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Zusammenfassung

Mithilfe von gravitativem Abschluss konnten [Dü+18]; [Wol22]; [Due20]; [Wie18] zeigen,
wie sich Gravitationstheorien systematisch basierend auf dem Materie-Inhalt der Raumzeit
konstruieren lassen. Während diese Vorgehensweise erfolgreich die allgemeine Relativitäts-
theorie für eine metrische Raumzeit reproduziert, ist es bis jetzt noch nicht möglich gewe-
sen, eine Lösung für die einfachste Verallgemeinerung der Maxwell-Elektrodynamik basierend
auf einer Vakuumdoppelbrechung erlaubenden, flächen-metrischen Struktur zu finden. Für
hoch-symmetrische FLRW-Raumzeiten konnte eine metrische, sowie eine flächen-metrische
Lösung hergeleitet werden [Due20]; [Fis17]. Von diesem Ergebnis ausgehend soll das
Programm der konstruktiven Gravitation auf sphärisch symmetrische, stationäre, metrische
Raumzeiten angewendet werden. Desweiteren soll ein entsprechender Ansatz für flächen-
metrische Geometrien ausgearbeitet werden, und die Schwierigkeiten, welche im Lösungsver-
fahren auftreten, diskutiert werden. Zudem wird im Fall schwacher flächen-metrischer Grav-
itation die Etherington-Dualität verletzt [Sch+17]; [Ale20b]; [SW17] und diese Verletzung
soll durch schwache Gravitationslinsenexperimente untersucht werden. Die Observable ist die
Flächenhelligkeit, die allerdings durch astrophysikalische Prozesse wie der physischen Wech-
selwirkung von Galaxien mit Gezeitenfeldern stark beeinflusst wird. Darüber hinaus wird
untersucht, wie sich - ebenfalls durch Gezeitenwechselwirkung hervorgerufen - Galaxien ver-
biegen und wie stark diese Auswirkung verglichen zu ihrem analogen Gravitationslinseneffekt
ist.

Abstract

Via gravitational closure [Dü+18]; [Wol22]; [Due20]; [Wie18] could show, how gravitational
theories based on the matter content of spacetime can be systematically constructed. While
this successfully reproduces general relativity for metric spacetimes, finding a solution for the
simplest generalization of Maxwell electrodynamics with a vacuum birefringence allowing,
area-metric structure has in general not been possible so far. For highly symmetric FLRW
spacetimes a metric, as well as an area-metric solution could be derived [Due20]; [Fis17].
Based on this result, the constructive gravity program will be applied for spherically sym-
metric, stationary metric spacetimes. Furthermore, an according ansatz is worked out for
area-metric geometries, and it is discussed which difficulties arise in finding a corresponding
solution. Furthermore, the Etherington-duality is violated in the case of weakly area-metric
gravitation [Sch+17]; [Ale20b]; [SW17], and this violation will be investigated with weak
gravitational lensing experiments. The observable is the surface brightness, which is, however,
heavily influenced by astrophysical processes like physical interaction of galaxies with tidal
fields. Beyond that, it is studied how galaxies also get bent due to tidal interactions and how
strong this effect is compared to its analog in gravitational lensing.



I am still confused – but on a higher level.
Enrico Fermi
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0 Introduction

In 1933, Fritz Zwicky discovered a discrepancy between the observed luminous matter con-

tained in a galaxy and the virial velocities of the same galaxy [Zwi33]. His findings hinted at

the concept of dark matter to explain for these discrepancies. This was further underpinned

and clarified by Vera Rubin and Kent Ford, as well as Kenneth Freeman in the 1970s, who

studied the rotational velocities of spiral galaxies: These were significantly larger than ex-

pected at higher radii, and could not be explained by classical models with luminous matter

alone [SBD17].

With the observations by [Rie+98], it became also evident that a concept of dark energy has to

make up a significant amount of the energy-momentum content of the Universe as source of

repulsive gravity. It drives apart everything on cosmological scales in an accelerated fashion.

The studies of [Rie+98] confirm this for distant supernovae as a prominent example.

A lot of scientific effort was put into understanding the nature of dark matter and dark energy.

Especially for dark matter, physicists discussed various different particle models that shall

account for the discrepancies in the observations. Unfortunately, as of now, none of these

particles were detected in experiments. This lead to the idea that the gravitational interaction

requires modification and needs to be refined.

However, since Einstein’s theory of general relativity, it is known how deeply matter and

gravity are related and that the two can hardly be discussed independent of each other. In

fact, Einstein had the fundamental insight that classical electrodynamics can be understood in

a geometric way, while the equivalence principle guided him from special relativity (1905) to

general relativity (1915) as theory of gravity. It turns out to be a purely geometric effect rather

than an actual force (see [Bla20] and references therein).

Spinors on a curved metric spacetime are another example for a matter theory providing cru-

cial additional input to the gravity action, since this spacetime might still possess torsion as

additional geometric structure. The starting point is the Dirac equation, that contains a con-

nection form that also includes a torsion degree of freedom. Following the arguments of

[Cli+12]; [DL03]; [Tra06], the gravity action consists of the Einstein-Hilbert action and an

additional part containing a contorsion tensor that is a function of the torsion. This is called

Einstein-Cartan-Sciama-Kibble theory (ECSK). Variation of the gravity action with respect to

metric and contorsion yields the corresponding gravitational field equations. From the matter

part two sources of gravity are thus found: The energy-momentum stress tensor by variation
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of the matter action with respect to the metric, as well as the spin angular momentum tensor by

variation with respect to the contorsion. Outside of matter with spin and for low spin-densities

general relativity is then recovered.

Both examples, general relativity connected to Maxwell theory, as well as ECSK which is as-

sumed to be connected to matter with intrinsic spin, illustrate, that there is a deep connection

between gravity and the underlying matter theory. Or as John Archibald Wheeler famously

put it with the following sentence [MSW73]: "Spacetime tells matter how to move; matter

tells spacetime how to curve."

Thus, it is not surprising that for a consistent description of physical problems, where the in-

terplay between matter and gravity plays an important role, one must always keep in mind,

what a modification of one of these might imply for the other. This interplay needs to be put

into a precise mathematical language though, and the spacetime dynamics must be rigorously

derived thereafter.

Initially, [HKT76] showed how to construct the ADM-representation [ADW08] of the Einstein-

Hilbert action, i.e. general relativity in a canonical formalism. They carried out this construc-

tion starting from a Lorentzian metric as according geometry of the spacetime manifold. The

constructive gravity program in its most recent version worked out by [Dü+18]; [Due20];

[Wol22]; [Sch20] builds up on the conceptual ideas by [HKT76]. The program further gener-

alizes the idea of systematically constructing a gravity theory from some specific input geom-

etry of spacetime, which is always implicitly part of the matter equations of motion. Hence,

a way is established to formulate the interplay between matter and gravity in terms of count-

ably many partial differential equation. The kinematics of matter hereby serves as an input,

to deliver the corresponding gravitational dynamics as an output. The construction of general

relativity from Maxwell electrodynamics can then be performed successfully as a case study

in this framework.

This serves as a strong motivation to study different matter models as input for a gravitational

theory, systematically following the constructive gravity program. Another interesting matter

theory candidate is the Dirac equation with a spinor coupling to the torsion. This has not been

studied in the constructive gravity program, but it would be interesting to see whether this

leads to a gravitational theory similar to ECSK.

One can also take one step further back, and consider the simplest generalization of Maxwell

electrodynamics, namely general linear electrodynamics (see for instance [Rub02] for a re-

view). While in the action of Maxwell electrodynamics the two field strength tensors Fab

couple via two inverse Lorentzian metrics gab, the theory of general linear electrodynam-

ics features a 4-rank tensor object Gabcd as linear constitutional relation, to which the field

strength tensors couple instead. The object Gabcd to which these matter fields couple, and
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which hence determines the structure of the matter equations of motion, is also called area-

metric. As implied by its name, it defines a genuine measure of area instead of length, unlike

a metric. Interestingly, with the area-metric as the according geometric field of the spacetime

manifold, this electrodynamic theory generally allows for vacuum birefringence. This might

sound unusual, since birefringence is something one rather expects due to light traversing

some kind of anisotropic material instead of a gravitational field. But then, one could also ask

why the spacetime as a medium should be isotropic everywhere in the first place. Therefore,

the question arises whether vacuum birefringence would be possible or not, and if it is possi-

ble, what the corresponding implications would be.

Now in this context, it must be stressed, that if one was ever to observe vacuum birefringence,

Maxwell theory would not hold anymore. But since general relativity is - in its entire con-

struction - deeply connected to Maxwell electrodynamics, it becomes evident that the gravity

theory would need to be adjusted accordingly.

The most noticeable difference compared to general relativity is, that concepts from Rieman-

nian geometry which rely on a metric cannot be used any longer to postulate a gravitational

action. It is for instance not clear how to build a Riemann tensor or Ricci tensor from an

area-metric [Scha]. Hence, a systematic way to construct gravity theories for different matter

theories is needed, such that postulating curvature invariants from the geometric spacetime

structure is not required.

Now, that is what constructive gravity aims to achieve. Starting from area-metric geometry to

find the corresponding gravity action is an important case study in this context, which is for in-

stance discussed in more detail by [Dü+18]; [Due20]; [Wol22]; [Sch+17]; [Fis17]; [Ale20b]

and references therein.

Interestingly, recent work has shown cosmic birefringence by analyzing polarization data from

Planck 2018 [MK20]. With these results, the authors of [Fuj+21] studied the according im-

plications for properties of hypothetical axion-like particles as possible causes for this effect.

Alternatively, one can also ask whether the findings by [MK20] could set experimental bounds

for birefringence due to an area-metric background. However, it is also important to stress

that in this context classical effects like Faraday rotation will arise as well. The question is

of course how these limit the precision and resolvability of exotic physics effects. But still,

exploring the implications of general linear electrodynamics in this case would be very inter-

esting.

While it has, as of now, not been possible to construct a general gravity action for general

linear electrodynamics [Dü+18]; [Due20]; [Wol22]; [Sch+17], a solution for highly symmet-

ric FLRW spacetimes [Due20]; [Fis17] could be derived successfully via symmetry-reduced

gravitational closure. Of course, it would also be desirable to find an appropriate solution
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for less symmetric cases like for a Schwarzschild spacetime in area-metric geometry for two

reasons:

First of all, it is important to understand how solutions of area-metric gravity would look like

in the strong gravity regime. Since the Schwarzschild solution, and its physical implications

within this spacetime structure, are the first step in understanding the physics for compact as-

trophysical black holes, it is natural to ask how to construct those for modified gravity theories.

And indeed, with modern gravitational wave experiments like LIGO, data from strong gravity

events like black hole mergers can be studied, and signatures which hint at deviations from

general relativity can be searched. Similarly, this is the case for the event horizon telescope

(EHT), where models for the black hole shadow can be investigated. It is expected, that, if

there are any deviations from general relativity, corresponding signatures may be found in the

shape of the black hole shadow, as for instance addressed by [Daa+22].

Secondly, it is an interesting case study from a conceptual point of view, since working out

the ansatz to perform the construction may also point at current difficulties in the construc-

tive gravity program itself. Thus, it will turn out that finding an area-metric Schwarzschild

solution is highly non-trivial. How one can still try to approach this problem, was the central

motivation of this thesis.

A further example, where the construction of non-metric solutions via gravitational closure

proved to be successful, was for the weak field limit [Sch+17]; [Wol22]; [Wie18]. The cor-

responding solutions for weakly birefringent spacetime are in detail discussed by [Sch+17];

[Wol22]; [Ale20b].

Now, an important aspect for probing the large-scale distribution of dark matter, or even fur-

ther whether and where modifications of general relativity might play a role is through ob-

servations, for instance via weak gravitational lensing: Due to light deflection in gravitational

fields one can directly probe gravity itself. Especially the solutions for weakly birefringent

spacetime are a perfect basis to study possible signatures of an area-metric spacetime geome-

try using weak lensing. As an example, [SW17] predict a violation of the Etherington distance

duality relation.

However, when using weak lensing to search for new physics one also has to ensure, that

sources for systematic errors from classical astrophysics are well understood and under con-

trol: An important source for systematic errors in weak lensing is intrinsic alignment, meaning

intrinsic shape and size distortions, as well as orientations within local tidal fields of the large-

scale structure. Interestingly, these intrinsic alignment effects will lead, as shown in this work,

to a similar phenomenology as expected from a violation of the Etherington distance duality

relation because of a weakly birefringent spacetime.
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Outline of this thesis

In Chapter 1, basic ideas on constructive gravity, as established by [Dü+18]; [Due20]; [Wol22];

[Wie18] will be summarized.

It will also be studied, guided by preceding works by [Due20]; [Fis17]; [Dü+20], how the

metric Schwarzschild solution and related solution types can be systematically constructed in

Chapter 2. This will especially serve as a consistency check for the theory, inspiring however

how this problem might be solved for spacetimes with a different geometric structure.

Next, in Chapter 3, it will be discussed how one can derive a symmetry reduced ansatz for the

constructive gravity program for an area-metric spacetime with Schwarzschild symmetries,

being guided by previous works by [PWS09]. It is furthermore summarized briefly, what

open question in this program is in general most obstructive to find an according area-metric

Schwarzschild solution in the future.

In Chapter 4, a linear alignment model based as further development of [GDS21] will be dis-

cussed in order to derive intrinsic gravitational flexions in a Newtonian intrinsic alignment

model. Its observability is to be compared with the one of the weak lensing flexion as analog

effect. Many methods discussed in Chapter 4 which concern the calculation of spectra and

cumulated signal-to-noise ratio plots will then be needed in the subsequent part of this thesis.

There, in Chapter 5, it will be discussed how the Etherington distance duality violation in

weakly birefringent spacetimes as derived by [SW17], will lead to a violation of the surface

brightness conservation law from general relativity. The corresponding surface brightness

variations are estimated, and their magnitude is compared to a similar effect caused by clas-

sical intrinsic alignment in the Newtonian limit. Furthermore, the impact of the Etherington

distance duality modification on the quasar magnification bias is investigated.

Finally, in Chapter 6, the main topics addressed in this thesis will be summarized briefly, and

an outlook will be given for each of them.

Notational remarks

Throughout this thesis, and if not stated otherwise the Latin letters a, b, · · · will denote space-

time indices, while Greek letters α, β · · · denote spatial indices. Furthermore, only equations

which are referred to explicitly in the text are numbered.
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1 Constructive Gravity

In this chapter the basic principles of the constructive gravity program will be reviewed briefly.

