := π(x)ϕ̇(π)− L
(︂
ϕ, ϕ̇(π)

)︂
.

The Hamiltonian density is a function of ϕ and π, there is no dependence on ϕ̇ any
longer.

Example 8: Free scalar field, Hamiltonian density.

The Hamiltonian density of a free field (example 1) reads

H(x) = 1

2
π2(x) +

1

2
(∇ϕ(x))2 + 1

2
m2ϕ2(x).

Definition 10. The Hamilton function, or Hamiltonian, is the spatial integral of the
Hamiltonian density def. 9,

H :=

∫︂
dD−1x H(x, t).

From eq. (1.7) and def. 10 one derives the Hamiltonian equations of motion,

ϕ̇(t,x) =
δH

δπ(t, x)
, π̇(t,x) = − δH

δϕ(t,x)
. (1.11)

Definition 11. The Poisson bracket of two functionals A[ϕ, π] and B[ϕ, π] is defined
as

{A,B} (t) :=
∫︂

dD−1x

(︃
δ A

δϕ(t,x)

δB

δπ(t,x)
− δB

δϕ(t,x)

δA

δπ(t,x)

)︃
.

By direct calculation, we find

{ϕ(t,x), π(t,y)} = δ(x− y) (1.12)

{ϕ(t,x), ϕ(t,y)} = 0 = {π(t,x), π(t,y)} .

The equations of motion eq. (1.11) can be expressed with Poisson brackets (def. 11) as

ϕ̇(t,x) = {ϕ(t,x), H} , π̇(t,x) = {π(t,x), H} . (1.13)
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1. Introduction to perturbative quantum field theory

1.2.2. Canonical quantization

Canonical quantization produces a quantum field theory out of a given classical field theory
in Hamilton formalism. Concretely, it amounts to two formal steps:

1. Promote the field variable ϕ(t,x) and the canonical momentum π(t,x) to operators on
a suitable Hilbert space of states.

2. Replace the Poisson brackets eq. (1.12) { , } by commutators −iℏ[ , ] between the
operators.

There are numerous justifications, constraints and technical details to this procedure both
from the physics and the mathematics side. While the first formulation in the 1920s [27–30]
was based on physical intuition, a contemporary approach called deformation quantization
[31–34] is more mathematically rigorous. The interested reader finds more modern perspec-
tives about quantization in [35–38], an amusing collection of “mathematical surprises” in
[39], and some examples of contradictions and open problems in [40–43].
A more sophisticated approach to canonical quantization is based on operators acting on

smooth test functions and avoids the notion of a “field at spacetime point x”. For Minkowski
spacetime, this gives rise to the Wightman axioms [44, 45], in Euclidean spacetime one has
the Osterwalder-Schrader axioms [46, 47]. For completeness, we state the Wightman axioms,
following [42], without introducing all technical terms.

Definition 12. A quantum field theory can be defined by the Wightman axioms:

1. All states of the system are vectors in a separable Hilbert space which is equipped
with a strongly continuous unitary representation of the Poincaré group P ↑

+. There
is a unique vacuum state |0⟩ which is invariant under Poincaré transformations
(def. 3).

2. The spectrum of the energy-momentum operator pµ lies in the closed forward light
cone, that is, pµp

µ ≥ 0.

3. For each Schwartz function f there are operators ϕ1(f), . . . , ϕn(f) (“quantum

fields”) and their adjoints ϕ†1(f), . . . , ϕ
†
n(f), defined on a dense subset D of the

Hilbert space containing the vacuum and stable under actions of the Poincaré
group.

4. The quantum fields transform covariantly under the Poincaré group.

5. If the support of f, g is spacelike separated then [ϕ(f), ϕ(g)] = 0.

The free scalar quantum field in infinitely large spacetime can be expanded in modes like
the classical free field (example 5),

ϕ(x) =

∫︂
dD−1 k

(2π)D−1

1

2ω(k)

(︂
a(k)e−ikx + a†(k)eikx

)︂
. (1.14)
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1.2. From classical field theory to perturbative QFT

We have introduced ω(k) :=
√︁
k2 +m2. The operator-valued coefficients a(k) and a†(k)

are called annihilation- and creation operators. Replacing the Poisson brackets eq. (1.12) by
commutators leads to the fundamental commutation relations[︂

a(k), a†(k′)
]︂
= (2π)D−12ω(k)ℏδ(k− k′), (1.15)[︁

a(k), a(k′)
]︁
= 0 =

[︂
a†(k), a†(k′)

]︂
.

The Hamilton function (def. 10) becomes the Hamiltonian operator of the free field theory,
which computes the energy of a state. Further, it governs time-evolution via the quantized
version of the Hamiltonian equation of motion (eq. (1.13)),

ϕ̇(t,x) = [ϕ(t,x), H(t)] . (1.16)

We are operating in the Heisenberg picture of quantum mechanics: The operators are time-
dependent, while the states are not. An explicit calculation of various commutators reveals
that the operator a†(k) increases the momentum of a state by k and the energy by ω(k),
this justifies the interpretation that a†(k) creates one non-interacting particle of momentum
k and mass m. The vacuum |0⟩ does not contain a particle which could be annihilated,

a(k)|0⟩ = 0, ⟨0|a†(k) = 0, ∀k. (1.17)

In general, it is possible to add a position-independent constant to the Lagrangian eq. (1.5)
and to the field eq. (1.14). Such constant amounts to a shift of the vacuum expectation value
of the field, which is, for example, relevant when the field is coupled to gravity. However, for
the QFTs considered in the present thesis, the absolute value of the field is not observable,
therefore we choose this constant to vanish. Equation (1.17) then implies

⟨0|ϕ(x)|0⟩ = 0. (1.18)

1.2.3. 2-point correlation functions

Following the general principle of the Copenhagen interpretation of quantum mechanics
[48], it is impossible to directly observe quantum fields. The only quantities accessible to
measurements are observables, given by hermitian operators.

The requirement in the Wightman axioms def. 12 that the subset spanned by quantum
fields be dense in the Hilbert space means that all states in it can be reasonably expressed
by products of quantum field operators ϕ(x), ϕ†(x). This entails that all observables are
expressible in terms of vacuum expectation values of products of fields. In practice, one can
circumvent the somewhat arcane notion of operator-valued distributions, and their precise
physical interpretation, by taking the correlation functions as primary objects. Alternatively,
instead of the Wightman axioms for the field operators, a quantum field theory can also be
defined by an equivalent set of axioms for its corresponding Wightman distributions in the
first place [42, 44].
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1. Introduction to perturbative quantum field theory

Definition 13. The Wightman distributions are the vacuum expectation values of a
product of n quantum fields, given by n Schwartz functions:

W̃
(n)

(f1, . . . , fn) := ⟨0|ϕ(f1) · · ·ϕ(fn)|0⟩.

Using the Fourier expansion eq. (1.14) and eq. (1.17), the 2-point distribution is

W̃
(2)

(f1, f2) =

∫︂
dDk

(2π)D
2πθ(p0)δ(k2 −m2)f̃

∗
1(k)f̃2(k). (1.19)

Here, f̃ j are the Fourier transforms of the Schwartz functions fj .
If one demands the Schwartz functions fj(x) to be localized arbitrarily closely around some

spacetime points xj , then the Wightman distributions (def. 13) become the local Wightman

functions W̃
(n)

(x1, . . . , xn). Colloquially, this limit is denoted by fj → δ(x− xj) in position

space, or f̃ j(p) → eikxj in momentum space. In doing so, one leaves the territory of well-

defined axiomatic QFT. The functions W̃
(n)

will generally have singularities, see section 1.2.8.
The “local” limit of the distribution in eq. (1.19) is obtained by replacing f̃ j(p)→ eipxj ,

W̃
(2)

(x1, x2) =

∫︂
dDk

(2π)D
2πθ(k0)δ(k2 −m2)e−ik(x1−x2) =

∫︂
dD−1k

(2π)D−1

eik(x1−x2)

2
√︁

k2 +m2
.

This function depends only on the difference x1−x2. Further, it is manifestly singular in the
case x1 = x2. The integrand θ(p

0)δ(p2−m2) =: δ+(p
2−m2) has a physical interpretation, it

ensures that only the positive-energy solution p0 = +
√︁

p2 +m2 ≡ +ω(p) contributes. One
uses the residue theorem (see fig. 1.1) to rewrite

W̃
(2)

(z) = 2πi

∫︂
dD−1k

(2π)D
−i

2ω(k)
eikz =

∫︂
dD−1k

(2π)D

∫︂
dp0 i

(k0 − ω(p))(k0 + ω(p))
e−ik

0z0eikz.

(1.20)

In this, we have to integrate k0 around the right pole of ((k0 − ω(p))(k0 + ω(p))−1 =
(k2 − m2)−1. The function is holomorphic everywhere else, the integration path can be
extended to include the full real axis, passing the poles on the right side, see fig. 1.1.

In eq. (1.20), it is still cumbersome to remember the different integration contours of
fig. 1.1. They can be enforced by introducing an infinitesimal ϵ > 0 and using

W̃
(2)

(z) = lim
ϵ→0

sgn(z0)

∫︂
d4k

(2π)4
i

k2 −m2 + sgn(z0)iϵ
e−ikz. (1.21)

In this case, no information about the integration contour of k0 needs to be provided, see
fig. 1.2: It extends along the real axis and it is closed either above or below, depending on
the sign of z0, such that e−ikz decays on the semi-circle for |ℑp0| → ∞. This setup is called
iϵ-prescription.
The Wightman functions have a straightforward relation to the field operators ϕ, but for

the computation of physical observables, the time-ordered correlation functions are more
relevant [49–52].
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1.2. From classical field theory to perturbative QFT

ℑk0

ℜk0

−ω(k) +ω(k)

Figure 1.1.: Integration contour for the Wightman propagator for z0 > 0 (red) and z0 < 0
(blue). In both cases, the integral runs along the real line in positive direction
→ and it encloses only the right pole.

ℑk0

ℜk0

−ω(k) + iϵ

+ω(k)− iϵ−ω(k)− iϵ

+ω(k) + iϵ

Figure 1.2.: Poles of eq. (1.21). For z0 > 0 (red), the integral needs to be closed on the
negative imaginary k0-plane to make e−ik

0z0 decay. In that case, only the right
pole (red) is enclosed. Analogously for z0 < 0 (blue), again only the right pole
is enclosed.

Definition 14. The (not necessarily connected, ) time-ordered n-point functions, or
Green functions, are the correlation functions of n field operators,

G̃
(n)

(x1, . . . , xn) := ⟨0|T (ϕ(x1) · · ·ϕ(xn)) |0⟩.

Here, the operator T switches the order of its arguments such that the factors are sorted
with respect to the time coordinate x0, where the largest time stands to the left. We

write G
(n)
F if ϕ is a free field, and G(n) for interacting fields.

Definition 15. The Feynman propagator is the time-ordered 2-point Green function
(def. 14) of a free field. By Lorentz covariance, it depends only on the difference of its
two arguments,

GF (x1 − x2) = GF (x1, x2) := G̃
(2)

(x1, x2)− G̃
(1)

(x1)G̃
(1)

(x2).
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1. Introduction to perturbative quantum field theory

We have included the subtraction of 1-point-functions for completeness, this qualifies GF as
the connected 2-point function (def. 20). Within our setup, this makes no difference because
the second summand vanishes thanks to eq. (1.18). The Feynman propagator (def. 15) is
related to the Wightman propagator (def. 13) by

GF (x1, x2) = GF (z) =

{︄
W (2)(z), z0 > 0

W (2)(−z), z0 < 0.
(1.22)

An inspection of eq. (1.21) shows that eq. (1.22) amounts to taking the right pole for z0 > 0
and the left one for z0 < 0 in fig. 1.2. That can be achieved by leaving out the factors sgn(z0)
in the iϵ-prescription eq. (1.21). The Feynman propagator is given by

GF (z) =

∫︂
dDk

(2π)D
i

k2 −m2 + iϵ
e−ikz. (1.23)

Again, it is automatic on which side to close the contour, as shown in fig. 1.3. This integral
is a Fourier transform, we read off the Feynman propagator in momentum space:

GF (p) =
i

p2 −m2 + iϵ
=

i

sp + iϵ
=:

i

sp
(1.24)

In the last equation, we used the offshell variable sp (def. 8). From now on, the summand
+iϵ is always implied, even if we do not write it explicitly.

ℑk0

ℜk0

−ω(k) + i0

+ω(k)− i0

Figure 1.3.: Integration path of the Feynman propagator (def. 15) in the complex k0-plane
for z0 > 0 (red) and z0 < 0 (blue).

From the momentum-space representation eq. (1.24), it follows that the Feynman propa-
gator is a Green function of the Klein-Gordon equation, that is, it fulfils(︁

∂µ∂
µ +m2

)︁
GF (z) = −iδ(z). (1.25)

This explains the name propagator : it describes how the field at z reacts to a point-
like “source” at 0. The poles in the propagator are the eigenvalues of the time-evolution
(eq. (1.16)), even if we were to set up a free quantum field on more exotic timelike hyper-
surfaces [53]. All other possible combinations of signs for iϵ in eqs. (1.21) and (1.24) amount
to solutions of eq. (1.25), which differ only in the boundary conditions.
Using the Fourier transforms given in eq. (1.2), we can solve the integral eq. (1.23) for the

massless Feynman propagator in position space, and obtain

GF (x) =
Γ
(︁
D
2

)︁
4π

D
2

i

(x2)
D
2
−1
. (1.26)
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1.2. From classical field theory to perturbative QFT

For the massive field, the Feynman propagator in position space is given by Bessel functions,
for example in four spacetime dimensions [54, p. 30]

GF (x) =
m

4π2

⎧⎪⎨⎪⎩
1√
x2

iπ
2 H

(1)
1

(︂
m
√︁
x2
)︂
, x2 > 0

1√
−x2

K1

(︂
m
√︁
−x2

)︂
, x2 < 0.

(1.27)

Both the massive and the massless propagator scale like (x2)−1 in the limit x2 → 0+. This
seemingly mundane statement has profound consequences for the theory of renormalization,
see section 2.3.1: For the high-energy behaviour of a quantum field theory, it is largely
irrelevant if the involved quanta are massive or not.

Finally, we want to mention a remarkable result from axiomatic QFT, underlining the
conceptual importance of particularly the 2-point functions:

Theorem 1 (Jost-Schroer-Federbush-Johnson-Pohlmeyer [55–57]). If the 2-point
Wightman distribution W (2) of a quantum field theory equals that of a free quantum
field theory with mass m ≥ 0, then the theory in question is a free theory of that mass.

1.2.4. n-point correlation functions of the free field

To compute the time-ordered correlation functions (def. 14) of (n > 2) factors of the free
quantum field, we split the field eq. (1.14) into positive and negative frequency solutions,
ϕ(x) = ϕ−(x) + ϕ+(x), where

ϕ−(x) :=

∫︂
d3p

(2π)3
1

2ω(p)
a†(p)eipx, ϕ+(x) :=

∫︂
d3p

(2π)3
1

2ω(p)
a(p)e−ipx.

Definition 16. A product of quantum field operators is normal ordered if all an-
nihilation operators appear to the right of all creation operators. It is denoted :
ϕ(x1) · · ·ϕ(xn) :.

By eq. (1.17), the vacuum expecation value of any normal ordered product vanishes. An
explicit calculation shows that

T
(︁
ϕ(x)ϕ(y)

)︁
= : ϕ(x)ϕ(y) : +

{︄
[ϕ+(x), ϕ−(y)], x0 > y0

[ϕ+(y), ϕ−(x)], x0 < y0.
= : ϕ(x)ϕ(y) : +ϕ(x)ϕ(y) (1.28)

We have defined the contraction ϕϕ as a shorthand for the conditional commutator expres-
sion. Taking the vacuum expectation value, the left hand side by def. 14 equals the Feyn-

man propagator, while the normal ordered product vanishes. Consequently ⟨0|ϕ(x)ϕ(y)|0⟩ =
GF (x, y). By induction, any time-ordered product can be expanded into a sum where each
term is a product of normal-ordered and pairwise contracted factors like in eq. (1.28).
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1. Introduction to perturbative quantum field theory

Theorem 2 (Wick [58]). For a free scalar quantum field ϕ, the time-ordered (def. 14)
and normal ordered (def. 16) products of fields fulfil

(1) T (ϕ(x1) · · ·ϕ(xn)) = : ϕ(x1) · ϕ(xn) : + sum of all contractions

(2) G̃
(n)
F = ⟨0|T (ϕ(x1) · · ·ϕ(xn)) |0⟩ =

{︄
sum of all complete contractions n even

0 n odd.

Here, a contraction is a product of Feynman propagators (def. 15) between pairs of
the spacetime points, where all remaining non-contracted field operators are normal
ordered. A complete contraction is a product where all factors are contracted and no
normal ordered factor prevails.

There is an obvious graphical notation for Wick’s theorem: Any single contraction ϕ(x1)ϕ(x2)
involves precisely two distinct points in spacetime, hence, it can be drawn as a line joining
the points x1 and x2. Wick’s theorem then states that the n-point function will be the sum
of all ways of joining the n distinct points pairwise with edges.

Example 9: Free scalar field, Four-point function.

Let ϕ(xj) =: ϕj , then

T (ϕ1ϕ2ϕ3ϕ4) =: ϕ1ϕ2ϕ3ϕ4 : + : ϕ1ϕ2 : ϕ3ϕ4 + 5 similar terms

+ ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4,

G̃
(n)
F = ⟨0|T (ϕ1ϕ2ϕ3ϕ4) |0⟩

= GF (x1, x2)GF (x3, x4) +GF (x1, x3)GF (x2, x4) +GF (x1, x4)GF (x2, x3).

Denoting the spacetime points as points in a plane, the 4-point function of the free field
has the following graphical representation:

G̃
(4)
F = ⟨0|T (ϕ1ϕ2ϕ3ϕ4) |0⟩ =

x1

x2

x3

x4

+

x1

x2

x3

x4

+

x1

x2

x3

x4

Clearly, the n-point functions vanish for odd n: There is no way to connect an odd
number of points into pairs.

We often encounter symmetric sums over all permutations of certain terms, therefore we
introduce a shorthand notation:

Definition 17. Let f(x1, . . . , xn) be a function of n ∈ N arguments. The expression
⟨k⟩f(x1, x2, . . . , xn) denotes the sum over all k ∈ N different permutations of arguments
in the function f(x1, . . . , xn).
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1.2. From classical field theory to perturbative QFT

Example 10: Permutations of four-point amplitude.

The four-point amplitude from example 9 is the sum over three permutations (def. 17),

G̃
(4)
F (x1, x2, x3, x4) = ⟨3⟩GF (x1, x2)GF (x3, x4).

In this notation, we assumed the known symmetry GF (x1, x2) = GF (x2, x1) of the
Feynman propagator eq. (1.23).

The derivation of Wick’s theorem made use of operator identities in QFT, but there is an
entirely different perspective, concerning multivariate normal distributions [17]:

Theorem 3 (Isserlis [59]). Let x1, . . . , xn be independent normal distributed with zero
mean, E(xj) = 0 ∀j. Let P be the set of all partitions of {1, . . . , n} into pairs, then

E (x1 · · ·xn) =
∑︂
p∈P

∏︂
{j,k}∈p

E (xjxk) .

A normal distribution is the ground state wave function of a quantum-mechanical harmonic
oscillator. In this sense, a free quantum field can be thought of as an infinite collection of
uncoupled harmonic oscillators.

We remark that, instead of using G̃
(n)

(def. 14), one can formulate perturbative QFT
in terms of W (n) (def. 13) [60]. This was originally proposed by Schwinger [61–63], but it
involves rather intransparent nested commutators. Feynman’s and Dyson’s formulation en-

tirely in terms of G̃
(n)

, see e.g. [64], avoids this problem. Still, an analysis of the relationship

between G̃
(n)

and W (n) is fruitful even if one is eventually only interested in G̃
(n)

, because

it reveals certain analytic properties of G̃
(n)

, compare section 1.2.8.

1.2.5. The S-matrix

For an interacting theory, it is useful to introduce the notion of scattering processes. A
scattering process amounts to a transition of the system from some asymptotic state Ψ1 at
the infinite past to some new asymptotic state Ψ2 at the infinite future, where we assume
that interactions take place only in the intermediate process but not in the asymptotic states.
Effectively, the asymptotic states are assumed to be states of a free field, which is sometimes
called adiabatic hypothesis, see e.g. [65]. We do especially require that the asymptotic states
are physically valid states of the system. That includes that the momenta of all particles are
onshell (def. 8) and all symmetries of the system are satisfied.
The existence of asymptotic free states faces considerable mathematical obstacles known as

Haag’s theorem [42, 66]. For example, theorem 1 prevents any state of an interacting theory
to truly propagate like a free field, because a theory with the propagator of a free field is a
free theory altogether. These problems however have been circumvented by a more careful
construction, known as Haag-Ruelle theory [67–69], which sharply distinguishes between
states themselves being equal, and expectation values of certain operators being equal.
Moreover, the naive relationship between states of an interacting and a free quantum field

theory also rises concerns from a philosophical perspective [70]: In an interacting theory, the
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1. Introduction to perturbative quantum field theory

state generated by the field operators ϕ(x1)ϕ(x2)|0⟩ will in general not have twice the energy
of a single particle ϕ(x)|0⟩, therefore it is strictly no longer obvious in what sense this state
is to be interpreted as “two quanta”. We will however resort to the assumption that the
asymptotic states resemble free quanta “close enough”, especially, to be indistinguishable by
real-world experiments, which can never measure the complete 2-point function or the exact
energy of a state.

Definition 18. The S-matrix is the operator that takes the asymptotic initial state
to the asymptotic final state,

Ψ2 =: SΨ1.

The S-matrix becomes an actual (infinitely large) matrix [71] as soon as we define a basis
for the space of asymptotic states. Each state contains a countable number of particles. For
a fixed number n of particles, one can take any basis of the corresponding n-particle Hilbert
space Hn, for example the states with well-defined onshell (def. 8) momenta. They can be
written in terms of field operators in momentum space,

|0⟩, |ϕ(k1)⟩, |ϕ(k1)ϕ(k2)⟩, . . . where skj = 0 ∀j.

The space of asymptotic states is the direct sum
⨁︁∞

n=0Hn of the n-particle Hilbert spaces,
or equivalently the symmetric tensor algebra of H1, this is a Fock space [72]. The S-matrix
elements in momentum space are then given by expectation values of the form

⟨ϕ(k1) · · ·ϕ(kn)|S|ϕ(kn+1) · · ·ϕ(km)⟩ where skj = 0 ∀j. (1.29)

Similarly, matrix elements can be defined in position space. The LSZ-formula makes the link
between the S-matrix (which is observed in scattering experiments) and the time-ordered
Green functions.

Theorem 4 (Lehmann-Symanzik-Zimmermann formula [52]). The S-matrix element
for a 2→ 2-scattering between particles with 4-momenta p

i
and masses mi is given by

⟨ϕ(p
1
)ϕ(p

2
)|S|ϕ(p

3
)ϕ(p

4
)⟩ ∝

∫︂
· · ·
∫︂

dDx1 · · · dDx4

[︄
ei(p1x1+p

2
x2−p3x3−p4x4)

(︄
4∏︂
i=1

(︂
∂µ,i∂

µ
,i +m2

i

)︂)︄
G̃

(4)
(x1, x2, x3, x4)

]︄
.

Here, ∂µ,i is short for ∂
∂xµi

and G̃
(4)

is the time-ordered Green function (def. 14) of the

interacting field.

The prefactor is essentially a normalization factor for the wave functions. We will see in
section 2.3.4 that this factor needs to be fixed by experiment. The LSZ-formula (theorem 4)
can be generalized for more than four external particles by including additional terms for
the new arguments xj .
Note that the only difference between incoming and outgoing particles is their sign in

the exponential. If we flip all 4-momenta of outgoing particles (p
1
, p

2
) → (−p

1
,−p

2
), then
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1.2. From classical field theory to perturbative QFT

the formula becomes completely symmetric with respect to incoming and outgoing particles.
From now on, we will count all external momenta of scattering processes as pointing towards
the interaction.
The S-matrix elements eq. (1.29) are onshell by definition, whereas the time-ordered corre-

lation functions G(4)(x1, x2, x3, x4) are not restricted. Their relationship in the LSZ-formula
(theorem 4) becomes more clear if one considers the Green functions in momentum space:

G(4)(p
1
, p

2
, p

3
, p

4
) :=

∫︂
· · ·
∫︂

dDx1 · · · dDx4 e
−i(p

1
x1+p

2
x2+p

3
x3+p

4
x4)G(4)(x1, x2, x3, x4).

Theorem 5 (LSZ formula in momentum space). The S-matrix elements in momentum
space are given, up to prefactors, by the amputated time-ordered Green functions def. 14
in momentum space, where amputated means that the 2-point function of external par-
ticles, including its quantum corrections, is to be left out.

⟨ϕ(p
1
)ϕ(p

2
)|S|ϕ(p

3
)ϕ(p

4
)⟩ ∝

(︄
4∏︂
i=1

(︂
p2
i
−m2

i

)︂)︄
G(4)

(︂
p

1
, p

2
, p

3
, p

4

)︂
.

The S-matrix elements computed by the LSZ theorem are not yet the total scattering cross
sections observed in real-world experiments, but only scattering amplitudes. To obtain cross-
sections, one first needs to square the amplitudes, and secondly, integrate over phase space,
which is the space of all possible, but unobservable, configurations of the system. These
can be angles or energies outside the range of the detector, unobserved types of particles, or
integrals over energy-bins of a detector with limited resolution. The phase space integration
is outside the scope of this work, even if it is closely related to the Feynman integrals in
theorem 6 via loop-tree duality [73–78].

1.2.6. Perturbative computation of the S-matrix

The Lagrangian of an interacting field, eq. (1.5), gives rise to a Hamiltonian density (def. 9)

H =
1

2
π2(x) +

1

2
(∇ϕ(x))2 + 1

2
m2ϕ2(x)⏞ ⏟⏟ ⏞

=:H0

+
∞∑︂
n=3

λn
n!
ϕn(t,x)⏞ ⏟⏟ ⏞

=:HI

. (1.30)

Here, we have separated the Hamiltonian H0 of the free field (example 8). Spatial integration
leads to the Hamiltonian (def. 10)

H(t) = H0(t) +

∞∑︂
n=3

∫︂
dD−1x

λn
n!
ϕn(t,x) =: H0(t) +HI(t). (1.31)

The sum of interaction terms constitutes the interacting Hamiltonian HI . With this def-
inition, we can formally separate the evolution of free fields, governed by H0, from the
interaction HI which we will treat perturbatively. As remarked below eq. (1.16), the free
fields ϕ(x) constructed via canonical quantization are in the Heisenberg picture of quantum
mechanics, they are time-dependent operators acting on time-independent state vectors.
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1. Introduction to perturbative quantum field theory

For interacting fields, we use the free field operators as basis vectors, governed again by
the Heisenberg equation 1.16, where H0 replaces H. Due to the presence of HI in eq. (1.31),
the state vectors, i.e. the coefficients of the expansion in free fields, are now time-dependent
as well. Their time evolution is given by an unitary time evolution operator

|Ψ(t)⟩ = U(t, t0)|Ψ(t0)⟩. (1.32)

Concretely, the time evolution operator is given by the formal time-ordered exponential of
the interaction Hamiltonian, called Dyson Series [64],

U(t, t0) = T

(︃
exp

(︃
−i
∫︂ t

t0

dτ HI(τ)

)︃)︃
. (1.33)

Here, “formal” means that the exponential generates a series expansion and we make no
claim about convergence, see section 2.1.1. To concretely compute U(t, t0), one expands the
exponential and obtains a series of integrals over time-ordered products of the interacting
Hamiltonian,

U(t, t0) = 1+
∞∑︂
k=1

(−i)k

k!

∫︂
· · ·
∫︂ t

t0

dτ1 · · · dτk T (HI(τ1) · · ·HI(τk)) .

The Hamiltonian eq. (1.31) is itself a spatial integral over the Hamiltonian density eq. (1.30),
which in turn consists of powers of the field operators, hence

U(t, t0) = 1+
∞∑︂
k=1

(−i)k

k!

∫︂
· · ·
∫︂ t

t0

dτ1 · · · dτk
∫︂
· · ·
∫︂ ∞

−∞
dx1 · · · dxk ·

· T

⎛⎝(︄ ∞∑︂
n1=3

λn1

n1!
ϕn1(τ1,x1)

)︄
· · ·

⎛⎝ ∞∑︂
nk=3

λnk

nk!
ϕnk(τk,xk)

⎞⎠⎞⎠ .

The adiabatic hypothesis asserts that in the limit t → ∞, t0 → −∞, the states approach
the states of a free field, and are hence time-independent. In this limit, the time evolution
operator becomes the S-matrix,

S = lim
t→∞

lim
t0→−∞

U(t, t0). (1.34)

Simultaneously, the combined integrals now run over all Mikowsky space for each of the
spacetime points. Exchanging summation and time-ordering, we identify time-ordered n-

point Green functions (def. 14) G̃
(n)
F of a free field,

S = 1+

∞∑︂
k=1

(−i)k

k!

∞∑︂
n1=3

λn1

n1!
· · ·

∞∑︂
nk=3

λnk

nk!

∫︂
· · ·
∫︂

dx1 · · · dxk · (1.35)

· G̃(n1+...+nk)
F

(︁
x1, . . . x1⏞ ⏟⏟ ⏞
n1 times

, . . . , xk, . . . , xk⏞ ⏟⏟ ⏞
n1 times

)︁
. (1.36)

One is interested in the time evolution from one concrete state to another one. Owing to
the adiabatic hypothesis, these “external” states are free field states, hence generated by
products of ϕ(x) operators. They can be included in the above derivation to obtain a series
for arbitrary S-matrix elements (def. 18) in position space. One needs to divide by the
vacuum S-matrix eq. (1.35) in order to normalise the result.
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1.2. From classical field theory to perturbative QFT

Theorem 6. For S-matrix (def. 18) elements in position space, the Dyson series takes

the following form, where G
(n)
F are the n-point time ordered Green functions of a free

field (def. 14), given by theorem 2.

⟨ϕ(z1) · · ·ϕ(zj)|S|ϕ(y1
) · · ·ϕ(y

i
)⟩ = 1

S

∞∑︂
k=1

(−i)k

k!

∞∑︂
n1=3

λn1

n1!
· · ·

∞∑︂
nk=3

λnk

nk!∫︂
· · ·
∫︂

dx1 · · · dxk ·G
(j+n1+...+nk+i)
F

(︁
z1, . . . , zj , x1, . . . x1⏞ ⏟⏟ ⏞

nk times

, . . . , xk, . . . , xk⏞ ⏟⏟ ⏞
n1 times

, y
1
, . . . , y

i

)︁
.

Here, we have assumed that the initial and final states are not identical, so that the
summand 1 in the numerator vanishes. The integrals appearing in theorem 6 are called
Feynman integrals.
It appears at first that by the Dyson series (theorem 6), even the amplitudes of interacting

QFT are reduced to free 2-point functions just as for the free field in Wick’s theorem 2. But
note two striking differences:

1. Wick’s theorem involves only finitely many summands, whereas the Dyson series re-
quires us to add up infinitely many terms.

2. In Wick’s theorem, all we have to do is multiply known functions. For the Dyson series,
we have to integrate such products. Compare also section 5.2.3.

1.2.7. The Path integral

Instead of canonical quantization as outlined in section 1.2.2, one can also use the path
integral formalism [49, 51, 79, 80]. Here, the fundamental object is the path integral, which
is a formal integral over all possible field configurations Dϕ, weighted with an imaginary
Boltzmann factor of their respective classical action (def. 7):

Z[J ] :=

∫︂
Dϕ eiS[ϕ]+i

∫︁
dDx J(x)ϕ(x). (1.37)

We have introduced a source field J(x) such that the functional derivative of Z[J ] with
respect to J(x) produces factors ϕ(x) in the path integral. Equivalently, eq. (1.37) can be
interpreted as an infinite dimensional Fourier transform of the functional eiS[ϕ] [81, Sec. 3.4].

The path integral is very much analogous to statistical mechanics. A Wick rotation to
Euclidean spacetime eliminates the imaginary units and one recovers a partition function
of a 4-dimensional statistical system [82, 83]. Just like in statistical physics, the vacuum
expectation value of products of fields, that is, the correlation functions (def. 13), can be
computed by including the corresponding terms into the integral and normalizing the result:

⟨0|T (ϕ(x1) · · ·ϕ(xn)) |0⟩ =

∫︁
Dϕ ϕ(x1) · · ·ϕ(xn)eiS[ϕ]+i

∫︁
dDxJ(x)ϕ(x)

⃓⃓⃓
J(x)≡0∫︁

Dϕ eiS[ϕ]+i
∫︁

dDxJ(x)ϕ(x)
⃓⃓⃓
J(x)≡0

(1.38)

=
(−i)n

Z[0]

δ

δJ(x1)
· · · δ

δJ(xn)
Z[J ]

⃓⃓⃓
J(x)≡0

.
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1. Introduction to perturbative quantum field theory

In the sense of eq. (1.38), Z[J ] is a generating functional of the time-ordered Green func-
tions. The path integral framework does not have any notion of operator-valued distributions
and therefore circumvents many of their conceptual problems (section 1.2.2). Also, it comes
with a physical interpretation along the lines of “quantum field theory means summing over
all possible fields, weighting them with their classical action”. However, this view is decep-
tive: The path integral is a mathematically highly non-trivial object which can, in relevant
cases, not be computed in any conventional sense. Also, the path integral is dominated
entirely by non-continuous “trajectories” [84, 85], which have little in common with the
classical “path of a particle”.
The free part, analogous to eq. (1.30), of the path integral eq. (1.38) is a Gaussian integral

which can be solved analytically. A series expansion in the coupling constants λn of the
remaining interaction Lagrangian then leads to the same Feynman integrals and Feynman
graphs as does canonical quantization in theorem 6. One even recovers the iϵ-prescription
(eq. (1.21)) for the propagator from the path integral [86].
Conversely, knowing Feynman integrals as series coefficients, one can define the path

integral as their formal generating functional, irrespective of convergence issues:

∞∑︂
n=0

1

n!
in⟨T (ϕ(x1) · · ·ϕ(xn))⟩J(x1) · · · J(xn) =: Z[J ]. (1.39)

In this sense, the path integral or the canonical quantization procedure are equivalent, and
either one produces Feynman integrals (theorem 6) as a perturbation series. In section 1.3.11,
we will motivate Dyson-Schwinger equations from perturbation theory, they can also be
derived from the path integral (e.g. [24]), or one takes Dyson-Schwinger equations as primary
objects and derives from them the perturbation series.
The pragmatic view in the present thesis will therefore be that Feynman integrals are the

correct series coefficients of the S-matrix, irrespective of the mathematical truth of their
derivation. This is in the spirit of ’t Hooft and Veltman 1973 [86]:

Whatever approach is used, the result is always that the S-matrix is expressed
in terms of a certain set of Feynman diagrams. [...] The situation must be
reversed: Diagrams form the basis from which everything must be derived. [...]
Using diagrams as a starting point seems [...] to be a capitulation in the struggle
to go beyond perturbation theory. It is unthinkable to accept as a final goal a
perturbation theory, and it is not our purpose to forward such a notion. On
the contrary, it becomes more and more clear that perturbation theory is a very
useful device to discover equations and properties that may hold true even if the
perturbation expansion fails.

As for the last sentence, much progress has been reached in the last 50 years in the framework
of resurgence, which we comment on in section 2.1.2.
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1.2. From classical field theory to perturbative QFT

1.2.8. Digression: History and alternative ways to compute the S-matrix

We have seen in theorem 6 that we can compute the S-matrix as an infinite series of Feynman
integrals. Following this approach naively, however, has shortcomings. Amongst them

1. The whole derivation was based on quantum field operators, whose physical significance
is not completely clear, see section 1.2.2.

2. Feynman graphs are often divergent. This is for most of the physically relevant cases
solved by renormalization (section 2.2).

3. The individual integrals are hard to solve and the number of Feynman integrals grows
rapidly with rising order in the Dyson series (see section 6.2), or with rising number
of external particles. The resulting functions are highly non-trivial.

4. The perturbation series diverges even if individual integrals are finite. It appears
unclear what information it carries about the true, non-perturbative solution. This is
to some extent solved by resurgence (section 2.1.2).

As an illustration for the third problem, take the anomalous magnetic momentum in QED,
which, after decades of effort, is now computed perturbatively to 4th (!) order [87] as

g

µB
= 1 + 0.5

(︂α
π

)︂
− 0.3285

(︂α
π

)︂2
+ 1.181

(︂α
π

)︂3
− 1.912

(︂α
π

)︂4
+ . . . .

The numerical coefficients are known to thousands of digits. At order 4, individual Feynman
integrals take values in the 100s or 1000s. All these large numbers almost completely cancel,
leaving the result −1.912. See also [88].

One possibility to, at least partially, overcome the computational problem 3. is the massive
use of numerical calculations. Firstly, one can resort to numerical quadrature of Feynman
integrals, compare for example section 6.2. Secondly, the framework of lattice QFT [89, 90]
aims at an ab-initio simulation of quantum fields in a small, discretized region of Euclidean
spacetime, where QFT essentially becomes statistical physics [83, 91].
An alternative approach to computing S-matrix element goes broadly by the name of (con-

structive/axiomatic) S-matrix theory. It consists of several different, closely related methods
with the aim of establishing as many general properties as possible which a sensible S-matrix
must fulfil. Trivial examples are Lorentz covariance and macroscopic conservation laws for
charges and momentum. Another line of thought is the intuition that a scattering process
of many particles with local interactions should decompose into “elementary” clusters in a
consistent manner [92]. A more sophisticated examination concerns the analytic structure
of scattering amplitudes. Being not based on QFT, analogous statements for the S-matrix
exist, for example, in classical optics, where they relate scattering amplitudes to the optical
resonances of a system [22, 93, 94].
The goal of constructive S-matrix theory is to establish sufficiently many conditions such

that the whole S-matrix is fixed by them. In the early days of quantum field theory, the
main motivation was to circumvent the technical and conceptual difficulties of canonical
quantization outlined above. In the best case, constructive S-matrix theory would be able to
replace quantum field theory altogether and produce all observables without any reference
to an unobservable “microscopic” theory. This is in the spirit of Heisenberg’s dictum [29]
from 1920s quantum mechanics:
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1. Introduction to perturbative quantum field theory

Die anschauliche Deutung der Quantenmechanik ist bisher noch voll innerer
Widersprüche, die sich im Kampf der Meinungen um Diskontinuumus- und Kon-
tinuumstheorie, Korpuskeln und Wellen auswirken. Schon daraus möchte man
schließen, daß eine Deutung der Quantenmechanik mit den gewohnten kinema-
tischen und mechanischen Begriffen jedenfalls nicht möglich ist. Die Quanten-
mechanik war ja gerade aus dem Versuchen entstanden, mit jenen gewohnten
kinematischen Begriffen zu brechen und an ihre Stelle Beziehnungen zwischen
konreten experimentell gegebenen Zahlen zu setzen.

Heisenberg himself doubled down on this perspective in his introduction of the S-matrix [71],
and it eventually lead to an understanding of renormalization (section 2.2). Interestingly,
the same principle was also the crucial ingredient for the second revolution in 20th-century
physics, Einstein’s general relativity [95]

Eine Antwort auf diese Frage [das Mach’sche Paradox] kann nur dann als erken-
ntnistheoretisch befriedigend anerkannt werden, wenn die als Grund angegebene
Sache eine beobachtbare Erfahrungstatsache ist; denn das Kausalitätsgesetz hat
nur dann den Sinn einer Aussage über die Erfahrungswelt, wenn als Ursachen
und Wirkungen letzten Endes nur beobachtbare Tatsachen auftreten.

In the 1960s, the technical problems 1. and 2. were largely sorted out for quantum
electrodynamics, leading to Feynman integral calculations becoming a widely used tool in
quantum field theory. In hindsight, Weinberg remarks about this period [96]

One problem with the S-matrix program was in formulating what is meant by
the analyticity of the S-matrix. What precisely are the analytic properties of
a multi-particle S-matrix element? I don’t think anyone ever knew. I certainly
didn’t know [. . . ]. By the mid-1960’s it was clear that S-matrix theory had
failed in dealing with the one problem it had tried hardest to solve, that of
pion–pion scattering.

By theorem 6, Feynman integrals are supposed to be summands of the S-matrix element
and therefore they naturally inherit many of its analytic properties. Consequently, the
approaches of axiomatic-constructive S-matrix theory and perturbative quantum field theory
heavily informed each other. Notable outcomes of this interplay are, amongst others, the
Källen-Lehmann representation of the 2-point function [97, 98], the Landau equations [99],
Cutkosky’s theorem [100–103], and a classification of particles and their propagators in terms
of the Lorentz group [104–108]. The correspondence between Wightman functions (def. 13)
and time-ordered Green functions (def. 14) noted in sections 1.2.3 and 1.2.4 gives rise to the
Steinman relations [109, 110] for the latter. Expressing the Feynman propagator in terms
of Wightman propagators is the starting point for the cutting formula [23, Sec 2]
The success of such analytic considerations in perturbation theory has been unbroken.

Still today, extended and refined versions are routinely used in the computation of Feynman
integrals, see for example [111–114]. The reader interested in historic anecdotes will also
like [115]. Another aspect is to use analytic properties in order to restrict the class of
functions appearing as solutions of certain Feynman integrals, and specify their properties
and relations, e.g. [116–121]. These methods nowadays primarily attack the third problem
above, the difficulty to solve individual Feynman integrals. They add to the vast amount of
identities and methods to simplify Feynman integrals, for example [122–126].
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1.2. From classical field theory to perturbative QFT

Another modern branch of analytic methods goes by the label on-shell methods. It has
proven especially valuable for amplitudes with complicated Lorentz structure. These are no-
tably QCD amplitudes with many external particles, see for example [127–134], and theories
with higher spin [135–138].
But even after decades of successful perturbative QFT, the second original motivation

for S-matrix theory is still relevant, namely the computation of scattering amplitudes when
the microscopic theory is not understood. This applies to quantum gravity, which so far
resisted every attempt to be described by a convincing quantum field theory, see section 5.2.1.
Still, it is possible to deduce many features of the graviton-scattering S-matrix from general
considerations without knowing the microscopic theory, e.g. [117, 139–146]. Conversely,
there are dozens of hypothetical microscopic explanations for quantum gravity, ranging from
string theory [147–149] over causal dynamic triangulation [150, 151] to causal fermionic
systems [152]. For these approaches, S-matrix theory can be a guideline and criterion to
check their predictions for plausibility.

Summary of section 1.2.

1. One can construct quantum field theory “by analogy” (section 1.2.2) to classical
field theory (section 1.2.1).

2. We have discussed in detail the 2-point functions of a free quantum field (sec-
tion 1.2.3) and how they determine all n-point functions via Wick’s theorem (2).

3. All information about an interacting quantum field theory is encoded in its S-
matrix (section 1.2.5), which can be computed perturbatively with the Dyson
series (theorem 6) in terms of Feynman integrals.

4. The path integral provides another way to define a QFT, leading to the same
Feynman integrals as a perturbative solution (section 1.2.7).

5. A brute-force computation of Feynman integrals is inefficient, and there are nu-
merous advanced tricks for improvement. Moreover, there are approaches to QFT
which do not involve Feynman integrals at all (section 1.2.8).
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1. Introduction to perturbative quantum field theory

1.3. Feynman graphs

In this section, we discuss several properties of the Feynman graphs which appear as a
graphical notation of the perturbative solution to a QFT.

1.3.1. Graphical representation of Feynman integrals

The correlation functions of the interacting theory are, by the Dyson series theorem 6,
expressed in terms of Feynman integrals over products of propagators (def. 15). These
integrals inherit the graphical notation of Wick’s theorem, introduced in section 1.2.4, we
obtain Feynman graphs [50].
From theorem 6 we learn that these graphs can involve vertices of valence k if and only if

the Lagrangian (eq. (1.5)) contains an interaction term −λk
k! ϕ

k. To compute the interacting

G(n), we need to sum over all possible graphs which have exactly n external 1-valent vertices,
but arbitrarily many internal ones. The vacuum S-matrix (eq. (1.35)) amounts to the sum
over all graphs without external vertices. Dividing through S in theorem 6 entails that
we can leave out all graphs which are disconnected from all of the external points of G(n).
Eventually, the Dyson series (theorem 6) takes the form

G̃
(n)

(x1, . . . , xn) =
∑︂

Γ∈Γ̃
(n)

sym(Γ) · F [Γ](x1, . . . , xn). (1.40)

Here, Γ̃
(n)

is the set of all graphs with n external vertices corresponding to the points
x1, . . . , zn. We have absorbed all combinatorial prefactors into the symmetry factor sym(Γ)
which is discussed in section 1.3.8. All integrals and coupling constants are absorbed into

the Feynman rules F(Γ), to be discussed in section 1.3.5. The graphs in Γ̄
(n)

have at most
n components.
In the Feynman integral, two spacetime points x, y are joined by a propagator GF (x, y) if

and only if there is an edge between the two vertices representing x and y in the corresponding
Feynman graph. Conversely, if a graph Γ has two connected (def. 22) components Γ = γ1∪γ2,
that is two subgraphs which are not connected to each other, then the corresponding variables
in the Feynman integral are independent.

Γ = γ1 ∪ γ2, γ1 ∩ γ2 = ∅ ⇒ F [Γ] = F [γ1] · F [γ2]. (1.41)

Definition 19. The connected combinatorial Green function Γ̄
(n)

is the set of all con-
nected (def. 22) Feynman graphs with n external edges, including their symmetry factor
(theorem 13) and powers of coupling constants.

Definition 20. The connected analytic Green function Ḡ
(n)

is the restriction of the

analytic Green function eq. (1.40) to only connected graphs (def. 19), namely Ḡ
(n)

=∑︁
Γ∈Γ̄

(n) F(Γ).
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1.3. Feynman graphs

Equivalently, the connected Green function Ḡ
(n)

arises from the non-connected Green

functions G̃
(n)

(def. 14) by subtraction of all products of smaller valence,

Ḡ
(1)

(x) = G̃
(1)

(x), Ḡ
(2)

(x1, x2) = G̃
(2)

(x1, x2)− G̃
(1)

(x1)G̃
(1)

(x2)

Ḡ
(3)

(x1, x2, x3) = G̃
(3)

(x1, x2, x3)− ⟨3⟩ · G̃
(2)
G̃

(1) − G̃(1)
(x1)G̃

(1)
(x2)G̃

(1)
(x3), . . . .

Here, ⟨3⟩ denotes permutations (def. 17). In terms of generating functionals, the relationship
between Ḡ and G̃ is that of exponentiation or logarithm. If Z[J ] is the generating series
of all Green functions (eq. (1.39)), then the connected Green functions are generated by
lnZ[J ] =: W [J ] [83, 153]. Finally, we generally exclude all graphs which contain self-loops,
or tadpoles (def. 29). A more detailed account of this decision will be given in section 5.1.4.

Example 11: ϕ3 theory, connected Feynman graphs.

Consider the connected 2-point graphs (def. 19) of ϕ3 theory (example 3). There is a
single graph without loops, namely an edge. Next there is one 1-loop graph, the 1-loop
multiedge. At two loops, there are already four graphs. In this example, we write the
coupling constants as explicit prefactors, they can alternatively be included into the
definition of the graphs.

Γ̄
(2)

= + λ2
3

1
2

+λ4
3

(︄
1
4 + 1

2 + 1
2

)︄
+ . . .

There are infinitely many more graphs contributing to Γ̄
(2)

. Similarly, Γ̄
(3)

starts with

Γ̄
(3)

= λ3 + λ3
3

(︄
+ ⟨3⟩ 1

2

)︄

+λ5
3 ⟨3⟩

(︄
1
2 + 1

2 +

)︄
+ λ5

3
1
2 + . . .

The factor ⟨3⟩ means that these graphs can be oriented in 3 different ways (def. 17).
The very last graph is symmetric under exchange of the three external edges and does
not obtain a factor ⟨3⟩. Altogether, there are 15 different connected graphs contributing
up to loop number 2.
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1. Introduction to perturbative quantum field theory

1.3.2. Basic definitions

Definition 21. An un-amputated Feynman graph Γ is a graph given by disjoint vertex
sets (VΓ, VΓ,ext) and edge sets (EΓ, EΓ,ext) where

1. VΓ are called internal vertices of Γ. The valence (def. 23) of them is at least 3.

2. VΓ,ext are called external vertices of Γ. They have valence 1.

3. EΓ are the internal edges of Γ. An edge e ∈ EΓ is an ordered pair e = {v1, v2}
where both vj ∈ VΓ.

4. EΓ,ext are the external edges of Γ. An edge e ∈ EΓ,ext is an ordered pair e = {v1, v2}
where v1 ∈ VΓ and v2 ∈ VΓ,ext.

5. Every edge comes with amass 0 ≤ me ∈ R and a power νe ∈ R and a 4-momentum
ke. Unless otherwise specified, we will assume that νe = 1.

This definition allows for multigraphs, that is, graphs with multiple parallel edges between
the same two vertices. Also, the two end-vertices of an internal edge can be the same vertex,
which is called tadpole in physics and loop in mathematics (not to be confused with loop in
the physical nomenclature, def. 28). Further, def. 21 is a directed graph which is not strictly
necessary for a scalar theory since the scalar Feynman propagator eq. (1.23) is symmetric
with respect to exchanged arguments. However, we will use the direction of edges to fix the
direction of the edge-momentum ke.
Moreover, a Feynman graph according to def. 21 need not be connected.

Definition 22. A graph is connected if for any two vertices, there is a path of edges to
go from the first vertex to the second one. A connected component γ ⊂ Γ is a connected
graph γ that is not connected to the remainder Γ \ γ.

Definition 23. The valence (=degree) of a vertex is the number of edges incident to
it. A graph is j-regular if and only if all its vertices have valence j.

Thanks to the LSZ formula (theorem 5), we will mostly be working with amputated graphs.

Definition 24. An (amputated) Feynman graph Γ, derived from a non-amputated
Feynman graph Γ′ (def. 21), is a graph given by disjoint vertex sets, VΓ = VΓ,int ∪ VΓ,ext

and an edge set EΓ where

1. VΓ,ext are called external vertices of Γ. They have valence at least 2. These are
the vertices v ∈ VΓ′ that used to be connected to external edges of Γ′. Especially,
VΓ,ext ⊆ VΓ′ and VΓ,ext ⊈ VΓ′,ext.

2. VΓ,int are called internal vertices of Γ. Their valence is at least 3. In Γ′, they were
not adjacent to any external edge.

32



1.3. Feynman graphs

3. The edges EΓ = EΓ′ are the internal edges of Γ′.

4. To every edge e ∈ EΓ we assign a mass 0 ≤ me ∈ R and a power νe ∈ R and a
4-momentum ke. Unless otherwise specified, we will assume that νe = 1.

The information about which vertices are external and internal is not trivial, it can in general
not be reconstructed from (a drawing of) the graph Γ alone without knowing the underlying
Γ′. If we know that Γ′ is j-regular (def. 23) then those vertices v ∈ Γ with valence lower
than j are exactly the ones where, in Γ′, external edges used to be attached.

Definition 25. A subgraph γ ⊆ Γ of a Feynman graph Γ (def. 24) is a Feynman graph
such that Eγ ⊆ EΓ and γ contains all the vertices adjacent to any edges e ∈ Eγ . That is,
γ may contain disconnected (def. 22) vertices, but no edges without their end vertices.

Definition 26. The residue res(Γ) of an unamputated Feynman graph Γ (def. 21) is
the product of its external edges, res(Γ) =

∏︁
e∈EΓ,ext

e. Especially, the residue of a single
vertex is the product of edges adjacent to it.

The physical interpretation of Feynman graphs is that each edge represents a field variable.
In that case, the residue is a monomial in the field variables.

Definition 27. Let γ ⊂ Γ be a proper subgraph (def. 25) of a Feynman graph Γ. The
contracted graph Γ

γ is the graph Γ, but every connected component of γ is replaced by
its residue, that is, by a single vertex.

Example 12: Dunce’s cap.

Traditionally, one chooses as an example the following Feynman graph, known as the
dunce’s cap:

Γ′ :=

v4

v5

v6

v7

v1

v2

v3

e5

e6

e7

e8

e1

e2
e3 e4 Γ :=

v1

v2

v3

e1

e2
e3 e4

Here Γ′ is the graph including external vertices and external edges (def. 21), while in Γ,
the external edges have been amputated (def. 24), following theorem 5.
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1. Introduction to perturbative quantum field theory

For Γ′, the internal vertices are VΓ′ = {v1, v2, v3} while the external vertices are
VΓ′,ext = {v4, v5, v6, v7}. Likewise, the internal edges are EΓ′ = {e1, e2, e3, e4} and the
external edges are EΓ′,ext = {e5, e6, e7, e8}. This graph is 4-regular (def. 23), and it
is connected (def. 22). The external edges are directed inwards by convention, the
orientation of inner edges is fixed arbitrarily. Each edge represents the propagation
of the same type of field ϕ, hence the residue (def. 26) of the unamputated graph is
res(Γ′) = |VΓ′,ext| = ϕ4.

In the amputated graph Γ, all three vertices are external vertices, VΓ,ext = {v1, v2, v3}
since all of them used to be connected to an external edge prior to amputation. The
residue of Γ is not well-defined, unless one specifies the valence of the external vertices.
If we provide the information that the un-amputated graph is 4-regular (def. 26), then
one can infer the amputated external edges and that res(Γ) = ϕ4.

Definition 28. The loops LΓ of a Feynman graph Γ (def. 24) are a basis of the graph’s
cycle space, that is, a choice of linearly independent closed paths. For a given graph
Γ, this choice need not be unique. The loop number |LΓ| is the dimension of the cycle
space, it is unique for a fixed Γ. In mathematical terminology, |LΓ| = b1(Γ) is the first
Betti number.

Definition 29. A tadpole is a Feynman graph γ that has one external edge. More
generally, a tadpole γ ⊂ Γ is a graph γ that is connected to the remainder Γ \ γ by only
a single vertex.

Theorem 7 (Euler’s formula [154]). For a connected (def. 22) graph Γ, the number of
edges |EΓ|, vertices |VΓ| and loops |LΓ| are related by

|EΓ| − |VΓ|+ 1 = |LΓ| .

It is sometimes useful to rephrase Euler’s formula in terms of the number of external edges
|EΓ,ext| and the number of j-valent vertices, nj .

∞∑︂
j=3

(j − 2)nj = |EΓ,ext| − 2 + 2 |LΓ| . (1.42)

Especially, if Γ is n-regular (def. 23) then nn = |VΓ| and nj ̸=n = 0 and

(n− 2) |VΓ| = |EΓ,ext| − 2 + 2 |LΓ| , |EΓ,int| =
|EΓ,ext − n|
n− 2

+
n

n− 2
|LΓ| . (1.43)
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Example 13: Dunce’s cap, loops.

A possible choice of loops (def. 28) for the dunce’s cap (example 12) is

LΓ′ = {{e1, e2,−e4} , {e3, e4}} .

We have used different signs to account for the direction of edges along the loop. The
dunce’s cap has loop number (def. 28) |L′

Γ| = 2. Euler’s formula (theorem 7) is fulfilled:
8− 7 + 1 = 2. Since Γ′ is 4-regular, eq. (1.43) holds: (4− 2) · 3 = 6 = 4− 2 + 2 · 2.
The amputated graph Γ has the same set of loops and therefore still has loop number
|LΓ| = 2. Despite the missing edges, it still satisfies theorem 7: 4− 3 + 1 = 2 .

1.3.3. Graph matrices

In order to handle larger graphs algorithmically, it is useful to express them not as a set of
edges and vertices as in def. 24, but rather in terms of matrices, which encode these elements.

Definition 30. The incidence matrix IΓ of a Feynman graph Γ (def. 24) is a |EΓ|×|VΓ|
matrix whose entries correspond to edges {v1, v2} = e ∈ EΓ and vertices v ∈ VΓ,

(IΓ)e,v :=

⎧⎪⎨⎪⎩
1 v = v1

−1 v = v2

0 else.

Definition 31. The undirected adjacency matrix AΓ of a Feynman graph Γ (def. 24)
is a |VΓ| × |VΓ| matrix where the entry (AΓ)i,j is the number of edges – regardless of
direction – between vertices vi and vj .

The transposed incidence matrix ITΓ defines a map EΓ → VΓ whose kernel is the cycle space
(def. 28). Hence, by solving ITΓ e⃗ = 0⃗ for linearly independent vectors e⃗, we obtain a possible
choice of loops, see example 14.

Definition 32. The undirected degree matrix DΓ of a Feynman graph Γ (def. 24) is a
|VΓ|×|VΓ|matrix where the entry (DΓ)i,i is the valence (def. 23) of vi, and (DΓ)i,j ̸=i = 0.

Lemma 8 (e.g. [155]). Let IΓ be the incidence matrix (def. 30), AΓ the adjacency
matrix (def. 31) and DΓ the degree matrix (def. 32) of a graph Γ (def. 24). The following
two expressions coincide, and they define the |VΓ| × |VΓ| Laplace matrix MΓ:

MΓ := ITΓ IΓ = DΓ −AΓ.
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1. Introduction to perturbative quantum field theory

There are straightforward generalizations of defs. 31 and 32 for directed multigraphs: For
the adjacency matrix, let (AΓ)i,j be the number of edges directed from i to j. A tadpole
(def. 29) at vi corresponds 1 to (AΓ)i,i. For the degree matrix, let (DΓ)i,i be the number
of directed edges entering vi. For our applications, due to the use of scalar fields, it will be
sufficient to consider undirected matrices.

Example 14: Dunce’s cap, graph matrices.

Consider the dunce’s cap from example 12. The incidence matrix of Γ′ is

IΓ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0
1 0 −1 0 0 0 0
0 −1 1 0 0 0 0
0 1 −1 0 0 0 0
1 0 0 −1 0 0 0
1 0 0 0 −1 0 0
0 1 0 0 0 −1 0
0 0 1 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We note that the 4 external edges result in a 4 × 4 block identity matrix −14×4 ⊂ IΓ.
The incidence matrix of the amputated graph is the remainder after removing said block,

IΓ =

⎛⎜⎜⎝
−1 1 0
1 0 −1
0 −1 1
0 1 −1

⎞⎟⎟⎠ .

From this matrix, one obtains the loops (def. 28) with the simple calculation

ITΓ e⃗ = 0⃗ ⇒ e⃗ = (a, a, b, b− a) , a, b ∈ R.

Choosing, for example, a = 1 and b = 0, we have e⃗ = (1, 1, 0,−1), which amounts to the
loop {e1, e2,−e4}. The choice a = 0 and b = 1 yields the loop {e3, e4}. This reproduces
the loops from example 13. Note how the result respects the direction of edges in the
loop.
The undirected adjacency matrix and degree matrix of Γ are

AΓ =

⎛⎝0 1 1
1 0 2
1 2 0

⎞⎠ , DΓ =

⎛⎝2 0 0
0 3 0
0 0 3

⎞⎠ .

The two matrices in lemma 8 coincide and give rise to the Laplace matrix

MΓ =

⎛⎝ 2 −1 −1
−1 3 −2
−1 −2 3

⎞⎠ .

36



1.3. Feynman graphs

For comparison, the directed Laplace matrix (with directions as indicated in exam-
ple 12) is

MΓ =

⎛⎝ 1 0 −1
−1 1 −1
0 −1 2

⎞⎠ .

Definition 33.

1. A tree is a connected Feynman graph (def. 24) with zero loops (def. 28). Those
trees which contribute to a given amplitude are called treelevel graphs.

2. A j-forest is a disjoint set of exactly j trees, that is, a Feynman graph with exactly
j connected components and zero loops.

For a tree T , Euler’s formula (theorem 7) specializes to

|VT | = |ET |+ 1. (1.44)

Lemma 9 (Cayley’s formula, [156–158]).

There are |VT ||VT |−2 labelled trees with distinguishable (=labelled) vertices.

Definition 34. Let Γ be a connected Feynman graph (def. 24).

1. A spanning tree of Γ is a connected subgraph T ⊆ Γ (def. 25) such that T is a tree

and VT = VΓ, VT,ext = VΓ,ext. By T
(1)
Γ we denote the set of all spanning trees of Γ.

2. A spanning j-forest of a Feynman graph Γ is a subgraph F ⊆ Γ (def. 25) such that

F is a forest with exactly j components, and VF = VΓ, VF,ext = VΓ,ext. By T
(j)
Γ we

denote the set of all spanning j-forests of Γ.

Since our definition of Feynman graph (def. 24) is a directed graph, its spanning trees will
be directed as well. Under the name directed acyclic graphs, directed trees are prominently
used in blockchain technology [159].

Theorem 10 (Matrix tree theorem, Kirchhoff’s theorem [156, 157, 160] ). Let MΓ be
the Laplace matrix (def. 35) and let MΓ(i, j) be MΓ where the row i and the column j
are deleted. Then, (−1)i+j detMΓ(i, j) is the number of spanning trees in Γ, irrespective
of the choice of (i, j).

If, instead, MΓ is the directed Laplace matrix, then detMΓ(i, i) is the number of
directed spanning trees in Γ, originating from vi.

There are numerous generalizations and alternative proofs of matrix tree theorems [161].
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1. Introduction to perturbative quantum field theory

Example 15: Dunce’s cap, trees.

For the dunce’s cap example 12, we have

MΓ(3, 3) =

(︃
2 −1
−1 3

)︃
, detMΓ(3, 3) = 5,

indicating by theorem 10 that Γ has 5 different spanning trees. Explicitly, they are

TΓ = {{e1, e2} , {e1, e3} , {e1, e4} , {e2, e3} , {e2, e4}} .

The cofactors of the directed Laplacian matrix (example 14) are

MΓ′(1, 1) =

(︃
1 −1
−1 2

)︃
, MΓ′(2, 2) =

(︃
1 −1
0 2

)︃
, MΓ′(3, 3) =

(︃
1 0
−1 1

)︃
.

Consequently, there are (1, 2, 1) oriented spanning trees starting at vertices (v1, v2, v3),

({e2, e3} , {{e1, e2} , {e1, e4} , {e1, e3}}) .

v1

v2

v3

e1

e2

e3 e4

v1

v2

v3

e1

e2

e3 e4

v1

v2

v3

e1

e2

e3 e4

v1

v2

v3

e1

e2

e3 e4

The spanning j-forests (def. 34) of the dunce’s cap are

T
(2)
Γ = {{{e1} , {v3}} , {{e2} , {v2}} , {{e3} , {v1}} , {{e4} , {v1}}}

T
(3)
Γ = {{{v1} , {v2} , {v3}}} , T

(j≥4)
Γ = ∅.

1.3.4. Graph polynomials

It is possible to obtain even more information than the mere number of spanning trees
from theorem 10. To this end, assign a formal variable ae to each edge e ∈ EΓ. Instead
of re-defining all the above matrices (defs. 30 to 32), we directly give the Laplace matrix.

Definition 35. Let Γ be a Feynman graph (def. 24). The (labelled) Laplace matrix MΓ

is a |VΓ| × |VΓ|-matrix with entries

(MΓ)i,j :=
∑︂
e

ae, where e joins vi with vj and i ̸= j,

(MΓ)i,i := −
∑︂
e

ae, where e is incident to vi.
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1.3. Feynman graphs

Theorem 11 (Labelled Kirchhoff’s theorem). Let Γ be a connected graph. Let MΓ

be the labelled Laplace matrix (def. 35) and MΓ(i, j) the same matrix with row i and
column j deleted. Then, for every choice (i, j),

(−1)i+j detMΓ(i, j) =: ψ̃Γ ({ae})

is the same polynomial in the edge variables {ae} called Kirchhoff polynomial. Every
monomial in ψ̃Γ corresponds to a spanning tree (def. 34) of Γ,

ψ̃Γ ({ae}) =
∑︂

T∈T (1)
Γ

∏︂
e∈T

ae.

Definition 36. Let Γ be a connected Feynman graph with amputated external edges.
The first Symanzik polynomial ψΓ is defined to be the dual Kirchhoff polynomial (the-
orem 11),

ψΓ ({ae}) := ψ̃Γ

(︃{︃
1

ae

}︃)︃
·
∏︂
e∈EΓ

ae =
∑︂

T∈T (1)
Γ

∏︂
e/∈T

ae.

Intuitively, the polynomial is identical no matter which row and column (i, j) are deleted
because each edge ends in two vertices. Therefore, knowing all but one vertices allows to
reconstruct the missing information. If, however, a larger subset of the rows and columns
is deleted, one obtains a different polynomial. These are the Dodgson polynomials, they are
useful for a study of subgraphs of Feynman graphs, for example in [162, 163].

Example 16: Dunce’s cap, first Symanzik polynomial.

For the dunce’s cap (example 12) one finds the labelled Laplace matrix (def. 35)

MΓ =

⎛⎝−a1 − a2 a1 a2

a1 −a1 − a3 − a4 a3 + a4

a2 a3 + a4 −a2 − a3 − a4

⎞⎠ .

The Kirchhoff polynomial is

ψ̃Γ = detMΓ(1, 1) = (a1 + a3 + a4)(a2 + a3 + a4)− (a3 + a4)(a3 + a4)

= a1a2 + a1a3 + a1a4 + a2a3 + a2a4.

The monomials exactly correspond to the spanning trees stated in example 15. Con-
versely, the first Symanzik polynomial (def. 36) is

ψΓ = a3a4 + a2a4 + a2a3 + a1a4 + a1a3.
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1. Introduction to perturbative quantum field theory

In quantum field theory, there is a 4-momentum ke associated to each edge. Take a spanning

2-forest F = {T1, T2} ∈ T (2)
Γ (def. 34). It divides the graph Γ into exactly two connected

components. We consider the edges of Γ which lead from one component to the other,

CF := {e ∈ EΓ|e = {v1, v2} , v1 ∈ Ti, v2 ∈ Tj ̸=i} .

Note that in general CF ̸= Γ \ {T1 ∪ T2}. Now let

Q(F ) :=
∑︂
e∈CF

k̄e, (1.45)

where k̄e = ke if the edge e is directed from T1 to T2, and ke
¯ = −ke if e is directed from T2 to

T1. Hence, Q(F ) is the total momentum flowing from the first component T1 of the spanning
forest F into the second component T2. Due to momentum conservation in Feynman graphs,
Q(F ) is at the same time the total external momentum entering T1, or leaving T2.

Definition 37. Let Γ be a connected amputated Feynman graph (def. 24). Let Q(F )
be defined as in eq. (1.45). The second Symanzik polynomial is given by

ϕΓ := −
∑︂

F∈T (2)
Γ

Q(F )2
∏︂
e/∈F

ae + ψΓ

∑︂
e∈EΓ

m2
eae.

For more details and alternative definitions of the Symanzik polynomials, refer to [164].

Lemma 12.

1. The first Symanzik polynomial (def. 36) is homogeneous of degree |LΓ| (def. 28)
in the variables {ae} and no ae appears with higher than first power.

2. The second Symanzik polynomial (def. 37) is homogeneous of degree |LΓ| + 1 in
{ae}.

3. The second Symanzik polynomial is homogeneous of degree two in masses and
momenta.

Proof. By eq. (1.44), a spanning tree contains exactly |VΓ| − 1 edges. Using theorem 7, the number
of edges not in the spanning tree is |EΓ| − |VΓ| + 1 = |LΓ|, the number of edges not in a spanning
2-forest is |LΓ|+ 1. The remaining points follow from the definitions.
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1.3. Feynman graphs

Example 17: Dunce’s cap, second Symanzik polynomial.

We define the external momenta of the dunce’s cap as follows:

Γ =
v1

v2

v3

p
1

p
2

p
3

p
4

e1

e2
e3 e4

The total external momentum is zero, p
1
+ p

2
+ p

3
+ p

4
= 0, this allows to express any

sum of three momenta by the fourth one. The spanning 2-forests of the dunce’s cap are
listed in example 15, the first Symanzik polynomial has been computed in example 16.
The second Symanzik polynomial (def. 37) is

ϕΓ = −p2
4
a2a3a4 − p2

3
a1a3a4 − (p

1
+ p

2
)2a1a2a4 − (p

1
+ p

2
)2a1a2a3

+ (a3a4 + a2a4 + a2a3 + a1a4 + a1a3)
(︁
m2

1a1 +m2
2a2 +m2

3a3 +m2
4a4

)︁
.

Example 18: Multiedges, Symanzik polynomials.

The l-loop multiedge graph consists of l + 1 parallel edges.

M (l) :=

e1

e2

...

el+1

Each edge is a spanning tree and there is exactly one spanning 2-forest, hence M (l) has
the following Symanzik polynomials (defs. 36 and 37):

ψM(l) =

l+1∑︂
e=1

1

ae

l+1∏︂
n=1

an, ϕM(l) = −p2
l+1∏︂
e=1

ae + ψM(l)

l+1∑︂
e=1

m2
eae.

Especially

ψM(1) = a1 + a2, ϕM(1) = −p2a1a2 + (a1 + a2)(m
2
1a1 +m2

2a2).
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1. Introduction to perturbative quantum field theory

1.3.5. Feynman rules in position space

Definition 38. We will use the term Feynman rules with two closely related, but not
quite identical, meanings:

1. The Feynman rules of a theory are a set of vertices, edges, and rules how to connect
them to build Feynman graphs of that theory.

2. The Feynman rules F in a closer sense are a map that takes a Feynman graph and
returns the corresponding Feynman amplitude, given by the Feynman integral.

We have already established point 1 in section 1.3.1. The second point, how exactly to
compute the amplitude F(Γ) from a given graph Γ, follows from theorems 2 and 6. In the
spirit of sections 1.2.2 and 1.2.8, we take the resulting algorithm as a definition, rather than a
theorem, in order to skip a technical discussion about the precise relation between quantum
fields and Feynman amplitudes.

Example 19: ϕ3 theory, Feynman rules in position space.

Consider ϕ3 theory with the Lagrangian from example 3 and m = 0. By section 1.3.1,
it gives rise to Feynman graphs which contain (a single type of) edges, and 3-valent
vertices. The Feynman rules of these graphical building blocks are

F
[︁ ]︁

=
Γ
(︁
D
2

)︁
4π

D
2

1

(x2)
D
2
−1
, F

[︂ ]︂
= −iλ3.

The Feynman rules of a graph without internal vertices are the product of the Feynman
rules of its component. If the graph Γ contains internal vertices, then F [Γ] is an integral.

Definition 39. Let Γ = (VΓ,int, VΓ,ext, EΓ) be a Feynman graph (def. 24). The
corresponding Feynman amplitude in position space F [Γ] is obtained by the following
steps:

1. Identify each internal vertex vi with a spacetime point xi.

2. Identify each external vertex with a spacetime point y
i
of an external particle.

3. For each internal edge e = {x1, x2}, write one Feynman propagator (eqs. (1.26)
and (1.27))

(︁
G(2)(x2 − x1,m)

)︁νe
, where me is the mass of the particle and νe the

propagator power, νe = 1 unless otherwise mentioned.

4. Write one integral
∫︁
dDxi for each of the internal spacetime points xi.

5. For each internal k-valent vertex, multiply the amplitude by a factor −iλk.

The Feynman amplitude F(Γ) resulting from def. 39 is a nD-fold integral, where D is the
dimension of spacetime and n the number of internal vertices. The amplitude is a function
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1.3. Feynman graphs

of the positions y
i
of external particles, and of the mass(es) of particles. Conceptually, it

has the following form:

F [Γ]
(︂
{y

i
}, {mi}

)︂
=
∏︂
v∈VΓ

(−iλ|v|) ·
∫︂
· · ·
∫︂

dDx1 · · · dDxn
∏︂
e∈EΓ

(︁
GF (xe1 , xe2 ,me)

)︁νe .
(1.46)

Here, the points
{︁
xe1 , xe2

}︁
of the edges can be either internal points xi or external points yi

of the underlying Feynman graph.

Example 20: Multiedges, Feynman amplitude in position space.

The amputated (def. 24) l-loop multiedge is the following Feynman graph, consisting of
l + 1 parallel edges between two external points y

1
, y

2
:

M (l) := y
1

y
2

e1

e2

...

el+1

By Lorentz invariance, the function F [M (l)] can not depend on the two individual po-
sitions, but only on the magnitude of the difference y := y

2
− y

1
. We assume that all

masses are equal and all propagator powers are νe = 1 and that there is one external
edge at each vertex. The two vertices then each have valence l + 2. The graph has no
internal vertices, therefore the Feynman rules in position space (def. 39) do not involve
any integration.

F
[︁
M (l)

]︁
(y2) = (−iλl+2)

2
l+1∏︂
e=1

GF (y,m) = −λ2
l+2

(︁
GF (y,m)

)︁l+1
.

1.3.6. Feynman rules in momentum space

The series expansion of Green functions in terms of Feynman graphs in momentum space is
exactly the same as in position space, eq. (1.40). But one needs the Feynman amplitudes as
functions of momenta of external particles, F [Γ](p

1
, . . .).

The Feynman propagator has a simple representation in momentum space (eq. (1.24)),
therefore it is often convenient to formulate the Feynman rules directly in momentum space.
Consider a Feynman graph with P external points and |VΓ| internal vertices and |EΓ| inter-
nal edges. By Lorentz invariance, it depends on P − 1 of the external positions. Moreover,
it involves |VΓ| integrals over the internal vertices. Perform a Fourier transform of the P

external positions, this introduces P integrals
∫︁
dDy

j
. . . e

iy
j
p
j . Now replace each Feyn-

man propagator GF (z) with the Fourier transform eq. (1.23). This introduces another |EΓ|
integrations

∫︁
dDq

j
. . . e

−iy
j
zj .
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1. Introduction to perturbative quantum field theory

In the resulting expression, the only dependence on internal points xi is via exponentials

of the form e
ixi(qi+qj+...)

. Hence, all integrals over internal points can be done explicitly,
resulting in |VΓ| delta functions δ(q

i
+ q

j
+ . . .), which enforce conservation of momentum

at every internal vertex. One of these delta functions can be rewritten to express overall
momentum conservation between all external momenta. The remaining delta functions allow
to eliminate |VΓ| − 1 of the integrations

∫︁
dDq

j
over edge momenta. What remains are

|EΓ|−|VΓ|+1 integrations over undetermined edge momenta. By Euler’s formula theorem 7,
this is exactly the loop number |LΓ| (def. 28) of Γ. The freedom to choose an arbitrary linearly
independent set of cycles as the loops in def. 28 corresponds to the freedom of choosing a
set of internal momenta as integration variables. By convention, the overall delta function
of a Feynman amplitude in momentum space is not written explicitly.