First it is discussed, which matter theories would be physically viable to consider, what kine-

matic structure they posses and how this leads to the gravitational dynamics in the end. There-

fore, the physical idea behind this whole program is that the matter dynamics already contain

all the relevant information for the spacetime geometry dynamics, such that gravity becomes

a mere consistency condition (see [Due20]; [Wol22]; [Dü+18]; [Sch20]). The construc-

tive gravity program can be considered as a conceptual generalization of geometrodynamics

[Kuc74]; [HKT76].

1.1 Gravitational closure in the context of modified gravity

Basically, constructive gravity or also called gravitational closure (see for instance [Dü+18];

[Due20]; [Wol22]) aims at systematically finding the according gravitational dynamics im-

plied by the kinematic structure imprinted on spacetime by an underlying matter theory, which

is defined through the action S matter. As discussed in [Dü+18] the matter dynamics must thus

be closed under variation of the associated gravity action S geo, where the total action is given

by

S [Φ(x); G(x)] = S geo [G(x)] + S matter [Φ(x); G(x)) .

The bracket notation is adapted from [Dü+18] and means the following: While the []-backet

denotes a dependency on the field and higher order derivatives, the ()-backet denotes an ex-

plicit dependence on the field only. This kind of notation will be used on different occasions

throughout this chapter.

Since the gravitational closure procedure makes it possible to derive the gravitational dynam-

ics, one natural setup to consider is given by Maxwell electrodynamics. From this general

relativity can be derived [Dü+18]; [Due20]; [Wol22], what confirms the result by [Kuc74];

[HKT76] in a more general setting.

This result not surprising: Lovelock’s theorem states, that if one considers four dimensions, a

metric as underlying geometry, and at most second derivatives thereof, as well as symmetric,

locally divergence-free field equations, the gravity action should be given by the Einstein-

Hilbert action (see [Cli+12] for reference). Thus, as stated in [Cli+12], at least one of these
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requirements should be violated for a modification of gravity to become sensible. For example

different fields (for instance scalars in case of Horndeski gravity [Hor74]) may be introduced,

or higher-order derivatives, and non-local field equations (see for instance [Boo21] and refer-

ences therein).

However, gravitational closure follows a different approach: The philosophy of the program

implies that one cannot modify the gravitational dynamics without considering its effect on

matter theories and vice versa. This is an important insight, especially concerning the quest

of searching for dark matter and energy, respectively modified gravity theories, or both.

The following chapter is a summary of the basic ideas of the constructive gravity program in

its latest form1 worked out by [Dü+18]; [Wie18]; [Due20]; [Sch20]; [Wol22].

1.2 Spacetime kinematics from matter fields

At first it will be summarized, based upon [RRS11]; [Due20]; [Wol22]; [Wie18], what re-

quirements need to be imposed upon matter fields such that they can be considered as canon-

ically quantizable. The canonical quantization will hereby not play a role for the constructive

gravity program per se, since here only classical fields are considered. However, in a bigger

picture, which also includes other fundamental branches of physics like Quantum field theory,

one would also need to be able to describe these matter fields accordingly. Therefore, any

proposed classical matter theory which cannot be quantized is outruled.

The canonical quantizability will also define the kinematics and the causual structure of the

dispersion relations of these matter theories within a specfic spacetime geometry. From this

structure the gravitational dynamics will be derived later.

Take a matter theory, similar to [Wol22],

S matter [Φ(x); G(x)) =
∫

M
d4x Lmatter

(
Φ(x), ∂Φ(x), · · · , ∂nΦ(x); G(x)

)
,

where M is the 4-dimensional spacetime manifold with x ∈ M, with G(x) as some spacetime

geometry to which a set of matter fields Φ(x) B (Φ1(x), · · · ,ΦN(x)) couple. By virtue of

Hamilton’s principle variation of this matter action with respect to the matter fields will lead

to the equations of motion with
δS matter

δΦi(x)
= 0.

1An earlier ansatz for the constructive gravtiy program was worked out by [Gie+12]; [Wit14]; [SW14] for
instance.
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For a quasi-linear matter theory the according equation of motion will generally form a system

of partial differential equations given by [Wol22]

Qi1,··· ,in
AB

(
Φ(x), ∂Φ(x), · · · , ∂n−1Φ(x); G(x)

) (
∂i1 · · · ∂inΦ

B
)

(x) + O
(
∂n−1Φ

)
= 0. (1.1)

Here Qi1,··· ,in
AB

denotes the coefficient in front of all the terms containing the highest derivative

order of the matter fields, and which appears linearly in the equations of motion. Even though

only partial derivatives of Φ(x) appear in (1.1), the whole expressions still transforms covari-

antly, since all lower order derivative terms cancel any excess partial derivatives of jacobians

due to coordinate transformations of the term ∂i1 · · · ∂inΦ
B, which is clearly not a tensor. Con-

trary, the highest order derivative coefficient Qi1,··· ,in
AB

is a tensor density of weight one - which

can be de-densitized to become a tensor - and encodes the kinematic information that is rel-

evant in the following. As discussed in [RRS11]; [Due20]; [Wol22]; [Wie18] A and B are

multiindices, containing all matter fields of the theory, as well as their respective components.

Further restricting to linear matter models, the matter fields do not even appear in the highest

order coefficient Qi1,··· ,in
AB

(G(x)), but only the geometry. This implies that the amplitude of the

matter field can be scaled down to arbitrarily small values. It can hence be considered as test

matter, to avoid any back-reaction of the fields to the spacetime geometry (see discussion by

[Due20]; [Wol22] for instance).

Generally, one cannot read off the highest derivative order coefficient directly from the equa-

tions of motion derived from variation, but also needs to ensure, that the system of partial

differential equations is in involutive form. Involutivity is an involved concept that needs to

be elaborated in more detail, what is beyond the scope of this work. Essentially, if a system

of partial differential equations is in involutive form, this means that all hidden integrability

conditions are made explicit. Consequently, seemingly irrelevant lower order terms may pos-

sibly contribute to the coefficient Qi1,··· ,in
AB

. An according review on involutivity of a system

of partial differenential equations with some applicative examples can be found in [Sei10];

[Wie18]; [Wol22].

Now, a WKB (Wentzel-Kramers-Brillouin) ansatz [Wie18]; [Wol22]

ΦA(x) = Re
(
exp [iS (x)/λ]

(
ϕA + O (λ)

))
for the amplitudes of the matter fields is inserted. It is evaluated in the geometric optical

limit λ→ ∞, where the matter fields are indistinguishable from massless particle modes, with

ka = −∂aS (x) as wave co-vector. Then, the so-called principal symbol [Wol22] is given by

T (x, k)AB = Qi1,··· ,in
AB

(x)ki1 · · · kin .
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The corresponding equations of motion read

T (x, k)ABϕA = 0,

for all non-vanishing solutions of ϕA. This means, that T (x, k)AB must not be invertible, and

thus have vanishing determinant. If the matter theory is however a gauge theory, one has to

be careful, since seemingly non-zero solutions of ϕA can actually just be gauge artifacts, and

therefore physically equivalent to ϕA = 0. Thus, the gauge freedom needs to be reduced

from the prinicpal symbol according to the techniques laid out in detail in [Dü+18]; [Wol22];

[Wie18] for instance, and summarized here:

Take ϕA to be a gauge field with gauge transformation

ϕA → ϕA + ∂aχ
aA
(σ),

where σ = 1, · · · , s denotes s linearly independent coefficients χaA
(σ). This implies that the

solution space of T (x, k)ABϕA = 0 is at least s-dimensional, however with solutions that are

purely gauge, and at least one physical solution is required. As discussed by [Iti09]; [Dü+18];

[Wie18]; [Wol22] this means that the rank of T (x, k)AB must thus be R− s dimensional, where

R is the number of mulitindicesA, and thus for the adjunct matrix it needs to hold that

T [A1···As][B1···Bs](x, k) =
∂s (detA,BT (x, k)

)
∂TA1B1 · · · ∂TAsBs

= 0.

Then, as argued by [Dü+18]; [Wol22]; [Wie18] and references therein, the principal polyno-

mial density P̃(x, k) can be read off from

T [A1···As][B1···Bs](x, k) = ϵσ1···σsϵτ1···τsχa1A1
(σ1) · · · χ

asAs
(σs)

χb1B1
(τ1) · · · χ

bsBs
(τs)

ka1 · · · kaskb1 · · · kbs P̃(x, k).

Thus, the principal polynmial density P̃(x, k), or after de-densitization the principal polyno-

mial

P(x, k) = Pa1···anka1 · · · kan = 0

needs to vanish. Here Pa1···an is the principal tensor field, while n is the degree of the principal

polynomial. This polynomial hence defines the massless dispersion relation in spacetime,

since it was derived from the geometrical optical limit.
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1.2.1 Matter conditions

As worked out in detail by [RRS11] and discussed further for instance in [Dü+18]; [Wol22];

[Due20]; [Wie18] not all principal polynomials are suitable for physical theories. Only if

three conditions are fulfilled by the matter theory and its underlying background geometry,

they are viable to extract physical relevant statements from the theories. These conditions can

be shown to be necessary requirements once for canonical quantization of the matter theory

(see [RRS11] and [RS11] for explicit applications).

First of all, the matter dynamics must be predictive, meaning that there is a well-defined

initial value formulation: Initial data on a Cauchy hypersurface has to develop in an unam-

biguous way to hypersurfaces at later instances. For this to be possible the equations of motion

of the matter theory shall be hyperbolic, what implies the hyperbolicity of the principal poly-
nomial P(x, k) itself.

This means that [Dü+18]; [RRS11]

∃h ∈ T ∗x M such that P(x, h) , 0,

For P(x, q + λh) = 0 and∀q ∈ T ∗x M, solved by only real rootsλ(x) ∈ R.

Here, T ∗x M denotes the co-tangent space, with h and q as according co-vectors. The co-vector

h is then called hyperbolic, and lies within an open set h ∈ Cx(P, h) ⊂ T ∗x M of hyperbolic

co-vectors, which form a convex cone, called the hyperbolicity cone.

If the principal polynomial can be reduced to a product of n lower order polynomials according

to [RRS11]

P(x, k) = P1(x, k) · · · Pn(x, k),

each of these lower order polynomials Pi(x, k) must be hyperbolic to ensure the hyperbolicity

of P(x, k). Repeated factors of lower order polynomials should be removed, such that the

principal polynomial can be written as a product of irreducible lower order polynomials. As

elaborated in more detail in [RRS11] and briefly mentioned in the discussion of the next

matter condition, this is an important technical requirement. Additionally, removing repeated

factors from the principal polynomial also does not pose a problem, for they contain no further

information on the roots [RRS11].

The hyperbolicity cone belonging to P(x, k) is then given by the intersection of the single

hyperbolicity cones belonding to the lower order polynomials as [Dü+18]; [RRS11]

C(P, k) = C1(P1, h) ∩ · · · ∩Cn(Pn, h).
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Momenta for massless particles can thus be interpreted as those co-vectors lying on the bound-

ary of the hyperbolicity cones. As an example, in metric theory it is the momenta of photons

which form the boundary of the Minkowskian light cones, and P(x, k) = gabkakb = 0 is the

massless dispersion relation.

Next, it is important to establish a duality between momenta and velocities of massless
particles. This means that it has to be possible to describe the trajectories x(η), with η

as affine parameter, of massless particles both as stationary curves of a Hamiltonian action

and Lagrangian action. To enable this switching between the Hamiltonian and Lagrangian

description in a well-defined way, one needs to transform between the massless momenta

k ∈ Cx(P, k) forming the boundary of the convex hyperbolicity cone, and the tangent vectors

v = dx/dη ≡ ẋ. This is done via a so-called Gauss map (see [RRS11]), which is defined

through a dual principal polynomial

P#(x, v) B P#
1(x, v) · · · P#

n(x, v).

This polynomial can also be written in terms of irreducible factors, and maps from the tangent

space to the real numbers.

Now, P#(x, v) exists if P(x, k) is hyperbolic [RRS11] and relates to the principal polynomial

P(x, k) via (see also [Dü+18]; [Wol22]; [Due20])

P#
i

(
x,
∂Pi

∂k
(x, k)

)
= 0, ∀k ∈ Ni with

∂Pi

∂k
∈ TxM,

where Ni B

{
k ∈ T ∗x M|Pi(x, k) = 0 and

∂Pi

∂k
(x, k) , 0

}
.

So the gradients of the principal polynomial with respect to the momenta are the roots of the

dual principal polynomial. As stated previously, the repeated factors for P(x, k) need to be re-

moved to derive this dual polynomial by means of projective algebraic geometry (see [RRS11]

for a detailed discussion).

If one furthermore requires for the massless case, that the dual prinicpal polynomial is hy-

perbolic as well, in a similar sense as already discussed for P(x, k), the velocities v form

the boundary of the convex dual hyperbolicity cone v ∈ Cx(P#, v) ⊂ TxM. Requiring that

both P(x, k) and the dual P#(x, v) are hyperbolic is called bi-hyperbolicity. It implies that

the prinicpal polynomial can be retrieved by the double dual P(x) ∼ P(x)##. This means, as

shown by [RRS11], that it becomes possible to switch back and forth between the Hamiltonian
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description of the massless matter action

S [k, x; ρ) =
∫

dη
[
ka(η)ẋa(η) − ρ(η)P(x(η), k(η))

]
,

and the according Lagrangian description

S [x; µ) =
∫

dηρ(η)P#(x(η), ẋ(η)), (1.2)

with Lagrange multiplier ρ(η).

To summarize the previous paragraph, the bi-hyperbolicity ensures the definition of convex

open hyperbolicity cones in tangent and co-tangent space, as well as a duality between them

for massless modes. Now, as discussed by [RRS11]; [Dü+18]; [Wol22]; [Due20]; [Wie18]

these cones are also required to define local observers in Ox ⊂ TxM, with according worldline

tangents U ∈ TxM, who need to agree on whether a massless momentum they measure is

of positive or negative energy. This is the energy distinction condition: There must always

be a clear distinction if a massless momentum k ∈ T ∗x M lies in the cone of positive energies

k ∈ O+x , or in the cone of negative energies k ∈ O−x . The coneO+x of positive massless momenta

is defined as [RRS11]; [Dü+18]; [Wol22]; [Due20]; [Wie18]

O+x B
{
k ∈ T ∗x M|k (U) > 0 ∀U ∈ Ox

}
.

Thus, the set of massless momenta N will disjointly decompose into a positive and negative

energy part via

N − {0} = N+ ∪̇N−, with N± B
(
±O+x

)
.