Example 21: ϕ3 theory, Feynman rules in momentum space.

In momentum space, the Feynman rules of ϕ3 theory (example 3) are

F
[︁ ]︁

=
i

p2 −m2
, F

[︂ ]︂
= −iλ3.

The Feynman rules of a treelevel graph (def. 33) are the product of the Feynman rules of
its components, but as soon as the graph Γ contains loops (def. 28), F [Γ] is an integral.

Example 22: Quantum electrodynamics.

Quantum electrodynamics (QED)is the quantized version of classical electrodynamics
(example 7). It is defined by the Lagrangian

L = ψ̄ (iγµ (∂µ − ieAµ)−m)ψ − 1

4
FµνF

µν .

The two involved fields correspond to two different types of particles. The particles
represented by the field Aµ are massless photons, they carry spin 1 (that is, Aµ behaves
like an ordinary vector under Lorentz transformations). In Feynman diagrams, they
are represented by a wavy line . Since Aµ carries one Lorentz index, the Feynman
propagator is a tensor with two indices, representing the two fields in ⟨Aµ(0)Aν(x)⟩. The
precise Feynman rule for the propagator depends on the chosen gauge (see example 127),
parametrized by a constant ξ ∈ R,

F
[︂ ]︂

=
i

p2

(︃
ηµν + ξ

p
ν
p
µ

p2

)︃
.

The fermion ψ has spin 1
2 and is represented by an arrow in Feynman graphs. Its

propagator is a tensor in spinor space, but a scalar with respect to Lorentz indices,

F
[︂ ]︂

=
i

γµp
µ
−m

=
i

p2 −m2

(︂
γµp

µ
+m

)︂
.

Observe that this propagator scales as
⃓⃓
p
⃓⃓−1

, and not
⃓⃓
p
⃓⃓−2

.
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QED contains only a single type of interaction, given by the term ieAµψ̄ψ in the
Lagrangian. In Feynman graphs, it is represented as a 3-valent vertex with Feynman
rule

F
[︂ ]︂

= ieγµ.

The index of γµ amounts to the Lorentz index of the incoming photon line.

Definition 40. Let Γ be a Feynman graph and
{︂
p
i

}︂
a set of external momenta,

pointing towards the graph. The Feynman amplitude in momentum space is obtained
by the following procedure:

1. Assign to each internal edge e a 4-momentum ke.

2. For all momenta {q
i
} flowing into a vertex, enforce momentum conservation 0 =∑︁

i qi. This will reduce the total number of independent internal momenta ki to
|LΓ|.

3. For each internal edge e, write a momentum-space Feynman propagator eq. (1.24)
with massme, propagator power νe and momentum ke corresponding to that edge.

4. Integrate over the |LΓ| independent internal momenta,
∫︁
·· ·
∫︁ dDk1

(2π)D
· · ·

dDk|LΓ|
(2π)D

.

5. For each internal n-valent vertex, multiply the integral by one factor λn.

In general, |VΓ| ̸= |EΓ|. This means that the number of D-dimensional integrations in
position space (def. 39) is different from the number in momentum space (def. 40). Compare
section 5.2.3 for a particularly striking example. The treelevel (def. 33) Feynman graphs are
the solution of the corresponding classical field theory. Loops represent quantum corrections.
Observe that, therefore, in momentum space the quantum corrections are given by loop
integrals, whereas the classical solution involves no integral. This is different from position
space, there, even the treelevel graphs are integrals over internal spacetime points.
Including propagator powers νe, the Feynman integral in momentum space has the form

F [Γ] =
∏︂
v∈VΓ

(−iλ|v|) ·

⎛⎝∏︂
l∈LΓ

∫︂
dDkl
(2π)D

⎞⎠ ∏︂
e∈EΓ

(GF (ke))
νe , (1.47)

where the momenta {ke} and {kl} are related via momentum conservation at each vertex.

45



1. Introduction to perturbative quantum field theory

Example 23: Multiedges, Feynman amplitude in momentum space.

Consider the l-loop multiedge graph from example 20. In momentum space, assign an
external momentum p to the external vertices:

M (l) :=

e1

e2

...

el+1

p −p

By Lorentz invariance F
[︁
M (l)

]︁
is a function of the scale s := p2 of the external momen-

tum. The Feynman integral in momentum space reads

− λ2
l+2

(︄
l∏︂

e=1

∫︂
dDke
(2π)D

)︄
il+1(︁

k2
1 −m2

1

)︁ν1 · · · (k2
l −m2

l )
νl

(︂(︁
p− . . .− kl

)︁2 −m2
l+1

)︂νl+1
.

This is an (l ·D)-fold integral, while F(M (l))(y) in position space (example 20) is merely
a product. Instead of solving the momentum-space integral, the result can conveniently
be found by Fourier-transform of the position-space expression [165].

1.3.7. Feynman rules in parametric space

Integration in parametric space is described in [166]. We will only review the principles
relevant for the present thesis, loosely following the exposition in [167].
The goal of parametric space is to eliminate all integrals over D-vectors and instead

rewrite the Feynman rules as integrals over one scalar Schwinger parameter for each edge.
The first step is the integral representation of the Gamma function, def. 5. With a change
of integration variable, one obtains

1

(p2 −m2)ν
=

1

Γ(ν)

∞∫︂
0

da aν−1e−a(p2−m2). (1.48)

This identity is sometimes called Schwinger trick, the variable a is the Schwinger parameter.
We construct the scalar momentum-space version of parametric Feynman integrals. An
analogous construction can be done based on position space Feynman rules (def. 39). For
them, one uses the Gaussian integral eq. (1.3) to obtain GF (z) as a parametric integral [168,
eq (1.10)] analogous to eq. (1.48). Moreover, a generalization to gauge theories is possible
using the corolla polynomial [169–171].

Starting from the Feynman rules in momentum space (def. 40), we introduce one Schwinger
Parameter ae for each edge. The Feynman integral eq. (1.47) then becomes

F [Γ] = i|EΓ|
∏︂
v∈VΓ

(−iλ|v|)
∏︂
l∈LΓ

∫︂
dDkl
(2π)D

∏︂
e∈EΓ

∞∫︂
0

dae a
νe−1
e

Γ(νe)
exp

⎛⎝−∑︂
e∈EΓ

ae
(︁
k2
e −m2

e

)︁⎞⎠ .
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We recall that the momenta ke are related to each other via the delta functions at the vertices.
Solving these relations amounts to a linear transformation of integration variables. It turns
out that the general solution can be expressed in terms of the Symanzik polynomials. After
this transformation, the momentum-integrals are independently Gaussian and can therefore
be performed analytically:

F [Γ] = i|EΓ|

(4π)|LΓ|D2

∏︂
v∈VΓ

(−iλ|v|)
∏︂
e∈EΓ

∞∫︂
0

dae a
νe−1
e

Γ(νe)

exp
(︂
−ϕΓ
ψΓ

)︂
ψ

D
2

Γ

. (1.49)

Here, ψΓ({ae}) is the first (def. 36) and ϕΓ({ae}) the second Symanzik polynomial (def. 37).
Rescaling all Schwinger parameters ae → t · ae and using lemma 12, the integration over
the magnitude t results in yet another another Gamma function. It is useful to combine
propagator powers, spacetime dimension and loop number into a single expression ωΓ.

Definition 41. For an amputated Feynman graph Γ (def. 24), the superficial degree of
convergence is defined as

ωΓ :=
∑︂
e∈EΓ

νe − |LΓ|
D

2
.

The Feynman amplitude in parametric space now has the following form:

F [Γ] = i|EΓ|

(4π)|LΓ|D2

∏︂
v∈VΓ

(−iλ|v|)Γ(ωΓ)
∏︂
e∈EΓ

∞∫︂
0

dae a
νe−1
e

Γ(νe)
δ

⎛⎝1−
|EΓ|∑︂
e=1

ae

⎞⎠ ψωΓ−D
2

ϕωΓ
Γ

. (1.50)

Example 24: Massless 1-loop multiedge.

We know the graph polynomials of multiedge graphs from example 18. For the massless
1-loop case, the resulting Feynman integral eq. (1.49) is the integral representation of
Euler’s beta function (e.g. [172]). Let s := p2 be the external momentum squared. Then

F
[︁
M (1)

]︁
(s) =

(−iλ3)
2i2

(4π)
D
2 Γ(ν1)Γ(ν2)

∞∫︂
0

da1

∞∫︂
0

da2 a
ν1−1
1 aν2−1

2

exp
(︂
− a1a2s
a1+a2

)︂
(a1 + a2)

D
2

=
λ2

3

(4π)
D
2

Γ
(︁
ν1 + ν2 − D

2

)︁
Γ(ν1)Γ(ν2)

1

sν1+ν2−D
2

Γ
(︁
D
2 − ν1

)︁
Γ
(︁
D
2 − ν2

)︁
Γ (D − ν1 − ν2)

.

This result is widely known. One of the earlier articles showing a derivation is [173].
The superficial degree of convergence (def. 41) is ω = ν1− ν2− D

2 , the prefactor is Γ(ω)
as expected from eq. (1.50). As a remark, amplitudes of multiedges for non-scalar fields,
or with propagator powers in the numerator, can be found in [122, 124, 174–177].
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Example 25: Massless l-loop multiedges.

We found in example 24 that the Feynman amplitude of the massless 1-loop multiedge
itself has the form of a massless propagator 1

(k2)νe
, but with the propagator power

νe := ν1 + ν2 − D
2 . This means that we can insert the amputated 1-loop multiedge into

another 1-loop multiedge and obtain an expression for the 2-loop multiedge without any
explicit integration. Keeping track of the various prefactors, the result is

F
[︁
M (2)

]︁
(s) =

−λ2
4i

3

(4π)2
D
2

Γ
(︁
ν1 + ν2 + ν3 − 2D2

)︁
Γ(ν1)Γ(ν2)Γ(ν3)

1

sν1+ν2+ν3−2D
2

·
Γ
(︁
D
2 − ν1

)︁
Γ
(︁
D
2 − ν2

)︁
Γ
(︁
D
2 − ν3

)︁
Γ
(︁
3D2 − ν1 − ν2 − ν3

)︁ .

By induction, one confirms a formula for arbitrary loop number l. To this end, define
ν :=

∑︁
e νe. The superficial degree of convergence (def. 41) is ω = ν − lD2 .

F
[︁
M (l)

]︁
(s) =

−λ2
l+2i

l+1

(4π)l
D
2

Γ(ω)∏︁
e Γ(νe)

1

sω

∏︁
e Γ
(︁
D
2 − νe

)︁
Γ
(︁
(l + 1)D2 − ν

)︁ .
Again, the result includes the expected factor Γ(ω).

Unfortunately, the massless multiedges from example 25, and the massless triangles where
one external momentum vanishes, are essentially the only infinite class of 4-dimensional
Feynman integrals that can be solved explicitly. As soon as a massive propagator is involved,
the recursion becomes much more complicated, see [178, 179].

Example 26: Second chain graph.

We call the following graph in a massless ϕ3 theory “second chain graph” S:

S :=

p+ q

q q q

γ1 γ2
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Assume that all propagator powers are νe = 1. There are two subgraphs γ1 and γ2.
They are 1-loop multiedges and they carry the same momentum t := q2, hence, by
example 24,

F [γ1] = F [γ2] =
λ2

3

(4π)
D
2

Γ
(︁
2− D

2

)︁
1

Γ
(︁
D
2 − 1

)︁
Γ
(︁
D
2 − 1

)︁
Γ (D − 2)

1

t2−
D
2

.

These two graphs are connected with three propagators i
t (eq. (1.24)), each of which

carries momentum t. The complete chain therefore has the amplitude(︄
λ2

3

(4π)
D
2

Γ

(︃
2− D

2

)︃
Γ
(︁
D
2 − 1

)︁
Γ
(︁
D
2 − 1

)︁
Γ (D − 2)

)︄2
1

t4−D
i3

t3
.

The amplitude of this chain is again similar to a propagator, but with exponent 7−D
and a prefactor. Hence, we can evaluate it once again with example 24 and obtain (for
s := p2)

F [S] = −λ6
3

(4π)
3
2
D

Γ2
(︁
2− D

2

)︁
Γ
(︁
8− 3

2D
)︁
Γ5
(︁
D
2 − 1

)︁
Γ
(︁

3
2D − 7

)︁
Γ2 (D − 2) Γ(7−D)Γ (2D − 8)

1

s8−3D
2

.

Later, we will also need the graphs Si where the subgraph γi is contracted (def. 27),

S
γ1

=: S1 =

γ2

Both S1 and S2 have the same amplitude

F
[︁
S1

]︁
= F

[︁
S2

]︁
=

iλ4
3

(4π)D
Γ
(︁
2− D

2

)︁
Γ (5−D) Γ3

(︁
D
2 − 1

)︁
Γ (D − 4)

Γ (D − 2) Γ(4− D
2 )Γ

(︁
3
2D − 5

)︁ 1

s5−D .

Besides the three forms (sections 1.3.5 to 1.3.7) we discussed, there are several other ways
to express Feynman integrals. We will not go into details because computational techniques
for individual graphs are out of the scope of this thesis. The interested reader is referred to
the literature. Examples include representations by the Lee-Pomeransky polynomial GΓ :=
ψΓ + ϕΓ [180], which can be understood as a special case of a GKZ hypergeometric function
[126, 181–183], or the Baikov representation [184–186], or as solutions of differential or
difference equations [123, 187–191]. For the various polynomials, it is also fruitful to consider
their geometric realizations such as Newton polytopes, see e.g. [183, 192, 193].
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1.3.8. Symmetry factors

By Wick’s theorem (theorem 2), the correlation functions G
(n)
F of the free field are given

by “all contractions”. But, as soon as some of the arguments of G
(n)
F coincide, some of the

contractions start to become identical.

Example 27: Contraction of the four-point function.

Consider the 4-point function from example 9, but, for the time being, assume that
x1 = x2 and x3 = x4. Out of the three complete contractions, two now become identical.

G
(4)
F (x1, x2, x3, x4) =

x1

x2

x3

x4

+

x1

x2

x3

x4

+

x1

x2

x3

x4

⇒ G
(4)
F (x1, x1, x3, x3) =

x1 x3

+
x1 x3

+
x1 x3

The fact that graphs can potentially become identical when vertices are merged gives rise
to non-trivial combinatoric prefactors in the Dyson series (eq. (1.40)). We will discuss the
fundamental mechanism that leads to these symmetry factors by examining the two most
basic examples.
Before going to the examples, we quickly recall why in many cases there is no non-trivial

symmetry factor. Each k-valent vertex in a Feynman graph corresponds to an interaction
term ϕk, which comes with a prefactor 1

k! in the Lagrangian (eq. (1.5)). Assume that in the

Dyson series, k arguments of G
(n)
F are identified. That means, before identification, there

were k distinct 1-valent vertices, which are now merged to a single k-valent vertex. The k
adjacent edges had, in general, k! different permutations of which edge joins which of the
original 1-valent vertices. Hence, there were k! different original graphs, which all become
identical as soon as the vertices are merged. The resulting graph would have a prefactor
k!, were it not for the factor 1

k! in the Lagrangian which precisely cancels it. The resulting
graph therefore has a prefactor of unity.
Similarly, the order n in the Dyson series is given by graphs with n internal vertices. In

the Feynman integral, each internal vertex is integrated over the whole space. Therefore,
all n vertices are interchangeable. All graphs which differ only by a labelling of the vertices
are actually the same graph. For n vertices, this would give rise to a prefactor n!. But
the Dyson series (theorem 6) contains a prefactor 1

n! for the order-n term, arising from the
exponential function. Once more, both prefactors cancel and the resulting graph appears
with a prefactor of unity.
The mechanism outlined in the last two paragraphs works only as long as the initial edges

or vertices were distinguishable. We will now see the two most basic cases where this is not
the case, and why they give rise to non-trivial symmetry factors.
Firstly, examine a tadpole (def. 29), such as in the first summand in example 27: Each

2-valent vertex comes with a prefactor 1
2! , but for each vertex there is only a single way
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to build the tadpole. The “other” way would be exchanging the two ends of the tadpole

edge, which gives the same graph. Consequently, the first summand in G
(4)
F (x1, x1, x3, x3)

has a prefactor 1
2 ·

1
2 = 1

4 . It is straightforward to see that, irrespective of the valence of the
vertices, every tadpole produces a prefactor 1

2 .
Secondly, look at multiedges. Thehe second and third summand in example 27 are exam-

ples of 2-edge multiedges. Starting from x1, there are two ways of attaching an edge to x3.

They are symbolized by the two (identical) graphs in G
(4)
F (x1, x1, x3, x3). But again, each of

the two vertices has a factor 1
2 , and adding the two identical graphs, we obtain an overall

factor 1
2 ·

1
2 + 1

2 ·
1
2 = 1

2 . In this case, not a tadpole, but a multiedge (example 25) leads to
the mismatch of prefactors: If there are n parallel edges, then there are n! ways of attaching
them, but each of the two vertices comes with a prefactor 1

n! . Therefore, a n-edge multiedge
produces an overall symmetry factor n! · 1

n! ·
1
n! =

1
n! .

In general, one finds that such “overcompensation” of prefactors always occurs whenever
a graph Γ has multiple subgraphs which can be interchanged without altering Γ. In the
case of multiedges, these subgraphs were just the individual edges. Tadpoles are a limiting
case, namely exchanging the order {v1, v2} ↔ {v2, v1} in an edge, which only ever leaves the
graph unaltered if v1 = v2. For the exchange of more complicated subgraphs, it is helpful to
introduce the notion of a graph automorphism.

Definition 42. An isomorphism between two undirected graphs Γ1,Γ2, where both
edges and vertices are labelled, is a a map f : EΓ1 → EΓ2 , VΓ1 → VΓ2 such that {vi, vj} =
e ∈ EΓ1 if and only if {f(vi), f(vj)} = f(e) ∈ EΓ1 .

Definition 43. An automorphism of an amputated Feynman graph Γ (def. 24) is an
isomorphism f : Γ→ Γ (def. 42). Additionally, we demand that an automorphism acts
trivially on the external vertices VΓ,ext, and that reversing the “direction” of a tadpole
edge is considered an automorphism. The set of all automorphisms of a graph forms the
automorphism group Aut(Γ).

Example 28: Automorphism group of a 2-loop graph.

Consider the following graph Γ, where v1 and v4 are external vertices:

Γ :=
v1

v2

v3

v4

Γ′ :=
v1

v3

v2

v4

The graph Γ′ is an automorphism (def. 43) of Γ: It is exactly the same drawing, but
labels are exchanged, and every edge that was present in Γ is still present in Γ′. Since
the external vertices v1 and v4 are fixed, Γ′ is the only non-trivial automorphism of Γ
and |Aut(Γ)| = 2. If we write the graphs as an abstract list of edges (instead of drawing
them), then

Γ = {{v1, v2} , {v2, v4} , {v2, v3} , {v1, v3} , {v3, v4}} = Γ′.

51
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The automorphism here is the exchange v2 ↔ v3, which leaves the list unchanged apart
from the direction of the central edge, {v2, v3} ↔ {v3, v2}. But we are considering
undirected graphs, so both edges are identical.
One can also consider Γ′ as “a different way of drawing Γ”. But this is not the point:

There are infinitely many different ways of drawing the same graph on a plane. The
automorphism is about exchanging labelled parts of the graph without changing the
drawing.

Theorem 13. In the Dyson series (eq. (1.40)), each graph appears with a symmetry
factor which is the inverse of the size of its automorphism group (def. 43),

sym(Γ) =
1

|Aut(Γ)|
.

Proof. A mathematically rigorous proof can be found for example in [194, Sec. 2.3]. It is based on
the orbit-stabilizer-theorem, namely that the size of a group equals the number of orbits times the
size of each orbit, which is a specialization of the Cauchy–Frobenius-Burnside lemma [195, 196] or the
Redfield–Pólya theorem [197, 198]. The case of multiedges and tadpoles has been discussed in detail
above. What remains is the relabelling of vertices. The permutations of all |VΓ| (labelled) vertices are
the symmetric group S|VΓ| with size |VΓ|!. The automorphism group Aut(Γ) is the stabilizer group of
S|VΓ| acting on VΓ. The orbit Orb(Γ) of S|VΓ| acting on the labelled graph Γ amounts to all the copies
of Γ which are created by Wick’s theorem (theorem 2). The Dyson series (theorem 6) introduces a
prefactor 1

|VΓ|! , the result is

1

|VΓ|!
|Orb(Γ)| · Γ =

1

|Orb(Γ)| |Aut(Γ)|
|Orb(Γ)| · Γ =

1

|Aut(Γ)|
· Γ

Symmetry factors are compatible with cutting, in the sense that summing all possible ways
to cut a set of graphs into smaller components is the same as summing all subgraphs with
all ways to join them. See [194, 199] or example 29 for more details. This fact has important
consequences for Dyson-Schwinger equations (section 1.3.11) in gauge theories.

Example 29: Cutting a 2-loop graph.

Choose Γ1,Γ2 as indicated, then each of them has symmetry factor 1
2 (for the exchange

of 1 ↔ 2 or 4 ↔ 5). The numbered edges are supposed to be internal in the final
graph, so they are not excluded from graph automorphisms (def. 43). There are 3! = 6
possibilities to join Γ1 to Γ2, resulting in the graphs ΓA,ΓB,ΓC .
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ΓA =

ΓB =

ΓC =

Γ1 =

3

1

2

Γ2 =

6

4

5

Two of the 6 possible connections result in ΓC , producing an overall factor of 2 · 1
2 ·

1
2 ,

which is the correct symmetry factor sym(ΓC) =
1
2 . The 4 other possibilities produce

the topology ΓA = ΓB with an overall factor 4 · 1
2 ·

1
2 = 1. There are two distinct ways

of cutting this topology into Γ1 and Γ2. The correct symmetry factor is respected in
the sum over both cuts, 2 · sym(ΓA) = 2 · 1

2 = 1. This summation over all possible cuts,
although it appears slightly odd at first, is exactly what one needs in QFT, for example
for gauge theory [169, 200, 201], see example 131, or field diffeomorphisms [199, 202],
see chapter 5.

1.3.9. Digression: Electrical networks

The theoretical analysis of electrical networks was first started by Ohm’s discovery of the
fundamental law U = R · I for the voltage U , resistance R and current I in directed current
circuits [203]. In 1847, Kirchhoff gave a more systematic treatment, accounting for charge
conservation by his famous two rules (from today’s perspective, these rules are a graph-
discretized version of Maxwell’s equations [25] for the electric field). In passing, we will now
see what the original meaning of the Kirchhoff polynomial theorem 11 for electrical networks
was.
To turn a graph into an electrical network, the edges become resistors inheriting the

direction of the edge, and we add additional lines and dots to make the drawing rectangular.
Each resistor has a conductance ci :=

1
Ri
. We assume that current flows from one vertex s to

another vertex t through the network. All other vertices are not connected to any external
potential, marked nc, hence no current can enter or leave here.
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Example 30: Dunce’s cap as an electrical network.

Choosing arbitrarily one of the vertices as s and one as t, the dunce’s cap (example 12)
becomes the following electrical network:

s

nc

t

↓ R4R3 ↑

← R1

→ R2

For any spanning tree T ∈ T (1)
Γ (def. 34), let its weight be the product of the conductances

in the tree, cT :=
∏︁
e∈T ce. Each spanning tree defines a unique directed path from s to t.

Assume that a current of magnitude 1 flows from s to t. Then, Kirchhoff’s theorem [155,
160] states that the current through Ri is

Ii =
N(s,R+

i , t)−N(s,R−
i , t)

ψ̃ (⟨ce⟩)
. (1.51)

In eq. (1.51), N(s,R+
i , t) is the sum of the weights cT of all spanning trees T which, on

their way from s to t, pass through Ri in positive direction. N(s,R−
i , t) is defined accordingly

for negative direction, and ψ̃ is the Kirchhoff polynomial (theorem 11). For readability, we
skipped the physical units in eq. (1.51).

Example 31: Dunce’s cap, currents in the edges.

For the network shown in example 30, we know the Symanzik polynomial from exam-
ple 16. Using eq. (1.51), we find

I1 =
0− (c1c3 + c1c4)

c1c2 + c1c3 + c1c4 + c2c3 + c2c4

I2 =
(c2c3 + c2c4 + c1c2)− 0

c1c2 + c1c3 + c1c4 + c2c3 + c2c4

I3 =
(c2c3)− (c1c3)

c1c2 + c1c3 + c1c4 + c2c3 + c2c4

I4 =
(c2c4)− (c1c4)

c1c2 + c1c3 + c1c4 + c2c3 + c2c4
.

Knowing all currents, we can reconstruct all other properties of the network. For exam-
ple, by Ohm’s law [203], the voltage between s and t is the voltage over R2,

Us→t = U2 = R2I2 =
1

c2

c2c3 + c2c4 + c1c2

c1c2 + c1c3 + c1c4 + c2c3 + c2c4
=

c3 + c4 + c1

c1c2 + c1c3 + c1c4 + c2c3 + c2c4
.
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The voltage in turn delivers the total resistance of the network because the total
current is 1 (where the unit Ampere is left out): R = Us→t/1 = Us→t. A manual
calculation with the rules for parallel/serial resistors, known from high school physics,
confirms this result.

Current conservation in electrical networks is analogous to momentum conservation in
Feynman graphs. It is therefore not surprising that solving for the individual currents
in an electrical network involves the same graph polynomial as does the resolution of all
internal momenta in a Feynman graph with respect to a chosen set of loop momenta. The
Schwinger trick eq. (1.48) can be interpreted as minimizing the power dissipation of an
electrical network, see [204].
The analogy between Feynman graphs and electrical networks has sometimes been men-

tioned in the literature, but concrete applications remain rare. In electrical networks, a
triangle of resistors can always be replaced by a “star”, joining the three corners to a new
central vertex. A similar relation for Feynman integrals is known as uniqueness identity
[205–208],∫︂

dDt
1

((x− t)2)a
1(︁

(y − t)2
)︁b 1

((z − t)2)c
∝ 1(︁

(x− y)2
)︁D

2
−a

1(︁
(y − z)2

)︁D
2
−b

1

((z − x)2)
D
2
−c
.

The uniqueness identity holds only for a+b+c = D, while the replacement of stars in electrical
networks is always possible. In [209], the star-triangle relation for electrical circuits is used
to restrict the analytic form of 1-loop massless 3-point functions.

1.3.10. 1PI graphs

In momentum space, the Feynman rules (def. 40) require integration for every linearly in-
dependent loop. Conversely, if two Feynman graphs Γ1,Γ2 are connected by only a single
edge, then they can not be part of the same loop and hence the total amplitude factors,

F
[︁
Γ1 · e · Γ2

]︁
= F [Γ1] · F [e] · F [Γ2] . (1.52)

Definition 44. An amputated Feynman graph Γ (def. 24) is 1-particle irreducible or
1PI if it is 2-edge connected. That is, Γ is connected and it stays connected (def. 22)
when any one of the internal edges is removed.

Example 32: ϕ3 theory, 1PI graphs.

In example 11, we gave the first graphs contributing to the connected Green functions.
The 1PI graphs are a subset of those. For the 2-point function, there was only one
non-1PI graph and what remains is
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Γ(2) = + λ2
3

1
2

+ λ4
3

(︄
1
2 + 1

2

)︄
+ . . .

For the 3-point function, two of the given topologies are connected but not 1PI. The
1PI ones are

Γ(3) = λ3 + λ3
3

+λ5
3 ⟨3⟩

(︄
1
2 +

)︄
+ λ5

3
1
2 + . . .

There are in total nine 1PI graphs contributing up to loop number 2, down from 15
connected graphs in example 11.

Definition 45. The combinatorial 1PI Green function Γr is the sum of all 1PI graphs
(def. 44) with residue r (def. 26), weighted with their symmetry factors (theorem 13)
and coupling constants, the latter rescaled to match the loop number (def. 28).

Γr(α) :=
∑︂

Γ 1PI,res(Γ)=r

α|LΓ| sym(Γ) · Γ.

For a ϕn theory, the residue are monomials of ϕ, we write r = (j) to indicate the residue
ϕj . By Γ ∈ Γr we mean that Γ is 1PI and res(Γ) = r.

Observe that 1PI Green functions are not the same as amputated (theorem 5) Green func-
tions. They coincide for 2-point and 3-point graphs, but from 4 external edges on, the
amputated Green function can contain an internal edge making it 1-particle reducible.

Definition 46. The 1PI Green function Gr is the combinatorial 1PI green function Γr

(def. 45), evaluated with the Feynman rules (def. 38):

Gr := F
[︁
Γr
]︁

For 2-point graphs, the relation between connected and 1PI graphs is given by a geometric
series. If we consider the functions as operators, this is a Neumann series [210]. The con-

nected 2-point function Ḡ
(2)

equals the sum of any number of products of the 1PI 2-point
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function Σ(2), all of them with the same momentum p and connected by propagators i
sp

(eq. (1.24)):

Ḡ
(2)

(p) =
i

sp
+

i

sp
Σ(2)(p)

i

sp
+

i

sp
Σ(2)(p)

i

sp
Σ(2)(p)

i

sp
+ . . .

=
i

sp

∞∑︂
k=0

(︃
i

sp
Σ(2)(p)

)︃k
=

i

sp

1

1− i
sp
Σ(2)(p)

=:
i

spG(2)(p)
. (1.53)

Definition 47. The 1PI 2-point function is defined as

G(2)(p) := 1− i

sp
Σ(2)(p)

where Σ(2)(p) represents the self energy, the sum of all 1PI 2-point quantum correc-
tions. Consequently, the connected 2-point function, replacing the treelevel propagator

eq. (1.24), is Ḡ
(2)

(p) = i
spG(2)(p)

. For def. 45, it is Γ̄
(2)

= 1
Γ(2) .

The relationship between connected and 1PI 2-point functions is consistent with the Feyn-
man propagator (eq. (1.24)). For example, instead of using the massive propagator, one can
use the massless propagator and take the mass term of the Lagrangian (example 1) as a
2-valent vertex. Then, every internal line in a graph can be dressed with infinitely many of
these vertices, which eventually add up to the massive Feynman propagator.
1PI graphs are “building blocks” of connected Feynman graphs, in the same sense that

trees are built of vertices, which in turn are generated by the classical action (def. 7).

Definition 48. The effective action Γ[J ] is the formal (def. 51) generating functional
of all 1PI Green functions.

If W [J ] is the generating functional of connected amplitudes (eq. (1.39)), then Γ[J ] is the
Legendre transform (def. 53) ofW [J ] [82, 153, 211, 212]. We will discuss the correspondence
between graphs and power series in section 2.1.4. Amongst other things, it can be used to
count graphs, see example 56, or [194] for a detailed account.

1.3.11. Dyson-Schwinger equations

So far, we have viewed the graphs appearing in the Dyson series (eq. (1.40)) as isolated
objects. But for a given graph Γ, the subgraphs γ ⊂ Γ are graphs themselves. This observa-
tion will now be used to organize the graphs in the Dyson series according to their residue
(def. 26). The resulting identity is called Dyson-Schwinger equation, and it can be stated in
various equivalent forms. In the present section, we stay rather general and “qualitative”.
More precise equations will be given in sections 2.2.5 and 3.3.
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Definition 49. The residues of the Lagrangian are a set L of pairs (g, T ) associated to
the monomials of the Lagrangian (def. 6). g is the residue (def. 26), that is, a monomial
of field variables, while T is the tensor structure, that is, a monomial in masses or
momenta.

We write Γ ∈ L if there is a (g, T ) ∈ L such that res(Γ) = g and Γ projected onto T does
not vanish at p = 0,m = 0. As shown in example 33, the second condition is not trivial.

Example 33: ϕn theory, residues of the Lagrangian.

In massive ϕn theory (example 3), the kinetic term amounts to (ϕ2, p2) ∈ L, the mass
term contributes (ϕ2,m2) ∈ L and the interaction term is (ϕn, 1) ∈ L.
Assume now that Γ is a graph contributing to a 2-point function with momentum p,

but F [Γ] ∝ p4, then Γ /∈ L for the ϕn theory.

Let Γ ∈ Γ(n) be a graph contributing to the combinatorial 1PI n-point Green function
(def. 44). Into every edge e ∈ Γ one can insert any 2-valent graph γ ∈ Γ(2), and the result
is a valid Feynman graph of Γ(n). Similarly, one can replace every j-valent vertex with any
γ ∈ Γ(j). A closer inspection shows that such insertion, when done consistently, produces
the correct symmetry factors (theorem 13) for the newly created graphs.

Definition 50. Let Γ(n) be the combinatorial 1PI n-point Green function (def. 45). A
kernel graph K ∈ Γ(n) is a 1PI (def. 44) Feynman graph with n external edges such that
there is no proper subgraph γ ⊂ K with γ ∈ L (def. 49). The set of all kernel graphs
for Γ(n) is denoted K(n).

Theorem 14 (Dyson-Schwinger equations (DSEs) for Feynman graphs). The 1PI
combinatorial Green function Γ(n) (def. 45) is given by a (possibly infinite) sum of
kernel graphs (def. 50) K(n), and for each K ∈ K(n), all j-valent vertices vj ∈ K are

replaced by the series Γ(j), and all edges by Γ̄
(2)

= 1
Γ(2) (def. 47).

A special role is played by the 2-point function Γ(2): We insert the connected 2-point function,
but the DSE is usually written for the 1PI 2-point function. The relationship def. 47 entails
that the DSE for the 2-point function contains a minus sign in front of all kernel graphs.

Example 34: ϕ3 propagator, combinatorial Dyson-Schwinger equation .

Consider the 2-point function of ϕ3 theory. The first graphs are shown in example 32.
The propagator DSE only involves a single kernel graph, which has symmetry factor 1

2
(theorem 13). To avoid double-counting, one needs to disentangle the series into three
parts, see also [200, 213, 214]. Again, we write the DSE for the 1PI 2-point function
Γ(2), not for the connected one, see def. 47.
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1.3. Feynman graphs

Γ(3) =: Γ̄
(2)

=: Γ̄
(2) − =:

Γ(2) = 1 − λ2
3

1
2 − λ2

3 − λ2
3

1
2

Compare this to theorem 1: We see that the presence of interaction, that is Γ(3) ̸= 0,
necessarily alters the 2-point function.

Example 35: ϕ3 propagator, simplified combinatorial DSE.

A drastic simplification of the propagator DSE can be obtained by ignoring all quantum
corrections to the vertex, that is setting Γ(3) = . This produces a DSE where Γ(2) is
the only unknown function. Such DSEs will be discussed further in section 3.3.2.

Γ(3) = Γ̄
(2)

=: ⇒ Γ(2) = 1 − λ2
3

1
2

Example 36: ϕ3 vertex, combinatorial Dyson-Schwinger equation.

Consider massless ϕ3 theory (example 3) where L =
{︁(︁
ϕ2, p2

)︁
,
(︁
ϕ3, 1

)︁}︁
(example 33).

In example 32, we depicted the first graphs contributing to the 1PI (def. 44) 3-point
function Γ(3). Indeed, some of them have subgraphs with 2 or 3 external edges which
can be identified as coefficients of the series Γ(2) and Γ(3). Without such subgraphs,
there is one graph at order α3 and one at order α5 (in 3 different orientations). Into

each edge we insert the connected 2-point function Γ̄
(2)

(see eq. (1.53)).

Γ(3) =: Γ̄
(2)

=:

Γ(3) = λ3 + λ3
3 + λ5

3
1
2 + . . .

Un-
like the propagator DSE (example 34), the vertex DSE involves infinitely many kernel
graphs. Counting the different orientations, we now have three kernel graphs up to loop
number 2, down from nine 1PI graphs in example 32.

As it stands, theorem 14 is a mildly interesting combinatoric statement about the sum of
infinitely many graphs and their subgraphs. But these graphs ultimately represent Feynman
integrals, and consequently, theorem 14 actually amounts to a set of integral equations for
the 1PI Green functions (def. 46).
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1. Introduction to perturbative quantum field theory

Theorem 15 (Dyson-Schwinger integral equations [215–218]). A Green function G(n)

is given by a series of integrals, encoded by kernel graphs (def. 50), where the j-valent
vertices are replaced by the function G(j) and the edges are replaced by the function

Ḡ
(2)

(def. 47).

Example 37: ϕ3 propagator, simplified integral DSE.

Consider the simplified propagator DSE of example 35, that is, setting the vertex Green

function to F
[︁
Γ(3)

]︁
= G(3) !

= −iλ3. Define the 2-point functions as in def. 47. One then
has, using (−i)2i2 = 1 and the propagator eq. (1.24),

G(2)(p) = 1− i

sp
λ2

3

1

2

∫︂
dDk

(2π)D
1

sk

1

sk+p

(︂
G(2)(k)

)︂−1 (︂
G(2)(k + p)

)︂−1
.

In both forms (theorems 14 and 15), the Dyson-Schwinger equations are fixed-point equations,
this means that the objects on the left hand side of these equations also appear in the right
hand side. To solve a DSE, one needs to find a self-consistent solution. One possible approach
is to consider all quantities as series in a coupling parameter and to solve the DSE recursively
order by order. We will discuss this procedure in detail in section 4.2.
Our formulation of Dyson-Schwinger equations are based on kernel graphs (def. 50) which

have one out of finitely many residues (def. 26). This entails that only finitely many Dyson-
Schwinger equations are coupled. On the other hand, one generally has to include an infinite
set of kernel graphs. An alternative version involves only a small number of graphs for each
residue, but all (infinitely many) equations are coupled. See e.g. [219] for an entertaining
presentation. These DSEs are again fixed-point equations, the most compact way to write
them is if one identifies Green functions with derivatives of the path integral as in eq. (1.38).

Theorem 16 (Dyson-Schwinger equations for generating functionals). Let Z[J ] be
the path integral (eq. (1.37)) and S[ϕ] the classical action (def. 7), then

δS[ϕ]

δϕ(x)

⃓⃓⃓
ϕ→ δ

δJ

Z[J ] = 0.

Observe the similarity to the classical equations of motion δS = 0 (eq. (1.6)).
As announced in section 1.2.7, Dyson-Schwinger equations provide another possible way

to define a quantum field theory. Their series expansion leads to the same set of Feynman
rules. Indeed, that was their original motivation [216]:

The construction of these [Green functions] for coupled fields is usually considered
from the viewpoint of perturbation theory. [. . . ] It is desirable to avoid founding
the formal theory of the Green’s functions on the restricted basis provided by
the assumption of expandability in powers and coupling constants.
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1.3. Feynman graphs

Summary of section 1.3.

1. Feynman integrals appearing in the Dyson series can be represented graphically as
Feynman graphs, and it is sufficient to consider connected graphs (sections 1.3.1
and 1.3.2).

2. We reviewed graph theory and learned about various matrices and polynomials as-
sociated to graphs, and how they can be used to systematically compute quantities
of interest (sections 1.3.3 and 1.3.4).

3. We established a concrete algorithm to turn a given Feynman graph into the
corresponding integral in position space, called Feynman rules (section 1.3.5).

4. Feynman rules can equivalently be formulated in momentum space (section 1.3.6)
or in parametric space (section 1.3.7).

5. We derived the symmetry factor of Feynman graphs in the Dyson series, which is
given by the size of the automorphism group (section 1.3.8).

6. Connected graphs can be decomposed into 1PI graphs and it is usually sufficient
to compute the 1PI ones (section 1.3.10).

7. The structure of nested subgraphs of Feynman graphs can be expressed by Dyson-
Schwinger equations. They are fixed-point equations and can be formulated in
various ways, either as a statement for sums of graphs, or for the generating
functionals, or for Green functions (section 1.3.11).
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2. Hopf algebra theory of renormalization

2.1. Combinatorics and Hopf algebras

In this section, we introduce the mathematical background needed for the later work. The
concepts are well-known, but usually not taught in physics courses. The mathematically
experienced reader might want to skip directly to section 2.2

2.1.1. Formal power series

Definition 51. Let R be a commutative ring and t a formal parameter. Then, R[[t]]
denotes the ring of all formal power series in the parameter t over with coefficients in
R. A formal power series f ∈ R[[t]] is a sequence of coefficients fj ∈ R, each of which
is indexed by a power of the parameter t, and extracted by [tj ]f(t) = fj :

f(t) =
∞∑︂
j=0

fjt
j .

As opposed to ordinary power series and analytic functions, a formal power series has no
notion of convergence. t is merely a symbol to indicate coefficients, it is not supposed to
have any numerical value. Operations such as differentiation, integration or series reversion
are identities between series coefficients, which agree with the formulas for analytic functions
if the power series converges. For example, a formal power series can be differentiated using
fj ↦→ (j + 1)fj+1 even if the series f(t) does not converge to a differentiable function in the
ordinary sense. A standard reference on formal series is [220], for further details see [153,
212, 221].

Definition 52 ([222], [223, p 134]). Let k ∈ N0, n ∈ N0 and k ≤ n be fixed. The partial
Bell polynomial is given by

Bn,k (x1, x2, x3, . . .) =
∑︂
S

n!

j1!j2! · · · jn!

(︂x1

1!

)︂j1 (︂x2

2!

)︂j2 (︂x3

3!

)︂j3
· · ·
(︂xn
n!

)︂jn
,

where the sum extends over all sets {ji}i∈{1,...,k} such that

S = {ji ≥ 0 ∀i, j1 + j2 + j3 + . . .+ jk = k j1 + 2j2 + 3j3 + . . .+ (n− k)jn−k = n} .

The generating function of the Bell polynomials is

∞∑︂
n=0

n∑︂
k=0

Bn,k (x1, x2, . . .)u
k t
n

n!
= exp

⎛⎝u ∞∑︂
j=1

xj
tj

j!

⎞⎠ . (2.1)
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2. Hopf algebra theory of renormalization

Example 38: Some values of Bell polynomials.

The Bell polynomials contain several sets of combinatorially interesting numbers and
have various relations amongst themselves and to other polynomials, see for example
[223–226]. Some straightforward evaluations are:

B0,0 = 1, Bn,0 = 0, n > 0, Bn,k = 0, k > n

Bn,1 = xn, n > 0, Bn,n = xn1 , n > 0 Bn,2 =
n−1∑︂
k=1

1

2

(︃
n

k

)︃
xkxn−k

Bn,k(1, 2, 3, . . .) =

(︃
n

k

)︃
kn−k Bn,k(1

0, 21, 32, 43, . . .) =

(︃
n− 1

k − 1

)︃
nn−k.

The Bell polynomials encode all combinatoric information to solve two of the standard tasks
of formal power series, finding the inverse of a series, and concatenating two series.

Theorem 17 (Lagrange inversion [227–229]). Let f(t) = f1t + f2t
2 + f3t

3 + . . . be a
formal power series and f−1(t) =: g1t+g2t

2+g3t
3+ . . . its combinatorial inverse, that is,

f (−1)
(︁
f(t)

)︁
= t. Let Bn,k be the partial Bell polynomials (def. 52). Then for all n ≥ 1,

(︁
f−1

)︁
n
= gn =

1

n!

n−1∑︂
k=1

1

fn+k
1

Bn−1+k,k (0,−2!f2,−3!f3, . . .) , g1 =
1

f1
. (2.2)

Alternatively, for power series of exponential type,

f(t) =

∞∑︂
n=0

fn
tn

n!
, and f−1(t) =: g(t) =

∞∑︂
n=1

gn
tn

n!
,

gn =

n−1∑︂
k=1

1

fn+k
1

Bn−1+k,k (0,−f2,−f3, . . .) , g1 =
1

f1
.

Example 39: First coefficients of the inverse series.

For a series f(t) = t+ f2t
2 + f3t

3 + . . ., the inverse series begins with

f−1(t) = t− f2t
2 +

(︁
−f3 + 2f2

2

)︁
t3 +

(︁
−f4 − 5f3

2 + 5f2f3

)︁
t4 + . . . .
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2.1. Combinatorics and Hopf algebras

Similarly, for an exponential series f(t) = t+ f2
t2

2! + f3
t3

3! + . . ., the coefficients are

f−1(t) = t− f2
t2

2
+
(︁
3f2

2 − f3

)︁ t3
3!

+
(︁
−15f3

2 + 10f2f3 − f4

)︁ t4
4!

+
(︁
105f4

2 − 105f2
2 f3 + 10f2

3 + 15f2f4 − f5

)︁ t5
5!

+ . . .

It might appear unaesthetic that the summands in the individual parentheses are mono-
mials of different order. Indeed, they are very much aesthetic, see example 53.

Theorem 18 (Faà di Brunos formula [230]). Let f(t) = f0 + f1t + f2t
2 + . . . and

g(t) = g1t + g2t
2 + g3

3 + . . . be formal power series. Then, the coefficients hn of the
concatenation f(g(t)) =: h0 + h1t+ h2t

2 + . . . are given by h0 = f0 and the partial Bell
polynomials (def. 52)

hn =
n∑︂
k=1

k!

n!
fk ·Bn,k (1!g1, 2!g2, . . . , (n+ 1− k)!gn+1−k) , n ≥ 1.

If, instead,

f(t) =

∞∑︂
n=0

fn
tn

n!
, g(t) =

∞∑︂
n=1

gn
tn

n!
, f(g(t)) =: h(t) =

∞∑︂
n=0

hn
tn

n!
,

then h0 = f0 and

hn =
n∑︂
k=1

fk ·Bn,k (g1, . . . , gn+1−k) , n ≥ 1.

Example 40: First coefficients of the concatenation of series.

Let f(t) = f0 + f1t+ f2t
2 + . . . and g(t) = g1t+ g2t

2 + g3
3 + . . . , then by theorem 18

h(t) = f0 + f1g1t+
(︁
f2g

2
1 + f1g2

)︁
t2 +

(︁
f3g

2
1 + 2f2g1g2 + f1g3

)︁
t3

+
(︁
f4g

4
1 + 3f3g

2
1g2 + f2g

2
2 + 2f2g1g3 + f1g4

)︁
t4 + . . .

In defs. 9 and 48 we have used the Legendre transform without formally defining it. For
formal power series, it is once again a statement about combinatorics of their coefficients,
irrespective of analytic properties of functions [153, 212].

Definition 53. Let f(t) be a formal power series (def. 51) and let u(t) = ∂tf(t) be
its formal derivative. Further, let t(u) be the combinatorial inverse of u(t), given by
Lagrange inversion (theorem 17). The Legendre transform of f is defined as the series

g(u) := −t(u) · u+ f(t(u)).
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2. Hopf algebra theory of renormalization

2.1.2. Divergent power series

Physics courses tend to focus heavily on Taylor expansions, supporting the impression that
every physically sensible function should be identified with a convergent power series. A
similarly radical view was also prominent in mathematics 200 years ago, as Borel [231]
reproduces a famous quote by Abel (1826):

Les séries divergentes sont en général quelque chose de bien fatal et c’est une
honte qu’on ose y fonder aucune démonstration.

However, by now it is established that divergent series can contain a large amount of
information on the “true” function they are supposed to represent. First steps in that
direction were already taken in the 1800s [232]. The modern treatment is based on Borel
resummation and, more generally, resurgence. This is a very active field of research with an
immense literature, a starting point can be one of the reviews [233–238]. More sophisticated
examples related to physics can be found in [213, 239–253].

Example 41: Divergence of the QED perturbation series.

Without any mathematical analysis of the growth behaviour of coefficients, one can
conclude from physical arguments that the Dyson series (eq. (1.40)) in QED (example 22)
can not be convergent [254]. The perturbative expansion parameter is the fine structure
constant α [255], which has a positive value α ≈ 1

137 > 0 in nature. If the Green
functions of QED were convergent functions of α around the expansion point α =
0, then it would be possible to continue them to small negative α, where they are
still convergent. Physically, a negative value of α corresponds to an “electrodynamics”
where equal charges attract each other and opposite charges are repelled. By charge
conservation, quantum fluctuations can only produce pairs of particles with opposite
charges. In a world where α < 0, these particles would repel each other instead of
merging back to the vacuum. Consequently, the vacuum would “decay” into a large
number of particles if α < 0. The ground state of this theory would not be a vacuum
state, but filled with matter. Consequently, the Green functions of QED must abruptly
have different properties as soon as α becomes infinitesimally negative, they can not be
analytic around α = 0.

Definition 54. An asymptotic power series is a formal power series (def. 51) where the
remainder term RN (t), defined by

f(t) =:

N∑︂
n=0

fnt
n +RN (t),

fulfils

lim
t→0

t−N |RN (t)| = 0, N fixed.
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Every convergent power series is asymptotic, but the converse is not true. Observe that for
a convergent power series one has, instead of a limit t→ 0 as in def. 54,

lim
N→∞

|RN (t)| = 0, t fixed.

Definition 55 ([256]). For k ∈ N, a formal power series
∑︁∞

n=0 fnt
n is called Gevrey-k

if

∞∑︂
n=0

fn
(n!)k

tn

has a positive radius of convergence.

Definition 56. Let f(t) be a formal power series. The Borel transform of f is the
power series obtained by the mapping B : fn ↦→ fn

n! , that is

f(t) =
∞∑︂
n=0

fnt
n ⇔ B[f ](u) =

∞∑︂
n=0

fn
n!
un.

The complex u-plane is called Borel plane. The inverse mapping L : fn ↦→ n!fn is called
Laplace transform.

The Borel transform is convergent near the origin if the original function is Gevrey-1 (def. 55),
and this is the case we will be dealing with for the rest of the thesis.

For convergent power series, def. 56 is consistent with the ordinary analytic Laplace trans-
form (in the variable 1

t ), given by the integral

L[f ](t) =
1

t

∞∫︂
0

du f(u)e−u
1
t =

∞∫︂
0

du e−uf (ut) ,

upon recalling the definition of the Gamma function (def. 5)
∫︁∞

0 du e−uun = Γ(n+ 1) = n!.

Example 42: Borel transform of factorially divergent series.

Consider the factorially divergent power series

f(t) :=

∞∑︂
n=0

(−1)nn!tn.

Its Borel transform (def. 56) is analytic at the origin u = 0,

B[f ](u) =
∞∑︂
n=0

(−1)nn!
n!
un =

1

1 + u
.
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It turns out that, starting from a divergent Gevrey-1 power series f(t), performing the
Borel transform and then the Laplace transform, one can arrive at a well-defined function.
This is called Borel resummation of the series,

S[f ](t) = L[B[f ]](t) =
1

t

∫︂
du B[f ](u)e−u

1
t . (2.3)

Example 43: Exponential integral.

The Borel resummation of example 42 is

S[f ](t) =
1

t

∞∫︂
0

du
1

1 + u
e−u

1
t =

1

t
e

1
t

∞∫︂
1

du
e−u

1
t

u
=

1

t
e

1
tE1

(︃
1

t

)︃
.

Here we have introduced the exponential integral (incomplete Gamma function)

E1(z) :=

∞∫︂
1

dt
e−zt

t
=

∞∫︂
z

dt
e−t

t
.

The exponential integral has, for z > 0, the convergent series representation

E1(z) = −γE − ln |z| −
∞∑︂
k=1

(−z)k

k!k
.

We have replaced f(t) by a convergent series in z = 1
t . Despite its intimidating looks, the

Borel resummed function S[f ](t) is perfectly finite at the origin t = 0, and its derivatives
are exactly the coefficients of the original series f(t) from example 42. Unlike its Taylor
series f(t), the function S[f ](t) has a finite numeric value for t > 0.

Curiously, this example was given by Euler [257], 66 years before Abel’s comment at
the beginning of the present section.

Example 43 illustrates that the class of formal power series in one variable t is too small
to capture Borel transforms, we at least need to allow for powers of exponentials such as
e

1
t . Including also logarithms, the resulting class of series is a generalization of formal power

series by the name of transseries, see [258] for an introduction.

Definition 57 ([259–261]). A transseries is a formal power series (def. 51) in the three

monomials t, e−
S
t and ln t. It has the form

f(t) =
∞∑︂
p=0

∞∑︂
q=0

q−1∑︂
l=1

cp,q,l · tp · e−q·
S
t · (ln t)l . (2.4)

The term q · S is called the q-instanton action, in more general cases it can also be a
non-trivial function Sq(t). Transseries are sufficient to express all functions definable from
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addition, multiplication and exponentiation [262], and the field of transseries is closed un-
der differentiation, integration, composition, inversion, Borel transforms and various other
operations [263, 264].
As seen in example 42, the Borel transform (def. 56) of a Gevrey-1 (def. 55) power series

can have poles in the Borel plane. Assume that there is a simple pole at u = u0 closest to
the origin,

B[f ](u) = ϕ(u)

(︃
1− u

u0

)︃−β
, (2.5)

where ϕ(u) is smooth at u0 and β ∈ R. This functional form has an implication for the
series expansion B[f ](u) =:

∑︁∞
n=0 bnu

n of B[f ](u) near the origin u = 0. Namely for n→∞
the coefficients asymptotically behave like

bn ∼
Γ(n+ β)

Γ(n+ 1)Γ(β)

1

un0

(︃
ϕ(u0)−

(β − 1)u0ϕ
′(u0)

(n+ β − 1)
+ . . .

)︃
. (2.6)

Since bn are the coefficients of the Borel transform (def. 56), the coefficients of the original
function f(t) grow like

fn ∼
Γ(n+ β)

Γ(β)

1

un0

(︃
ϕ(u0)−

(β − 1)u0ϕ
′(u0)

(n+ β − 1)
+ . . .

)︃
. (2.7)

A detailled discussion as well as many more examples and theorems regarding asymptotic
power series can be found in the book [265].

Definition 58. If the coefficients of a formal power series f grow asymptotically like

fn ∼ S ·An · Γ(n+ β)

(︃
1 +O

(︃
1

(n+ β − 1)

)︃)︃
, n→∞,

then f is called a factorially divergent power series with Stokes constant S.

Owing to Γ(n+ β)/Γ(n) ∼ nβ, all factorially divergent power series are Gevrey-1 (def. 55).
The relationship eq. (2.7) is the first step towards a general theory of resurgence: We

observe that the asymptotic factorial growth of the coefficients of a divergent power series
contains information about poles in the Borel plane. The next step would be to examine
the general form of the Laplace transform of eq. (2.5), which is the Borel resummation of
f(t). One finds that the coefficients of the subleading corrections in eq. (2.7) reappear as

coefficients of the perturbative fluctuations around the 1-instanton term e−
S
t (def. 57) of the

resummed transseries.
On the other hand, the subleading corrections in eq. (2.7) are given by derivatives ϕ(n)(u0)

of the function ϕ(u) from eq. (2.5). If B[f ](u) has a second pole, other than u = u0,
at u = u1. Then the asymptotic growth of the expansion coefficients of ϕ(u) around u0

will be dominated by the pole at u1, in the same way that the pole at u0 determines the
coefficients bn in eq. (2.6). This construction can be continued indefinitely, until eventually
all correction coefficients in def. 58 are expressed via the locations and exponents of poles of
the Borel transform. They in turn determine the fluctuations around all q-instanton terms
in the resummed function B[f ](t) (eq. (2.3)).

69



2. Hopf algebra theory of renormalization

In this heuristic account, we have skipped all sorts of difficulties which can potentially
appear. The detailed mathematical theory of resurgence was developed by Ecalle [266], by
now there are comprehensive reviews such as [236, 237]. Some particularly instructive cases
are used in [249] to compute asymptotic expansions.
In practical calculations, we often only know a finite set of coefficients {fn} and we want

to determine the subleading corrections of factorially divergent powerseries (def. 58), after
stripping off a known factorial growth. That is, we want to compute the constants {aj} for
in the asymptotic expansion

fn ∼ a0 + a1
1

n
+ a2

1

n2
+O

(︃
1

n3

)︃
, n→∞. (2.8)

Formally, the coefficients can be extracted from their definition, like a0 = limn→∞ fn, but
this procedure is imprecise unless we know fn for very high n. It is more practical to
algebraically eliminate subleading corrections. Define a discrete series derivation operator

∆fn := fn+1 − fn. (2.9)

With this operator, we find

∆ (nf) = (n+ 1)fn+1 − nfn = a0 +O
(︃

1

n2

)︃
.

Th quantity ∆(nf) can be expected to converge to a0 more quickly than fn itself.

Definition 59 ([267]). Assume a sequence {fn} behaves asymptotically like eq. (2.8).
Let ∆(f) := {fn+1 − fn}, then the order-k Richardson extrapolation is the sequence

Rk[f ] :=
1

k!
∆k
(︂
nkf

)︂
= a0 +O

(︃
1

nk+1

)︃
.

The order-k Richardson extrapolation operator is only applicable if we know at least k + 1
elements of the sequence {fn}. Moreover, the cancellations of small differences in computing
∆k(nkf) usually require that we know the numbers fn to arbitrary precision, and not just
as numerical estimates.
The higher asymptotic coefficients aj>0 can be extracted by applying Richardson extrap-

olation (def. 59) to a sequence where lower coefficients are subtracted, for example

∆
(︁
n2(f − a0)

)︁
= (n+ 1)2(fn+1 − a0)− n2(fn − a0) = a1 +O

(︃
1

n2

)︃
.

2.1.3. Basics of Hopf algebras

In the present section, we review those aspects of Hopf algebra theory which become im-
portant later in the thesis. A comprehensive introduction to Hopf algebras is contained
in the book [268]. Here and in the following, ⊗ denotes a tensor product while ◦ denotes
concatenation of maps.
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Definition 60. Let K be a field. An associative, unital algebra A over K is a vector
space endowed with two vector space homomorphisms

m : A⊗A→ A (product)

1 : K → A (unit),

subject to the conditions

m ◦ (m⊗ id) = m ◦ (id⊗m) (associativity of m)

m ◦ (1⊗ id) = m ◦ (id⊗1) = id (1 is a left and right unit).

Strictly speaking, there is a unit element 1 in the field K, and the homomorphism 1, and
a unit element in the algebra. We will slightly abuse notation by calling the latter also 1,
namely we identify 1(1) =: 1 ∈ A. Further, we will generally assume our algebras to be
commutative, that is m(a, b) = m(b, a) ∀a, b ∈ A.

Example 44: Algebra of quadratic matrices.

For n ∈ N, the n × n-matrices are the elements of an algebra, where m is matrix
multiplication and 1 is the identity matrix.

Definition 61. Let K be a field. A coassociative couintal coalgebra C over K is a
vector space equipped with two vector space homomorphisms

∆ : C → C ⊗ C (coproduct)

1̃ : C → K (couint)

subject to the conditions

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ (coassociativity of ∆)(︁
1̃⊗ id

)︁
◦∆ =

(︁
id⊗1̃

)︁
◦∆ = id (1̃ is a left and right unit).

Definition 62. A coalgebra C is cocommutative if the two factors of the coproduct are
interchangeable, that is, if for all elements h ∈ C,

∆(h) =
∑︂
i

h′i ⊗ h′′i =
∑︂
i

h′′i ⊗ hi.

Definition 63. The augmentation ideal Aug is the kernel of 1̃. By PAug we denote the
projection to the augmentation ideal such that the identity map is id = PAug + 1̃.
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Definition 64. The reduced coproduct of a coalgebra C ∋ h is

∆1(h) := (PAug ⊗ PAug)∆(h).

Definition 65. Let C be a coalgebra. An element h ∈ C is called primitive if ∆(h) =
h ⊗ 1 + 1 ⊗ h, or equivalently ∆1(h) = 0. An element h ∈ C is called grouplike if
∆(h) = h⊗ h.

Example 45: Polynomials as algebra and coalgebra.

Let K be a field. The polynomials K[t] in one variable t are an algebra, where m is the
ordinary product and 1 is the polynomial 1t. For example, let K[t] ∋ f = 1 + 3t2 and
K[t] ∋ g = 2 + t, then

m(f, g) = f · g = (1 + 3t2)(2 + t) = 2 + t+ 6t2 + 3t3.

Polynomials can also be given the structure of a coalgebra by the following construc-
tion: First, define the counit 1̃(tn) := δn,0 ∈ K. Consequently, the augmentation ideal
(def. 63) are all those polynomials which are not constants.
Next, we let ∆(t) := 1 ⊗ t + t ⊗ 1. This implies that the polynomial t is a primitive

element (def. 65). Then, by the homomorphism property ∆(ab) = ∆(a)∆(b), one finds
the coproduct of any monomial,

∆(tn) =
n∑︂
j=0

(︃
n

j

)︃
tj ⊗ tn−j , 1̃tn = δn,0 ∈ K,

The two factors in the tensor product can be exchanged, the coproduct is cocommutative
(def. 62). By linearity, one obtains the coproduct of any polynomial, for example

∆(1 + 3t2) = 1 ·∆(t0) + 3 ·∆(t2) = 1⊗ 1 + 3
(︁
1⊗ t2 + 2t⊗ t+ t2 ⊗ 1

)︁
∆(2 + t) = 2(1⊗ 1) + 1⊗ t+ t⊗ 1.

Definition 66. Let K be a field. A bialgebra B over K is a vector space over K
endowed with the vector space homomorphisms

m : B ⊗B → B (product)

1 : K → B (unit)

∆ : B → B ⊗B (coproduct)

1̃ : B → K (counit)
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such that (B,m,1) is an algebra (def. 60), and (B,∆, 1̃) is a coalgebra (def. 61), and ∆
and 1̃ are morphisms of the algebra (B,m,1). Explicitly, the latter reads

∆ ◦m = (m⊗m) ◦ (id⊗flip⊗ id) ◦ (∆⊗∆)

1⊗ 1 = ∆ ◦ 1
1̃⊗ 1̃ = 1̃ ◦∆
1̃ ◦ 1 = id,

where flip(a⊗ b) = b⊗ a denotes exchange of two arguments

Example 46: Polynomials as bialgebra.

In example 45, we saw that the polynomials K[t] form an algebra and a coalgebra. In
fact, they form a bialgebra. For the example polynomials above, compatibility of the
product and the coproduct reads

∆ ◦m(f, g) = ∆
(︁
2 + t+ 6t2 + 3t3

)︁
= 2(1⊗ 1) + 1⊗ t+ t⊗ 1 + 6(1⊗ t2 + 2t⊗ t+ t2 ⊗ 1)

+ 3
(︁
1⊗ t3 + 3t⊗ t2 + 3t2 ⊗ t+ t3 ⊗ 1

)︁
= m

(︁
1⊗ 1 + 3

(︁
1⊗ t2 + 2t⊗ t+ t2 ⊗ 1

)︁
, 2(1⊗ 1) + t⊗ 1 + 1⊗ t

)︁
= m (∆f,∆g) .

Definition 67. A Hopf algebra H over K is a bialgebra (def. 66) equipped with a linear
map

S : H → H (antipode)

such that

m (S ⊗ id)∆ = m (id⊗S)∆ = 1 ◦ 1̃.

Automatically, S(1) = 1. Def. 67 together with def. 63 implies for the antipode:

S(h) = −m (S ⊗ PAug)∆(h), h ∈ Aug . (2.10)

For a primitive (def. 65) element h ∈ H we immediately find

S(h) = −h. (2.11)

Similarly, a grouplike element h ∈ H has S(h) = h−1, such that m(h⊗ h−1) = 1.
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2. Hopf algebra theory of renormalization

Definition 68. A Hopf algebra H is graded if

H =

∞⨁︂
k=0

H(k),

∆H(n) ⊆
∑︂
i+j=n

H(i) ⊗H(j)

H(i) ·H(j) ⊆ H(i+j).

For h ∈ H, the degree is denoted |h| ∈ N0, that is |h| = n ⇔ h ∈ H(n). We let
Y : H → H be the linear operator counting the degree,

Y (h) = |h| · h ∀h ∈ H.

The degree counting operator is a derivation, that means, for h1, h2 ∈ H it fulfils

Y (h1 · h2) = Y (h1) · h2 + h1 · Y (h2). (2.12)

If, in a graded Hopf algebra, H(0) = K1, then it is called connected. In that case eq. (2.10)
is sufficient to uniquely define an antipode, therefore, every graded connected bialgebra is
automatically a Hopf algebra.

Example 47: Polynomials as Hopf algebra.

The bialgebra of polynomials (example 46) is actually a graded, connected, cocom-
mutative Hopf algebra HP . The grade of a polynomial is the exponent of its highest
monomial. The operator Y is a derivation (eq. (2.12)), for example

Y
(︁
(3t2 + 1)(t4 − t2)

)︁
= Y (3t6 − 2t4 − t2) = 6(3t6 − 2t4 − t2) = 6(3t2 + 1)(t4 − t2)
= 2(3t2 + 1)(t4 − t2) + (3t2 + 1)4(t4 − t2)
= Y (3t2 + 1) · (t4 − t2) + (3t2 + 1) · Y (t4 − t2).

HP is connected because there is a unique degree zero polynomial 1 = 1 ∈ HP , not to
be confused with e.g. the polynomial 5, which is 5 ∈ K multiplied with 1 ∈ HP . So the

grade zero component (def. 68) is indeed H
(0)
P = K · 1.

Finally, HP has an antipode. Trivially, S(1) = 1 ∈ HP . The monomial t is primitive,
its antipode is S(t) = −t. Using eq. (2.10), we find the antipode

S(t2) = −2S(t)t− S(1)t2 = 2t2 − t2 = t2.

Generally, S(tn) = (−1)ntn = (−t)n as can be seen from the induction step

S(tn) = −
n∑︂
k=0

(︃
n

k

)︃
S(tk)PAug(t

n−k) = −
n−1∑︂
k=0

(︃
n

k

)︃
(−1)k1n−ktn = −(1− 1)ntn + (−1)ntn.
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Definition 69. A Hopf ideal I of a Hopf algebra H (def. 67) is a subset I ⊂ H such
that

H · I ⊂ I
∆(I) ⊂ H ⊗ I + I ⊗H
S(I) ⊂ I

If I ⊂ H is a Hopf ideal then the quotient Hopf algebra mimics the usual construction of
dividing a ring by an ideal, the elements are unique up to addition of elements of the ideal:

H

I
:= {h ∈ H where h1 = h2 ⇔ h1 − h2 ∈ I} . (2.13)

Expressed differently, dividing by an ideal means that all elements of the ideal are set to
zero. Consequently, their coproduct and antipode are also set to zero.

Lemma 19. Let H be a Hopf algebra (def. 67) and I ⊂ H a Hopf ideal (def. 69).
Then, the quotient U := H

I (eq. (2.13)) is a sub Hopf algebra, that is,

∆(U) ⊆ U ⊗ U, S(U) ⊆ U.

We have seen in def. 65 that primitive elements in the Hopf algebra are characterized by a
particularly simple coproduct. This notion can be generalized, namely, we count how often
a coproduct has to be applied recursively before the remainder becomes primitive.

Definition 70. The iterated coproduct of a Hopf algebra H is

∆1 := ∆, ∆k := (∆⊗ id⊗ · · · ⊗ id) (∆⊗ id · · · ⊗ id) · · · (∆⊗ id)∆.

It is well-defined thanks to coassociativity (def. 61) of ∆. Further, using the projector
PAug (def. 63), we define the iterated reduced coproduct,

∆0 := PAug, ∆1 := (PAug ⊗ PAug)∆, ∆k := P
⊗(k+1)
Aug ∆k.

The iterated reduced coproduct is a generalization of the reduced coproduct ∆1 from def. 64.
It induces the coradical filtration

H0 ⊂ H1 ⊂ . . . where Hn :=
{︁
x ∈ H

⃓⃓
∆n(x) = 0

}︁
. (2.14)
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2. Hopf algebra theory of renormalization

Definition 71. Let H ∋ h be a Hopf algebra. Using the iterated coproduct (def. 70),
the coradical degree of h is defined as

cor(h) = n ⇔ ∆n = 0 and ∆k ̸= 0 ∀k < n.

An element h ∈ H is primitive (def. 65) if and only if it has coradical degree one. The
coradical filtration is not to be confused with the grading (def. 68). But there is the bound

cor(h) ≤ |h| ∀h ∈ H. (2.15)

Example 48: Polynomials, coradical degree.

Using the coproduct (example 45) of polynomials, one finds that

∆1(t2) = ∆(t2) = 1⊗ t2 + 2t⊗ t+ t2 ⊗ 1, ∆1(t
2) = 2t⊗ t

∆2(t2) = 1⊗ 1⊗ t2 + 2(1⊗ t+ t⊗ 1)⊗ t+∆(t2)⊗ 1, ∆2(t
2) = 0

and hence cor(t2) = 2. A simple inductive proof shows that cor(tn) = n.

The homomorphisms of a Hopf algebra H can be given the structure of a cochain complex
as follows [269–271]. For n ∈ N0, the n-cochains are the elements of Hom(H,H⊗n), that
is, linear maps Ln : H → H⊗n. Here, H⊗0 = K is the underlying field. The coboundary
operator is

bn : Hom(H,H⊗n)→ Hom(H,H⊗(n+1))

bnLn := (id⊗Ln)∆ +

n∑︂
j=1

(︂
(−1)j id⊗(j−1)⊗∆⊗ id⊗(n−j)

)︂
Ln + (−1)n+1Ln ⊗ 1.

We will only need the first two instances,

b0L0 = m (id⊗L0)∆− 1L0

b1L1 = (id⊗L1)∆−∆L1 + L1 ⊗ 1.

Definition 72. Let H be a Hopf algebra (def. 67) and Ln be a homomorphism
H → H⊗(n+1). If bnLn = 0 then Ln is called n-cocycle. If Ln = bn−1Mn−1 for a
homomorphism Mn−1, then Ln is called n-coboundary.

Automatically, every n-coboundary is also a n-cocycle because the coassociativity of ∆
(def. 61) implies bn+1 ◦ bn = 0. The quotient space, that is, those n-cocycles which are
not n-coboundaries, is called the nth cohomology group.
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Definition 73. Let H be a Hopf algebra. A Hochschild 1-cocycle is a homomorphism
B+ : H → H such that, for all h ∈ H,

∆ (B+(h)) = B+(h)⊗ 1+ (id⊗B+)∆(h).

Lemma 20. Hochschild-1 cocycles B+ (def. 73) have the following properties:

1. The reduced coproduct (def. 64) is ∆1 (B+(h)) = h⊗B+(1) + (id⊗B+)∆1(h).

2. If B+ is a 1-cocycle, then from any homomorphism L0 : H ↦→ K we obtain another
1-cocycle by adding the 0-coboundary b0L0 to B+.

3. B+(1) is primitive (def. 65) and it has no freedom to add 0-coboundaries.

4. B+ increases the coradical degree (def. 71) by exactly one.

Proof. (1) (PAug ⊗ PAug)∆(B+(h)) = (PAug ⊗ PAug) (id⊗B+) (1⊗ h+ h⊗ 1+∆1(h))
(2) If we add a 0-coboundary L1 = b0L0 then b1(B+ + L1) = b1B+ + b1b0L0 = b1B+ since b1b0 = 0.
Hence, (B+ + L1) is a 1-cocycle, fulfilling ∆(B+(h) + L1(h)) = (B+(h) + L1(h)) ⊗ 1 + (id⊗(B+ +
L1))∆(h).
(3) Every homomorphism L0 : H → K maps 1 ↦→ 1 ∈ K. Therefore, b0L0(1) = (id⊗L0)(1 ⊗ 1) −
L0(1) ⊗ 1 = 0. Consequently, a 0-boundary necessarily vanishes when applied to 1 and B+(1) +
b0L0(1) = B+(1). Its coproduct is

B+(1)⊗ 1+ (id⊗B+) (1⊗ 1) = B+(1)⊗ 1+ 1⊗B+(1),

which certifies that B+(1) is primitive (def. 65).
(4) Induction on the coradical degree. Let h have coradical degree n, so ∆n−1(h) ̸= 0.

∆(B+(h)) = B+(h)⊗ 1+ (id⊗B+)(h⊗ 1+ 1⊗ h+∆1(h)) = . . .+ h⊗B+(1) + . . .

It is ∆n = (∆n−1⊗PAug)∆. This coproduct does not vanish since PAugB+(1) ̸= 0 and ∆n−1(h) ̸= 0.
But all higher ones vanish since ∆1(B+(1)) = 0 by (2).

Definition 74. Let H be a Hopf algebra (def. 67) and A an algebra (def. 60). An
A-valued character is a map

ϕ : H → A,

linear under multiplication, that is, ϕ(mH(h1, h2)) = mA(ϕ(h1) ⊗ ϕ(h2)) where mH is
the multiplication in H and mA is the multiplication in A.

77



2. Hopf algebra theory of renormalization

Definition 75. Let ϕ, ψ : H → A be two characters (def. 74) from a Hopf algebra H
to an algebra A. The convolution product ϕ ⋆ ψ is again a character, defined as

ϕ ⋆ ψ = mA(ϕ⊗ ψ)∆.

Together with the convolution product ⋆, the characters H → A form a group GHA . Using
def. 67, one confirms that the inverse of a character ϕ ∈ GHA is given by

ϕ−1 = ϕ ◦ S. (2.16)

Coassociativity of the coproduct (def. 61) implies associativity of the convolution product,

(ϕ1 ⋆ ϕ2) ⋆ ϕ3 = ϕ1 ⋆ (ϕ2 ⋆ ϕ3) .

Example 49: Polynomials, Hopf algebra characters.

Let HP = K[t] from example 47. A group GHP
K of K-valued characters ϕt on HP is

given by the evaluation at a ∈ K. Namely, let p ∈ HP , then

ϕa ∈ GHP
K , ϕa(p) = p(a) ∈ K.

This group GHP
K with operation ⋆ is isomorphic to the group K under addition. Using

the coproduct from example 45, we see that the basis elements behave as expected:

(ϕa ⋆ ϕb) (t
n) = m (ϕa ⊗ ϕb)∆(tn) = (a+ b)n = ϕa+b(t

n).

The antipode from example 47 gives the inverse character according to eq. (2.16),

(︁
ϕa ⋆ ϕ

−1
a

)︁
(tn) = m (ϕa ⊗ ϕa ◦ S)

n∑︂
j=0

(︃
n

j

)︃
tj ⊗ tn−j = m (ϕa ⊗ ϕa)

n∑︂
j=0

(︃
n

j

)︃
tj ⊗ (−t)n−j

=
n∑︂
j=0

(︃
n

j

)︃
aj ⊗ (−a)n−j = 0n = ϕ0(t

n) = ϕa−a(t
n).

Recall that the neutral element of addition is indeed 0, not 1.
We remark that the behaviour of many familiar functions under addition of their argu-

ments can be expressed through a coalgebra [272]. Another such case, apart from poly-
nomials, are trigonometric functions such as sin(a+ b) = sin(a) cos(b) + cos(b) sin(a) =:
(∆ sin) (a, b). Especially, the exponential function ea+b = ea · eb amounts to a grouplike
(def. 65) element, ∆e· = e·⊗ e·. This case will become important later in section 3.2.3.

Theorem 21 (Milnor-Moore-Cartier-Quillen [273, 274]). The dual of a Hopf algebra
is the universal enveloping algebra of a Lie algebra.

The character group GHK (def. 74) is a Lie group, see [275, 276] for details.
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Definition 76. An infinitesimal character is a character (def. 74) σ : H → A which
fulfils, for h1, h2 ∈ H,

σ(h1h2) = 1̃(h1)σ(h2) + 1̃(h2)σ(h1).

The set of all infinitesimal characters form a Lie algebra gHA with Lie bracket given by
the convolution product (def. 75): [σ1, σ2] := σ1 ⋆ σ2 − σ2 ⋆ σ1.

The elements of gHA act as generators of the Lie group GHA by the exponential map

GHA ∋ ϕ = exp⋆(σ) :=
∞∑︂
n=0

1

n!
σ⋆n = 1̃+ σ +

1

2
σ ⋆ σ + . . . . (2.17)

The action of the exponential map on the Hopf algebra H itself justifies the notions of
primitive and grouplike elements (def. 65): If p ∈ H is primitive, then

H ∋ g := 1+ p+
1

2
p2 + . . . = exp(p) (2.18)

is grouplike, as can be verified by explicitly using ∆(p) = p⊗ 1+ 1⊗ p. In a Hopf algebra,
the set of all grouplike elements forms a group under multiplication m.

Example 50: Polynomials, infinitesimal characters.

Polynomials can trivially be identified with their Taylor series at the origin. Any char-
acter ϕa (example 49) is given by the series

ϕa = exp

(︃
a
∂

∂t

⃓⃓⃓⃓
t=0

)︃
.

The infinitesimal characters are thus the first derivatives, σa = a∂t|t=0. They extract the
linear coefficient of a polynomial. They fulfil the condition def. 76 because the product of
two polynomials can only have a linear term if one of the two factors contains a constant
term. But 1̃ is exactly the projection onto constants, namely for two monomials

σa(t
m) = a∂t(t

m)t=0 = am · tm−1|t=0 = am · δm=1

σa(t
m · tn) = a∂t(t

m+n)t=0 = a(m+ n)δm+n=1 = 1̃(tn)σa(t
m) + 1̃(tm) · σa(tn).
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2.1.4. Faà di Bruno Hopf algebra

In section 2.1.3, we have used polynomials as a central example for a Hopf algebra, where
the coproduct merely corresponds to the usual product between two polynomials. The Faà
di Bruno Hopf algebra HFdB [277–280] expresses formal power series, but, contrary to the
polynomials, the coproduct operation is not multiplication of series, but concatenation. Also,
the algebraic perspective is different: The algebra elements are no longer the power series
themselves, but rather their coefficient extraction operators. Let f(t) be a formal power
series (def. 51), then the elements of HFdB are the operators Cn for n ∈ N, extracting the
nth coefficient,

Cn(f) = fn = [tn]f(t) =
1

n!
∂nt f(t)

⃓⃓⃓
t=0

.

A formal power series f(t) over a field K can then be viewed as a linear map that associates
a value – the coefficient fn ∈ K – to each of the algebra elements Cn:

f : HFdB → K[t]

{f1, f2, . . .} ↦→ f1t+ f2t
2 + . . . .

We demand that this map is a character (def. 74) of the Hopf algebra, where the product of
power series is concatenation, not ordinary multiplication:

f ⋆ g := f ◦ g.

On the other hand, the ⋆ product of characters amounts to the coproduct in the Hopf algebra,

(f ⋆ g)Cn = Cn (f(g(t))) = m ◦ (f(t)⊗ g(t))∆Cn. (2.19)

In this way, one obtains the coproduct of the Faà di Bruno Hopf algebra. Observe the
notation: The operator Cn extracts coefficients of the power series, and hence, it effectively
acts to the left, and the notation is consistent with section 2.1.3. From Faà di Bruno’s
theorem 18, we know the coefficients of series concatenation, namely

(f ⋆ g)Cn =
n∑︂
k=1

k!

n!
fk ·Bn,k (1!g1, . . . , (n+ 1− k)!gn+1−k) .

In this formula, fj and gj are once again coefficients, extracted from the power series f, g by
suitable operators Cj . Therefore, the coproduct of the Faà di Bruno Hopf algebra reads

∆Cn =
n∑︂
k=1

k!

n!
Ck ⊗Bn,k (1!C1, 2!C2, . . . , (n+ 1− k)!Cn+1−k) . (2.20)

Generally, f(g(t)) and g(f(t)) are not the same series, while f(t)g(t) and g(t)f(t) are. Con-
sequently, the coproduct eq. (2.20) is not cocommutative (def. 62) while the one of the
polynomials (example 45) is.
From eq. (2.20), one obtains ∆(C1) = C1 ⊗ C1, this element is grouplike (def. 65). By

rescaling all involved power series, we set C1 = 1 ∈ HFdB to ensure that C1 has an inverse.
The Faà di Bruno Hopf algebra is connected. The inverse character is given by the antipode
eq. (2.16). The antipode is obtained either by demanding that the character f−1 be the
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inverse series under concatenation, or by using eq. (2.10). Unsurprisingly, the result in both
cases is the Lagrange inversion formula (theorem 17), where f1 = 1:

SCn =
1

n!

n−1∑︂
k=1

(−1)kBn−1+k,k (0, 2!C2, 3!C3, . . .) =
1

n!

n−1∑︂
k=1

Bn−1+k,k (0,−2!C2,−3!C3, . . .) .

(2.21)

Example 51: Faà di Bruno Hopf algebra, coproducts and antipodes.

The first coproducts eq. (2.20) are

∆(C2) = C2 ⊗ 1+ 1⊗ C2

∆(C3) = C3 ⊗ 1+ 1⊗ C3 + 2C2 ⊗ C2

∆(C4) = C4 ⊗ 1+ 1⊗ C4 + C2 ⊗
(︁
C2

2 + 2C3

)︁
+ 3C3 ⊗ C2.

Compare this with the coefficients in example 40. The antipodes agree with example 39,

SC2 = −C2

SC3 = −C3 + 2C2
2

SC4 = −C4 + 5C2C3 − 5C3
2.

There is a beautiful graphical representation of the Faà di Bruno Hopf algebra as rooted
trees. We identify Cn with a vertex with n lower edges, called hairs. This can be motivated
intuitively: Cn corresponds to a term tn in a power series, so it “takes” a value t and “returns”
n copies of it, which it multiplies.

C1 = C2 = C3 = C4 =

Figure 2.1.: Identification of the Faà di Bruno Hopf Hopf algebra elements with trees.

A concatenation f ◦g of two functions corresponds to replacing the argument t of f(t) with
the series g, so attaching the vertices of g at the lower ends of the vertices of f . We obtain
plane trees (without crossing edges) of depth two with arbitrary many vertices. A tree with
n hairs contributes to (f ◦ g)Cn, so to the coefficient tn of f(g(t)). With the notation of
eq. (2.20), the left factor in the tensor product corresponds to the upper vertex, the right
factor is the lower vertex. Note that each tree with n hairs corresponds to a partition of
{1, . . . , n} into k non-empty sets, where k is the number of hairs of the upper vertex. In
total, ∆Cn is given by all these plane trees, so it is a sum over all such partitions. This
is precisely the sum over Bell polynomials (def. 52), counting trees reproduces the formula
eq. (2.20) for the coproduct.
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Example 52: Series concatenation as trees.

Let us see explicitly how trees reproduce the coefficients of f(g(t)) from example 40. We
show the trees and below them the corresponding terms in the coproduct (example 51),
where the left factor is the upper vertex and the right factor are the lower vertices.

+ + + + 2 + + . . .

C1 ⊗ C1 + C2 ⊗ C2
1 + C1 ⊗ C2 + C3 ⊗ C3

1 + 2 C2 ⊗ C2C1 + C1 ⊗ C3 + . . .

f1g1 t +
(︂
f2g

2
1 + f1g2

)︂
t2 +

(︂
f3g

3
1 + 2 f2g2g1 + f1g3

)︂
t3 + . . .

Note how the combinatorial factor 2 exactly accounts for the two ways of attaching the
lower vertices to the upper one, namely left or right.

Knowing the coproduct, the antipode can be constructed recursively using eq. (2.10). We
skip the details, the end result is that the antipode is given by the sum of all trees, not just
the ones of depth 2. Additionally, each vertex of the trees carries a factor −1. For any n, SCn
corresponds to the sum of all those trees with exactly n leaves. There are infinitely many
trees which differ from each other just by adding chains of 2-valent vertices. These infinite
sums, viewed as a geometric series, eventually correspond to the factors 1

f1
in theorem 17,

compare eq. (1.53). The condition f1 = 1, or equivalently C1 = 1, amounts to leaving out
all such chains and keeping only non-trivial trees. Of course, working out the tree-counting
with the help of set partitions reproduces the Lagrange inversion theorem 17 and eq. (2.21).

Example 53: Series inversion as trees.

Assume C1 = 1, then there are no 2-valent vertices and the edges contribute a factor 1
to the value of a tree. To improve readability, we also leave out all + signs between the
various summands.

2 3 4 2

1 (−C2) (−C3)

2(−C2)
2

(−C4)

3(−C2)(−C3)

4(−C2)
3

(−C2)
3

2(−C2)(−C3)

1t − f2t
2 +

(︂
− f3+f

2
2

)︂
t3 +

(︂
− f4 +5f2f3 −5f3

2

)︂
t4

Observe that different tree topologies contribute to the same monomial at order t4. As
claimed, the end result equals the inverse series given in example 39.

SCn amounts to the sum of all trees with alternating signs. To facilitate notation, define

Bn := inSCn. (2.22)
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This operator extracts the n-th coefficient of the inverse of a given power series,

f(t)Bn = in[tn]f−1(t) = inn!
∂n f−1(t)

∂tn

⃓⃓⃓⃓
t=0

. (2.23)

The antipode of Bn essentially extracts coefficients of f ,

f(t) (SBn) = f−1(t)Bn = in[tn]f(t) = f(t) (inCn) .

Example 54: Faà di Bruno Hopf algebra, inverse operators.

Using eq. (2.21), one finds

B4 =
(︁
−C4 + 5C2C3 − 5C3

2

)︁
i4

B5 =
(︁
−C5 + 6C2C4 + 3C2

3 − 21C2
2C3 + 14C4

2

)︁
i5

Up to the factors in, we have merely exchanged the meaning of Cn and SCn with SBn

and Bn. This appears to be a technical subtlety, but becomes convenient for the coproduct
∆(Bn). The latter now computes the coefficients of two concatenated inverse series. Note
that by Coxeter’s rule, f−1 ◦ g−1 = (g ◦ f)−1, so

m (f ⊗ g)∆(Bn) = (f ◦ g)Bn =
(︁
g−1 ◦ f−1

)︁−1
Bn = in

(︁
g−1 ◦ f−1

)︁
Cn

= inm (g ⊗ f) (S ⊗ S)∆Cn = m (f ⊗ g) inflip (S ⊗ S)∆(Cn).

Translating this to our graphical representation, Bj equals the sum of all plane trees with
exactly j leaves. Observe the difference between ∆(Bn) and ∆(Cn) (eq. (2.20)): For ∆(Cn),
we sum over all trees of depth exactly two, where the upper vertex is the left factor in the
tensor product, whereas for ∆(Bn), there is no restriction to the depth and the factors are
exchanged. The upper part of the cut tree, which is a tree itself, represents the right factor
in the tensor product. The lower part of the cut tree is a product of trees and appears to the
left. One can include an additional flip operation into the definition to reverse this change.

Theorem 22. Let Bn be the operator from eq. (2.22). In the graphical representation
as rooted trees, whereBn corresponds to the sum of all trees with n leaves, the coproduct
is given by

∆(Bn) =
∑︂

C=R∪P
BP ⊗BR.

Here, C is the set of all possible cuts of the trees which separate the root from the leaves,
including the trivial cuts above the root or below the leaves. Each path in the trees
from above the roots to below the trees is cut exactly once. R denotes the component
including the root, P is a disjoint union of trees containing all the leaves, andBP denotes
the product of all the Bj corresponding to the disjoint trees. The summands BR,BP

correspond to individual trees, they become well-defined tree-sums Bn only in the sum
over C.
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Proof. The non-trivial assertion of this theorem is that, when summing over all cuts of all trees
representing some Bn, the cut components once again add up to Bj , without any trees missing or
doubled. On the one hand, this is a standard fact of enumerating all plane trees: One obtains exactly
all trees by joining all smaller trees in all possible ways, and our cut formula reverses this operation.
On the other hand, it can be shown by retreating to ∆(Cn): Cutting the trees of depth two produces
all trees of depth one, that is, vertices. Using eq. (2.22), we replace each vertex with j leaves with a
sum of all trees with j leaves.

Example 55: Faà di Bruno Hopf algebra, coproduct of inverse operators.

To understand the coproduct of theorem 22, let us examine ∆(B3) in detail. That
means, we are looking for the coefficient of t3 in the concatenation

g−1(f−1(t)) = . . .+
(︁
−f3 + 2f2

2 − g3 + 2g2
2 + 2f2g2

)︁
· t3 + . . . .

B3 is represented by two different trees, both of which have 3 leaves. They are
shown in the top row. Below them are all the possibilities of cutting them according to
theorem 22. Next, we reorder the cut components to obtain Bj .

B3 = + 2

R

P

1 · (−f3) (−g3) · 1 1 · (−f2)
2 (−g2) · (−f2) (−g2)

2 · 1

reorder

2

2

2

∆(B3) = B3 ⊗ 1 + 1⊗B3 + 2 B2 ⊗B2

The individual trees we obtained in R and P are not necessarily Hopf algebra elements
Bj , but, as expected, they appear in just the right multiplicities that the total sum
consists of Bj . A similar construction produces the coproduct

∆(B4) = B4 ⊗ 1+ 1⊗B4 +B2
2 ⊗B2 + 2B3 ⊗B2 + 3B2 ⊗B3.

For more details about the Faà di Bruno Hopf algebra, see for example [280–282]. We
remark that, instead of ordinary power series f(t) = f1t + f2t

2 + . . ., it is more customary

to base the whole construction on exponential power series f(t) = f1
t
1! + f2

t2

2! + . . .. This
only changes numerical prefactors, namely, one then has to consider all permutations of

84



2.1. Combinatorics and Hopf algebras

lower edges, not only the planar ones. For example, the factor 2 in ∆(C3) becomes a 3, in
accordance with the three ways to permute the leaves of the tree in example 52.
At least two close cousins of the Faà di Bruno Hopf algebra are worth mentioning: Firstly,

the Connes-Moscovici Hopf algebra HCM which appears in the study of elliptic operators on
foliations [283]. Very loosely speaking, for the most simple case, if f(t) is a formal power
series (def. 51), then the basis elements δk ∈ HCM extract the coefficients of ln

(︁
∂tf

−1(t)
)︁
.

Thereby, δn are similar to Bn from eq. (2.23), only that they operate on the logarithm of
power series. The elements δk ∈ HCM can again be represented by certain rooted trees [284],
see example 59.
Secondly, the Butcher group [285–288] expresses the concatenation of Runge-Kutta numer-

ical integration methods [289, 290]. Not too surprisingly, the combinatorics of this process
is once more expressible by joining certain rooted trees.
We mentioned the correspondence between trees and their generating formal power series

in section 1.3.10. Now we are in the position to understand the Legendre transform (def. 53)
graphically: Given some vertices, by inverting the series, compare to eq. (2.23), it produces
all possible trees made from these vertices. For details on counting graphs, see [153, 212,
249, 252, 291].

Example 56: ϕ3 theory, counting treelevel graphs.

To illustrate how the Legendre transform can in principle be used to count graphs, con-
sider ϕ3 theory in D = 0 spacetime dimensions. This means that there is no kinematic
dependence, every Feynman graph evaluates to a constant number. Without integrals,
the classical action (def. 7) equals the Lagrangian (example 3); it is the generating func-
tion of the vertices. The 3-valent vertex has amplitude λ3 and an edge has amplitude
1
p . The Legendre transform (def. 53) can be computed in closed form:

L(t) = 1

2
pt2 − λ3

3!
t3,

∂ L
∂t

= pt− 1

2
λ3t

2

(︃
∂ L
∂t

)︃−1

=
p−

√︁
p2 − 2λ3t− p
λ3

−
(︃
∂ L
∂t

)︃−1

· t+ L

(︄(︃
∂ L
∂t

)︃−1
)︄

=
p3

3λ2
3

− pt

λ3
−
(︁
p2 − 2λ3t

)︁ 3
2

3λ2
3

= −1

p

t2

2!
− λ3

p3

t3

3!
− 3

λ2
3

p5

t4

4!
− 15

λ3
3

p7

t5

5!
− 105

λ4
3

p9

t6

6!
− . . .

= −
∞∑︂
n=2

(2n− 5)!!
λn−2

3

p2n−3

tn

n!
.

In the resulting series, the coefficient of tn

n! corresponds to all trees with n external
edges. Powers of λ3 count vertices, powers of p−1 count edges. Hence, there are exactly
(2n−5)!! trees with n external edges, and each of them contains (n−2) 3-valent vertices
and 2n− 3 edges (of which n are external edges). This satisfies the Euler characteristic
eq. (1.44).
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2.1.5. Connes-Kreimer Hopf algebra

The Faà di Bruno Hopf algebra (section 2.1.4) has a natural interpretation as rooted trees,
and its coproduct is given by cutting these trees into an upper and a lower part (theorem 22).
The elements Bn of the (inverse) Faà di Bruno Hopf algebra are the sums of all rooted trees
with n leaves. The coproduct and the antipode in the Faà di Bruno Hopf algebra do not
actually require that the Hopf algebra elements are sums of all rooted trees, it is possible to
understand these operations for each individual tree. To this end, we need a Hopf algebra
where the elements are not sums of trees, but individual trees. This is the Connes-Kreimer
Hopf algebra of rooted trees HCK [269, 283, 292, 293]. In fact, there are several closely
related Hopf algebras of rooted trees, see also [280, 294–297], the latter with the cheerful
introduction “We study here a type of algebra which deserves more attention than it has
been given”.
In the following, we attach 1-valent vertices at the top and bottom of any tree, so the

leaves are now vertices, not edges. Every edge now is incident to precisely two vertices.

Definition 77. The Connes-Kreimer Hopf algebra HCK is a graded (def. 68) Hopf alge-
bra (def. 67) where the basis elements are non-plane rooted trees, that means, different
ways of drawing trees count as the same element. Multiplication of trees is disjoint
union, the unit is the empty tree, the counit annihilates all trees but the empty tree.
The coproduct is given in analogy to theorem 22: Let an admissible cut ∅ ̸= c ⊆ ET
be a subset of the edges of a tree T ∈ HCK such that every path from the root of T to
any of its leaves contains at most one edge e ∈ c. Removing c disconnects the tree, let
Rc(T ) be the component containing the root and P c(T ) all other components. Then
T − c = P c(T ) ⊕ Rc(T ). Let C(T ) be the set of all cuts c, then the coproduct and
antipode of HCK are

∆(T ) = T ⊗ 1+ 1⊗ T +
∑︂

∅̸=c∈C

P c(T )⊗Rc(T )

S(T ) = −T −
∑︂

∅̸=c∈C

S
(︁
P c(T )

)︁
Rc(T ).

The degree of a tree is the number of vertices, counted by the operator Y : HCK → HCK

according to Y (T ) = |T | · T (def. 68).

Example 57: Rooted trees, coproducts and antipodes.

Recall the reduced coproduct from def. 70.

∆ (•) = • ⊗ 1+ 1⊗ •, ∆1 (•) = 0, S (•) = −•,

∆1

(︂
•
•
•
)︂
= 2 • ⊗ •

• + • • ⊗•, ∆2

(︂
•
•
•
)︂
= 2 • ⊗ • ⊗•,

S
(︂

•
•
•
)︂
= − •

•
• + 2 • •

• − • • •.
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Multiplicativity ∆(h1h2) = ∆(h1)∆(h2) results in (compare ∆(tn) in example 45)

∆
(︁
• • · · · •⏞ ⏟⏟ ⏞
n factors

)︁
=

n∑︂
j=0

(︃
n

j

)︃
• • · · · •⏞ ⏟⏟ ⏞
n−j factors

⊗• • · · · •⏞ ⏟⏟ ⏞
j factors

.

The degree (def. 68) is counted by Y , this operator is a derivation (eq. (2.12)):

Y
(︂

•
•
)︂
= 2 •

• , Y
(︂

•
•
•• •

•
•
)︂
= 7 •

•
•• •

•
• = Y

(︂
•
•
••

)︂
•
•
• + •

•
••
Y
(︂

•
•
•
)︂
.

Theorem 23 (Universal property [269, Sec. 3 thm. 2]). Let A be an algebra and
L : A → A an endomorphism. Then there is a unique morphism U : HCK → A such
that U ◦B+ = B+ ◦ L and U ◦mHCK

= mA ◦ U and U ◦ 1HCK
= 1A ◦ U .

Especially, if A in theorem 23 is a Hopf algebra itself, then U is a Hopf algebra morphism.

Example 58: Rooted trees of Faà di Bruno Hopf algebra.

One obtains Connes-Kreimer trees for the inverse Faà di Bruno Hopf algebra by omitting
the hairs,

B1 = 1, B2 = •, B3 = 2 •
• + •, B4 = 4 •

•• + •
•
• + 5 •

• + •.

Computing the coproduct of these forests, one confirms the result of example 55.

Example 59: Rooted trees of Connes-Moscovici Hopf algebra.

The generators of the Connes-Moscovici Hopf algebra are obtained recursively by natural
growth N : HCK → HCK. This amounts to adding one new leaf at every possible vertex
of the preceding forest. The first generators are

N (1) = • =: δ1, N (δ1) = •
• =: δ2, N (δ2) = •

•• + •
•
• =: δ3

N (δ3) =
••
•• + •••

•
+ 3 •

•
••

+ •
•
•• =: δ4.

These weights can be computed from the tree factorial [284], and they show interesting
behaviour in QFT [298].

Definition 78. The 1-cocycle (def. 73) B+ of the Connes-Kreimer Hopf algebra HCK

(def. 77) takes a disjoint union of trees T1 · · ·Tn as argument and joins all of them to a
newly created root, producing a tree B+(T1 · · ·Tn).
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Example 60: Rooted trees, cocycle.

B+ (1) = •, B+ (• • •) = •
•
•• , B+

(︂
•
•
•
)︂
= •••

•
.

Example 61: Bamboos.

The bamboos are the rooted trees without branches, namely

b0 = 1, b1 = •, b2 = •
• , bn =

•·
·•
•
n , Y (bn) = nbn.

All bamboos can be generated from the cocycle (def. 78) by setting b1 = B+(1) and
bn = B+(bn−1). bn has exactly n− 1 edges. Explicit construction gives the coproduct

∆ (bn) =

n∑︂
k=0

bn−k ⊗ bk.

The coproduct of bamboos is symmetric under exchange of the two factors, and both
factors consist of bamboos exclusively. Hence, the bamboos form a cocommutative
(def. 62) sub Hopf algebra of HCK. Especially, the sum of all bamboos is a grouplike
(def. 65) element

GB :=
∞∑︂
n=0

bn, ⇒ ∆(GB) = GB ⊗GB.

The antipode of bamboos can be written as

S(bn) =
n∑︂
k=1

(−1)k
∑︂

s1+...+sk=n

bs1 · · · bsk .

We have seen in eq. (2.18) that grouplike elements are the exponential function of primitive
elements. Conversely, we expect to find primitive elements by taking the “logarithm” of
grouplike elements. This operation can be made precise using a Dynkin operator.

Definition 79. The Dynkin operator is defined to be the convolution product (def. 75)
of the antipode with the degree operator (def. 68):

S ⋆ Y : HCK → HCK, (S ⋆ Y )(h) = m (S ⊗ Y )∆(h).

The Dynkin operator is an infinitesimal character def. 76. Using the cocycle property
(def. 73) of B+ (def. 78), ∆ (B+(h)) = B+(h)⊗ 1+ (id⊗B+)∆(h), together with Y (1) = 0,
one finds that for all h ∈ HCK, the coradical degree (def. 71) falls,

cor ((S ⋆ Y ) (h)) < cor(h). (2.24)
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Effectively, the Dynkin operator realizes a logarithm. Applied to the grouplike element GB
of example 61, we obtain an infinite set of primitive forests, one for each degree. Let bn be
a bamboo (example 61), then a primitive forest of degree k is given by

pn =
1

n
(S ⋆ Y ) (bn) =

1

n

n∑︂
k=1

kS(bn−k)bk. (2.25)

Example 62: Rooted trees, primitive elements.

p1 = •, p2 = •
• − 1

2
• •, p3 = •

•• − • •
• +

1

3
• • • .

These elements are non-trivial examples of the bound eq. (2.15): 1 = cor(pk) ≤ |pk| = k.
When applied to arbitrary trees, the Dynkin operator does not necessarily produce a

primitive element. For example F := (S ⋆ Y )
(︂

•
•
•
)︂

= 3 •
•
• − 4 • •

• + • • • is not

primitive, but ∆1(F ) = 2 • ⊗p2 − 4p2 ⊗ • and therefore cor(F ) = 2 < 3 = cor( •
•
• ) ,

see eq. (2.24).

2.1.6. Fixed-point equations for rooted trees

The Cocycle def. 78 can be used to construct a fixed-point equation for some forest X(α) ∈
HCK, depending on a parameter α. We restrict ourselves to the form

X(α) = 1+ αB+

(︂
X(α) ·Q(α)

)︂
. (2.26)

Here, Q(α) ∈ HCK is a forest, the most relevant case for us is

Q(α) := X(α)w, w ∈ R. (2.27)

If we allow for labelled rooted trees then every labelled vertex • comes with its own cocycle
Bn

+ and we can consider a generalization of eq. (2.26),

X(α) = 1+
∑︂
k

αkBk
+

(︂
X(α) ·Qk(α)

)︂
. (2.28)

Example 63: Linear fixed-point equation.

The choice w = 0 amounts to Q = 1 and therefore the eqation

X(α) = 1+ αB+ (X(α)) .

We call this a linear fixed-point equation, because the argument of B+ is a linear function
of X(α). Clearly, the order zero solution is X(α) = 1 + O (α). If we insert this into
the DSE, we obtain X(α) = 1 + αB+(1) +O(α2) = 1 + • +O(α2). By induction, the
unique power-series solution of the linear fixed-point equation is given by the bamboos
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(example 61),

X(α) = 1+ α •+α2
•
• + α3

•
•• + . . . =

∞∑︂
n=0

αnbn.

Using the cocycle property (def. 73), we see

∆(X(α)) = ∆(1) + αB+ (X(α))⊗ 1+ (id⊗B+)∆ (X(α))

= X(α)⊗ 1+ (id⊗B+)∆ (X(α))

which has the solution ∆ (X(α)) = X(α) ⊗X(α). The solution of a linear fixed point
equation is grouplike (def. 65). Taking coefficients in α, we learn that the bamboos are
cocommutative, without explicitly constructing their coproduct (compare example 61).

The cocycle B+ (def. 78) joins all its arguments to a new root. If B+ is given (w + 1)
factors as an argument, it will produce a root vertex with (w+1) children. Consequently, a
parameter w ∈ N0 defines the maximum fertility of the trees in the series X(α): There will
be trees with up to (w+1) children per vertex. If y is negative or non-integer, then a formal
series expansion is understood:

X(α) = 1+ Y (α) ⇒ X(α)w+1 :=

∞∑︂
n=0

(︃
w + 1

n

)︃
Y (α)n.

This series terminates for w+1 ∈ N, otherwise it is infinite. In particular, the choice w = −2
produces the geometric series

X(α)−2+1 =
1

1+ Y (α)
=

∞∑︂
n=0

(−1)nY (α)n.

The general solution of the fixed point equation 2.28 is a series

X(α) = 1+
∞∑︂
k=1

αkxk, (2.29)

where the coefficients xk ∈ HCK are sums of rooted trees.

Theorem 24 (Kreimer, Bergbauer, Van Suijlekom, Foissy [270, 271, 299, 300]). Con-
sider the Connes-Kreimer Hopf algebra HCK (def. 77). Let eq. (2.29) be the unique
power series solution of eq. (2.28) where Q = Xw. Then

1. ∆ (X(α)) =
∑︁∞

j=0X(α)αjQj(α)⊗ xj .

2. The coefficients xk of the solution X(α) generate a sub Hopf algebra of HCK.

3. If w ∈ N0, then xk is a sum of rooted trees with at most w + 1 children at each
vertex.
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Summary of section 2.1.

1. Power series are useful even if they do not converge as functions. Many “analytic”
operations can rigorously be defined term-wise (section 2.1.1).

2. Divergent power series contain information about their non-perturbative comple-
tion in the way the coefficients grow (section 2.1.2).

3. Hopf algebras are a systematic mathematical framework for operations that require
a “deconcatenation”, given by the coproduct (section 2.1.3).

4. In the Faà di Bruno Hopf algebra, the coproduct describes insertion of power series
into each other, and the antipode gives the inverse series. Elements can be denoted
as rooted trees with hair (section 2.1.4).

5. The Connes-Kreimer Hopf algebra of rooted trees is the general framework in
which almost all Hopf algebras can be understood graphically (section 2.1.5).

6. Fixed point equations, expressed by the Hochschild cocycle B+, generate sub Hopf
algebras. Linear fixed point equations have grouplike solutions (section 2.1.6).
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2.2. Renormalization

In constructing the perturbative expansion for QFT observables, namely the Dyson series
eq. (1.33), we have so far ignored one conceptual problem: Every observable is given by an
infinite series in the coupling parameter α, therefore, no measurement can tell us the value
of α directly. To infer α, we need to invert the series corresponding to that observable. The
process of adjusting the bare parameters to match experimental values for the observables
is called renormalization.

2.2.1. Renormalization of a formal power series

To understand the combinatorics of renormalization, we first examine an illustrative example
without any reference to QFT. This section partially follows [279, 280, 301]. Assume that
we are given a formal power series in a parameter λ0, where coefficients depend on another
variable s,

f(λ0, s) = λ0 + f0,2(s)λ
2
0 + f0,3(s)λ

3
0 +O

(︁
λ4

0

)︁
. (2.30)

Our task is to evaluate this series as a function of s. We have no information about λ0.
Instead, we are given the value of the function at some point s = s0, called renormalization
point :

f(λ0, s0) =: λ. (2.31)

This equation is called a renormalization condition. Since s0 is a constant, we can view the
renormalization condition as a formal power series λ(λ0). The value λ is called renormalized
coupling. Given this data, we can in principle invert the series eq. (2.30) in order to find the
value of λ0. But in practice, we would like to express all predictions in terms of the observable
λ instead of always doing the inversion whenever we get a new value λ. Therefore, we define
the renormalized function

fR(λ, s) := f
(︁
λ0(λ), s

)︁
(2.32)

where

λ0(λ) =: c1λ+ c2λ
2 + c3λ

3 + . . . =: Zλ(λ) · λ. (2.33)

is the inverse series of eq. (2.31). We have defined the Z-factor , Zλ(λ). Our task now
reduces to a purely combinatorial problem for the series coefficients. First, determine the
coefficients cj of the Z-factor by inverting eq. (2.31), and second, insert the series λ0(λ) into
eq. (2.30) to produce the renormalized series eq. (2.32). Both are standard operations for
formal power series (section 2.1.1). Using theorem 17, we find the Z-factor as in example 39,

Zλ(λ) = 1− f0,2(s0)λ+
(︁
2f2

0,2(s0)− f0,3(s0)
)︁
λ3 + . . . .

With the help of theorem 18, we arrive at our renormalized function eq. (2.32),

fR(λ, s) = λ+ (f0,2(s)− f0,2(s0))⏞ ⏟⏟ ⏞
=:f2(s)

λ2 +
(︂
f0,3(s)− f0,3(s0)− 2f0,2(s0) (f0,2(s)− f0,2(s0))⏞ ⏟⏟ ⏞

=f2(s)

)︂
λ3 + . . .

Explicit formulas for fj and cj can be constructed in terms of Bell polynomials (def. 52).
Although we did not make any reference to physics, our result exhibits some typical

properties one also observes for renormalization in QFT:
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2.2. Renormalization

1. The renormalized function features so called “subtractions”
(︁
f0,j(s) − f0,j(s0)

)︁
as

“building blocks”. In Feynman graphs, they will correspond to superficial divergences.

2. At order λn there are terms involving
(︁
f0,j(s) − f0,j(s0)

)︁
for j < n. For Feynman

graphs, they correspond to subgraphs.

3. There are seemingly non-trivial signs and combinatoric factors. In fact, they arise from
the inversion and concatenation of series (section 2.1.1).

To transfer our findings to a more general setting, we rewrite them in the abstract language
of the Faà di Bruno Hopf algebra HFdB (section 2.1.4). We take s, s0 as fixed parameters and
let λ, λ0 be the power series argument. The bare function f , and the renormalized function
fR, are supposed to be characters (def. 74) in HFdB:

n!cn = Cn (λ0(λ))

n!f0,n = Cn (f(λ0))

n!fn = Cn (fR(λ)) = Cn (fR(λ0(λ))) .

Definition 80. The kinematic renormalization operator R is the evaluation of a power
series f(s, λ, . . .) at a fixed value s0 of the kinematic scale variable s,

R
(︁
f(λ, s)

)︁
:= fR(λ, s0).

In eq. (2.32), the renormalized function is given as a concatenation of the unrenormalized
function with the series λ0(λ) from eq. (2.33). In the Faà di Bruno Hopf algebra, the
coefficient of such concatenated series is expressed by the coproduct (eq. (2.19)):

fRCn = m(λ0 ◦ f)∆Cn = (λ0 ⋆ f)Cn.

By the renormalization condition eq. (2.31), λ0(λ) is the inverse series of f , evaluated at
s = s0. Using the kinematic renormalization operator def. 80, this reads

λ0Cn = (f(λ, s0))
−1 Cn = (R (f))−1 Cn = R (f)SCn = R ◦ f ◦ SCn. (2.34)

Despite the abstract algebraic language, there is an intuitive understanding of the situation:
The operator (SCn) extracts the n-th coefficient of the inverse of the function standing on
the left of it, and that very function is f(λ0, s), evaluated at s = s0. Consequently, the n-th
coefficient of the renormalized series is

fRCn = (RfS ⋆ f)Cn. (2.35)

The combinatoric properties of the convolution product (def. 75) ensure that we are multi-
plying and adding the correct coefficients on the right hand side. We can rewrite eq. (2.35) in
a “recursive” fashion by splitting off the augmentation ideal (def. 63), namely PAug+ 1̃ = id,
and noting that ∆Cn contains a summand Cn ⊗ 1. Further, we use R(R(f)) = R(f) and
eq. (2.10), S = −m(S ⊗ PAug)∆, to arrive at

fRCn = m (RfS ⊗ f)∆Cn = m (RfS ⊗ fPAug)∆Cn +m (RfS ⊗ f) (Cn ⊗ 1)
= (id−R) (m (RfS ⊗ fPAug)∆Cn) = (id−R) (RfS ⋆ fPAug)Cn.
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2. Hopf algebra theory of renormalization

These formulas hold for every single coefficients. Therefore, they also hold for the over-
all renormalized power series fR(λ) (eq. (2.32)) fulfilling the renormalization condition
eq. (2.31),

fR(t) = RfS ⋆ f = (id−R) (RfS ⋆ fPAug) . (2.36)

2.2.2. Classification of Feynman amplitudes

The renormalization procedure as developed in section 2.2.1 involves only a single power
series. In most situations in QFT, renormalization will be applied to multiple power series
simultaneously, namely to different Green functions. In the present section, we establish a
classification for the various Green functions which can appear in a given QFT.

Definition 81 ([302, 303]). Assume that
{︁
p
j

}︁
are the external momenta to some Green

function in momentum space. We define the scale s as the square of any non-vanishing
linear combination of them such that s = 0 only when all external momenta vanish. All
other momenta are then expressed as dimensionless ratios, such as θ1 =

p
1
p
2

s , which we
collectively call angles θ. Sometimes, we also express the internal masses as angles by
scaling to s.

A n-point Green function has (n−1) independent momenta due to momentum conservation.

By Lorentz covariance, it depends only on the (n − 1) magnitudes p2
i
and the (n−1)(n−2)

2

scalar products p
i
p
j
, so n(n−1)

2 scalar variables in total. One of them is the scale, and there

are n(n−1)
2 − 1 angles. This number is reduced by n if the external edges are required to be

onshell (def. 8).

Example 64: Mandelstam variables of 4-point functions.

A 4-point scattering process, where masses are not counted as angles, has five angle
variables. If the external edges are onshell, then one angle remains. It is typically
expressed in terms of the Lorentz-invariant Mandelstam variables [100],

s :=
(︁
p

1
+ p

2

)︁2
, t :=

(︁
p

1
+ p

3

)︁2
, u :=

(︁
p

1
+ p

4

)︁2
.

As always, all four momenta are counted as incoming. One can choose, for example,
s as a scale, then θ1 = t

s and θ2 = u
s are angles. They are related by s + t + u =

m2
1 +m2

2 +m2
3 +m2

4.

Example 65: Scale invariance.

Spacial or temporal translations are generated by the operator ∂k, rotations by xi∂j −
xj∂i and scale transformations by xj∂j + ∆, where ∆ is a constant, the dimension of
the field in question (we will compute it in def. 103). All theories considered in this
thesis are invariant under translations and rotations, namely Poincaré transformations
(def. 3).
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2.2. Renormalization

If they are additionally scale invariant, then the 2-point function (of a scalar field) is
G(2)(x1, x2) ∝ (x2

12)
−∆, where x12 = x2 − x1. This function, thereby, only depends on

the scale (def. 81). If the theory would contain a mass, then the mass-dependence would
enter in the form of an angle, breaking scale invariance. Likewise, the 3-point function
of a scale-invariant theory has the form

G(3) ∝ |x12|
−3∆ f(θ1, θ2),

where θ1 =
|x13|
|x12|

and θ2 =
|x23|
|x12|

.

The same relations hold for scale-invariant functions in momentum space. The 2-
point function depends only on s := p2, while the 3-point function depends on s and
two angles.
A similar, but not identical, situation arises for a non-scale-invariant theory, where

we take the masses fixed, not expressing them as angles. In that case, one can consider
onshell Green functions by setting p2

j
= m2 for every external p. Both the 2-point

function and the 3-point function are mere numbers in that case, there is no degree of
freedom left.

Example 66: Conformal invariance.

Conformal symmetry has the generators x2∂j −2xjxi∂i−2∆ ·xj . If a theory is not only
scale invariant (example 65), but also conformally invariant, then the 3-point function
is entirely fixed to be

G(3)(x1, x2, x3) ∝ |x12|
−∆ |x13|

−∆ |x23|
−∆ .

The first non-trivial correlation function of a conformally invariant theory is the 4-point
function, depending (non-trivially) on two angles. Generally, a conformally invariant

n-point function has n(n−3)
2 degrees of freedom [304, 305].

Definition 82. The tensor structure T of a Feynman amplitude G is, in a scalar
theory, a monomial in the external momenta of the Green function. Especially, the
mass dimension (def. 4) is [T ] = [G].

Let g be the residue (def. 26) of a Green function, and T be its tensor structure (def. 82).
In general, g can contain multiple different field types and the tensor structure T may also
involve Dirac matrices or tensors corresponding to internal symmetries. By (g, T ), we denote
the Green function with residue g, projected onto the tensor T . Here and in the following,
we assume that T is compatible with g, that is, the number and type of kinematic variables
in the tensor T matches the external fields in the residue g. This pair (g, T ) can be used to
classify all the Green functions of a QFT. For a fixed residue, the sum over all tensors T is
defined as Gg :=

∑︁
T T · (g, T ). For a theory with a single scalar field, the external structure

is simply the number of fields, we write G(n) := Gϕ
n
for a Green function with n external

fields.
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2. Hopf algebra theory of renormalization

Example 67: Decomposition of Green functions for scalar fields.

Consider massive ϕ4 theory in D = 4 dimensions (example 3). The 2-point function
contains summands proportional to p2 and summands proportional to m2, so there are

two components, (ϕ2, p2) and (ϕ2,m2). Consequently, G(2) = p2f1+m
2f2, where f1 and

f2 are functions of scale-free ratios of momenta.
The 4-point function is not proportional to momenta, we write (ϕ4, 1). This does not

imply that the 4-point function is constant, it can still depend on angles, and on the
scale in a non-polynomial way. The 6-point function behaves like (ϕ6, p−2). The massive
theory also has (ϕ6,m−2). The massless theory has exactly one Green function for each
n ∈ N, namely (ϕ2n, s2−n) with the scale s := p2.

Example 68: Decomposition of Green functions for QED.

The 2-point function of the fermion ψ in QED (to be introduced in example 22) is
Gψ̄ψ = (ψψ̄, pµγµ), where γµ are the Dirac matrices. The massless photon Aµ has
two different 2-point functions, a longitudinal one (AµAν , pµpν), and a transversal one
(AµAν , ηµνp2 − pµpν). The tensors of amplitudes with a higher number of non-scalar
particles are conveniently classified in terms of spin-helicity variables [127, 128, 306].

2.2.3. Hopf algebra of Feynman graphs

Definition 83. The set of amplitudes needing renormalization R is a set of pairs
(g, T ) = r, where g is the residue (def. 26) of a Green function, and T is a kinematic
tensor structure compatible with g. The notion R = ∞ means that R contains all
amplitudes (g, T ).
For a connected Feynman graph Γ, we denote Γ ∈ R if res(Γ) = g for some (g, T ) ∈ R

and F(Γ) projected onto T does not vanish. Γ ∈ R+ means that Γ ∈ R and |LΓ| > 0
(def. 28). Similarly, a non-connected graph Γ is ∈ R if all connected components are.

For the present section, the precise choice of R is irrelevant. In section 2.3.4, we see why
certain R are physically sensible.

Example 69: ϕn theory, amplitudes needing renormalization.

For massive ϕ4 theory in D = 4 dimensions with propagator powers νe = 1, we choose

R =
{︁(︁
ϕ2,m2

)︁
,
(︁
ϕ2, p2

)︁
,
(︁
ϕ4, 1

)︁}︁
.

For the massless theory, leave out the m2 residue. ϕ3 theory in D = 6 dimensions has

R =
{︁(︁
ϕ2,m2

)︁
,
(︁
ϕ2, p2

)︁
,
(︁
ϕ3, 1

)︁}︁
.
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2.2. Renormalization

Definition 84. The Hopf algebra (def. 67) of Feynman graphsHF contains all Feynman
graphs (def. 24) as algebra elements. The productm is given by disjoint union, it is com-
mutative. 1 is the empty graph. Let R be a set of amplitudes needing renormalization
(def. 83), then the coproduct of a Feynman graph Γ ∈ HF is

∆R(Γ) =
∑︂

Γ⊃γ∈R+

γ ⊗ Γ

γ
.

Here, γ does not need to be connected, but every component must have at least one
loop (def. 28). Γ

γ denotes contraction (def. 27). HF is graded by the loop number and
connected, the antipode follows from eq. (2.10).

Example 70: Dunce’s cap, renormalization coproduct.

Consider the dunce’s cap from example 12. It has exactly one proper subgraph γ with
res(γ) ∈ R+ (example 69), the multiedge γ = {e3, e4}. The cograph Γ

γ is a multiedge
{e1, e2}. Note that {e1, e2, e3} /∈ R because this graph has 6 external edges.

Γ :=

e1

e2
e3 e4 γ := e3 e4

Γ
γ =

e2

e1

Hence, the coproduct of the dunce’s cap is

∆R(Γ) = 1⊗ Γ + Γ⊗ 1+ {e3, e4} ⊗ {e1, e2} .

Definition 85. The core Hopf algebra of Feynman graphs is a Hopf algebra of Feynman
graphs (def. 84), where the coproduct ∆∞ is given by R = ∞ (def. 83). That is, there
is a factor γ ⊗ Γ

γ for every subgraph γ which has at least one loop.

Example 71: Dunce’s cap, core coproduct.

The dunce’s cap from example 70 has two subgraphs with 6 external edges. Contracting
them, one obtains a tadpole (self-loop) on a single vertex. We denote the tadpole made
of edge ej by tj . The core-coproduct (def. 85) reads

∆∞ (Γ) = ∆R(Γ) + {e1, e2, e3} ⊗ t4 + {e1, e2, e4} ⊗ t3.

Definition 86. In the Hopf algebra HF (def. 84), a graph Γ is said to be primitive
(def. 65) if Γ ∈ R+ (def. 83) and there is no proper subgraph γ ⊂ Γ with γ ∈ R+ .
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2. Hopf algebra theory of renormalization

Example 72: ϕ4 theory, primitive graphs.

All 1-loop Feynman graphs Γ with Γ ∈ R are primitive because they can not have proper
subgraphs with at least one loop. The dunce’s cap (example 12) is not primitive due to
the subgraph γ = {e3, e4} ∈ R+. But there are primitive graphs with more than one
loop in ϕ4 theory, for example:

v1

v2

v3

v4

v5

e1

e2

e3

e4

e5
e6

The fact that there is more than one primitive element in HF has an interesting conse-
quence for the Hochschild cocycle B+ (def. 73). Namely, by lemma 20, B+(1) is primitive,
therefore, there must be multiple B+ in HF , one for each primitive Feynman graph.

Definition 87. Let Γ ∈ HF be a primitive (def. 86) graph. Then there is a Hochschild
1-cocycle BΓ

+ : HF → Aug (def. 73) such that BΓ
+(1) = Γ and

BΓ
+ (h) =

1

|I|
∑︂
I

insert h into Γ,

where I is the set of all possible insertion places of h into Γ. Here, h can be a product
(=disjoint union) of multiple graphs, and the operation returns the empty graph in case
h has too many, or incompatible, components.

Example 73: Cocycle of Feynman graphs.

Let

Γ = γ =

then

BΓ
+(γ) =

1
3 + 1

3 + 1
3
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We have mentioned in section 2.1.5 that the Hopf algebra of rooted trees HCK (def. 77) is
a universal description for all graded connected Hopf algebras (theorem 23). Consequently,
there is a mapping of Feynman graphs HF (def. 84) into HCK.

Theorem 25 (Kreimer [292, 307]). The following algorithm is a Hopf algebra homo-
morphism from HF to a vertex-labelled HCK. Let Γ ∈ HF be a Feynman graph.

1. Let γ ⊂ Γ with γ ∈ R+ (def. 83). Assume there are zero or more graphs γ′ ⊂ γ
with γ′ ∈ R+. If γ⋃︁

γ′ ∈ R+, but γ −
⋃︁
γ′ is not in R+ , then γ corresponds to a

vertex vγ , labelled by γ, of a rooted tree.

2. If γ1 ⊂ γ2 both correspond to vertices by point 1, then the vertex vγ1 is attached
below vγ2 .

3. If γ ⊂ γ1 and γ ⊂ γ2 but γ1 ⊈ γ2 and γ2 ⊈ γ1, then draw two trees, one where vγ
is attached below vγ1 and one where vγ is attached below vγ2 .

Without the labels of the rooted trees, one can, in general, not reproduce the corresponding
Feynman graph, compare examples 76 and 78.

Example 74: Chain graphs, rooted trees.

The conditions in point 1 of theorem 25 may appear intransparent. To clarify them,
consider a chain of n multiedges in ϕ3 theory (example 69):

Cn = · · ·

γ1 γ2 γn

Every single γj is ∈ R and has one loop and does not have any non-trivial subgraphs, so
each γj amounts to one vertex in the rooted tree. Now consider the connected subgraph
γ′ := γ1 ∪ e ∪ γ2. It is also ∈ R+ and, for example,

γ′

γ1
= γ2 ∪ e ∈ R+.

Still, γ′ does not map to a vertex in the rooted trees because γ′ − γ1 = γ2 ∪ e ∈ R+.
Restricting ourselves again to unlabelled trees, theorem 25 yields (compare example 57)

Cn ↦→ • • · · · •⏞ ⏟⏟ ⏞
n factors

.
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2. Hopf algebra theory of renormalization

Example 75: Second chain graph, rooted trees.

The graph S in example 26 is called “second chain graph” because its subgraph is the
second chain C2 from example 74. Under theorem 25, ignoring vertex labels,

S ↦→ •
•
• .

Observe how C2 = γ1γ2 ↦→ •• is attached below the root vertex. The graphs with

only one subgraph from example 26 map to Γ/γi = Γi ↦→ •
• . This is the same rooted

tree as the dunce’s cap (example 77), despite the Feynman graphs being different. The
coproduct is

∆(S) = S ⊗ 1+ 1⊗ S + (γ1 ⊗ S1 + γ2 ⊗ S2) + γ1γ2 ⊗ γ

↦→ •
•
• ⊗ 1+ 1⊗ •

•
• + 2 • ⊗ •

• + • • ⊗ • .

Example 76: Bamboos from rainbows.

In example 61 we saw that the bamboos are an interesting class of rooted trees. The
rainbow Feynman graphs are a possible counterpart in HF:

• = b1 •
• = b2 •

•• = b3

The coproduct (def. 84) of the Feynman graphs clearly matches the coproduct of exam-
ple 61, as every subgraph and cograph of a rainbow graph is again a (smaller) rainbow
graph.

Example 77: Dunce’s cap, rooted trees.

In the renormalization Hopf algebra, the dunce’s cap has only a single subgraph (exam-
ple 70). Using unlabelled rooted trees, by theorem 25

Γ ↦→ •
• .

The coproduct of this rooted tree (def. 77) exactly matches the one of Γ,

∆R(Γ) = 1⊗ Γ + Γ⊗ 1+ {e3, e4} ⊗ {e1, e2}

∆
(︂

•
•
)︂
= 1⊗ •

• + •
• ⊗ 1+ • ⊗ •.
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As anticipated, the unlabelled trees are missing information: • denotes both {e3, e4}
and {e1, e2}, and we do not know if {e3, e4} is inserted into the left or right vertex of
{e1, e2}.

Example 78: Bamboos from ladders.

As announced below theorem 25, the mappingHF → HCK is not invertible for unlabelled
trees. As an illustration, the ladder graphs represent another class of Feynman graphs
which are mapped to the (unlabelled) bamboos just like the rainbows (example 76).

• = b1 •
• = b2 •

•• = b3

In ϕ3 theory, the ladders contribute to the vertex Γ(3), the rainbows to the propagator
Γ(2).

2.2.4. Renormalized Feynman rules

The Feynman rules are a character (def. 74) in the Hopf algebraHF (def. 84). The cocycle BΓ
+

(def. 87) of HF corresponds to a linear operator for the Feynman rules, namely integration:

F
[︁
BΓ

+(h)
]︁
=

∫︂
dΓ F [h]. (2.37)

Here
∫︁
dΓ denotes the integral over the respective integration variables of the Feynman inte-

gral F [Γ], and it is understood that F [h] is to be evaluated at the corresponding arguments.
Using theorem 25, one can reformulate the Feynman rules to act not on graphs, but on

labelled rooted trees. Besides being a useful tool to organize the combinatorial aspects of
ordinary amplitudes, these tree Feynman rules allow to construct simplified toy models for
renormalization. This can be useful to study the combinatorics while skipping the technical
difficulties of solving ordinary Feynman integrals [288, 308, 309].
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Example 79: Toy model Feynman rules.

Let t ∈ HCK be a forest of unlabelled rooted trees, and ϵ ∈ R a regularization parameter.
One possible toy model [307, 308] is given by

F [B+(t)] (s) :=

∞∫︂
0

dx
x−ϵ

x+ s
F [t](x).

Morally, this resembles a theory with a single primitive.

Having established the Hopf algebra of Feynman graphs, renormalization now is concep-
tually very simple. All we have to do is apply eq. (2.36) to Feynman graphs. For a more
precise discussion of the various Hopf algebras involved in renormalization, see [278, 287,
310–312].

Definition 88. The renormalized Feynman rules are given by

FR = SF
R ⋆ F = (id−R)

(︁
SF
R ⋆ FPAug

)︁
.

Here, F are the Feynman rules (def. 38), ⋆ is the convolution product (def. 75), SF
R is

the counterterm (def. 89), and PAug projects onto Aug (def. 63). We write FR[Γ](L) to
indicate the Feynman rules acting on Γ, evaluated at L.

Definition 89. The counterterm is the twisted antipode, given recursively by eq. (2.10),

SF
R[Γ] = −R

(︂
m
(︁
SF
R ⊗FPAug

)︁
∆(Γ)

)︂
= −R

(︂
(SF

R ⋆ FPAug)Γ
)︂
.

Here, R denotes the renormalization operator to be made precise in def. 97.

Note that the counterterm involves nested applications of the renormalization operator, in
general SF

R[Γ] ̸= R (S(Γ)). We see this effect explicitly later in example 107.

Definition 90. The renormalized 1PI Green functions arise from the combinatorial
1PI Green functions (def. 45) via the renormalized Feynman rules (def. 88),

GrR := FR [Γr] =
∑︂

Γ 1PI, res(Γ)=r

α|LΓ| sym(Γ)FR[Γ].

Example 80: Dunce’s cap, renormalized amplitude.

The coproduct of the dunce’s cap Γ has been computed in example 70. IfM (1) = {e3, e4}
is a 1-loop multiedge (example 24) then S(M (1)) = −M (1), and as always S(1) = 1.
Further, F [1] = 1 and PAug(1) = 0 (def. 63). Hence, the renormalized Feynman rules
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(def. 88) of the dunce’s cap are

FR[Γ] = (id−R)m (RFS ⊗FPAug)∆R(Γ)

= (id−R)
(︂
RFS(1) · F [Γ] + 0 +RFS ({e3, e4}) · F [{e1, e2}]

)︂
= (id−R)

(︂
F [Γ]−RF [{e3, e4}] · F [{e1, e2}]

)︂
.

SF
R[Γ] = −RF [Γ] +R

(︂
RF [{e3, e4}] · F [{e1, e2}]

)︂
.

As expected, the combinatorics of this procedure is non-trivial, but everything is encoded
in the Hopf algebra coproduct (def. 84).
We do not print the full result here because it is a complicated function. See exam-

ple 87.
Asymptotically for large scale s, the finite term scales like (ln s/s0)

2 [173]. We will
understand this in theorem 35.

Unrenormalized Feynman rules are multiplicative for disjoint graphs (eq. (1.41)), which
has the interpretation of locality, namely that two processes are independent if they happen
far apart from each other. Renormalization might spoil this property, but we demand that
also the renormalized Feynman rules be multiplicative,

FR
[︁
h1 · h2

]︁
= FR

[︁
h1

]︁
· FR

[︁
h2

]︁
. (2.38)

More precisely, we want FR to be a character (def. 74) on HF (def. 84). Effectively, this is
a condition for the counterterm SF

R (def. 89), which needs to be a character as well. This
requires [284, 310, 313, 314] that the renormalization operator R is a Rota-Baxter operator
[315, 316],

R
(︂
f(x)g(x)

)︂
+R (f(x))R (g(x))

!
= R

(︂
R (f(x)) g(x)

)︂
+R

(︂
f(x)R (g(x))

)︂
. (2.39)

The most straightforward renormalization operator R is the analogue of def. 80, with
the only difference that it acts on functions G which, in general, depend on more than one
variable.

Definition 91. Let G ∈ R (def. 83) be an amplitude needing renormalization. In the
kinematic renormalization scheme, or MOM-scheme, or BPHZ-scheme, the renormal-
ization operator R evaluates G at a fixed value s0, θ0 of the angle and scale variables
(def. 81),

R : G(s, θ,m, . . .) ↦→ G(s0, θ0,m, . . .).

The kinematic renormalization operator has the special property that

R
(︂
(Rf(s)) · g(s)

)︂
= R

(︂
f(s0) · g(s)

)︂
= f(s0) · g(s0) = R

(︂
f(s) · g(s)

)︂
=
(︂
Rf(s)

)︂
·
(︂
Rg(s)

)︂
.

Thereby, it trivially fulfils the Rota-Baxter equation 2.39, and the couterterm (def. 89) in
kinematic renormalization indeed turns out to be SF

R[Γ] = R (S(Γ)).
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2. Hopf algebra theory of renormalization

Owing to the cocycle property (def. 73), the renormalized Feynman rules (def. 88) acting
on B+ (eq. (2.37)) decompose into subtraction of a superficial divergence, (id−R), and
renormalization of subdivergences, FR[h] [270]:

FR
[︁
BΓ

+(h)
]︁
= (id−R)

∫︂
dΓ FR[h] = (id−R)F

[︁
BΓ

+(FR[h])
]︁
. (2.40)

2.2.5. Dyson-Schwinger equations revisited

In section 1.3.11, we have introduced Dyson-Schwinger equations in a rather colloquial way.
The Hopf algebra of Feynman graphs allows us to give them a much more concrete form.
By the DSE theorem 14, every internal edge in a kernel graph Γ (def. 50) is to be replaced

by the connected 2-point function (def. 47), given by the series
(︁
Γ(2)

)︁−1
. Equivalently, one

can “distribute” the factor Γ(2) to the two vertices adjacent to the edge by using Γ(2) =(︁
Γ(2)

)︁ 1
2 ·
(︁
Γ(2)

)︁ 1
2 . The square root of a set of graphs is explained by its formal (def. 51) series

expansion,

√
1 + t =

∞∑︂
n=0

(︃1
2

n

)︃
tn =

∞∑︂
n=0

(2n)!(−1)n+1

(n!)2(2n− 1)4n
tn = 1 +

1

2
t− 1

8
t2 +

1

16
t3 ∓ . . . .

Products of graphs are disjoint unions (def. 84). Every n-valent internal vertex v ∈ VΓ is
adjacent to exactly n edges, and every edge is adjacent to two vertices. In the following, it
turns out to include the Green functions of adjacent edges together with the vertex into a
single object, the invariant charge.

Definition 92. Let v be a n-valent vertex and Γv its combinatorial 1PI Green function
(def. 45). Let e ∼ v be edges adjacent to v and Γe the 1PI propagator corresponding to
e. The combinatorial invariant charge is

Qv =

(︄
Γv∏︁

e∼v
√
Γe

)︄ 2
n−2

.

The exponent 2
n−2 in def. 92 is a matter of convention, here it is chosen such that the loop

number (def. 28) matches the power of Qv.

Example 81: Invariant charges.

In scalar ϕn theory, the invariant charges for the n-valent vertices are

Qn =

(︁
Γ(n)

)︁ 2
n−2(︁

Γ(2)
)︁ n

n−2

, Q3 =

(︁
Γ(3)

)︁2(︁
Γ(2)

)︁3 , Q4 =
Γ(4)(︁
Γ(2)

)︁2 .
QED has a photon , and an electron , and a vertex with invariant charge

QQED =
(Γ )2(︁
Γ
)︁2

Γ
.
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2.2. Renormalization

QCD has gluons , quarks , and ghosts , and four different vertices:

Q =

(︂
Γ
)︂2

(︁
Γ
)︁3 , Q =

Γ(︁
Γ
)︁2 , Q =

(︂
Γ
)︂2

(︁
Γ
)︁2

Γ
, Q =

(︂
Γ
)︂2

(︁
Γ
)︁2

Γ
.

Theorem 26 (Combinatorial Dyson-Schwinger equations). Consider a scalar QFT

with a single n-valent interaction term. Rescale λ
2

n−2
n =: α. Let Γ(n) be the n-point

1PI graphs (def. 45), where Γ(n) is divided by (iλn) such that the treelevel vertex is
normalized to 1. Let Γ(2) be the 1PI 2-point function (def. 47). Let K(n) be the
set of kernel graphs (def. 50) with residue ϕn. Then the Dyson-Schwinger equations
(theorem 14) can be expressed using the Hochschild 1-cocycle B+ (def. 87) as

Γ(2) = 1−
∑︂

Γ∈K(2)

α|LΓ| sym(Γ)BΓ
+

(︂
Γ(2) ·Q|LΓ|

n

)︂
Γ(n) = 1+

∑︂
Γ∈K(n)

α|LΓ| sym(Γ)BΓ
+

(︂
Γ(n) ·Q|LΓ|

n

)︂
.

Proof. The Cocycle BΓ
+(h) (def. 87) of Feynman graphs inserts the subgraph h into Γ, by the iden-

tification eq. (2.37). This is exactly what is being done in a graphical Dyson-Schwinger equation
(theorem 14). To be shown is that the argument of BΓ

+ is sufficient to replace exactly all inter-

nal edges and vertices of Γ. Consider the propagator DSE. By eq. (1.43), a graph Γ ∈ K(2) has
n

n−2 |LΓ| − 1 internal edges and 2
n−2 |LΓ| vertices. Therefore BΓ

+ requires the argument

(︂
Γ(2)

)︂−( n
n−2 |LΓ|−1) (︂

Γ(n)
)︂ 2

n−2 |LΓ|
= Γ(2)

(︄
Γ(n)(︁
Γ(2)

)︁n
2

)︄ 2
n−2 |LΓ|

= Γ(2) ·Q|LΓ|
n .

The vertices of this graph contribute λ
2

n−2 |LΓ|
3 = α|LΓ|. Analogous for the vertex DSE.

Example 82: Multiedge DSE, algebraic form.

In example 34 we have introduced a simplified DSE for the propagator by setting the
3-valent vertex to its treelevel value. Thanks to our rescaling, this now amounts to

Γ(3) = 1, ⇒ Q3 =
(︂
Γ(2)

)︂−3
.

The DSE has only one single kernel graph, , with symmetry factor (theorem 13)
sym( ) = 1

2 . In the form of theorem 26, the DSE reads

Γ(2) = 1− α · 1
2
B+

(︃(︂
Γ(2)

)︂−2
)︃
.

The exponent −2 means that one can insert two
(︁
Γ(2)

)︁−1
into the two edges of .
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2. Hopf algebra theory of renormalization

There are also Dyson-Schwinger equations for those Green functions which do not require
(superficial) renormalization. For a renormalizable scalar ϕn theory, these are all Γ(m) with
m > n. Let t be any of the trees with m external edges, then, by eq. (1.42), t contains
|Vt| = m−2

n−2 vertices and |Et| = m−n
n−2 internal edges. Define

T (m) :=

(︁
Γ(n)

)︁m−2
n−2(︁

Γ(2)
)︁m−n

n−2

and let K̄
(m)

be the set of all 1PI kernel graphs (def. 50) Γ with res(Γ) = ϕm without
sub-divergences. Unlike theorem 26, these K(m) are not divergent themselves. Then

Γ(m) =
∑︂

Γ∈P̄ (m)

α|LΓ| sym(Γ)BΓ
+

(︂
T (m) ·Q|LΓ|

n

)︂
. (2.41)

Observe that this DSE is missing the summand 1 because Γ(m) has no treelevel vertex, and
it is a 1PI Green function (def. 45), so the tree T (m) itself does not contribute to Γ(m).

Using eq. (2.40), one can directly map theorem 26 to a set of integral equations for renor-
malized Green functions.

Definition 93. The renormalized invariant charge is the renormalized Feynman rule
(def. 88) acting on the combinatorial invariant charge (def. 92),

Q(α,L) := F [Q(α)](L), QR(α,L) := FR[Q(α)](L).

In kinematic renormalization (def. 91), we must fix all angles at the renormalization point
symmetrically, such that all Green functions involved in Qn are evaluated at the same scale.

Theorem 27. Let GrR be the renormalized 1PI Green function (defs. 47 and 90)
with residue r, where the treelevel term is normalized to unity. Let P r be the set of
subdivergence-free (but not necessarily superficially divergent) graphs with residue r.
Then the Dyson-Schwinger equations from theorem 26 and eq. (2.41) can be expressed
using the Hochschild 1-cocycle B+ (eq. (2.37)) as

GrR = 1± (id−R)
∑︂

Γ∈P (j)

α|LΓ| sym(Γ)F
[︂
BΓ

+

(︂
GrR · Q

|LΓ|
R

)︂]︂
, r ∈ R

GrR =
∑︂

Γ∈P r

α|LΓ| sym(Γ)F
[︂
BΓ

+

(︂
T (m) · Q|LΓ|

R

)︂]︂
, r /∈ R.

106



2.2. Renormalization

Summary of section 2.2.

1. Renormalization means to express bare parameters by observables, which are
themselves power series in the bare parameters. Technically, this amounts to
insertion and reversion of power series, leading to the formula fR = SfR ⋆ f
(section 2.2.1).

2. In QFT, there are multiple power series, corresponding to the Green functions.
They can be classified with respect to their residue and their tensor structure
(section 2.2.2).

3. Feynman graphs form a Hopf algebra HF. The coproduct is given by extraction
and contraction of all subgraphs which are classified in a set R. There is a homo-
morphism between Feynman graphs and rooted trees. The abstract Hochschild-
1-cocycle B+ amounts, for Feynman graphs, to the insertion of subgraphs (sec-
tion 2.2.3).

4. Feynman rules are a character in HF. The renormalized Feynman rules FR =
SF
R ⋆ F are a character as well, they implement one renormalization condition for

each Green function in R (section 2.2.4).

5. For Feynman amplitudes, B+ is the integral operator which appears in the Dyson-
Schwinger equations. The arguments can be regrouped so that, instead of vertex
Green functions Γv, they involve one invariant charge Qv for each vertex v of the
theory.
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2. Hopf algebra theory of renormalization

2.3. Divergences and renormalizability

The alert physicist reader might wonder by now how we have introduced renormalization
without any reference to “removing infinities”. This is not an accident: Renormalization
is a rigorous method of expressing power series in terms of observable parameters, which
themselves are given by power series. It is completely unrelated to the question if certain
integrals are divergent, and it is necessary in just the same way if they are not. Nonetheless,
in the present section we see that renormalization also eliminates certain types of divergences
from the theory.

2.3.1. Divergences of Feynman graphs

Before we discuss the general case, we consider a simple illustration for the qualitative
behaviour of Feynman integrals. Let L and n be integers, n + L ̸= 0 and consider the
L-dimensional integral (ignoring integration constants)

Λ1∫︂
Λ0

dLt tn =

Λ1∫︂
Λ0

dt · · ·
Λ1∫︂

Λ0

dt tn =
n!

(n+ L)!

(︂
Λn+L

1 − Λn+L
0

)︂
. (2.42)

The limit Λ1 → ∞ is called ultraviolet (UV) limit while Λ0 → 0 is the infrared (IR) limit.
This naming is motivated physically: Ultraviolet light carries higher energy (“t→∞”) per
photon than visible light, while infrared light carries less (“t→ 0”).
Clearly, the expression eq. (2.42) is divergent in the UV limit if n + L > 0. We call this

phenomenon an UV-divergence. Similarly, the integral has an IR-divergence if n+L < 0. If
n+ L = 0, the result will be a logarithm which is both UV-divergent and IR-divergent.
Now consider a Feynman integral in momentum space, eq. (1.47),

F [Γ] =
∏︂
v∈VΓ

(−iλ|v|) ·
∏︂
l∈LΓ

∫︂
dDkl
(2π)D

∏︂
e∈EΓ

(GF (ke))
νe . (2.43)

By choosing spherical coordinates, we can split each D-dimensional integration dDkl into
a scale tl and D − 1 angles {θl}, compare def. 81. The scale is to be integrated from 0 to
∞ with a measure dtl t

D−1
l , while the integration domain of the angles is compact. Next,

for each integration scale tl, we extract a common factor t such that tl = t · cl and the
quantities cl represent the ratio between two scales, fixing e.g. c1 = 1. There are |LΓ|
(def. 28) integrations over different tl, hence the integration over t has a measure dt t|LΓ|D−1.

Definition 94. Let tl be as above. A superficial UV divergence is a divergence of the
Feynman integral in the limit where all tl → ∞ jointly, that is, the limit t → ∞ with
finite cl. Conversely, if the integral diverges in the case where only a subset of the tl
goes →∞, then it is said to have an UV subdivergence.

In the limit t→∞, the Feynman propagator eq. (1.24) behaves like t−2, regardless of the
value of the mass me. Consequently, the integrand in eq. (2.43) scales like∏︂

e∈EΓ

(GF (ke))
νe ∼

∏︂
e∈EΓ

(︁
t−2
)︁νe

= t
−2

∑︁
e∈EΓ

νe , t→∞.
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2.3. Divergences and renormalizability

Including the integration measure dt t|LΓ|D−1, we find that in the superficial UV limit,
t→∞, the Feynman integral eq. (1.47) behaves like

Λ1∫︂
dt t

|LΓ|D−1−2
∑︁

e∈EΓ
νe · (angle integrations) ∝

(︁
Λ2

1

)︁|LΓ|D2 −
∑︁

e∈EΓ
νe
, Λ1 →∞. (2.44)

The exponent |LΓ| D2 −
∑︁

e∈EΓ
νe = −ωΓ is nothing but the negative superficial degree of

convergence (def. 41). This justifies the name: The Feynman integral is superficially UV-
divergent if ωΓ ≤ 0. A UV subdivergence (def. 94) of F [Γ] amounts to a superficial UV
divergence of the integral of some subgraph γ ⊂ Γ. One finds that again, the sub-integral is
divergent if ωγ ≤ 0.

Theorem 28 (Weinberg power counting theorem [317]). The Feynman integral F [Γ]
of a Feynman graph Γ is UV-convergent if the superficial degree of convergence def. 41
fulfils

1. ωΓ > 0 and

2. ωγ > 0 for all subgraphs ∅ ̸= γ ⊂ Γ.

At the same time, each factor tl is the magnitude of a 4-momentum. Consequently, its
mass dimension (def. 4) is [tl] = 1 and the superficial degree of convergence equals the mass
dimension of the overall Feynman integral:

assuming [λj ] = 0,
[︁
F [Γ]

]︁
= −2ωΓ = |LΓ|D − 2

∑︂
e∈EΓ

νe. (2.45)

If the coupling constants λj themselves have a non-vanishing mass dimension, then[︁
F [Γ]

]︁
= −2ωΓ +

∑︂
v∈VΓ

[λ|v|]. (2.46)

We further remark that the UV-limit in momentum space corresponds to a short-distance
limit in position space. Instead of using the Feynman integral in momentum space (eq. (2.43)),
the same conclusions can be reached in position space or in the parametric representation,
see e.g. [303]. Inspecting eq. (1.50), we can confirm that the prefactor Γ(ωΓ) causes the
expression to diverge as soon as ωΓ is a non-positive integer, in accordance with theorem 28.

Example 83: Multiedges, mass dimension.

For the massless multiedge graphs, the only quantity with a nonvanishing mass di-
mension are the external momentum s := p2, with [s] = 2, and potentially the cou-
pling constants. The monomial sn has mass dimension 2n. Indeed, the amplitude of
the 1-loop-multiedge (example 24) is F

[︁
M (1)

]︁
∝ λ2

3s
−ω as expected from eq. (2.46),[︁

F [M (l)]
]︁
= 2[λl+2]− 2ω.
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2. Hopf algebra theory of renormalization

Definition 95. A Feynman integral F [Γ] is said to be logarithmically UV divergent
if the superficial degree of convergence (def. 41), or equivalently the mass dimension
(eq. (2.45)), is ωΓ = 0. It is said to be quadratically UV divergent if ωΓ = −1, and so
on.

Returning to our initial example eq. (2.42), we can repeat the whole procedure for the in-
frared limit, analyzing “superficial” infrared divergences. The result is a statement analogous
to theorem 28, the Lowenstein Zimmerman power counting theorem [318].

Infrared singularities arise if the denominators in Feynman propagators (eq. (1.24)) vanish
at the lower integration limit, which is only possible for massless particles me = 0. However,
the fact that k2

e can be both positive or negative means that the denominator can also vanish
in other regions of the integration domain, which can depend on the external kinematics.
Consequently, there are two different classes of infrared divergences:

1. Infrared divergences in a closer sense are soft and collinear IR divergences, they occur
in the limit of vanishing momentum in massless propagators. Although they make the
individual integrals diverge, these divergences always cancel if one sums up all processes
contributing to a physically observable process by the Kinoshita Lee Nauenberg theorem
[319–322]. One can avoid them for example by giving a small artificial mass to internal
edges or by choosing suitable momenta of external edges [323].

2. In a wider sense, massive propagators can also become singular if they are onshell
(def. 8), k2

e = m2
e > 0. Unlike UV and IR divergences, these situations reflect an

expected physical behaviour of scattering amplitudes, for example, a branch cut as
soon as the total energy of external particles is sufficient to create a real intermediate
state. The amplitude will not be holomorphic at such points, but, choosing appropriate
integration contours and Riemann sheets, it will not diverge overall. See section 1.2.8
for some comments on the analytic structure of Feynman amplitudes.

We conclude that, although infrared singularities can be a formidable challenge in concrete
calculations, they are not conceptionally relevant for the topic of the present thesis, which
is UV renormalization. In the following, we will largely ignore infrared singularities and
instead focus on the ultraviolet ones.

2.3.2. Analytic regularization

Feynman integrals are UV-divergent if their superficial degree of convergence (def. 41) is a
non-positive integer, as can be seen from eq. (1.50). To work with these expressions in a
mathematically sensible way, we need to regularize them so that they become infinite only in
some well-defined limit. The most basic regularization is a cutoff in the integral like Λ0,Λ1

in eq. (2.42). However, a cutoff breaks Lorentz invariance.
Breaking a symmetry in the regularization is not necessarily catastrophic, because a regu-

larized amplitude is only an intermediate object without direct physical significance. But the
missing symmetry makes computations cumbersome, the various cutoffs become increasingly
intransparent if we consider subdivergences, and special care is required to make sure that
symmetries are properly restored if the regulator is removed. We therefore concentrate on
those regularization schemes that preserve Lorentz symmetry.
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2.3. Divergences and renormalizability

Analytic regularization amounts to choosing νe /∈ N. Physically, this means that we
slightly change the short-distance, or high-energy, behaviour of propagators. The resulting
amplitude will be divergent in the physical limit {νe → 1}. We can introduce parameters
νe := 1 + εe, where the physical limit is εe → 0. It is generally unnecessary to alter every
single propagator, as long as ωγ becomes non-integer for every divergent subgraph γ.

Example 84: Massless l-loop multiedges, analytic regularization.

We can specialize the amplitude from example 25 to D = 4 dimensions:

F
[︁
M (l)

]︁
(s) =

−λ2
l+2i

l+1

(4π)2l
Γ(ω)∏︁
e Γ(νe)

1

sω

∏︁
e Γ (2− νe)

Γ (2(l + 1)− ν)
.

Here, ν := ν1 + . . .+ νl+1. Choose, νe =: 1 + ε with the same parameter ε for all edges.
In that case ν = l + 1 + (l + 1)ε and ω = (l + 1)(1 + ε)− 2l = 1− l + (l + 1)ε.