If this condition is fulfilled any hyperbolicity cone Cx(P#,U) ⊂ TxM contains an according

observer cone Ox [RRS11]; [Dü+18]; [Wol22]; [Due20]. Thus, as discussed in [RRS11];

[Dü+18]; [Wol22]; [Due20]; [Wie18], a time-orientation for this observer cone Ox can be

chosen freely via a smooth vector field T hyperbolic to P# with Ox = Cx
(
P#,T

)
.

Additionally, as mentioned by [Gie+12] this observer independent energy split of the massless

modes is necessary for the according split into positive and negative energy modes during

canonical quantization of matter fields, and hence for quantizability in general.

1.2.2 Observer definitions

To further define the observer frame, there are now two different approaches, involving two

alternative ways to define a dual correspondence between the tangent and co-tangent space for
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massive observers and particles. Their worldlines, with tangents ẋ ∈ Ox, and corresponding

momenta q ∈ Cx ⊂ O
+
x do not lie on the boundaries, but within the convex hyperbolicity cones

Ox, as well as the positive energy cones Cx ⊂ O
+
x in co-tangent space.

At first, the observer definition based on [RRS11] and described in detail for instance in

[Dü+18]; [Wol22]; [Due20] will be summarized briefly. This observer definition is based on

the postualte of a massive dispersion relation (1.3). Choosing a positive sign for the principal

polynomial within the interior of the cone Cx, i.e. [Due20]

P(x,Cx) > 0,

the massive dispersion relation

P(x, q) = mdegP (1.3)

is postulated with degP as the degree of the principal polynomial. In the metric case, where

degP = 2, this results in the well-known 4-momentum normalization. According to [RRS11]

the dispersion relation (1.3) can be enforced via the following free-particle action

S massive
[
x, q; µ) =

∫
dλ

[
qa(λ)ẋa(λ) − µ(λ)m ln P

(
x(λ),m−1q(λ)

)]
,

by variation with respect to the Lagrange multiplier µ(λ).

Since Cx is an open convex cone, one can now perform Legendre transformations to switch

from the free-particle action in x and q to a free particle action in x only. This is ensured by

the Legendre map given as [RRS11]; [Dü+18]; [Due20]; [Wol22]

Lx : Cx → TxM, Lx(q) =
1

degP
∂ ln P
∂q

(x, q),

in components:

(Lx(q))a =
Pab1··· bd−1qb1 · · · qd−1

P(x, q)
with d = degP,

for which an inverse exists given that the three matter conditions are implemented [RRS11].

It maps from the tangent space Lx (Cx) ⊂ TxM back to the co-tangent cone Cx for massive

positive energy particles via

L−1
x : Lx (Cx) → Cx.

It is in general not possible to express the inverse Legendre map analytically, but in particular

it can be shown to be non-polynomial in general [Wit14]. As becomes apparent from the com-

ponent definition of the Legendre map Lx, one receives a vector by insertion of a co-vector,
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such that the Legendre map effectively raises the indices, similarly to the inverse metric in the

special case of general relativity.

With the generally non-polynomial function P∗(x, v) B P
(
x, L−1

x (ẋ)
)−1

which maps the sub-

space Lx(Cx) ⊂ TxM of the tangent space to the real numbers, the Legendre transformed

massive particle action is then given by [RRS11]

S massive[x] =
∫

dλm
(
P∗ (x(λ), ẋ(λ))

)1/degP .

According to [RRS11], a proper time parameterization can now be chosen for a local ob-

server with P∗(x, ẋ) = 1 along the worldline. Consequently, one can show, that the duality

ẋ = Lx(q/m) between velocity and momenta for massive particle holds. The tangent vectors

of the local observer lie, as discussed in the context of the energy distinction property, within

the observer cone ẋ ∈ Ox = Cx(P#,T ) ⊂ Lx (Cx(P, k)), where Cx(P, k) is the hyperbolcity cone

of positive energy momenta. Thus, it follows that the co-tangent vectors dual to the observer

tangents are within the set L−1
x (Ox) ⊂ Cx(P, k). Hence, the local observer have - except for

metric theory - only access to a subset of all hyperbolic co-normals to initial data hypersur-

faces in general [Scha]; [Wie18]; [Wol22].

This issue can be fixed with an alternative observer definition according to [Sch20]; [Wie18];

[Wol22], which is summarized in the following: Instead of defining the Legendre map as the

map from the co-tangent space to the tangent space via Lx one can alternatively define it vice

versa from the tangent space to the co-tangent space.

Then this new Legendre map ℓx in the alternative observer definition is, according to [Sch20];

[Wol22]; [Wie18], given by:

ℓx : Cx(P#, v)→ T ∗x M, ℓx(v) =
1

degP#

∂ ln P#

∂v
(x, v),

in components:

(ℓx(v))a =
P#

ab1··· bd−1vb1 ··· vd−1

P#(x, v)
with d = degP#.

(1.4)

Here, the Legendre map ℓx now takes a vector and returns a co-vector, and thus effectively

lowers the index, similarly to the metric in general relativity. Crucially however, ℓx is not the

inverse of the Legendre map Lx in the observer definition by [RRS11], but an entirely different

Legendre map. It is again invertible with

ℓ−1
x : ℓx

(
C#

x

)
→ C#

x,
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mapping from the co-tangent space back to the hyperbolicity cone C#
x ≡ Cx

(
P#,T

)
in tangent

space, where T denotes again the time-orientation. There is now, according to [Sch20]; [Scha];

[Wol22]; [Wie18], a conceptual advantage compared to the former observer definition: An

observer coneOx ⊂ C#
x can be chosen, such that the set of co-tangents q ∈ Cx ⊂ ℓx

(
C#

x

)
, which

are dual to the tangents along the worldlines of the local observers, contains all admissible co-

normals within Cx of the Cauchy hypersurfaces via

ℓx (Ox) = Cx. (1.5)

A time-like vector U ∈ Ox can now be defined such, that its image under the Legendre map ℓx

must lie within the hyperbolicity cone in co-tangent space. The sign of the principal polyno-

mial in the interior of Cx is again chosen to be positive:

ℓx (U) ∈ Cx with P (x,Cx) > 0.

Although the choice of a suitable hyperbolicity cone for the observer becomes clearer in this

alternative, new observer definition, introduced by [Sch20]; [Wie18]; [Wol22], it still lacks a

massive dispersion relation, as well as a massive particle action, unlike the observer definition

by [RRS11]. Even if the dispersion relation (1.3) needed to be postulated, it is still useful

to have one for defining a massive particle action. This will be discussed in the following

paragraph.

The construction of an according action for the alternative observer definition, as introduced

by [Sch20]; [Wie18]; [Wol22], will closely follow the arguments laid out in detail in [RRS11]

for the previous observer definition. A massive dispersion relation can now be imposed in a

similar way via the following set-up: One may postulate, that for momenta q ∈ Cx

P∗# (x, q) = mdegP#
,

holds for the massive dispersion relation2, where P∗# (x, q) is given by

P∗# (x, q) = P#
(
x, ℓ−1

x (q)
)−1

,

by inversion of (1.5). It can be confirmed, that this ansatz reproduces the massive dispersion

relation in the metric case, where the dual principal polynomial has degree degP# = 2 and

given by the metric.

2This idea was also discussed together and in accordance with [Wie].
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In this case, the inverse Legendre map is just given by

(
ℓ−1

x (q)
)a
=

gabqb

gcdqcqd
,

similarly to [Wit14] for instance. Insertion into the postulated dispersion relation yields

P∗# (x, q) =
(
gab

(
ℓ−1

x (q
)a (

ℓ−1
x (q)

)b
)−1
= gcdqcqd = m2,

as expected. As discussed in [RRS11] the inverse Legendre map can be defined via a fibre

derivative3 D with respect to q

ℓ−1
x (q) = −D f (q) =

1
degP#

∂ ln P∗#(x, q)
∂q

=
1

degP#

DP∗#(x, q)
P∗#(x, q)

.

Here, f (q) with fx : Cx → R is supposed to be - by analogy to the construction in [RRS11] -

a convex function with

f (q) = −
1

degP# ln P∗#(x, q),

such that it can mapped to a Legendre dual f L
x . Now, using that the dual principal polynomial

is homogeneous of degree degP#, while the inverse Legendre map is homogeneous of degree

−1 [RRS11], the massive dispersion relation can be rewritten as

P∗#
(
x,

q
m

)
= 1.

An ansatz for the free massive particle action can then by given - similarly to [RRS11] - by

S massive
[
x, q; λ) =

∫
dτqa ẋa − λ(τ)m ln P∗# (x, q/m) ,

with Lagrange multiplier λ to enforce the massive dispersion relation, and ẋ ∈ C#
x is the

associated velocity. In a subsequent step, this action is varied with respect to the momentum

q to yield

ẋa (τ) = −λ
∂ ln

(
P# (x, v)

)
∂vb

∂
(
ℓ−1

x (q/m)
)b

∂(q/m)a
= λ degP#

(
ℓ−1

x (q/m)
)a
,

after some steps of calculation, where

va B
(
ℓ−1

x (q/m)
)a
∈ C#

x.

3For more information on this kind of construction see [RRS11] for reference.
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Thus, the momenta are given by

q = ℓx

(
ẋ

λdegP#

)
,

what can be inserted into the massive free particle action to rewrite it as a function of x. Hence,

one needs to insert the Legendre dual function f L
x : ℓ−1

x (Cx) = C#
x → R with

f L
x (v) = −ℓx(v) · v − fx (ℓx(v)) ,

similarly to [RRS11], into the massive particle action. After a few steps omitted here this

results in

S massive [x; λ) = −mdegP#
∫

dτ
(
λ f L

x (ẋ) + λ ln
(
λdegP#

))
,

for the action, where f L(αv) = f L(v)− lnα was used, similar to [RRS11]. Then variation with

respect to λ results in

λ = −λ f L
x (ẋ) − λ ln

(
λdegP#

)
,

what leads to

λ =
exp

(
− f L

x (ẋ) − 1
)

degP# =
exp ( fx (ℓx(ẋ)))

degP# ,

due to the normalization ℓx(ẋ) (ẋ) = 1, similarly to [RRS11].

Consequently, the following free massive particle action is found:

S massive [x] =m
∫

dτ exp ( fx (ℓx (ẋ))) = m
∫

dτ exp
(
−

1
degP# ln P∗# (x, ℓx (ẋ))

)
=m

∫
dτ exp

(
1

degP# ln P#
(
x, ℓ−1

x (ℓx (ẋ))
))
= m

∫
dτ

(
P# (x, ẋ)

)1/degP#

. (1.6)

The proper time parameterization is then achieved via

(
P# (x, ẋ)

)1/degP#

= 1,

which specializes to the well-known 4-velocity normalization√
gab ẋa ẋb = 1

in the metric case. Thus, as expected for the metric case, the massive particle action is just

given via the square root of the line-element. Since

P∗# (x, ℓx (ẋ)) = P# (x, ẋ)−1 ,
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it becomes apparent, that

P∗# (x, ℓx (ẋ)) = P∗# (x, q/m) = 1,

such that velocities of massive particles can be associated to their momenta via

ℓx (ẋ) =
q
m
.

Similar to [RRS11] variation of S massive [x] with respect to x generally yields a geodesic equa-

tion, but now with Finsler function F (x, ẋ) = P# (x, ẋ)1/degP#
(see [She01] for more details

on Finsler geometries). The according Finsler metric is then given, similarly to [RRS11];

[Wol22], by

gm,n (x, v) umwn B
1
2
∂2

∂s∂t

(
P# (x, v + s · u + t · w)2/degP#)∣∣∣∣∣∣

s=0,t=0
,

with the corresponding massive point particle action

S massive [x] =
∫

dτm
√

gmn (x(τ), ẋ(τ)) ẋm(τ)ẋn(τ).

To summarize, following the steps laid out in [RRS11] it is also possible to construct a massive

point particle action in the alternative observer defnition, similar to the construction for the

previous observer definition. However, the caveat is that the massive dispersion relation has

to be postulated again in an even less straightforward way as before.

1.3 Spacetime dynamics and gravitational closure

After having discussed in what way the spacetime kinematics is defined by the underlying mat-

ter theory under consideration, this section should summarize, particularly based on [Dü+18];

[Wol22]; [Due20]; [Wie18], how gravitational dynamics can be constructed from that. Fol-

lowing ideas similar to classical geometrodynamics [Kuc74]; [HKT76] the aim is to express

the spacetime geometry and its dynamics in a canoncial formulation. The first step for this

is to perform a 3 + 1-split of spacetime [ADW08] to describe the initial data on Cauchy hy-

persurfaces, and then to canoncially evolve it. The dynamics will specifically be defined by

a set of algebra relations called Dirac brackets, which will also contain information about the

Legendre map and thus the kinematic structure set up by the matter model. These bracket

relations will form the basis of the gravitational closure equations, from which the gravity

theory can then - in principle - be constructed.

24



1.3.1 3 + 1-split of spacetime

The first step of the program is to split spacetime into a foliation of hyperbolic spatial hyper-

surfaces carrying the initial data, which undergo a time-evolution from one slice to the next4.

This is done via the following embedding of a 3-dimensonal spatial screen manifold Σ into

the four dimensional spacetime manifold M via

Xt : Σ ↪−→ M,

where Xt are a one-parameter family of embedding maps. Thus, Xt (Σ) is a hyperbolic hyper-

surface at some instant in time t with hyperbolic co-normal ϵ0(t, σ) at each point with σ ∈ Σ

and t ∈ R. An according orthonormal spacetime vector frame can then be constructed from the

Legendre map ℓx in the alternative5 observer definition and the pushforward of the embedding

map via [Sch20]; [Wie18]; [Wol22]

e0(t, σ) B ℓ−1
Xt(σ)

(
ϵ0(t, σ)

)
, eα(t, σ) B Xt∗

((
∂

∂yα

)
σ

)
,

in components: ea
0 =

(
ℓ−1

Xt(σ)

(
ϵ0(t, σ)

))a
, ea

α =
∂Xa

∂yα
.

Here yα denote the coordinates in a chart of the screen manifold Σ. To clarify notation one

more, Latin indices will from now on, and if not stated otherwise, denote the spacetime in-

dices, while Greek indices correspond to the spatial indices only.

Now, the basis vector e0 corresponds to a hypersurface orthogonal vector, while eα summarize

the hypersurface tangential basis vectors. An according dual basis dual basis
(
ϵ0, ϵβ

)
to this

foliation frame (e0, eα) ≡ (∂0, ∂α) is defined via the relations [Dü+18]

ϵ
β
a
(
ea
α

)
= δαβ ,

ϵ0
a
(
ea
α

)
= 0, annihilation condition,

ϵ0
a

(
ea

0

)
= 1, normalisation condition,

δa
b = ϵ

0
b

(
ea

0

)
+ ϵαb

(
ea
α

)
, completeness relation.

Using the orthonormal frame, the tangent vector Ẋt ≡ ∂t of integral curves connecting Xt0 (σ)

with any later instance in time Xt0+t′ (σ) is given by

∂t = Ne0 + Nαeα,

4This 3 + 1-split is a standard technique in general relativity as discussed for instance in [ADW08]; [Str13].
5The whole construction described here was initially performed using the observer definition with Legendre map

Lx instead [Dü+18]; [Due20]; [Wol22]. Both constructions yield in principle the same results.
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with lapse N B ϵ0 (∂t) and shift Nα B ϵα (∂t) (confirm [Dü+18];[Str13]). The according

co-vector basis can then be shown to be given by

dt =
ϵ0

N
, dxα = −

Nαϵ0

N
+ ϵα, (1.7)

as discussed for instance in [Wol22]. Equipped with these orthonormal frames and co-frames,

any tensorial quantity can now be projected onto the hypersurface by contraction with the

orthonormal frame (e0, eα) for lower indices, or co-frame
(
ϵ0, ϵα

)
for upper indices.

The projection of the dual principal polynomial onto the hypersurface is for example given by

[Wol22]; [Wie18] as

P#
α1···αi

(t, σ) B P#
Xt(σ)

(
eα1(t, σ), · · · eαi(t, σ), e0(t, σ), · · · e0(t, σ)

)
,

in components: P#
α1···αi 0··· 0 = P#

a1···ad
ea1
α1
· · · eai

αi eai+1
0 · · · ead

0 ,

and similarly by [Due20]; [Dü+18] for the principal polynomial. Here i ranges from 0 to

d = degP#. Using the orthonormality of the frame vectors eα and e0 together with the explicit

expression of the Legendre map (1.4) one finds that

P#
α = P#

α000 = 0, annihilation condition, (1.8)

P# = P#
0000 = 1, normalization condition, (1.9)

as discussed for instance in [Wie18]; [Wol22]. More examples on how the hypersurface pro-

jection works are discussed in sections 1.4 and 1.5.

The geometry induced on the hypersurface is similarly given as the according projection of

the tensor field gA with valence set by the according spacetime geometry G(x) to which the

matter fields couple. HereA denotes an arbitrary multiindex of the induced tensor field.
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1.3.2 Hypersurface dynamics

After having performed a foliation of spacetime the next step is to describe the dynamical

evolution of an arbitary projected field gA with

g
(
Xt(z), e0 [Xt(z)] , eα [Xt(z)] , ϵ0 [Xt(z)] , ϵα [Xt(z)]

)
,

as discussed in detail in [Wol22] and summarized here. How these fields change with time, is

- at least to linear order (see also [Wie18]) - encoded in the total time derivative via [Wol22]

d
dt

gA [Xt] =
∫
Σ

d3zẊt(z)
δgA

δXa
t (z)
=

∫
Σ

d3z
(
Nea

0 + Nαea
α

)
(z)

δgA

δXa
t (z)

CH (N (Xt)) gA [Xt] +D
(
N⃗ (Xt)

)
gA [Xt] .

Here, the functional differential operator

H (N) B
∫
Σ

d3zN(z)ea
0(t, z)

δ

δXa
t (z)

encodes deformations of the field normal to the hypersurface, while

D
(
N⃗
)
B

∫
Σ

d3zNα(z)ea
α(t, z)

δ

δXa
t (z)

describes deformations tangential to the hypersurface. Additionally, as has already been

shown by [HKT76] and is more generally reviewed by [Wol22] these operators can be in-

terpreted in the following way: On the one hand, the tangential deformation corresponds to a

Lie derivative of the field gA along the shift vector N⃗ via [Wol22]

D
(
N⃗
)

gA [Xt] (y) = Nµ(y)∂µgA(y) −
(
∂γNµ(y)

)
FA γ

µ (y) = LN⃗ gA(y). (1.10)

Here the so-called tangential deformation coefficient, which appears in the definition of the

Lie-derivative is given by [Wol22]

FA γ
µ (y) = ea

µ(y)
∂gA

∂∂γXa (y).

On the other hand, the normal deformation yields the abstract relation [Wol22]

H (N) gA [Xt] (y) = N(y)k(y) +
(
∂γN

)
(y)MAγ(y). (1.11)
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Here the first term is local in the lapse N(y), and the according pre-factor k(y) is defined as

the velocity of gA. The second term on the right-hand side of equation (1.11) collects all

contributions, which are derivatives of N(y) and thus non-local in the lapse. The prefactor

MAγ(y) is defined as non-local deformation coefficient with [Dü+18]

MAγ(y) = ea
0(y)

∂gA

∂∂γXa (y).

The normal and tangential deformation coefficient of an arbitrary projection are explicitly

calculated by variation of the frame vectors, and dual frame vectors with respect to the em-

bedding map. These variations can be derived similarly to [Wit14]; [Wol22] via the definition

of the frame vector eα in terms of the embedding map, the Legendre map (1.4), as well as the

annihilation (1.8) and normalization conditions (1.9), and the completeness relation to yield

δea
α(y)

δXb(z)
= − δa

b∂αδy(z),

δea
0(y)

δXb(z)
= − ea

0

(
degP#

)−1
∂bP#

c j2··· jd ec
0e j2

0 · · · e
jd
0 δy(z)

+ ea
αϵ

0
b

(
degP# − 1

)−1 (
P#−1

)αβ
∂βδy(z),

δϵ0
a (y)

δXb(z)
=∂bP#

a j2··· jd e j2
0 · · · e

jd
0 δy(z)

−
degP# − 1

degP# ϵ0
a∂bP#

c j2··· jd ec
0e j2

0 · · · e
jd
0 δy(z)

+ ϵαa ϵ
0
b∂αδy(z),

δϵαa (y)
δXb(z)

=ϵαb ϵ
β
a∂βδy(z) − ϵ0

aϵ
0
b

(
degP#

)−1 (
P#−1

)αβ
∂βδy(z),

in the alternative observer definition, with delta distribution δy(z) and d = degP#. From these

relations it can be read off, that the derivatives of the vectors and co-vectors with respect

to ∂γXa are similar to the previous observer definition (see for instance [Dü+18]; [Due20];

[Wol22]). They are given by [Wie18]; [Wol22]

∂em
0

∂
(
∂γXa

) = − (
degP# − 1

)−1
em
σϵ

0
a

(
P#−1

)σγ
,

∂em
µ

∂
(
∂γXa

) = δm
a δ

γ
µ,

∂ϵ
µ
m

∂
(
∂γXa

) = −ϵµa ϵγm + (
degP# − 1

)−1
ϵ0

mϵ
0
a

(
P#−1

)µγ
,

∂ϵ0
m

∂
(
∂γXa

) = −ϵ0
aϵ

γ
m. (1.12)

A very important observation is now, that the tangential and normal deformation operators

D
(
N⃗
)

and H (N) are vector fields over the manifold of embeddings (see [HKT76] what is
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further reviewed in [Dü+18]; [Due20]; [Wol22]), and thus form a commutator algebra. It can

be explicitly evaluated by successive application of the operators to an arbitrary functional,

where the variations of the frame fields with respect to the embedding is important in the

calculation. The commutator algebra is then given by

[
H(N),H(M)

]
= −D

((
degP# − 1

)−1 (
P#−1

)αβ (
M∂βN − N∂βM

)
∂α

)
, (1.13)[

D
(
N⃗
)
,H (M)

]
= −H

(
LN⃗ M

)
, (1.14)[

D
(
N⃗
)
,D

(
M⃗

)]
= −D

(
LN⃗ M⃗

)
, (1.15)

as discussed in more detail in [Dü+18]; [Due20]; [Wie18] and especially [Wol22]. The com-

mutator relations (1.13)-(1.15) are also called hypersurface deformation algebra and encode

the time evolution of hypersurface functionals and fields, and thus the gravitational dynam-

ics in the spacetime picture. Emphasis is placed on the first algebra relation (1.13), which

contains the component
(
P#−1

)αβ
of the inverse dual polynomial on the right-hand side of the

equation.

Now, as was discussed before, the kinematic information on the matter theory under consid-

eration is encoded within the observer frames, and thus the observer definition given in terms

of the Legendre map. This map in turn is given via the (dual) principal polynomial, which

is defined on the spacetime geometry, whose dynamics one aims to determine in the course

of this program. The kinematic information is then indirectly injected into the gravity theory

via (1.13), what, however, also implies as a downside that the commutator relations form no

Lie algebra [Dü+18]; [Due20]; [Wol22]. But this actually turns out to be beneficial and a

technical necessity as will be addressed in the next section.

Eventually, the first two algebra relations (1.13)-(1.14) will lead to the system of gravitational

closure equations from which the gravity theory can be constructed.

1.3.3 Canonical dynamics

The next step in the constructive gravity program consists of translating the evolution in space-

time to a canonical evolution on the hypersurface with initial data in phase space, as worked

out by [Dü+18]; [Due20]; [Wol22] for instance. In other words, while in the spacetime picture

the full geometry G(x) is known at any point and any instant and the hypersurface geometry

gA is induced from that, the canonical picture aims to construct the (generally) unknown

spacetime geometry from known initial data in phase space, as also remarked in [Due20]. In

this context, [Wit14]; [Dü+18]; [Wol22] introduced the following metaphor: While a physical

observer would only able to determine canonical phase space data within their spatial hyper-
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surface at a specific instant in time and find rules to evolve it (human view), they cannot simply

read off all relevant information at any spacetime point and derive the according hypersurface

projection from that, unlike some omniscient being (divine view).

Thus, as discussed in [Dü+18]; [Due20]; [Wol22] in detail, the canonical geometry gA is now

directly imposed, and has the same valence as the induced geometry gA in the spacetime pic-

ture. Also lapse N and shift Nα are introduced as independent fields on the hypersurface Σ in

the canonical description. One also imposes the fields p#
α1···αi

with i = 1, · · · degP# as canon-

ical quantities on the hypersurface. These depend on gA in the same way as the projected

components of the principal polynomial P#
α1···αi

depended on the induced geometry gA in the

divine view. Symmetry conditions for gA are then enforeced to mimic the symmetries of the

induced hypersurface geometry via the linear projection [Due20]

gA = ΠA
B

gB,

as well as the non-linear annihilation and normalization conditions on the frame.

Due to these symmetries and the non-linear frame conditions it proves (see for instance

[Dü+18]; [Due20]; [Wol22] useful and also necessary to parameterize the F geometric de-

grees of freedom of gA via generalized coordinates - also called configuration fields - φA (t, σ) ∈

Φ with A = 1, · · · , F and Φ being an F-dimensional manifold6 via the following map:

ĝA : Φ→ R, with gA invoked by ĝA
(
φ1, · · · , φF

)
.

The annihilation and normalization condition can thus be enforced by [Due20]

p#
α (ĝ (φ)) = 0, and p (ĝ (φ)) = 1.

Thus, the configuration fields are constructed such, that these conditions are always fulfilled,

especially under time evolution [Dü+18]; [Due20]; [Wol22].

Analogously, if the canonical geometry is built from the configuration fields, these fields can

be directly re-extracted from the geometry according to the inverse map [Dü+18]; [Due20];

[Wol22]

φ̂A (ĝ (φ)) = φA.

6Strictly speaking, as discussed in [Dü+18] in more detail, the configuration fields are sections of the Φ-fibre
bundle over the hypersurface Σ.
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Consequently, one can define the non-constant intertwiners

∂φ̂A

∂gA
(ĝ(φ)) , and

∂ĝA

∂φA (φ) ,

between gA and the fields φA. From these the relations

∂φ̂A

∂gA
(ĝ(φ))

∂ĝA

∂φB (φ) = δA
B, and

∂ĝA

∂φA (φ)
∂φ̂A

∂gB
(ĝ(φ)) = TA

B
,

with projector TA
B

can be derived [Dü+18]; [Due20]; [Wol22]. The role of the intertwiner

∂ĝA/∂φA is to map from the representation of the geometric degrees of freedom as config-

uration fields φA to the according representation as hypersurface geometry fields ĝA, while

∂φ̂A/∂gA maps accordingly from the representation in terms of the hypersurface geometry ĝA

to the configuration fields φA.

Besides the generalized coordinates φA one also introduces the canonically conjugate mo-

mentum densities πA to complete the phase space, as well as the Poisson bracket given by

[Due20]

{F,G} B
∫
Σ

d3x
(

δF
δφA(x)

δG
δπA(x)

−
δG

δφA(x)
δF

δπA(x)

)
,

with functionals F
[
φ, π

]
, G

[
φ, π

]
.

As mentioned by [Dü+18]; [Due20]; [Wol22] this leads to the definition of the phase space

functionals

Ĥ (N) B
∫
Σ

d3x N(x)Ĥ
[
φ(x), π(x)

]
, and D̂

(
N⃗
)
B

∫
Σ

d3x Nα(x)D̂α
[
φ(x), π(x)

]
.

They are constructed such, that they mimic the hypersurface deformation operators in the

canonical description. It is hence required that these space functionals fulfill the following

consistency relations

H (N) gA ≃ −
{
Ĥ(N), gA

}
, (1.16)

D
(
N⃗
)

gA ≃ −
{
D̂

(
N⃗
)
, gA

}
, (1.17)

in a symbolic sense (see [Dü+18]; [Due20]; [Wol22] for more details), since gA on the left-

hand sides and gA on the right-hand sides of these equations are strictly speaking two different

mathematical objects [Wol22]. However, the functional dependency of the left-hand sides

of these relations on gA is carried over to the canonical description, and is translated into

a function of the canonical fields gA instead. Only then, it becomes possible to actually
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equate the according expressions to the right-hand sides of the consistency relations [Dü+18];

[Due20]; [Wol22]. Then, the Poisson algebra{
Ĥ(N), Ĥ(M)

}
=D̂

((
degP# − 1

)−1 (
p#−1

)αβ (
M∂βN − N∂βM

)
∂α

)
, (1.18){

D̂
(
N⃗
)
, Ĥ (M)

}
=Ĥ

(
LN⃗ M

)
, (1.19){

D̂
(
N⃗
)
, D̂

(
M⃗

)}
=D̂

(
LN⃗ M⃗

)
, (1.20)

needs to hold, too, to ensure consistency with the hypersurface deformation algebra rela-

tions (1.13) to (1.15). Consequently, the kinematic information encoded in the component(
p#−1

)αβ
C p#αβ of the input coeffcient, which mimics the inverse component

(
P#−1

)αβ
of

the dual principal polynomial, is inserted into the gravity theory via the first Poisson algebra

relation.