F
[︁
M (l)

]︁
(s) =

−λ2
l+2i

l+1

(4π)2l
Γ(1− l + (l + 1)ε)

(Γ(1 + ε))l+1

1

sω
(Γ (1− ε))l+1

Γ ((l + 1)− (l + 1)ε)
.

We are interested in a series expansion of the regularized amplitude in the regularization
parameter(s). For the Euler Gamma function (def. 5), this is easily done:

zΓ(z) = Γ(1 + z), Γ(z)Γ(1− z) sin(πz) = π,

Γ(1 + z) = exp

(︃
−ϵγE +

∑︂∞

m=2

(−z)m

m
ζ(m)

)︃
. (2.47)

Here, γE = 0,577 . . . is Euler’s constant [324]. The Riemann Zeta function [325] is

ζ(m) :=
∞∑︂
t=1

1

tm
. (2.48)

Example 85: Massless 1-loop multiedge, series expansion.

The 1-loop multiedge from example 84, with the choice νe = 1 + ε, requires ratios like(︃
Γ (1− ϵ)
Γ(1 + ϵ)

)︃n
= exp

(︄
2nϵγE + 2n

∞∑︂
m=1

ϵ2m+1

2m+ 1
ζ(2m+ 1)

)︄
.

As expected, the regularized Feynman amplitude is divergent in the limit ε→ 0:

F
[︁
M (1)

]︁
(s) =

λ2
3

(4π)2
1

s2ϵ

1

2ϵ(1− 2ε)
exp

(︄
2

∞∑︂
m=1

(︁
(−2)2m+1 + 2

)︁
ε2m+1

2m+ 1
ζ(2m+ 1)

)︄

=
λ2

3

(4π)2

(︃
1

2ε
+ 1− ln s+

(︁
2− 2 ln s+ (ln s)2

)︁
ε+ . . .

)︃
.
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2. Hopf algebra theory of renormalization

2.3.3. Dimensional regularization

In section 2.3.2, we saw that the Feynman amplitude can be regularized by letting the
superficial degree of convergence ω (def. 41) be non-integer. Instead of choosing νe /∈ Z as
in section 2.3.2, one can also introduce a non-integer dimension according to

D := D0 − 2ϵ,

where D0 ∈ N. This is dimensional regularization [326, 327],[328, Chap. 3.3]. To ensure
that all mass dimensions (def. 4) are consistent, one generally needs to introduce an arbitrary
reference mass scale s0 as soon as D is altered, compare def. 104.

The notion of a D-dimensional integral needs explanation in the case of D /∈ N. Precise
constructions can be found in [326, 327], but the general idea is very much in the spirit of
the above discussion of divergence in eq. (2.44): One first splits off D0− 1 spatial “angular”
integrals which work as usual. The remaining (1− 2ϵ)-dimensional “radial” integral is then
done by analytic continuation similar to eq. (2.42). This analytic continuation is already
implicit in the parametric integrand (eq. (1.50)) which does contain D only as function
arguments, but not as dimension of an integral. Similarly, the analytic continuation is
unproblematic for Fourier transforms of monomials (eq. (1.2)). In D = 4 − 2ϵ dimensions,
the massless Feynman propagator in position space (eq. (1.23)) involves corrections ∈ O(ϵ),

GF (x) =

∫︂
dDk

(2π)D
i

k2 e
−ikx =

i

(2π)2x2

(︁
1 + ϵ

(︁
γE + ln(πx2/x2

0)
)︁
+O(ϵ2)

)︁
. (2.49)

A Feynman amplitude in dimensional regularization will be a Laurent series in ϵ. If no IR
divergences are present then there are no higher order poles than ϵ−|LΓ| [329] (see examples 86
and 88 and theorem 55), otherwise, with IR divergences, poles can be ϵ−2|Γ| [112]. For one
loop graphs, this IR pole gives rise to terms ∝ ln(s/s0)

2, known as Sudakov double logarithms
[330]. Moreover, the pole terms in the Laurent series will generally depend on kinematic
variables (in momentum-space). This is called nonlocal divergence because, after Fourier
transform to position space, such terms are not proportional to δ(x).

Lemma 29. Let Hn =
∑︁n

j=1 j
−1 be the nth harmonic number and define s := p2 to

be the scale (def. 81), where s0 ∈ R is an arbitrary, but fixed, reference scale. Then in
D = 4 − 2ϵ dimensions, the massless l-loop multiedge (example 18) with propagators
i(k2)−1, not including the symmetry factor (theorem 13), has the Feynman amplitude

F
[︂
M (l)

]︂
=
λ2
l+2 (−is)

l−1

(4π)2l (l!)2

(︃
1

ϵ
+ (2l + 1)Hl − 1 + l (ln(4π)− γE)− l ln

(︃
s

s0

)︃)︃
+O (ϵ) .

Proof. We skip the trivial prefactor (−iλl+2)
2. Set D = 4− 2ϵ and νe = 1 in example 24 to obtain

M (l)(s) =
sl−1−lϵ

(4π)l(2−ϵ)
(Γ (1− ϵ))l+1 Γ (−l + 1 + lϵ)

Γ (l + 1− (l + 1)ϵ)
. (2.50)

The only singular factor for ϵ → 0 is the second gamma function in the numerator. Its series
representation is eq. (2.47),

Γ(−l + 1 + lϵ) =
(−1)l−1

l!

(︃
1

ϵ
+ lψ(l) +O (ϵ)

)︃
.
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Here, ψ(l) is the digamma function, with integer argument l > 0 it has the value [331, §5.4]

ψ(l) =
l−1∑︂
k=1

1

k
− γE = Hl−1 − γE

where γE is Euler’s constant. All other factors in eq. (2.50) are regular for ϵ→ 0, consequently their
O(ϵ1) coefficients need to be included to produce an overall O(ϵ0) result. These are

1

Γ (l + 1− (l + 1)ϵ)
=

1

Γ(l + 1)
+ ϵ(l + 1)

ψ(l + 1)

Γ(l + 1)
+O

(︁
ϵ2
)︁
=

1

l!

(︁
1 + ϵ(l + 1) (Hl − γE) +O

(︁
ϵ2
)︁)︁
,

(Γ(1− ϵ))l+1
= 1 + ϵ(l + 1)γE +O

(︁
ϵ2
)︁
, sl−1−lϵ = sl−1

(︁
1− ϵl ln s+O

(︁
ϵ2
)︁)︁
,

(4π)−2l+lϵ = (4π)−2l
(︁
1 + ϵl ln(4π) +O

(︁
ϵ2
)︁)︁
.

Finally, use Hl = Hl−1 + l−1 and include a factor il+1 for l + 1 internal propagators.

Example 86: Massless 1-loop multiedge, dimensional regularization.

The 1-loop multiedge, by lemma 29, has the amplitude

F
[︁
M (1)

]︁
=

λ2
3

(4π)2

(︃
1

ϵ
+ 2− γE + ln(4π)− ln

(︃
s

s0

)︃
+O (ϵ)

)︃
.

Compare to example 85. Both series have a simple pole in the regulator and the finite
term is − ln(s) up to constants, which differ between the two regularizations. Similarly,

F
[︁
M (2)

]︁
(s) =

−isλ2
4

4(4π)4

(︃
1

ϵ
+

11

2
− 2γE + 2 ln(4π)− 2 ln

(︃
s

s0

)︃)︃
.

Example 87: Dunce’s cap in dimensional regularization.

In a massless theory, the multiedge graph M (l) ∝ s−ω (example 25) amounts to a prop-
agator with the non-integer power ω. This means that a triangle graph, where the edges
are replaced with multiedes, equals, up to prefactors, a massless triangle graph where
the edges carry said non-integer propagator power. If two of the external edges are on-
shell then triangle graphs can be computed recursively like the multiedges (example 25),
and evaluate to Gamma functions. For arbitrary momenta, the triangle graph evaluates
to Appel’s hypergeometric F4 functions [332, 333]. Without any multiedge insertions,
the graph is convergent in 4 dimensions and computed in [334, Eq. (2.11)].
The dunce’s cap corresponds to the insertion of a 1-loop multiedge in one of the edges

of the triangle. Its unrenormalized amplitude, without the symmetry factor 1
2 , reads

[335] (compare also [336, 337])

F [Γ](s1, s2, s3) =
1

2(4π)4

(︃
1

ϵ2
+

(︃
5− 2γE − 2 ln

(︃
s3

s0

)︃
+ 2 ln(4π)

)︃
1

ϵ
+ finite terms

)︃
.

Again, the amplitude contains a nonlocal divergence.
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Example 88: Second chain graph in dimensional regularization.

Consider the second chain graph. We have computed its amplitude in example 26. Using
D = 6− 2ϵ, and leaving out the prefactors ∝ λ2

(4π)
D
2
, we find

F [Si] = is1−2ϵΓ(−1 + ϵ)Γ(−1 + 2ϵ)Γ(2− 2ϵ)Γ3(2− ϵ)
Γ(4− 3ϵ)Γ(4− 2ϵ)Γ(1 + ϵ)

F [S] = −s1−3ϵΓ
2(−1 + ϵ)Γ(−1 + 3ϵ)Γ(2− 3ϵ)Γ5(2− ϵ)

Γ(4− 4ϵ)Γ2(4− 2ϵ)Γ(1 + 2ϵ)
.

Observe how the various integers count the loops, subgraphs, edges etc.. The factors
Γ(−1 + . . .) are divergent for ϵ→ 0, a series expansion results in

F [S] = −s
(︂
− 1

648ϵ3
+
−35 + 9γE
1944ϵ2

+
1

216ϵ2
ln

(︃
s

s0

)︃
+
−2984 + 18γE(70− 9γE) + 9π2

23328ϵ
+

35− 9γE
648ϵ

ln

(︃
s

s0

)︃
− 1

144ϵ
ln

(︃
s

s0

)︃2

+O(ϵ0)
)︂
.

Some of the pole terms depend on ln(s/s0). They are a nonlocal divergence.

Definition 96. Let Γ be a Feynman graph inD0 ∈ N dimensions, free of IR-divergences,
logarithmically UV-divergent (def. 95), and without UV-subdivergences (def. 94), and
let 0 < νe ∈ N. The Feynman period of Γ is given by the convergent integral

P[Γ] =
∏︂
e∈EΓ

∞∫︂
0

dae a
νe−1
e

Γ(νe)
δ

⎛⎝1−
|EΓ|∑︂
e=1

ae

⎞⎠ 1

ψ
D0
2

.

Especially, the Feynman period is independent of kinematics.

The proof for finiteness, and many more properties, can be found in [338–342]. The name
period is borrowed from mathematics: A period is an absolutely convergent integral of a
rational function with rational coefficients and an integration domain given by polynomial
inequalities with rational coefficients [343].

Theorem 30. Let Γ be a Feynman graph without any subdivergences (def. 94) in
D0 ∈ N dimensions, free of IR-divergences, and logarithmically UV-divergent (def. 95).
Let s ∝ p2 be the momentum scale, s0 a fixed reference scale, and {θ} angles (def. 81).
Then the Feynman amplitude of Γ in dimensional regularization has the form

F [Γ] = Λ

(︃
P[Γ]
|LΓ|

1

ϵ
− P[Γ] ln

(︃
s

s0

)︃
+ CΓ ({θ}) +O (ϵ)

)︃
.

Here, Λ = i|EΓ|(4π)|LΓ|(−
D0
2

)∏︁
v∈VΓ(−iλ|v|), and P[Γ] is the period (def. 96), and CΓ is

a finite quantity which might depend on the angles {θ}, but not on the scale s.
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Proof. Consider the Feynman rules in parametric space (eq. (1.50)). Without subdivergences, the
only divergence comes from Γ(ωΓ). In dimensional regularization

ωΓ =
∑︂
e∈EΓ

νe − |LΓ|
D0

2
+ |LΓ| ϵ =: −n+ |LΓ| ϵ,

where n ∈ N0 and −n amounts to the unregularized superficial degree of divergence (def. 95), n = 0
by assumption. Let Hn =

∑︁n
k=1

1
k be the harmonic numbers. Using eq. (2.47), we find

Γ (−n+ |LΓ| ϵ) =
Γ (1 + |LΓ| ϵ)∏︁n

k=1 (−k + |LΓ| ϵ)
=

(−1)n

n! |LΓ| ϵ
+

(−1)n

n!
(Hn − γE) +O (ϵ) . (2.51)

By lemma 12, we can extract the scale factor ϕΓ = s · ϕ̃Γ from the second Symanzik polynomial.
With this, the Feynman rules in parametric space (eq. (1.50)) read

Λ · Γ(|LΓ| ϵ)s−|LΓ|ϵ
∏︂
e∈EΓ

∞∫︂
0

dae a
νe−1
e

Γ(νe)
δ

⎛⎝1−
|EΓ|∑︂
e=1

ae

⎞⎠ ψ−D0
2 +(|LΓ|+1)ϵ

ϕ̃
|LΓ|ϵ
Γ

.

Expand in ϵ. Γ(|LΓ| ϵ) has a simple pole 1
|LΓ|ϵ by eq. (2.51). Setting ϵ = 0 in the integral, we

obtain the Feynman period (def. 96), which is independent from angles. Next, expand (s/s0)
−|LΓ|ϵ =

e−|LΓ|ϵ ln(s/s0) to first order. Finally, the constant term CΓ is given by the order ϵ1 of the integral,
which will involve ϕ̃Γ and therefore depend on the angles. The exponent ϵ in the prefactor Λ =

i|EΓ|(4π)|LΓ|(ϵ−D0
2 )
∏︁
(−iλ|v|) can be left out, because it results in momentum-independent, non-

singular contributions, which can always be absorbed into CΓ.
Note the result is well-defined for any choice of the scale (def. 81), since a rescaling s → c · s as c

can be absorbed into CΓ → CΓ − ln c. A more rigorous proof, concerning especially the convergence
of the integral and the precise dependence on angle variables, is given in [303, 344].

Theorem 30 (together with analogous statements for other regularization schemes) is the
core of renormalization theory, therefore it deserves some explanation. The statement of
theorem 30 is not that “every primitive graph depends on the overall momentum like ln s”.
This is certainly false, to see this, consider any massive graph which has non-trivial analytic
properties as soon as the energy is sufficient to create real massive intermediate particles.
The masses are expressed in terms of angles such as θ = m2/s. If masses are fixed then θ
changes with s, and theorem 30 has nothing to say about the behaviour of the amplitude
in this case, because CΓ(θ) can be any function. Instead, what we are asking is “If all
energies and all masses are scaled with the same factor s, what does the amplitude do?”.
The surprising answer of theorem 30 is that this does change something, namely, it alters
the amplitude by P[Γ] ln s. Phrased differently, primitive graphs are not scale invariant.

Example 89: Massless multiedge, period.

If we leave out tadpole graphs (def. 29, compare the discussion in section 5.1.4), then a
multiedge (example 18) has no subdivergence (def. 94). Consequently, the prefactor of
1
ϵ in lemma 29 represents the period by theorem 30. The only caveat is that we have
to exclude a prefactor sl−1 from the multiedge. Concretely, in D = 4 − 2ϵ, we find the
following period for the l-loop multiedge M (l):
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il+1(4π)l(−2)(−iλl+2)
2 ·
P
[︂
M (l)

]︂
l

!
=
λ2
l+2 (−i)

l−1

(4π)2l (l!)2

P
[︂
M (l)

]︂
=
− (−1)l

l!(l − 1)!
.

Example 90: Second chain graph, nontrivial primitive.

In example 62, we saw that the Connes-Kreimer Hopf algebra contains primitive elements

other than •. The first of these is p2 := •
• − 1

2 • •. Using theorem 25, one possible

realization of these trees as Feynman graphs is •
• ≃ Si and • ≃ γi from examples 26

and 75. Let P2 := Si − 1
2γi

i
sγi, where all momenta are to be taken equal to s (the

momentum dependence would require more care if we had chosen a graph •
• where the

subgraph has a different external edge structure). Using example 88, we find

F [P2] = is

(︃
11

432

1

ϵ
− 11

216
ln

(︃
s

µ

)︃
+

535− 132γE
2592

+O (ϵ)

)︃
.

This is indeed the form predicted by theorem 30, with a period P[P1] =
11
216 .

We will be using dimensional regularization with the sole purpose of making intermediate
expressions finite. One can, however, take it at face value to obtain results in a truly
different dimension of spacetime. Examples in that regard are [345–347]. A more drastic
step is to extend D all the way to negative integers D = −n, interpreting an integral

∫︁
dDx

as a derivative ∂nx . This gives rise to the negative dimensional integration method to solve
Feynman integrals [333, 348–350]. Recent more algebraic perspectives are [351, 352].

2.3.4. Renormalizability

Amplitudes needing renormalization and residues of the Lagrangian

We have based the renormalized Feynman rules (def. 88) on the arbitrary set R of amplitudes
needing renormalization (def. 83), without restricting to “physical” choices. By construction,
each amplitude G ∈ R is a power series which is assigned exactly one renormalization
condition.
On the other hand, going back to the simplified example section 2.2.1, we see that, in order

to carry out the series inversion eq. (2.33), the unrenormalized series needs to have a non-
vanishing first order term. Translated to Feynman graphs, this means that each amplitude
G ∈ R must have a non-vanishing treelevel term. But those vertices are precisely the set L
of residues of the Lagrangian (def. 49). We record this finding as a theorem:
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2.3. Divergences and renormalizability

Theorem 31. Renormalization of Feynman graphs based on the amplitudesR (def. 83)
is only possible ifR ⊆ L (def. 49). Also, one needs to provide exactly one renormalization
condition for each (g, T ) ∈ R.

On the other hand, if R ⊊ L then there are constants in L to which we do not assign
values by any renormalization condition. Mathematically, this is possible, but physically
questionable, since the result then contains unknown bare parameters. From now on, we
assume that R = L.

In concrete QFTs, the interplay between R and L works as follows: We start with an
“initial guess” of a Lagrangian. Then, by calculation (see theorem 32), we obtain the set R,
which might or might not be a subset of L. In the latter case, we need to include additional
monomials in the Lagrangian L and repeat the calculation, until eventually theorem 31 is
satisfied. In general, this will force us to add all possible terms of given mass dimension
(def. 4) because quantum corrections lead to operator mixing, that is, a quantum correction
originating from one such term will generally include all possible terms of the same mass
dimension which are not forbidden by symmetries [353].

Example 91: Renormalization of a massless scalar field.

Theorem 31 has an interesting, albeit slightly philosophical, consequence for massless
theories: Starting with a massive interacting Lagrangian (eq. (1.5)), we obtain a renor-
malized theory where the mass needs to be determined by renormalization conditions.
We can choose the renormalized theory to be massless by imposing the renormalization
condition m = 0 for the renormalized mass term. In this way, effectively, we can leave
out all mass terms and work with a massless Lagrangian from the start. The true reason
is not that mass corrections can not arise, but that we demand them to vanish, compare
[354]. Symmetries change the picture, as we will see in section 5.1.1.

Finiteness and subdivergences

The third aspect to the process of renormalization is the question whether a renormalized
amplitude will be finite. Let Γ be a 1-loop graph. It is UV-divergent if and only if ωΓ ≤ 0
(theorem 28). By def. 86, Γ is primitive iff Γ ∈ R. Now observe that by renormalization
(def. 88), a primitive graph is mapped to the renormalized Feynman rules

FR[Γ] = (id−R)F [Γ] = F [Γ]−RF [Γ].

If R denotes kinematic renormalization (def. 91), then FR[Γ] is finite by theorem 30, because
the period is independent of external momenta and therefore P[Γ]1ϵ − RP[Γ]

1
ϵ = 0. We

conclude that the renormalized Feynman rules of all 1-loop graphs are finite provided that
Γ ∈ R for all Γ where ωΓ ≤ 0.
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2. Hopf algebra theory of renormalization

Definition 97. A renormalization scheme is a choice of a renormalization operator R
such that

1. The Rota-Baxter equation eq. (2.39) is fulfilled, and

2. The renormalized Feynman rules (def. 88) (id−R)F [Γ] are finite for every primi-
tive (def. 86) Feynman graph Γ.

In all renormalization schemes, the treelevel term of a Green function has the value
unity, that is, we project onto the treelevel tensor (see section 2.2.2).

Theorem 32. Assume that Γ ∈ R (def. 83) whenever the superficial degree of
convergence (def. 41) is ωΓ ≤ 0. Let R be a renormalization scheme (def. 97). Then the
renormalized Feynman rules (def. 88) FR = SF

R ⋆ F are finite.

Proof. For a detailed proof, see [269, 293, 307, 355].
Use induction on the coradical degree. For primitive graphs, FR is finite by definition (def. 97).

Assume that FR(γ) is finite for all Feynman graphs γ with cor(γ) < n ∈ N. By the Dyson-Schwinger
equation theorem 26, the graphs of coradical degree n are of the form

Γ′ = BΓ
+ (P ({γ})) .

Here, Γ is a primitive (kernel) graph and P ({γ}) is a polynomial in the graphs γ of coradical degree
smaller than n. Using eq. (2.38) (which needs the Rota-Baxter equation assumed in def. 97) and the
induction assumption, the renormalized Feynman rules FR[P ({γ})] = P ({FR[γ]}) are finite. The
renormalized amplitude of Γ′ is, by theorem 27,

FR
[︁
Γ′]︁ = (id−R)

∫︂
dΓ FR

[︁
P ({γ})

]︁
.

The integral on the right hand side does not contain subdivergences, so (id−R) applied to it is finite
by assumption. Similarly, one can establish that the counterterms SF

R[Γ] (def. 89) are local.
The non-Hopf algebra version of this theorem is known as Zimmermann forest formula, named

after the forests of rooted trees corresponding to nested sub-divergences (theorem 25). This com-
binatorial procedure (which we nowadays encode in the coproduct ∆), together with the kinematic
renormalization operator R (def. 91), is called BPHZ-renormalization [168, 356, 357] (def. 91). See
also [328, 358, 359].

We have used only simple subtractions (id−R), which, on first sight, are insufficient for
quadratically divergent (def. 95) amplitudes. However, our procedure works in full generality
because we project on the tensors. Consider an amplitude (g, T ) ∈ R, where the tensor is
T ∝

(︁
p2
)︁n

with n ≥ 1, that is, the underlying graph Γ is divergent of degree 2n. In
that case, one also needs to include (g, 1), (g, p2), . . . , (g, (p2)n−1) ∈ R and in total, n + 1
renormalization conditions must be provided. Each of these amplitudes can be treated with
a simple subtraction, but all of the together are equivalent to a subtraction of the first n+1
powers of momenta in F [Γ].
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Predictive power of a renormalized theory

Theorem 32 tells us that we can make any Feynman graph finite by including the residue
of every possible subgraph into R. We then obtain the core Hopf algebra (def. 85). If R
contains infinitely many amplitudes, then, by theorem 31, one needs to provide infinitely
many renormalization conditions to give a physical meaning to the renormalized amplitude.
This makes the theory unpredictive: No finite set of (measured) input values allows to predict
all remaining observables.

Definition 98. A quantum field theory is called renormalizable if there is a finite set
R (def. 83) such that, if Γ is a superficially divergent graph (def. 94) without subdiver-
gences, then Γ ∈ R.

In detail, def. 98 implies two conditions: (1) There are only finitely many residues g = res(Γ)
of graphs such that ωΓ ≤ 0. And (2) For any such residue, there are only finitely many tensors
T such that (g, T ) ∈ R.
The superficial degree of convergence (def. 41) is nothing but the negative mass dimension

(def. 4) of a graph, see eq. (2.46). Euler’s formula (eq. (1.42)) implies two other useful
characterizations of renormalizability. They have long been known (e.g. [360]) and can be
derived using Euler’s formula eq. (1.42).

Lemma 33. A quantum field theory is renormalizable (def. 98) if the superficial degree
of convergence ωΓ (def. 41) is independent of the loop number |LΓ|, and ωΓ ≤ 0 for only
finitely many residues of graphs.

Lemma 34. A quantum field theory is renormalizable (def. 98) if all coupling constants
λn in its Lagrangian (def. 6) have mass dimension (def. 4) zero.

A slightly different perspective on renormalizability originates from Dyson-Schwinger equa-
tions. There, renormalizability (def. 98) is equivalent to having only finitely many DSEs of
the upper type in theorem 27. The renormalization condition, encoded in the operator R,
is a boundary condition for the solutions GrR of these DSEs. Once these functions are fixed,
all remaining GmR, where m /∈ R, can be computed without further renormalization, that is,
without providing additional input data.

Example 92: Second chain graph, renormalized amplitude.

Consider the second chain graph from example 26. It is not primitive and, correspond-
ingly, has non-local divergences (example 88). The appropriate set R for ϕ3 theory is
the one we chose in example 69, fulfilling lemma 33. We will use the notation Si = S/γi
and γ = S/(γ1γ2), the corresponding rooted trees are shown in example 75.
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First, we renormalize S1, which has one subgraph γ2 needing renormalization.

∆ (S1) = S1 ⊗ 1+ 1⊗ S1 + γ2 ⊗ γ, antipode: S(S1) = −S1 + γ2γ.

Eventually, all graphs are proportional to s, we leave out this overall factor. The coun-
terterm and renormalized amplitude are

SF
R[S1] = R

(︃
−F [S1] +R (F [γ2])

i

s
F [γ]

)︃
=

(︃
1

72ϵ2
+

7

144ϵ
− γE + ln s0

36ϵ
+O(ϵ0)

)︃
i.

If we take R to be kinematic renormalization at s = s0 (def. 91), then

FR[S1] = F [S1] + SF
R[S1] + SF

R[γ2]
i

s
F [γ]

=
1

72
i ln2

(︃
s

s0

)︃
− 11

216
i ln

(︃
s

s0

)︃
+O (ϵ) .

As it should be, the result is finite for ϵ→ 0 and it vanishes at s = s0.
Now consider the full graph S (not to be confused with the antipode) from example 26.

∆ (S) = S ⊗ 1+ 1⊗ S + γ1 ⊗ S1 + γ2 ⊗ S2 + γ1γ2 ⊗ γ
S(S) = −S + γ1S1 + γ2S2 − γ1γ2γ, S(γ1γ2) = γ1γ2

SF
R[S] = R

(︂
−F [S] +R (F [γ1])F [S1] +R (F [γ2])F [S2]−R (F [γ1])R (F [γ2])F [γ]

)︂
= − 1

648ϵ3
+

(︃
− 37

3888
+
γE + ln s0

216

)︃
1

ϵ2
+O

(︃
1

ϵ

)︃
.

The renormalized amplitude is (again, assuming kinematic renormalization)

FR[S] = F [S] + SF
R[S] + 2SF

R[γi]F [Si] + SF
R[γ1γ2]F [γ]

= − 1

648
ln3

(︃
s

s0

)︃
+

11

1296
ln2

(︃
s

s0

)︃
− 85

3888
ln

(︃
s

s0

)︃
+O (ϵ) .

Example 93: Renormalizability of Liouville theory.

We introduced Liouville theory in example 4, its Lagrangian is

L =
1

2
∂µϕ∂

µϕ− exp(gϕ).

In two dimensions, classical Liouville theory is solved by mapping its solutions to modes
of a free field via Bäcklund transformation [361]. As a quantum theory, Liouville theory
is renormalizable in D = 2 dimensions by lemma 34. It enjoyed significant attention in
the 1980s [362, 363] for its connection to string theory [148].

In four dimensions, the coupling has mass dimension (def. 4) [g] = 1 and Liouville
theory is not renormalizable by lemma 34. This requires to introduce additional con-
straints, apart from the usual renormalization conditions, in order to fully fix the Green
functions [364–366]. Compare example 143.

120



2.3. Divergences and renormalizability

The topic of renormalizability is vast, but the space in this thesis is not. We are therefore
content with a few stenographical comments without further explanation:

1. The Hopf algebraic description of renormalization can be extended to also subtract
infrared singularities, using a R∗-operation in place of R [329, 367–370].

2. The LSZ formula (theorem 5) requires amputated graphs. This means amputation of
the renormalized full 2-point function, not just of the bare propagator.

3. An integral can be renormalized according to def. 88 on the level of the integrand, see
for example [303]. All integrals are then convergent and regularization is not needed.

4. Renormalization can be carried out graphically if one introduces a n-valent counterterm
vertex with amplitude Z(n)−1 for the Z-factor (eq. (2.33)) of each amplitude (n) ∈ R.

5. It is possible to mix different regularization schemes, the counterterms will then in
general depend on all the regulators. The results in kinematic renormalization are
unaltered. This freedom is essential to the removal of tadpoles, see later in section 5.1.4.
If one uses a renormalization scheme that depends on the regulator (such as the MS-
scheme to be introduced in def. 108), the results differ for different choices of regulators.

6. All physically sensible renormalization schemes are equivalent up to a changed, poten-
tially α-dependent renormalization point. This will be the topic of chapter 4.

7. A theory is called superrenormalizable if the coupling constants have positive mass
dimension, or, equivalently, if there are finitely many graphs (not residues) with ωΓ ≤ 0.

8. The problem with non-renormalizable theories is that they need infinitely many renor-
malization conditions. If |R| =∞ but still the renormalization conditions are dictated
by some other mechanism, the theory can potentially still be predictive.

9. The correspondence between a sensible series expansion and the mass dimensions of
coupling constants has been remarked as early as 1927 [29], before QFT was even
formulated.

10. The physical intuition that divergences would be cured by re-defining results in terms
of observable quantities also dates earlier than theorem 32. Bethe, observing the
divergence in his computation of the Lamb shift, notes [371]:

This shift [of energy levels] comes out infinite in all existing theories, and
has therefore always been ignored. However, it is possible to identify the
most strongly divergent term in the level shift with an electromagnetic mass
effect [. . . ]. This effect should properly be regarded as already included in
the observed mass of the electron, and we must therefore subtract from the
theoretical expression, the corresponding expression for a free electron [. . . ].
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2. Hopf algebra theory of renormalization

Summary of section 2.3.

1. Feynman integrals can be divergent. The superficial degree of convergence ωΓ

determines whether an integral is UV-divergent. IR-divergences are conceptually
less problematic (section 2.3.1).

2. Divergent Feynman amplitudes can be regularized if one introduces non-integer
powers νe of the propagators. This is analytic regularization (section 2.3.2).

3. Dimensional regularization amounts to choosing a non-integer spacetime dimen-
sion. A divergent graph without subdivergences then takes the form F [Γ] ∝
P[Γ]/ |LΓ| 1

ϵ − P[Γ] ln(s/µ) + CΓ, where P[Γ] is the period, independent of kine-
matics (section 2.3.3).

4. If one includes the amplitude of every superficially divergent graph into R then
the renormalized Feynman rules are finite. If this is possible with a finitely large
set R then the theory is called renormalizable. It needs only a finite amount of
input data in order to predict all correlation functions (section 2.3.4).
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2.4. Digression: Order of derivatives and dimension of spacetime

2.4. Digression: Order of derivatives and dimension of spacetime

Having finished our survey of Hopf algebra renormalization theory, we return to the axioms
on the Lagrangian at the very beginning of the thesis. In def. 6, we demanded that a
Lagrangian must not depend on higher than first derivatives of the field. The present section
explores some motivation and consequences of this assumption, partially following [372].
In classical mechanics, Ostrogradsky’s theorem [373] asserts that if a Lagrangian function

contains time derivatives of higher than first order, the Hamilton function, or the total
energy, is unbounded from below. To see this, consider a Lagrangian function L(x, ẋ, ẍ)
depending on the second derivative with respect to time in the form of a monomial (ẍ)n,
where n ̸= 1. The requirement that the first variation of the classical action vanishes, δS = 0
(eq. (1.6)), leads to the Euler-Lagrange equation (1.7),

∂ L

∂x
− d

dt

∂ L

∂ẋ
+

1

2

d2

dt2
∂ L

∂ẍ
= 0.

Since ∂ L
∂ẍ ∼ ẍ

n−1, this is a differential equation of fourth order in time, as opposed to second
order for a conventional Lagrangian function depending only on x, ẋ.
The Hamiltonian formalism for this generalized Lagrangian is sometimes called Ostro-

gradsky formalism. Hamilton equations of motion are supposed to be first order differential
equations, hence we need four canonical variables. Choose

q1 := x, q2 := ẋ, p1 :=
∂ L

∂ẋ
− d

dt

∂ L

∂ẍ
, p2 :=

∂ L

∂ẍ
.

With this definition, only p1 involves the third derivative
...
x , the other three canonical

variables only depend on {x, ẋ, ẍ}. Inverting these relations, one can hence express the
Langrangian in terms of q1, q2, p2, without using p1. The Hamilton function (def. 9) is

H(q1, q2, p1, p2) := p1ẋ+ p2ẍ(q1, q2, p2)− L(q1, q2, p2). (2.52)

This choice satisfies the Hamilton equations of motion (1.11) as expected,

q̇1 =
∂ H

∂p1
, q̇2 =

∂ H

∂p2
, ṗ1 = −∂ H

∂q1
, ṗ2 = −∂ H

∂q2
.

A closer look at the Hamilton function eq. (2.52) reveals that it is unbounded: The variable
ẋ = q2 is an independent degree of freedom, not expressed through p1 (as it would be in the
ordinary Hamilton formalism). The Lagrangian is independent of the variable p1, hence the
Hamilton function H eq. (2.52) is linear in p1, and hence unbounded.

In quantum mechanics, at least if interactions are present, generally all possible states of
a system will participate in the dynamics. A theory with unbounded energy has no stable
ground state [374] and a different structure of Hilbert space compared to our construction
[375]. On physical grounds, it must be rejected, compare also the discussion in [376].
Canonical quantization (section 1.2.2) involves certain additional subtleties, regarding the

correspondence between classical objects and quantum field operators, as soon as higher
derivatives are present [377]. A theory with second derivatives in the Lagrangian gives,
qualitatively, a propagator

GF (p) =
i

p4 −m4
=

i

(p2 +m2)(p2 −m2)
,
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2. Hopf algebra theory of renormalization

which inevitably has poles at p2 = +m2 and p2 = −m2. Depending on conventions and
interpretation, one of them corresponds to a physically absurd particle called Ostrogradsky
ghost, showing either a negative rest mass or negative probabilities.
On the other hand, for example, ϕ3 theory is a QFT with unbounded potential energy

and yet at least a perturbative treatment is possible. It has been argued that, similarly, a
higher-derivative QFT can be given meaning at least in the massless case by considering a
delicate limit of vanishing masses [378, 379].
A different perspective on higher derivatives comes from dimensional analysis. A theory

with n-th derivatives in the Lagrangian has a propagator which scales, for large momenta, as
(p2)−n. Using eq. (1.2), we find the short-distance behaviour in position space: A field with

n-th derivatives propagates ∼ (r2)n−
D
2 , see also eq. (1.26). Assuming a flat D-dimensional

spacetime with one time dimension, there are D− 1 spatial dimensions. The surface area of
a sphere with radius r is

AD−1(r) =
2π

D−1
2

Γ
(︁
D−1

2

)︁rD−2. (2.53)

Together, these two scaling laws mean that the total spatial flow of the field, that is the
propagator integrated over the spherical surface, scales as r2n−D · rD−2 = (r2)n−1. Irrespec-
tive of the dimension of spacetime, the flow is conserved only in the case n = 1, that is, for
a Lagrangian with first derivatives only. This heuristic argument implies that with n ̸= 1,
the theory will not be unitary, as indicated by the above Ostrogradsky ghosts.
At this point, we could settle for the conclusion that theories with higher than first

derivatives are not sensible, were it not for quantum gravity. The latter is perturbatively
non-renormalizable and introducing higher derivatives is one speculative way to solve the
problem. We will discuss details in section 5.2.1, after having developed all the necessary
concepts. Nevertheless, we are confident that prohibiting higher derivatives in def. 6 is at
least a sensible choice for most of the typical cases in QFT.

124



3. Renormalized Green functions in kinematic
renormalization

3.1. Renormalization and momentum-dependence

We have established in section 2.3.4 that renormalization amounts to the iterative subtraction
of subdivergences. These subtractions do not only remove divergences, but they also impose
a certain structure on the finite renormalized amplitudes. In the present section, we discuss
some of the properties that are consequences of the renormalization process.

3.1.1. Angles and scales

In def. 81, we have split the arguments of a Feynman amplitude into one scale variable s
and arbitrary many scale-free angles θ. From now on, we ignore the possible dependence
on angles unless otherwise mentioned. This is not as much of a restriction as it seems.
Observe that for a primitive graph (theorem 30), the dependence on angles resides in the
finite part CΓ({θ}), unrelated to the scale dependence given by P[Γ] · L. In this, the angle
dependence is analogous to the divergent part, which, for a primitive graph, is independent of
the scale as well. Essentially the same recursive construction that leads to renormalizability
(section 2.3.4), FR(s/s0) = (F(s0))

−1 ⋆F(s), also allows a factorization of angles and scales
[271, 302, 303],

FR(s, θ) = FR(s)
⃓⃓⃓
θ fixed

⋆ FR(θ)
⃓⃓⃓
s fixed

. (3.1)

In the remainder of section 3.1, we will see that the scale-dependence of a renormalized
amplitude is to a large extent fixed by the structure of renormalization. On the other hand,
little can be said about the angle dependence, even though by eq. (3.1), the Feynman rules
factor “symmetrically” into a scale-dependent and an angle-dependent part. The pivotal
reason is that the dependence of a primitive graph on scale is simply a linear function
P[Γ] · L (theorem 30), while the dependence on angles is almost arbitrary, subject to the
analytic conditions mentioned in section 1.2.8.

3.1.2. Expansion in Logarithmic momenta

Unless otherwise stated, we assume that a Feynman amplitude FR[Γ] is projected to its
treelevel tensor (def. 82) and coupling constant. That is, FR[Γ] is a scalar under Lorentz
transformations (def. 2) and its power series starts with a constant independent of the
coupling α. More precisely, in kinematic renormalization, FR[Γ] = 1 +O(α).
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3. Renormalized Green functions in kinematic renormalization

Definition 99. We express the external momenta as angles and scales (def. 81), and
we introduce some arbitrary reference scale s0. Define the logarithmic scale as

L := ln
s

s0
.

The point L = 0 amounts to s = s0. In the present chapter, we restrict ourselves to kinematic
renormalization (def. 91) and choose s0 as the renormalization point. The renormalized
Feynman rules (def. 88) are a character (eq. (2.38)) and hence, they are generated (with
respect to the scale L) by some infinitesimal character according to eq. (2.17).

Definition 100. The infinitesimal character (def. 76) σ which generates the Feynman
rules (def. 88) in kinematic renormalization is called infinitesimal Feynman rule and it
is related to FR via eq. (2.17),

FR[Γ](L) = exp⋆ (Lσ) [Γ], σ[Γ] :=
∂

∂L
FR[Γ]

⃓⃓⃓
L=0

.

The zeroth power σ0[Γ] := σ⋆0[Γ] = FR[Γ]|L=0 extracts the value at the renormalization
point. In kinematic renormalization, σ0 = 1̃ (def. 61) because every renormalized amplitude
vanishes at L = 0 (def. 91), except for the treelevel amplitude, which is rescaled to 1 = 1̃◦1.
The behaviour in non-kinematic renormalization will be discussed in section 4.1.1. The
empty graph does not depend on momenta, so σ(1) = 0 in every renormalization scheme.

Example 94: Infinitesimal character for a primitive graph.

For a primitive graph Γ, we know from theorems 30 and 32 that FR[Γ] = ΛP[Γ]·L+ΛCΓ,
where in kinematic renormalization CΓ = 0. Indeed, def. 100 produces

FR[Γ] = 1̃(Γ) + L · σ[Γ] + 1

2
L2 ·m ◦ (σ ⊗ σ)∆(Γ) +O

(︁
L3
)︁

= 0 + L · ΛP[Γ] + 0 +O
(︁
L3
)︁
.

We used ∆(Γ) = Γ⊗ 1+ 1⊗ Γ and σ(1) = 0. All higher orders in L vanish.

Theorem 35 ([303]). Let Γ be a Feynman graph free of IR-divergences, then the
renormalized Feynman rules (def. 88), projected on the treelevel tensor (def. 82), depend
on the scale s (def. 81) in the form

FR[Γ](L) =

cor(Γ)∑︂
j=0

gj(θ) · Lj .

Here, L is the logarithm of the scale (def. 99) and cor(Γ) is the coradical degree (def. 71).
The coefficients gj can be different for different renormalization schemes.
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3.1. Renormalization and momentum-dependence

Proof. The coefficients gj will in general depend on θ because the overall amplitude does. By theo-
rem 32, they are finite. Now, by def. 100, the term proportional to Ln is given by

1

n!
σ⋆n[Γ] =

1

n!
m ◦ σ⊗n ◦∆n(Γ).

The iterated coproduct ∆n (def. 70) involves factors of 1 for all Γ with cor(Γ) > n (def. 71). But
σ(1) = 0 and therefore σ⋆n(Γ) = 0 in those cases.

Alternatively, the statement can also be shown from Dyson-Schwinger integral equations (theo-
rem 15), without using infinitesimal characters (def. 100), upon noticing that∫︂

ds

s
(ln s)

n
=

(ln s)
n+1

n+ 1
.

The coradical degree is then the number of nested integrals. This gives a “pedestrian” derivation
which does not require the Hopf algebra knowledge that an infinitesimal character must exist.

Lemma 36. Let n > 1. In kinematic renormalization, the character σ⋆n[Γ], and hence
gn in theorem 35, are completely determined by amplitudes of proper subgraphs γ ⊊ Γ.

Proof. For a graph Γ, cn = σ⋆n[Γ] = m(σ⊗σ⋆(n−1))∆(Γ). But σ(1) = 0 in kinematic renormalization,
therefore only ∆1(Γ) (def. 64) contributes, consisting entirely of subgraphs.

Example 95: Second chain graph, scale dependence.

Consider the graph S ≃ •
•
• from examples 26 and 92, where

FR[S] = −
1

648
ln3

(︃
s

s0

)︃
+

11

1296
ln2

(︃
s

s0

)︃
− 85

3888
ln

(︃
s

s0

)︃
FR[Si] =

1

72
i ln2

(︃
s

s0

)︃
− 11

216
i ln

(︃
s

s0

)︃
, FR[γ] =

1

6
ln

(︃
s

s0

)︃
.

The infinitesimal Feynman rules (def. 100), applied to these graphs, are

σ[S] = − 85

3888
, σ[Si] = −

11

216
i, σ[γ] =

1

6
.

Note that σ[Si] equals the period P[P2] of the 2-loop primitive P2 constructed from Si
in example 90. Now, use ∆(Si) = γi ⊗ γ to find that indeed

exp⋆(Lσ)[Si] = Lσ[Si] +
1

2
L2σ[γi]σ[γ] = −

11

216
iL+

1

2

(︃
1

6

)︃
i

(︃
1

6

)︃
= FR[Si].

As expected, σ⋆2[Si] =
1
2σ[γi]σ[γ] is completely determined by the subgraph γi ≃ γ.

The factor i is to correct the intermediate propagator i
s , we divide out the tensor s as

usual.
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3. Renormalized Green functions in kinematic renormalization

By example 75, ∆ (S) = S ⊗ 1 + 1 ⊗ S + 2γi ⊗ Si + γ1γ2 ⊗ γ. Further, σ[γ1γ2] = 0
and therefore

σ⋆2[S] = 2σ[γi]σ[Si] = 2

(︃
1

6

)︃
i

(︃
− 11

216
i

)︃
=

11

648

σ⋆3[S] = 2σ[γi]σ
⋆2[Si] + σ⋆2[γ1γ2]σ[γ] = 2σ[γ]3 = 2i2

(︃
1

6

)︃3

= − 1

108
.

With these numbers, we correctly reproduce example 92,

exp⋆(Lσ)[S] = Lσ[S] +
1

2
L2σ⋆2[S] +

1

6
σ⋆3[S] = − 85

3888
L+

11

1296
L2 − 1

648
L3.

σ[S] is the only non-trivial input, all higher orders in L are determined by subgraphs.

Summing over all graphs, and suppressing the dependence on angles, theorem 35 deliv-
ers an expansion of the renormalized Green function, again projected to a treelevel tensor
(def. 82), in terms of logarithms,

GrR(α,L) =
∞∑︂
j=0

γrj (α) · Lj . (3.2)

Observe that Lj denotes a power while r in γr is the residue r := res(Gr) (def. 26). By
theorem 35, the functions γrj obtain contributions only from graphs Γ with cor(Γ) ≥ j. They
are given by the infinitesimal Feynman rules (def. 100) acting on the combinatorial Green
functions (def. 45),

γrj (α) =
1

j!

∑︂
Γ 1PI,res(Γ)=r

α|LΓ| sym(Γ) · σ⋆j [Γ] = 1

j!
σ⋆j
[︁
Γr(α)

]︁
. (3.3)

3.1.3. Mellin transforms

We can rewrite L (def. 99) in theorem 35 as derivatives,

Lj = ∂jρe
Lρ
⃓⃓
ρ=0

= ∂jρ

(︃
s

s0

)︃ρ ⃓⃓⃓⃓⃓
ρ=0

⇒ FR[γ](L) =

cor(γ)∑︂
j=0

gj(θ)∂
j
ρ

(︃
s

s0

)︃ρ ⃓⃓⃓⃓⃓
ρ=0

. (3.4)

At this point, we assume that γ is a 1PI propagator-type graph for concreteness. Then
s = p2 is the external momentum of γ and gj(θ) = gj is independent of angles. By eq. (2.37),

F
[︁
BΓ

+ (FR[γ])
]︁
=
∫︁
dΓ FR[γ]. In the momentum representation (eq. (1.47)), γ replaces one

of the edges in Γ according to

i

sp
→ i

sp
spFR[γ](s)

i

sp
=
−1
sp
FR[γ](s).
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3.1. Renormalization and momentum-dependence

If we further assume the field to be massless, then sp = s = p2 and

∫︂
dΓ FR[γ] =

∏︂
v∈VΓ

(−iλ|v|) ·
∏︂
l∈LΓ

∫︂
dDkl
(2π)D

−1
s

cor(γ)∑︂
j=0

gj(θ)∂
j
ρ

(︃
s

s0

)︃ρ ⃓⃓⃓⃓⃓
ρ=0

∏︂
e̸=1

i

se

= −
cor(γ)∑︂
j=0

gj(θ)∂
j
ρ

1

(s0)ρ

∏︂
v∈VΓ

(−iλ|v|) ·
∏︂
l∈LΓ

∫︂
dDkl
(2π)D

1

s1−ρ

∏︂
e̸=1

i

se

⃓⃓⃓⃓
⃓
ρ=0

=: −FR[γ] (∂ρ)
1

(s0)ρ

∏︂
v∈VΓ

(−iλ|v|)F̃ γ (ρ, 0, . . . , 0)
⃓⃓⃓
ρ=0

.

Definition 101. The Mellin transform of a Feynman graph Γ with E = |EΓ| internal
edges and L = |LΓ| loops is defined by raising each of its propagators to a variable power
ρe,

F̃Γ (ρ1, . . . , ρE) :=

∫︂
dLDk

(2π)LD
1(︁

k2
1

)︁1−ρ1 · · · 1(︁
k2
E

)︁1−ρE
Up to global factors, the Mellin transform equals the Integral F [Γ] in analytic regularization
(section 2.3.2) with exponents νj = 1−ρj . By eq. (2.45), the Mellin transform is proportional
to the scale (def. 81) skD/2−E+

∑︁
ρj . For renormalization, we evaluate at s = s0, therefore,

we factor out this dependence and define

sk
D
2
−E

+

∑︁
j ρjFΓ (ρ1, . . . , ρE) := F̃Γ (ρ1, . . . , ρE) .

If Γ is primitive divergent (def. 86) and we restrict ourselves to only one ρ ̸= 0, then

FΓ (ρ) =
∞∑︂
j=0

cjρ
j−1. (3.5)

Example 96: 1-loop multiedge, Mellin transform.

The Mellin transform can directly be read off from example 24 (compare also example 85)

FM(1)(ρ1, ρ2) =
1

(4π)
D
2

Γ
(︁
−ρ1 − ρ2 + 2− D

2

)︁
Γ
(︁
D
2 − 1 + ρ1

)︁
Γ
(︁
D
2 − 1 + ρ2

)︁
Γ (D − 2 + ρ1 + ρ2) Γ(1− ρ1)Γ(1− ρ2)

.

For the sake of brevity, we skip all prefactors 4π. Set ρ2 = 0 and D = 4− 2ϵ:

FM(1)(ρ, 0)
⃓⃓⃓
D=4−2ϵ

=
Γ (ϵ− ρ) Γ (1− ϵ+ ρ) Γ (1− ϵ)

Γ (2− 2ϵ+ ρ) Γ(1− ρ)
.

Conversely, set D = 4 and use eq. (2.47):

FM(1)(ρ1, ρ2)
⃓⃓⃓
D=4

=
−1

(ρ1 + ρ2)(1 + ρ1 + ρ2)

Γ (1− ρ1 − ρ2) Γ (1 + ρ1) Γ (1 + ρ2)

Γ (1 + ρ1 + ρ2) Γ(1− ρ1)Γ(1− ρ2)
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3. Renormalized Green functions in kinematic renormalization

Combining both the previous lines, we obtain simple rational functions:

FM(1)(ρ, 0)
⃓⃓⃓
D=4

=
−1

ρ(1 + ρ)
, FM(1)(ρ, 0)

⃓⃓⃓
D=6

=
1

ρ(1 + ρ)(2 + ρ)(3 + ρ)
.

The Mellin transform allows to write an explicit formula for the action of the cocycle BΓ
+

(def. 87) on the level of Feynman amplitudes. This is the mapping between different B+

announced in the universal property (theorem 23), from the Hopf algebra of Feynman graphs
to the Hopf algebra of formal power series in L. We assume that γ is inserted into edge e = 1
in Γ, then

F
[︂
BΓ

+ (FR[γ])
]︂
(L) = −

∏︂
v∈VΓ

(−iλ|v|)FR[γ] (∂ρ) e
LρFΓ (ρ)

⃓⃓⃓
ρ=0

. (3.6)

Kinematic renormalization (def. 91) amounts to subtraction at L = 0, therefore

FR

[︂
BΓ

+ (FR(γ))
]︂
(L) = −

∏︂
v∈VΓ

(−iλ|v|)FR[γ] (∂ρ)
(︁
eLρ − 1

)︁
FΓ(ρ)

⃓⃓⃓
ρ=0

. (3.7)

The product of series FR[γ] and FΓ in eq. (3.7) can be reordered to obtain

FR

[︂
BΓ

+ (FR[γ])
]︂
(L) = −

L∫︂
0

dt

cor(γ)∑︂
k=0

ck
∂k

∂tk
FR[γ](t). (3.8)

The precise algebraic nature of these maps regarding the universal property is explained in
[308]. Following lemma 20, the integral −c0

∫︁
dt is the crucial ingredient to make this map

a cocycle, all higher summands can be viewed as a coboundary b0L0 (def. 72). In the more
conventional language of physics, c0 defines the leading-log-order of an amplitude, while cj>0

give next-to-leading-log corrections, see section 3.3.3.

Example 97: Tree Feynman rules.

Using eq. (3.8), we can assign an amplitude to every rooted tree. Firstly, FR[1] = 1.
Since trees are unlabelled, this represents a single primitive, and insertion of the same
primitive as subgraphs.

FR[•] = FR
[︁
B+(1)

]︁
= −

∫︂ L

0
dt c0FR[1] = −c0L

FR

[︂
•
•
]︂
= −

∫︂ L

0
dt
(︁
c0(−c0t) + c1∂t(−c0t)

)︁
=

1

2
c2

0L
2 + c0c1L

FR

[︂
•
•
•
]︂
= FR

(︁
B+

(︁
FR[•]2

)︁)︁
= −1

3
c3

0L
3 − c2

0c1L
2 − 2c2

0c2L

FR

[︃
•••
•
]︃
=

1

12
c4

0L
4 +

2

3
c3

0c1L
3 + c2

0

(︁
2c0c2 + c2

1

)︁
L2 + c2

0 (c0c3 + 4c1c2)L.

Observe that the highest order in L is determined by c0, the next-to-highest order
involves c0, c1 and so on. This will be made precise in section 3.3.3.
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3.1. Renormalization and momentum-dependence

Example 98: Toy model, Mellin transform.

For the toy model (example 79) at ϵ = 0, the Mellin transform is

F (ρ) =

∞∫︂
0

dx
xρ

x+ 1
=

−π
sin(πρ)

= −1

ρ
exp

(︄ ∞∑︂
n=1

ζ(2n)
ρ2n

n

)︄
= −1

ρ
− π2

6
ρ− 7π4

360
ρ3 + . . . .

We used eq. (2.47) and ζ(2n) = (−1)n+122n+1B2n/(2n)!π
2n with the Bernoulli numbers

Bj . Consequently, the tree amplitudes (example 97) for the toy model are

FR[1] = 1, FR (•) = −L, FR

[︂
•
•
]︂
=

1

2
L2

FR

[︂
•
•
•
]︂
= −1

3
L3 − π2

6
L, FR

[︃
•••
•
]︃
=

1

12
L4 +

π2

6
L2.

Summary of section 3.1.

1. Feynman amplitudes factorize, under the convolution product ⋆, into a scale-
dependent and an angle-dependent part (section 3.1.1). We are mostly concerned
with the scale dependent part.

2. We expanded the scale-dependence of the Feynman rules in powers of the loga-
rithmic scale L. The infinitesimal Feynman rules σ extract the linear coefficient in
L, and the exponential of the operator σ reproduces the full Feynman amplitude
by acting with σ on subgraphs (section 3.1.2).

3. The action of the cocycle B+, that is insertion of subgraphs, on Feynman ampli-
tudes can be expressed as a series convolution with the Mellin transform of the
underlying graph (section 3.1.3).
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3. Renormalized Green functions in kinematic renormalization

3.2. Renormalization group in kinematic renormalization

Up to this point, we have examined the scale-dependence of individual graphs. In the present
section, we consider full Green functions and additionally use the information that they are
solutions of Dyson-Schwinger equations.

3.2.1. Callan-Symanzik equation

Our exposition of the renormalization group loosely follows [270, 271, 380]. The convolution
product ⋆ (def. 75) is a homomorphism, this implies that it is linear under multiplication,
L · σ[Γ] = σ[L · Γ]. A product can thus be expanded according to(︂

(L1 + L2)σ
)︂
⋆
(︂
(L1 + L2)σ

)︂
= L2

1σ ⋆ σ + L1L2σ ⋆ σ + L2L1σ ⋆ σ + L2
2σ ⋆ σ.

Collecting all the prefactors, we obtain(︂
(L1 + L2)σ

)︂
⋆
(︂
(L1 + L2)σ

)︂
= (L1 + L2)

2 σ ⋆ σ.

The same argument applies to all higher monomials, consequently, the Feynman rules (def. 100)
factorize with respect to scales.

Lemma 37. Let FR be the renormalized Feynman rules in kinematic renormalization,
given by def. 100. Let L1, L2 ∈ R be two arbitrary, but fixed scales, then

FR[Γ](L1 + L2) = e⋆(L1+L2)σΓ =
(︂
e⋆L1σ ⋆ e⋆L2σ

)︂
Γ =

(︂
FR
⃓⃓
L1
⋆ FR

⃓⃓
L2

)︂
Γ. (3.9)

Algebraically, lemma 37 means that the Feynman rules at fixed angles (def. 81) form a
group with respect to ⋆, this is the renormalization group. It is a Lie group, its generator
are the infinitesimal Feynman rules σ (def. 100) as seen from eq. (2.17).
The star product ⋆ does not directly correspond to an ordinary product, so despite

lemma 37, we generally have FR[Γ](L1 + L2) ̸= FR[Γ](L1) · FR[Γ](L2). But still, the renor-
malization group has deep consequences for the momentum-dependence of renormalized
Green functions. To see this, recall that every physically sensible Green function satisfies a
combinatoric DSE (theorem 26),

Γr = 1±
∑︂

Γ∈Kr

α|LΓ| sym(Γ)BΓ
+

(︂
Γr ·Q|LΓ|

)︂
.

Denote the insertion into all k-loop kernels by

Br,k
+ =

∑︂
|LΓ|=k, res(Γ)=r

sym(Γ)BΓ
+. (3.10)

We skip the superscript r for now. Then, the DSE becomes

Γ = 1±
∞∑︂
k=1

αkBk
+

(︂
Γ ·Qk

)︂
. (3.11)
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3.2. Renormalization group in kinematic renormalization

The combinatorial Green function Γ (def. 45) is a series in α. We obtain the 1PI Green
function (def. 90) by applying the renormalized Feynman rules,

GR(L,α) = FR[Γ(α)](L). (3.12)

We now want to translate lemma 37 into a statement about the behaviour of eq. (3.12) under
a shift in the scale L (def. 99). We remark that such a shift can equivalently be viewed as a
change of the renormalization point s1 ↔ s0,

L′ := ln
s

s2
= ln

s

s1
+ ln

s1

s2
= L+ δ, ⇔ s2 = eδ · s1.

Definition 102. Let QR(α,L) be the renormalized invariant charge (def. 93). The
running coupling α̃ at the energy scale L is

α̃(α,L) = αQR(α,L).

In kinematic renormalization with renormalization point L = 0, we have α̃(α, 0) = α.

Lemma 38. Let L, δ ∈ R be two arbitrary, but fixed, logarithmic scales (def. 99). Let
GR(α,L) be a solution of a DSE in kinematic renormalization (def. 91) and let α̃ be the
running coupling (def. 102). Then

GR(α,L+ δ) = GR(α, δ) ·GR (α̃(α, δ), L) .

Proof. Under a shift of scale, the Feynman rules transform according to lemma 37:

FR[Γ](δ + L) =
(︂
FR

⃓⃓⃓
δ
⋆ FR

⃓⃓⃓
L

)︂
Γ.

Γ fulfils the DSE eq. (3.11), hence we know ∆(Γ) from theorem 24:

FR[Γ](L′) =
∞∑︂
j=0

FR
[︁
Γ ·Qj

]︁
(δ) · αjFR [Γj ] (L)

= FR[Γ](δ) ·
∞∑︂
j=0

(︂
αFR[Q](δ)

)︂j
· FR[Γj ](L). (3.13)

Here we have used multiplicativity (eq. (2.38)) to write FR[Qj ] = FR[Q]j . The invariant charge
FR[Q](δ) = QR(α, δ) (def. 93) evaluated at a fixed δ is simply a fixed number, it rescales the
coupling α according to def. 102. In eq. (3.13), Γj := [αj ]Γ is the series coefficient of the Green
function. The sum over j is nothing but the Green function, but at the running coupling.

We emphasize how nicely the correspondence between lemma 37 and lemma 38 fits with our
understanding of the renormalization Hopf algebra as an “advanced variant of the the Faà
di Bruno Hopf algebra” (section 2.1.4), compare section 2.2.1: The ⋆-product in the Hopf
algebra of Feynman graphs really amounts to inserting Green functions into each other.
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3. Renormalized Green functions in kinematic renormalization

Definition 103. Let GrR be the renormalized 1PI Green function (def. 90) in kinematic
renormalization (def. 91) with renormalization point L = 0, and let α̃(α,L) be the
running coupling (def. 102). The anomalous dimension in kinematic renormalization is
defined as

γr(α) :=
∂

∂L
GrR(α,L)

⃓⃓⃓
L=0

= σ [Γr] .

The Symanzik beta function in kinematic renormalization is

β(α) :=
∂

∂L
α̃(α,L)

⃓⃓⃓
L=0

= ασ [Q] .

Here, σ (def. 100) is the infinitesimal Feynman rule.

The anomalous dimension expresses the fact that interaction in a quantum field theory can
effectively change the mass dimension of the field, compare for example [381] or our discussion
in section 2.4.

Theorem 39 ([382, 383]). In kinematic renormalization, with β, γr from def. 103, the
renormalized Green function, projected onto its treelevel tensor (def. 82), satisfies the
Callan-Symanzik equation,

∂

∂L
GrR(α,L) =

(︃
γr(α) + β(α) · ∂

∂α

)︃
GrR(α,L). (3.14)

Proof. Deriving lemma 38 with respect to δ, we obtain

∂

∂δ
lnGR(α,L+ δ) =

∂

∂δ
lnGR(α, δ) +

∂

∂δ
α̃(α, δ) · ∂

∂α̃(δ)
lnGR(α̃(δ), L).

Consider the point δ = 0. According to kinematic renormalization conditions, α̃(0) = α and
GR(α, 0) = 1, therefore ∂L lnG|L=0 = ∂LG|L=0 and

∂

∂L
lnGR(α,L) =

∂

∂L
GR(α,L)

⃓⃓⃓
L=0

+
∂

∂L
α̃(α,L)

⃓⃓⃓
L=0
· ∂
∂α

lnGR(α,L).

Identify def. 103 to obtain the Callan-Symanzik equation.

A variant of the Callan-Symanzik equation can be obtained if we exchange L↔ δ in lemma 38
and then derive that equation with respect to δ at δ = 0:

∂

∂L
GrR(α,L) = GrR(α,L) · γr (α̃(α,L)) ⇔ ∂

∂L
lnGrR(α,L) = γr(α̃(α,L)). (3.15)

Further variants and generalizations of the Callan-Symanzik equation exist [384–388]. Recall
that we project the Green function to its tensor structure (section 2.2.2). In realistic theories,
there are multiple tensors, and hence multiple Green functions (example 67). Each of them
has their own γr and the Callan-Symanzik equation can involve additional terms, such as
γm(α) ∂

∂m for a massive theory. For the present thesis, theorem 39 is sufficiently general.
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3.2. Renormalization group in kinematic renormalization

For our later calculations it is useful to rewrite the Callan-Symanzik equation in terms of
the expansion functions γrj (α) of the log-expansion eq. (3.2),

GrR(α,L) =
∞∑︂
j=0

γrj (α) · Lj . (3.16)

Theorem 40 ([200, 270, 389]). Let γrj be the coefficients of the log expansion eq. (3.16),
where r is an index, not a power. Let β, γ be the beta function and anomalous dimension
(def. 103) of the corresponding DSE. Then

γrj>1(α) =
1

j
(γr(α) + β(α) · ∂α) γrj−1(α).

Proof. Act on eq. (3.13) with the infinitesimal Feynman rules (def. 100), or equivalently insert the
expansion eq. (3.2) into theorem 39.

Lemma 41. Assume Gr(α,L) is a formal power series (def. 51) in α. Assume that
γ(r) and β have a non-vanishing term ∝ α. Then, the coefficients in eq. (3.16) are of
order

γk(α) ∈ O
(︂
αk
)︂

∀k ≥ 0. (3.17)

Proof. Clearly γ0(α) = G(α,L = 0) ∈ O
(︁
α0
)︁
. We have rescaled the DSE eq. (3.11) such that the

first correction is of order one, Γ = 1± αB1
+(1). But B+(1) is primitive by lemma 20, therefore its

amplitude is linear in L by theorem 30 and consequently γ = ∂LΓ ∈ O(α). The higher k ≥ 1 follow
from theorem 40 by induction. It is even possible that some coefficients of the power series vanish
and that γk(α) actually starts with a higher order than k.

Lemma 42. Consider ϕn theory with vertex GvR and propagators GeR in kinematic
renormalization (def. 91). Let e ∼ v denote that e is incident to v. Then, the beta
function (def. 103) can be computed from the various anomalous dimensions according
to

β(α) =
2α

n− 2

(︄
γv(α)− 1

2

∑︂
e∼v

γe(α)

)︄
. (3.18)

Proof. The invariant charge (def. 92) is a monomial in the various Green functions, consequently,
the beta function is related to the various anomalous dimensions. Consider the logarithm lnQR =
2

n−2 lnG
v
R −

∑︁
e∼v

1
n−2 lnG

e
R. By def. 103,

β(α) = α∂LQR|L=0 = QR(0) · ∂L lnQR|L=0.

In kinematic renormalization (def. 91), QR(0) = 1 and we obtain

β(α) =
∂

∂L
lnQR|L=0 =

2α

n− 2

(︄
∂LG

v
R
⃓⃓
L=0
−
∑︂
e∼v

1

2
∂LG

e
R
⃓⃓
L=0

)︄
.

135



3. Renormalized Green functions in kinematic renormalization

Example 99: ϕn theory, relation between anomalous dimensions.

In ϕn theory, there are exactly n identical propagators attached to each vertex, hence

β(α) = ασ[Q] =
2α

n− 2

(︂
γ(n)(α)− n

2
γ(2)(α)

)︂
.

Concretely, in ϕ3 theory, β = 2αγ(3) − 3αγ(2). In ϕ4 theory, β = αγ(4) − 2αγ(2).

Finally, all the renormalization group equations can be rewritten for the running coupling
(def. 102). Use def. 92 to find

∂

∂L
lnQR =

2

n− 2

∂

∂L
lnGvR −

∑︂
e∼v

1

n− 2

∂

∂L
lnGeR.

Apply theorem 39 and eq. (3.15) to each summand and use lemma 42 to collect the terms:

∂

∂L
α̃(α,L) = α̃

∂

∂L
lnQR(α,L) = β(α̃(α,L)) =

(︃
β(α) + β(α)

∂

∂α

)︃
QR(α,L). (3.19)

Note that, by def. 103, β is the derivative ∂Lα̃ at L = 0, while eq. (3.19) holds for all L.
Using separation of variables, one obtains a formal solution:

dα̃(α,L)
1

β(α̃(α,L))
= dL, α̃(α, 0) = α ⇒ L =

α̃(L)∫︂
α

du
1

β(u)
. (3.20)

Example 100: Multiedge DSE, beta function and anomalous dimension.

In example 34, we introduced a simplified DSE for the ϕ3 propagator by setting G
(3)
R =

= 1. In that case, the 3-point function is not momentum-dependent and we have

γ(3) = 0. By lemma 42, the beta function of this model is

β(α) = −3αγ(2)(α).

We want to stress that even if the vertex function is trivial, there still is a non-trivial
running coupling (eq. (3.19)). Hence, the L-dependence of the coupling is ultimately
given by the anomalous dimension γ of the propagator. This relationship is called
propagator-coupling duality in [390].
We can slightly generalize this model by letting the invariant charge (def. 92) be

Q =
(︁
G(2)

)︁w
. In that case, w = −3 is the ordinary physical choice and w = 0 amounts

to a linear DSE and the beta function is

β(α) = w · αγ(2)(α).
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3.2. Renormalization group in kinematic renormalization

3.2.2. Counterterms and ϵ-dependence

So far, we have concentrated on renormalized quantities, most prominently the renormal-
ized Green functions GR (def. 90). In our initial example (section 2.2.1), we interpreted
renormalization as a rescaling of the bare coupling constant by the Z-factor λ0 =: Zλ(λ) · λ
(eq. (2.33)). Similar Z-factors can be introduced in the full QFT picture. Their form depends
on the chosen regularization scheme. For concreteness, we work in dimensional regularization
(section 2.3.3) here and for the rest of the thesis, unless stated otherwise.
Consider the Lagrangian of massless ϕn theory (example 3). In this Lagrangian, two

quantities can be rescaled: The coupling constant λn, and the field variable ϕ. This matches
the two residues L of the Lagrangian (example 33). Like in the DSE (theorem 27), we redefine

the coupling λ
2

n−2
n =: α to ensure that α corresponds to the loop order of the graphs.

Definition 104. Let s0 be an arbitrary, but fixed, mass scale. For massless ϕn theory,
the Z-factors in dimensional regularization (section 2.3.3) are

α0 := Zα(α, ϵ)s
ϵ
0 · α, ϕ0 := (Zϕ(α, ϵ))

1
2 · ϕ.

The factor sϵ0 in the definition of Zα is to make α dimensionless regardless of ϵ. It will cause
significant effects later, therefore we want to stress that there is not the option to leave out
s0 in order to simplify later calculations. If we were to leave it out, then the renormalized
coupling would, for ϵ ̸= 0, obtain a non-vanishing mass dimension (def. 4). In that case, we
would be forced to introduce a new, arbitrary, mass scale into the theory at a later point in
order to construct a sensible expansion in a massless parameter. In most cases, we will not
write sϵ0 explicitly, but rather implicitly redefine sϵ0α→ α.

In perturbation theory, a Z-factors is a power series in the renormalized coupling α, and a
Laurent series in the regulator ϵ, they can always be chosen to not depend on masses [391].
For convenience, we introduce

Z(2)(α, ϵ) := Zϕ(α, ϵ), Z(n)(α, ϵ) := Z
n−2
2

α (α, ϵ)s
(n−2

2 )ϵ
0 (Zϕ(α, ϵ))

n
2 . (3.21)

The overall factor Z
n−2
2

α in Z(n) arises from our convention that G(n) is rescaled to the
treelevel, G(n) = λ+ . . .. With these factors, and absorbing sϵ0 into α, the n-point 1PI (not
the connected one) Green function (def. 90) is renormalized according to

G
(n)
R (α,L) := Z(n)(α, ϵ) ·G(n)(Zα(α, ϵ) · α,L). (3.22)

Equation (3.22) is the analytic manifestation of the abstract relation FR = SF
R ⋆F (def. 88),

where

SF
R

[︂
Γ(j)

]︂
≡ Z(j) (3.23)

is the counterterm (def. 89).
eq. (3.22) is structurally similar to the behaviour of GR under finite changes of the energy

scale (lemma 38). Indeed, the Z-factors (def. 104) are defined analogous to the running
coupling (def. 102). Consequently, to express a renormalized amplitude at a given energy
scale, the coupling constant is rescaled multiplicatively two times [392–395]. Firstly, Zα
in def. 104 ensures that the renormalized coupling α takes its pre-described value at the
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3. Renormalized Green functions in kinematic renormalization

renormalization point s0 (eq. (2.31)). Secondly, the invariant charge QR(L) (def. 93) adjusts
α to its effective value at L ̸= 0. Schematically,

α0
Zαsϵ0−→ α

QR(L)−→ α̃(L). (3.24)

The renormalized invariant charge (def. 93) is related to its unrenormalized counterpart via
the counterterm Zα (def. 104),

QR(α,L) = Zαs
ϵ
0 · Q (Zαα,L) . (3.25)

At this point, we can motivate that multiplicative renormalization (def. 104) and the L-
dependence in the renormalization group are one and the same thing. Indeed, the exact
same construction that lead to the renormalization group in section 3.2.1 is also used for
renormalization itself. Schematically, we start with an un-renormalized DSE (theorem 26)
and insert the rescalings eqs. (3.21) and (3.22) to obtain

G(2)(α0) = 1−
∞∑︂
k=1

αk0B
(2),k
+

(︂
G(2)(α0) · Q(α0)

k
)︂

⇒ Z(2)G(2) (Zα · α) = Z(2)

(︄
1−

∞∑︂
k=1

(Zα · α)kB(2),k
+

(︂
G(2)(α) · Q(Zα · α)k

)︂)︄
.

An analogous replacement is possible for the vertex-type DSE. Using eq. (3.25), the general
form is

G
(n)
R (α) = Z(n) ±

∞∑︂
k=1

αkB
(n),k
+

(︂
G

(n)
R (α) · QR(α)

k
)︂
. (3.26)

The cocycle B+ is an integral operator (eq. (2.40)). If we were to write eq. (3.24) non-
recursively, using the DSE eq. (3.26), then we would obtain to every fixed order in α an
expression involving finitely many nested integrals, where the boundaries are either the
renormalization point s0 or the physical scale L. This construction is known as Chen’s
lemma [284], the Hopf algebra (def. 88) implements the combinatorics of the permuted
integral boundaries. The renormalization group describes the fact that the intermediate
scale s0 is arbitrary, that is, the process eq. (3.24) can involve arbitrarily many intermediate
steps, each of which comes with its own Z-factors. The convolution product ⋆ (def. 75) is the
group operation of the renormalization group, Z = Z1 ⋆ Z2 just like, in def. 88, FR = Z ⋆F
where Z = SF

R (def. 89). Comparing def. 100, we see that the renormalization group is
generated by the infinitesimal Feynman rule σ. For a linear DSE, there is no non-trivial
nesting and the resulting integrals can be written down explicitly, see eq. (3.32).

The Z-factors depend on ϵ, in order to work with them, we need to extend the renormal-
ization group theory of section 3.2.1 to include ϵ-dependence of γ, β and GR.

Definition 105. For ϵ ̸= 0, we extend def. 102: the running coupling is defined as

α̃(α, ϵ, L) := αe−ϵLQR(α, ϵ, L).
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3.2. Renormalization group in kinematic renormalization

The running coupling α̃(α, ϵ, s) at a certain physical scale s (def. 81), and at the physical
dimension ϵ = 0, is an observable, it is the numerical value of a scattering amplitude at
that energy. Renormalization involves the arbitrary intermediate renormalization scale s0 in
eq. (3.24). Consequently, α̃(s) must not change if we change s0. Consequently,

0 = s0 ·
dα̃

ds0
=

dα̃

d ln s0
=

∂α̃

∂ lnα

d lnα

d ln s0
+
∂α̃

∂L

dL

d ln s0
. (3.27)

Owing to def. 99, dL
d ln s0

= −1. This equation is valid for all values of L. Specify to L = 0,

then the second summand, in the limit ϵ = 0, becomes the beta function β(α) := ∂α̃
∂L |L=0

from def. 103,

0 =
∂α̃

∂α

⃓⃓⃓
L=0,ϵ=0

αs0
d

ds0
lnα

⃓⃓⃓
ϵ=0
− β(α).

On the other hand, owing to def. 102, there will always be a trivial summand ϵα̃ in the
derivative of α̃ for ϵ ̸= 0,

0 =
∂α̃

∂α

⃓⃓⃓
L=0

αs0
d

ds0
lnα+ ϵα̃

⃓⃓⃓
L=0
− α∂QR

∂L

⃓⃓⃓
L=0

.

For later convenience, we define the ϵ-dependent beta function to not contain the term ϵα̃.
Furthermore, in kinematic renormalization, α̃(α, ϵ = 0, L = 0) = α and ∂αα̃ = 1. In other
renormalization schemes, this derivative is non-trival, and it turns out (see theorem 51), that
one should include it into the definition of the beta function.

Definition 106. Let QR be the invariant charge (def. 93). In dimensional regulariza-
tion, the ϵ-dependent beta-function is defined as

β(α, ϵ) :=
1

∂α̃
∂α

⃓⃓
L=0

α
∂QR
∂L

⃓⃓⃓
L=0

= αs0
d

ds0
lnα(s0, α0)

⃓⃓⃓
α0 fixed

+
α̃ϵ
∂α̃
∂α

⃓⃓⃓
L=0

.