In the previous section it was mentioned that the hypersurface deformation algebra is not a Lie

algebra because of the structure function
(
P#−1

)αβ
appearing in (1.13). Now, in order to rep-

resent the hypersurface deformation commutators in the divine view as Poisson algebra in the

canonical human view, specific constraints on Ĥ and D̂ need to be imposed, as discussed in

detail in [Dü+18]; [Due20]; [Wol22]. These constraints actually provide an abstract notion of

spacetime diffeomorphism invariance in the canonical picture. This - as for instance discussed

in [IK85a]; [IK85b] - can be obtained by demanding path independence [Dü+18]; [Due20];

[Wol22]; [HKT76]: If an arbitrary functional F on a hypersurface Xt0 (Σ) at initial time t0 is

evolved to a final hypersurface Xt1 (Σ) at t1, the according change δF must be independent of

the single foliations between the initial and the final hypersurface. As discussed for instance

in [HKT76]; [Dü+18]; [Wol22] this path independence also implies the following constraints

for the local functionals

Ĥ
[
φ(x), π(x)

]
= 0, and D̂α

[
φ(x), π(x)

]
= 0,

such that the total Hamiltonian density in the gravitational action

S geo =

∫
dt

∫
Σ

d3xφ̇A(x)πA(x) −
∫

dtH
[
φ, π,N,Nα]

=

∫
dt

∫
Σ

d3xφ̇A(x)πA(x) −
∫

dt
∫
Σ

d3x
(

N(x)Ĥ
[
φ(x), π(x)

]
+ Nα(x)D̂α

[
φ(x), π(x)

])
,

(1.21)
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splits up into the so-called superhamiltonian Ĥ(x) and the supermomentum D̂(x) with

H
[
φ, π; N,Nα) = Ĥ(N) + D̂(N⃗),

(see for instance [Dü+18]; [Due20]; [Wol22]). The supermomentum can be determined from

the consistency relation (1.17), as well as the algebra bracket (1.20). One finds from (1.17)

that [Dü+18]; [Due20]; [Wol22]

(
LN⃗g

)A
(x) = Nµ∂µgA −

(
∂γNµ

)
FA γ

µ =
∂ĝA

∂φA

δD̂
(
N⃗
)

δπA(x)
, (1.22)

where (1.10) was inserted, however as functions of gA instead of gA. Thus, in the canon-

ical description the kinematical input FA γ
µ representing the coeficient arising in tangential

deformations is given via the Lie derivative of the configuration field along the shift as

∂φ̂A

∂gA
(ĝ(φ))

(
LN⃗ ĝ(φ)

)A
C Nµ∂µφ

A −
(
∂γNµ

)
FA γ

µ , (1.23)

with

FA γ
µ B

∂φ̂A

∂gA
(ĝ(φ)) FA γ

µ ,

(see [Due20]; [Wol22]; [Dü+18] for a detailed discussion). Now, as stated by [Dü+18];

[Due20]; [Wol22], integration of equation (1.22) and insertion into the algebra relation (1.20)

leads to the final result for supermomentum

D̂
(
N⃗
)
=

∫
Σ

d3xπA(x)
∂φ̂A

∂gA
(ĝ(φ))

(
LN⃗ ĝ(φ)

)A
(x). (1.24)

Next, the consistency relation (1.16) for the superhamiltonian yields, as discussed by [Dü+18];

[Due20]; [Wol22], that

δĤ

δπA(x)
= N(x)kA(x) +

(
∂γN

)
(x)MAγ(x), (1.25)

via the relation (1.11) acting on gA with

kA(x) =
∂φ̂A

∂gA
(ĝ(φ)) kA

as generalized velocities, collecting terms with prefactor N(x) of the local part of the Hamil-

tonian. The according non-local deformation coefficient due to deformations normal to the
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hypersurfaces is then given by [Due20]; [Wol22]; [Dü+18]

MAγ B
∂φ̂A

∂gA
(ĝ(φ)) ea

0
∂gA

∂
(
∂γXa

) = ∂φ̂A

∂gA
(ĝ(φ)) MAγ. (1.26)

Its explicit expression is derived from the definition of gA in terms of the frame vectors and

their corresponding variations with respect to the derivatives of the hypersurface embedding

map. After evaluation of all the variations, the hypersurface fields are then replaced by the

canonical equivalents, which are as functions of the configuration fields φ.

As furthermore shown by [Wol22] an important observation is that the non-local normal defor-

mation coefficient MAγ depends on higher order components of the dual prinicpal polynomial

via

MAγ ∂p#
α1···αI

∂φA p#
ϵγ

(
degP# − 1

)
= I

(
degP# − 1

)
p#

(α2···αI
p#
α1)ϵ −

(
degP# − I

)
p#
α1···αIϵ

.

This relation can be derived by the non-local normal deformation coefficient for arbitrary

projection of the dual principal polynomial

Mγ
α1···αI = ea

0(x)
∂P#

α1···αI

∂
(
∂γXa

t

) ,
and then successive application of the chain rule to relate it to the coefficient MAγ [Wol22].

To conclude, since the coefficient MAγ depends on higher order projections of the principal

polynomial, these will also be indirectly injected into the gravity theory.

Now, from the relation (1.25) one finds the superhamiltonian to be given by [Due20]; [Wol22];

[Dü+18]

Ĥ(N) =
∫
Σ

d3x
(
Ĥlocal

[
φ; π) − ∂γ

(
MAγπA

))
(x), (1.27)

with non-local part −∂γ
(
MAγπA

)
and a local part, which is related to a still to be determined

Lagrangian density L via Legendre tranform as

Ĥlocal
[
φ; π) = πAkA [

φ; π) − L
[
φ; k

[
φ; π)

)
.

The generalized velocities kA are given by

kA [
φ, π) B

∂Ĥlocal

∂πA

[
φ, π) ,
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and the associated momenta πA by

πA
[
φ, k) =

∂L

∂kA

[
φ, k) .

As initially realized by [Kuc74]; [HKT76] and also applied in the constructive gravity pro-

gram by [Due20]; [Wol22]; [Dü+18] this Legendre transform of the local Hamiltonian to the

Lagrangian picture will simplify the evaluation of the Poisson algebra relation (1.18) a lot,

since it will become linear in L. An ansatz, originally introduced by [Kuc74] and general-

ized by [Due20]; [Wol22]; [Dü+18] for this Lagrange density is then given as the following

expansion

L =

∞∑
N=0

CA1···AN (x)kA1(x) · · · kAN (x). (1.28)

Here the coefficient functionals CA1···AN [φ(x)] will play an important role in the construction

of the gravity theory and are called the output coefficients, whose solution one aims to find.

Now, as discussed by [Wol22]; [Due20]; [Dü+18] evaluation of the Hamiltonian equation of

motion

φ̇A(t, x) =
{
φA(t, x),H

[
φ, π; N,Nα)} =

=

∫
Σ

d3x
({
φA(t, x), Ĥ

[
φ(t, x), π(t, x)

]}
N(t, x) +

{
φA(t, x), D̂α

[
φ(t, x), π(t, x)

]}
Nα(t, x)

)
,

and insertion of the consistency relations (1.16) and (1.17) as funtions of the canonical vari-

ables will lead to an explicit expression for the generalized velocities

kA =
1
N

(
φ̇A −

(
∂γN

)
MAγ − Nα∂αφ

A +
(
∂γNµ

)
FA γ

µ

)
. (1.29)

As shown by [Wol22]; [Due20]; [Dü+18] insertion of the solution for the supermomentum

(1.24) as well as the superhamiltonian (1.27), expressed in terms of the local and non-local

contribution, and elimination of φ̇A(t, x) by insertion of (1.29) into the gravity action (1.21)

leads to the following action

S geo
[
φ, π,N, N⃗

]
=

∫
dt

∫
Σ

d3xN(t, x)
(
πA(t, x)kA(t, x) − Ĥlocal

[
φ(t, x); k(t, x))

)
.

Interestingly, this action only contains local terms, and the integrand is just the Legendre

transformation back to the local Lagrange density (1.28). So finally the gravitational action
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for a specific matter theory as input is given by [Wol22]; [Due20]; [Dü+18]

S geo
[
φ,N, N⃗

]
=

∫
dt

∫
Σ

d3x N(t, x)L
[
φA(t, x);

1
N(t, x)

(
φ̇A −

(
∂γN

)
(t, x)MAγ (φ(t, x))

−Nα∂αφ
A +

(
∂γNµ

)
FA γ

µ

))
.

For the gravitational Lagrange density is only determined by the local part described by the

ansatz (1.28) in terms of the output coefficients CA1···AN , it suffices to solve them to set up the

gravity theory.

Now, the question is of course how to construct the solutions for the output coefficients in the

first place. This is achieved by careful evaluation of the two Poisson algebra relations (1.18)

and (1.19), which is derived in detail in [Wol22]; [Due20] for reference.

For the first algebra relation (1.19) the solutions of the supermomentum and superhamiltonian

are inserted. Here, the local part is accordingly replaced by the ansatz (1.28) for the Lagrange

density and the associated momenta are replaced by πA = ∂L/∂kA. Then, evaluation of all

functional derivatives allows to rewrite the algebra relation as a functional differential equa-

tion forL. These can then be recast into a countable set of partial differential equations for the

output coefficients CA1···AN , where the kinematic input comes from the coefficients p#αβ, MAγ,

FA γ
µ and higher order spatial derivatives of the configuration fields ∂nφA. These coefficients

are thus called kinematic input coefficients. As discussed by [Wol22]; [Due20]; [Dü+18] the

gravitational closure equations derived from this algebra relation lead to equations which con-

nect output coefficients from different orders. During the evaluation of the equation [Dü+18];

[Due20]; [Wol22] receive that the output coefficients CA1···AN with N ≥ 3 depend at most on

second spatial derivatives of the configuration fields, i.e. CA1···AN

(
φ, ∂φ, ∂2φ

)
. Unfortunately,

C (φ, ∂φ, · · · ∂nφ), CA (φ, ∂φ, · · · ∂nφ) and CAB (φ, ∂φ, · · · ∂nφ) can gnerally depend on arbitrary

order of spatial derivatives of the configuration field, what is sometimes referred to as the col-

lapse problem [Dü+18]; [Due20]; [Wol22].

Similarly, the second algebra relation (1.19) is evaluated and recasted into a functional differ-

ential equation first. This equation is then rewritten into countably many partial differential

equations for the output coefficients, which mainly ensure that the final gravitational Lagrange

density transforms as a scalar density [Wit14]; [Wol22]. Thus, they are also called the covari-

ance part of the closure equations.

All gravitational closure equations as derived by [Dü+18]; [Due20]; [Wol22] are summarized

in an overview in the Appendix A for reference. Their solution would allow to construct the

gravity action. However, for the full field the total action S = S geo+S matter needs to be varied.

How the matter action S matter, with according gravitational source tensor, looks like in detail

depends on the type of matter under consideration, but also on the geometry that serves as
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gravitational field. One finds a generalized notion of gravitational sources for arbitrary ge-

ometries based on [GM01] for instance, which will also be summarized briefly in chapter 5.

Further details and applications in cosmology can be found in preliminary works by [Due20];

[Fis17] for instance.

1.4 Example: Maxwell electrodynamics

This section summarizes how one can describe the input kinematics of the gravitational theory

based on Maxwell electrodynamics as underlying matter theory, mainly following [Dü+18];

[Wie18]; [Due20]; [Wol22].

From the matter action of Maxwell electrodynamics

S matter
[
A; g) = −

1
4

∫
d4x

√
−detg(x)gac(x)gbd(x)Fab(x)Fcd(x),

with field strength tensor Fab = ∂aAb − ∂bAa the massless dispersion relation is derived from

the according equations of motion by variation with respect to the matter field Ab, and subse-

quent reduction of gauge ambiguities, as discussed for instance in detail in [SW14]; [Due20];

[Wol22]; [Wie18]; [Dü+18]. From the equation of motion the highest order derivative term in

the fields is collected (see [Due20])

0 =
√
−detggabgcd∂a∂bAc + O (∂A) .

Then, a WKB-ansatz is inserted for the field amplitudes and evaluated in the limit of infinite

frequencies. This leads to the well-known result, that the inverse Lorentzian metric defines

the massless dispersion relation

0 = gabkakb = P(k),

with wave co-vector ka and principal polynomial P(k). Accordingly, the dual prinicpal poly-

nomial is just given in terms of the metric

P#(v) = gabvavb,

with vector va. At the same time the metric gab is also the fundamental geometric field of the

theory, determining the gravitational dynamics.

Next, a 3+1-split is performed and it is studied how the evolution of hypersurface data is

driven by the canonical geometry. The induced hypersurface geometry, as well as the normal-

ization and annihilation conditions of the principal polynomial, can be directly derived from
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the metric gab as

gαβ = g
(
eα, eβ

)
, g00 = ge0,e0

= 1,

gα0 = g0α = g (eα, e0) = P#
α = 0.

In the previous observer definition by [RRS11]; [Dü+18] the inverse metric gab is used as

according hypersurface geometry. The canonical geometry gαβ (t, σ) on the hypersurface Σt

with σ ∈ Σt, as well as its parameterization in terms of the configuration fields φA, with A

running from 1 to 6 to account for the 6 degrees of freedom of the symmetric hypersurface

metric gαβ, can be expressed as

ĝαβ(φ) = IαβAφ
A, (1.30)

with the according constant intertwiner

IαβA = 1/
√

2



√
2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0
√

2 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0
√

2


αβ A

. (1.31)

Then, the configuration fields can be derived from the canonical geometry via the inverse map

φ̂ (g) = IAαβgαβ,

with constant intertwiner

IAαβ = 1/
√

2



√
2 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0
√

2 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0
√

2



Aαβ

. (1.32)
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The two intertwinig matrices are defined by the following relations

IAαβIαβB = δ
A
B, and IAαβIAγδ = δ

α
(γ δ

β
δ).

In the previous observer definition the inverse metric gαβ is used for the canonical geometry,

but the intertwiners are chosen equally with index positions adjusted accordingly.

The kinematic input coefficient p#αβ(φ) B
(
p#−1

)αβ
(φ) is then given by the inverse of the hy-

persurface metric gαβ(φ) expressed in terms of the configuration variables, while the tangential

deformation coefficient FA γ
µ is defined via the Lie derivative of the metric

∂φ̂

∂gαβ

(
LN⃗ ĝ(φ)

)
αβ
C Nµ∂µφ

A −
(
∂γNµ

)
FA γ

µ .

The MAγ-coefficient identically vanishes in this case due to the annihilation condition, because

MAγ =
∂φ̂A

∂gαβ
ea

0

∂gαβ
∂
(
∂γXa

)
= IAαβea

0gcd
∂

∂
(
∂γXa

) (
ec
αed

β

)
= 2IAγαgα0 = 0.

In the previous observer definition, the input coefficients were defined with respect to the

inverse field gαβ(φ), such that pαβ(φ) = gαβ(φ), the FA γ
µ -coefficient had a different sign and

was transposed in µ and γ, while also there the MAγ-coefficient vanished. As discussed in more

detail by [Dü+18]; [Due20]; [Wol22], the vanishing MAγ-coefficient is very important for the

analytical solvability of the closure equations (see Appendix A) for metric geometry: On the

one hand, the odd (CA1...A2N+1 with N ≥ 0) and even (CA0...A2N with N ≥ 0) output coefficients

decouple in the closure equations, what simplifies them a lot. On the other hand coefficients

starting from fourth order CABC vanish identically in the gravitational Lagrangian. This can be

shown by successive application of (C16N≥2), as discussed for instance by [Due20]; [Wol22].

Also, it turns out that in the metric case the first construction coefficient C will depend at

most on second derivatives of the configuration fields ∂2φA, i.e. C
(
φ, ∂φ, ∂2φ

)
. This can be

derived by application of (C19N≥2) and the weak assumption that C should depend on some

finite maximum derivative order of φA (see [Due20]; [Wol22]). Furthermore, as shown by

[Wol22], the second output coefficient CA, which can still depend on the derivatives of the

configuration field to arbitrary order can generally be written as a bounday term CA
[
φ(x)

]
=

δΛ
[
φ
]
/δφA(x) if the MAγ-coefficient vanishes identically, and is thus dynamically irrelevant.

Thus, the Lagrangian will finally only be constructed by C
(
φ, ∂φ, ∂2φ

)
and CAB (φ) (see for

instance [Due20]).
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The solution of these output coefficient via the gravitational closure program will eventually

lead to the Einstein-Hilbert action in 3 + 1-form, which can then be recast again into the

spacetime form

S geo =
c4

16πG

∫
d4x
√
−g (R − 2Λ) ,

with R as the Ricci scalar, Λ the cosmological constant and G the gravitational constant. So,

by starting from a metric structure within the matter theory, one can thus construct general

relativity, as demonstrated by [Dü+18]; [Due20]; [Wol22]. This confirms the previous deriva-

tion of the Einstein-Hilbert action by [HKT76] under more generalized conditions. Since the

structure of the closure equations does in principle not change (see [Wol22]; [Wie18] in either

observer definition, the results by [Dü+18]; [Due20]; [Wol22] still hold for the construction

of general relativity in the alternative observer definition based on [Sch20]; [Wol22]; [Wie18].

In section 2 the steps laid out by [Due20] will be followed to solve the closure equations for

a spherically symmetric, possibly stationary, metric spacetime using the alternative observer

definition. Different solutions in either Schwarzschild coordinates, or Painlevé-Gullstrand co-

ordinates will be constructed directly from the closure equations - without ever employing the

Einstein field equations.

1.5 Example: General linear electrodynamics

General linear electrodynamics, which is described in more detail in [HO03]; [HO06]; [OR02];

[Rub02] and references therein, and also summarized in [Wit14]; [Due20]; [Wol22], is the

simplest generalization of Maxwell electrodynamics. With a set of axioms, amongst them,

as discussed in more detail in [HO06], conservation of magnetic fluxes and electric charges,

locality and linearity one can set up a generalized theory of electrodynamics. In this theory

the field strength tensors are coupled via the area-metric with

S GLED [A; G) = −
1
8

∫
d4x ωG−1GabcdFabFcd.

Here, Gabcd(x) is the 4-rank (inverse) area-metric tensor, which possesses the same symme-

tries as the Riemann tensor, while ωG−1d4x is the according volume measure in this kind of

spacetime, instead of
√
−detgd4x as for metric spacetime. The scalar density factor is defined

as

ωG−1 = 24
(
ϵabcdGabcd

)−1
.

The area-metric is a genuine measure of area instead of length, unlike the metric. It is con-

structed as the linear constitutional relation between the electromagnetic fields E and B to the
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excitations D and H via the spacetime geometry. This is similar to linear response theory (see

[HO06] for more details), for electrodynamics in possibly anisotropic matter, where the vac-

uum fields couple to the field excitations via a constitutional relation as well. But since Gabcd

is now part of the spacetime structure, this electrodynamic theory would consequenlty allow

for effects like vacuum birefringence in principle. Interestingly, one can recover Maxwell

electrodynamics when choosing a metric induced area-metric according to

Gabcd =
√
−detg

(
ga[c g d]b

)
ψ + ϕϵabcd,

with ψ and ϕ as scalar functions.

The principal polynomial as appropriate dispersion relation is now given by

P(k, k, k, k) = Pabcdkakbkckd = −
1
24
ω2

G−1ϵuvpqϵrstuGuvr(aGb|ps|cGd)qtukakbkckd,

with co-vector ka, as for example discussed in [Rub02]; [Iti09]. The corresponding dual

prinicpal polynomial is given by

P#(v, v, v, v) = P#
abcdvavbvcvd = −

1
24
ω2

Gϵ
mnpqϵrstuGmnr(aGb|ps|cGd)qtuvavbvcvd,

with vector va. The prinicpal tensor Pabcd, and dual principal tensor P#
abcd are totally symmet-

ric 4-rank objects, which are also referred to as Fresnel tensors.

Now, one needs to perform a 3 + 1-decomposition of this area-metric spacetime. The corre-

sponding induced hypersurface fields can be defined similarly to [Wit14]; [Due20]; [Wol22]

via the area-metric, but now with different index positions to adjust for the change of the

observer definition and the Legendre map as:

ḡαβ = −Ḡ
(
∂0, ∂α, ∂0, ∂β

)
= −Ḡ0α 0 β, (1.33)

¯̄gαβ =
1
4

1
det ḡ

ϵαµνϵβρσḠ
(
∂µ, ∂ν, ∂ρ, ∂σ

)
=

1
4

1
det ḡ

ϵαµνϵβρσḠµ ν ρσ, (1.34)

¯̄̄g
α

β =
1
2

1√
detḡ

ϵαδσḠ
(
∂0, ∂β, ∂δ, ∂σ

)
− δαβ =

1
2

1√
det ḡ

ϵαδσḠ0 β δσ − δ
α
β . (1.35)

with effective hypersurface metric field ḡαβ, and determinant det ḡ. The field ¯̄̄g
γ

β is considered

as traceless and ¯̄̄g
αβ

is given by
¯̄̄g
αβ
=

(
ḡ−1

)βγ ¯̄̄g
α

γ .
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The non-linear frame conditions lead to [Wol22]; [Due20]

P#
0000 = P# = 1, → ḡαβ ¯̄gαβ = 0, (1.36)

P#
α000 = P#

α = 0, → ¯̄̄g
[αβ]
= 0, (1.37)

in the new observer definition. Importantly, these hypersurface fields are just a specific choice

for expressing the degrees of freedom of the area-metric as induced geometry. Different field

definitions can be found as demonstrated by [Wol22]; [Due20] for example.

In the previous observer definition based on [RRS11], the hypersurface fields, as well as the

annihilation and normalization condition were defined similarly, however with dualized in-

dices [Wol22]; [Due20]; [Dü+18].

In the spacetime description (divine view) the induced hypersurface tensor fields ḡαβ, ¯̄gαβ and
¯̄̄g
α

β are derived from the area-metric G as fundamental geometry. Now, one switches to the

canonical description (human view), where the dynamics are fundamentally set by the tensor

fields ḡαβ(σ, t), ¯̄gαβ(σ, t) and ¯̄̄gαβ (σ, t) directly defined on the hypersurface Σt as one-parameter

families.

The non-linear constraints have to be reimposed for the canonical geometry with ḡαβ ¯̄gαβ = 0

and ¯̄̄g[αβ] = 0, and also ḡ[αβ] = 0 and ¯̄g[αβ] = 0. As discussed by [Due20]; [Wol22]; [Dü+18]

this reduces the 27 degrees of freedom of the canonical tensor fields to 17. These degrees of

freedom can be expressed via F = 17 configuration field variables

φ B
(
φ̄1, · · · , φ̄6, ¯̄φ1, · · · , ¯̄φ6, ¯̄̄φ1, · · · , ¯̄̄φ5

)
,

with F indexing the single configuration fields φF , which are, as shown in detail by [Due20];

[Wol22]; [Dü+18] related to the canonical hypersurface fields via the following non-linear

relations

ˆ̄gαβ = IαβAφ̄
A, ˆ̄̄gαβ = IAαβ∆AB ¯̄φB and ˆ̄̄̄gαβ = IAαβ

(
δB

A −
nAφ̄

B

nCφ̄C

)
ϵ(m)B

¯̄̄φm,

with the parameterization maps ˆ̄gαβ(φ), ˆ̄̄gαβ(φ) and ˆ̄̄̄gαβ(φ) and captial letters A,B running from

1 to 6, and small letters m from 1 to 5 [Due20]; [Wol22]; [Dü+18]. Here ∆AB denotes a 6 × 6

identity matrix
(∆AB)A=1,··· 6;B=1,··· 6 = 116,

while the constant intertwining matrices IAαβ and IαβA are given by (1.32) and (1.31).
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Demanding that the 3 × 3 matrix (
IAαβ∆ABtB

)
α=1,2,3;β=1,2,3

is positive definite, [Due20]; [Wol22]; [Dü+18] can construct an R6-orthonormal basis with

t =
(

1
√

3
, 0, 0,

1
√

3
, 0,

1
√

3

)
, e(1) =

 √2
√

3
, 0, 0,−

1
√

6
, 0,−

1
√

6

 , e(2) = (0, 1, 0, 0, 0, 0) ,

e(3) =

0, 0, √2
√

3
,

1
√

6
, 0,−

1
√

6

 , e(4) = (0, 0, 0, 0, 1, 0) , e(5) =

(
0, 0,

1
√

3
,−

1
√

3
, 0,

1
√

3

)
,

and components tA and e(m)A. Accordingly, the co-vector basis required to set up the pa-

rameterization map ˆ̄̄̄gαβ(φ) is given in terms of the orthonormal basis as nA B ∆ABtB and

ϵ(m)A B ∆ABe(m)B. As discussed by [Due20]; [Wol22]; [Dü+18], it can be confirmed, that

the non-linear constraints on the canonical geometry are fulfilled with the according inverse

parameterization maps φ̂(g) given as

ˆ̄φA = IAαβḡαβ, ˆ̄̄φA = ∆ABIαβB ¯̄gαβ, ˆ̄̄̄φm = IαβAe(m)A ¯̄̄gαβ. (1.38)

Now, one needs to find the kinematic input coefficients for the gravitational theory: First, there

is p#
αβ representing the α-β-0-0 components of the dual principal polynomial P#

αβ expressed in

terms of the canonical geometry. Then, FAµγ as the hypersurface projection of the tangential

deformation coefficient, and finally MAγ as the hypersurface projection of the non-local nor-

mal deformation need to be found. The coefficient p#
αβ has the same structure as in [Due20];

[Wol22]; [Dü+18] with

p#
αβ =

1
6

(
ˆ̄gαγ ˆ̄gβδ ˆ̄̄gγδ − ˆ̄gαβ ˆ̄gγδ ˆ̄̄gγδ − 2ˆ̄gαβ ˆ̄gγν ˆ̄gδµ

ˆ̄̄̄gγν ˆ̄̄̄gδν + 3ˆ̄gγδ ˆ̄gαµ ˆ̄gβν
ˆ̄̄̄gγµ ˆ̄̄̄gδν

)
.

However, it needs to be inverted accordingly to find the input coefficient [Wie18]; [Wol22]

p#αβ B
(
p#−1

)αβ
,

what is not necessary in the previous observer definition used in [Dü+18]. The explicit shape

of the other two kinetic input coefficients FA γ
µ and MAγ is similar to [Due20]; [Dü+18] when

evaluating these for the dualized hypersurface fields in the alternative, new observer definition,

with only small changes in their explicit shape.
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For the FA γ
µ -coefficient the Lie derivative of the canonical geometries ḡαβ, ¯̄gαβ and ¯̄̄gαβ accord-

ing to the general definition (1.23) leads to

∂φ̂

∂ḡαβ

(
LN⃗

ˆ̄g(φ)
)
αβ

⇒ F Ā γ
µ = −2IAγσIµσBφ̄

B,

∂φ̂

∂ ¯̄gαβ
(
LN⃗

ˆ̄̄g(φ)
)αβ

⇒F
¯̄A γ
µ = 2∆AB∆CDICγσIµσB ¯̄φD,

∂φ̂

∂ ¯̄̄gαβ

(
LN⃗

ˆ̄̄̄g(φ)
)αβ

⇒ F
¯̄̄m γ
µ = 2IµσA

∂ ˆ̄̄̄gγσ

∂ ¯̄̄φn
¯̄̄φne(m)A, (1.39)

with
∂ ˆ̄̄̄gγσ

∂ ¯̄̄φn
= IBγσ

(
δC

B −
nBφ̄

C

nDφ̄D

)
ϵ(n)C .

Thus, the FA γ
µ -coefficients in the new obsever definition have different signs and are trans-

posed in µ and γ compared to the ones in the previous definition used by [Dü+18]; [Due20].

For the MAγ-coefficients the general definition (1.26) is applied and the derivatives of the

frame fields (1.12) are used. For the first coefficient MĀγ one then obtains the following ex-

plicit expressions after various steps of calculation omitted here:

MĀγ =
∂ ˆ̄φA

∂ ḡαβ
ea

0
∂ḡαβ

∂
(
∂γXa

) = −IAαβea
0

∂G
(
e0, eα, e0, eβ

)
∂
(
∂γXa

)
= −IAαβea

0Gebcd

∂
(
ee

0 eb
α ec

0 ed
β

)
∂
(
∂γXa

) =
2
3

IAαβ
√

detḡIαδBϵεσβ
∂ ˆ̄̄̄gδε

∂ ¯̄̄φm
p#σγφ̄B ¯̄̄φm.