In kinematic renormalization with renormalization point L = 0, and in the limit ϵ→ 0,
this reproduces def. 103:

β(α) := α
∂

∂L
QR(α,L)

⃓⃓⃓
L=0

= αs0
d

ds0
lnα(s0, α0)

⃓⃓⃓
α0 fixed

.

For the remainder of this section, we will again assume kinematic renormalization conditions
We remark that the first equation in def. 106 holds in all renormalization schemes (def. 97),
while the second one is only valid in kinematic renormalization (def. 91).

Def. 106 implies an equation for the Z-factors. From def. 104, one obtains

s0
d

ds0
lnα = s0

d

ds0
(lnα0 − lnZα − ϵ ln s0) = −s0

d

ds0
lnα · ∂

∂ lnα
lnZα − ϵ.

The first summand on the right hand can be expressed by the beta function (def. 106), and
therefore

β(α, ϵ) +
(︁
β(α, ϵ)− αϵ

)︁
α
∂

∂α
lnZα(α, ϵ) = 0. (3.28)
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Comparing eq. (3.28) with eq. (3.19), β(α) + β(α)∂α lnQR = α∂L lnQR, we see that Zα is
the L-independent part of α̃, as stated in eq. (3.24), while on the other hand QR is the finite
part for ϵ→ 0. Knowing either Zα or β(α, ϵ), one can compute the other,

β(α, ϵ) =
−ϵ

∂
∂α ln (α · Zα (α, ϵ))

+ αϵ,

Zα(α, ϵ) = exp

⎛⎝− α∫︂
0

du

u

β(u, ϵ)

β(u, ϵ)− uϵ

⎞⎠ =
∞∏︂
j=1

exp

⎛⎝ 1

ϵj

α∫︂
0

du

u

(︃
β(u, ϵ)

u

)︃j⎞⎠ . (3.29)

For ϵ ̸= 0, not only the beta function, but also the anomalous dimension can obtain a

non-trivial ϵ-dependent part. It arises from the ϵ-dependence of G
(2)
R in eq. (3.16),

γ(2)(α, ϵ) := −s0∂s0G
(2)
R (α, ϵ).

Expressed in terms of Z-factors (def. 104), using eq. (3.22) and def. 106, this means

γ(2) (α, ϵ) = − (β(α, ϵ)− αϵ) ∂α lnZϕ(α, ϵ), Zϕ(α, ϵ) = exp

⎛⎝− α∫︂
0

du
γ(2)(u, ϵ)

β(u, ϵ)− uϵ

⎞⎠ .

(3.30)

The relations between the renormalization group functions and the counterterms are called
Gross-’t Hooft relations [392, 396, 397]. Observe how they resemble the finite rescaling
eq. (3.20): As expected from eq. (3.24), the Z-factor and the finite rescaling α → α̃ are
structurally similar.
The so-defined ϵ-dependent functions satisfy, in kinematic renormalization, all the prop-

erties from section 3.2.1. We collect them in a theorem for later reference.

Theorem 43. In kinematic renormalization, with renormalization point L = 0, the
renormalization group equations theorems 39 and 40 and eqs. (3.15) and (3.19) hold for
ϵ ̸= 0 in the form

∂L lnGR(α, ϵ, L) = γ(α̃(α, ϵ, L), ϵ)

∂LG
r
R(α, ϵ, L) =

(︁
γr(α, ϵ) + (β(α, ϵ)− αϵ) ∂α

)︁
GrR (α, ϵ, L) ,

γrj>1(α, ϵ) =
1

j
(γr(α, ϵ) + (β(α, ϵ)− αϵ) · ∂α) γrj−1(α, ϵ),

α̃(α, ϵ, L)∂L lnQR(α, ϵ) = β(α̃(α, ϵ, L), ϵ) (there is no −αϵ here),
∂L lnQR(α, ϵ)− ϵ =

(︁
β(α, ϵ)− αϵ

)︁
∂α ln(αQR(α, ϵ)).

Moreover, for ϕn theory, the relation from lemma 42 is fulfilled even for ϵ ̸= 0,

β(α, ϵ) =
2α

n− 2

(︂
γ(n)(α, ϵ)− n

2
γ(2)(α, ϵ)

)︂
.
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3.2. Renormalization group in kinematic renormalization

3.2.3. Grouplike Green functions

Let Γ ∈ HF be a grouplike (def. 65) combinatorial Green function (def. 45). We do not
require at this point that Γ is a solution to a combinatorial DSE (eq. (2.28)). Owing to
∆(Γ) = Γ⊗ Γ, we have (σ ⋆ σ)Γ = σ[Γ] · σ[Γ]. This holds as well for higher monomials, and
the Feynman rules (def. 76) evaluate to

exp⋆(Lσ)[Γ] = 1+ Lσ[Γ] +
1

2
L2σ[Γ]σ[Γ] +

1

6
L3σ[Γ]σ[Γ]σ[Γ] + . . . = eLσ[Γ].

In other words: The Feynman amplitude (def. 100) of a grouplike Hopf algebra element is a
scaling solution (example 65), where the value σ[Γ(α)] = γ1(α) is the exponent,

FR[Γ](L) = eLγ1(α) =

(︃
s

s0

)︃γ1(α)

. (3.31)

We have used def. 99 and the kinematic renormalization condition σ⋆0(Γ) = 1̃. The same
solution is also obtained from lemma 37 and ∆(Γ) = Γ⊗ Γ, via the functional equation

FR[Γ](L1 + L2) = m (FR|L1 ⊗FR|L2)∆(Γ) = FR[Γ](L1) · FR[Γ](L2).

Theorem 44. Let Γ ∈ HCK or Γ ∈ HF be the solution of a linear DSE Γ =
1+

∑︁
k α

kBk
+(Γ) (eq. (2.28)). Then the following holds:

1. Γ is grouplike (def. 65), ∆(Γ) = Γ⊗ Γ.

2. The beta function (def. 106) vanishes, β(α, ϵ) = 0.

3. The renormalized Feynman amplitude in kinematic renormalization (def. 91) for
ϵ = 0 is FR[Γ](L) = exp(Lγ1(α)), where γ1(α) = γ(α) is the anomalous dimension
(def. 103).

Proof. Point 1 was remarked in example 63, and is a special case of theorem 24. Point 2 follows
from def. 106 because in a linear DSE, Q = 1 is momentum-independent. The general form in
point 3 follows from the Callan-Symanzik equation (theorem 39) using β(α) = 0. In kinematic
renormalization, we demand FR[Γ]|L=0 = 1, hence there is no prefactor to eLγ . Alternatively, use

theorem 40 to find γj = 1
j! (γ1)

j
. With these coefficients, eq. (3.2) takes the desired form. Clearly,

∂LFR[Γ]|L=0 = γ1 = γ is the anomalous dimension (def. 103).

Compare theorem 44 with example 65: The scaling solution of a linear DSE is the 2-point
function of a scale invariant theory. Moreover, for a scalar field theory, scale invariance
implies conformal invariance [398], therefore, if a scalar theory is described by a linear DSE,
then its correlation functions are severely restricted, see example 66.

Example 101: Infinite sums of rainbows or ladders.

Two realizations of grouplike Green functions in terms of Feynman graphs are the rain-
bows (example 76) and ladders (example 78). From theorem 44, we know, without
performing any explicit computation, that these infinite sums of Feynman graphs add
up to a Green function of the form eq. (3.31). The only remaining task is to determine
γ1(α), we will come back to this in theorem 45.
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3. Renormalized Green functions in kinematic renormalization

Another class of grouplike graphs are the wheels with spokes, recently featured in
Super Yang-Mills theory [399, 400].

The simple scaling form of grouplike Green functions holds only for ϵ = 0. For ϵ ̸= 0, we
have the Callan-Symanzik equation (43),

∂LGR(α, ϵ, L) = (γ(α, ϵ)− ϵα∂α)GR(α, ϵ, L).

Using separation of variables and the boundary condition GR(α, ϵ, 0) = 1, we find

GR(α, ϵ, L) = exp

⎛⎝− α∫︂
αe−ϵL

du
γ(u, ϵ)

−uϵ

⎞⎠ . (3.32)

Compare this to the counterterm in eq. (3.30),

ZG(α, ϵ) = exp

⎛⎝− α∫︂
0

du
γ(u, ϵ)

−uϵ

⎞⎠ .

This is a particularly striking illustration of eq. (3.24): Owing to the ϵ in the denominator,
the integral would be divergent, were it not for integration limits (α−αe−ϵL) ∼ −ϵLα. The
counterterm represents the divergent part of this integral, the renormalized Green function
is merely a transition to the running coupling αe−ϵL = α̃ (def. 105).
As an alternative to the integral in eq. (3.32), one can derive a series solution of the linear

DSE by iterating the renormalization group equation for γj(α, ϵ),

γj(α, ϵ) =
1

j
(γ1(α, ϵ)− αϵ∂α) γj−1(α, ϵ).

The first order in ϵ is

GR(α, ϵ, L) = eLγ1(α,ϵ) − 1

2
ϵL2eLγ1(α,ϵ)α∂αγ1(α, ϵ) +O

(︁
ϵ2
)︁

(3.33)

= eLγ1(α)

(︃
1 + ϵ

(︃
[ϵ1]γ1(α, ϵ)−

1

2
L2α∂αγ1(α)

)︃
+O

(︁
ϵ2
)︁)︃

.

Here, we have introduced γ1(α, ϵ) =: γ1(α) + ϵ[ϵ1]γ1(α, ϵ) +O(ϵ2).
Grouplike Green functions allow us to make an argument about counterterms in the phys-

ical dimension ϵ = 0: To finite order in α, the counterterms (def. 104) are a sum of poles in ϵ
and clearly infinite for ϵ→ 0. But the 2-point Green functions carry an anomalous dimension,
which will generally be non-integer. For grouplike functions (theorem 44), this anomalous
dimension resembles analytic regularization (section 2.3.2). In that case, the Feynman inte-
grals are not actually divergent when the regulator is removed, and “the theory regularizes
itself” [401]. The Z-factors are then finite. See example 119 for the counterterm of a linear
DSE. In the non-linear case, eq. (3.2) represents an expansion “around analytic regulariza-
tion”[401]. The true non-perturbative status of Z-factors is unclear, but it is well possible
that they turn out finite in the general case as well. This would be fortunate, because, in the
traditional view of canonical quantization, they are introduced as probabilities and hence
Z ∈ [0, 1]. A detailed discussion of the latter aspect can be found in [42].
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3.2. Renormalization group in kinematic renormalization

3.2.4. Digression: History and variants of the renormalization group

The early developments, motivations and variants of the renormalization group are laid out
in the foundational work [393]. For QFT, the renormalization group is intimately related
to the quantum nature of the interaction, that is, the sum of all possible interactions as ex-
pressed by Dyson-Schwinger equations. Nonetheless, the renormalization group also appears
in classical statistical physics [83, 402]. There, a change of scale amounts to averaging over
microscopic degrees of freedom, in lattice models for example expressed by Migdal-Kadanoff
transformations [403–406].

A first step towards the renormalization group equation in QFT was the Gell-Mann-Low
equation [407, 408], which concerns the behaviour of interactions in QED at very high ener-
gies. From today’s perspective, this analysis falls under leading-log expansion, to be intro-
duced in section 3.3.3. See [402] for a detailed discussion of this point and a comprehensive
historical review. Interestingly, without developing a formal theory, [408] already contains
many of the features of the later renormalization group theory. The crucial point seems to
be that later work, culminating in the Callan-Symanzik equation (theorem 39), realized that
the renormalization group functions determine all scale dependence, while Gell-Mann and
Low did not make a sharp distinction between the scale and the energy (compare exam-
ple 65), and consequently understood their results only as an asymptotic approximation for
very small distances, i.e. high energies, where scale and energy actually become equivalent.
The running of the coupling (def. 102) is governed (eq. (3.19)) by the behaviour of the

beta function [213, 409, 410]. Especially, a value α∗ such that β(α∗) = 0 is a fixed point
of the theory [411]. Once the energy scale L is such that α̃(L) = α∗, any further change
of L will not change α̃ any more, and therefore, the theory becomes scale invariant. This
observation, together with Bjorken scaling [412, 413], guided the discovery of asymptotic
freedom in QCD in the 1970s [414–417].
In our above language (def. 102), scale invariance means that the Dyson-Schwinger equa-

tions become linear, or that QR(α
∗, L) = 1. Clearly, α∗ = 0 is a fixed point, called Gaussian

fixed point (because the free fields follow a Gaussian distribution, compare theorem 3). It
is conceivable that a theory has additional non-trivial fixed points α∗ ̸= 0. This implies
that the linear DSEs studied in section 3.2.3 are not merely a technical example, but they
are of high relevance for real-world QFT. Conversely, a non-vanishing beta function in the
renormalization group (theorem 40) can be interpreted as a “perturbation around conformal
field theory” [200, Sec. 4.2].
One can view the renormalization group equations (RGE, theorem 39) as yet another

perspective – apart from implementing boundary conditions, rescaling Lagrangian parame-
ters, and removing divergences as discussed in section 2.3.4 – on renormalizability. This is
the perspective of Wilson’s renormalization group [393, 418–422]. The RGE determine how
beta functions change with the scale. Renormalizability then amounts to whether or not
an effective action (def. 48) at high energies can have finite coupling constants, given the
values we observe at lower energies. The conclusions are identical, but philosophically it is
the opposite view compared to the “UV-finiteness” we usually demand: For us, the argu-
ment was that there must be no divergent high-energy unobservable quantum corrections
to the processes we observe. In Wilson’s perspective, the theory at a very high, but finite,
scale is the fundamental object and the question is if it gives rise to a low-energy theory
with non-zero effective couplings. For a non-renormalizable theory, the couplings decrease
polynomially as the scale is lowered, rendering them effectively zero at observables. This phe-
nomenon is called triviality and it can also occur for renormalizable theories, for example,
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3. Renormalized Green functions in kinematic renormalization

scalar ϕ4 theory is assumed to be trivial in this sense [423], even though it is renormalizable
perturbatively.
Computing the change of the effective action (as opposed to individual Green functions)

with changing energy scales is the endeavour of exact renormalization group theory and the
Wetterich equation [424–429]. A priori, this comes at the cost of manipulating, instead of
functions, a potentially complicated functional, but in concrete calculations one truncates
the functional to finitely many functions. This setup appears particularly suitable for finding
non-trivial fixed points [430]. Especially, it might be that quantum gravity, despite not being
renormalizable when formulated as a perturbation of a free theory (see section 5.2.1), has a
sensible, finite, high-energy effective action, representing a non-trivial fixed point [431–434].

Finally, we have discussed the renormalization group only in terms of UV-behaviour.
Especially for gauge theories, the IR-behaviour is interesting as well [402, 435–444].

Summary of section 3.2.

1. Upon changing the energy scale, a renormalized Green function varies accord-
ing to the Callan-Symanzik equation (theorem 39). The change of the coupling
parameter with changing energy scale is given by the beta function, such trans-
formations generate the renormalization group. We concentrated on kinematic
renormalization conditions in section 3.2.1.

2. In section 3.2.2, we extended the renormalization group to ϵ ̸= 0 in dimensional
regularization, still using kinematic renormalization. We saw that removing diver-
gences, and rescaling to different energy scales, is essentially the same process. In
this transformation, the invariant charge represents the finite part, the countert-
erms a divergent, L-independent part. The latter are integrals of the renormaliza-
tion group functions.

3. A linear DSE has grouplike combinatorial Green functions as solutions, and the
corresponding analytic Green function is a simple monomial, called scaling solu-
tion. The functional form becomes more complicated when ϵ ̸= 0 (section 3.2.3).

4. Section 3.2.4 is a short survey of other aspects of renormalization group theory,
which are not directly relevant for the present thesis. We observed that scaling
functions appear at fixed-points of the renormalization group.
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3.3. Dyson-Schwinger equations, third act

Equipped with knowledge about the renormalization group, we can finally carry out our last
attack on Dyson-Schwinger equations. The previous sections about DSEs, sections 1.3.11
and 2.2.5, have been rather superficial and served to introduce the general, conceptional
features of Dyson-Schwinger equations. Conversely, the purpose of the present section is to
find concrete solutions of a certain class of DSEs.

3.3.1. Propagator-DSE as differential equation

We want to learn how to compute the anomalous dimensions (def. 103) systematically in
kinematic renormalization. The method in question was derived gradually over 15 years in
[213, 271, 389, 390, 401, 445, 446].
For this section, we restrict ourselves to a massless theory, and a single (non-coupled)

Dyson-Schwinger equation of propagator type. Conceptually, the method can account for
vertex corrections either by explicitly including kernel graphs (def. 50) with vertex-type
subgraphs into the propagator DSE, or by introducing an additional functional dependence
of kernels on angle parameters (def. 81) to allow for vertex-type DSEs. Both approaches
greatly increase the computational difficulty and we will not pursue them further. It has
been argued [447] that this approximation to DSEs is in the spirit of the Hartree-Fock method
[448–450] in molecular physics: Instead of solving the full coupled system, one solves for one
Green function at a time, keeping all others fixed.

The solution we are trying to find is a 1PI propagator Green function G
(2)
R =: GR and the

invariant charge (def. 93) is a power of this Green function,

QR = GwR. (3.34)

Here, the exponent w ∈ Z is chosen corresponding to the vertex valence of the theory, see
def. 92. We have encountered this setup already in example 82. In kinematic renormalization,
eq. (3.34) implies β(α, ϵ) = w · αγ(α, ϵ) (theorem 43). We shall see in theorem 49 that the
same holds for all renormalization schemes.
Despite the simplifications, the DSE can still involve infinitely many kernel graphs (def. 50).

We redefine the coupling constant such that it corresponds to the loop order |Γ| of the ker-
nels, that is, the first non-vanishing kernel is of order α1, the next one α2 etc.. In this way,
the DSE has a form similar to theorem 27,

GR = 1− (1−R)
∞∑︂
k=1

αkB
(2),k
+

(︂
GR · QkR

)︂
= 1− (1−R)

∞∑︂
k=1

αkB
(2),k
+

(︂
G1+wk

R

)︂
. (3.35)

Here, B+ is the sum of all cocycles of grade k, it is the analogue of eq. (3.10), but on the
level of amplitudes, not on graphs. It is given by the Mellin transform (def. 101) according
to eq. (3.7),

(1−R)B(2),k
+

(︂
G1+wk

R

)︂
=
∑︂

Γ

GR(α, ∂ρ1) · · ·GR(α, ∂ρE )⏞ ⏟⏟ ⏞
E=1+wk factors

(︂
eL

∑︁
j ρj − 1

)︂
FΓ (ρ1, . . . , ρE)

⃓⃓⃓
ρ=0

.

All graphs of order k have the same number E = |EΓ| of internal edges, therefore we can
sum their Mellin transforms to obtain

Fk(ρ1, . . . , ρE) :=
∑︂

Γ,|Γ|=k

FΓ (ρ1, . . . , ρE) .
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3. Renormalized Green functions in kinematic renormalization

The DSE from eq. (3.35) now reads

GR(α,L) = 1−
∞∑︂
k=1

αkGR(α, ∂ρ1) · · ·GR(α, ∂ρE )
(︂
eL

∑︁
j ρj − 1

)︂
Fk (ρ1, . . . , ρE)

⃓⃓⃓
ρ=0

. (3.36)

This is a pseudodifferential equation version of the DSE, that is, a differential equation of
potentially infinite order. Expanding in L results in an equation for the anomalous dimension
in kinematic renormalization, γ(α) = γ1(α),

γ(α) = −
∞∑︂
k=1

αkGR(α, ∂ρ1) · · ·GR(α, ∂ρE )

⎛⎝∑︂
j

ρj

⎞⎠Fk (ρ1, . . . , ρE)
⃓⃓⃓
ρ=0

. (3.37)

The Green functionsGR on the right hand side are determined from the anomalous dimension
by the renormalization group equation (theorem 40), where β = wαγ.

If the Mellin transform is known as a power series in ρ, computing γ(α) from eq. (3.37) is
a merely combinatorial task, which can typically be done to hundreds of orders, e.g. [451] or
even to all orders [389, 390]. Equation (3.36) implies especially that all information about the
behaviour of GR for high orders in α is encoded in the coefficients of the Mellin transforms,
see [213, 409, 410]. A graphical interpretation of the coefficients of γ(α) is in terms of chord
diagrams [162, 452–455]. By truncating the Mellin transform to a polynomial of low degree,
the computation can be simplified even more [456, 457].

3.3.2. Insertions into a single edge

It is possible to turn eq. (3.37) into a non-recursive differential equation, if the following
severe additional restrictions are imposed:

1. There are only kernel graphs of a single order, which we take k = 1.

2. The correction is only inserted into one of the edges at a time. Technically, this means
that we restrict ourselves to one-parameter Mellin transforms F (ρ) := F (ρ, 0, . . . , 0).
It is possible to include all edges, F (ρ) := F (ρ, 0, . . .) + F (0, ρ, . . .), but this will still
miss the insertions into multiple edges simultaneously.

Under these conditions, the DSE (theorem 15) takes the form

G(α, s) = 1 + α(1−R)
∫︂

dy K(s, y)G(α, y)1+w, (3.38)

where K is the sum of all kernel graphs and w = −2 in physical models. The DSE can be
rewritten as a differential equation analogous to eq. (3.36),

GR(α,L) = 1− α
(︁
G1+w

R (α, ∂ρ)e
LρF (ρ)−G1+w

R (α, ∂ρ)F (ρ)
)︁ ⃓⃓⃓
ρ=0

. (3.39)
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Theorem 45. Consider a DSE at the physical dimension ϵ = 0 of the form eq. (3.38),
where R ∋ w ̸= 0 and F (ρ) is the Mellin transform (def. 101) of the sum of kernel
graphs. Then, in kinematic renormalization (def. 91), the anomalous dimension is a
solution of the pseudodifferential equation

1

ρ · F (ρ)

⃓⃓⃓
ρ→γ(1+wα∂α)

γ(α) = −α.

If, in the same setup, w = 0, then γ(α) satisifies the algebraic equation

1

F (γ(α))
= −α ⇔ γ(α) = F−1

(︃
− 1

α

)︃
.

On the right hand side, F−1 denotes the inverse function, not 1
F .

Proof. Conceptually, we use eq. (3.4) in reverse direction, namely ∂kLe
Lρ = ρkeLρ and therefore

eLρ =
1

F (ρ)
· F (ρ)eLρ =

1

F (ρ)

⃓⃓⃓
ρ→∂L

· F (ρ)eLρ.

Apply this differential operator to both sides of eq. (3.39):

1

F (ρ)

⃓⃓⃓
ρ→∂L

GR(α,L) = −αG1+w
R (α, ∂ρ)e

Lρ
⃓⃓⃓
ρ=0

+ 0 = −αG1+w
R (α,L).

The operator on the left hand side is a power series in ∂L, starting at linear order. The Callan-
Symanzik equation (theorem 39) in our case reads ∂LGR = γ(α)(1 + wα∂α)GR. Therefore, we can
replace ∂L and obtain

1

F (ρ)

⃓⃓⃓
ρ→γ(1+wα∂α)

GR(α,L) = −αG1+w
R (α,L)

1

F (ρ)

⃓⃓⃓
ρ→γ(1+wα∂α)

(︁
1 + γ(α)L+ γ2(α)L

2 + . . .
)︁
= −α

(︁
1 + γ(α)L+ γ2(α)L

2 + . . .
)︁1+w

.

We will be interested in the order L0. On the left hand side,

γ (1 + wα∂α) 1 = γ(α), (γ (1 + wα∂α))
j
1 = j!γj(α) = (γ (1 + wα∂α))

j−1
γ(α).

Consequently, if we reduce all powers of ρ in the differential equation by one, then the operator acts
on γ(α) instead of on 1. We obtain the claimed form of the pseudodifferential equation.
In this equation, unlike eq. (3.38), the parameter w has an analytic, but no longer a combinatorial

function, therefore we can allow w ∈ R. The algebraic equation is the limit w → 0 of the differential
equation.

In the literature, differential equations like theorem 45 have appeared for various concrete
examples of Mellin transforms [213, 271, 390, 456]. Knowing a differential equation for the
anomalous dimension allows to derive sophisticated statements about its behaviour beyond
perturbation theory [244, 253, 458], see section 3.4.

We remark that for the original graphical DSE (eq. (3.38)) in physical models, every choice
w /∈ {−2, 0} means that we insert subgraphs with non-standard prefactors, or only certain
sets of subgraphs. The choice w = −2 is the only one where all subgraphs are used with
their conventional QFT multiplicities. The choice w = 0 amounts to Q = 1 (eq. (3.34)) and
therefore to a linear DSE. With w = −1, we obtain a non-recursive “DSE”, which has the
1-loop graph γ(α) = −c0α as full solution, where c0 is the first coefficient of F (ρ) (eq. (3.5)).

147
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It seems that the literature so far has mostly concentrated on the physically most relevant
cases w = 0 (linear approximation, e.g. [401, 459, 460]) and w = −2 (one inverse Green
function inserted into the kernel, e.g. [253, 390, 445, 451, 456–458]).
The setup discussed in [451, 456, 457] is based on an invariant charge QR = G−3

R , but still
it is conceptually different from choosing w = −3 in our formalism: With w = −3, we insert
the entire correction G−2

R into only one of the two internal edges, while in [451, 456, 457],
one copy G−1

R is inserted into each of the two edges. See also [213, Sec. 5] for a discussion
how insertion into only a subset of the available edges is equivalent to including additional
primitive kernels.

Finally, we remark that theorem 45 represents a unique mapping between a DSE of the
form eq. (3.38) at ϵ = 0 and its perturbative solution. That is, knowing the anomalous
dimension (as a power series) allows to reconstruct the Mellin transform of the kernel (as a
power series for ϵ = 0). No two different Dyson-Schwinger equations of this form have the
same solution in kinematic renormalization.

Example 102: Toy model, linear DSE.

The toy model (example 79) gives rise to the renormalized DSE

GR(α, s) = 1− (1−R)α
∞∫︂

0

dy (sy)−ϵ

1 + y
G1+w

R (α, sy).

We have computed the Mellin transform F (ρ) = π
sin(πρ) in example 98. By theorem 45,

the linear DSE, for ϵ = 0, has the all-order solution GR(α,L) = eLγ(α) with

γ(α) = − 1

π
arcsin (πα) = −α− π2

6
α3 − 3π4

40
α5 − 5π6

112
α7 − . . . .

Example 103: Multiedge DSE.

We consider insertions into one of the edges of the the 1-loop multiedge (example 23).
Then the DSE reads

GR(α, ϵ, q
2) = 1− λ2

∫︂
dDk

(2π)D
G1+w

R (α, ϵ, k2)(︁
k + q

)︁2
k2

+R

(︄
λ2

∫︂
dDk

(2π)D
G1+w

R (k2)(︁
k + q

)︁2
k2

)︄
.

If D = D0 − 2ϵ, then we obtain the form eq. (3.38) by rescaling the coupling α :=

λ(4π)−
D0
2 .

Definition 107 ([461, 462]). For n ∈ N, the Catalan numbers Cn are given by

Cn :=
1

n+ 1

(︃
2n

n

)︃
.
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Example 104: Multiedge linear DSE.

The Mellin transform of the 1-loop multiedge inD = 4 was computed in example 96. The
linear DSE in kinematic renormalization at ϵ = 0 has a scaling solution (theorem 44),
where the anomalous dimension satisfies (theorem 45)

1
−1

γ(α)(1+γ(α))

= −α ⇒ γ(α) =

√
1 + 4α− 1

2
=

∞∑︂
n=1

(−1)nCn−1α
n,

where Cn are the Catalan numbers (def. 107). This solution has long been known [459].
In a similar way, the Mellin transform of the same kernel in D = 6 is a rational function
of degree four, leading to the anomalous dimension

γ(α) =

√︁
5 + 4

√
1− α− 3

2
.

Observe that theorem 45 does not make any reference to regularization, because essen-
tially, the Mellin transform acts as an analytically regularized integral. But even without
explicit regularization, it is based on kinematic renormalization conditions (def. 91). Earlier
works on DSEs, such as [459, 460], do regulate the integrals using dimensional regulariza-
tion (section 2.3.3), but they impose kinematic renormalization conditions nonetheless. In
chapter 4, we consider DSEs with non-kinematic renormalization conditions.

3.3.3. Leading-log expansion

In eqs. (3.2) and (3.16), we expanded the renormalized 1PI Green function in powers of the
logarithmic scale L (def. 99), where the coefficients γj(α) are functions of the renormalized
coupling α. The leading log expansion is a reordering of the series, in powers of α · L:

GR(α, x) = 1 +
∞∑︂
k=1

Hk (αL)α
k−1. (3.40)

The function H1(z) is the leading-log contribution to the Green function, and Hk(z) rep-
resents the next-tok leading log part. They can be obtained systematically from DSEs by
mapping to chord diagrams [463, 464], or from the renormalization group equation in the
Hopf algebra [271, 380, 465]. In the language of rooted trees (section 2.1.5), the leading log
approximation amounts to a weighting of all trees with their tree factorial [167, 271].

Using eq. (3.8), we see that the leading-log order is the highest power in L for each graph,
therefore it is given by the c0-term of the Mellin transform (def. 101). Phrased differently,
we obtain the leading-log solution of any theory by setting cj≥1 = 0 in the Mellin transform,
and the next-tok leading log by keeping only the first k coefficients cj (compare example 97).
Equivalently, Hk depends on the first k coefficients ck of the anomalous dimension in kine-
matic renormalization (def. 91),

γ(α) =:
∞∑︂
j=1

cjα
j . (3.41)
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As remarked in section 3.2.4, this observation was the starting point for renormalization
group theory in QED in [408, 466]: Knowing the first coefficient of the beta function, one
can resum leading logarithms to all orders. Concretely, for a DSE with one insertion point
(eq. (3.39)) which features the invariant charge QR = GwR (eq. (3.34)), where w ̸= 0, one
finds [380]:

H1(z) =
1

(1− wc1z)
1
w

, H2(z) =
−c2 ln(1− wc1z)

wc1 (1− wc1z)
1
w

+1
, (3.42)

H3(z) =
−w2c1(c

2
2 − c1c3)z − wc2

2 ln(1− wc1z) +
c22
2 (1 + w) ln2(1− wc1z)

w2c2
1 (1− wc1z)

1
w

+2
.

Example 105: Landau pole in QED.

The leading-log functions in eq. (3.42) are only valid for a theory with a single Green
function. QED (example 22) contains two fields and three Green functions needing
renormalization (the two propagators and the vertex). Thanks to the Ward identity
to be discussed in example 128, in terms of renormalization, QED effectively behaves
like a theory with only one Green function and w = +1. We are interested in the
leading log expansion of the running coupling α̃ (def. 102). By eq. (3.19), its momentum
dependence is given by the beta function, so we have to replace γ with β in eq. (3.42).
In QED, the first coefficient of the beta function (where one factor of α is removed by
αQR = α̃↔ QR) is c1 = α

3π > 0 [467, 468]. From eq. (3.42), we obtain

α̃(α,L) =
α

1− α
3πL

.

This is the famous first order correction to the running coupling, obtained by Gell-Mann
and Low [408, 466]. We see that α̃(α,L∗) =∞ for a finite value L∗. This value is known
as the Landau pole, or Moscow zero, of QED [407, 469, 470], indicating the breakdown of
the leading-log expansion. The same pole will appear for all Hk, at the same L∗, unless
the polynomials in the numerator cancel the pole. A slightly different perspective, based
on Dyson-Schwinger equations rather than the leading-log expansion, is given in [409],
with the outcome that the presence of a Landau pole depends on the asymptotic growth
of primitive Feynman graphs.
Conversely, the leading log approximation in QED does not contain obvious poles for

the infrared asymptotics L→ −∞. Therefore, Hk(z) do give the correct asymptotics for
vanishing scale, but this limit implies simultaneously a vanishing of the electron mass
(see example 65), so it is not the physical low-energy limit of QED.
The opposite situation occurs if the coefficient c1 is smaller than zero [410]. Then,

H1 is not singular for L → ∞ and the leading-log expansion produces the correct UV
asymptotics [402]. Such theories are called asymptotically free [416, 417, 429] since for
high energies, they become free field theories. But this time, the leading log expansion
breaks down for low scales L→ −∞. Quantum chromodynamics (QCD) is a theory of
this kind.
At the same time, the (experimentally verified) existence of QCD is an argument for

why the Landau pole in QED does not necessarily indicate a failure of quantum field
theory: The coupling of QCD at low energies becomes strong and perturbation theory
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breaks down, but the coupling stays finite nevertheless, as known e.g. from lattice
calculations [471]. Finally, a non-Gaussian UV fixed point has been proposed for QED
[472], rendering it finite despite the diverging low-order perturbation series. Compare
the discussions in sections 3.2.4 and 5.2.1.

3.3.4. Non-physical spacetime dimension

So far, we have concentrated on the physical spacetime dimension D = D0. But with small
modifications, our theory is also applicable to the general case D = D0 − 2ϵ.

Theorem 46. Work in dimensional regularization (section 2.3.3) with D = D0 − 2ϵ.
Consider a DSE of the form eq. (3.38), where R ∋ w ̸= 0 and F (ρ) is the ϵ-dependent
Mellin transform of the sum of kernel graphs. Then, in kinematic renormalization
(def. 91), the ϵ-dependent anomalous dimension is a solution of the pseudodifferential
equation

1

ρ · F (ρ)

⃓⃓⃓
ρ→γ+(wγ−ϵ)α∂α

γ(α, ϵ) = −α.

The ϵ-dependent solution of a linear DSE is given by the differential equation that arises
by setting w = 0.

Proof. The proof of theorem 45 can be copied almost verbatim. The only difference is that we need
the Mellin transform in D dimensions, including its ϵ-dependence, and the Callan-Symanzik equation
with ϵ-dependence (theorem 43),(︁

γ(α, ϵ) + (wγ(α, ϵ)− ϵ)α∂α
)︁
GR (α, ϵ, L) = ∂LGR(α, ϵ, L).

The linear case still contains the derivative operator −ϵα∂α, it does not reduce to an algebraic
equation in the ϵ-dependent case.

The differential equation in theorem 46 implies a highly non-trivial mixing of the various
orders in ϵ. This is because, in a series expansion of the anomalous dimension in ϵ, the
various orders no longer commute. For example, the quantity [ϵ0]γα∂α

(︁
[ϵ1]γ

)︁
is generally

different from [ϵ1]γα∂α
(︁
[ϵ0]γ

)︁
. The situation becomes more manageable in the linear case

(w = 0).

Theorem 47. Consider a linear DSE (w = 0) of the form eq. (3.38) with ϵ-dependent
Mellin transform (def. 101) F (ρ). Let 1

F (ρ) = T0(ρ) + ϵT1(ρ) + O(ϵ2) and γ(α, ϵ) =:

γ(α) + ϵg(α) +O(ϵ2), then

g(α) =

α∂αγ(α) ·
(︃

1
2∂

2
ρT0(ρ)

⃓⃓⃓
ρ→γ(α)

)︃
− T1(γ(α))(︃

∂ρT0(ρ)
⃓⃓⃓
ρ→γ(α)

)︃ .
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Proof. We have to extract the order ϵ1 from theorem 46 in the linear case. First, observe that

[ϵ1]
(︂
(γ(α, ϵ)− ϵα∂α)k γ(α, ϵ)

)︂
= (γ(α))

k
g(α) +

k∑︂
j=1

(γ(α))
k−j

(g(α)− α∂α) (γ(α))j

= (k + 1) · γ(α)kg(α)− k(k + 1)

2
γ(α)k−1α∂αγ(α).

Let T0(ρ) =:
∑︁

k≥1 tkρ
k, then the first order in ϵ of theorem 46 is 0 = T1(γ(α)) + [ϵ1]T0(γ(α, ϵ)),

0 = T1(γ(α)) +
∑︂
k≥1

tk

(︃
k · γ(α)k−1g(α)− k(k − 1)

2
γ(α)k−2α∂αγ(α)

)︃

= T1(γ(α)) + g(α)

(︃
∂ρT0(ρ)

⃓⃓⃓
ρ→γ(α)

)︃
− α∂αγ(α)

(︃
1

2
∂2ρT0(ρ)

⃓⃓⃓
ρ→γ(α)

)︃
.

Example 106: Multiedge DSE, linear correction in ϵ.

The Mellin transform of the Multiedge is example 96, a series expansion results in

T0(ρ) = −ρ− ρ2

T1(ρ) = 2 + 4ρ+ γEρ(1 + ρ) + (π cot(πρ) + 2ψ(ρ)) ρ(1 + ρ)

= 1 + (3− γE)ρ− γEρ2 − 2
∞∑︂
j=1

ζ(2j + 1)(ρ2j+1 + ρ2j+2).

Here, ψ(z) := ∂zΓ(z) is the digamma function. Using the given series expansion and
eq. (2.47), one finds the alternative representation

(︁
π cot(πρ) + 2ψ(ρ)

)︁
ρ = ρ∂ρ ln

Γ(1 + ρ)

Γ(1− ρ)
− 1.

We have ∂ρT0 = −1 − 2ρ and 1
2∂

2
ρT0 = −1. The anomalous dimension γ(α) for ϵ = 0

was derived in example 104, consequently,

g(α) =
α∂αγ(α) + T1(γ(α))

1 + 2γ(α)

= 1 +
α

1 + 4α
+

γ(α) + 1

2γ(α) + 1

(︃
2γ(α) · γE + ρ∂ρ ln

Γ(1 + ρ)

Γ(1− ρ)

⃓⃓⃓
ρ→γ(α)

− 1

)︃
= 1 + 2α− 7α2 + (26− 2ζ(3))α3 + (−99 + 8ζ(3))α4 + . . . .

Knowing the functions γ(α) and g(α), the first-order solution in ϵ of the linear DSE is
given by eq. (3.33).

152



3.3. Dyson-Schwinger equations, third act

Summary of section 3.3.

1. A DSE for propagator-type Green functions can be written as an implicit pseu-
dodifferential equation where the Mellin transforms of the kernel graphs are the
input data (section 3.3.1).

2. If we further restrict ourselves to insertions into only a single internal edge of a
single kernel graph, then the DSE turns into an explicit pseudodifferential equation
for the anomalous dimension γ(α) (section 3.3.2).

3. The leading-log expansion is a reordering of the series expansion of GR in powers
of (α · L). The next-to-k-leading-log approximation is determined by the first k
coefficients of the anomalous dimension, or of the Mellin transform of the kernel.
Depending on the sign of the first coefficient, the leading-log expansion describes
the asymptotics of the theory either for L→∞ or for L→ −∞ (section 3.3.3).

4. In section 3.3.4, we showed that for insertions into a single edge, essentially the
same pseudodifferential equation holds for the full ϵ-dependent anomalous dimen-
sion γ(α, ϵ) as for the earlier case of ϵ = 0. However, it needs the ϵ-dependent
Mellin transform as input. For a linear DSE, we derived an explicit formula for
the coefficient [ϵ1]γ(α, ϵ).
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3.4. Asymptotics and nonperturbative contributions in MOM

In this section, we determine the behaviour of the series coefficients of the MOM-renormalized
(def. 91) Green functions at high order in α for three examples of DSEs. We comment on
its implications for non-perturbative completions by resurgence (section 2.1.2).

3.4.1. Multiedge DSE at D = 4

The multiedge DSE has been introduced in example 103. We stated the solution of the linear
DSE in example 104. The Mellin transform of this model, as computed in example 96, is
F (ρ) = −1

ρ(1+ρ) . By theorem 45, the anomalous dimension γ(α) for the nonlinear DSE, w ̸= 0,
is determined by the differential equation

(1 + γ(α) (1 + wα∂α)) γ(α) = α. (3.43)

This ODE has a unique perturbative solution. Using a power series ansatz eq. (3.41),

γ(α) =:
∞∑︂
j=1

cjα
j , (3.44)

we computed the coefficients cj symbolically up to order α500, for w ∈ {−5, . . . ,+5}.

w γ(α)

5 α− 6α2 + 102α3 − 2640α4 + 87804α5 − 3483072α6 + 158329512α7 − 8050087584α8

4 α− 5α2 + 70α3 − 1485α4 + 40370α5 − 1306370α6 + 48365100α7 − 2000065725α8

3 α− 4α2 + 44α3 − 728α4 + 15368α5 − 384960α6 + 11004672α7 − 350628096α8

2 α− 3α2 + 24α3 − 285α4 + 4284α5 − 75978α6 + 1530720α7 − 34237485α8

1 α− 2α2 + 10α3 − 72α4 + 644α5 − 6704α6 + 78408α7 − 1008480a8

0 α− α2 + 2α3 − 5α4 + 14α5 − 42α6 + 132α7 − 429α8

-1 α

-2 α+ α2 + 4α3 + 27α4 + 248α5 + 2830α6 + 38232α7 + 593859α8

-3 α+ 2α2 + 14α3 + 160α4 + 2444α5 + 45792α6 + 1005480α7 + 25169760α8

-4 α+ 3α2 + 30α3 + 483α4 + 10314α5 + 268686α6 + 8167068α7 + 281975715α8

-5 α+ 4α2 + 52α3 + 1080α4 + 29624α5 + 988288α6 + 38377152α7 + 1689250176α8

Table 3.1.: First perturbative coefficients of the anomalous dimension in MOM for the D = 4
multiedge DSE as a function of the renormalized coupling α for various powers w
of the invariant charge Q = Gw. Only insertions into a single internal edge were
performed, regardless of the value of w.

Results up to order α8 are reported in table 3.1. The sequence of coefficients for w = 1 is
part of the OEIS [473, A177384]. As remarked below theorem 45, the case w = −3 in our
setup is not equivalent to insertion into both edges of the kernel graph, even if the latter
also corresponds to w = −3. For w = −3, we obtain

γ(α) = α+ 2α2 + 14α3 + 160α4 + 2444α5 + 45792α6 + 1005480α7 + 25169760α8 ∓ . . . .
(3.45)

Compare eq. (3.45) to [451, Table 1], in which GR(α, x) is inserted into both the internal
edges of the primitive. Our result eq. (3.45) reproduces the purely rational part of the latter,
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but not the terms proportional to ζ(j). This can be understood heuristically: The rational
contribution to γ(α) arises from a rational Mellin transform. For the multiedge (example 96),
this is the Mellin transform F (ρ1, ρ2) where one of the ρj is set to zero. But restricting this
Mellin transform to only one non-vanishing ρ exactly amounts to inserting into only one
edge, as we do for eq. (3.45).
The empirical values of table 3.1 suggest for the coefficients of eq. (3.44)

c0 = 0, c1 = 1, c2 = −(w + 1), c3 = (1 + w)(2 + 3w), (3.46)

c4 = −(w + 1)(2w + 1)(7w + 5), c5 = (1 + w)(2 + 5w)(7 + 22w + 17w2).

These formulae have been verified for w ∈ {−30, 30}. Observe how every cj ̸=1 contains
a factor (w + 1), indicating that the higher coefficients vanish for the non-recursive DSE
w = −1 as expected. The limit w → 0, that is, the coefficient w0 of cj , must reproduce the
solution of the linear DSE (example 104), namely the Catalan numbers Cn (def. 107):

[w0]cn = −(−1)nCn−1 = (−1)n−1 1

n

(︃
2(n− 1)

n− 1

)︃
.

It turns out that the first order can be expressed in a similar fashion,

[w1]cn =
1

2
(−1)n−1

(︃
4n−1 −

(︃
2(n− 1)

n− 1

)︃)︃
. (3.47)

The anomalous dimension considered so far, γ(α) =: γpert(α), is the perturbative solution
to the differential equation eq. (3.43). This ODE has also non-perturbative solutions [253,
458] of the form

γnon-pert(α) = αβ(w) exp

(︃
λ(w)

α

)︃(︂
1 + b(1)(w)α+ b(2)(w)α2 + . . .

)︂
. (3.48)

We use the method of [458, section V. A.] to determine the unknown coefficients1. The
ansatz γ(α) = γpert(α) + γnon-pert(α) is inserted into eq. (3.43) and the above coefficients cj
are used for γpert. The equation is then linearized in γnon-pert. The resulting series in α has
to vanish, this leads to the expressions

λ(w) =
1

w
, β(w) = −3 + 2w

w
, b(1)(w) =

(1 + w)(1 + 3w)

w
, (3.49)

b(2)(w) =
(1 + w)(1 + 5w + 3w2 − 5w3)

2w2

b(3)(w) =
(1 + w)(1 + 5w − 4w2 − 20w3 + 45w4 + 81w5)

6w3

b(4)(w) =
(1 + w)(1 + 3w − 23w2 − 9w3 + 259w4 − 327w5 − 2421w6 − 2139w7)

24w4
.

Setting w = −2, these expressions reproduce [253, (14)].
The coefficients cn of the perturbative solution of the non-linear DSE eq. (3.43), grow

factorially (def. 58), which has been studied intensively [249, 253, 390, 456]. As indicated

1The author thanks Gerald Dunne for suggesting the method.
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in eq. (2.6), the asymptotic behaviour of cn is dictated by the non-perturbative solution
eq. (3.48), [237]. The same result can be obtained with the methods of [456]. For n→∞,

cn ∼ S(w) ·
1

(−λ(w))n
· Γ (n− β(w))

(︄
1 +
−λ(w) · b(1)(w)

(n− β(w)− 1)
(3.50)

+
(−λ)2 · b(2)

(n− β − 1)(n− β − 2)
+

(−λ)3 · b(3)

(n− β − 1)(n− β − 2)(n− β − 3)
+ . . .

)︄
.

We computed 500 series coefficients of γpert(α) and extracted their asymptotic behaviour
using order-70 Richardson extrapolation (def. 59). This produced at least 50 significant digits
and confirmed the expressions λ(s), β(s), b(1)(s) . . . b(4)(s) listed in eq. (3.49). Numerical
values for the Stokes constant S(s) is reported in table 3.2.
Knowing the parameters eq. (3.49) (and the infinitely many other b(j)) does not yet fix

the non-perturbative solution entirely. Our non-perturbative ansatz eq. (3.48), in resurgence
terminology, corresponds to a 1-instanton correction. There are infinitely many more terms
γnon-pert,k of similar structure, each of which has coefficients determined from the asymptotic
growth of the preceding one, see the discussion in section 2.1.2. The true non-perturbative
solution is a transseries (def. 57)

γ(α) = γpert +

∞∑︂
k=1

tkγnon-pert,k, (3.51)

where t ∈ C is a free parameter expressing the boundary condition of the first order DSE.
For the case w = −2, all γnon-pert,k have been determined in [253].

w S(w)

5 −0.025 296 711 447 842 155 554 062 589 810 922 604 262 477 942 805 771
4 −0.027 093 755 285 804 302 538 145 834 438 779 321 901 953 254 099 492
3 −0.027 514 268 695 235 967 509 951 466 619 196 206 136 028 416 088 749
2 −0.022 754 314 527 304 604 570 864 961 094 569 471 756 231 077 114 904
1 −0.005 428 317 993 266 202 636 748 034 138 132 075 286 101 589 263 688 3
-2 0.207 553 748 710 297 351 670 134 124 720 668 682 684 453 514 969 63

-3 0.129 235 675 811 091 778 715 229 366 859 663 994 914 292 887 084 30

-4 0.087 977 369 959 821 254 076 048 394 021 324 447 743 442 962 588 612

-5 0.065 314 016 354 658 749 144 010 387 750 377 100 215 558 556 707 446

Table 3.2.: First 50 digits of the Stokes constant S(w) for the non-linear DSE in D = 4 in the
asymptotic expansion eq. (3.50). The numerical values coincide with the special
values given in eq. (3.52).
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If we examine the Stokes constant as a function of λ = 1
w , we see2 that these oscillations

are periodic in λ, with a period of 1
3 as λ→ −∞, shown in fig. 3.1 (b). To shed some light

on the curious behaviour of S(λ), we also express eq. (3.50) in terms of λ = 1
w :

cn ∼ −
1

λ
S(λ)

1

λn−1
Γ (3λ+ n+ 2)

(︃
1− λ2 + 4λ+ 3

n
+O

(︃
1

n2

)︃)︃
.

The heuristic physical interpretation of the parameter w is that it expresses the degree to
which quantum corrections are taken into account: For w = −1, there are no quantum
corrections, while w = 0 corresponds to a linear DSE, which includes all nested quantum
corrections, but not yet the multiple insertions into the same edge. Consequently, we expect
that the anomalous dimension γ(α) transitions smoothly between w = −1 and w = 0, or in
the region λ < −1. On the other hand, the summand 3λ in Γ(n+2+3λ) will compete with
the growth of n. Assuming that the cn do not vary strongly as λ changes, the prefactor S(λ)
must absorb the shift, which leads to

S(λ) ∼ 1

Γ(3λ+ d(λ))
, λ→∞. (3.53)

Here, d(λ) = d0 + d1
1
λ + . . . is a subleading correction. Comparing with our numerical data,

the formula eq. (3.53) qualitatively reproduces a correct factorial growth of S(λ) for λ→ 0+,
and oscillations with period 1

3 in λ, see fig. 3.2. We could even estimate the coefficients dj ,
or find corrections to the formula eq. (3.53), but we will not pursue this further as we are
currently lacking the theoretical background to rigorously understand the behaviour of S(λ).
Prompted by the observations in fig. 3.1, David Broadhurst has independently reached sim-

ilar conclusions as stated above, but greatly extended them by finding a variant of eq. (3.47)
for all higher orders in w. With this, besides interesting number-theoretical and combina-
torial findings, he was able to resum the first correction to the linear DSE [474]. It appears
that, apart from this work, the behaviour of Dyson-Schwinger equations as functions of a
continuous parameter w has never been examined in the literature. The author is convinced
that a more detailed analysis can be fruitful, especially since it might provide a “continuous”
way to introduce non-perturbative features into a theory, thereby clarifying their qualitative
properties.

2The author thanks David Broadhurst for suggesting this variable, and for further discussions of this topic.
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solutions:

λ⃗(w) =

(︃
− 6

w
,−12

w
,−18

w

)︃
, β⃗(w) =

(︃
−35 + 29w

6w
,−5 + 2w

3w
,−15 + 13w

2w

)︃
(3.55)

b⃗
(1)

(w) =

(︃
275 + 267w − 8w2

6 · 62w
,
−265− 624w − 359w2

3 · 62w
,
−85− 241w − 156w2

2 · 62w

)︃
,

b⃗
(2)

(w) =
(︁

75625+83790w−101849w2−177828w3−67814w4

93312w2 ,

70225+339690w+602764w2+465258w3+131959w4

23328w2 , 7225+37950w+69779w2+51628w3+12574w4

10368w2

)︁
,

b⃗
(3)

(w) =
(︁

20796875+8551125w−107422197w2−206297091w3−177713418w4−90251478w5−23658704w6

60466176w3 ,

−18609625−138592350w−424432473w2−687305592w3−624311121w4−303609366w5−62154089w6

7558272w3 ,

−614125−4453575w−12499453w2−16989843w3−11830354w4−4259034w5−758520w6

2239488w3

)︁
.

In order to match [458, eqs. (41)-(43)], the coefficient b(1) has to be multiplied by 3, b(2) by
9 and b(3) by 27.

w 106 · S(w)
5 −48.879 979 612 936 267 148 575 174 247 043 686 402 701 421 680 529
4 −33.683 126 435 179 258 367 949 154 667 346 857 343 063 662 040 223
3 −16.197 057 487 106 552 084 835 982 615 789 341 267 879 644 562 145
2 −2.874 931 066 358 404 169 842 007 765 677 311 801 515 635 631 211 6
1 −0.005 037 643 852 252 104 613 165 864 641 040 152 093 341 435 216 537 2
-2 87 595.552 909 179 124 483 795 447 421 262 990 627 388 017 406 822

-3 17 853.256 793 175 269 493 347 991 077 950 813 245 133 374 820 922

-4 6637.593 110 037 931 650 951 894 178 458 603 722 595 701 766 465 0

-5 3384.186 761 682 513 227 965 148 628 942 508 807 465 013 504 317 6

Table 3.3.: First 50 digits of the Stokes constant S(w) for the multiedge DSE in D = 6, from
the asymptotics eq. (3.50).

In the ansatz eq. (3.48), the solution with smallest absolute λ is dominant, this is the
first entry of the vectors eq. (3.55). Including order 1/n3, the large-order growth of cn in
eq. (3.50) is determined entirely by the first component of the vectors eq. (3.55). We have
confirmed this behaviour numerically from the first 500 coefficients cn for w ∈ {−5, . . . ,+5}.
The Stokes constant S(w) is reported in table 3.3, we reproduce the value [458, (15)] which
was obtained by a similar method as in our case, but only for w = −2.

As for D = 4 in eq. (3.51), the full non-perturbative solution requires to know γnon-pert,k,
where this time k indicates contributions from all three fundamental solutions eq. (3.55),
and there are three independent transseries parameters t1, t2, t3. Moreover, the three non-
perturbative solutions “overlap”, giving rise to terms ∼ ln(α) in the full transseries solution.
A detailed examination of the case w = −2 is [244].

3.4.4. Toy model

In the toy model (example 102), the Mellin transform (example 98) is not rational. Unlike the
ODEs eqs. (3.43) and (3.54), the equation from theorem 45 is a pseudodifferential equation,
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3.4. Asymptotics and nonperturbative contributions in MOM

that is, it is of infinite order:

sin(πu)

πu

⃓⃓⃓
u→γ(1+wα∂α)

γ(α) = −α. (3.56)

Inserting a non-perturbative ansatz (eq. (3.48)) into eq. (3.56), we do not obtain a polynomial
equation, therefore one can not simply read off the parameters of eq. (3.48). Instead, we
computed a symbolic perturbative power series solution according eq. (3.44), γ(α) =

∑︁
cnα

n,
of eq. (3.56). Since eq. (3.56) contains infinitely many derivative operators, a series solution is
harder to compute than in the previous cases eqs. (3.43) and (3.54), our result includes order
α450. As above, we numerically extracted the asymptotic behaviour of cj using Richardson
extrapolation (def. 59). The result has the form eq. (3.50) for n odd. We find, empirically,

β(w) = −2 + w

w
. (3.57)

Numerical values of the constants S(w), b(1)(w) and b(2)(w) are given in table 3.4. We did
not recognize these numbers as rationals apart from the Stokes constant S(−2) = 2/π.

w S(w) b(1)(w) b(2)(w)

5 −0.323 584 398 140 310 305 46 33.713 129 682 396 588 961 565.374 787 298 670

4 −0.391 335 083 719 234 905 86 28.505 508 252 042 547 410 405.630 022 359 080

3 −0.488 736 158 026 247 795 99 23.352 717 957 250 113 407 273.573 399 332 400

2 −0.620 736 529 443 448 896 58 18.337 005 501 361 698 274 169.862 094 180 663

1 −0.595 434 011 519 108 439 04 13.869 604 401 089 358 619 98.052 567 522 448 0

-2 0.636 619 772 367 581 343 08 −4.467 401 100 272 339 654 7 7.978 836 295 357 26

-3 0.526 186 295 467 803 784 50 −9.483 113 556 160 754 788 2 40.254 589 493 216 4

-4 0.419 256 495 256 609 057 56 −14.635 903 850 953 188 791 98.974 445 168 262 5

-5 0.343 587 215 470 932 442 58 −19.843 525 281 307 230 343 184.621 956 597 118

Table 3.4.: First digits of the Stokes constant S(w) and subleading corrections of the asymp-
totic growth eq. (3.50) of the anomalous dimension in the toy model.
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3. Renormalized Green functions in kinematic renormalization

Summary of section 3.4.

1. We computed the perturbative anomalous dimension for the multiedge DSE in
D = 4 to order α500 for various w. We derived formulas for their asymptotic growth
and first corrections for variable w, and verified them numerically (section 3.4.1).

2. The Stokes constant S(w) can be computed numerically for non-integer w. We
recognized that it is a smooth function, oscillating between w = 0 and w = −1.
We gave a tentative heuristic explanation for this observation (section 3.4.2).

3. For the D = 6 multiedge DSE, we derived the first coefficients for the asymptotic
growth as a function of w and verified them numerically (section 3.4.3).

4. For the toy model DSE, we extracted the first growth coefficients numerically
(section 3.4.4).
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4. Renormalization group and DSEs in
non-kinematic renormalization

4.1. Non-kinematic renormalization schemes

Up to this point, we have used the kinematic renormalization scheme (MOM, def. 91) ex-
clusively. MOM has two advantages: Firstly, it allows for a clear physical interpretation of
the renormalization process, namely, the redefinition of parameters in terms of their mea-
sured values, see section 2.2.1. Secondly, it contains a boundary condition for renormalized
Green functions, GR(α,L = 0) = 1, which is particularly helpful in deriving the renor-
malization group (section 3.2) and in solving Dyson-Schwinger equations, see sections 2.2.5
and 3.3. However, according to def. 97, other renormalization schemes are conceivable. In
the present section, we examine how Feynman amplitudes change in a different scheme.

4.1.1. General infinitesimal Feynman rules

A drawback of the MOM scheme is that the counterterms (def. 104) are relatively complicated
expressions. Conversely, the idea of the Minimal Subtraction is to choose the simplest
possible counterterms which are sufficient to make renormalized amplitudes finite.

Definition 108. Assume that the regularized Feynman amplitude is a Laurent series
in a regularization parameter ϵ, as it is in dimensional (section 2.3.3) or analytic (sec-
tion 2.3.2) regularization. In the Minimal Subtraction scheme (MS), the renormalization
operator R extracts the pole part from its argument Laurent series,

R̂

(︄ ∞∑︂
k=−n

ϵkck

)︄
:=

−1∑︂
k=−n

ϵkck.

In modified Minimal Subtraction (MS-bar, MS), those parts of the n = 0 summand,
which are powers of ln(4π) or γE , are extracted, too. The presence and precise form
of such factors depends on the theory in question. To distinguish from MOM, we will
denote the quantities in MS with a hat – Ĝ, Ẑ, and quantities in MS-bar with a bar –
Ḡ, Z̄.

Unlike with MOM, a MS-renormalized amplitude does not satisfy any particular pre-defined
boundary condition at ϵ = 0 , apart from being finite. We stress that Minimal Subtraction
is not the same as dimensional regularization (section 2.3.3), even if the two are often used
in conjunction. For example (see section 4.2.2), one can perfectly use dimensional regular-
ization, but with kinematic renormalization conditions instead of Minimal Subtraction.

We write R′ for an arbitrary renormalization scheme (def. 97), while R̂ and R̄ indicate MS
and MS-bar (def. 108), and R is reserved for kinematic renormalization at L = 0 (def. 91).
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4. Renormalization group and DSEs in non-kinematic renormalization

Acting on a Laurent series, the kinematic renormalization operator R amounts to a subtrac-
tion of all orders at L = 0, not only the pole terms as in def. 108:

R

(︄ ∞∑︂
k=−n

ϵkck

)︄
=

∞∑︂
k=−n

ϵkck.

In this notation, the fact that we subtract at L = 0 is not visible explicitly, compare sec-
tion 4.2.2.

Example 107: Second chain graph in MS.

In example 92 we computed the amplitude of the second chain graph in MOM for
D = 6 − 2ϵ. Now we repeat the computation in MS, where we skip powers of the
coupling constant λ2

3/(4π)
2. The reference scale s0 in L = ln s

s0
(def. 99) does not have

any specific significance for the renormalized Green function. The renormalized 1-loop
multiedge (example 86) in MS is

FR̂[γ] =
1

6
L+

(︃
−4

9
+
γE
6

)︃
.

In MOM, the operator R (def. 91) can be concatenated and multiplied without re-
strictions, this is not true for R̂ in MS. Namely, in MS, the twisted antipode (def. 89)
is

SF
R̂[S1] = −R̂ [F [S1]]− R̂

(︁
R̂
(︁
F [γ2]

)︁
· i · F [γ]

)︁
̸= R̂

(︂
−F [S1] + F [γ2] · i · F [γ]

)︂
.

For S1, we obtain the following counterterm and renormalized amplitude:

SF
R̂[S1] =

(︃
1

72ϵ2
− 11

432ϵ

)︃
i

FR̂[S1] =
1

72
iL2 −

(︃
1

8
− γE

36

)︃
iL+

(︃
791

2592
− γE

8
+
γ2
E

72

)︃
i.

Now consider the full graph S. Again, SF
R̂ is computed recursively using def. 89.

SF
R̂[γiγ] = −R̂

(︁
F [γ] · i · F [γ]

)︁
+ 2R̂

(︁
R̂
(︁
F [γ]

)︁
· i · F [γ]

)︁ 2.39
= R̂

(︁
F [γ]

)︁
· i · R̂

(︁
F [γ]

)︁
SF
R̂[S] = −R̂

(︂
F [S]− R̂ (F [γi]) · i · F [Si] + R̂

(︁
F [γ]

)︁
· i · R̂

(︁
F [γ]

)︁
· i · F [γ]

)︂
= − 1

648ϵ3
+

11

3888ϵ2
+

13

23328ϵ

FR̂[S] = F [S] + SF
R̂[S] + 2SF

R̂[γi]F [Si] + SF
R̂[γ1γ2]F [γ]

= − 1

648
L3 +

(︃
1

48
− γE

216

)︃
L2 +

(︃
− 389

3888
+
γE
24
−
γ2
E

216

)︃
L

+
24155

139968
− 389γE

3888
+
γ2
E

48
−
γ3
E

648
+
ζ(3)

324
.
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4.1. Non-kinematic renormalization schemes

Comparing with MOM (example 92), not only does the renormalized amplitude in MS
contain a constant term independent of L, but also the coefficients of the non-constant
terms are significantly more complicated. On the other hand, the counterterms in MS
are very simple rational functions. Observe further that for each graph, the highest
coefficient in L agrees between MS and MOM, as we will proof in theorem 56.

By def. 100, the Feynman rules FR in MOM are the exponential of the infinitesimal
Feynman rule σ. The exponential formula relies on the condition FR|L=0 = 1̃1. To extend
the procedure to non-kinematic schemes, we need to extract the amplitude at L = 0.

Definition 109. Let R′ denote any renormalization scheme (def. 97). Let s0 ∈ R be
the reference scale (def. 99). The operator τ : HF → R extracts the value at s0,

τ [Γ] := FR′ [Γ]
⃓⃓⃓
s=s0

= R ◦ FR′ [Γ], τ [1] = 1.

Here, R is the kinematic renormalization operator (def. 91).

In MOM with renormalization point s0, we have τ = 1̃◦1, as a MOM-renormalized amplitude
vanishes at L = 0 for any graph except the empty graph. τ is an evaluation of FR′ at the
specific point, therefore, by eq. (2.38), it constitutes a character (def. 74):

τ
[︁
γ1 · γ2

]︁
= FR′ [γ1 · γ2]

⃓⃓⃓
s=s0

= (FR′ [γ1] · FR′ [γ2])
⃓⃓⃓
s=s0

= τ [γ1] · τ [γ2]. (4.1)

Theorem 48 (Compare [271, 298]). Let L = ln s
s0

and σ = ∂LFR|L=0 (def. 100),
where FR is renormalized in MOM with renormalization point L = 0. Let R′ be an
arbitrary renormalization scheme (def. 97) with the corresponding operator τ (def. 109).
The renormalized Feynman rules in R′ are given by

FR′ [Γ](L) =
(︂
FR′(0) ⋆ FR(L)

)︂
Γ =

(︂
τ ⋆ exp⋆ (Lσ)

)︂
Γ.

Proof. Let R be the evaluation of the amplitude at s0 (def. 91). By construction, a counterterm SF
R′

(eq. (3.23)) does not depend on momenta (i.e. it is local), this implies R(SF
R′) = SF

R′ . Use def. 88
and def. 109:

FR′ = SF
R′ ⋆ F =

(︁
R ◦ SF

R′

)︁
⋆ F =

(︁
R ◦ SF

R′

)︁
⋆ (R ◦ F) ⋆ (R ◦ F)−1

⋆ F
=
(︁
R ◦

(︁
SF
R′ ⋆ F

)︁)︁
⋆ SF

R ⋆ F = R (FR′) ⋆ FR = τ ⋆ FR.

Here, FR are the Feynman rules in kinematic renormalization (def. 100), with renormalization point
s0 as used by R.

Owing to the Rota-Baxter equation (eq. (2.39)) in def. 97, renormalized Feynman rules,
regardless of the scheme, are multiplicative with respect to disjoint unions (eq. (2.38)),

FR′ [Γ1 · Γ2](L) = m
(︁
τ ⊗ e⋆Lσ

)︁
∆(Γ1)∆(Γ2) = FR′ [Γ1](L) · FR′ [Γ2](L). (4.2)
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4. Renormalization group and DSEs in non-kinematic renormalization

Example 108: Second chain graph in MS, exponential formula.

In example 107, we computed

τ [γ] = FR̂[γ]
⃓⃓⃓
s=s0

= −4

9
+
γE
6
, τ [Si] =

(︃
791

2592
− γE

8
+
γ2
E

72

)︃
i

τ [S] =
24155

139968
− 389γE

3888
+
γ2
E

48
−
γ3
E

648
+
ζ(3)

324
.

The MOM-coefficients are known from example 92,

σ[γ] =
1

6
, σ[Si] = −

11

216
i, σ[S] = − 85

3888
.

The summands of theorem 48 are:(︁
τ ⋆ 1̃

)︁
S = τ [S] =

24155

139968
− 389γE

3888
+
γ2
E

48
−
γ3
E

648
+
ζ(3)

324

(τ ⋆ Lσ)S = L̄
(︂
τ [S] σ[1]⏞⏟⏟⏞

=0

+ τ [1]⏞⏟⏟⏞
=1

σ[S] + 2τ [γ]σ[Si] + τ [γγ]⏞ ⏟⏟ ⏞
=τ [γ]2

σ[γ]
)︂

= L

(︄
− 85

3888
+ 2

(︃
−4

9
+
γE
6

)︃
i

(︃
− 11

216
i

)︃
+

(︃
−4

9
+
γE
6

)︃2

i2
1

6

)︄

=

(︃
− 389

3888
+
γE
24
−
γ2
E

216

)︃
L

(︃
τ ⋆

1

2
Lσ ⋆ Lσ

)︃
S =

L2

2

(︂
2τ [γ] · σ[γ] · σ[γ] + 2σ[γ] · σ[Si]

)︂
=

(︃
1

48
− γE

216

)︃
L2(︃

τ ⋆
1

6
(Lσ)⋆3

)︃
S = − 1

648
L3.

These are the correct coefficients of FR̂[S] as computed in example 107.

4.1.2. Renormalization group functions at the physical dimension

In section 3.2, we discussed the renormalization group in MOM. We found that the renormal-
ization group functions β, γ (defs. 103 and 106) in kinematic renormalization simultaneously
enjoy the following properties:

1. They are the L-derivative of GR or QR at L = 0 (def. 103).

2. They are the coefficients in the Callan-Symanzik equation (theorem 43).

3. If Q (def. 92) is a monomial in the functions Γ(j), then an equivalent relation (theo-
rem 43) holds between β and the corresponding γ(j).

4. The beta function is the derivative of the renormalized coupling α(α0) with respect to
the reference scale s0 at fixed α0 (def. 106).

5. The Z-factors are integrals of the renormalization group functions, or β and γ are
derivatives of the Z-factors (eqs. (3.29) and (3.30)).
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4.1. Non-kinematic renormalization schemes

In deriving these properties in section 3.2, we repeatedly used the kinematic renormalization
condition GR(L = 0) = 1. In non-kinematic renormalization schemes, all points except the
first one are still satisfied by one set of functions β, γ (which are, however, different functions
than in MOM). Only the first point is exclusive to MOM. In a concrete renormalization
scheme, one will typically be able to compute the Z-factors unequivocally, therefore we take
the last point as a definition:

Definition 110. In dimensional regularization, and for all renormalization schemes
(def. 97), the ϵ-dependent renormalization group functions are defined as derivatives of
the counterterms Z ′ (eq. (3.23)):

β′(α, ϵ) :=
−ϵ

∂α ln (α · Z ′
α(α, ϵ))

+ αϵ

γ′
(n)

(α, ϵ) := −
(︁
β′(α, ϵ)− αϵ

)︁
∂α lnZ

′(n)
(α, ϵ)

For kinematic renormalization, this definition coincides with the earlier defs. 103 and 106.

Theorem 49. Let the functions β′, γ′ be defined as in def. 110. Then:

1. Z ′
α(α, ϵ) = exp

⎛⎝− α∫︂
0

du

u

β′(u, ϵ)

β′(u, ϵ)− uϵ

⎞⎠ ,

2. Z ′
ϕ(α, ϵ) = exp

⎛⎝− α∫︂
0

du
γ′(2)(u, ϵ)

β′(u, ϵ)− uϵ

⎞⎠ ,

3. Z ′
α(α, ϵ) =

(︁
Z ′
ϕ(α, ϵ)

)︁w
if and only if β′(α, ϵ) = wαγ′

(2)
(α, ϵ).

Proof. These are eqs. (3.29) and (3.30) and theorem 43. They follow from def. 110 upon solving for
the Z-factors as shown in section 3.2.2.

What remains to be shown is that the so-defined renormalization group functions satisfy
the Callan-Symanzik equation (theorem 39).

In kinematic renormalization, FR is multiplicative under ⋆ with respect to scale, see
lemma 37. In an arbitrary renormalization scheme, the latter equation is modified:

FR′ [Γ] (L1 + L2) =
(︁
τ ⋆ e⋆L1σ ⋆ e⋆L2σ

)︁
Γ =

(︃
FR′

⃓⃓⃓
L1

⋆ FR

⃓⃓⃓
L2

)︃
Γ (4.3)

̸=
(︃
FR′

⃓⃓⃓
L1

⋆ FR′

⃓⃓⃓
L2

)︃
Γ.

In terms of analytic Green functions, eq. (4.3) becomes the following lemma.
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4. Renormalization group and DSEs in non-kinematic renormalization

Lemma 50. Let Γ be the solution of a combinatorial DSE (eq. (2.28)) and GR′(α,L) =
(τ ⋆ e⋆L)Γ(α) the renormalized analytic Green function according to theorem 48. Let
α̃(α) := ατ [Q(α)] = αQR′ (α, 0), then

GR′ (α,L) = GR′(α, 0) ·GR (α̃(α), L) .

Here, GR is the renormalized Green function in MOM (def. 91).

Proof. The coproduct of Γ is given by theorem 24. Upon identification e⋆Lσ = FR (def. 100), we find

FR′ [Γ](L) = m(τ ⊗FR(L))∆(Γ) =
∞∑︂
j=0

τ
[︁
ΓαjQj

]︁
· FR[Γj ](L)

= τ [Γ] · FR[Γ] (L)
⃓⃓⃓
α→ατ [Q]

.

We have used eq. (4.1). By def. 109, the first factor is GR̂(α, 0).

By lemma 50, the non-kinematic Green function obtains an overall prefactor GR′(α, 0) =:
γ′0(α). Qualitatively, the behaviour is indicated in fig. 4.1.

L
-2 0 1 2 3

3

1

γ′0

GR

GR′

Figure 4.1.: A hypothetical Green function in MOM with renormalization point L = 0 (blue)
and in a different scheme (red). Both curves are sketched for the same arbitrary,
but fixed, value of the coupling. The value γ′0 = τ [G] = GR′(0) is indicated in
red. By lemma 50, the Green functions are not merely multiples of each other,
so GR′ ̸= γ′0 ·GR, because the coupling α is transformed, too.
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4.1. Non-kinematic renormalization schemes

Theorem 51. Let Γ be the solution of a combinatorial DSE (eq. (2.28)) and
GR′(α,L) = (τ ⋆ e⋆L)Γ(α) the renormalized analytic Green function according to theo-
rem 48. Then, for ϵ = 0, the Callan-Symanzik equation (theorem 39) holds,

∂

∂L
GR′(α,L) =

(︃
γ′(α) + β′(α)

∂

∂α

)︃
GR′(α,L),

where

α̃(α) := ατ [Q(α)] = αQR′ (α, 0) , γ′0(α) := τ [G(α)] = GR′(α, 0),

β′(α) =
β(α̃(α))
∂α̃(α)
∂α

γ′(α) = γ(α̃(α))− β′(α)

γ′0(α)

∂γ′0(α)

∂α
.

Proof. One can obtain the general Callan-Symanzik equation by repeating the steps of section 3.2,
but using the renormalized Feynman rules theorem 48. Lemma 50 then takes the place of lemma 38.
Firstly, we derive lemma 50 with respect to α:

∂

∂α
GR′ (α,L) =

∂

∂α
γ′0(α) ·GR (α̃, L) + γ′0(α)

∂

∂α
α̃(α) · ∂

∂α̃
GR (α̃, L) .

We want to make a connection with the MOM Green function GR(α,L), which satisfies the Callan-
Symanzik equation (theorem 39). Write this equation with the variable α̃ instead of α:

∂

∂α̃
GR(α̃, L) =

1

β(α̃)

∂

∂L
GR(α̃, L)− γ(α̃)

β(α̃)
GR(α̃, L).

Insert this above:

∂

∂α
GR′ (α,L) =

∂

∂α
γ′0(α) ·GR (α̃, L) +

γ′0(α)

β(α̃)
· ∂α̃(α)

∂α

(︃
∂

∂L
GR(α̃, L)− γ(α̃)GR(α̃, L)

)︃
=

(︃
∂γ′0(α)

∂α
− γ(α̃)γ

′
0(α)

β(α̃)

∂α̃(α)

∂α

)︃
GR (α̃, L) +

γ′0(α)

β(α̃)

∂α̃(α)

∂α

∂

∂L
GR(α̃, L).

Owing to lemma 50, the L-derivative of GR′ is expressible in terms of GR:

GR (α̃, L) =
1

γ′0(α)
GR′(α,L),

∂

∂L
GR (α̃, L) =

1

γ′0(α)
∂LGR′(α,L).

Eventually, we find the Callan-Symanzik equation(︃
γ(α̃)

∂α̃(α)

∂α
− β(α̃)

γ′0(α)

∂γ′0(α)

∂α

)︃
GR′(α,L) + β(α̃)

∂

∂α
GR′ (α,L) =

∂α̃(α)

∂α

∂

∂L
GR′(α,L)

The concrete formulas for β′, γ′ in theorem 51 are only moderately useful because they
require to know the MOM functions β, γ. But these relations allow us to prove the well-
definedness of β′, γ for ϵ = 0, which would otherwise be unclear from def. 110. Remember
that we always redefine the coupling such that the first quantum correction appears in order
α1, compare eq. (3.35).
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4. Renormalization group and DSEs in non-kinematic renormalization

Lemma 52. Assume that in MOM, the power series (def. 51) β(α) and γ(α) have non-
vanishing terms ∝ α1, and no constant terms. Then, to every finite order in perturbation
theory, the renormalization group functions β′, γ′ from theorem 51 have finite series
coefficients for ϵ→ 0, and contain no pole terms in α.

Proof. β′, γ′ are computed from evaluations and derivatives of the renormalized quantities QR′ , GR′ .
The individual factors are therefore finite by def. 97 and theorem 32.
We have to show that the fractions appearing in theorem 51 are not singular. It is

∂α̃(α)

∂α
= QR′(α, 0) + α

∂QR′(α,L)

∂α

⃓⃓⃓
L=0

.

The first summand can not vanish in general because it has the structure QR′(α,L) = 1 + C0(α) +
C1(α) ·L where C1 is, to leading order α1, given by the periods of the involved graphs (theorem 30).
The series C0(α) starts at order α1 and depends on the renormalization scheme. It is conceivable
that QR′(α∗, 0) = 0 for some value α∗ ̸= 0, but in the limit α→ 0, we have QR′ → 1 at least to finite
order in perturbation theory. The denominator of β′(α̃) is of order α0 and β′ is a power series without
pole terms in α. The same holds for γ′(α̃) because, if γ′0(α) ∈ O(αk) then ∂αγ

′
0(α) ∈ O(αk−1) and

β · γ′0 ∈ O(αk).

Lemma 53. In the general renormalization scheme R′, the renormalization group
functions β′(α), γ′(α) appearing in theorem 51 are the limit ϵ → 0 of the functions
β′(α, ϵ), γ′(α, ϵ) computed from the counterterms by def. 110.

Proof. Start from eq. (3.27),

0 = s0 ·
dα̃

ds0
=

dα̃

d ln s0
= αs0

∂α̃

∂α

d lnα

ds0
− ∂α̃

∂L
,

and repeat the steps of section 3.2.2. Especially, note how def. 106 already contains the derivative
∂α̃
∂α , which vanishes in MOM but is present in the beta function of general schemes in theorem 51.

In its current form, the relationships between β, γ and β′, γ′ in theorem 51 only hold for
ϵ = 0. We will come back to the ϵ-dependence of β′, γ′ in section 4.3.
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4.1.3. Properties of Minimal Subtraction

In this section, we derive two important properties of the Minimal Subtraction scheme.

Theorem 54. In Minimal Subtraction (def. 108), the renormalization group functions
(def. 110) do not depend on the regularization parameter ϵ,

β̂(α, ϵ) = β̂(α), γ̂(α, ϵ) = γ̂(α).

Proof. By lemma 53, the renormalization group functions β̂, γ̂ appearing in the counterterms of MS
are the same ones which appear in the Callan-Symanzik equation. By lemma 52, they are finite for
ϵ = 0, therefore, they can not contain pole terms in ϵ. What remains to be shown is that they do not
contain positive powers, either.
By def. 108, Ẑ contains no positive powers of ϵ. Therefore, using theorem 49,

− β̂(α, ϵ)

β(α, ϵ)− αϵ
=
β̂(α, ϵ)

αϵ

∞∑︂
k=0

(︄
β̂(α, ϵ)

αϵ

)︄k

must only contain negative powers of ϵ.

Assume that β̂(α, ϵ) = . . .+ c · ϵ, then the fraction β̂/ϵ contains a summand c which is not of negative

order in ϵ. Therefore β̂(α, ϵ) can not contain positive order terms in ϵ. Hence it does not depend on
ϵ at all. An analogous argument applies to γ̂(α, ϵ).

Using the integral representation theorem 49, the counterterms are completely deter-
mined by the renormalization group functions β̂, γ̂. In MOM, one needs to know the full
ϵ-dependence of β(α, ϵ) to compute the counterterm Zα(α, ϵ), even to compute only the
pole parts of Zα. In MS, by theorem 54, we only have functions of a single variable α.
Consequently, one can reconstruct the counterterm entirely from the renormalization group
functions β̂, γ̂ at the physical dimension.
We expand Z in orders of the pole term ϵ−1, similarly to the expansion of the Green

function in terms of L (eq. (3.2)):

Ẑα(α, ϵ) =:

∞∑︂
j=0

ẑj(α)ϵ
−j . (4.4)

Theorem 55 (Scattering type formula [271, 311, 392], [81, Sec. 7] ). Consider a
single DSE with Q = Gw (eq. (3.34). In MS, the coefficients of the counterterm eq. (4.4)
satisfy ẑj<0 = 0 and ẑ0(α) = 1 and

α2∂αẑ1(α) = β̂(α), α2∂αẑj>1(α) = γ̂(α)
(︂
1 + β̂(α)α∂α

)︂
ẑj−1(α).

Here, γ̂(α) is the anomalous dimension in MS.

Proof. Insert eq. (4.4) into the analogue of the Callan-Symanzik equation for the Z-factor, (eq. (3.28)),

β̂(α)Ẑα(α, ϵ) +
(︁
β̂(α)− αϵ

)︁
α
∂

∂α
Ẑα(α, ϵ) = 0. (4.5)
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4. Renormalization group and DSEs in non-kinematic renormalization

The resulting series is

∞∑︂
j=0

β̂(α)ẑj(α)ϵ
−j +

∞∑︂
j=0

β̂(α)α
∂

∂α
ẑj(α)ϵ

−j =
∞∑︂
j=0

α2 ∂

∂α
ẑj+1(α)ϵ

−j .

Compare orders in ϵ. By def. 108, ẑ0 = 1 and therefore ∂αz0 = 0. From this, α2∂αẑ1 = β̂.

The second equation in theorem 55 can be integrated term by term with the boundary
condition that [αn]ẑj(α) = 0 whenever n < j.
It is instructive to note the duality of MOM and MS renormalization conditions. For

concreteness, we assume a DSE of type eq. (3.35) with Q = Gw.

• In kinematic renormalization (def. 91), the order L0 in GR(α, ϵ, L) vanishes for all ϵ.
This makes the log-expansion eq. (3.2) “simple”, it only depends on γ1(α, ϵ), which is
the anomalous dimension. The counterterms are given by theorem 49, which involves
the non-trivial dependence of γ(α, ϵ) on ϵ.

• In Minimal Subtraction (def. 108), the anomalous dimension γ̂(α, ϵ) = γ̂(α) is inde-
pendent of ϵ, and the complete counterterm Ẑ(α, ϵ) is determined entirely from γ̂(α).
This makes renormalization of concrete graphs “simple”. Conversely, the renormalized
Green function eq. (3.2) now involves a non-trivial function γ̂0(α, ϵ) = GR̂|L=0.

Further aspects of this dichotomy will be discussed in section 4.4.

4.1.4. Renormalization scheme independent quantities

Having established Minimal Subtraction, we now perform a quick survey of renormalization-
scheme independent quantities. To this end, recall that grouplike elements of the Hopf
algebra (def. 65) satisfy ∆(Γ) = Γ ⊗ Γ. In section 3.2.3, we examined them in kinematic
renormalization. From theorem 48, we read off their Feynman amplitude for ϵ = 0 in
arbitrary schemes:

FR′ [Γ](L) = FR′ [Γ]
⃓⃓⃓
s=s0
·
(︃
s

s0

)︃γ′1(α)

=: γ′0(α) ·
(︃
s

s0

)︃γ′1(α)

. (4.6)

This is a scaling solution just like eq. (3.31), only with a non-trivial prefactor γ′0. Both γ′0
and γ′1 are functions of the renormalized coupling α.

Theorem 56 (Compare [284, Sec. 4]). The following quantities are invariant under
change of the renormalization scheme (def. 97):

1. The first coefficient of the anomalous dimension and of the beta function (def. 103)
in the limit ϵ = 0.

2. The highest pole in ϵ of the counterterms (def. 104) for every fixed order in α.

3. The coefficient gcor(Γ) of the highest order term in the log expansion theorem 35.

4. The anomalous dimension of a linear DSE (theorem 44) for ϵ = 0.
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Proof. 1. The first coefficient is given by 1-loop graphs, which are, in particular, primitive. By theo-
rem 30, the coefficient of their scale-dependence is the period, which is independent of renormalization
schemes.

2. By theorem 49, the Z-factor is the exponential of a sum of type
∑︁

j

(︂
γ(α,ϵ)

ϵ

)︂j
. A term pro-

portional to αn can arise from 1 ≤ j ≤ n because the anomalous dimension has no constant term,
[α0]γ = 0. However, j is the order of the pole. Therefore, the highest possible pole arises when j = n,
and in that case, the numerator is ([α1]γ)j , so it is entirely determined by the first coefficient. These
coefficients are independent of the renormalization scheme by point 1. A similar argument applies to
Zα and β.

3. The statement is obvious for primitive graphs since the period (def. 96) is independent of
renormalization conditions.
The dependence of FR′ on the renormalization scheme, by theorem 48, is entirely encoded in

the operator τ (def. 109). We therefore have to demonstrate that the highest order coefficient is
independent of τ . Apply theorem 48 to a cocycle (def. 87) Γ = B+(γ), using the reduced coproduct
(def. 64)(︁

τ ⋆ e⋆Lσ
)︁
B+(γ) = τ

[︁
B+(γ)

]︁
· 1 +m

(︁
τ ⊗ e⋆Lσ ◦B+

)︁
∆(γ)

= τ
[︁
B+(γ)

]︁
+ τ [γ] · e⋆LσB+(1) + e⋆LσB+(γ) +m

(︁
τ ⊗ e⋆Lσ ◦B+

)︁
∆1(γ).

Assume that cor(γ) = n, then cor(BΓ
+(γ)) = n + 1 by lemma 20, and ∆1(γ) contains factors with

coradical degree of at most n− 1. The above sum contains only one summand of order Ln+1,

[Ln+1]
(︁
τ ⋆ e⋆Lσ

)︁
B+(γ) = [Ln+1]e⋆LσB+(γ) = [Ln+1]FR(Γ).

The right hand side is independent of τ , so is the left hand side.
4. On an algebraic level, this was remarked in [309, Ex. 5.12]. From theorem 44 we know that

β(α) = 0 in MOM. By theorem 51, β′(α) = 0 in all schemes. Furthermore, QR′ = 1 in every
renormalization scheme since, regardless of the scheme, we still scale the treelevel graph to unity
(def. 97). Hence α̃ = α for ϵ = 0 and the statement follows from theorem 51.

Point 4 of theorem 56 fits with lemma 50: If there is no renormalization of the coupling
constant, then the only difference between renormalization schemes is a finite overall factor
GR′(α, 0) = γ′0(α). Point 1. in theorem 56 actually holds for the second order coefficients as
well, see theorem 63.
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Summary of section 4.1.

1. The renormalized Feynman rules in any renormalization scheme can be expressed
by a variant of the exponential formula, FR′ = τ ⋆ e⋆Lσ, where σ are the infinites-
imal Feynman rules in kinematic renormalization and the operator τ evaluates at
L = 0 (section 4.1.1).

2. The Callan-Symanzik equation holds for non-kinematic renormalization schemes,
and the renormalization group functions are simultaneously derivatives of the
counterterms. The only difference of the general case from the MOM case is
that in MOM, the renormalization group functions are derivatives of renormalized
Green functions with respect to L at the point L = 0 (section 4.1.2).

3. The renormalization group functions in MS are independent of ϵ, and the MS-
counterterms Ẑ can be reconstructed completely from knowing them at ϵ = 0
(section 4.1.3).

4. In all renormalization schemes, the analytic Green function of a linear DSE for
ϵ = 0 is a scaling solution with an overall prefactor and an identical anomalous
dimension. The first coefficients of various quantities are independent of the renor-
malization scheme (section 4.1.4).
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4.2. Recursively solving a DSE

By now, we have introduced technical details of the renormalization group which might not
be entirely obvious from standard textbooks. To convince ourselves of their soundness, it is
useful to have a concrete example at hand. Therefore, before we continue with the theoretical
development, we discuss, within a particularly accessible setting, how the various quantities
can be computed concretely.

4.2.1. Expansion of the kernel of the DSE

We work in dimensional regularization (section 2.3.3), where ϵ is the regularization param-
eter. Or starting point is a propagator DSE of type eq. (3.38),

GR(α, ϵ, s) = 1− α(1−R)
∫︂

dy K(s, y)GR(α, ϵ, y)
1+w

= Z(α, ϵ)− α
∫︂

dy K(s, y)GR(α, y)
1+w. (4.7)

The integration variable is generally a vector, and α is a rescaled coupling constant. The
renormalization scheme R (def. 97) does not need to be a kinematic one. We have introduced
the counterterm Z(α, ϵ) := Z(2)(α, ϵ) where α is the renormalized coupling. In our setup, we
have Zα = Zw, and the two different renormalization group functions (def. 106) are related
by theorem 49,

β(α, ϵ) = w · αγ(α, ϵ). (4.8)

It turns out that for an order-by-order solution of eq. (4.7), we need to know the Mellin
transform (def. 101) of the kernel graph with arguments −kϵ, where k ∈ N0 is arbitrary.
Observe that this quantity depends on ϵ in two different ways: Firstly, the Mellin transform
itself is taken at a spacetime dimension D0 − 2ϵ, and secondly, its argument is −kϵ. Con-
cretely, we expand each summand of eq. (3.5) in ϵ, and we factor out trivial powers of (4π).
For the multiedge (example 103), this expansion reads

F (−kϵ) =: (4π)−
D
2 e−γEϵ

∞∑︂
n=−1

f (k)
n ϵn. (4.9)

Using the Mellin transform from example 96, we find∑︂
n

f (k)
n ϵn = eγEϵ

Γ
(︁
−D

2 + 2 + kϵ
)︁
Γ
(︁
D
2 − 1

)︁
Γ
(︁
D
2 − 1− kϵ

)︁
Γ (1 + kϵ) Γ (D − 2− kϵ)

.

It remains to expand the gamma functions using eq. (2.47). In D = 4− 2ϵ dimensions,

Γ :=
Γ((k + 1)ϵ)Γ(1− (k + 1)ϵ)Γ(1− ϵ)

Γ(1 + kϵ)Γ(2− (k + 2)ϵ)
=

e−γE

(k + 1) (1− (k + 2)ϵ) ϵ
exp

(︄ ∞∑︂
m=2

T (k)
m ϵm

)︄
,

where T (k)
m := (m− 1)! ((−1)m(k + 1)m + (k + 1)m + 1− (−k)m − (k + 2)m) ζ(m).

(4.10)

Expanding the prefactor in a geometric series, we obtain the coefficients of eq. (4.9),

f (k)
n =

n∑︂
t=−1

(k + 2)t+1

k + 1

1

(n− t)!

n−t∑︂
m=0

Bn−t,m

(︂
0, T

(k)
2 , T

(k)
3 , . . . , T

(k)
n−t+1−m

)︂
. (4.11)

Here Bn,k are the Bell polynomials (def. 52).
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Example 109: Coefficients for the 1-loop multiedge in D = 4− 2ϵ.

Unlike the Mellin transform at exactly D = 4 (example 96), the coefficients of eq. (4.11)
do involve zeta values and powers of π2:

f
(0)
−1 = 1 f

(0)
0 = 2 f

(0)
1 = 4− π2

12
f

(0)
2 = 8− π2

6
− 7ζ(3)

3

f
(1)
−1 =

1

2
f

(1)
0 =

3

2
f

(1)
1 =

9

2
− π2

24
f

(1)
2 =

27

2
− π2

8
− 26ζ(3)

6
.

For D = 6− 2ϵ dimensions, we have that

Γ (−1 + (k + 1)ϵ) Γ (2− ϵ) Γ (2− (k + 1)ϵ)

Γ (1 + kϵ) Γ (4− (k + 2)ϵ)
=

ϵ− 1

(3− (k + 2)ϵ)(2− (k + 2)ϵ)
· Γ.

The gamma functions on the right hand side are the same as in D = 4 − 2ϵ, consequently

their series expansion is again given by the polynomials T
(k)
m from eq. (4.10):

f (k)
n =

n∑︂
t=−1

(︃
−(k + 1) +

k

2t+1
− k − 1

3t+2

)︃
(k + 2)t

2(k + 1)

1

(n− t)!

n−t∑︂
m=0

Bn−t,m

(︂
0, T

(k)
2 , . . . , T

(k)
n−t+1−m

)︂
.

(4.12)

As a last example, we consider the toy model (example 98):

∞∫︂
0

dy y−(k+1)ϵ

1 + y
=

−π
sin(π(k + 1)ϵ)

= −Γ((k + 1)ϵ)Γ(1− (k + 1)ϵ) =:
∞∑︂

n=−1

f (k)
n ϵn.

The Bernoulli numbers Bn [475] vanish when n > 1 is odd, therefore we can write

f (k)
n :=

−1
(k + 1)

n+1∑︂
m=0

1

(n+ 1)!
Bn+1,m

(︂
0, T

(k)
2 , . . . , T

(k)
n+2−m

)︂
, T (k)

n :=
(︂
2π(k + 1)

)︂n |Bn|
n

.

(4.13)

Observe that, in order to compute f
(k)
n , it is irrelevant whether the Mellin transform

(example 96) is a simple rational function at ϵ = 0 or not. The “analytic” approach (solving
the ODE in theorem 45) is only feasible in practice in very limited cases, whereas our current

“brute force” approach is applicable also for more complicated kernels, as long as f
(k)
n can

be determined with reasonable effort.

4.2.2. Series solution of the DSE

As always, the Green function GR(α, ϵ, L) is scaled to its treelevel tensor, consequently, the
order-zero solution of eq. (4.7) is

G
(0)
R
(︁
α, ϵ, q2

)︁
:= 1. (4.14)

Inserting this into the right hand side of the DSE (eq. (4.7)), the integral amounts to the
Mellin transform (eq. (4.9)) at the argument zero, that is, F (−kϵ) with k = 0. We will
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assume for concreteness that our kernel is the 1-loop multiedge at D = 4−2ϵ, all other cases
are qualitatively similar. The correct choice to absorb trivial prefactors is then α = λ(4π)−2,

and the order one solution of the DSE is given by the coefficients f
(0)
n :

G
(1)
R (α, ϵ, q2) = 1− α (1−R)

[︄
(4π)ϵe−γEϵ

(︃
q2

s0

)︃−ϵ ∞∑︂
r=−1

f (0)
r ϵr

]︄

= Z(1)(α, ϵ)− α(4πe−γE )ϵ
(︃
q2

s0

)︃−ϵ ∞∑︂
r=−1

f (0)
r ϵr. (4.15)

Here, s0 is an arbitrary reference mass scale introduced for dimensional reasons. We have
used that a renormalization operator R (def. 97) is local, that is, it results in a counterterm
summand Z(1) that is independent of q2:

Z(1)(α, ϵ) = 1 + α(4πe−γE )ϵR

[︄ ∞∑︂
r=−1

f (0)
r ϵr

]︄
.

We restrict ourselves to the following family of renormalization operators, which is parametrized
by a number ϵmax ∈ Z ∪ {±∞}. Namely, we assume that the renormalization operator ex-
tracts the orders up to ϵmax of a given Laurent series f(ϵ):

R[f(ϵ)] = R

[︄ ∞∑︂
n=−∞

fnϵ
n

]︄
:=

ϵmax∑︂
n=−∞

fnϵ
n. (4.16)

Three different options will be relevant to us:

1. If we chose ϵmax = −∞, then R = 0 and we compute the unrenormalized Green
function.

2. If we chose ϵmax = +∞, then R subtracts the complete function f(ϵ). Due to the
prefactor (q2/s0)

−ϵ in eq. (4.15), this amounts to kinematic renormalization (def. 91)
at the renormalization point s0.

3. The choice ϵmax = −1 amounts to Minimal Subtraction (def. 108).

In concrete computations, to obtain the correct solution at ϵ = 0 to order αn, it is sufficient
to chose ϵmax > n. This is because every step in the iteration multiplies by ϵ−1. For a linear
DSE, it is even sufficient to let ϵmax = 1 to obtain the correct MOM-solution at ϵ = 0.

In order to streamline computations of higher orders, we define the coefficients g
(1)
t,r , which

encode both the counterterm and the finite part of G
(1)
R :

g
(1)
1,r := −f

(0)
r , g

(1)
0,r :=

{︄
−g(1)

1,r r ≤ ϵmax

0 else.

With this notation, the renormalized solution to order one, eq. (4.15), reads

G
(1)
R (α, ϵ, q2) = 1 + α

1∑︂
t=0

(4πe−γE )tϵ
(︃
q2

s0

)︃−tϵ ∞∑︂
r=−1

g
(1)
t,r ϵ

r. (4.17)
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The 1-loop multiedge kernel graph gives rise to a factor (4πe−γE )tϵ, which eventually
produces finite contributions ∝ γE and ∝ ln(4π). In MS renormalization, these terms are
present in the finite part of ĜR while in MS-bar renormalization they are assigned to the
MS-bar-counterterm Z̄ and thus absent from ḠR. To facilitate computations, we will absorb
them into the momentum variable. In this way, choosing ϵmax = −1, we obtain the MS-bar
Green function of the new momentum variable, but our counterterm will be Ẑ in MS, not
in MS-bar:

x̂ :=
q2

s0
, x̄ :=

eγEq2

4πs0
≡ q2

s̄0
, ĜR (x̂) ≡ ḠR(x̄). (4.18)

If we chose ϵmax = ∞, that is, kinematic renormalization, then we can understand the
transition x̂ ↔ x̄ as a constant rescaling of the renormalization point s0 ↔ 4πeγEs0 =: s̄0.
Had we chosen a different kernel, such as the toy model (example 102), then the factor
(4πe−γE ) would be different or not arise at all. In any case, we skip all decorations x̄, x̂,
knowing that they can always be chosen to absorb superfluous constants. Observe that those

constants have already been factored out of f
(k)
n in eq. (4.9).

Example 110: Multiedge DSE, first order coefficients.

Consider the DSE of the 1-loop multiedge in D = 4 − 2ϵ dimensions. At 1-loop order,
the solution is independent from the exponent w in the invariant charge eq. (3.34). In
MOM renormalization, the coefficients of the solution are

g
(1)
1,−1 = −1, g

(1)
1,0 = −2 g

(1)
1,1 = −4 + π2

12

g
(1)
0,−1 = 1, g

(1)
0,0 = 2 g

(1)
0,1 = 4− π2

12
.

In MS-bar renormalization, that is, ϵmax = −1 in eq. (4.16) and (4πe−γE ) is absorbed
as in eq. (4.18), we have

g
(1)
1,−1 = −1, g

(1)
1,0 = −2 g

(1)
1,1 = −4 + π2

12

g
(1)
0,−1 = 1, g

(1)
0,0 = 0 g

(1)
0,1 = 0.

Even if the only difference between MS-bar and MOM is in the counterterm g
(1)
0,r , this

does not imply that the renormalized Green functions are equal.

Higher orders of the renormalized Green function are computed iteratively. Assume we
know the order-m-solution in the form

G
(m)
R (α, ϵ, x) = 1 +

m∑︂
n=1

αn
n∑︂
t=0

x−tϵ
∞∑︂

r=−n
g

(n)
t,r ϵ

r =: 1 +

m∑︂
n=1

αnGn(x, ϵ),

where we defined functions Gn(x, ϵ). The latter do not depend on the order m. Next, we
write a generic expansion of the invariant charge eq. (3.34) according to

G
(m)
R (α, ϵ, x) · QR(α, ϵ, x) ≡

(︂
G

(m)
R (α, ϵ, x)

)︂w+1
=: 1 +

m∑︂
n=1

αn
n∑︂
t=0

x−tϵh
(n)
t (ϵ). (4.19)
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The auxiliary functions h
(n)
t (ϵ) are Laurent series in ϵ with the highest pole order ϵ−n. They

are given by Faa di Bruno’s formula (theorem 18) and the Binomial theorem, Bn,k are Bell
polynomials (def. 52):

1(︂
G

(m)
R (x)

)︂−w−1 =
1

(−w − 2)!

∞∑︂
n=0

αn
1

n!

n∑︂
k=1

(−s− 2 + k)!Bn,k (1!G1, 2!G2, . . .) , w < −1

(︂
G

(m)
R (x)

)︂w+1
= (w + 1)!

∞∑︂
n=0

αn
1

n!

s+1∑︂
k=0

1

(w + 1− k)!
Bn,k (1!G1, 2!G2, . . .) , w > −1.

(4.20)

Knowing the functions h
(n)
t (ϵ), we integrate the sum eq. (4.19) term-wise. Each summand

corresponds to a Mellin transform F (−tϵ) in eq. (4.9), solving the integral amounts to mul-

tiplication with a suitable series
∑︁

n f
(t)
n ϵn. Symbolically, the result is

g
(1)
1,r = −f

(0)
r , ḡ

(n)
t,r = −

n+r−1∑︂
u=−1

(︂
[ϵr−u]h̄

(n−1)
t−1

)︂
f (t−1)
u , t ≥ 1.

The overall minus sign is the (−α) in eq. (4.7). With these new coefficients, the next order
solution of the DSE is

G
(m+1)
R (α, ϵ, x) = G

(1)
R (α, ϵ, x) + (1−R)

m+1∑︂
n=2

αn
n∑︂
t=1

x−tϵ
∞∑︂

r=−n
g

(n+1)
t,r ϵr. (4.21)

To renormalize, we compute the counterterm Z(m+1)(α, ϵ) according to eq. (4.16),

g
(n)
0,r :=

{︄
−
∑︁n

t=1 g
(n)
t,r , r ≤ ϵmax

0, else,

Z(m+1)(α, ϵ) = 1 +
m+1∑︂
n=1

αn
∞∑︂

r=−n
g

(n)
0,r ϵ

r = 1 +
m+1∑︂
n=1

αn
ϵmax∑︂
r=−n

g
(n)
0,r ϵ

r.

As explained above eq. (4.18), if we use ϵmax = −1, the quantity Z represents the MS
(not MS-bar) counterterm, even though GR in that case is the MS-bar renormalized Green
function. In any case, the renormalized Green function to order m+ 1 reads

G
(m+1)
R (α, ϵ, x) =

m+1∑︂
n=1

αn
n∑︂
u=0

x−uϵ
∞∑︂

r=−n
g(n)
u,r ϵ

r (4.22)

= Z(m+1)(α, ϵ) +

m+1∑︂
n=1

αn
n∑︂
t=1

x−tϵ
∞∑︂

r=−n
g

(n)
t,r ϵ

r.

Algebraically, our algorithm of solving the DSE can be understood as iterated matrix prod-
ucts, compare [476].
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Example 111: Multiedge linear DSE in MOM, coefficients.

Consider the linear DSE, w = 0, of the 1-loop multiedge in D = 4 − 2ϵ dimensions
and MOM renormalization. The 1-order solution is example 110. At two loops, the

coefficients g
(1)
2,j appear for the first time:

g
(2)
2,−2 =

1

2
g

(2)
2,−1 =

5

2
, g

(2)
2,0 =

19

2
− π2

12
g

(2)
2,1 =

65

2
− 5π2

12
− 16ζ(3)

3

g
(2)
1,−2 = −1 g

(2)
1,−1 = −4, g

(2)
1,0 = −12 + π2

6
g

(2)
1,1 = −32 + 2π2

3
+

14ζ(3)

3

g
(2)
0,−2 =

1

2
g

(2)
0,−1 =

3

2
, g

(2)
0,0 =

5

2
− π2

12
g

(2)
0,1 = −1

2
− π2

4
+

2ζ(3)

3
.

Example 112: Multiedge nonlinear DSE in MOM, coefficients.

Consider the same situation as in example 111, but this time a non-linear DSE with
w = 3. The order one solution stays the same, but at two loops we find

g
(2)
2,−2 = 2 g

(2)
1,−1 = 10, g

(2)
2,0 = 38− π2

3
g

(2)
2,1 = 130− 5π2

3
− 64ζ(3)

3

g
(2)
1,−2 = −4 g

(2)
1,−1 = −16, g

(2)
1,0 = −48 + 2π2

3
g

(2)
1,1 = −128 + 8π2

3
+

56ζ(3)

3

g
(2)
0,−2 = 2 g

(2)
0,−1 = 6, g

(2)
0,0 = 10− π2

3
g

(2)
0,1 = −2− π2 +

8ζ(3)

3
.

Example 113: Multiedge nonlinear DSE in MS, coefficients.

Consider the same DSE with w = 3, but this time in MS-bar renormalization, as intro-
duced in example 110. The coefficients of the second order solution are

g
(2)
2,−2 = 2 g

(2)
1,−1 = 10, g

(2)
2,0 = 38− π2

3
g

(2)
2,1 = 130− 5π2

3
− 64ζ(3)

3

g
(2)
1,−2 = −4 g

(2)
1,−1 = −8, g

(2)
1,0 = −16 + π2

3
g

(2)
1,1 = −32 + 2π2

3
+

28ζ(3)

3

g
(2)
0,−2 = 2 g

(2)
0,−1 = −2, g

(2)
0,0 = 0 g

(2)
0,1 = 0.

We emphasize that the “highest order”, the coefficients g
(n)
n,r , coincide between MS and

MOM. This is a consequence of (or rather reason for) theorem 56.
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4.2.3. Expansions of the renormalized Green function

The all-order perturbative solution GR(α, ϵ, x) of eq. (4.7) is defined as the limit m→∞ in
eq. (4.22), effectively it is an infinite sum over the orders αm in the coupling. But the form
eq. (4.22) is not yet practically useful because it contains pole terms, which only cancel if all
summands of a given order are included. We can expose the log-expansion (eq. (3.2)), with
the identification of the logarithmic scale L = lnx (eq. (4.18) and def. 99), by expanding

x−tϵ = e−Ltϵ = 1− tϵL+
1

2
tϵ2L2 ∓ . . . .

Reordering eq. (4.22), we obtain

GR (α, ϵ, x) = Z(α, ϵ) +
∞∑︂
k=0

Lk
∞∑︂
t=1

(−t)k

k!

∞∑︂
n=t

αn
∞∑︂

r=−n
g

(n)
t,r ϵ

k+r. (4.23)

From this, we read off the expansion functions

γk(α, ϵ) =
∞∑︂
t=1

(−t)k

k!

∞∑︂
n=t

αn
∞∑︂

r=−n
g

(n)
t,r ϵ

k+r, (4.24)

especially, the limit γk(α, ϵ = 0) =: γk(α) is

γk(α) =
∞∑︂
t=1

(−t)k

k!

∞∑︂
n=t

αng
(n)
t,−k, γ1(α) = −

∞∑︂
t=1

t
∞∑︂
n=t

αng
(n)
t,−1. (4.25)

Example 114: Multiedge linear DSE, anomalous dimension.

Consider the DSE from example 111. In MOM, γ0(α, ϵ) = 1 and we find

γ1(α, ϵ) = α− α2 + 2α3 − 5α4 + 14α5 − 42α6 + 132α7 ∓ . . .
+ (2α− 7α2 + (26− 2ζ(3))α3 + (−99 + 8ζ(3))α4 + . . .)ϵ+O(ϵ2).

The [ϵ0]- part of γ1 is indeed the anomalous dimension known from example 104,

γ(α) = γ1(α) =

√
1 + 4α− 1

2
= −

∞∑︂
n=1

(−1)nCn−1α
n.

The [ϵ1]-part coincides with our analytic calculation in example 106.

Example 115: Multiedge nonlinear DSE, expansion functions.

The DSE with w = 3 in MOM results in

γ1(α, ϵ) = α− 4α2 + 44α3 ∓ . . .+ (2α− 28α2 + (572− 56ζ(3))α3 + . . .)ϵ+O(ϵ2).
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4. Renormalization group and DSEs in non-kinematic renormalization

In MS-bar, for w = 3, we find

γ0(α, ϵ) = 1− 2α+ 22α2 ± . . .+(︃(︃
−4 + π2

12

)︃
α+ (98− π2 − 12ζ(3))α2 ∓ . . .

)︃
ϵ+O(ϵ2)

γ1(α, ϵ) = α− 12α2 + 212α3 ∓ . . .+
(︃
2α+

(︃
−60 + π2

3

)︃
α2 ∓ . . .

)︃
ϵ+O

(︁
ϵ2
)︁
.

Example 116: Multiedge linear DSE, constant term in MS.

In MS-bar, the function γ0(α, ϵ) is not fixed by renormalization conditions. An explicit
calculation for the linear DSE in D = 4− 2ϵ, using eq. (4.25), results in

γ0(α, ϵ) = 1− 2α+
11

2
α2 +

(︃
−17 + 2ζ(3)

3

)︃
α3 +

(︃
447

8
− 10ζ(3)

3

)︃
α4 + . . .

+

(︃(︃
−4 + π2

12

)︃
α+

(︃
49

2
− π2

4
− 3ζ(3)

)︃
α2 + . . .

)︃
ϵ+O

(︁
ϵ2
)︁
.

Using the coefficients up to order α25 and the series-lookup function of the OEIS [473],
one discovers a closed formula for [ϵ0]γ0. Firstly, laborious experimentation results in

ln γ0 − ln

(︄√
1 + 4α− 1

2α(1 + 4α)
1
4

)︄
= ζ(3)

(︃
2
α3

3
− 8

α4

4
+ 30

α5

5
− 112

α6

6
+ 420

α7

7
∓ . . .

)︃
+ ζ(5)

(︃
2
α5

5
− 12

α6

6
+ 56

α7

7
− 240

α8

8
± . . .

)︃
+ ζ(7) . . . .

At least up to ζ(11) and α25, the coefficients of α
j+m−1

j+m−1 in the term proportional to ζ(m)

are given by the binomial coefficient 2
(︁

2j+m−3
j−1

)︁
. Assuming that this holds universally,

all series over α and then the remaining series in ζ(m) can be summed and yield known
functions. The end result for [ϵ0]γ0 is

γ0(α) = eγE(1−
√

1+4α)

√
1 + 4α− 1

2α (1 + 4α)
1
4

Γ
(︁

3
2 −

1
2

√
1 + 4α

)︁
Γ
(︁

1
2 + 1

2

√
1 + 4α

)︁ =
γ

α

√︃
d γ

dα
e−2γγE

Γ (1− γ)
Γ (1 + γ)

.

In this equation, γ ≡ γ(α) is the anomalous dimension from example 114. We remark
that such a fraction of gamma functions is not uncommon in the computation of mul-
tiedge Feynman graphs, compare for example [178]. We will understand its relation to
the multiedge amplitude (example 24) in theorem 68.
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we have rescaled 6α
π2 → α to eliminate trivial factors. Let L := lnx, then the non-recursive

DSE (example 102) gives rise to the Callan-Symanzik equation (theorem 39)

∂

∂L
GR(α,L) = γ(α)

(︃
1 + wα · ∂

∂α

)︃
GR(α,L) = −αGR(α,L) + α2 ∂

∂α
GR(α,L).

The general solution of this partial differential equation is

GR(α,L) = αF−1

(︃
L− 1

α

)︃
,

where F−1 is an arbitrary function. The requirement ∂LGR|L=0 = γ(α) = −α and the
boundary condition G(α, 0) = 1 fix F−1(u) = −u.

Although the anomalous dimension γ(α) = −α of w = −1 coincides with the (supposed)
one at w = −1

2 , the latter gives rise to a slightly different Callan-Symanzik equation, namely

∂

∂L
GR(α,L) = −αGR(α,L) +

1

2
α2 ∂

∂α
GR(α,L).

This time, the general solution is

GR(α,L) = α2F− 1
2

(︃
L− 2

α

)︃
.

The condition GR(α, 0) = 1 translates to F− 1
2
(u) = 1

4u
2 and we find

GR(α,L) =
1

4
α2L2 − αL+ 1. (4.27)

At least within perturbation theory, eq. (4.27) represents an exact solution of a non-linear
DSE. The same DSE with w = −1

2 in Minimal Subtraction (def. 108) gives rise to an
anomalous dimension which seems to be a factorially divergent power series, and has no
simple polynomial solution ĜR.
The phenomenon occurs in reverse direction if we choose w = −2. In Minimal Subtraction,

we find γ̂(α) = −α at least up to order α18. By theorem 54, the latter is true even for ϵ ̸= 0.
Assume again that γ̂(α) = −α holds to all orders of α, then the Callan-Symanzik equation
(theorem 39) reads

∂

∂L
GR̂(α, ϵ, L) = −αGR̂(α, ϵ, L) + 2α2 ∂

∂α
GR̂(α, ϵ, L).

In MS, the Green function does not satisfy some simple boundary condition, therefore we
can not derive an exact solution for GR̂ from this differential equation. The MOM anoma-
lous dimension for w = −2 is factorially divergent as its Stokes constant does not vanish
(table 3.4).

It is unclear whether the toy model contains any concrete physical information, but nev-
ertheless, the observations in this subsection serve as an example for how different renor-
malization conditions can give rise to qualitative different analytic features of the solution of
the same DSE. As we shall see in theorem 57, these solutions are physically equivalent, but,
thanks to renormalization of the coupling constant, they are expressed in terms of expansion
parameters which are related non-linearly and therefore the corresponding series can look
truly different. Concretely, the shift between MOM and MS can transform a factorially
divergent power series (def. 58) into a trivial polynomial γ̂(α) = −α.
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4. Renormalization group and DSEs in non-kinematic renormalization

Summary of section 4.2.

1. We consider propagator-type DSEs where the series expansion of the Mellin trans-
form of the kernel is assumed to be known (section 4.2.1).

2. Starting from the treelevel G
(1)
R = 1, the DSE can be solved order by order by

algebraic operations on the Mellin coefficients. MOM and MS renormalization
conditions can be implemented easily (section 4.2.2).

3. The resulting Green function is a triple series in α, ϵ and L. The n functions γj(α, ϵ)
or the counterterm Z(α, ϵ) can be obtained by reordering the series (section 4.2.3).

4. The non-linear DSE of the toy model seems to have simple perturbative solutions
in two particular cases. This is an example for the fact that different renormal-
ization conditions can give rise to qualitatively different perturbative solutions
(section 4.2.4).
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4.3. Shifted kinematic renormalization point

4.3. Shifted kinematic renormalization point

We have examined non-kinematic renormalization schemes already in section 4.1. In the
present section, we extend the previous analysis in two respects:

1. We consider the full ϵ-dependence of all quantities in dimensional regularization.

2. In theorem 48, non-kinematic renormalization schemes were expressed in terms of the
quantity τ [Γ] = GR′(L = 0) = γ′0(α). In the present section, we instead take the value
L = −δ ̸= 0, where GR′(L = −δ) = 1, as the primary object.

4.3.1. Shifted Green function

By theorem 48, a non-kinematic Green function GR′ has the value GR′(L) = 1 not at the
point L = 0, but at some point δ. Instead of knowing the amplitude at L = 0, given by τ
(def. 109), one can also ask at which point L = −δ the Green function is unity. In practice,
the latter is often more physically sensible because, to limited order in perturbation theory,
we expect our results to be accurate as long as the quantum corrections (GR′ − 1) are small.
Consequently, a non-kinematic Green function will be reliable in the vicinity of L = −δ, and
not necessarily for small L [477, 478]. The set up is shown in fig. 4.2.

L
-2 0 1 2 3

3

2

1

−δ

GR
GR′

Figure 4.2.: A hypothetical Green function in MOM with renormalization point L = 0 (blue)
and in shifted MOM according to def. 111 with δ = 1.2 (red). Both are sketched
for the same arbitrary, but fixed, value of the coupling.

Definition 111. Let L = ln s
s0

be the logarithmic scale (def. 99) and let δ(α, ϵ) be
a power series (def. 51) in α and ϵ, regular at the origin. Let FR be the Feynman
amplitude in kinematic renormalization (def. 91) with renormalization point L = 0.
The shifted kinematic renormalization scheme FR′(L) is defined by the renormalization
condition

FR′(−δ) !
= 1̃ = FR(0).
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Theorem 57. Let GR′ be a renormalized Green function in any renormalization
scheme (def. 97), which is a solution of a DSE. Let τ (def. 109) be the extraction of the
value at L = 0 in R′, and let σ = ∂L|L=0 be the infinitesimal Feynman rule in MOM
(def. 100). Then, GR′ is the Green function (of the same DSE) in a shifted kinematic
scheme (def. 111), provided the equation

τ = exp⋆ (δ · σ)

can be satisfied with some power series δ(α, ϵ) ∈ R[[α, ϵ]] (def. 51).

Proof. With def. 111, FR′(0) = FR(δ) is not unity. We can extract the value with the operator
τ from def. 109. On the other hand, FR(δ) is given by the ordinary exponential formula def. 100.
Consequently, the relation between τ and δ must be the one claimed above, and if it is, then FR′(L+
δ) = FR(L).

In perturbation theory, the condition of theorem 57 can certainly be fulfilled: The operator
τ , applied to a combinatorial Green function (def. 45), results in a formal power series in
α with finite coefficients as ϵ → 0. Then, δ can be obtained by taking the combinatorial
logarithm of this series. Algebraically, this is realized by the Dynkin operator def. 79, but
one can understand its mechanism also by solving a DSE order by order as in section 4.2: At
every new order, the Green function contains a higher power in L, and by shifting L→ L+δ,
one can always add a new free constant to adjust the absolute value. We will derive concrete
algorithms to find δ in section 4.4.

Example 120: Multiedge DSE, manually computing the shift.

Consider the multiedge DSE in D = 4− 2ϵ from example 110. The first-order solution
is simply the kernel graph, in MOM it reads

GR(α, ϵ, L) = 1 + αL+O (ϵ) .

We use MS as an example of a non-kinematic renormalization scheme. In MS, the
solution is

GR′(α, ϵ, L) = 1 + α (L− 2) +O (ϵ) .

Both Green functions are solutions to the same DSE, so by theorem 57, it should be
possible to find a shift δ such that the MS-solution is a shifted kinematic scheme. That
is, by def. 111, we want GR′(−δ) = 1. Indeed, we can read off this value from the
explicit solutions: GR′(α, ϵ, 2) = 1 +O(ϵ), therefore,

δ = −2 +O(ϵ) +O(α).

The extension of this “brute force algorithm” to higher orders in α and ϵ will be described
in section 4.4.2
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There are two rather philosophical obstacles to the relation between σ and τ in theorem 57:

1. If σ[Γ] = 0, then the right hand side is unity. If GR is taken to be QR, then this
case amounts to a fixed-point of the renormalization group. Moreover, this obstacle
can arise in an empty DSE, that is, in a theory without any quantum corrections.
The classification of such cases in full generality is rather complicated since a theory
might have multiple beta functions, vanishing at different points. Geometrically, this
case is simple to visualize: σ computes the derivative of GR, and if this value is zero
somewhere then GR can potentially have an absolute extreme value at that point and
thus be not surjective. If in that case γ′0 is outside of the values of GR, then no shift
can be found to relate GR and GR′ . Phrased differently: To find a shift, it is necessary
that GR′ is unity somewhere, and the non-vanishing of the anomalous dimension and
beta function guarantees that GR′ is monotonous and thus surjective.

2. Beyond perturbation theory, the operators σ, τ can, in principle, give rise to arbitrary
functions with unknown analytic properties. In that case, we can not trivially resort
to the combinatorial logarithm to solve for δ.

Both points will be irrelevant for the rest of the thesis because we only consider reasonably
well-behaved DSEs in perturbation theory. There is, however, one very relevant caveat to
the shift between renormalization schemes: Theorem 57 requires both Green functions to
be solutions of the same combinatorial DSE. If the underlying graphs do not satisfy a DSE,
then the exponential formula (def. 100) does not hold to start with and, in general, it is
impossible to find a δ(α, ϵ) to relate the schemes. The chain approximation (section 4.5.4)
is an example for the latter problem.

Before we turn to concrete algorithms for computing δ, we will first examine some general
properties of the shifted scheme (def. 111).

4.3.2. Shifted counterterms

Definition 112. Let δ(α, ϵ) be the shifted renormalization point from def. 111 and QR′

be the invariant charge (def. 93) in the shifted theory. We define two shifted couplings
α′ and α̃ in analogy to defs. 102, 104 and 105:

α′(α, ϵ) := αe−ϵδ(α,ϵ), Q0(α, ϵ) := QR′(α, ϵ, 0)

α̃(α, ϵ) := α′(α, ϵ) · Q0(α, ϵ) = αe−ϵδ(α,ϵ)QR′(α, ϵ, 0).

In the special case of QR = 1 (linear DSE), the shifted couplings coincide, α′ = α̃. Ob-
serve that all series in def. 112 start with a linear term in the coupling, therefore, using series
reversion (theorem 17) and concatenation (theorem 18), one can compute the transforma-
tions between any pair of the three couplings {α, α′, α̃}. We will often indicate the depen-
dence of functions by the corresponding decoration, for example Q̃0(α̃, ϵ) := Q0(α(α̃), ϵ) and
Q′

0(α
′, ϵ) := Q0(α(α

′), ϵ).
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Lemma 58. Let GR′ be a solution of a DSE in shifted kinematic renormalization
(def. 111). Then

GR′(α, ϵ, L) = GR′(α, ϵ, 0) ·GR (α̃(α, ϵ, δ), ϵ, L) . (4.28)

Proof. For the analytic Green function, the renormalization condition def. 111 is

GR′(α, ϵ, L) = GR(α, ϵ, L+ δ). (4.29)

The right hand side is known from lemma 38.

The behaviour of counterterms under a change of renormalization point is in principle
straightforward from their definition, but great care is required regarding which quantity
is a function of which variable. For clarity, we restrict ourselves to a theory with only a
single Green function GR and two Z-factors, Zα for the coupling and ZG for GR. The
renormalized Green function GR in MOM (def. 91) is related to the unrenormalized one via
def. 104 and eq. (3.26),

GR(α, ϵ, L) = ZG(α, ϵ) ·G(αZα(α, ϵ), ϵ, L). (4.30)

Firstly, we consider a linear Dyson-Schwinger equation, that is, the invariant charge
(def. 92) is Q = 1 and consequently Zα = 1, and eq. (4.30) becomes

GR(α, ϵ, L) = ZG(α, ϵ)G (α, ϵ, L) . (4.31)

By def. 112, α̃(α, ϵ) = α′(α, ϵ) for a linear DSE. Let

γ′0(α, ϵ) := GR′(α, ϵ, 0) = GR(α, ϵ, L = δ(α, ϵ)). (4.32)

Combining lemma 58 and eq. (4.31), the shifted Green function is

GR′(α, ϵ, L) = γ′0(α, ϵ) ·GR(α
′(α, ϵ), ϵ, L)

= γ′0(α, ϵ) · ZG(α′(α, ϵ), ϵ) ·G(α′(α, ϵ), ϵ, L). (4.33)

Naively, from def. 104, we expect the form

GR′(α, ϵ, L)
?
= Z ′

G(α, ϵ)G
(︁
αZ ′

α(α, ϵ), ϵ, L
)︁
. (4.34)

This would mean that αZ ′
α

?
= α′ = αe−ϵδ. In other words, with the definition eq. (4.34), the

solution of a linear Dyson-Schwinger equation obtains a non-vanishing coupling counterterm

Z ′
α

?
= e−ϵδ. This is not only “unintuitive”, but it also violates equations such as Zα = ZwG ,

which would otherwise guarantee that Zα = 1 if w = 0. We therefore decide that α′ is the
proper variable for GR′ , so that in eq. (4.33), no Zα is necessary. We stress that this is a
choice, not a theorem. Essentially, it is the same choice that we commented on below def. 104
for factoring sϵ0 out of the definition of Zα. We absorb e−ϵδ into the definition of the coupling
α′ in the same way that we absorbed sϵ0 into α in eq. (3.24). With this understanding, we
define

G′
R(α

′, ϵ, L) := GR′
(︁
α(α′, ϵ), ϵ, L

)︁
(4.35)

γ′0(α
′, ϵ) := G′

R(α
′, ϵ, 0) = γ0(α(α

′, ϵ), ϵ).
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4.3. Shifted kinematic renormalization point

Definition 113. Let R′ be a shifted kinematic renormalization scheme (def. 111). We
take the shifted coupling α′ from def. 112 as a natural variable and define the shifted
counterterms Z ′

G(α
′, ϵ), Z ′

α(α
′, ϵ) by the relation

G′
R(α

′, ϵ, L) =: Z ′
G(α

′, ϵ) ·G
(︁
α′Z ′

α(α
′, ϵ), ϵ, L

)︁
.

The counterterms for the linear DSE can now be read off from comparing eq. (4.33)
and def. 113 :

Z ′
α(α

′, ϵ) = 1,

Z ′
G(α

′, ϵ) = γ′0(α
′, ϵ)ZG(α

′, ϵ). (4.36)

In the second equation, we insert α′ as a variable into ZG, without any implicit transforma-
tion α(α′).

Example 121: Multiedge linear DSE, shifted counterterm.

Consider the linear multiedge DSE from example 119. We introduce a shift δ = −3.
Equation (4.35) then takes the form

γ′0(α
′, ϵ) = 1− 3α′ +

15

2
α′2 − 39

2
α′3 +

435

8
α′4 +−6441

40
α′5 + . . .

+

(︃
−3

2
α′ +

33

2
α′2 +

(︃
−393

4
+ 6ζ(3)

)︃
α′3 + . . .

)︃
ϵ+O

(︁
ϵ2
)︁
.

According to eq. (4.36), the shifted counterterm is

lnZ ′
G(α

′, ϵ) =

(︄
α′ − α′2

2
+ 2

α′3

3
− 5

α′4

4
+ 14

α′5

5
∓ . . .

)︄
1

ϵ

− α′ − 1

2
α′2 +

(︃
8

3
− 2

3
ζ(3)

)︃
α′3 +

(︃
−39

4
+ 2ζ(3)

)︃
α′4 + . . .+O (ϵ) .

The singular term of this series coincides with the un-shifted one from example 119.

Theorem 59. Let R′ be a shifted kinematic renormalization scheme (def. 111), and
let α′ be the shifted coupling (def. 112). Let ZG, Zα be the counterterms in kinematic
renormalization without shift, and let

γ′0(α
′, ϵ) := G′

R(α
′, ϵ, 0), Q′

0(α
′, ϵ) := Q′

R
(︁
α′, ϵ, 0

)︁
= QR′

(︁
α(α′), ϵ, 0

)︁
.

Then, the shifted counterterms of def. 113 are given by

Z ′
α

(︁
α′, ϵ

)︁
= Q′

0(α
′, ϵ) · Zα(α′Q′

0(α
′, ϵ), ϵ), Z ′

G

(︁
α′, ϵ

)︁
= γ′0(α

′, ϵ) · ZG
(︁
α′Q′

0(α
′, ϵ), ϵ

)︁
.
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4. Renormalization group and DSEs in non-kinematic renormalization

Proof. For a non-linear DSE, from lemma 58, we obtain

GR′(α, ϵ, L) = γ′0(α, ϵ) ·GR(α̃(α, ϵ), ϵ, L).

Note the presence of α̃ = α′Q0(α, ϵ) from def. 112. We take α′ as a natural variable and define the
shifted Z-factors according to def. 113. The un-shifted Green function is given by eq. (4.30), therefore

γ′0(α, ϵ) · ZG(α̃, ϵ)G(α̃Zα(α̃, ϵ), ϵ, L) = Z ′
G(α

′, ϵ)G (α′Z ′
α(α

′, ϵ), ϵ) .

Comparing factors, and writing everything as a function of α′, we obtain the claimed expressions.

4.3.3. Shifted renormalization group functions

Knowing the shifted counterterms from theorem 59, we can compute the corresponding
renormalization group functions from def. 110. We deliberatly expressed our shifted functions
in terms of α′, not α, because in this way, we can use the same derivations as in section 3.2.2,
only replacing α by α′. This fits with our remark eq. (3.24): Renormalization and change of
energy scale are one and the same operation, that is, with a shifted renormalization point,
we obtain identical results, up to a different value of the coupling.

Theorem 60. Consider an arbitrarily shifted kinematic renormalization scheme,
where the counterterms are given by theorem 59 as functions of α′ (def. 112). The
shifted renormalization group functions β′(α′, ϵ), γ′(α′, ϵ) are computed as in def. 110,
where every α is replaced by α′. Then, the Callan-Symanzik equation (theorem 43)
holds for the shifted Green function eq. (4.35) as a function of α′:(︃

γ′(α′, ϵ) +
(︁
β′(α′, ϵ)− α′ϵ

)︁ ∂

∂α′

)︃
G′

R(α
′, ϵ, L) =

∂

∂L
G′

R(α
′, ϵ, L).

Proof. Owing to our definitions in section 4.3.2, def. 113 is exactly the same as the un-shifted relation
eq. (4.30), only with every α replaced by α′ and Z replaced by Z ′. Moreover, thanks to def. 110,
the Z-factors are related to the renormalization group functions exactly as in the un-shifted case, up
to replacing γ → γ′ and β → β′. Effectively, G′

R(α, ϵ, L) can be expressed in terms of γ′, β′ exactly
the same way that GR(α, ϵ, L) is expressed by γ, β, and both are based on the same un-renormalized
Green function G. Consequently, both satisfy the same Callan-Symanzik equation theorem 43.
A different perspective is to use theorem 57: The shifted kinematic Green function is equal to some

non-kinematic Green function, and by lemma 53, the latter satisfies the familiar Callan-Symanzik
equation and the counterterm relations of def. 110.

Similarly to eq. (3.2), the shifted Green function (eq. (4.35)) can be expanded in the
logarithmic scale (def. 99):

G′
R(α

′, ϵ, L) :=
∞∑︂
j=0

γ′j(α
′, ϵ)Lj . (4.37)

In this equation, all quantities are functions of α′ from def. 112. But, unlike earlier notation,
γ′j(α

′) ̸= γj(α(α
′)).
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4.3. Shifted kinematic renormalization point

Lemma 61. Let G′
R(α, ϵ, L) be a renormalized Green function in a shifted kinematic

scheme (def. 111) which is a solution of a DSE. Let γ′j(α
′, ϵ) be the coefficients of the

log expansion eq. (4.37). Then,

γ′j>1(α
′, ϵ) =

1

j

(︃
γ′(α′, ϵ) +

(︁
β′(α′, ϵ)− α′ϵ

)︁
· ∂
∂α′

)︃
γ′j−1(α

′, ϵ).

Proof. Insert the expansion eq. (4.37) into the Callan-Symanzik equation (theorem 60).

By theorem 60 and lemma 61, the shifted renormalization group is entirely expressed in
terms of shifted couplings α′, shifted Green functions GR′ and shifted renormalization group
functions β′, γ′. On the other hand, for a given shift δ, the expansion functions can also be
computed directly from the un-shifted ones.

Theorem 62. Let γ′j(α
′, ϵ) be the expansion functions from eq. (4.37), where G′

R is
a shifted Green function according to eq. (4.35) and def. 111, and let γj(α, ϵ) be the
corresponding expansion functions in MOM from eq. (3.2). Let α(α′) = α′e+ϵδ′(α′,ϵ),
where δ′(α′, ϵ) = δ(α(α′, ϵ), ϵ) from def. 112. Then,

γ′k(α
′, ϵ) = γ′0(α

′, ϵ) · γk(α̃(α′, ϵ), ϵ)

γ′k(α
′, ϵ) =

∞∑︂
j=k

(︃
j

k

)︃
γj(α(α

′, ϵ), ϵ)δj−k(α(α′, ϵ), ϵ).

Proof. The first equation follows if we insert the expansion eq. (4.37) into lemma 58.
From def. 111, we obtain

GR′(α, ϵ, L) = GR(α, ϵ, L+ δ).

Insert the expansions eqs. (3.2) and (4.37),

∞∑︂
j=0

γ′j(α, ϵ)L
j =

∞∑︂
j=1

γj(α, ϵ)(L+ δ)j .

Expand the right hand side with the binomial theorem and consider order Lk.

∞∑︂
j=0

γj(α, ϵ)

j∑︂
k=0

(︃
j

k

)︃
Lkδj−k =

∞∑︂
k=0

Lk
∞∑︂
j=k

(︃
j

k

)︃
γj(α, ϵ)δ

j−k.

γ′k(α, ϵ) =
∞∑︂
j=k

(︃
j

k

)︃
γj(α, ϵ)δ

j−k.

This is a function of α, so we need to insert α(α′) everywhere.

So far, we have worked with the full ϵ-dependent functions, which is necessary for a
consistent treatment of counterterms. If we are only interested in the ϵ = 0 case, then the
situation simplifies considerably.

193



4. Renormalization group and DSEs in non-kinematic renormalization

Theorem 63. Assume that the MOM expansion functions γk(α) from eq. (3.2)
are formal power series and satisfy the Callan-Symanzik equation theorem 39, and the
kinematic renormalization point is shifted by a factor δ(α) according to def. 111, which
is a power series in α. Assume further that GR is a solution to a DSE of type eq. (3.35),
where the invariant charge (def. 92) is Q = Gw. Then, in the limit ϵ = 0,

1. The shifted anomalous dimension and beta functions of theorem 60, for ϵ = 0, are

γ′(α) :=
γ(α)

1 + wγ(α) · α∂αδ(α)
, β′(α) := wαγ′(α),

2. The shifted anomalous dimension satisfies γ′(α) = γ(α) +O
(︁
α3
)︁
, and the shifted

beta function satisfies β′(α) = β(α) +O(α4).

Proof. 1. Consider the limit ϵ → 0 in theorem 62. In that limit, α′ → α and the ϵ-dependence of
all quantities can be left out because they are regular (lemma 52). Compute the derivative of this
series, using the fact that γj(α) satisfy the Callan-Symanzik equation (theorem 40), and identify the
resulting series to obtain

α∂αγ
′
k(α) = −

γ

wγ
γ′k +

1

wγ

∞∑︂
j=k+1

j!(k + 1)γjδ
j−1−k

(j − 1− k)!(k + 1)!
+ α∂αδ ·

∞∑︂
j=k

j!(k + 1)γjδ
j−k−1

(j − k − 1)!(k + 1)!

(k + 1)γ′k+1 =
γ

1 + wγα∂αδ
· γ′k +

sγ

1 + wγα∂αδ
· α∂αγ′k.

This is again the Callan-Symanzik equation, but with a different anomalous dimension and beta
function as claimed.
2. Follows from 1. and lemma 41 upon noticing that γ(α) · α∂α ln δ(α) ∈ O(α2).

For the linear DSE, w = 0, we recover γ′(α) = γ(α), known from theorem 56. Point 2. is
an extension of point 1 in theorem 56.

Lemma 64. For a linear DSE, the shifted anomalous dimension γ′(α′, ϵ) is

γ′(α′, ϵ) = γ(α′, ϵ) + ϵ∂α′ ln γ′0(α
′, ϵ).

Here, γ(α′, ϵ) is the un-shifted anomalous dimension where the argument is α′, that is,
we do not insert the transformation α(α′). Especially, [ϵ0]γ′(α, ϵ) = [ϵ0]γ(α, ϵ), so γ and
γ′ coincide for ϵ = 0.

Proof. First note that in the linear case, β′(α′, ϵ) = 0. Using def. 110 on eq. (4.36) results in

γ′(α′, ϵ) = ϵα′ϵ∂α′ lnZG(α
′, ϵ) = ∂α′ ln γ′0(α

′, ϵ) + α′ϵ∂α′ lnZG(α
′, ϵ).

The last summand is the un-shifted anomalous dimension with argument α′. γ′ is regular in ϵ, since
it appears in the Callan-Symanzik equation (theorem 60) where GR′ is regular and non-vanishing for
ϵ→ 0. The difference of γ and γ′ is proportional to ϵ because neither of them contains poles in ϵ.
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4.3. Shifted kinematic renormalization point

Summary of section 4.3.

1. All solutions of the same DSE, but in different renormalization schemes, are iden-
tical up to different renormalization points. In non-kinematic renormalization
schemes, the renormalization point δ(α, ϵ) is a function of α (section 4.3.1).

2. In order to obtain the correct counterterms and renormalization group functions
for ϵ ̸= 0, one needs to introduce a shifted coupling α′ = αe−ϵδ (section 4.3.2).

3. For a given shift δ(α), the shifted counterterms and renormalization group func-
tions can be computed from the un-shifted ones, and they satisfy all the usual
renormalization group equations (section 4.3.3).
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4.4. MS as a shifted MOM scheme

2. Compute the MOM solution and the MS solution and determine δ without extensive
series reversions.

3. Derive δ from a known MOM solution without explicitly computing the MS solution.

We shall discuss the first approach in section 4.4.2, the second one in section 4.4.3 and the
third one in section 4.4.4.
In all cases, we will actually be working with MS-bar and not MS (def. 108) in order

to eliminate trivial constants. The transition between MOM and MS is described in sec-
tion 4.2.2, and for our concrete examples it is given in [480]. Moreover, we again restrict
ourselves to propagator-DSEs of type eq. (3.35) where Q = Gw with w ∈ Q.

4.4.2. Brute-force computation

With the algorithm described in section 4.2, we can in principle find the MS-bar solution
ḠR(ᾱ, ϵ, L) to any finite order, and then determine δ(α, ϵ) by “reversing” the resulting series
in L. A first order computation was shown in example 120.
In the framework of shifted kinematic renormalization (section 4.3), the MS-bar Green

function is to be interpreted as the shifted Green function, that is, it is expressed in the
variable ᾱ, corresponding to α′ in def. 112. The shifted renormalization condition (def. 111),

ḠR(ᾱ, ϵ,−δ̄)
!
= 1, (4.38)

represents a linear system for the expansion coefficients of the power series δ(ᾱ, ϵ). In prac-
tice, finding the inverse series δ̄(ᾱ, ϵ) of eq. (4.38) is a computationally demanding task since
we are dealing with a double series where the coefficients are large polynomials in π2 and
zeta values.
In solving eq. (4.38), observe that we are performing the transformations of section 4.3

in “reverse direction”. Concretely, in section 4.3, we started with a MOM-renormalized
amplitude, expressed as a function of α, and computed the shifted amplitude, expressed via
ᾱ = αe−ϵδ(α,ϵ). In the present case, the coupling that we are using in MS represents ᾱ, and
we have α = ᾱe+ϵδ̄(ᾱ,ϵ), where

δ̄(ᾱ, ϵ) = δ(α(ᾱ, ϵ), ϵ). (4.39)

If GR(α, ϵ, L) is the solution of the same DSE in MOM, then

ḠR(ᾱ, ϵ, L) = GR(α(ᾱ), ϵ, L+ δ̄(ᾱ, ϵ)).

To be explicit: The shift δ(α, ϵ) that translates from MOM to MS, for ϵ ̸= 0, is not the same
as the function δ̄(ᾱ, ϵ) in the opposite direction, because they depend on different variables.
This conundrum disappears as soon as one consistently uses ᾱ as the name of the coupling
in MS, but it is not obvious from def. 108 why in MS, one would suddenly give a different
name to the coupling compared to MOM. Owing to ᾱ = α + O(ϵ), the functions δ̄(ᾱ) and
δ(α) coincide for ϵ = 0, so the distinction is unnecessary as long as we are only interested in
ϵ = 0.

197



4. Renormalization group and DSEs in non-kinematic renormalization

Example 122: Multiedge linear DSE, brute force shift.

In example 116, we quoted the constant term γ̄0(ᾱ, ϵ), similarly, all higher γ̄j(ᾱ, ϵ) can
be determined from the coefficients (example 111). Here, ᾱ is merely the name of
the variable, it is not computed from some underlying α. Knowing the power series
ḠR(ᾱ, ϵ, L), we obtain from eq. (4.38):

δ̄(ᾱ, ϵ) = −2 + 3

2
ᾱ+

(︃
−19

6
+

2

3
ζ(3)

)︃
ᾱ2 +

(︃
103

12
− 4

3
ζ(3)

)︃
ᾱ3 + . . .

+

(︃
−2 + π2

12
+

(︃
9

2
− 3ζ(3)

)︃
ᾱ+

(︃
−403

24
+
π2

90
+ 5ζ(3)

)︃
ᾱ2 + . . .

)︃
ϵ+O

(︁
ϵ2
)︁
.

With this, we compute α(ᾱ) = αe+ϵδ̄(ᾱ,ϵ). We invert the latter series to find ᾱ(α), which
results in

δ(α, ϵ) = −1

ϵ
ln
ᾱ(α)

α
= δ̄(ᾱ(α), ϵ)

= −2 + 3

2
α+

(︃
−19

6
+

2

3
ζ(3)

)︃
α2 +

(︃
103

12
− 4

3
ζ(3)

)︃
α2 + . . .

+

(︃
−2 + π2

12
+

(︃
15

2
− 3ζ(3)

)︃
α+

(︃
−761

24
+
π4

90
+

23

3
ζ(3)

)︃
α2 + . . .

)︃
ϵ+O

(︁
ϵ2
)︁
.

As expected, the functions δ and δ̄ coincide for ϵ = 0, but they differ for ϵ ̸= 0.

4.4.3. Relation of the shift to renormalization group functions

The brute force method (eq. (4.38)) is computationally demanding for ϵ ̸= 0. It becomes
significantly faster if we restrict ourselves to ϵ = 0. In that case, the distinction eq. (4.39)
does not exist, ᾱ = α and δ̄ = δ. Furthermore, we can accelerate the computation by
exploiting the particular analytic structure of ḠR.
First consider a linear DSE, w = 0. In MS-bar, it has a scaling solution eq. (4.6),

ḠR(α,L) = γ̄0(α) · Lγ(α). (4.40)

By theorem 56, the anomalous dimension γ(α) of a linear DSE is independent of the renor-
malization scheme.

Theorem 65. Consider two perturbative solutions of the same linear Dyson-Schwinger
equation (eq. (3.35) with Q = 1). Let γ(α) be the anomalous dimension and assume
that both γ0(α) and γ′0(α) = 1 + O(α) are formal power series (def. 51) starting with
unity. Then, the Green functions are equal up to an α-dependent shift δ (def. 111) given
by the power series

δ(α) =
1

γ(α)
ln

(︃
γ′0(α)

γ0(α)

)︃
.
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Proof. In the linear case, w = 0, the renormalized Green function has the form eq. (4.40). Using
def. 111, we demand γ′0 = γ0δ

γ , which leads to the claimed formula. The functions γ(α), γ0(α) and
γ′0(α) are power series and γ′0(α)/γ(α) = 1 +O(α) by assumption. Therefore ln(γ′0/γ0) ∈ O(α) and
the pole 1/α of 1/γ(α) from lemma 41 is cancelled. The claimed formula δ(α) = 1

γ ln
γ′
0

γ0
is a formal

power series indeed.

In MOM, we have γ0(α) = 1 by the renormalization condition def. 91. In MS-bar, the
solution will have some γ̄0(α) ̸= 1. Theorem 65 thus specializes to

δ(α) =
ln γ̄0(α)

γ(α)
. (4.41)

Lemma 66. Consider a DSE of the form eq. (4.7) and let f
(k)
n be the expansion

coefficients of the kernel (eq. (4.9)). Then, the shift δ between MS-bar and MOM
(def. 111), regardless of w, starts with

δ(α) = −f
(0)
0

f
(0)
−1

+O (α) .

Proof. By explicit calculation, the first coefficients of an explicit perturbative solution of eq. (4.7) in
MOM respectively MS-bar are

γ(α) = −f (0)−1α+ (w + 1)
(︂
−2f (0)−1 f

(1)
0 − 2f

(0)
0 f

(1)
−1 + 2f

(0)
−1 f

(0)
0

)︂
α2 +O

(︁
α3
)︁
,

γ̄1(α) = −f
(0)
−1α+ (w + 1)

(︂
−2f (0)−1 f

(1)
0 − 2f

(0)
0 f

(1)
−1 + f

(0)
−1 f

(0)
0

)︂
α2 +O

(︁
α3
)︁
,

γ̄0(α) = 1 + αf
(0)
0 +O(α2), α∂αĜ

⃓⃓
x=1

= αf
(0)
0 +O(α2).

Using theorems 39 and 63, the anomalous dimension in MS is

γ̄(α) =
γ̄1(α)

γ̄0(α) + wα∂αḠ|x=1
=

γ̄1(α)

1 + (w + 1)αf
(0)
0 +O (α2)

= γ(α) +O
(︁
α3
)︁
.

Note that f
(0)
−1 ̸= 0 in physically sensible kernels, because the pole 1

ρ in the “regulator”
ρ expresses that the kernel graph is primitively divergent. Remarkably, δ(0) ̸= 0 unless

f
(0)
0 = 0, so the shift does not necessarily vanish for vanishing coupling. This result does not
depend on the invariant charge in the DSE, but just on the kernel.

Example 123: Multiedge DSE, first order of shift.

For the multiedge DSE, the first coefficients f
(k)
n are listed in example 109, f

(0)
−1 = 1 and

f
(0)
0 = 2. By lemma 66,

δ(α) = −2 +O(α).

This coincides with our earlier finding in example 122.
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Theorem 67. Let GR(α, x) and ḠR(α, x) be the perturbative solutions of the same
propagator-type Dyson-Schwinger equation eq. (4.7) with w ̸= 0, where GR uses kine-
matic renormalization and ḠR uses Minimal Subtraction. Assume that the anomalous
dimensions (def. 110) γ(α), γ̄(α) are power series with a non-vanishing term ∝ α. Then
there is a unique power series δ(α) such that GR(α,L+ δ(α)) = Ḡ(α,L) (def. 111) for
all L, given by lemma 66 and

∂

∂α
δ(α) =

1

wα

(︃
1

γ̄(α)
− 1

γ(α)

)︃
=
γ(α)− γ̄(α)
wαγ̄(α)γ(α)

.

Proof. The fact that MS and MOM are related via a change in renormalization point is known from
theorem 57. It remains to show that, in our setup, the shift δ(α) is a well-defined power series.

From theorem 63 we know how shifting the kinematic renormalization point induces a change in
the anomalous dimension. Solving the latter relation for δ(α) produces the claimed expression.
By lemma 41 and point 2 of theorem 63, using the assumption, the denominator of the last fraction

in the present theorem is proportional to α3. But, since γ̄(α) is the anomalous dimension in MS, the
numerator is γ(α) − γ̂(α) ∈ O(α3) by theorem 63. Therefore the right hand side is a well defined
power series in α. It uniquely defines the power series δ(α) up to a constant summand, which is fixed
by lemma 66.

Given the solutions of a DSE in MOM and MS-bar, there are at least three approaches
to calculate δ(α) from this data. The first approach uses theorem 67, where the anoma-
lous dimensions γ(α), γ̂(α) can be extracted from the corresponding Z-factors according to
def. 110.
The second approach utilizes the renormalization group equation in MS-bar derived in

theorem 63,

(k + 1)γ̄k+1(α) =
γ(α)

1 + wγ(α)α∂αδ(α)
· (1 + wα∂α) γ̄k(α). (4.42)

If any two of the MS functions γ̂k(α), together with the MOM anomalous dimension γ(α),
are known, then δ(α) can be computed. For example, using γ̄0 and γ̄1, one has

∂

∂α
δ(α) =

γ · γ̂0 − γ̄1

wα · γ̄1

+
1

γ̄1

∂

∂α
γ̄0 (for w ̸= 0). (4.43)

The third approach is to compute all MS-bar functions γ̄j(α) up to some desired maximum
j and additionally all MOM functions γj(α). Next, one writes a power series ansatz for δ(α)
and uses this to formally compute the powers δ(α)k. Then the right side of eq. (4.37),

G′
R(α

′, ϵ, L) :=
∞∑︂
j=0

γ′j(α
′, ϵ)Lj (4.44)

is a linear system for the unknown coefficients of δ(α) which can be solved.
The resulting δ(α) agrees in all three approaches. The difference between them is about

which input data they need, and how computationally efficient they are. The third approach
does not involve a derivative and therefore it produces one order higher in α compared to
the first two, for the same order of input data.
In all approaches, we need both the MOM- and the MS-bar solution in order to compute

δ(α). As long as we restrict ourselves to ϵ = 0, it is not possible to obtain δ(α) without
knowing data from both of the renormalized Green functions.
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4.4.4. Deriving the shift from the MOM solution

As outlined above, we can find the shift function δ(α, ϵ) if we are given two different renor-
malized Green functions. On the other hand, for ϵ = 0, the renormalization point is really
only a single number, and the rest of the Green function is determined from the DSE. It
is therefore conceivable that one can alternate between MOM and MS from first principles,
without needing to explicitly know both Green functions.
Def. 108 makes explicit reference to the ϵ-dependence of counterterms. This already in-

dicates that in order to go from MOM to MS or vice versa, we need to know the solution
in one of the schemes for ϵ ̸= 0. For systematic derivations, we need an analytic statement
comparable to the condition GR(α, ϵ, 0) = 1 for MOM. This is theorem 54, the condition
that the shifted anomalous dimension γ′(α, ϵ) is independent of ϵ.

Theorem 68. Consider a linear DSE of type eq. (3.38). Let γ(α, ϵ) = ∂LGR(α, ϵ, L)|L=0

be the anomalous dimension in MOM. Then, the solution in MS-bar at L = 0 has the
amplitude

GR̄(α, ϵ, L = 0) = γ̄0(α, ϵ) = exp

⎛⎝− α∫︂
0

du
γ(u, ϵ)− γ(u, 0)

uϵ

⎞⎠ .

Here, GR̄(α, ϵ, L) is a function of α, not of ᾱ, compare eq. (4.32) to eq. (4.35).

Proof. Use lemma 64, where γ′ represents the anomalous dimension in MS. By theorem 54, the latter
is independent from ϵ. By theorem 63, it coincides with the MOM anomalous dimension γ(α) for
ϵ = 0. Therefore

γ̄(α, ϵ) = γ(α) + ϵ∂α ln γ̄0(α, ϵ).

In lemma 64, α′ is merely a renamed variable, since all quantities are functions of α′.

Lemma 69. Consider a linear DSE of type eq. (3.38) for ϵ = 0, where γ(α) is the
anomalous dimension and g(α) is the coefficient given by theorem 47. Then, the shift
between MS and MOM (def. 111) is

δ(α) = − 1

γ(α)

α∫︂
0

du

u
g(u).

Proof. For a linear DSE, γ′0 directly corresponds to δ via theorem 65. Insert theorem 68 into eq. (4.41):

δ(α) =
1

γ(α)
[ϵ0] ln γ̄0(α) = −

1

γ(α)
[ϵ0]

α∫︂
0

du
γ(u, ϵ)− γ(u, 0)

uϵ
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4. Renormalization group and DSEs in non-kinematic renormalization

The further transition from MS-bar to MS is a trivial rescaling, discussed in section 4.2 and
in [480]. Using lemma 69 and theorem 47, we can indeed deduce the MS amplitude of a
linear DSE directly from the Mellin transform in a comparable way as we can for MOM
(theorem 44). Especially, we can obtain the solution in MS with purely analytic operations,
without solving the DSE order by order. This result represents one of the key findings of
the present thesis.