(1.40)

The second coefficients M
¯̄Aγ yields

M
¯̄Aγ =

∂ ˆ̄̄φA

∂ ¯̄gαβ
ea

0
∂ ¯̄gαβ

∂
(
∂γXa

) = ∆ABIαβBea
0

∂
(
1/4 (detḡ)−1 ϵαµνϵβρσG

(
eµ, eν, eρ, eσ

))
∂
(
∂γXa

)
= ∆ABIαβBea

0
1

4detḡ
ϵαµνϵβρσGebcd

∂
((

ee
µ eb

ν ec
ρ ed

σ

))
∂
(
∂γXa

)
= 2∆ABIαβB (detḡ)−1/2 ϵαγν

∂ ˆ̄̄̄gβε

∂ ¯̄̄φm
IενC ¯̄̄φmφ̄C ,

(1.41)

where one used that

ea
0
∂ (detḡ)−1

∂
(
∂γXa

) = 0.
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At last the third coefficient M ¯̄̄mγ is given by

M
¯̄̄mγ =

∂ ˆ̄̄̄φm

∂ ¯̄̄gαβ
ea

0
∂ ¯̄̄g

αβ

∂
(
∂γXa

)
= IαβAe(m)Aea

0
∂

∂
(
∂γXa

)  1

2
√

detḡ
ϵαδσG

(
e0, eρ, eδ, eσ

) (
ḡ−1

)ρβ
−

(
ḡ−1

)αβ
= −IαβAe(m)A p#ωγ

3

(
ḡ−1

)ρβ √
detḡϵφωρ

IψηBφ̄
B∂

ˆ̄̄̄gφψ

∂ ¯̄̄φn

∂ ˆ̄̄̄gαη

∂ ¯̄̄φl
¯̄̄φn ¯̄̄φl + ∆CBICαφ ¯̄φB

 .
(1.42)

In the previous calculation it was additionally used that

∂
(
ḡ−1

)ρβ
∂
(
∂γXa

) ḡβϵ = −
(
ḡ−1

)ρβ ∂ḡβϵ

∂
(
∂γXa

) .
In the previous observer definition based on [RRS11], and used by [Dü+18]; [Due20] the

MAγ-coefficients look very similar, however they all posses an overall additional prefactor 3,

and the first and third coefficient are not contracted with the according coefficient pσγ, while

the second one is.

These kinematic input coefficients (and their respective derivatives) serve as input for the

gravitational closure equations. As discussed by [Dü+18]; [Wol22]; [Due20] these can, as

of now, not be solved in general for the construction of the corresponding gravitational the-

ory. However, perturbative solutions [Wol22]; [Sch+17]; [Wie18] and flat FLRW solutions

for cosmology [Due20]; [Fis17] could already be derived successfully from the constructive

gravity program.
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2 Spherically symmetric metric spacetimes in Constructive

Gravity

After having introduced the basic concepts of gravitational closure, the following chapter aims

at demonstrating a toy example on how to construct a gravitational action in practice. The

construction of this action is done for a spherically symmetric, stationary, metric, spacetime,

thereby closely following the derivation of previous works by [Due20]; [Dü+20]; [Fis17].

There this derivativon was explicitly demonstrated for a cosmological model for the Legendre

map Lx based on the observer definition introduced by [RRS11].

Although, no change of result is expected within the alternative definition of the Legendre

map ℓx in the metric case, it still serves as a useful consistency check to show this. Also it

was stated in [Due20] how one can find the Schwarzschild solution for specific coordinate

assumptions, which are elaborated here in more detail. Additionally, it is shown how the

Painlevé-Gullstrand solution can be derived with different coordinate assumptions.

Importantly, as discussed by [Due20], there are cases where the initial application of sym-

metries on the gravitational closure equation and subsequent solution of these to ultimately

find the gravitational equations of motion, commutes with the construction of a general action

and corresponding equations of motion, which are only evaluated on symmetries at the very

end. While finding the general solution first, and only then applying symmetries is commonly

much harder, the contrary can turn out to be more feasible.

The symmetries mentioned here are generally continuous and are mathematically defined via

the Killing equation

LKG = 0,

which states that the Lie derivative of the geometric field G along the so-called Killing vector

field K should vanish. Thus, the Killing vector fields encode continuous symmetries of the

spacetime geometry.

Now, there are cases where the application of a symmetry reduction on the level of the action,

from which, in turn, symmetry reduced equations of motions are derived, leads to the same

result as the application of these symmetries on the general equations of motion. This is called

the principle of symmetric criticality (see [FT02]), which allows to first evaluate the gravita-

tional closure equations, similarly to [Due20]; [Dü+20]; [Fis17], on spherically symmetric,

stationary configurations, and then solve them afterwards.
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Coordinate choices concerning the radial parameter and the notion of staticity do, however,

not follow the principle of symmetric criticality. They can only be implemented on the level

of equations of motion, which will be derived for this special case in the following section.

Using a point-mass as source of the gravitational field will also fix the integration constant of

the vacuum Schwarzschild solution. Even though the following discussion will mainly repro-

duce well-known results from general relativity, it serves to demonstrate the practical use of

the constructive gravity program.

2.1 Equations of motion in a spherically symmetric, stationary metric
spacetime

This section deals with finding the solution for a spherically symmetric metric spacetime in the

constructive gravity program. This was initially also discussed by [Due20] for the previous ob-

server definition based on [RRS11]. Now, the derivation steps, outlined in [Dü+20]; [Due20];

[Fis17] are repeated here using the alternative observer definition by [Wie18]; [Sch20]; [Wol22]

to show that both definitions lead to consistent results in the metric case as expected.

An ansatz for the metric in a spherically symmetric, stationary spacetime is generally given

by

g = A(r)dt2 − 2B(r)dtdr −C(r)dr2 − D(r)
(
dθ2 + sin2 θdϕ2

)
, (2.1)

with A(r), B(r), C(r) and D(r) representing some unknown functions of r, as can be confirmed

in standard literature (see [Ryd09]) for instance). This ansatz can be derived by solving the

Killing equation (
LKig

)
ab = Kc

i ∂cgab + ∂aKc
i gcb + ∂bKc

i gac = 0,

for a metric with the following Killing vector fields

K1 = sin ϕ∂θ + cot θ cos ϕ∂ϕ, K2 = − cos ϕ∂θ + cot θ sin ϕ∂ϕ, K3 = ∂ϕ,

representing isotropy and

K0 = ∂t,

to express stationarity. This is similar to the ansatz by [Fis17]; [Due20], who considered

isotropy and homogeneity for an FLRW solution.
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Performing a 3 + 1-split of the metric by insertion of

∂t = Ne0 + Nαeα,

and ∂α = eα, one can thus find the corresponding hypersurface projections hαβ > 0 of the

metric and identify, which of the unknown functions correspond to the lapse N(r) and the

shift Nα(r). Since spherical symmetry leads to vanishing components gθt = 0 and gϕt = 0, the

shift components Nθ and Nϕ are zero. Only the radial shift component needs to be considered.

The 3 + 1-split of the metric is then given by [Str13]

gtt = A(r) = N2g00 + NrNrgrr = N2 −
(
Nr)2 hrr = N2 −

(
Nr)2 C(r),

grt = Nrgrr = −Nrhrr = −NrC(r), grr = −hrr = −C(r),

gθθ = −hθθ = −D(r), gϕϕ = −hϕϕ = −D(r) sin2 θ, (2.2)

where g00 = 1 and gα0 = 0 are used.

The configuration fields φA used to parameterize the hypersurface degrees of freedom in a

canonical way thus become

φA = IAαβgαβ =
(
−C(r), 0, 0,−D(r), 0 − D(r) sin2 θ

)A
(2.3)

after contraction with the intertwiner (1.32). This means, that generally φ1, φ4 and φ6 do not

vanish, and thus

gαβ = diag
(
φ1(r), φ4(r), φ6(r, θ)

)
αβ
.

For generality, this notation will be kept in the following discussion. The functions A(r), B(r),

C(r) and D(r) will be reinserted, when solving the equations of motion later on.

Hence, the according kinematic input coefficients pαβ =
(
g−1

)αβ
after evaluation on symmetric

configuration are given by1

prr =
1

φ1(r)
, pθθ =

1
φ4(r)

, pϕϕ
1

φ6(r, θ)
.

1In the observer definition applied by [Due20], where the dualized hypersurface field gαβ is considered, the
corresponding values of pαβ are inverted.
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The coefficient FA γ
µ is given2 by

FA γ
µ = − 2φ1

(
δA

1 δ
r
µδ
γ
r +
√

2
(
δA

2 δ
r
µδ

γ
θ + δ

Ā
3 δ

r
µδ
γ
ϕ

))
− 2φ4

(
δA

4 δ
θ
µδ
γ
θ +
√

2
(
δA

2 δ
θ
µδ
γ
r + δ

A
5 δ

θ
µδ
γ
ϕ

))
− 2φ6

(
δA

6 δ
ϕ
µδ

γ
ϕ +
√

2
(
δA

3 δ
ϕ
µδ

γ
r + δ

A
5 δ

ϕ
µδ

γ
θ

))
,

and MAγ = 0 identically. The non-vanishing components of the generalized velocities kA, as

stated in (1.29), are then given by

k1 =
−Nr(r) ∂rφ

1(r) − 2 ∂rNr(r)φ1(r)
N(r)

, k4 =
−Nr(r) ∂rφ

4(r)
N(r)

, k6 =
−Nr(r) ∂rφ

6(r)
N(r)

. (2.4)

With these input coefficients, the symmetry reduced closure equations are now solved by

following the exact steps laid out in detail in [Due20], and sketched here. The explicit cal-

culations are omitted here, but are performed with Mathematica, where the script by [Fis17]

served as inspiration.

A further remark is that, as already mentioned in section 1.4, only the coefficient functions C

and CAB need to be evaluated explicitly to set up the gravitational Lagrangian. For terms with

CA1···AN with N ≥ 3 vanish in the metric case, and CA is only a boundary term. Additionally,

the coefficient C only depends on spatial derivatives of φ up to second order.

Firstly, equation (C83) is solved, and expressions for the non-vanishing components C αβ
:A

∣∣∣∣
sym

are found. These are derivatives of C with respect to ∂2φ evaluated on spherically symmetric,

stationary configurations. Accordingly, the common short hand notation

C α1···αn
:A ≡

∂C
∂φA

,α1···αn

,

with

φA
,α1···αn

≡
∂nφA

∂α1 · · · ∂αn

,

is used from now on. With these relations, equation (C82) can be evaluated. This leads

to componentwise relations between the derivatives of C with respect to first spatial deriva-

tives of the configuration fields, i.e. C α
:A

∣∣∣
sym and the according non-vanishing components

C αβ
:A

∣∣∣∣
sym

. With (C1) one can then subsequently find explicit expressions for the derivatives

of C with respect to the configuration fields C:A|sym, the componentwise relations C αβ
:A

∣∣∣∣
sym

and the still unknown C|sym ≡ Csym. Next, (C3) is evaluated such that the coefficients CAB|sym

2In the observer definition based on [RRS11] and applied by [Due20] the FA γ
µ -coefficient looks similar, but has

a different sign and is transposed in µ and γ. It is the FA γ
µ -coefficient corresponding to the Lie derivative of

the dualized field gαβ.
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can be related to C αβ
:A

∣∣∣∣
sym

. This also shows which of the explicit components CAB|sym are

independent. Six3 independent components are obtained:

C14|sym , C15|sym , C16|sym , C34|sym , C36|sym , C46|sym .

Now, subsequently inserting these into the symmetry reduced equation (C102), reduces the

amount of non-vanishing components of CAB even more. It is shown that there is actually

only one independent component Csym
14 ≡ C14|sym for notational simplicity, similarly to what

[Due20] found. One is left with

Csym
14 , Csym

16 =
Csym

14 φ4(r)

φ6(r, θ)
, Csym

22 = −Csym
14 ,

Csym
33 = −

Csym
14 φ4(r)

φ6(r, θ)
, Csym

46 =
Csym

14 φ4(r)

φ6(r, θ)
, Csym

55 = −
Csym

14 φ4(r)

φ6(r, θ)
. (2.5)

Furthermore, (C102) establishes a relation between the single independent component Csym
14

and its derivatives with respect to the configuration fields C14:C |sym, given by the non-vanishing

components

C14:1|sym = −
Csym

14

2φ1(r)
, (2.6)

C14:4|sym = −
Csym

14

2φ4(r)
, (2.7)

C14:6|sym =
Csym

14

2φ6(r, θ)
. (2.8)

This is - up to some prefactors - consistent with the result by [Due20].

Finally, the non-vanishing components of C αβ
:A

∣∣∣∣
sym

can be further reduced, when reevaluating

(C3) by using the components (2.5) expressed in terms of Csym
14 . Importantly, the non-vanshing

components received in this step can all be expressed through three independent derivative

components of C αβ
:A

∣∣∣∣
sym

.

3In the observer definition based on [RRS11] and used by [Due20] only five non-vanishing components can be
found in this evaluation step.
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These are given by

C rr
:4

∣∣∣
sym = −4 Csym

14 , (2.9)

C rr
:6

∣∣∣
sym = −

4 Csym
14 φ4(r)

φ6(r, θ)
, (2.10)

C θθ
:6

∣∣∣
sym = −

4 Csym
14 φ1(r)

φ6(r, θ)
, (2.11)

similar to what [Due20] receives. The results for C αβ
:A

∣∣∣∣
sym

can now be used in (C82) once

more to futher simplify C α
:A

∣∣∣
sym.

In the later discussion the following components of C α
:A

∣∣∣
sym are required for the solution and

are thus stated here:

C r
:1

∣∣∣
sym =

2 Csym
14

(
∂rφ

4(r)φ6(r, θ) + φ4(r) ∂rφ
6(r, θ)

)
φ1(r)φ6(r, θ)

, (2.12)

C r
:4

∣∣∣
sym = −

2 Csym
14 ∂rφ

6(r, θ)

φ6(r, θ)
+

2 Csym
14 ∂rφ

1(r)

φ1(r)
+

4 Csym
14 ∂rφ

4(r)

φ4(r)
, (2.13)

C r
:6

∣∣∣
sym =

2 Csym
14 φ4(r) ∂rφ

1(r)

φ1(r)φ6(r, θ)
−

2 Csym
14 ∂rφ

4(r)

φ6(r, θ)
+

4 Csym
14 φ4(r) ∂rφ

6(r, θ)

φ6(r, θ)2 , (2.14)

C θ
:6

∣∣∣
sym =

4 Csym
14 φ1(r) ∂θφ6(r, θ)

φ6(r, θ)2 . (2.15)

At last, the previous findings for C αβ
:A

∣∣∣∣
sym

and C α
:A

∣∣∣
sym can in turn be inserted into (C1) to

find the derivatives of C:A|sym written in terms of the coefficients Csym, Csym
14 , the configuration

fields and their derivatives. The derivative components C:1|sym, C:2|sym, C:4|sym and C:6|sym

then turn out to be non-vanishing.