Example 124: Multiedge linear DSE, exact shift.

From example 106, we know

g(α) = 1 +
α

1 + 4α
+

γ(α) + 1

2γ(α) + 1

(︃
2γ(α) · γE + ρ∂ρ ln

Γ(1 + ρ)

Γ(1− ρ)

⃓⃓⃓
ρ→γ(α)

− 1

)︃
,

where γ = 1
2

(︁√
1 + 4α− 1

)︁
from example 104. This function satisfies dγ(α)

dα = 1√
1+4α

=
1

2γ(α)+1 . Consequently,
du

2γ(u)+1 = dγ(u). Upon integration, we obtain

ln γ̄0(α) = −
α∫︂

0

du

u
g(u) = ln

γ(α)

α
− 1

4
ln(1 + 4α)− 2γ(α)γE + ln

Γ(1− γ(α))
Γ(1 + γ(α))

.

This confirms the formula we had found empirically in example 116. By lemma 69,
the shift between MS-bar and MOM is

δ̄(α) =
ln γ̄0(α)

γ(α)
=

1

γ(α)
ln
γ(α)

α
− ln(1 + 4α)

4γ(α)
− 2γE +

1

γ(α)
ln

Γ(1− γ(α))
Γ(1 + γ(α))

= −2 + 3

2
α+

(︃
−19

6
+

2

3
ζ(3)

)︃
α2 +

(︃
103

12
− 4

3
ζ(3)

)︃
α3 + . . .

The first coefficient coincides with example 123. We stress again that this shift δ̄(α)
was derived exactly and from first principles, without heuristically matching a series
expansion and without doing any explicit calculation in MS-bar.

Example 125: Toy model linear DSE, exact shift.

For the linear toy model DSE (example 102), the function γ̄0(α) is particularly simple,
see example 118. Using lemma 69, we conclude

δ(α) =
π ln

(︁
1− α2π2

)︁
4 arcsin(απ)

= −π
2

4
α− π4

12
α3 − 73π6

1440
α5 −O(α7),

Observe that this time, the constant coefficient [α0]δ(α) vanishes, in accordance with

lemma 66, since for the toy model f0 = f
(0)
0 = 0.
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4.4. MS as a shifted MOM scheme

Summary of section 4.4.

1. Each of the two renormalization schemes MS and MOM has conceptually unique
features which make them indispensable in certain applications. Therefore, it is
highly desirable to find the precise relation between the two Green functions, in
the form of a shift δ(α, ϵ) of the renormalization point (section 4.4.1).

2. Knowing the MS-solution explicitly to some finite order in perturbation theory,
one can compute δ(α, ϵ) by finding the point where the amplitude is unity (sec-
tion 4.4.2).

3. Skipping the full ϵ-dependence, one can infer δ(α) in various ways from the log-
expansion of the MS-solution (section 4.4.3). For a linear DSE, δ(α) is determined
explicitly from γ(α) and γ̄0(α) alone (theorem 65).

4. Conceptually, it is possible to derive δ(α, ϵ) and the full MS-solution from the
MOM-solution at ϵ ̸= 0 (section 4.4.4), which in turn only depends on the Mellin
transform of the kernel. For linear DSEs, we derived an explicit formula which
allows to compute δ(α) from a given, ϵ-dependent Mellin transform (lemma 69
and theorem 47).
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4. Renormalization group and DSEs in non-kinematic renormalization

4.5. Shift between MS and MOM in non-linear examples

In the present section, we present empirical results for the shift δ(α) for non-linear Dyson-
Schwinger equations, computed with the methods discussed in section 4.4.3.

4.5.1. Multiedge DSE in D=4 dimensions

The multiedge DSE was introduced in example 103. The shift between MS and MOM can
be derived exactly in the linear case (example 124). For the non-linear versions of the DSE,
the solutions in kinematic renormalization have been discussed in section 3.4.1. Again, we
restrict ourselves to MS-bar and skip the transformation to MS.

We computed the coefficients g
(n)
t,r of section 4.2 in MS for w ∈ {−5, . . . ,+5} symbolically

at least up to order α11. By using numerical approximations of the various constants ζ(n)
and πm, we reached order α20. It was verified in all cases that the first three orders of the
leading-log expansion fulfil eq. (3.42). The shift from MOM- to MS-bar-renormalization has
been computed as discussed in section 4.4.3. The first coefficients are reported in table 4.1.

w δ̄(α) fn+1/fn

5 −2 + 9α+ (−139 + 14ζ(3))α2 +
(︂
3464 + 7π4

12 − 233ζ(3)
)︂
α3 30.22± 0.09

4 −2 + 15
2 α+

(︁
−575

6 + 10ζ(3)
)︁
α2 +

(︂
23525

12 + π4

3 −
410
3 ζ(3)

)︂
α3 25.09± 0.06

3 −2 + 6α+
(︁
−182

3 + 20
3 ζ(3)

)︁
α2 +

(︂
2911

3 + π4

6 −
214
3 ζ(3)

)︂
α3 19.96± 0.04

2 −2 + 9
2α+

(︁−67
2 + 4ζ(3)

)︁
α2 +

(︂
773
2 + π4

15 − 31ζ(3)
)︂
α3 14.80± 0.02

1 −2 + 3α+
(︁
−43

3 + 2ζ(3)
)︁
α2 +

(︂
305
3 + π4

60 −
29
3 ζ(3)

)︂
α3 9.60± 0.01

0 −2 + 3
2α+

(︁
−19

6 + 2
3ζ(3)

)︁
α2 +

(︁
103
12 −

4
3ζ(3)

)︁
α3

-1 −2
-2 −2− 3

2α−
29
6 α

2 −
(︁

94
3 −

1
3ζ(3)

)︁
α3 5.8± 1.8

-3 −2− 3α+
(︁
−53

3 + 2
3ζ(3)

)︁
α2 −

(︂
578
3 + π4

60 −
17
3 ζ(3)

)︂
α3 10.50± 0.11

-4 −2− 9
2α+

(︁
−77

2 + 2ζ(3)
)︁
α2 −

(︂
2365

4 + π4

15 − 22ζ(3)
)︂
α3 15.69± 0.05

-5 −2− 6α+
(︁
−202

3 + 4ζ(3)
)︁
α2 −

(︂
4003

3 + π4

6 −
166
3 ζ(3)

)︂
α3 20.85± 0.07

Table 4.1.: Non-linear multiedge DSE in D = 4 dimensions. δ̄(α) is the shift of the renor-
malization point between MOM- and MS-scheme def. 111. Shown are the first
four terms of its perturbative power series. fn+1/fn is the growth rate of the
function f(α) to be introduced in eq. (4.53).

We are interested in the asymptotic behaviour of the power series δ̄(α) at high order. To
this end, we use the expansion eq. (3.44),

γ(α) =:
∞∑︂
j=1

cjα
j , δ̄(α) :=

∞∑︂
j=0

djα
j . (4.45)

The asymptotics of cj in MOM is known from eq. (3.50). To visualize it, we consider

cn+1/Γ(n+ 1− β(w))
−cn/Γ(n− β(w))

≡ −cn+1

(n+ 3+2w
w )cn

= w − b(1)(w)
1

n2
+O

(︃
1

n3

)︃
. (4.46)
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w nmax S̃(w)/w F̃ (w) β̃(w) b̃
(1)

(w)

5 24 −0.02532± 0.00037 4.987± 0.062 −3.59± 0.12 −2.61± 0.18

4 27 −0.02709± 0.00019 3.993± 0.036 −3.74± 0.08 −2.79± 0.11

3 32 −0.02749± 0.00011 2.997± 0.017 −3.99± 0.04 −3.10± 0.06

2 38 −0.02272± 0.00010 1.999± 0.009 −4.50± 0.03 −3.74± 0.05

1 38 −0.00541± 0.00009 0.999± 0.007 −6.00± 0.04 −5.97± 0.12

-2 21 0.2080± 0.0018 −1.998± 0.012 −1.49± 0.05 −0.74± 0.08

-3 21 0.1295± 0.0014 −2.995± 0.026 −1.99± 0.07 −1.10± 0.11

-4 21 0.0882± 0.0011 −3.993± 0.040 −2.24± 0.09 −1.30± 0.14

-5 21 0.0655± 0.0009 −4.991± 0.054 −2.40± 0.10 −1.43± 0.15

Table 4.2.: Numerical findings of the growth parameters of δ̄(α) according to eq. (4.48). They
are consistent with table 3.2 and eq. (3.49). δ̄(α) was computed including order
αnmax .

are reported in table 4.3. We emphasize the relatively low uncertainties, which indicate that
the ratio eq. (4.49) converges quickly. From the numerical results, we guess the expressions

r(w) = 1, r1(w) =
w + 1

w
, rj≥2(w) = 0. (4.50)

Together with the known behaviour of cn+1 (eq. (3.50)), and β(w) = −(3+2w)/w, we can
give an explicit formula for the corrections to the leading asymptotics of dn:

dn ∼ S(w)(−w)n+1Γ (n− β(w) + 1) (4.51)

·

(︄
1 +
−1+3w+2w2

w2

n− β(w)
+

1+4w+4w2−6w3−7w4

2w4

(n− β(w))(n− β(w)− 1)
+O

(︃
1

n3

)︃)︄
.

The subleading coefficient is consistent with the value b̃
(1)

(w) which we found in table 4.2.

w r1(w) r2(w) r3(w) r4(w) r5(w)

5 1.20002± 0.00012 0.0003± 0.0019 0.005± 0.031 0.09± 0.50 1.3± 7.9

4 1.25000± 0.00001 0.0000± 0.0002 0.000± 0.003 0.01± 0.05 0.18± 0.95

3 1.33333± 0.00001 0.0000± 0.0001 0.000± 0.001 0.01± 0.01 0.00± 0.02

2 1.50000± 0.00001 0.0000± 0.0001 0.000± 0.001 0.00± 0.01 0.00± 0.01

1 2.00000± 0.00001 0.0000± 0.0001 0.000± 0.001 0.00± 0.01 0.00± 0.01

-2 0.50000± 0.00001 0.0000± 0.0001 0.000± 0.001 0.00± 0.01 0.00± 0.02

-3 0.66667± 0.00001 0.0000± 0.0002 0.000± 0.002 0.01± 0.03 0.07± 0.39

-4 0.75001± 0.00004 0.0001± 0.0005 0.001± 0.007 0.02± 0.09 0.20± 1.24

-5 0.80001± 0.00006 0.0002± 0.0009 0.002± 0.012 0.03± 0.17 0.4± 2.3

Table 4.3.: Parameters of the ratio dn/cn+1 for D = 4 from eq. (4.49). r0 = 1 is not included,
r≥2 is consistent with zero as claimed in eq. (4.50).

For the higher order corrections in table 4.3, the uncertainties are increasing. If we
nonetheless speculate that eq. (4.50) is correct for all rj , we obtain

dn = −
(︃
1 +

w + 1

wn

)︃
· cn+1 + en. (4.52)
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w r(w) r1(w) r2(w)

5 1.0010± 0.0017 2.573± 0.072 −6.91± 0.84

4 1.0007± 0.0019 2.685± 0.072 −7.3± 1.4

3 1.0007± 0.0024 2.863± 0.078 −8.4± 1.8

2 1.0010± 0.0026 3.21± 0.11 −11.2± 1.8

1 1.0032± 0.0048 4.22± 0.23 −22.3± 1.3

-2 1.0000± 0.0002 1.083± 0.003 −1.10± 0.34

-3 1.0002± 0.0004 1.441± 0.012 −1.80± 0.07

-4 1.0003± 0.0007 1.619± 0.018 −2.33± 0.16

-5 1.0004± 0.0008 1.726± 0.022 −2.71± 0.22

Table 4.6.: Numerical parameters of the ratio dn/(6cn+1) for D = 6 from eq. (4.49).

is depicted in fig. 4.7 (b) for two particular values of w. The asymptotic parameters, accord-
ing to eq. (4.49), are reported in table 4.6. Unlike for D = 4, this ratio does not converge
particularly quickly. A fit suggests that r1(w) = (2.12+ 2.15w)/w, but the uncertainties are
too large to identify the numbers as rational. This is reflected by the large absolute values
we obtain for the 1/n2-correction r2(w), see table 4.6.
For D = 4 (section 4.5.1), the suspected vanishing of rj≥2 allowed us to explicitly deduce

the asymptotics of dn, eq. (4.51). This is not possible in D = 6 since the rj≥2 do not vanish.
Our findings suggest that the leading growth coincides with the one of cn+1, that is

dn ∼ S(w)w
(︂w
6

)︂n
Γ

(︃
n+ 1 +

35 + 29w

6w

)︃
. (4.54)

4.5.3. Toy model

The DSE of the toy model was introduced in example 102, the shift for the linear case is
given in example 125.
We solved the non-linear toy model DSE for w ∈ {−5, . . . ,+4} symbolically to order α16.

Numerically, we reached order α23, but since cn = 0 for every even n, we effectively have
only 12 coefficients at our disposal for asymptotic analysis.
The leading-log functions H1, H2 and H3 agree with the general formula eq. (3.42) of [380]

for the appropriate choice c1 = 1, c2 = 0, c3 = π2/2 and for all values of w. Especially, we
confirm H2 = H4 = H6 = 0, and, for w = −2, the formula for H1 from [308, Cor. 3.6.4].
By lemma 66, the shift δ(α) does not have a constant term in the toy model, compare

example 125. We compute and analyze the series expansion eq. (4.45) of the shift in the
same way we did in sections 4.5.1 and 4.5.2 for the multiedge DSE. The first coefficients for
the shift are reported in table 4.8, while table 4.7 contains the numerical estimates for their
growth parameters.
The toy model has the property that both cn and dn from eq. (4.45) vanish for even n.

Consequently, the ratio eq. (4.49) is not well defined. Instead, we mimic the latter ratio by
considering the following two ratios for odd n:

R(δ) :=

√︄
dn+2

(n− β(w) + 1)(n− β(w) + 2)dn
, R(δ/γ) :=

dn
w · (n− β(w) + 1)cn

. (4.55)
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w αδ̄(α(A))

5 −6A− 2009
3 A2 − 11563106

45 A3 − 173306477104
945 A4 − 1228737945883358

6075 A5 − 46235332362117842849
147015 A6

4 −5A− 1130
3 A2 − 4316822

45 A3 − 59632972484
1323 A4 − 461687074578658

14175 A5 − 34025588969113725668
1029105 A6

3 −4A− 554
3 A2 − 1263424

45 A3 − 10282878575
1323 A4 − 46540947260036

14175 A5 − 398737839692532122
205821 A6

2 −3A− 217
3 A2 − 1233338

225 A3 − 4881119933
6615 A4 − 3528108924854

23625 A5 − 1074400592111547046
25727625 A6

1 −2A− 55
3 A

2 − 106898
225 A3 − 135875429

6615 A4 − 272890120256
212625 A5 − 2770658834393158

25727625 A6

0 −A− 4
3A

2 − 146
45 A

3 − 8864
945 A

4 − 417682
14175 A

5 − 9095176
93555 A6

-1 0

-2 A+ 7A2 + 242A3 + 17771A4 + 2189294A5 + 404590470A6

-3 2A+ 41A2 + 92518
25 A3 + 503885698

735 A4 + 1639676026462
7875 A5 + 266517331818761291

2858625 A6

-4 3A+ 370
3 A2 + 4782122

225 A3 + 48904622516
6615 A4 + 887103429351554

212625 A5 + 88600913717695595572
25727625 A6

-5 4A+ 826
3 A2 + 3478864

45 A3 + 287007344207
6615 A4 + 185545372999796

4725 A5 + 53252838327756373006
1029105 A6

Table 4.8.: First coefficients of δ(α) in the toy model, up to order α11. Here, A := (απ)2/4.

4.5.4. The chain approximation in D=4

As an example of a model where MS and MOM can not be related by a shift δ(α), we consider
the chain approximation. We restrict ourselves to D = 4 − 2ϵ and consider renormalized
quantities only at ϵ = 0.

The chain approximation of the multiedge propagator DSE contains the sum of all chain
graphs, that is, multiedges where a chain of subgraphs is inserted into one of the edges,
without recursive insertions. From a Hopf-algebra perspective, the chain graphs correspond
to corollas Cj ,

C1 = •, C2 = •
• , C3 = •

•
• , C4 = •

•
•• .

The second chain graph from example 26 is S ≃ C3 in this sequence. The chain approx-
imation is non-recursive by nature, and it is not generated by a DSE. Nevertheless, it is
sometimes viewed as an intermediate step between the linear (w = 0) and the full recursive
(w = −2) DSE, see for example [253]. The first function of the log-expansion (eq. (3.2)) in
MOM is

γ1(α) = −
∞∑︂
n=1

(n− 1)!(−α)n = e
1
α

∫︂ ∞

1
α

dt

t
e−t, (4.57)

where the resummed series is the exponential integral (example 43). Explicit computation
of the higher γt(α) in MOM produces coefficients which can again be identified,

γt≥1 = (−1)t 1
t!

∞∑︂
n=t

(n− 1)!(−α)n, kγk(α) = α · α∂αγk−1(α)

⇒ ∂LGR(α,L) = γ1(α) + α · α∂αGR(α,L). (4.58)

Although the last equation is reminiscent of the Callan-Symanzik equation theorem 39 for a
beta function β(α) = α, it is structurally different. The function γ1(α) is not the anomalous
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dimension of this model in the conventional physical sense, because it is not a prefactor of
GR(α,L).

In Minimal Subtraction, we find

γ̄0(α) = 1− 2a+
11

2
α2 −

(︃
37

3
+

2

3
ζ(3)

)︃
a3 +

(︃
169

4
− 1

120
π4 +

1

2
ζ(3)

)︃
a4 + . . .

=:

∞∑︂
r=0

rk(−α)k.

The coefficients grow approximately as rk ∼ (k−1)!. The other expansion functions γ̄t>0(α)
do not contain zeta values and are purely rational. The first of them is

γ̄1(α) = α− 3α2 + 10α3 − 38α4 + 168α5 − 872α6 + 5296α7 ± . . . =
∞∑︂
n=1

cn(−α)n. (4.59)

Empirically, the coefficients agree with [A010842] [473], cn = (n− 1)![xn−1] e
2x

x−1 .
The higher γ̄j , but not γ̄0, satisfy the recursion

kγ̄k(α) = α · α∂αγ̄k−1(α),

which is reminiscent of theorem 40. γ̄0 can not possibly satisfy the same equation because
it is the only function to contain zeta values. Again, the function γ̄(α) = α can not be
interpreted as the anomalous dimension in the conventional physical sense.
For the chain approximation, it is not possible to consistently define a shift δ(α) between

MS and MOM. The algorithms of section 4.4.3 are not even applicable since they require a
value w from the DSE. The brute-force algorithm (section 4.4.2) does produce some solution
δ(α) if the series are truncated. However, the solutions differ depending on whether γ̄0 was
included in the linear system or not. This was to be expected because the underlying formula
τ = e⋆δσ (theorem 57) is only valid for solutions of Dyson-Schwinger equations.
Regarding the physical validity of the chain approximation, we conclude the following: It

is surely valid as an “approximation” in the sense that it includes a proper subset of the
graphs of the full solution w = −2. Consequently, the would-be “anomalous dimension”
eq. (4.57) qualitatively resembles the true solution, see fig. 4.9.
However, the chain approximation is not self-consistent in perturbation theory, it does not

satisfy a Callan-Symanzik equation and therefore transforms inconsistently in the renormal-
ization group. Concretely, in different renormalization schemes, the chain approximation
will give rise to physically inequivalent solutions, which can not be mapped one another by
rescaling of arguments. The combinatorial reason for this is obvious: The chain approxi-
mation does not arise from a DSE and therefore does not have the “recursive” features to
be expected from a QFT amplitude. Our verdict is that the chain approximation, without
further justifications, is not a valid model to establish combinatorial properties of QFT, such
as the presence of renormalons [481–483], because it systematically misses one of the key
features of QFT combinatorics.
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Figure 4.9.: The function γ1(α) in MOM for various forms of the multiedge DSE in D = 4
(example 103). Green: trivial solution γ = α for w = −1. Black: linear
DSE (example 114). Blue: exact solution for w = −2 from [390]. Red: chain
approximation eq. (4.57). Even if these four functions have significantly different
properties in perturbation theory, w = 0 and w = −1 being convergent series
while the other ones are asymptotic, their graphs look surprisingly similar.

Summary of section 4.5.

1. For the non-linear multiedge DSE in D = 4, the shift δ(α) is given by a factorially
divergent power series very similar to the anomalous dimension γ(α). From our
numerical data, we guessed closed formulas for all the asymptotic coefficients and
gave a tentative equation which relates δ(α) and γ(α) up to an unknown convergent
power series (section 4.5.1).

2. For the non-linear multiedge DSE in D = 6, the asymptotic growth of the coef-
ficients of δ(α) is very similar to the one of γ(α). This time, we did not find an
explicit formula for all subleading corrections (section 4.5.2).

3. The non-liner toy model DSE, again, behaves qualitatively similar to the multiedge
case, but the concrete relation between γ and δ is even less accurate than in 2
(section 4.5.3).

4. The chain approximation does not satisfy a Dyson-Schwinger equation and its
amplitudes are truly different in different renormalization schemes. We argued
that the chain approximation is systematically inconsistent and should not be
used for combinatorial arguments, even if it gives rise to approximately similar
Green functions as the other models (section 4.5.4).
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5.1. Symmetries and Hopf ideals

We have so far only considered a one-component scalar quantum field, which is sufficient to
establish most of the principles of renormalization. In the present section, we examine how
symmetries are encoded in the Hopf algebra.

5.1.1. Symmetries

Theorem 70 (Coleman-Mandula-Haag [484, 485]). Under technical conditions listed
in the cited works, every symmetry group G of the S-matrix (def. 18) is isomorphic to
the direct product of

1. The Poincaré group (def. 3),

2. The group of supersymmetric transformations between bosons and fermions,

3. internal symmetry groups of the fields (def. 114).

All our quantum field theories are Poincaré-symmetric by construction (def. 6), supersym-
metry has never been observed in particle physics, consequently, the most relevant part of
G for us is the internal symmetry.

Definition 114. An internal symmetry of a quantum field theory, defined by a La-
grangian L (def. 6), is a group G such that the quantum field operators are represen-
tations of G, acted upon by an unitary operator U(g) which leaves the action (def. 7)
invariant: ∫︂

dDx U †(g)LU(g) =

∫︂
dDx L = S[ϕ], ∀g ∈ G.

Example 126: Gauge transformation of complex scalar field.

If the field variable ϕ of a scalar field (example 6) is not real, but complex, then the theory
can have a global U(1) symmetry given by the transformations, which are independent
of spacetime:

ϕ ↦→ eiαϕ, ϕ∗ ↦→ e−iαϕ∗, α ∈ R.

These transformations are given by one real parameter, the gauge group is the Lie group
U(1). A square of fields transforms as ϕ∗ϕ ↦→ ϕ∗e−iαeiαϕ = ϕ∗ϕ.
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Consequently, to be symmetric under these transformations, the Lagrangian must be a
function of products ϕ∗ϕ. The complex analogue of the ϕ4-Lagrangian is

L = −1

2
∂µϕ

∗∂µϕ− λ4

4!
(ϕ∗ϕ)2.

An internal symmetry (def. 114) is local if the transformation parameters depend on
spacetime. In that case, the kinetic term of the Lagrangian gives rise to derivatives of the
transformation parameter, which destroy the symmetry of the action. In order to restore
symmetry, one needs to introduce a second field, which couples to the original one in a
particular way called gauge covariant derivative and which transforms in a way to absorb
the superfluous terms. This field is called gauge boson, the corresponding QFT is a gauge
theory.

Example 127: Gauge transformation in QED.

Quantum electrodynamics (example 22) contains two fields, the potential Aµ(x) :=
(Φ(x),A(x)), and the fermion field ψ(x). The Lagrangian is

L = ψ̄ (iγµDµ −m)ψ − 1

4
FµνF

µν , Dµ := ∂µ − ieAµ.

The Lagrangian of the fermion field ψ alone, without coupling to Aµ, has the free-
dom to globally transform under the group U(1), ψ(x) ↦→ e−ieαψ(x). Here, e is the
electromagnetic charge of the fermion and α is a constant.
The potential Aµ has a gauge freedom Aµ(x) ↦→ Aµ(x)−∂µα(x) for any differentiable

function α(x), because all observables are functions of the field strength tensor Fµν :=
∂µAν −∂νAµ. Consequently, also the pure electromagnetic Lagrangian FµνF

µν is gauge
invariant.
If ψ is coupled to Aµ with the interaction term eψ̄γµAµ, arising from the gauge

covariant derivative Dµ, then the gauge transformation of ψ can be promoted to a local
transformation as well, because the transformation of Aµ cancels the non-invariant term
arising from ψ. The photon field Aµ is the gauge boson of QED since it allows the
fermion field to be locally gauge invariant.

Internal symmetries are often related to the spin of particles by the following heuristics:
The free part of quantum field theory of higher spin particles is typically based on the Fierz-
Pauli-Dirac Lagrangian [486–488]. There, a particle with integer spin n is represented by
a symmetric tensor with n indices (As Fierz pointed out later [489], this setup equivalently
describes a non-local scalar field [490]). Nevertheless, by representation theory of the Lorentz
group [11], a massless particle has only two degrees of freedom. This entails that many of the
tensor entries are not independent, and the form of possible interaction terms is restricted. A
symmetry then amounts to the equivalence of different choices of the two independent degrees
of freedom. For spin 1 and spin 2 massless unconfined particles, one finds that the Maxwell
equations ([25], example 7) and the Einstein equations ([95], section 5.2.1) – together with
their corresponding local gauge symmetries – follow automatically from Lorentz covariance
[107, 108, 491]. Similarly, for spin 3 or higher, there are only very few consistent types of
interactions [137, 492–496].
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Within a gauge theory, the n-point Green functions (def. 14) are a priori not well defined,
because with a suitable local gauge transform, the field can be altered almost arbitrarily
at any given point. In order to calculate Green functions, one needs to fix the gauge and
introduce fictitious particles with opposite statistics, called gauge ghost particles, which can-
cel superfluous degrees of freedom. This procedure gives rise to additional terms in the
Lagrangian, and to corresponding vertices and propagators in Feynman graphs. The choice
of gauge is arbitrary [497] within the limit that it must not destroy renormalizability of the
theory [498, 499]. Physical observables are independent of the chosen gauge, compare [500].
We skip details because in the present thesis, we never need gauge fixing explicitly.

5.1.2. Ward identities

As seen in example 127, gauge invariance of the theory crucially depends on the presence, and
precise numerical relation, of certain monomials in the Lagrangian. During renormalization,
each monomial is rescaled by its corresponding Z-factor (section 3.2.2), which depend on the
energy scale in question. The renormalized QFT is gauge invariant if and only if the classical
theory is, and all monomials in question are rescaled with the same Z-factor.

Definition 115. Consider a QFT where the underlying Lagrangian has an internal
symmetry (def. 114). A Ward identity or Slavnov-Taylor identity is an algebraic relation
between the Z-factors (def. 104) of those terms of the Lagrangian which are involved in
the symmetry.

Example 128: Ward identity in QED.

The Z-factors for the QED Lagrangian (example 22) can be chosen (e.g. [501])

L = Z2ψ̄

(︃
iγµ∂µ +

Z1

Z2
eγµAµ − Zmm

)︃
ψ − 1

4
Z3FµνF

µν .

If the renormalized theory is to be gauge invariant, then the gauge-covariant derivative
must retain its form Dµ = ∂µ − ieAµ after renormalization. This is possible only if the
Ward identity (def. 115)

Z1

Z2
= 1 ⇔ Z1 = Z2

holds. This identity was suspected by Dyson in [215], and little after proven in a
remarkably short article [502] by Ward.
From the perspective of Feynman graphs, the Ward identity in QED holds because

one obtains all vertex graphs by adding exactly one more vertex into any of the internal
fermion edges of the propagator graphs, see [299, 503, 504].

The precise value of Z-factors depends on renormalization conditions [477]. If one uses
kinematic renormalization (def. 91), then the momentum of the individual edges of the
vertex at the renormalization point must match the corresponding 2-point functions, [505,
506]. In Minimal Subtraction (def. 108), Ward identities typically hold without additional
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constraints [503, 507]. Further, the concrete form of Ward identities heavily depends on the
chosen gauge [174, 175, 508]. Finally, a Ward identity is valid in a regularized theory (where
the regulator is not yet removed) only under the condition that the regularization procedure
respects the symmetry, compare for example [440, 509]. A main reason for the popularity
of dimensional regularization (section 2.3.3) is that this regularization scheme does not spoil
Ward identities in QED and QCD, while, for example, cutoff regularization does.
By def. 115, Ward identities are equations for the Z-factors. Alternatively, they be ex-

pressed as identities for renormalized Green functions, compare for example [510].

Example 129: Alternative forms of the Ward identity in QED.

The Ward identity in QED can be stated in the following forms. We do not claim that
all forms are equivalent in full generality.

1. Z1 = Z2

2. The transversally projected 1PI vertex is the difference of electron propagators,(︂
p

2
− p

1

)︂µ
GR,µ(p1

,−p
2
) = GR (p

1
)−GR (p

2
),

where p
1
,−p

2
are the momenta of the two electron edges entering the vertex.

3. The vertex at zero momentum transfer is the derivative of the electron propagator,

GR,µ(p,−p) = −
∂

∂pµ
GR (p).

4. All renormalized photon n-point S-matrix elements are transversal,

pµ11 G
(n)
R,µ1,...(p1

, . . .) = 0 for p2
1
= 0.

5. The renormalized photon propagator is massless.

Example 130: QCD.

Quantum Chromodynamics (QCD) is a gauge theory similar to QED (example 22),
but for an underlying non-Abelian symmetry group SU(3). It can be formulated in
terms of gauge-covariant derivatives Dµ = ∂µ + ieAµ just like QED. The gauge field
Aaµ = taAµ represents gluons, it carries an index a ∈ {1, . . . , 8} of the SU(3) adjoint

representation matrix ta. Since SU(3) is not Abelian, the structure constants fabc,
defined as [ta, tb] = ifabctc, do not vanish, and the field strength tensor involves a
quadratic term in Aaµ,

F aµν =
1

−ig
[Dµ, Dν ] = ∂µA

a
νt
a − ∂νAaµta + gfabcAbµA

c
νt
a,

where g is the QCD coupling constant.
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Unlike QED (example 22), the Lagrangian of the gluon field in QCD, called Yang-Mills
Lagrangian [511], contains cubic and quartic summands, expressing a self-interaction
among gluons:

L = −1

4

(︂
∂µA

a
ν − ∂νAaµ + g fabcAbµA

c
ν

)︂(︂
∂µAaν − ∂νAaµ + g fabcAbµAcν

)︂
.

The case of the Abelian gauge group U(1) in QED is reproduced in the limit of vanishing
strucutre constants fabc.

For theories with more than one vertex, such as QCD, each vertex comes with an invariant
charge (see example 81) and a beta function (def. 103), which determines how the amplitude
of that vertex changes with the energy scale (def. 102). The presence of a symmetry should
not depend on the energy scale, therefore a Ward identity should hold all energy scales.
Consequently, all vertices involved in the Ward identity must scale with the same beta
function. This entails that their invariant charges must agree.

Example 131: Slavnov-Taylor identities in QCD.

The gluon in Quantum chromodynamics (example 130) is a massless spin-1 particle, it
has only two degrees of freedom, which are transversal [11, 105, 107, 108].
The Yang-Mills Lagrangian (example 130) has a 3-valent and a 4-valent gluon vertex.

The 3-gluon vertex scales ∼ p for the incoming momenta. If two 3-gluon vertices are

joined with an intermediate gluon propagator ∼ 1
q2
, then the overall amplitude of this

4-valent tree scales as q0, and it has summands which do not vanish when projected
onto the external momenta. The 4-gluon vertex cancels this non-transversal term.
In order for the cancellation to work at all energy scales, both types of graphs, the

4-point function and the product of two 3-point functions, must scale identically. Con-
sequently, the invariant charges (example 81) which determine their scaling (def. 102),
must agree: √︂

Q ·
√︂
Q

!
= Q .

Q already contains the appropriate factor for the intermediate gluon propagator.
Inspecting the cancellation mechanism for non-transversal terms in other vertices, one

finally arrives at Q = Q = Q = Q . These are the Slavnov-Taylor identities [503,

512, 513]. They express that QCD has only one beta function, which scales all vertices
simultaneously.
A more conventional notation is to write the Slavnov-Taylor identities directly for the

Z-factors, or, equivalently, as identities for combinatorial 1PI Green functions:

Z

Z
=
Z

Z
=
Z

Z
=
Z

Z
, or, at fixed angles,

Γ

Γ
=

Γ

Γ
=

Γ

Γ
=

Γ

Γ
.
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Much like in QED (example 128), the validity of the Slavnov-Taylor identities can
be established order by order in graph theory. But the QCD graphs often involve non-
trivial symmetry factors (section 1.3.8). Here, the mechanism of example 29 comes into
play, ensuring that symmetry factors match when vertices are being merged and split.

Another interesting perspective on the Slavnov-Taylor identities is the corolla poly-
nomial [169–171, 201]. It encodes a combinatorial algorithm to obtain the full QCD
integrand from the graphs of scalar ϕ3 theory. The validity of the Slavnov-Taylor iden-
tities, and therefore gauge symmetry and transversality of the resulting theory, is then a
consequence of the fact that all gluon graphs arise from the same algebraic operations,
applied to the same underlying scalar graphs.

By def. 115, a Ward identity reduces the number of independent Z-factors and hence
the number of necessary renormalization conditions. If the Ward identities in QED and
QCD would not hold, then all vertices need their individual, independent renormalization
conditions. The quantized theory is no longer gauge invariant, and the bosons (photon or
gluon) are massive, completely altering the nature of their interactions. Nonetheless, QED
and QCD would be renormalizable (def. 98) by power counting (theorem 28) even without
these identities. As phrased by ’t Hofft and Veltman [86, Chap. 13.1]:

Indeed, Ward identities have nothing to do with renormalizability but everything
to do with unitarity.

5.1.3. Hopf ideals

On the level of Feynman graphs, a Ward identity (def. 115) amounts to setting certain classes
of graphs equal, or, alternatively, assigning the value of zero to their difference. In order to
be a physical symmetry, such identification must hold for all momentum scales L (def. 81).

Example 132: Ward identity in QED, identification of graphs.

The Ward identity Z1 − Z2 = 0 in QED (example 128) is, with our sign convention
(def. 47), SF

R[Γ ] + SF
R[Γ ] = 0. Here, Γr is the combinatorial 1PI Green function

(def. 45). At 1-loop level, we denote the Ward identity by

+ = 0.

This is meant to hold for the corresponding renormalized amplitudes for all momenta
p, but only if the vertex has zero momentum transfer, as in point 3 in example 129.

By def. 100, theorem 48, and lemma 37, the behaviour of FR[Γ] under change of momentum
scale is encoded in the coproduct ∆(Γ):

∂

∂L
FR[Γ

a](L) =
(︁
σ ⋆ τ ⋆ eLσ

)︁
Γa = (σ ⋆ FR(L)) Γ

a = m (σ ⊗FR)∆(Γa).

If we want a Ward identity to hold at all scales, then the coproduct of the graphs involved in
that identity must behave in an appropriate way. To understand the mechanism, we firstly
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consider the solution Γa of a Dyson-Schwinger equation (theorem 26) Γa = 1+αB+(Γ
aQa),

and we let γaj = [αj ]Γa. By theorem 24,

∆(Γa) =
∑︂
j

ΓaQjaα
j ⊗ γaj .

If γaj = 0 for all j, then ∂LFR[Γ
a](L) = 0 and FR[Γ

a] = 0 holds at all scales.

Now consider the sum of two solutions to different DSEs, Γa + Γb =:W . We have

∆(W ) = ∆(Γa + Γb) =
∑︂
j

αj
(︂
ΓaQja ⊗ γaj + ΓbQjb ⊗ γ

b
j

)︂
.

In general, Qa ̸= Qb and the summands do not factorize into the form (Γa+Γb)⊗ (γaj + γbj ).

Consequently, even if we demand γaj + γbj = 0 for all j < n then, at order n, not all factors

in the coproduct of γan + γbn will vanish. Expressed in terms of Feynman amplitudes, this
means that even if the Ward identity is enforced for all graphs of loop order j < n, the
corresponding identity at order n will still depend on the scale non-trivially. If we demand
FR[Γ

a + Γb](L) = 0 at some scale L, then this identity will generally not hold for other
values of L.
If some identity of the form W = 0 is supposed to be valid for all scales L, then we

must require ∆(W ) ⊆ W ⊗ H + H ⊗W . That is, W generates a Hopf ideal (def. 69). In
that case, we can impose W = 0 and by lemma 19, the quotient U := H

W is closed under
the coproduct and antipode. The Hopf algebra U represents the theory where the Ward
identity is imposed, it replaces the ordinary renormalization Hopf algebra H. This algebraic
perspective on symmetries is described in [200, 355].

Example 133: Ward identity in QED as a Hopf ideal.

To see a nontrivial effect for the coproduct, we need to examine non-primitive (def. 86)
graphs. We look at the non-primitive 2-loop graphs of QED (example 22). A fully
worked out example for QCD (example 130), including primitive graphs, spans 9 pages
in [200].
By ⟨2⟩ we denote two different orientations of the same graph (def. 17). Let

Γ := + +

Γ := ⟨2⟩ + + + ⟨2⟩ +

The last graph of Γ does not contribute because its 3-photon subgraph vanishes due
to Furry’s theorem [514]. The reduced coproducts (def. 64) are

∆1

(︁
Γ
)︁
= ⊗ + 2 ⊗ + ⊗

∆1

(︁
Γ
)︁
= 2 ⊗ + 3 ⊗ + ⊗ .
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Define W2 := Γ + Γ and observe

∆1 (W2) =
(︂

+
)︂
⊗
(︂

+
)︂
+ ⊗

(︂
+

)︂
+ ⊗

(︂
+

)︂
+
(︂

+
)︂
⊗ .

The Ward identity (example 128) at one-loop level is

0 =
(︂
SF
R[Γ ] + SF

R[Γ ]
)︂⃓⃓⃓

1 loop
= + =:W1.

We see that ∆1(W2) ⊆ W1 ⊗H +H ⊗W1, so W2 indeed lies in a Hopf ideal (def. 69).
Further,

SF
R[W2] = −R[W2]−R

[︁
SF
R[W1] ·H + SF

R[H] ·W1

]︁
= −R[W2].

But if we impose the Ward identity in general, not only at one-loop level, then −R[W2] =
0. Note that this construction is not tautological: If W2 would not lie in a Hopf ideal,
then SF

R[W2] would contain additional summands which we have no information about.
Demanding that SF

R[W2] = 0, in that case, would lead to identities between one-loop
graph other than W1 = 0. The Ward identity would then not be compatible with
renormalization.

We want to stress that being a Hopf ideal is a necessary, but not a sufficient condition
for a physical symmetry. Whether or not Wi = 0 is a Hopf ideal, is determined by the
combinatorics of Feynman graphs, this does not automatically mean that F [Wi] = 0 under
physically sensible kinematic conditions.

5.1.4. Tadpoles

In section 1.3.1, we announced to leave out all tadpole graphs (def. 29). In the present section,
we motivate this decision. Tadpoles have only one external momentum, which vanishes by
momentum conservation, hence they are independent of momenta altogether. The second
Symanzik polynomial (def. 37) of a tadpole T is

ϕT = ψT ·
∑︂
e∈ET

m2
eae.

This leads to a parametric Feynman integral (eq. (1.49)) of the form

F [T ] = i|ET |

(4π)|LT |D
2

∏︂
v∈VT

(−iλ|v|)
∏︂
e∈EΓ

∞∫︂
0

dae a
νe−1
e

Γ(νe)

exp
(︂
−
∑︁

e∈ET
m2
eae

)︂
ψ

D
2

Γ

. (5.1)

For a massless theory, all me = 0 and the integrand is a rational function of the parameters
ae. By lemma 12 and def. 41, it is homogeneous of degree ωT − |ET |. An integral from 0 to
∞ over a homogeneous function is divergent. This means that F [T ] for a massless tadpole
T will be infinite, regardless of the values of νe and D. Observe that eq. (5.1) for me = 0 is
not the same as the period (def. 96): The latter is the same integrand, but integrated over
a compact domain given by the constraint

∑︁
ae = 1.
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It is not possible to regularize massless tadpole graphs using either analytic (section 2.3.2)
or dimensional (section 2.3.3) regularization. One can, however, regularize the integral by
introducing an UV- and an IR- cutoff like in eq. (2.42). Once the integrals are regularized,
they factorize at single intermediate edges according to eq. (1.52).
We will now argue that one can choose to leave out tadpoles from calculations as claimed

in section 1.3.1. Firstly, vacuum graphs (fig. 5.1(a)) can be considered a special class of
tadpoles. They are not observable in QFT because their contribution is always cancelled
when Green functions are normalized (theorem 6). Hence, they can be left out.

(a) (b) (c)

Figure 5.1.: Three contributions of tadpole graphs. (a) vacuum graph. (b) 1-point function.
(c) 3-point function.

Secondly, the 1-point function G(1)(x) consists entirely of tadpoles (fig. 5.1(b)). Their
amplitude is position-independent and G(1)(x) = G(1) is a mere number; it can depend on
masses. Effectively, tadpoles lead to a global shift ⟨ϕ(x)⟩ → ⟨ϕ(x)⟩+ δ(m). One can remove
it by imposing the renormalization condition eq. (1.18),

⟨ϕ(x)⟩ !
= 0.

Thereby, one leaves out all tadpoles, massless or not, which contribute to the 1-point function.
Thirdly, tadpoles can contribute to (n ≥ 2)-valent Green functions G(n)(x), if they in-

volve a vertex of sufficiently high valence (fig. 5.1(c)). There, the tadpoles constitute a
mass-dependent shift of the corresponding vertex amplitude. In kinematic renormalization
(def. 91), the renormalized value of every vertex is fixed by a renormalization condition,
therefore, tadpole contributions are always absorbed into this value, and all graphs which
include tadpoles evaluate to zero in kinematic renormalization,

FR[Γ] = FR

[︂Γ
T

]︂
· (F [T ]− CT ) = FR

[︂Γ
T

]︂
· 0 = 0.

Theorem 71. In kinematic renormalization, all graphs that contain tadpoles vanish,
and they can be left out from the start.

Theorem 71 does not imply that we are forced to use cutoff regularization for all graphs.
Tadpoles are a Hopf ideal (def. 69) [169, 303], this means that it is possible to first use cutoff
regularization so that tadpoles factorize, then divide by the tadpole Hopf ideal and then
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remove cutoff regularization. In the remaining tadpole-free sub Hopf algebra, we are free to
use any regularization scheme of our choice.
In the Minimal Subtraction scheme (def. 108), we are facing an obstacle: The latter is

explicitly based on dimensional or analytic regularization, but tadpoles can not be regularized
this way. Consequently, one must introduce a second, explicit, renormalization condition for
tadpoles, independent of the ordinary MS renormalization condition. Tadpoles introduce a
new, arbitrary, mass scale into the otherwise massless theory, therefore one typically demands
them to vanish, but this is a choice, not a theorem, compare example 91. We stress that
such a choice, without altering the theory, is only possible for tadpoles because they are
momentum-independent. If tadpoles vanish, then all multiedge graphs M (l) (example 18)
are primitive (def. 86) since their cographs are tadpoles.
The situation is different for massive tadpoles. They do not vanish automatically in MS

renormalization conditions, and this time, the theory has a mass which they can depend
on. Consequently, tadpoles will show up as non-vanishing cographs and massive multiedges
are not primitive unless we use kinematic renormalization. We can still leave out tadpoles,
but this requires to engineer a non-vanishing mass counterterm which absorbs them. If we
choose to do so, then we are leaving the conventional MS scheme by imposing a non-MS
renormalization condition specifically on tadpole graphs.

Example 134: Violation of the tadpole Hopf ideal.

A massive theory in the Minimal Subtraction scheme (def. 108) is an example that
Hopf ideals are only necessary, but not sufficient, for Ward identities to hold. The
combinatorics, and hence the Hopf algebra structure, of the massive theory is the same
for all renormalization schemes. If we choose MOM, then the tadpole Hopf ideal is
respected by default. The renormalized Feynman rules in MS violate the Hopf ideal,
restoring it amounts to an additional condition.

Summary of section 5.1.

1. A quantum field theory can have different types of symmetries. We restrict our
attention to internal gauge symmetries (section 5.1.1).

2. A symmetry of the classical action does not automatically hold in the renormalized
quantum theory because in renormalization, the monomials of the Lagrangian are
rescaled by scale-dependent Z-factors. A Ward identity expresses that certain
Z-factors scale identically, preserving the original symmetry (section 5.1.2).

3. In the abstract Hopf algebra formulation of renormalization, Ward identities gen-
erate Hopf ideals by formally setting certain classes of graphs equal (section 5.1.3).

4. Tadpole graphs form a Hopf ideal as well, it is algebraically consistent to set all
tadpoles to zero. The Feynman rules in kinematic renormalization respect this
ideal and tadpoles vanish automatically. For Minimal Subtraction, leaving out
tadpoles is a dedicated choice (section 5.1.4).
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5.2. Diffeomorphisms of scalar fields

5.2. Diffeomorphisms of scalar fields

Intuitively, it should be possible to describe the same physical system by different choices of
variables. In the present section, we examine the behaviour of a scalar quantum field theory
under non-linear transformations of the field variable. We derive the Feynman rules for the
transformed theory both in position space and in momentum space, and we establish that
the transformation indeed does not alter physical observables.

5.2.1. Digression: The numerous problems of quantum gravity

General relativity [95] is based on the Einstein-Hilbert Lagrangian [515],

L =
√︁
det gR, (5.2)

where the field degrees of freedom are the entries of the curved metric tensor gµν , the non-
static analogue of the Minkowski metric (def. 1). R denotes the scalar Riemann curvature,
which is the trace of the curvature tensor Rτµτν . With a tedious calculation, we can express
R concretely in terms of g (for example [516, eq. (36)]):

R := gµνRτµτν = gµνgρσ

(︄
(∂ρ∂σgµν − ∂ρ∂µgνσ) (5.3)

+ gτω
(︃
1

2
∂µgωσ∂τgνρ −

3

4
∂µgτσ∂νgωρ + ∂µgντ∂ρgωσ − ∂µgνω∂τgρσ +

1

4
∂µgτω∂νgρσ

)︃)︄
.

Here, gµν is the inverse matrix of gµν , which can be expressed as a Neumann series [210],
and to obtain the Lagrangian (eq. (5.2)), we still need to multiply R by

√
det g, which is

another power series in gµν . General relativity is a gauge theory (section 5.1.1), the gauge
group is the group of general coordinate transformations in 4-dimensional spacetime.
Quantum Einstein gravity is the quantum field theory obtained from the Einstein-Hilbert

Lagrangian eq. (5.2), where the metric tensor is interpreted as a graviton particle. Irrespec-
tive of technical details, a superficial inspection of eq. (5.3) already indicates two qualitative
features of quantum gravity in perturbation theory: Firstly, due to the power series expan-
sion of

√
g, there are n-graviton-vertices of any valence n ∈ N. And secondly, since all

summands in eq. (5.3) involve second derivatives, the vertices scale as

vn ∼ p2. (5.4)

The graviton propagator constructed from eq. (5.2) scales as p−2. This scaling behaviour

has two closely related consequences for the n-graviton Feynman amplitudes G(n):

1. There are infinitely many G(n≥2) which are superficially divergent (def. 94).

2. For a concrete function G(n), the degree of divergence (def. 41) of the contributing
graphs grows indefinitely with loop number.

By lemma 33, a theory with these properties is not renormalizable. As introduced in sec-
tion 2.2.1, renormalization amounts to redefinition of finitely many constants in terms of
their observable values. The above behaviour of quantum gravity poses a double problem:
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1. For each G(n), one would need an experimental input to fix their Z-factors, hence
infinitely many measurements to render the complete theory predictive.

2. The interpretation of these experiments as measuring a coupling constant would be
questionable, since the divergent part of G(n) is an unknown power series in momenta.

Probably, this naive picture is too pessimistic [517] and the two infinite sets mentioned above
are not mutually independent. But even in that case, one infinite set of unknown parameters
remains to be determined by renormalization.
The theorist’s conclusion appears to be that a quantum theory with Lagrangian eq. (5.2) is

impossible. But experiments confirm that both quantum theory, and general relativity, exist
in nature, therefore the conclusion that they are mutually exclusive is unacceptable. Over
the last century, countless approaches to the renormalization problem of quantum gravity
have been proposed. We review four of the more popular ones.
The first possible solution is to introduce a graviton propagator which scales ∼ p−4 [379,

518–523]. One prominent 4th-order theory of gravity is conformal gravity, given by the
Weyl equations [353, 524–528]. In section 2.4, we have presented various arguments against
propgators of 4th order, but they might not apply to the case of gravity: Since gravity is
associated with a curved spacetime, it is not obvious whether eq. (2.53) gives the correct
short-distance scaling and the argument about conserved fluxes does not necessarily exclude
n ̸= 1. Similarly, the presence of Ostrogradsky ghosts can possibly be avoided by viewing
the massless 4th order propagator as a particular limit of massive fields [519].

A second approach to the renormalization problem is the assumption that, instead of
changing the propagator, the spacetime dimension changes for short distances, being effec-
tively 2-dimensional, which would render gravity renormalizable [529–531]. We know from
everyday experience and from various theoretical considerations [532, 533] that spacetime is
4-dimensional on observable scales. But these arguments do not apply to scales well below
the size of nuclei. Several hypothetical mechanisms describe how and why spacetime can
effectively become 2-dimensional at short distances [534–537].
Thirdly, quantum gravity in 4 dimensions can potentially still be finite, despite being

perturbatively non-renormalizable, by having a non-trivial UV fixed point (see section 3.2.4).
This possibility has a certain overlap with the first two. For example, by quantum corrections,
the propagator for high energies could deviate from the p−2 scaling (def. 103), or the scaling
behaviour of propagators can even be taken as a definition of the dimension of spacetime at
this scale [537–540]. From that perspective, whether spacetime changes its dimension or the
propagator obtains a non-standard power is almost the same question.
Fourthly, it is conceivable that, due to the tensorial character of gravity, the mere scaling

of the vertex (eq. (5.4)) is too imprecise to capture the true behaviour and that the infinitely
many involved counterterms are not independent. An example of this phenomenon are the
Slavnov-Taylor identities in QCD (example 131): There are seven different divergent Green
functions in QCD, but all of their counterterms are related and a single measurement –
determining the physical value of the QCD coupling constant g – is sufficient to uniquely
determine all seven divergent amplitudes. The hope is that for gravity, being based on the
gauge group of arbitrary coordinate transformations, a similar mechanism might be at play,
involving infinitely many Ward identities to fix all but finitely many counterterms [517, 541].
This approach to the renormalization problem fits into a broader set of considerations, that
a theory with non-polynomial interaction can potentially be renormalizable if its amplitudes
have particular extra properties [542–545]. A necessary condition for the validity of such
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Ward identities is that they form a Hopf ideal (def. 69) in the core Hopf algebra (def. 85)
which underlies the perturbation theory of gravity, compare section 5.1.3. It has been verified
that they do [516, 546–548].
Even if Hopf ideals are present, the Feynman rules can potentially violate them, com-

pare example 134. To check the validity of Ward identities, we would need to examine
concrete Feynman rules of quantum gravity. Unfortunately, the construction of a QFT
from the Einstein-Hilbert Lagrangian (eq. (5.2)) faces significant technical and philosophical
challenges. De Witt [549] observes that

Some of the field variables possess no conjugate momenta; the momenta conjugate
to the remaining field variables are not all dynamically independent; the field
equations themselves are not linearly independent, and some of them involve no
second time derivatives [. . . ].

In general relativity, the Hamiltonian (def. 10), a cornerstone of canonical quantization
(section 1.2.2), vanishes identically, and it is not obvious which quantity should be interpreted
as the total energy [550]. Moreover, scattering theory relies on the existence of asymptotic
states (def. 18) in infinite distances, which, in a globally curved spacetime, might propagate
in a different effective metric.
Often, one defines the graviton hµν to be a small perturbation around a background space-

time bµν , hµν := gµν − ηµν . This approach suffers from ambiguities by possibly inequivalent
choices of background metrics bµν and field variables hµν . The obvious choice bµν = ηµν ,
excludes the physical possibility of non-trivial topologies of the universe, but conversely, if
bµν is not a flat metric, then one faces all the problems of formulating QFT on a curved
background [551–553]. Various different definitions of background and graviton field have
been considered [73, 175, 549, 554–557], including non-linear redefinitions (def. 116) of hµν
[558]. At least, it has been established that gravity can not be formulated as a non-linear
transformation of a free spin-2 field [559]. The perturbative formulations of quantum gravity
considered so far typically reproduce (non quantum) general relativity in treelevel graphs
[560–563], but this does not imply that they are the correct framework to compute quantum
corrections.
Alternatively, one identifies the full metric tensor gµν as the graviton field variable, but

this results in a strongly coupled theory, making perturbation theory inapplicable. Effec-
tively, most issues with the construction of quantum gravity are related to the identification
of suitable physical observables, field variables, or gauge conditions [558], and the question
unanswered so far is whether there exists any choice such that the above Ward identi-
ties render gravity renormalizable. As a side remark, small perturbative deviations from a
background field [564] and Feynman graphs [565] are also useful in general relativity itself,
irrespective of its possible quantization.
The present thesis does not propose a solution to the renormalization of quantum gravity.

But the quantum field diffeomorphisms to be examined in the subsequent sections can be
viewed as as a toy model for a quantum field theory where vertices are proportional to inverse
propagators. We will see in theorem 90 that the diffeomorphism field indeed satisfies infinitely
many Ward identities, but nevertheless, infinitely many counterterms remain undetermined.
Examining the diffeomorphism toy model does not solve the gravity problem, but it helps
to clarify what type of mechanism is needed concretely to make Ward identities work in the
proposed sense.
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5.2.2. Field diffeomorphisms

In the present chapter, we consider diffeomorphisms of the field variable in quantum field the-
ory. This setting is different from non-linear coordinate transformations in general relativity
(section 5.2.1), which are often called diffeomorphism as well.

Definition 116. Let ϕ(x) be the variable of a scalar quantum field, and let an ∈ C,
where a0 = 1. A (global) field diffeomorphism is a transformation of ϕ to a new field
variable ρ, related by a formal power series (def. 51),

ϕ(x) =
∞∑︂
n=0

anρ
n+1(x).

Likewise, with a set of coefficients bn, we denote the inverse diffeomorphism by

ρ(x) =:

∞∑︂
n=1

bn+1

n!
ϕn(x). (5.5)

The coefficients an and bn in def. 116 are related by theorem 17,

an =
1

(n+ 1)!

n∑︂
k=1

Bn+k,k (0,−b3,−b4,−b5, . . .) (5.6)

bn+2 =
n∑︂
k=1

(n+ k)!

n!
Bn,k (−1!a1,−2!a2, . . . ,−n!an) .

Here, Bn,k are the Bell polynomials (def. 52). The diffeomorphism (def. 116) is called global
in the sense of a global symmetry, which does not depend on the position (section 5.1.1).
Conversely, it could be called local in the sense that it is a transformation between fields at
the same spacetime point.
Field diffeomorphisms of this type have been examined in the literature repeatedly and

for different reasons. Some motivations are the following:

1. Non-linear field redefinitions do not alter the S-matrix (def. 18), which has been estab-
lished in various different frameworks (theorem 78, [24, 86, 199, 202, 566–569]). This
invariance is frequently used to simplify the Lagrangian, for example in gauge theories
[328, ch. 6.3], in non-local interactions [570], or in effective field theories [571].

2. Linear shifts in the field variable of an interacting field alter the type of interaction, but
they do not impede renormalizability, which is important for theories with spontaneous
symmetry breaking [5, 402].

3. By power counting, the Feynman graphs of a field diffeomorphism reside in the core
Hopf algebra (def. 85). The same is true for quantum Einstein gravity (section 5.2.1).
This makes field diffoemophisms a toy model for the algebraic behaviour of gravity.

4. For quantum gravity, it is notoriously different to identify the correct field variables,
see section 5.2.1. A better understanding of field diffeomorphisms can help to classify
and restrict the possible choices.
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5. By a field diffeomorphism, the Lagrangian of a theory with non-polynomial interac-
tion can be transformed to a theory with polynomial interaction but non-standard
kinetic term [572]. This has been used to examine the possibility of non-polynomial
interactions in QFT, see example 143.

In the present chapter, we touch upon most of these points, but the focus will be on the
offshell Green functions, divergences and renormalizability of field diffeomorphisms. The
perturbation theory of scalar field diffeomorphisms has been studied recently [199, 566, 567].
The remainder of the present chapter will follow the author’s own works [202, 573].
For a diffeomorphism (def. 116), the underlying field ϕ can be either a free (example 1) or

an interacting (example 6) field. We concentrate mostly on the first case, because it already
gives rise to all the non-trivial phenomena of field diffeomorphisms, whereas an underly-
ing interaction only makes calculations more cumbersome without adding qualitatively new
effects. We write the free Lagrangian of the underlying field ϕ in the form eq. (1.4),

L =
1

2
ϕ(x)ŝϕ(x). (5.7)

By Wick’s theorem (theorem 2), the correlation functions of ϕ are products of Feynman
propagators (eq. (1.23))

GF (x1, x2) := GF (x2 − x1) =

∫︂
dDk

(2π)D
i

sk
e−ik(x2−x1), (5.8)

where sk is the offshell variable (def. 8).

Example 135: Analogy between QCD and a scalar field diffeomorphism.

Consider the diffeomorphism (def. 116) a1 = −g
2 and an>1 = 0, that is, ϕ(x) = ρ(x) −

g
2ρ

2(x). If the underlying field ϕ is a free field (eq. (5.7)) with offshell variable (def. 8)
sp = p2, then, using ∂µρ

2 = 2ρ∂µρ, the Lagrangian of ρ is

L =
1

2
(−∂µρ+ g ρ∂µρ) (−∂µρ+ g ρ∂µρ) .

This Lagrangian is reminiscent of the Yang-Mills-Lagrangian of QCD (example 130),
up to the tensor structure which is necessarily different between a scalar field and a
vector-valued gauge field.

5.2.3. Diffeomorphism Feynman rules in position space

We examine the Feynman rules of the field diffeomorphism ρ(x) (def. 116) in position space.

The time ordered correlation functions G̃
(n)

(x1, . . . , xn) = ⟨Tρ(x1) · · · ρ(xn)⟩ (def. 14) of ρ
can be computed by expanding the series ρ(ϕ(x)) in def. 116 in powers of ϕ(x).

The 1-point function ⟨Tρ(x)⟩ is

G̃
(1)

(x) = ⟨ρ(x)⟩ =
∞∑︂
n=1

bn+1

n!
⟨Tϕ(x) · · ·ϕ(x)⟩ .
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ByWick’s theorem (theorem 2), the correlation functions ⟨Tϕn(x)⟩ are propagators (eq. (5.8))
evaluated at the same spacetime point,

⟨Tϕ(x)⟩ = 0,
⟨︁
Tϕ2(x)

⟩︁
= GF (0),

⟨︁
Tϕ4(x)

⟩︁
= 3 ·GF (0) ·GF (0), . . . .

These products correspond to tadpole graphs (section 5.1.4). We demand that they vanish,

GF (0)
!
= 0. (5.9)

Equivalently, we demand that eq. (1.18) holds for the transformed field, ⟨ρ(x)⟩ !
= 0.

For the 2-point function, the expansion of the diffeomorphism (def. 116) reads

G̃
(2)

(x1, x2) = ⟨Tρ(x1)ρ(x2)⟩ =
∞∑︂
t1=1

∞∑︂
t2=1

bt1+1bt2+1

t1!t2!

⟨︁
Tϕt1(x1)ϕ

t2(x2)
⟩︁
.

The right hand side are correlation functions of a free field ϕ. By Wick’s theorem and
vanishing of tadpoles eq. (5.9), the terms contributing to the 2-point function consist of
an arbitrary number of edges between the two spacetime points x1 and x2. They can be
interpreted as Feynman diagrams on two external vertices, see graph A in fig. 5.2. There
are t1! different Wick contractions for each summand, consequently

G̃
(2)

(x1, x2) =
∞∑︂
t1=1

b2t1+1

t1!t1!
t1!G

t1
F (x2 − x1) =

∞∑︂
t=1

b2t+1

t!
GtF (x2 − x1). (5.10)

A : ϕt1(x1) ϕt1(x2) B : ϕt1(x1)

ϕt3(x3)

ϕt2(x2)
l2

l1

l3

C : ϕt1(x1)

ϕt4(x4)

ϕt3(x3)

ϕt2(x2)

l1

l2 l3

l4
l5

l6

Figure 5.2.: Contributions to connected correlation functions in position space. Each dot
represents a factor of ϕ. Graphs where dots of the same monomial ϕj (i.e.
same spacetime-point) are connected, are excluded due to eq. (5.9). A : 2-point
function, B : 3-point function, C : 4-point function.

The time-ordered 3-point function is sketched in graph B in fig. 5.2 and can be written as

G̃
(3)

(x1, x2, x3) =

∞∑︂
t1=1

∞∑︂
t2=1

∞∑︂
t3=1

bt1+1bt2+1bt3+1

t1!t2!t3!

⟨︁
ϕt1(x1)ϕ

t2(x2)ϕ
t3(x3)

⟩︁
.
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Let l1, l2, l3 be the number of propagators between the points as indicated in fig. 5.2, then

t1 = l1 + l2, t2 = l2 + l3, t3 = l1 + l3

⇔ l1 =
1

2
(t1 + t3 − t2), l2 =

1

2
(t1 + t2 − t3), l3 =

1

2
(t2 + t3 − t1).

Rewriting the sums over ti in terms of li, the non-tadpole part of the 3-point function reads

G̃
(3)

(x1, x2, x3) =
∑︂
lj∈N0

l1+l2+l3≥2

bt1+1bt2+1bt3+1

l1!l2!l3!
Gl1F (x2 − x1)

l2GF (x3 − x2)G
l3
F (x3 − x1). (5.11)

The construction of higher G̃
(n)

follows the same scheme, the resulting sum can always
be interpreted as a sum over all possible graphs involving exactly n vertices. A graph

contributing to G̃
(4)

is shown in fig. 5.2 C. Equivalently, this construction can be viewed as
a sum over complete graphs Kn on n vertices, where each edge of Kn is replaced by any
number, including zero, of propagators. A detailed examination shows that the combinatorial
prefactors have the form analogous to eq. (5.11) in the general case.

Theorem 72 ([202]). Let ρ be a diffeomorphism (def. 116) of a free scalar field ϕ with
propagator GF (z) in position space (eq. (5.8)). Assume that tadpoles vanish, and let

k = n(n−1)
2 . Then, the time-ordered n-point amplitude (def. 14) of ρ in position space is

G̃
(n)

(x1, . . . , xn) =
∑︂

l1,...,lk∈N0
tj≥1 ∀j

bt1+1 · · · btn+1

l1! · · · lk!
Gl1F (x1 − x2)G

l2
F (x1 − x3) · · ·G

lk
F (xn−1 − xn)

The indices li are labels of the edges of a completely connected graph on n vertices, and
tj are the sum of all li incident to the vertex j, compare fig. 5.2. Each li contributes to
precisely two distinct tj and each pair {ti, tj} shares precisely one li and the summation
is such that no tj is zero.

The index tj of btj depends on (n−1) of the summation indices lj , consequently, the k sums
in theorem 72 are not independent from each other. The prefactor obtained in theorem 72,

bt1+1 · · · btn+1

l1! · · · lk!
, (5.12)

equals the prefactor of an ordinary Feynman graph in position space (def. 39): The numerator

represents vertex Feynman rules, where a j-valent vertex has the amplitude
bj
j! . In the

graphs constructed in theorem 72, all n vertices are external, therefore, the symmetry factor
(theorem 13) arises entirely from permutations of the multiedges, l! for each GlF . This factor
is the denominator in eq. (5.12). Consequently, theorem 72 reproduces the know Feynman
rules in position space (def. 39). The case of field diffeomorphisms is special only insofar as
the resulting graphs do not contain internal vertices, and therefore no integrations.

231



5. Field Diffeomorphisms and Symmetries

5.2.4. Diffeomorphism Feynman rules in momentum space

Applied to a free Lagrangian (eq. (5.7)), a diffeomorphism (def. 116) gives rise to a theory
with an infinite set of interaction vertices.

Lemma 73 ([202]). Let ρ be the diffeomorphism (def. 116) of a free field (eq. (5.7))
with offshell variable s (def. 8). Then, ρ has vertices of every valence n ≥ 2 with
Feynman rule

ivn := i
1

2

n−1∑︂
k=1

an−k−1ak−1(n− k)!k!
∑︂

P∈Q(n,k)

sP .

Here, Q(n,k) is the set of all possibilities to choose k out of n external edges without dis-
tinguishing the order, P is one of these sets and sP is the offshell variable corresponding
to the momenta in P .

Example 136: Diffeomorphism vertices.

Let s be the offshell variable (def. 8), with the usual shorthand notation si+j := spi+pj .
The first vertices from lemma 73 read

iv2 = is1,

iv3 = 2ia1 (s1 + s2 + s3) ,

iv4 = 6ia2 (s1 + s2 + s3 + s4) + 4ia2
1 (s1+2 + s1+3 + s2+3) .

In general, it is not possible to reduce the offshell variables si+j+..., appearing in lemma 73,
to polynomials in the n external offshell variables {si}, except for the special cases s = p2

or s = p2 −m2 [199].

Theorem 74 ([202]). Let ϕ be a scalar field with interacting Lagrangian (eq. (1.5)),

L =
1

2
ϕŝϕ−

∞∑︂
t=3

λt
t!
ϕt,

and let ρ be a diffeomorphism (def. 116) of ϕ. Then, ρ has vertices ivn according to
lemma 73, and additionally, for each n ≥ 3, t ≤ n, a vertex

−iw(t)
n = −iλtBn,t (1!a0, 2!a1, 3!a2, 4!a3, . . .) ,

where Bn,t are the Bell polynomials (def. 52).

For scalar fields where the propagator is of quadratic order in momentum, so sp = p2 or
sp = p2 +m2, all propagator-cancelling theories are diffeomorphisms of a free field.
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Theorem 75. Consider a scalar field theory ρ with propagator (def. 8) s = p2 −m2,
where m2 ≥ 0.

1. If ρ has interaction vertices ivn = kn · (p2
1 + . . .+p

2
n)+ rn ∀n > 2 where kn, rn ∈ R,

then ρ is a unique diffeomorphism of a field ϕ such that the vertices of ϕ are
independent of momenta, iv′n = ir′n where r′n ∈ R.

2. If ρ is a massless field and has interaction vertices ivn = kn · (p2
1 + . . .+ p2

n), with
arbitrary kn ∈ R, then ρ is a diffeomorphism of a free massless scalar field.

3. There is no diffeomorphism between two power-counting renormalizable theories.

Proof. The statements are a corollary of theorem 74. Consider the general form of a vertex of the

diffeomorphism theory, ivn − iw(t)
n . For s = p2 − m2, this vertex is of the form stated in point 1.

In this setting, both the diffeomorphism parameters {an} and the coupling constants {λt} are free
parameters. Using the formulas in lemma 73 and theorem 74, one can determine these parameters
to reproduce any given sets {kn, rn}.

A theory with propagator ∼ p−2 can only be power-counting renormalizable (lemma 33) if no
vertex is proportional to squared momenta. The most general form of such a scalar theory is the
interacting Lagrangian of theorem 74. By lemma 73, every diffeomorphism of such a theory contains
vertices scaling as p2 and is therefore not renormalizable.

5.2.5. Propagator cancellations and the connected perspective

From now on, we restrict ourselves to an underlying free field. The vertices of the diffeo-
morphism (lemma 73) are proportional to inverse offshell variables (def. 8). Hence, they are
capable of cancelling a propagator i

se
(eq. (5.8)), by the identity

se ·
i

se
= i.

If a Feynman graph contains vertices ivn (lemma 73) then the corresponding Feynman am-
plitude can have a different topology than the graph, in the sense that not every propagator
of the graph appears as a factor i

se
in the amplitude.

The sum over offshell variables sP in the vertex ivn (lemma 73) corresponds to all pos-
sibilities to choose k out of the n external edges. Pictorially, such a choice means splitting
the external edges of the vertex into two disjoint sets. The same splitting happens if we
replace the vertex ivn by two smaller vertices ivj

i
sP
ivk, where j + k − 2 = n and sP is the

intermediate propagator joining ivj and ivk. The mechanism is depicted in fig. 5.3.

iv4 iv5

e

iv7

Figure 5.3.: Illustration of splitting the vertex iv7 into iv4
i
e iv5.
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The product ivj
i
sP
ivk = −ivj 1

sP
vk has the opposite sign as the corresponding term in

vn, and a closer examination [202] shows that the combinatorial factors match so that both
terms exactly cancel each other. The only remaining summands in ivn (lemma 73) are those
which do not correspond to splitting the vertex, that is, those where the partition P is a
single external edge e. Such terms are proportional to an external offshell variable sP = se.⎛⎝ivn + ∑︂

vj⋆vk=vn

ivj
i

sP
ivk

⎞⎠ ⃓⃓⃓⃓⃓
Terms not proportional to an external se

= 0. (5.13)

Here, the product vj ⋆vk denotes summation over all ways to choose the valences j, k and also
all possible permutations of external edges. By eq. (5.13), the connected tree-level n-point
amplitude is proportional to the external offshell variables se, it has the form

−ibn(s1 + . . .+ sn) =: iVn (5.14)

where bn ∈ R is independent of kinematics.

Definition 117. For n ≥ 3, the tree sums bn are defined as the sum of all connected
tree-level Feynman graphs of the field ρ with a total of n external edges, where n − 1
external edges are onshell (i.e. se = 0 for these edges e) and the last external edge is
offshell. The propagator i

se
of this offshell edge e is included in bn. Finally, b2 := 1.

Example 137: Diffeomorphism tree sums.

An explicit calculation of the first tree sums bn (def. 117), using lemma 73, yields

b3 =
i

x1+2
· 2ia1 (x1 + x2 + x1+2)

⃓⃓⃓
x1=0=x2

= −2a1,

b4 = −6a2 + 12a2
1.

Graphically, we denote the tree sums bn by a square vertex, and indicate the cancelled
offshell external edge by an arrow. For the ordinary vertices ivn, we indicate an onshell
edge by a perpendicular line.

b2 = = 1

b3 = =

offshell edge, propagator included

onshell edges, no propagator

b4 = = + + +
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5.2. Diffeomorphisms of scalar fields

Theorem 76 ([199, 202, 567]). The tree sums bn (def. 117) are the coefficients bn of
the inverse diffeomorphism (def. 116), for arbitrary offshell variable sp (def. 8).

Example 138: Berends-Giele relations and Parke-Taylor formula.

In QCD (example 130), the n-gluon currents Ĵ
x
ξ (1, 2, . . . , n) are defined as the connected

(n+1)-point gluon functions where precisely one leg is offshell. They can be constructed
recursively with the Berends-Giele (BG) relations [127]. The definition of Ĵ

x
ξ is almost

verbatim def. 117 of the tree sums bn+1. Consequently, the proof of theorem 76 in [199]
is strikingly similar to the derivation of BG relations in [127].
The maximum helicity violating (MHV) amplitudes in QCD are those onshell (def. 8)

n-gluon amplitudes where precisely two out of n external onshell gluons have a different
helicity than the remaining ones. To leading order in N of the gauge group SU(N),
their matrix element is given by the Parke-Taylor formula [129],

⃓⃓
MMHV(1

−, 2−, 3+, . . .)
⃓⃓2

=
g2n−4

22n−4

Nn−2(N2 − 1)

n
(p1 · p2)

4
∑︂
P

1

(p1 · p2)(p2 · p3) · · · (pn · p1)

where P ranges over all permutations of 1, . . . , n. The Parke-Taylor formula is a conse-
quence of Berends-Giele relations.
In this sense, the connected amplitudes iVn ∼ ibn in eq. (5.14) are a scalar analogue

of the MHV-amplitudes in QCD. Especially, if we restrict the diffeomorphism to ex-
ample 135, which closely resembles QCD, then the tree-level matrix element with one
external edge offshell is the square of eq. (5.14),

|Vn|2 = |bn|2
n∑︂
i=1

s2
i = g2n−4 ((2n− 1)!!)2

n∑︂
i=1

(pi · pi)2 .

This amplitude vanishes in the onshell limit p2 = 0, see theorem 78.
A scalar field diffeomorphism (example 135) is not QCD, therefore we can not expect

to precisely recover the Parke-Taylor formula, but it is interesting to observe that, despite
the striking difference in tensor structure, qualitatively similar amplitudes arise.

The fact that the tree sums bn (def. 117) are mere numbers, without any remaining inter-
nal propagators, motivates to use these tree sums as metavertices in computing connected
correlation functions. This approach is dubbed connected perspective, as opposed to the or-
dinary perspective, where the vertex Feynman rules are lemma 73. The Feynman rules of the
connected perspective differ from the ordinary momentum space Feynman rules (def. 40).
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5. Field Diffeomorphisms and Symmetries

Theorem 77 ([202, 573]). Assume that tadpoles vanish. The connected n-point
amplitude (def. 14) of a diffeomorphism ρ (def. 116) of a free field (eq. (5.7)) is obtained
by summing over all graphs Γ (def. 24) such that

1. Each internal edge e ∈ Γ contributes a propagator factor i
se

.

2. Γ is built from (k > 2)-valent metavertices with amplitude iVk = −ibk(s1 + s2 +
. . . + sk). Keeping a summand se in this amplitude amounts to cancelling the
adjacent edge e.

3. The metavertices do not cancel internal edges of Γ.

4. The Graph Γ does not contain internal metavertices, that is, every metavertex is
adjacent to at least one external edge.

When using theorem 77, all cancellations have been taken into account, and the topology
of the graph equals the topology of the corresponding amplitude. The metavertex Feynman
rule (eq. (5.14)) implies that all graphs are proportional to at least one external offshell
variable. Consequently, every non-trivial graph of the connected perspective vanishes as
soon as all external momenta are taken onshell (def. 8). An analogous statement holds if
the underlying theory is interacting, where only the original interaction vertices remain in
the onshell limit.

Theorem 78 ([202]). Let ρ be a diffeomorphism (def. 116) of a free or interacting
scalar field ϕ. Assume that tadpoles vanish. Then, as soon as all external momenta are
onshell, the time ordered Green functions (def. 14) of ρ coincide with the ones of ϕ. The
diffeomorphism does not alter the S-matrix (def. 18).

We can understand the Feynman rules of the connected perspective (theorem 77) from
the diffeomorphism Feynman rules in position space (theorem 72), compare fig. 5.4. The
metavertices in the connected perspective, cancelling the adjacent external propagator, can
be identified as the external powers ϕj(x) in position space. This correspondence indicates
that the perturbative treatment in momentum space – which involves significant combina-
torial effort in [199, 202, 573] – has indeed yielded the correct results.
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5.2. Diffeomorphisms of scalar fields

position space

∝ b5 ϕ4(x1)

ϕ(x5)

ϕ(x4)

ϕ(x3)

ϕ(x2)

momentum space

p
1

p
5

p
4

p
3

p
2

∝ b3b4 ϕ3(x1)

ϕ2(x2)

ϕ(x5)

ϕ(x4)

ϕ(x3)

p
1

p
5

p
4

p
3

p
2

∝ b6b4b3 ϕ5(x1)

ϕ3(x2)

ϕ2(x3)

ϕ(x5)

ϕ(x4)
p

1

p
5

p
4

p
3

p
2

Figure 5.4.: Correspondence between momentum space (theorem 77) and position space (the-
orem 72) Feynman rules for a diffeomorphism ρ (def. 116). A momentum p

i
is

the Fourier transform of a position xi. Metavertices are indicated by squares,
the edge which is cancelled is marked with an arrow.

5.2.6. Two-point function in momentum space

Lemma 79. Assume that tadpoles vanish (section 5.1.4). Let ρ be a field diffeomor-
phism (def. 116) of a free field. Then, the connected 2-point function Ḡ2 (def. 20) of ρ,
excluding the two external propagators, is a sum of multiedges M (l) (example 18),

Ḡ2(s) = −is+
∞∑︂
l=1

(−ibl+2s)
2F
[︁
M (l)

]︁
(s)

(l + 1)!
.
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5. Field Diffeomorphisms and Symmetries

Proof. Using the Feynman rules of the connected perspective (theorem 77), the connected amplitude
with two external momenta Ḡ2 is supported on Feynman graphs with up to two metavertices. Exclud-
ing tadpoles, the only remaining graph topology is that of l-loop multiedges M (l). The metavertices
have valence (l + 2) and Feynman rule iVl+2 = −ibl+2 · s (eq. (5.14)), see fig. 5.5.

Ḡ2(s) = + + + . . .

= −is + (−ib3s)2 1
2!F
[︁
M (1)

]︁
(s) + (−ib4s)2 1

3!F
[︁
M (2)

]︁
(s) + . . .

Figure 5.5.: The amputated connected two-point-amplitude Ḡ2 in momentum-space in the
connected perspective. Both external propagators are being cancelled.

Even if all multiedges are 1PI graphs (def. 44), Ḡ2 is the connected, not the 1PI 2-point
function. If tadpoles vanish then multiedge graphs are primitive, so their divergence is local
(theorem 30). In dimensional regularization (section 2.3.3), we split Ḡ2 (lemma 79) into a
finite and a divergent part,

Ḡ2(s) =: −is
(︂
1 + Ḡ

fin
2 (s) + Ḡ

div
2 (s)

)︂
+O (ϵ) .

The divergent part is Ḡ
div
2 (s) := R̂[Ḡs(s)], where R̂ is the MS subtraction operator (def. 108).

It is specific to the 2-point function that Ḡ2 contains only local divergences Ḡ
div

. In general,
the diffeomorphism requires a systematic recursive renormalization procedure. We come
back to this question in section 5.4.

Example 139: Massless two-point function of diffeomorphism.

If we restrict ourselves to an underlying theory with offshell variable s = p2, then the
finite and divergent part of Ḡ2 are given by lemma 29,

Ḡ
div
2 (s) = −

b2l+2 (−is)
l

(4π)2l (l!)2 (l + 1)!

Ḡ
fin
2 (s) = −

∞∑︂
l=1

b2l+2

(l + 1)!

(−is)l

(4π)2l (l!)2

(︃
(2l + 1)Hl − 1− lγE + l ln(4π)− l ln s

s0

)︃
.

As expected from theorem 78, we reproduce the free connected 2-point function −is, i.e.
the inverse propagator (eq. (5.8)) in the onshell limit s→ 0 :

lim
s→0

i

s
Ḡ2(s) = 1.

Moreover, if we demand that Ḡ2(s) = −is for all s ̸= 0 then necessarily all bn>2 = 0 and ρ
is equal to the underlying free theory. Demanding the 2-point function to be that of a free
field is sufficient that the theory is free altogether, compare theorem 1.
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5.2. Diffeomorphisms of scalar fields

Summary of section 5.2.

• The quantization of general relativity faces numerous technical and philosophical
obstacles. Quantum gravity is unrenormalizable by power counting. There are
various possible remedies. Gravity might still be predictive if the counterterms
are related by infinitely many Ward identities (section 5.2.1).

• A field diffeomorphism is a non-linear global redefinition of the field variable.
Diffeomorphisms have applications in various settings in QFT (section 5.2.2).

• In position space, the Feynman rules of a diffeomorphism are straightforward from
the definitions. They give rise to graphs without internal vertices, that is, without
integrations (section 5.2.3).

• In momentum space, the Feynman rules of a diffeomorphism contain vertices of
any valence, which scale like inverse propagators. Every diffeomorphism is un-
renormalizable by powercounting (section 5.2.4).

• Momentum space Feynman rules can be simplified dramatically for connected
amplitudes by introducing metavertices, which do not cancel internal edges of
graphs (section 5.2.5).

• The connected 2-point function is given by a sum of all multiedge graphs. For
an underlying massless theory, the resulting amplitude can be computed explicitly
(section 5.2.6).
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5. Field Diffeomorphisms and Symmetries

5.3. Exponential diffeomorphism

In the field diffeomorphisms introduced in section 5.2, the parameters {an} have been left
undetermined. In the present section, we examine a certain family of diffeomorphisms where
these parameters are powers of a single constant.

5.3.1. Field transformations

Definition 118. Let u ∈ N and λ ∈ C. The exponential diffeomorphism is defined as
the diffeomorphism (def. 116) with parameters

bn =

⎧⎪⎨⎪⎩
1 n = 2

λn−2 ∃k ∈ N0 : uk = n− 2

0 else.

Def. 118 implies that the connected n-point function (def. 20) is proportional to λn−2. In
the following, we examine which transformation function ρ(ϕ) or ϕ(ρ) corresponds to the
choice of coefficients given in def. 118.

Definition 119 ([574]). The generalized hypergeometric function is

pFq

(︂
{a1, . . . , qp} , {b1, . . . , bq}

⃓⃓⃓
z
)︂
:=

∞∑︂
k=0

p∏︂
i=1

Γ(k + ai)

Γ(ai)

q∏︂
j=1

Γ(bj)

Γ(k + bj)

zk

k!
.

Definition 120 ([575]). The hyperbolic function of order u of the rth kind is

Hu,r(x) :=

∞∑︂
k=0

xuk+r

Γ (uk + 1 + r)
.

Lemma 80 ([573]). Hyperbolic (def. 120) and hypergeometric (def. 119) functions
satisfy

Hu,1(z) = z ·

{︄
1F1(1; 2|z), u = 1

0Fu−1

(︂
{} ;

{︁
2
u ,

3
u , . . . ,

u−1
u , u+1

u

}︁ ⃓⃓⃓ (︁
z
u

)︁u)︂
u ≥ 2.

Lemma 81. The exponential diffeomorphism def. 118 corresponds to ρ(ϕ) by

ρ(x) =
1

λ
Hu,1(λϕ(x)),

where Hu,1 is the hyperbolic function (def. 120) .
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5.3. Exponential diffeomorphism

Proof. Using the diffeomorphism coefficients of def. 118, the mapping ρ(ϕ) is the series def. 116,

ρ(x) =
∞∑︂

n=1

bn+1

n!
ϕn(x) = ϕ

∞∑︂
k=0

(λϕ)
ku

(uk + 1)!
= ϕ

∞∑︂
k=0

(λϕ)
ku

Γ(uk + 2)
.

This series is the hyperbolic function of order r = 2− 1 = 1 (def. 120).

The diffeomorphism given by lemma 81 satisfy the differential equation [575]

du

dϕu
ρ = λu · ρ.

The solutions ρ(ϕ) are are sums of terms ρ ∝ eqiλϕ where qi are uth roots of unity, see
example 140. This fact motivates the name exponential diffeomorphisms.

Example 140: Inverse exponential diffeomorphism.

For small u, the hyperbolic functions in lemma 81 evaluate to

u = 1 : ρ = λ−1
(︂
eλϕ − 1

)︂
,

u = 2 : ρ = (2λ)−1
(︂
eλϕ − e−λϕ

)︂
= λ−1 sinh (λϕ) ,

u = 3 : ρ = (3λ)−1

(︃
eλϕ + (−1)

1
3 e−(−1)

1
3 λϕ + (−1)

2
3 e(−1)

2
3 λϕ

)︃
.

Next, consider the diffeomorphism in the opposite direction, the function ϕ(ρ). Using
eq. (5.6), the diffeomorphism coefficients an can be computed in principle from the bn in
def. 118, but there seems to be no easy explicit formula. One obtains

u = 1 : an =
(−1)nλn

n+ 1
, (5.15)

u > 1 : an =

{︄
(−1)kλn

(n+1)! · αk, n = k · u
0 else,

where the sequences {αk}k∈N have been interpreted in terms of Whitney numbers [576].

Example 141: Coefficients of the exponential diffeomorphism.

The case u = 1 in eq. (5.15) amounts to αn = n!. Other examples of {αk} are

u = 2 : {1, 9, 225, 11025, 893025, . . .} [473, A001818],

u = 3 : {1, 34, 5446, 2405116, 2261938588, . . .} [473, A292750],

u = 4 : {1, 125, 124125, 477257625, . . .} .
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5. Field Diffeomorphisms and Symmetries

Example 142: Forward exponential diffeomorphism.

In the special cases u = 1, 2, the function ϕ(ρ) can be obtained by inverting the function
ρ(ϕ) from example 140:

u = 1 : ϕ = λ−1 ln(1 + λρ)

u = 2 : ϕ = λ−1 asinh(λρ) = λ−1 ln(
√︁

1 + (λρ)2 + λρ).

It is instructive to write down the Lagrangian for u = 1 in the case s = p2 −m2,

L = −1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 = −1

2

1

(1 + λρ)2
∂µρ∂

µρ− 1

2

m2

λ2
ln2(1 + λρ). (5.16)

Setting m = 0 and defining a field ϱ := 1 + λρ, eq. (5.16) reads

L = − 1

2λ2
· ϱ−2 · ∂µϱ∂µϱ. (5.17)

This form vaguely reminds of the Einstein-Hilbert-Lagrangian (eq. (5.2)) L ∼ √g·g−2∂µg∂νg.

Alternatively, from eq. (5.15) we find an = (−1)ngn

n+1 and the Lagrangian can be written as

L =
1

2

(︁
−∂µρ+ g ρ∂µρ− g2 ρ2∂µρ+ g3 ρ3∂µρ∓ . . .

)︁2
.

To first order, this Lagrangian equals the choice of example 135, which we argued to be
analogous to QCD. Conversely, for the present case, the analogue to the Parke-Taylor formula
(example 138) has the particularly simple form

|Vn|2 = g2n−4
n∑︂
i=1

(︂
p
i
· p
i

)︂2
.

The rough qualitative analogy between field diffeomorphisms and gauge theory is probably
of little help in practice, but it is pleasing to see that both the QCD-analogue and the gravity-
analogue correspond to particularly simple, natural choices of diffeomorphisms – the first to
a quadratic function, the second to an exponential one.

5.3.2. Correlation functions of the exponential diffeomorphism

Lemma 82 ([573]). Let ρ(x) be an exponential diffeomorphism (def. 118), for a fixed
u ∈ N, of a free field ϕ with propagator GF (z) in position space. Assume that tadpoles
vanish. Then, the connected full two-point function (def. 20) of ρ in position space is

Ḡ2(z) =
1

λ
Hu,1(λ

2GF (z)),

where Hu,1 is the hyperbolic function (def. 120).
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5.3. Exponential diffeomorphism

Example 143: Exponential superpropagator.

Consider the massless theory with offshell variable s = p2, its propagator is eqs. (1.26)
and (2.49). One obtains the same functions as in example 140. Especially, for u = 1,
the resulting function is known as the exponential superpropagator,

Ḡ2(z) = λ−3
(︂
eλ

2GF (z) − 1
)︂

= λ−2

(︃
exp

(︃
iΓ(1− ϵ)λ2

(z2)1−ϵ4π2−ϵ

)︃
− 1

)︃
= λ−2

(︃
e
i λ2

z2(2π)2 − 1

)︃
+O(ϵ).

The superpropagator in position space is finite in the limit ϵ→ 0. But, in stark contrast
to the free propagator GF (eq. (1.26)), or the perturbative 2-point function of any
renormalizable theory, this function has an essential singularity at z2 = 0 and it is
not a tempered distribution [577]. Qualitatively, the essential singularity allows to add
terms of the form (∂µ∂

µ)δ(z). In a Fourier transform to position space (eq. (1.2)), these
terms become summands ∝ (p2)n. Consequently, the superpropagator in momentum
space allows the addition of an arbitrary power series f(p2), it is unpredictive. The
diffeomorphism is a non-renormalizable theory (theorem 75), the non-predictive Fourier
transform is exactly what is expected in such a case ([477], section 2.3.4). We know the
amplitude of multiedges from lemma 29. The infinitely many free constants correspond
to the freedom to add finite terms into the counterterm of each M (l). Equivalently, the
overall counterterm is not a constant, but a power series in p2, see example 139.

By a a field diffeomorphism, Liouville theory (example 93) can be turned into a
theory with polynomial interaction, but with the exponential superpropagator as 2-
point function. Intuitively, 4-dimensional Liouville theory can be rendered predictive if
one succeeds to remove the ambiguity from the superpropagator. Various prescriptions
with conflicting results have appeared in the literature [545, 578–580].

The higher n-point functions of the exponential diffeomorphism (def. 118) in position space
are computable from theorem 72. In the case u = 1, none of the bn vanishes and the sum in
theorem 72 simplifies to

G̃
(n)

(x1, . . . , xn) =
1

λn

∑︂
l1,...,lk∈N0
tj≥1 ∀j

λ2l1 · · ·λ2lk

l1! · · · lk!
Gl1F (x1 − x2)G

l2
F (x1 − x3) · · ·G

lk
F (xn−1 − xn).

(5.18)

On the other hand, for u = 1, the connected 2-point function (lemma 82) is the exponential
superpropagator (example 143),

Ḡ2(z) :=
∞∑︂
l=0

λ2l

l!
GlF (z).

The sum eq. (5.18) amounts to all ways to connect the n spacetime points by superpropaga-
tors. This implies yet another interpretation of the exponential diffeomorphism (def. 118):
The latter is the unique choice of parameters bn for which the position-space correlation
functions factorize into products of superpropagators.
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5. Field Diffeomorphisms and Symmetries

Theorem 83 ([573]). Let ρ be an exponential diffeomorphism (def. 118) of a free

field. Assume further that tadpoles vanish. Then the connected Green functions Ḡ
(n>2)

(def. 20) of ρ in momentum space are given by a sum over all the following connected
graphs Γ:

1. Γ contains at most n vertices.

2. The j-valent vertices of Γ are metavertices Vj = −iλn−2(s1 + . . .+ sj).

3. There is at most one edge directly between any two metavertices.

4. Edges correspond to superpropagators in momentum space Ḡ2(s) (example 143).

5. Every metavertex cancels precisely one of the n external edges, the uncancelled
external edges are superpropagators Ḡ2(s).

6. Γ carries a symmetry factor (theorem 13) unity.

On first sight, theorem 83 appears to be very similar to Dyson-Schwinger equations (the-
orem 14). But that view is deceiving: theorem 83 does not describe fixed-point equations.
To compute Ḡn, assuming Ḡ2 is known, only finitely many integrals remain to be solved and
none of them involves Ḡn itself.

Example 144: Green functions of the exponential diffeomorphism.

For the 2-, 3- and 4-point function, the graphs obtained from theorem 83 are shown
below. The brackets ⟨k⟩ indicate a sum over n permutations (def. 17).

Ḡ
(2)

= G2 = Ḡ
(3)

= ⟨3⟩ +

Ḡ
(4)

= ⟨4⟩ + ⟨12⟩ + ⟨12⟩

+ ⟨3⟩ + ⟨6⟩ +

In a Dyson-Schwinger equation (example 36), the full 3-point function itself appears

inside the integrals of Ḡ
(3)

, in the present case, it does not.
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Summary of section 5.3.

• If the parameter of a diffeomorphism are chosen to be powers of one constant,
then the diffeomorphism simplifies considerably and becomes a hypergeometric
function. In the simplest such case, where the transformation is an exponential
function, the resulting Lagrangian is qualitatively reminiscent of quantum gravity
(section 5.3.1).

• In position space, the correlation functions of the exponential diffeomorphism fac-
torize into superpropagators. The superpropagator is not a tempered distribution
and, in momentum space, it requires infinitely many renormalization conditions.
Once the superpropagator is fixed, the higher correlation functions in momentum
space are given by finitely many integrals (section 5.3.2).
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5.4. Divergences of field diffeomorphisms

In this section, we extend the formalism of the connected perspective (section 5.2.4) to incor-
porate counterterms. We concentrate on the combinatorial properties and skip questions of
physical interpretation. Moreover, the general proofs of the statements in the present section
are rather tedious, but unilluminating combinatorial exercises. Instead of reproducing them
here, we generally refer to the original article [573].

5.4.1. Metacounterterms

The connected perspective (theorem 77) is based on metavertices which do not cancel adja-
cent internal edges. For a consistent treatment of divergences in the connected perspective,
we need to define metacounterterms Ck which share the combinatorial properties of metaver-
tices: they absorb all possible internal cancellations and appear in graphs without changing
the graph topology. For brevity and concreteness, we only consider metacounterterms for the
case that the underlying field (def. 116) is a free field, we work in dimensional regularization
(section 2.3.3) and Minimal Subtraction (def. 108), we assume that the divergent part of a
1-loop multiedge (example 86) is independent of momenta, and we assume the vanishing of
tadpoles (section 5.1.4).
Metacounterterms can be classified by three integers j, k, l corresponding to the graphs

they arise from. A metacounterterm C
(l)
n,k cancels the superficial divergence of graphs with

• n external edges,

• k ≤ n external edges offshell (which implies precisely k metavertices), and

• l loops.

A graph with n external edges can not have more than n external edges offshell, consequently
we define

C
(l)
n,k>n := 0 ∀n, k, l.

Theorem 84 ([573]). Consider a diffeomorphism (def. 116) of a free field. Assume that

tadpoles vanish. Then, all connected Green functions Ḡ
(n)

(def. 20) can be rendered
finite if metacounterterms are included according to the following rules:

1. Construct the graphs of the connected perspective according to theorem 77.

2. Proceed according to the BPHZ renormalization algorithm (theorem 32), recur-
sively replacing divergent subgraphs γ ⊂ Γ by their corresponding metacountert-
erm which subtracts the divergence. Finally, remove the superficial divergence.

3. The metacounterterm Cn,k is inserted in place of a graph on k metavertices, it
cancels exactly k out of its n adjacent edges simultaneously.

4. Neither metavertices nor metacounterterms cancel internal edges of the graph.

5. There are neither internal metavertices nor internal metacounterterms.
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5.4. Divergences of field diffeomorphisms

In terms of cancellations, the only difference between metavertices and metacounterterms
is that the former, by eq. (5.14), cancel exactly one of their adjacent external edges, while
metacounterterms Cn,k cancel k ≤ n adjacent external edges.

Example 145: Metacounterterm in the 3-point-function.

The requirement of not cancelling internal edges automatically selects the correct parts
of the metacounterterms. Consider the three-loop graph Γ1:

Γ1 =

1

2

γ Γ′
1 =

(2)

Γ2 =

does not
exist

γ

Γ1 has a divergent subgraph γ ⊂ Γ1. This subdivergence is removed by the coun-

terterm graph Γ′
1 where a metacounterterm C

(2)
4,2 (indicated by a crossed-out vertex) is

inserted into the cograph Γ1
γ . On the other hand, the graph Γ2 amounts to a different

orientation of γ in the same cograph. However, Γ2 is not present in the connected per-
spective since it has an internal metavertex. This restriction is automatically respected

by the metacounterterm C
(2)
4,2 : When cancelling two edges, only those graphs contribute

to C
(2)
4,2 where the two cancelled edges are incident to two distinct metavertices, see the

following figure:

(2)

= C
(2)
4,2 =−R̂ + +

does not
exist

If we label the edges of C
(2)
4,2 as 1, 2, 3, 4, then the graphs shown in the above figure are

proportional to sums of two external momenta, that is, terms such as s1+2, but not to
sj where j ∈ {1, 2, 3, 4}. Phrased differently: The cancellations of adjacent edges, which

are caused by C
(2)
4,2 , stem from metavertices of the underlying graphs, but not from the

amplitudes F [Γ] of the graphs themselves, because the latter always depend on sums
si+j and not on individual si.

5.4.2. Metacounterterms for less than 3 edges offshell

If all external edges are onshell, i.e. k = 0 in C
(l)
n,k, then the amplitudes of the connected

perspective vanish, consequently there is no divergence.

C
(l)
n,0 = 0 ∀n, l ⇒ Cn,0 = 0. (5.19)

If only one external edge is offshell, the amplitude is supported on graphs with a single
metavertex. Such graphs are tadpoles and we assume them to vanish. We therefore have

C
(l)
n,1 = 0 ∀n, l ⇒ Cn,1 = 0. (5.20)
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Graphically, these two identities are shown in fig. 5.6.

... = 0
... = 0

Figure 5.6.: The metacounterterms Cn,k for connected amplitudes vanish identically if k = 0
or k = 1, i.e. zero or one external edge is offshell.

As discussed in section 5.2.6, the 2-point-function n = 2 is supported on l-loop multiedge
graphs M (l)(s) which have no subdivergence and therefore do not require metacounterterms
for subdivergences. Consequently, to render the 2-point function finite, all that is needed is
the counterterm C2,2. The l-loop metacounterterm for the 2-point-function is the divergent

part −M (l)
divof M

(l),

C
(l)
2,2(s) = −(−ibl+2s)

2M
(l)
div(p

2)

(l + 1)!
= b2l+2s

2M
(l)
div(p

2)

(l + 1)!
. (5.21)

For n > 2 external edges, the metacounterterm with k = 2 offshell edges still represents
the superficial divergence of a graph on 2 metavertices i.e. a multiedge. The only difference
to the case n = 2 in eq. (5.21) is that for n > 2, there are multiple possible orientations of
the 2-vertex multiedge.
With n = 3 external edges and k = 2, one of the metavertices is adjacent to one external

edge and the other one to the remaining two, see fig. 5.7, and there are three ways to choose
which two edges are offshell. The l-loop metacounterterm reads

C
(l)
3,2 =

bl+2bl+3

(l + 1)!

(︂
s1(s2 + s3)M

(l)
div(s1) + s2(s1 + s3)M

(l)
div(s2) + s3(s1 + s2)M

(l)
div(s3)

)︂
. (5.22)

(l)
= −R

(l)
+

(l)

Figure 5.7.: Metacounterterm C
(l)
3,2 according to eq. (5.22). For the indicated orientation of

cancelled edges, only two graphs contribute.

With n = 4 external edges and k = 2 metavertices, two different configurations of multi-
edges are possible: Either each metavertex is adjacent to two external edges, or one of them
to three and one to only one external edge. In the former case, the multiedge depends on a
sum offshell variable si+j . There are six possibilities to choose two out of four edges offshell,
each of them contributes four graphs as shown in fig. 5.8; the sum can be written as

C
(l)
4,2 = ⟨4⟩ · bl+2bl+4s1(s2 + s3 + s4)

M
(l)
div(s1)

(l + 1)!
+ ⟨3⟩ · b2l+3(s1 + s2)(s3 + s4)

M
(l)
div(s1+2)

(l + 1)!
.

(5.23)

As expected, C
(l)
4,2 again cancels exactly two out of its four external edges. Observe that

M
(l)
div(s1) in general is a monomial in s1, and consequently the edge e1 gets cancelled multiple

times.
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(l) = −R
(l)

+
(l)

+ (l) + (l)

Figure 5.8.: Metacounterterm C
(l)
4,2 according to eq. (5.23) for one of six orientations.

Computing the higher valent metacounterterms, this pattern continues:

C
(l)
5,2 = ⟨5⟩ · bl+2bl+5s1(s2 + s3 + s4 + s5)

M
(l)
div(s1)

(l + 1)!
(5.24)

+ ⟨10⟩ · bl+3bl+4(s1 + s2)(s3 + s4 + s5)
M

(l)
div(s1+2)

(l + 1)!
.

Lemma 85 ([573]). The l-loop metacounterterm C
(l)
n,k with n edges, two of which are

cancelled, is

C
(l)
n,2 =

1

2

n−1∑︂
j=1

⟨Kj⟩ bl+1+jbl+n+1−j(s1 + . . .+ sj)(sj+1 + . . .+ sn)
M

(l)
div(s1+...+j)

(l + 1)!
,

where Kj =
(︁
n
j

)︁
, and ⟨Kj⟩ indicates a symmetric sum over permutations (def. 17).

Example 146: 1-loop metacounterterms for the massless theory.

Assume that M
(1)
div is independent of momenta, this is true for example in D = 4 − 2ϵ

dimensions for quadratic propagators (example 86). Then, the explicit prefactors in
lemma 85 constitute the only momentum-dependence. The product (s1+. . .+sj)(sj+1+
. . .+ sn) contains j · (n− j) summands. There are Kj =

(︁
n
j

)︁
such terms and the sum is

symmetric. The elementary symmetric polynomial of order two in n variables is

E2(s1, s2, . . . , sn) =

⟨︃
n(n− 1)

2

⟩︃
s1s2,

where ⟨j⟩ denotes permutations (def. 17). E2(s1, . . . , sn) has
n(n−1)

2 factors, therefore

⟨Kj⟩ (s1 + . . .+ sj)(sj+1 + . . .+ sn) = 2

(︃
n− 2

j − 1

)︃
E2(s1, . . . , sn)

and

C
(1)
n,2 = E2(s1, . . . , sn)M

(1)
div

n−1∑︂
j=1

(︃
n− 2

j − 1

)︃
bj+2bn−j+2.

If we further restrict ourselves to the exponential diffeomorphism (def. 118) for u = 1,
then bn+2 = λn. In D = 4 − 2ϵ and for s = p2, the multiedge is the only divergent
1-loop graph, there are no divergent 1-loop graphs which involve k ≥ 3 metavertices.
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Therefore,
∑︁

k C
(1)
n,k = C

(1)
n,2 actually represents the complete 1-loop counterterm. We

can give its amplitude explicitly since we know the divergent part of the multiedge from
example 89:

C(1)
n ≡ C(1)

n,2 = −λn 2n−3

(4π)2
1

ϵ
E2 (s1, . . . , sn) .

For k > 2 external edges offshell, the amplitudes in the connected perspective are no
longer based on multiedge graphs exclusively. For k = 3, the new topology is triangle
graphs, where each of the three internal edges is replaced by a multiedge. Additionally,
there are contributions of two adjacent multiedges, see fig. 5.9 for the topology at 2-loop
order. The general principle of metacounterterms works as above, but from k = 3 on, it is
necessary to subtract subdivergences. A more detailed exposition can be found in [573]

ΓA =

s1

s2

ΓB =

s1

s2

Figure 5.9.: The two topologies of two-loop graphs contributing to the connected three-vertex
correlation function where all three edges are cancelled. Each graph has three
different permutations s1 → s2 → s3, they are not indicated.

Example 147: 3-point 2-loop metacounterterm for the massless theory.

Consider the massless theory with s = p2 in D = 4 − 2ϵ. At two loops, the metacoun-

terterm C
(2)
3,3 involves the graph topologies shown in fig. 5.9. Divergent parts of the

multiedges are derived in lemma 29, the divergent part of the dunce’s cap is quoted in
example 87. Together, and including permutations and symmetry factors, they give rise
to the metacounterterm

C
(2)
3,3 = is1s2s3

3

4(4π)4

(︃(︁
b3b

2
4 + b23b5

)︁ 1

ϵ2
− b3b24

1

ϵ

)︃
.

5.4.3. 1PI counterterms

The metacounterterms C
(l)
n,k (section 5.4.1) cancel the divergences of connected amplitudes,

considered in the connected perspective. If we want to use the ordinary perspective, that is,

the Feynman rules lemma 73, then we need 1PI counterterms c
(l)
n,k. Their indices n, l, k have

the same meaning as for the metacounterterms in section 5.4.1. The sum c
(l)
n :=

∑︁n
k=0 c

(l)
n,k

represents the l-loop counterterm of the 1PI n-point function, that is, the l-loop order of the
conventional counterterm Z(n) in the sense of defs. 89 and 104.
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We know the metacounterterms from section 5.4.2. At the same time, being counterterms

for connected amplitudes, they correspond to all possible trees of 1PI counterterms c
(l)
n,k and

1PI vertices ivn (lemma 73). Extracting the 1PI counterterms is a question of combinatorics,
namely a Legendre transform (def. 53), they do not require any new evaluation of integrals.
In the present section, we demonstrate with a few explicit examples how the 1-loop 1PI

counterterms can be obtained. Firstly, for the 2-point function, the 1PI one-loop amplitude
and the amputated connected amplitude (eq. (5.21)) are identical, therefore

C
(1)
2 = C

(1)
2,2 = b23s

2M
(1)
div

2
= c

(1)
2 . (5.25)

For the 3-point function, the connected 3-point divergence is the product of the 1PI 3-point

divergence c
(1)
3 and three adjacent connected 2-point divergences, see fig. 5.10. To one-loop

order, this product can contain only one divergent term in total, either c
(1)
3 or one of the

propagator counterterms c2,2, consequently

C
(1)
3 = c

(1)
3 + ⟨3⟩ iv3

i

s1
c

(1)
2,2(s1). (5.26)

Here, ⟨3⟩ denotes 3 permutations (def. 17).

First consider the case of n = 3 where all external edges are onshell, i.e. C
(1)
3,0 . Then the

metacounterterms C
(1)
3 and C

(1)
2 vanish due to eq. (5.19), and eq. (5.26) simplifies to

0 = c
(1)
3,0 + 0. (5.27)

Now let one of the edges be offshell. The metacounterterm C
(1)
3,1 vanishes due to eq. (5.20),

but one of the terms c
(1)
2,2 in eq. (5.26) remains, so

C
(1)
3,1 = 0 = c

(1)
3,1 + ⟨3⟩b3(−is1)

i

s1
c

(1)
2,2(s1). (5.28)

This implies that

c
(1)
3,1 = −⟨3⟩ b3c(1)

2,2(s1) = −b33
(︁
s2

1 + s2
2 + s2

3

)︁M (1)
div

2
. (5.29)

For c
(1)
3,2, the metacounterterm C

(1)
3,2 does not vanish, see eq. (5.22). The construction of

c
(1)
3,2 is shown in fig. 5.11, it yields

c
(1)
3,2 = C

(1)
3,2 − ⟨3⟩ (−ib3s1)

i

s2
c

(1)
2,2(s2)− ⟨3⟩ (−ib3s2)

i

s1
c

(1)
2,2(s1)

= ⟨6⟩ b3
(︁
b4 − b23

)︁
s1s2

M
(1)
div

2
= b3

(︁
b4 − b23

)︁M (1)
div

2
· 2E2 (s1, s2, s3) . (5.30)

To streamline notation, we assumed that M
(1)
div is independent of momenta.

Finally, C
(1)
3,3 = 0 as there is no divergent connected graph that cancels three external

edges at one loop (example 146), therefore

c
(1)
3,3 = 0. (5.31)
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eq. (5.25):
(1)

=
(1)

= b23s
2M

(1)
div
2

eq. (5.28):
(1)

⏞ ⏟⏟ ⏞
=0

=
(1)

+
(1)

+ (1)

⏞ ⏟⏟ ⏞=0 +

(1)⏞ ⏟⏟ ⏞=
0

eq. (5.29):
(1)

= −
(1)

= −b3 · b23s2
1
M

(1)
div
2

Figure 5.10.: Graphical representation for the computation of c
(1)
3,1. The perpendicular line

indicates an external edge which must not be cancelled by the adjacent vertex.

−R + =
(1)

=
(1)

+
(1)

+

(1)

Figure 5.11.: Graphical notation for the computation of c
(1)
3,2. The metacounterterm has been

taken from fig. 5.7.

This finishes our survey of 3-point 1PI counterterms at 1 loop order.
The higher n-point 1PI counterterms can be constructed similarly. For n = 4 and k = 0,

the mechanism is depicted in fig. 5.12. The resulting 1PI counterterm is

c
(1)
4,0 = −⟨3⟩c(1)

3,1

i

s1+2
(−ib3s1+2) = −b43

(︁
s2

1+2 + s2
1+3 + s2

1+4

)︁M (1)
div

2

1

ϵ
. (5.32)

Observe that this 1PI counterterm does not vanish, even if the corresponding metacountert-

erm C
(1)
4,0 does (eq. (5.19)). With one external edge offshell, the metacounterterm C

(1)
4,1 still

vanishes (eq. (5.20)) and we obtain the 1PI counterterm as shown in fig. 5.13. Equation (5.29)
implies that the second and third graph cancel and therefore

c
(1)
4,1 = ⟨4⟩

(︁
b4 − 3b23

)︁
b23
1

2
M

(1)
divs

2
1 − ⟨4⟩ 2b23

(︁
b4 − b23

)︁ 1
2
M

(1)
div (s1+2 + s1+3 + s1+4) s1.

This is the first instance of a 1PI counterterm which cancels a single of its external edges
twice, as indicated by a double arrow in fig. 5.13.

(1)
= 0 =

(1)
+ ⟨6⟩

(1)

+ ⟨3⟩
(1)

Figure 5.12.: Construction of the onshell 4-point metacounterterm from metavertices 1PI

counterterms. The metacounterterm C
(1)
4,0 vanishes, see fig. 5.6.
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(1)
= 0 =

(1)
+⟨3⟩

(1)

+ ⟨3⟩

(1)

+ ⟨3⟩ (1)

(1)
= 0 =

(1)
+ ⟨4⟩

(1)
+ ⟨3⟩ (1)

Figure 5.13.: 4-valent metacounterterm with one external leg offshell, which can be cancelled
once or twice, indicated by arrows. Edges with perpendicular lines must not
be cancelled.

The structure of higher c
(1)
n,k is restricted by two mechanisms. Firstly, by power-counting,

the one-loop 1PI counterterm c
(1)
n is proportional to two powers of offshell variables, hence,

five different dependencies are possible: Square of an external offshell variable s2
j , square of an

internal one s2
i+j+..., two different external ones sisj , two different internal ones si+j+...sk+l+...

or a mixture of both types sjsk+l+....

Secondly, since M
(1)
div is independent of momenta by assumption, the metacounterterms

C
(1)
n,k are polynomials in only the external offshell variables sj , but not in internal ones

si+j+.... Both observations together severely restrict the structure of c
(1)
n,k. A rigorous proof

requires a tedious recursive construction of trees, we skip the technical details and merely
quote the results from [573].

Lemma 86 ([573]). Assume that M (1) is the only divergent 1-loop graph and that

its divergent part M
(1)
div is independent of momenta. The summand in c

(1)
n , which is

proportional to a square of an external offshell variable, is

+(n− 1)!an−2b
2
3

M
(1)
div

2

(︁
s2

1 + . . .+ s2
n

)︁
,

where an is given by eq. (5.6).

Lemma 87 ([573]). Assume that M (1) is the only divergent 1-loop graph and M
(1)
div

is independent of momenta. In the 1PI counterterm c
(1)
n , the contributions proportional

to s2
p, the square of the offshell variable of some partition p of the external momenta, is

b23
M

(1)
div

2

1

2

n−2∑︂
k=2

∑︂
p∈Q(n,k)

k!ak−1an−k−1(n− k)!s2
p

where Q(n,k) denotes the set of all possibilities to choose k out of n external legs.
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Lemma 88. Assume that M (1) is the only divergent 1-loop graph and that its

divergent part M
(1)
div is independent of momenta. If bn = λn−2 then c(1) does not contain

any summands which are proportional to se ·sf , where e ̸= f can be external or internal
offshell variables.

Theorem 89. For the exponential diffeomorphism (def. 118), bn = λn−2, the 1-

loop counterterm c
(1)
n has the same structure as the 1PI vertex vn (lemma 73), up to a

non-linear replacement of the offshell variable (def. 8),

c(1)
n = vn

⃓⃓⃓
se→se·

M
(1)
div
2

λ2se

.

Proof. Add the contributions of lemmas 86 and 87 to obtain

c(1)n = (n− 1)!an−2b
2
3

M
(1)
div

2

(︁
s21 + . . .+ s2n

)︁
+ b23

M
(1)
div

2

1

2

n−2∑︂
k=2

∑︂
p∈Q(n,k)

an−k−1ak−1(n− k)!k!s2p

=
1

2

n−2∑︂
k=1

∑︂
p∈Q(n,k)

an−k−1ak−1(n− k)!k!s2pb23
M

(1)
div

2
.

This equals the vertex lemma 73 up to the claimed replacement of se. Given bn = λn−2, lemma 88
guarantees the absence of other terms.

Theorem 89 asserts that if we set

isR := is− (is)2b23
M

(1)
div

2
, (5.33)

then

ivR,n :=
1

2

n−1∑︂
k=1

an−k−1ak−1(n− k)!k!
∑︂

p∈Q(n,k)

isR,p = ivn + c(1)
n

is a “renormalized” vertex in the sense that using ivR,n in place of ivn, all one-loop di-
vergences are removed from the theory. The “renormalization” eq. (5.33) is a divergent
non-linear rescaling of a quantity, much like the rescaling α = α0 + O(α2

0) in conventional
renormalization (eq. (2.33)), only that it is not a rescaling of a coupling parameter, but, in
a certain sense, a non-linear rescaling of spacetime. This finding is exciting, but it can not
be generalized to higher loop orders, see example 148. The failure at higher loop order is
plausible from the involved Feynman graphs: From two loops on, there are divergent graphs
which are not of propagator type, such as the dunce’s cap (fig. 5.9). The divergence of non-
propagator graphs can not possibly be cancelled by modifications of the propagator alone,
because, even in ordinary renormalization, they require the presence of vertex counterterms.
Interestingly, this finding is reminiscent of quantum gravity (section 5.2.1), uncoupled to

matter: All 1-loop divergences can be removed by suitable redefinitions [581], but 2-loop
divergences, at least in some formulation of gravity, require counterterms which are not
present in the original Lagrangian [582, 583].
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Example 148: 2-loop 1PI counterterms of the exponential diffeomorphism.

Consider the exponential diffeomorphism (def. 118) with u = 1, bn = λn−2, of a massless
field with s = p2 in D = 4−2ϵ dimensions. Then, the 1PI 2-loop counterterms are [573]

c
(2)
2,2 =

is3

24(4π)4
λ4

(︃
1

ϵ
− 6

1

ϵ2

)︃
,

c
(2)
3,1 =

i
(︁
s3

1 + s2
2 + s2

3

)︁
24(4π)4

λ5

(︃
6
1

ϵ2
− 1

ϵ

)︃
,

c
(2)
3,2 = −

2i
(︁
s2

1s2 + s2
1s3 + s2

2s1 + s2
2s3 + s2

3s1 + s2
3s2

)︁
4(4π)4

λ5 1

ϵ2

c
(2)
3,3, =

3is1s2s3

4(4π)4
λ5

(︃
1

ϵ2
− 1

ϵ

)︃
.

Their tensor structure is not proportional to the vertext iv3 = 2ia2(s1 + s2 + s3) (exam-
ple 136). This shows that, contrary to the 1-loop counterterms in theorem 89, the 2-loop
counterterms can not be generated by a rescaling of the momenta in the bare vertices

like eq. (5.33). Compare example 144: The 3-point function Ḡ
(3)

involves a triangle
graph with superpropagators as edges. From 2 loops on, this graph is divergent, and
requires a renormalization condition, even if the superpropagators themselves are finite
(by a non-linear rescaling of s).

We conclude that it is not possible to renormalize a field diffeomorphism by rescaling the
offshell variable, not even in the special case of an exponential diffeomorphism (def. 118).
Instead, we need 1PI counterterms of all valences n ≥ 2.

5.4.4. Ward identities of the field diffeomorphism

The non-vanishing metacounterterms C
(l)
n (section 5.4.1) are proportional to at least two

different external offshell variables sj . Conversely, the 1PI counterterms of the same order
can be proportional to inner offshell variables si+j , too, see for example eq. (5.32). This
means that the 1PI counterterms do not necessarily vanish in the onshell limit sj → 0 of the
external edges. Consequently, there must be identities amongst the 1PI counterterms which
ensure that they do not contribute to the S-matrix (def. 18) once all graphs are added up.

This behaviour is completely analogous to the 1PI vertices ivn lemma 73 which, unlike
the metavertices iVn (eq. (5.14)), contain such internal offshell variables in order to fulfil
eq. (5.13). Consequently, there is an analogue of eq. (5.13) for counterterms, the following
Ward identity (def. 115):
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Theorem 90. Consider a diffeomorphism (def. 116) of a free field. Let c
(l)
n :=

∑︁n
k=0 c

(l)
n,k

be the l-loop n-valent 1PI counterterms and let

Γ2 := −is−
∞∑︂
l=1

c
(l)
2 (s), Γn≥3 := ivn +

∞∑︂
l=1

c(l)
n ,

and assume that tadpoles vanish (section 5.1.4). Then, for n ≥ 2,

1.

[︃
Γn

1

Γ2
(−is)

]︃
only s offshell

= ivn

⃓⃓⃓
only s offshell

,

2.
∑︂

Γj⋆Γk=Γn

[︃
Γj

1

Γ2
Γk

]︃
onshell

= −Γn
⃓⃓⃓
onshell

,

where the product ⋆ implies that j+k = n+2 and the sum extends over all orientations
of the involved graphs.

Proof. First note that

1

Γ2
=

i

s− ic2
=
i

s

∞∑︂
j=0

(︃
i

s
c2

)︃j

is the non-amputated chain of all 1PI 2-point counterterms, which equals the 2-point metacountert-
erm. 1

Γ2
· (−is) is the same chain where the outermost propagator is removed.

For any n ≥ 3, the connected n-point correlation function vanishes if not more than one external
edge is offshell due to theorem 77. Consequently, its divergent part vanishes and Cn,0 = Cn,1 = 0, see
eqs. (5.19) and (5.20). It suffices to consider connected graphs where all internal edges are cancelled
since the remaining graphs are products of the former type.
First prove point 1. Use induction on n. For n = 2, the statement becomes (−is) = iv2 which is

true. For n = 3, since c2 vanishes onshell, the connected graph where only s is offshell is Γ3
1
Γ2

(−is)
where Γ2 is the counterterm of edge s. But C3,1 = 0 and hence only the regular term survives of this
sum, which is iv3 as claimed in point 1. Now assume the claim holds for j < n. Then, in the sum of
all connected graphs, all divergent contributions cancel where s is adjacent to a j-valent counterterm,
either directly or via a string of propagator counterterms. The only non-vanishing terms are those
where a n-valent counterterm is involved. But again, the sum over all divergent terms has to vanish
and the only remaining term is ivn. This proves point 1.
For point 2, the case n = 2 reads Γ2|onshell = −Γ2|onshell which is true since Γ2|onshell = 0. The

same holds for n = 3 since, by eq. (5.19), Γ3|onshell = 0.
Assume point 2 holds for j, k < n. The onshell connected amplitude can only be proportional to

powers of internal momenta se. If there is only one such internal momentum, corresponding to one
internal edge e, then all terms proportional to se arise from Γj

1
Γ2(e)

Γk. Since these terms are not

present in the end result, we know Γn must absorb them. If there is more than one edge, pick one and
call it e. Then, there are two subtrees Tj , Tk, each of which has valence < n and only one external
edge offshell, namely e. But by eq. (5.20), such trees do not contain divergent terms. In fact, as a
consequence of point 1, such trees do not even contain powers of internal momenta since they are
made from tree-level vertices ivk and such trees evaluate to bj by theorem 76. Therefore, the only
relevant contribution stems from trees with exactly one internal multi-cancelled edge, which proves
point 2.

The compatibility of theorem 90 with locality is expressed by the fact that such identifications
between different n-point-functions represent Hopf ideals in the core Hopf algebra [547, 548].
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5.4. Divergences of field diffeomorphisms

Note also that eq. (5.13) is the tree-level version of statement 2. Technically, only statement
1 of theorem 90 requires the vanishing of tadpoles, i.e. Cn,1 = 0, whereas statement 2
holds regardless. Furthermore, theorem 90 is compatible with BCFW relations [116, 117],
in the sense that the overall divergence of a connected graph is given by products of onshell
subtrees, each of which vanishes.
The Ward identities of theorem 90 play exactly the same role as they do in renormalizable

theories: They implement a symmetry. In the case of field diffeomorphisms, the symmetry
in question is invariance of the S-matrix (theorem 78) under field diffeomorphisms. Point 2
of theorem 90 ensures that, even at loop level, no counterterms arise which could alter the
S-matrix.
Theorem 90 allows for a generalization of the lemmas at the end of section 5.4.3. Point 1

of theorem 90 can equivalently be written in the form

Γn

⃓⃓⃓
only s offshell

=

[︃
ivn

i

s
Γ2(s)

]︃
only s offshell

.

Upon expanding the series c
(l)
n , this implies

c(l)
n

⃓⃓⃓
only s offshell

=
[︂
vns

−1c
(l)
2 (s)

]︂
only s offshell

.

Consequently, the part of c
(l)
n proportional to powers of a single offshell variable is always

given by the 2-point counterterm, lemma 86 holds to all orders in perturbation theory.
Similarly, inserting point 1 of theorem 90 into point 2 produces

−Γn
⃓⃓⃓
onshell

=
∑︂

Γj⋆Γk=Γn

[︃
ivn

i

s
Γk

]︃
onshell

=
∑︂

Γj⋆Γk=Γn

[︃
ivn

i

s
Γ2(s)

i

s
ivk

]︃
onshell

and thereby also lemma 87 holds to all orders.
It is lemma 88 which fails at higher than one-loop order: To all orders, those parts of

the counterterms which have the same momentum dependence as the vertices ivn can be
obtained by replacing −is → Γ2(s). But starting from two-loop order, there are additional
kinematic form factors in the counterterms which are not obtained in this way.
In renormalizable theories, by lemma 33, each divergent amplitude has one single tensor

structure and renormalization amounts to determining the scalar prefactor Z of this tensor.
In the present case, on the other hand, a single amplitude obtains at higher loop order
infinitely many additional tensor structures, each of which requires their own Z factor. Not
all of these terms can be constructed recursively from theorem 90, even if an infinite family
can. It is this effect which ultimately renders the theory non-predictive despite the validity
of theorem 90.
This negative result for field diffeomorphisms does not directly translate to gravity (sec-

tion 5.2.1). The latter has a highly non-trivial tensor structure and we would need a dedicated
examination to find out if, for a fixed n-graviton amplitude, the number of independent ten-
sors can grow in a similarly uncontrolled way as it can for scalar fields. Such examination is
beyond the scope of the present thesis.
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5. Field Diffeomorphisms and Symmetries

Summary of section 5.4.

1. Divergences of connected amplitudes of a field diffeomorphism can be cancelled by
metacounterterms, which work analogously to metavertices (section 5.4.1). They
are computed from Feynman graphs in the connected perspective (section 5.4.2).

2. Ordinary counterterms, which cancel divergences of 1PI graphs, can be recon-
structed from the metacounterterms by a Mellin transform (section 5.4.3). For an
exponential diffeomorphism, and only at 1-loop order, all counterterms amount to
a non-linear rescaling of the offshell variable (theorem 89).

3. A field diffeomorphism satisfies infinitely many Ward identities, which ensure that
counterterms do not alter the S-matrix. These identities are not sufficient to
render the theory predictive, as another infinite class of counterterms remains
undetermined (section 5.4.4).
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6. Conclusion

6.1. Summary

We have examined the high-order perturbative renormalization of quantum field theory.
Besides an extensive review of known concepts, we have reached the following results:

1. We extended the differential-equation version of Dyson-Schwinger equations to incorpo-
rate ϵ-dependence (section 3.3.4). For non-linear DSEs, the resulting equation is com-
plicated, but we found an explicit formula for the order-ϵ-coefficient of the anomalous
dimension of a linear DSE (theorem 47). These results are new and so far unpublished.

2. We examined three popular example DSEs for an undetermined exponent w ∈ Z of the
invariant charge Q, and derived the leading asymptotic behaviour of the coefficients of
their anomalous dimensions (sections 3.4.1, 3.4.3 and 3.4.4). These results have been
published in the author’s article [480].

3. We found two seemingly exact solutions of non-linear toy model DSEs (section 4.2.4)
and two tentative exact values for the Stokes constant of the D = 4 multiedge DSE
(section 3.4.1), all of which are contained in [480].

4. We computed the Stokes constant of the aysmptotic growth of series coefficients as a
function of w ∈ Q. The result is a smooth, oscillating function, singular as w → 0−.
We gave a tentative explanation (section 3.4.2). This phenomenon is published so far
only as a footnote in [480].

5. We examined counterterms and renormalization group equations in detail, for different
renormalization conditions, including the full ϵ-dependence, and relating all quantities
to the Hopf algebra formulation of renormalization (sections 3.2, 4.1 and 4.3). Although
these statements are in principle known, the author is not aware of an exposition at a
similar level of detail in the literature.

This study led us to the conclusion that Green functions in kinematic renormalization
and in Minimal Subtraction are equivalent, up to a different choice of renormalization
point δ(α, ϵ), which, in perturbation theory, is a power series in α and ϵ.

6. We derived multiple formulas to compute δ(α, ϵ) under the condition that the Green
function is known both in MOM and in MS. To compute the ϵ-independent part δ(α),
it is sufficient to know the renormalized Green functions for ϵ = 0 (sections 4.4.2
and 4.4.3). The case ϵ = 0 had been published in [480], the case ϵ ̸= 0 is new.

7. We computed the shifts δ(α) for the three non-linear example DSEs and examined
their power series coefficients. We found that the coefficients grow similarly to the
ones of the anomalous dimension. These results are contained in [480].

259



6. Conclusion

8. For a linear DSE, we gave an explicit relation between the solution in MS at ϵ = 0
and the solution in MOM at ϵ ̸= 0. Using the above result, this allows us to compute
the solution of a linear DSE in MS from the ϵ-dependent Mellin transform alone, in
a similar way as the MOM-solution can be found directly from the Mellin transform
(section 4.4.4). This result constitutes a central new contribution of the present thesis.

9. We examined the chain approximation and found that it does not arise from a Dyson-
Schwinger equation. Physically, this means that it violates the fundamental principle
of quantum mechanics, that all possible quantum processes must be summed. Con-
sequences of this shortcoming are that the chain approximation does not fulfil the
renormalization group equations and it has inequivalent solutions in different renor-
malization schemes (section 4.5.4). We conclude that the chain approximation is not a
valid model for combinatorial properties of QFT. Parts of this argument are contained
in [480].

10. We stated, skipping most of the proofs, the Feynman rules of a field diffeomorphism
in momentum space and in position space. A diffeomorphism constitutes a perturba-
tively non-renormalizable theory, but its S-matrix coincides with the underlying field
(section 5.2). These results have been published in [202].

11. There is exactly one choice of diffeomorphism parameters with remarkably pleasant
combinatorial properties, the exponential diffeomorphism (section 5.3). In this case,
some correlation functions of the diffeomorphism theory can be computed to all order.
This has been discussed in the author’s preprint [573].

12. We examined the structure of divergences of a field diffeomorphism, following the
preprint [573]. The outcome is that the divergences satisfy infinitely many Ward
identities, which ensure that there are no divergent terms in the S-matrix. However,
these identities still leave infinitely many divergences unconstrained. We conclude that
the diffeomorphism theory is truly unrenormalizable (section 5.4).

13. We included five remarks beyond the scope of the present thesis (sections 1.2.8, 1.3.9,
2.4, 3.2.4 and 5.2.1). They do not contain any new insights, but are perhaps useful for
future doctoral candidates, a they concern topics which are rarely discussed explicitly
in typical introduction courses.
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6.2. Outlook: Numerical integration of Feynman periods

6.2. Outlook: Numerical integration of Feynman periods

Apart from renormalization conditions and field diffeomorphisms, which have been presented
in the main part of the thesis, the author devoted significant time of his doctorate to a third
project, the numerical integration of Feynman periods. To keep the thesis at a reasonable
length, the present section contains only a short outlook. The detailed results, together with
a discussion of algorithms and implementation, are subject of an upcoming publication.

6.2.1. Symmetries of the period

The Feynman period P[Γ] (def. 96) is the coefficient of the logarithm of the scale and of
the first-order pole in ϵ (theorem 30), of a primitive (def. 86) Feynman amplitude. Equally,
P[Γ] = c0 is the first term of the Mellin transform (def. 101) of the graph,

FΓ (ρ) =
∞∑︂
j=0

cjρ
j−1.

As discussed in section 3.3, the Mellin transform is the input needed for Dyson-Schwinger
equations in order to compute the all-order perturbative Green function GR and inform a
resurgence analysis (section 2.1.2) of the non-perturbative properties (section 3.4).
To derive the full Green function, we need to know the entire series expansion of the

Mellin transform, for all (infinitely many) kernel graphs (def. 50) of the DSE in question.
Computing all of these series is beyond our current capabilities. The three examples discussed
in the main text – the multiedge (example 103) in D = 4 and D = 6, and the toy model
(example 102) – were based on the intuition that a good approximation to the DSE can be
obtained by considering the full Mellin transform of only a single kernel graph. The present
section follows the opposite approach: Include as many kernel graphs as possible, but only
the first coefficient of their Mellin transform. If the Mellin transform is truncated after c0,
then the DSE effectively becomes trivial, that is, its solution GR is merely a sum of the
primitive kernel graphs, without any insertions of divergent subgraphs.
We restrict ourselves to massless ϕ4 theory in D = 4 spacetime dimensions, and to the 4-

point function. The resulting amplitudes are then contributions to the β-function (def. 110)
of ϕ4 theory.
Computing the β-function to high loop order is relevant for conceptual questions of QFT,

such as the existence of renormalons, see [483]. Moreover, as mentioned in section 4.4.1, it is
believed that in Minimal Subtraction, the beta function is dominated by primitive graphs,
although a theoretical derivation of this result is still lacking [479]:

Since there are no citations given to substantiate these claims, their status is
uncertain. The second of the [historic papers claiming that the beta function is
dominated by primitive graphs] was written by the present author, but he recalls
only that there was a general belief in the correctness of the assertion at the time.

For further applications, and concrete values, of the β-function in ϕ4 theory, see [584–587].
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Definition 121. A n-edge-cut of a graph Γ (def. 24) is a set EC := {e1, . . . , en} ∈ EΓ

such that removing the edges EC , Γ is split into at least two connected components
(def. 22), where none of the components is a single vertex.

Lemma 91. In massless ϕ4 theory in D = 4 dimensions, a graph Γ is primitive if and
only if it is internally 6-edge connected (def. 22). That is, it has no k-edge-cut (def. 121)
with k < 6.

Proof. Let Γ = Γ1 ∪ Γ2 be a split into two connected components. By eq. (1.43), ϕ4 theory does not
contain graphs with an odd number of external edges. Therefore, all three graphs Γ,Γ1,Γ2 have an
even number of external edges, and there are no cuts with an odd number of edges.
By lemma 33, a superficially divergent graph of ϕ4 theory has 2 or 4 external edges. Assume that

Γ has a divergent subgraph γ. Then γ has 2 or 4 external edges, that is, γ is connected to Γ
γ with 2

or 4 edges. Consequently, Γ has a 2-cut or a 4-cut. Conversely, if Γ is 6-connected, then there is no
subgraph with less than 6 external edges, and therefore all subgraphs are convergent.

Definition 122. A completion of a graph Γ is the graph Γ′ = Γ ∪ v, where v is an
additional vertex and all external edges of Γ are incident to v, such that Γ′ does not
have any external edges. A decompletion of a completion Γ is obtained by removing any
vertex of Γ.

Every 4-point graph has a unique completion (def. 122). On the other hand, a single com-
pleted graph typically gives rise to multiple non-isomorphic decompletions.

Example 149: Wheel with spokes, completion.

Γ = K5 =

The graph Γ is called wheel on three spokes, its period is P[Γ] = 6ζ(3) [588] and its
completion is K5. In this particular case, all decompletions of K5 are isomorphic to Γ.

Definition 123. A n-vertex-cut of a graph Γ (def. 24) is a set VC := {v1, . . . , vn} ∈ VΓ

such that removing the vertices VC , Γ is split into at least two connected components
(def. 22), where none of the components is a single vertex.

The period P[Γ] (def. 96) is symmetric under certain operations on the graph Γ. Below,
we list the known symmetries, a precise description can be found in [193, 339, 341].

Completion: If Γ1 and Γ2 have the same completion Γ′, then P[Γ1] = P[Γ2].

Product: If Γ = Γ1 ∪ Γ2 is a 3-vertex cut (def. 123), then P[Γ] = P[Γ1] · P[Γ2].

Fourier: If Γ is a planar graph with planar dual Γ̃, then P[Γ] = P[Γ̃].
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6.2. Outlook: Numerical integration of Feynman periods

Extended Fourier: If the planar dual Γ̃ of a graph contains one vertex v of valence higher
than 4, construct the completion, remove v, and take the planar dual again. If the
result is a valid graph in ϕ4 theory, then its period coincides with P[Γ]. Repeat until
the resulting graph has either none or more than one vertex of higher valence.

Twist: If Γ has a 4-vertex cut (def. 123), then a pairwise exchange of the edges adjacent to
the cut vertices does not alter the period.

Fourier split: Assume that Γ has a 4-vertex cut Γ = Γ1 ∪ Γ2 (def. 123). Taking the planar
dual of one of the components, and reconnecting in a particular way, does not alter
the period, P[Γ] = P[Γ̃1 ∪ Γ2].

6.2.2. Numerical quadrature

The number of primitive graphs grows factorially (def. 58) with the loop number [194, 252].
There is a single period at 1 loop (the multiedge example 18), a single one at 3 loops (the
wheel with 3 spokes example 149), but there are already more than 13000 periods at 10 loops.
Even if by now, the periods of hundreds of graphs are known analytically [191, 339, 340,
342, 589, 590], a sensible study of the high-order asymptotics of periods requires significantly
more data. One therefore resorts to numerical calculation of Feynman periods.
The integral in def. 96,

P[Γ] =
∏︂
e∈EΓ

∞∫︂
0

dae a
νe−1
e

Γ(νe)
δ

⎛⎝1−
|EΓ|∑︂
e=1

ae

⎞⎠ 1

ψ2
, (6.1)

is of high dimensionality, the method of choice for numerical quadrature is a Monte Carlo
integration [591]. However, a direct Monte Carlo integration of eq. (6.1) is impossible because
the integral is generally infrared divergent (section 2.3.1). The divergences can be isolated by
splitting the integration domain into finitely many Hepp sectors [356], such that the integral
is free of divergences within each sector, and each of the sectors can be integrated with the
Monte Carlo algorithm. This sector decomposition [592–595] can be automated, but for a
given primitive ϕ4-graph Γ, it results in 2|EΓ| = 4|LΓ| sectors. Consequently, the numerical
computation of the period, for a single graph of 10 or more loops, requires the evaluation of
millions of sector integrals.
The magnitudes of the individual sector integrals vary significantly. Borinsky [596] has

achieved a breakthrough in computation efficiency by weighting each sector according to the
Hepp bound (def. 124), recently investigated by Panzer [193]. Using this weighting, a Monte-
Carlo integration concentrates the sampling to sectors which give the largest contributions
to the end result. The algorithm requires a table of Hepp bounds for all 4|LΓ| Hepp sectors.
This table, and not so much the actual computing time, is the limiting factor with regards
to loop number. Computing 18-loop ϕ4-periods requires slightly more than 1TB of RAM.
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Definition 124 ([193, 356]). Let Γ be a Feynman graph and σ a permutation of the
edges EΓ, and let the graph Gσk := {σ(1), . . . , σ(k)} be the first k edges in σ. Let Sn be
the symmetric group of all |EΓ|! permutations of EΓ. The Hepp bound of a Feynman
graph Γ is the rational function

H[Γ] :=
∑︂
σ∈Sn

1

ω(Gσ1 ) · · ·ω(Gσ|EΓ|−1)
,

where ω(Gσk) is the superficial degree of convergence (def. 41) of the graph Gσk .

The Hepp bound is indeed a bound of the period, which was its original motivation in the
study of convergence of Feynman integrals [356]:

H[Γ] ·
⃓⃓⃓
T

(1)
Γ

⃓⃓⃓−2
≤ P[Γ] ≤ H[Γ], (6.2)

where T
(1)
Γ is the set of all spanning trees (def. 34).

The Hepp bound (def. 124) satisfies all known symmetries of the period. Moreover, there
are pairs of graphs where the Hepp bounds coincide, but the two graphs are not related
by any of the known symmetries. It is conjectured that the periods of two graphs coincide
whenever the Hepp bounds do [193].

Example 150: Wheel with spokes, Hepp bound.

The wheel with three spokes from example 149 has 6 edges and therefore, the sum in
def. 124 is over 6! = 720 permutations. Its Hepp bound (def. 124) is H[Γ] = 84. There
are 12 spanning trees (def. 34) and eq. (6.2) is satisfied:

8

12
= H[Γ] · 12−2 ≤ 6ζ(3) ≤ H[Γ] = 84.

This example indicates that the Hepp bound is a rather crude approximation of the
period.

264



6.2. Outlook: Numerical integration of Feynman periods

6.2.3. Results

Our own contribution consists of two parts. Firstly, we implemented all known symmetries
of the period (section 5.1.1) in native C++ code. The extended dual symmetry has been
mentioned in [339], but apparently it has not actually been used in current implementations.
It is also possible to combine the Fourier split with the extended Fourier symmetry on
the components. The extended Fourier symmetry sometimes leads to sequences of many
intermediate graphs until it finally produces a symmetric ϕ4-graph. This entails that, to
find all symmetries of a given graph, the program typically has to construct thousands of
candidate graphs, which is computationally demanding. Details of the implementation, as
well as more statistical information regarding the symmetries, will be reported elsewhere.
We generated all completed (def. 122) 4-point graphs of ϕ4 theory up to 14 loops using

nauty [597], and filtering for primitive graphs according to lemma 91. For the graphs up to
13 loops, we determined the precise count of all known symmetries, including the extended
Fourier split, see table 6.1. The number of symmetries we find is slightly higher than what
has been reported so far in the literature [193, 339]. The number of cases where Hepp bounds
coincide, but the coincidence is not explained by a known symmetry, is therefore actually
lower than the numbers in [193]. Nevertheless, from 8 loops on, there are unexplained
identities. We have verified in every single case that if two graphs are related by a known
symmetry, their Hepp bounds coincide.
Our second contribution is the actual numerical computation of Feynman periods. The

article [596] already contains a C++ reference implementation. We did some trivial mod-
ifications on this program in order to fine-tune it especially for ϕ4-periods. Moreover, the
whole process – generation of graphs, numerical integration, and computation of symmetry
factors, n-edge cuts (def. 121) and other statistical quantities – has been fully automated,
reading and saving all intermediate steps directly to compressed files, and ran on various
computers at Humboldt-Universität zu Berlin since late 2020.
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We deliberately chose to compute all completed graphs, and not just the remaining ones
after application of symmetries, because this allows us to verify that expected symmetries
are satisfied in every single case. No computation time is wasted because, after verification
of symmetries, we combine the individual results of all symmetric graphs to obtain higher
accuracy in the end result.

L computed proportion rel. error irreducible Hepp 5σ-d constr.

5 2 1 85 / 85 1 1 1 -
6 5 1 86 / 90 4 4 4 -
7 14 1 80 / 89 11 9 9 -
8 49 1 74 / 90 41 29 28 -
9 227 1 70 / 90 190 129 127 -

10 1354 1 68 / 90 1182 776 578 -
11 9722 1 69 / 90 8687 6030 1563 -
12 81305 1 57 / 90 55196 54706 3002 -
13 755643 1 218 / 288 700242 541196 1346 -
14 215738 2.8 · 10−2 246 / 289 208121 205335 1030 273462
15 99212 1.1 · 10−3 222 / 308 97178 96177 1198 142040
16 9996 1.0 · 10−5 219 / 273 9733 9733 997 21437
17 5144 172 / 261 5043 5043 999 11578
18 789 113 / 220 764 764 579 1448

Table 6.2.: Statistical information on the graphs considered in this work. L Loop order;
computed Number of numerically computed completed primitives, without us-
ing symmetries; proportion ratio of the computed completed primitives to the
total number at that loop order; rel. error average / maximum relative un-
certainty, in ppm, after imposing symmetries, where the average is taken over
all computed graphs. The uncertainty refers to the computed graphs only, not
also the ones constructed. irreducible number of irreducible graphs computed,
Hepp number of distinct Hepp bounds within the irreducible graphs, 5 σ-d num-
ber of irreducible graphs which are at least 5σ-distinct from any other computed
graph. constr. number of completed primitives, including the computed ones,
constructed from the computed graphs by symmetries .

We have computed all periods up to 12 loops to at least 90 · 10−6 relative accuracy, and
all 13-loop periods to at least 290 · 10−6 relative accuracy. Moreover, we have computed a
total of over 3 · 105 randomly selected graphs with 14 to 18 loops. The precise numbers are
reported in table 6.2. In total, we computed more than 1.1 million completed graphs, which
amounts to the period values of round about 12 million non-isomorphic graphs of the 4-point
function in ϕ4 theory.
In all cases, the numerical results satisfy the expected symmetries. Moreover, the pe-

riods agree, within the numerical accuracy, in all cases where Hepp bounds agree. The
correspondence between symmetries, Hepp bounds, and numerical results indicates that our
implementation of symmetries is likely correct.
Although we know some symmetries of the period, it is still possible that even more periods

coincide by unknown symmetries, perhaps even if their Hepp bounds are unequal. We tried
to estimate a lower bound on the number of distinct periods. To this end, we counted how
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many numerical periods are distinct from all others of the same loop order by at least five
standard deviations. However, due to the high number of periods, our numerical accuracy
is not sufficient to tell most of them apart, and the so-obtained lower bound is weak, see
table 6.2.
In the cases where we computed only a random sample of periods, we used the symme-

tries to construct all symmetric graphs, whose value thereby is known as well. The latter
periods are, however, not usable for the estimation of the asymptotics, because using them
would distort the random sample of graphs, giving more weight to graphs which have more
symmetries.
At this point, we do not report the concrete numerical values we obtained, because sta-

tistical evaluation is still ongoing and the results would need significant explanation, which
is beyond the scope of this thesis. As an illustration, fig. 6.1 shows all our periods.

Figure 6.1.: All computed periods, as a function of their Hepp bound (def. 124). Colours
indicate loop order, starting from 5 loops on the left. We see that, within the
same loop order, the period is strongly correlated with the Hepp bound. This
plot contains 1.1 million data points.
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B. Curious quotes from the literature

The ideas and results presented in this paper lead to many questions.
Erik Verlinde [536]

Eine physikalische Theorie glauben wir dann anschaulich zu verstehen, wenn wir uns in
allen einfachen Fällen die experimentellen Konsequenzen dieser Theorie qualitativ denken
können, und wenn wir gleichzeitig erkannt haben, daß die Anwendung der Theorie niemals

innere Widersprüche enthält.
Werner Heisenberg [29]

An elucidation of the mathematical nature of quantum field theory is greatly desirable,
particularly in view of current metaphysical pronouncements on this subject.

More pertinently, one neither knows entirely satisfactory calculational techniques
in elementary particle physics nor, what is more fundamental,
whether any proposed schemes have any solutions in principle.

William M. Frank [599]

Quantum mechanics itself is not at all a mystery to me.
Gerard ’t Hooft [534]

I’ve analyzed this method both by doing a number of problems, and by a mathematical
high-class elegant technique – I can do high class mathematics too, but I don’t believe in
it, that’s the difference. [...] I’m lousy at proving things – I always make a mistake. [...]

So I always have to check with calculations; and I’m very poor at calculations
– I always get the wrong answer.

Richard P. Feynman [73]

Well, brothers and sisters, I am here today to tell you: If you love these formulas, you need
no longer hide in the shadows! The answer to all of these woes is here.

Gerald A. Edgar [258]

Section II contains the proof. Although at times this attains mathematical levels
of obscurity, we make no claim for corresponding standards of rigor.

Sidney Coleman & Jeffrey Mandula [484]

Generalized hyperbolic functions [. . . ] have a compelling intrinsic beauty.
Abraham Ungar [575]

Here I argue that mathematical soundness only is not enough when we are interested in
processes of physical content.

Alfredo T. Suzuki [209]
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The Yang-Mills theory with zero mass obviously does not exist, because a zero mass field
would be obvious; it would come out of nuclei right away.

Richard P. Feynman [73]

The success of the quark-constituent picture both for resonances and for deep-inelastic
electron and neutrino processes makes it difficult to believe quarks do not exist.

The problem is that quarks have not been seen.
Kenneth G. Wilson [89]

Indeed, we do not believe that physical quarks exist.
David J. Gross, [397, p.209]

Knowledge of the effective potential is knowledge of the structure of spontaneous
symmetry breakdown. Unfortunately, we do not know the effective potential.

Sidney Coleman & Erick Weinberg [354]

This result stands out from other multi-loop calculations because it is very likely correct.
Oliver Schnetz [339]

The aim of the present paper is to discuss in some detail established results on the field
[of quantum gravity]. In some strong sense, the review could be finished at once,

because there are none.
Enrique Alvarez [600]

The appearance of this tiny fundamental length is a gentle reminder that, with conceptual
problems no longer barring the way to performing the calculations, the practical interest

attached to such refinements of gravitational dynamics is,
and for the foreseeable future will remain, nil.

Julian Schwinger [491]

It would be difficult to pretend that the gravitational infrared divergence problem is very
urgent. My reasons for now attacking this question are (1) Because I can [. . . ] (2) Because

something might go wrong, and that would be interesting.
Unfortunately, nothing does go wrong.

Steven Weinberg [601]

Durch mehrere Wahrnehmungen veranlasst, habe ich sorgfältige und vielfach wiederholte
Versuche über die Fortleitung der Contaktelektricität in Metallen angestellt und Resultate
erhalten, zu deren schleunigser Mittheilung ich mich um so mehr bewogen fühle, als meine

geringe, ziemlich verkümmerte Musse mir es nicht verstattet, das Ende dieser
Untersuchung so bald herbeizuführen.

Georg S. Ohm [203]
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27W. Heisenberg, “Über quantentheoretische Umdeu-
tung kinematischer und mechanischer Beziehungen.”,
Zeitschrift für Physik 33, 879–893 (1925),

28M. Born, W. Heisenberg, and P. Jordan, “Zur Quan-
tenmechanik. II.”, Zeitschrift für Physik 35, 557–615
(1926),
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orie der Elementarteilchen”, Zeitschrift für Physik 120,
513–538 (1943),

72V. Fock, “Konfigurationsraum und zweite Quan-
telung”, Zeitschrift für Physik 75, 622–647 (1932),

73R. P. Feynman, “Quantum Theory of Gravitation”,
Acta Phys.Polon. 24, 697–722 (1963).

74R. Runkel, Z. Szőr, J. P. Vesga, and S. Weinzierl,
“Causality and Loop-Tree Duality at Higher Loops”,
Physical Review Letters 123, 059902 (2019),

75J. J. Aguilera-Verdugo, F. Driencourt-Mangin, J. Plen-
ter, S. Ramı́rez-Uribe, G. Rodrigo, G. F. R. Sborlini,
W. J. T. Bobadilla, and S. Tracz, “Causality, Unitarity
Thresholds, Anomalous Thresholds and Infrared Singu-
larities from the Loop-Tree Duality at Higher Orders”,
2019, arxiv: 1904.08389.

76Z. Capatti, V. Hirschi, D. Kermanschah, A. Pelloni,
and B. Ruijl, “Manifestly Causal Loop-Tree Duality”,
2020, arxiv: 2009.05509.

77J. J. Aguilera-Verdugo, R. J. Hernandez-Pinto, G. Ro-
drigo, G. F. R. Sborlini, and W. J. T. Bobadilla, “Math-
ematical Properties of Nested Residues and Their Ap-
plication to Multi-Loop Scattering Amplitudes”, Jour-
nal of High Energy Physics 2021, 112 (2021),

78M. Berghoff and D. Kreimer, “Graph Complexes and
Feynman Rules”, 2020, arxiv: 2008.09540.

79N. Wiener, “Differential-Space”, Journal of Mathemat-
ics and Physics 2, 131–174 (1923),

80P. a. M. Dirac, “The Lagrangian in Quantum Mechan-
ics”, Physikalische Zeitschrift der Sovjetunion 3, 10.

1142/9789812567635_0003 (1933),

81A. Connes and M. Marcolli, Noncommutative Geome-
try, Quantum Fields and Motives, Vol. 55, Colloquium
Publications (American Mathematical Society, Provi-
dence, Rhode Island, 2007), url: http://www.ams.
org/coll/055.

82G. Jona-Lasinio, “Relativistic Field Theories with
Symmetry-Breaking Solutions”, Il Nuovo Cimento
(1955-1965) 34, 1790–1795 (1964),

83A. Wipf, Statistical Approach to Quantum Field The-
ory: An Introduction, Lecture Notes in Physics volume
864 (Springer, Heidelberg ; New York, 2013), 390 pp.

84F. A. Berezin, “Feynman Path Integrals in a Phase
Space”, Soviet Physics Uspekhi 23, 763 (1980),

85L. F. Abbott and M. B. Wise, “Dimension of
a Quantum-mechanical Path”, American Journal of
Physics 49, 37–39 (1981),

86G. ’t Hooft and M. Veltman, “Diagrammar”, Geneva,
1973, url: http://cds.cern.ch/record/186259/
files/CERN-73-09.pdf?version=1.

87S. Laporta, “High-Precision Calculation of the 4-Loop
Contribution to the Electron g-2 in QED”, Phys. Lett.
B772, 232–238 (2017).
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