For the construction of the solution the following derivatives are especially important, namely

C:1|sym =
Csym

2φ1(r)
−

4 Csym
14 φ4(r) ∂rφ

1(r) ∂rφ
6(r, θ)

φ1(r)2φ6(r, θ)
+

2 Csym
14 ∂rφ

4(r) ∂rφ
6(r, θ)

φ1(r)φ6(r, θ)

−
2 Csym

14 φ4(r)
(
∂rφ

6(r, θ)
)2

φ1(r)φ6(r, θ)2 −
4 Csym

14 ∂rφ
1(r) ∂rφ

4(r)

φ1(r)2 −
2 Csym

14

(
∂rφ

4(r)
)2

φ1(r)φ4(r)

+
4 Csym

14 ∂2
rφ

4(r)

φ1(r)
+

4 Csym
14 φ4(r) ∂2

rφ
6(r, θ)

φ1(r)φ6(r, θ)
, (2.16)
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and

C:4|sym =
Csym

2φ4(r)
+

4 Csym
14 φ1(r) ∂2

θφ
6(r, θ)

φ4(r)φ6(r, θ)
−

2 Csym
14 φ1(r)

(
∂θφ

6(r, θ)
)2

φ4(r)φ6(r, θ)2 +
4 Csym

14 ∂2
rφ

4(r)

φ4(r)
(2.17)

+
2 Csym

14 ∂rφ
4(r) ∂rφ

6(r, θ)

φ4(r)φ6(r, θ)
−

2 Csym
14 ∂rφ

1(r) ∂rφ
4(r)

φ1(r)φ4(r)
−

4 Csym
14

(
∂rφ

4(r)
)2

φ4(r)2 , (2.18)

C:6|sym =
Csym

2φ6(r, θ)
−

2 Csym
14 φ4(r) ∂rφ

1(r) ∂rφ
6(r, θ)

φ1(r)φ6(r, θ)2 −
4 Csym

14 φ1(r)
(
∂θφ

6(r, θ)
)2

φ6(r, θ)3

+
4 Csym

14 φ1(r)∂2
θφ

6(r, θ)

φ6(r, θ)2 +
2 Csym

14 ∂rφ
4(r) ∂rφ

6(r, θ)

φ6(r, θ)2 +
4 Csym

14 φ4(r) ∂2
rφ

6(r, θ)

φ6(r, θ)2

−
4 Csym

14 φ4(r)
(
∂rφ

6(r, θ)
)2

φ6(r, θ)3 . (2.19)

Next, the equations (2.6) to (2.8) are direclty solved to find the solution for Csym
14 , and due to

(2.5) also for Csym
16 and for Csym

46 , which are relevant for the construction.

This leads to

Csym
14 = κ

√
−φ1(r)φ4(r)φ6(r, θ)

φ1(r)φ4(r)
, (2.20)

where κ is an integration constant. Now, as in the derivation of [Due20] one can read off from

the chain rule equations

∂Csym

∂r
= C:1|sym ∂rφ

1(r) + C:4|sym ∂rφ
4(r) + C:6|sym ∂rφ

6(r, θ) + C r
:1

∣∣∣
sym ∂

2
rφ

1(r)

+ C r
:4

∣∣∣
sym ∂

2
rφ

4(r) + C r
:6

∣∣∣
sym ∂

2
rφ

6(r, θ) + C θ
:6

∣∣∣
sym ∂r∂θφ

6(r, θ)

+ C rr
:4

∣∣∣
sym ∂

3
rφ

4(r) + C rr
:6

∣∣∣
sym ∂

3
rφ

6(r, θ) + C θθ
:6

∣∣∣
sym ∂

2
θ∂rφ

6(r, θ),

and

∂Csym

∂θ
= C:6|sym ∂θφ

6(r, θ) + C θ
:6

∣∣∣
sym ∂

2
θφ

6(r, θ) + C θθ
:6

∣∣∣
sym ∂

3
θφ

6(r, θ),

which components of C αβ
:A

∣∣∣∣
sym

, C α
:A

∣∣∣
sym and C:A|sym are required to construct the solution

for C. Then, successive integration of equations (2.9)-(2.11) leads to explicit solutions for the

components C αβ
:A

∣∣∣∣
sym

, while integration of equations (2.12)-(2.15) solves C α
:A

∣∣∣
sym and finally

from the equations (2.16)-(2.19) the solution for C:A|sym is found, similarly to [Due20]. Con-

sequently, the C coefficient in the alternative observer definition, as introduced by [Wie18];
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[Sch20]; [Wol22], becomes

Csym = 4κ
√
−φ1(r)φ4(r)φ6(r, θ)

− ∂2
rφ

4(r)
φ1(r)φ4(r)

−
∂2

rφ
6(r, θ)

φ1(r)φ6(r, θ)
−

∂2
θφ

6(r, θ)

φ4(r)φ6(r, θ)
+

1
2
∂rφ

4(r) ∂rφ
1(r)

φ1(r)2φ4(r)

+
1
2
∂rφ

6(r, θ) ∂rφ
1(r)

φ1(r)2φ6(r, θ)
+

1
2

(
∂rφ

4(r)
)2

φ1(r)φ4(r)2 −
1
2
∂rφ

6(r, θ) ∂rφ
4(r)

φ1(r)φ4(r)φ6(r, θ)

+
1
2

(
∂rφ

6(r, θ
)2

φ1(r)φ6(r, θ)2 +
1
2

(
∂θφ

6(r, θ)
)2

φ4(r)φ6(r, θ)2 +
1
4
λ

 ,
(2.21)

where λ is a further integration constant. The gravitational action for a spherically symmetric,

stationary spacetime, is then generally given by

S geo =

∫
dt

∫
d3x

(
NCsym + 2N

(
Csym

14 k1k4 +Csym
16 k1k6 +Csym

46 k4k6
))
, (2.22)

with Csym as given in (2.21), Csym
14 as given in (2.20) and finally the generalized velocities k1,

k4 and k6 according to (2.4).

A consistency check, where the configuration fields φA are replaced by 1/φA in the action,

then yields the same result as [Due20] found for the observer definition based on [RRS11].

The author [Due20] constructed the solution for the dualized hypersurface field gαβ, instead

of gαβ, and studied them for cosmological symmetries.

Finally, the integration constants are fixed to

κ =
1

64πG
, λ = 8Λ.

Now inserting the unknown functions C(r) and D(r) as in (2.3) for the configuration fields

results in the following action for the geometry, and thus gravity:

S geo =

∫
dt

∫
d3x

(
−

sin(θ)N(r) ∂rD(r) ∂rC(r)
16πGC(r)3/2 +

sin(θ)Nr(r)2∂rD(r) ∂rC(r)
16πG

√
C(r)N(r)

−
sin(θ)N(r) (∂rD(r))2

32πGD(r)
√

C(r)

+
sin(θ)

√
C(r)Nr(r) ∂rD(r) ∂rNr(r)

8πGN(r)
+

sin(θ)
√

C(r)Nr(r)2 (∂rD(r))2

32πGD(r)N(r)

+
sin(θ)N(r)∂2

r D(r)
8πG
√

C(r)
+
Λ sin(θ)D(r)

√
C(r)N(r)

8πG
−

sin(θ)
√

C(r)N(r)
8πG

)
.

Finally, the equations of motion are derived by variation of the total actions S = S geo + S matter

with respect to shift Nr(r′), lapse N(r′) (constraint equations) and the two unknown functions
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C(r′), D(r′), such that

δS geo

δN(r′)
= −

δS matter

δN(r′)
,
δS geo

δNr(r′)
= −

δS matter

δNr(r′)
,
δS geo

δC(r′)
= −

δS matter

δC(r′)
,
δS geom

δD(r′)
= −

δS matter

δD(r′)
,

(2.23)

and setting r′ = r after variation. Naturally, the right-hand sides of these equations are zero

for vacuum solutions. The detailed expressions for the geometric parts of the equations of

motion are omitted here, but can be explicitly evaluated with Mathematica. They have a

very involved and coupled structure, such that one can not solve them straightforwardly, as

already mentioned by [Due20]. They possess, however, all possible solutions for a spherically

symmetric, stationary spacetime, which can be extracted for specific coordinate choices in the

next sections. There, the equations of motion for the matter part will be specified, too.

2.2 Solutions in spherically symmetric, metric spacetimes

After having obtained general equations of motion for a spherically symmetric spacetime,

these will be evaluated for specific coordinate choices in the following section. Special focus

lies on the Schwarzschild coordinates, as well as the Painlevé-Gullstrand coordinates. Fur-

thermore, the Reissner-Nordström solution will be considered, and the Birkhoff Theorem will

be confirmed for the metric case from the constructed equations of motion. While this will

confirm standard results from general relativity, the Einstein field equations in their usual form

are not used here.

2.2.1 Metric Schwarzschild spacetimes

At first, the Schwarzschild solution is derived from the previously constructed equations of

motion. As already remarked by [Due20], this is only possible by setting Nr = 0 and D(r) = r2

and thus gauge fixing4, i.e. choosing specific coordinates. Since this does not fulfill symmetric

criticality, one can only impose the conditions for the equations of motion, and not on the level

of the action and thus the closure equations (see also [FT02]).

It is important to understand, how the specific choices of coordinates can be imposed as well-

defined conditions to be generalized to area-metric spacetimes later on. This generalization

must be independent of the corresponding physical interpretation in metric spacetime, which

might not hold anymore, or in a different way for other spacetime structures.

First of all, by setting D(r) = r2, the radial coordinate r is chosen in such a way, that the

4The necessity of choosing a specific gauge was also discussed in [Wit14].
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submanifold defined by the angular part of the line element (2.1) corresponds to

ds2
ang = gsub,αβdxαdxβ = r2

(
dθ2 + sin2 θdϕ2

)
,

of the sphere (see [Str13]). The infinitesimal area-element, given as metric volume element

with

dA =
√

detgsub dθ dϕ = r2 sin θ dθ dϕ,

thus defines the radial parameter r, such that these areas on the θ-ϕ submanifold scale with r2.

However, r is not a radial distance in the euclidean sense. How this choice for the parameter

r can be generalized to area-metric spacetime is discussed in section 3.1.

Choosing Nr = 0 is related to a notion of staticity of spacetime - at least in the metric case -

as discussed for instance in [Ryd09]; [Wal84]; [Str13]; [Bar19b]).

However, it can naturally also be understood by requiring hypersurface orthogonality of the

timelike Killing vector field K which enforces stationarity: One demands that the correspond-

ing co-vector ω = K♭ of this Killing vector fulfills the so-called Frobenius condition

ω ∧ dω = 0,

such that the spatial hypersurfaces with t = const are integrable. Then the corresponding

time-coordinate can be written as exact differential dt. A brief summary of the definition of

the Frobenius condition is given in Appendix B.

As discussed in detail in [Str13] for instance, staticity corresponds to a discrete time-reflection

symmetry t → −t in the metric case. Thus, one finds that grt = 0, and hence Nr = 0 due to

the 3 + 1-decomposition of the metric. This in turn implies the fulfillment of the Frobenius

condition as shown by [Str13].

On the other hand, if one starts with the Frobenius condition it can be shown, that it is always

possible to find a coordinate system where the shift Nr vanishes, i.e. hypersurface orthogo-

nality is established. Then the off-diagonal element of the metric grt vanishes in this specific

coordinate system, what is generally interpreted as staticity.

The according proof for these statements is given for instance by [Str13] and the steps of the

proof are applied and further interpreted in section 3.3 for the area-metric case.

The equations of motion (2.23) are now evaluated for these coordinate choices. One finds that

δS geo

δN(r)

∣∣∣∣∣
Nr=0,D=r2

= −
r sin(θ) ∂rC(r)

8πGC(r)3/2 +
Λr2 sin(θ)

√
C(r)

8πG
−

sin(θ)
√

C(r)
8πG

+
sin(θ)

8πG
√

C(r)
= 0,

(2.24)
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and

δS geo

δNr(r)

∣∣∣∣∣
Nr=0,D=r2

=0, (2.25)

δS geo

δC(r)

∣∣∣∣∣
Nr=0,D=r2

=
r sin(θ) ∂rN(r)

8πGC(r)3/2 +
Λr2 sin(θ)N(r)
16πG

√
C(r)

+
sin(θ)N(r)

16πGC(r)3/2 −
sin(θ)N(r)

16πG
√

C(r)
, (2.26)

δS geo

δD(r)

∣∣∣∣∣
Nr=0,D=r2

= −
sin(θ) ∂rC(r) ∂rN(r)

16πGC(r)3/2 −
sin(θ)N(r) ∂rC(r)

16πGrC(r)3/2 +
sin(θ) ∂rN(r)
8πGr

√
C(r)

= 0,

+
sin(θ) ∂2

r N(r)
8πG
√

C(r)
+
Λ sin(θ)

√
C(r) N(r)

8πG
= 0, (2.27)

for vacuum solutions, i.e. if the total action is given by the gravitational action only, such that

its variation gives zero. In total this leads to the following solutions:

• Solving (2.24) results in

C(r) =
(
1 −

r2Λ

3
+

K
r

)−1

. (2.28)

Here, K is an integration constant, which still needs to be fixed.

• Equation (2.25) is fulfilled identically.

• Equation (2.26) leads to

N(r) =

√
1 −

r2Λ

3
+

K
r
,

for the lapse function, given (2.28) is fulfilled.

• At last (2.27) is identically fulfilled when inserting the solutions for C(r) and N(r).

Now, the integration constant K can be fixed by the following simplified assumption, that the

source of the gravitational field is given by a point mass 5. Similarly to [Ale20a], one hereby

considers an energy-momentum tensor with T 0
0 = ρ = Mδ3 (r − r0).

A variation of the matter action S matter with respect to the degrees of freedom N(r), Nr(r), C(r)

and D(r) is then performed. Afterwards, these need to be related to the according variations

of the gravitational action. With the definition of the gravitational source tensor S ab, i.e. the

Hilbert-stress-energy momentum tensor in the metric case, the variation of the matter action

is generally given by

δS matter =

√
−detg
2

S abδgab =

√
−detg
2

T a
c gcbδgab.

5For an extended mass the solution outside of this mass would be equivalent to the point mass solution.
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In the metric case the energy-momentum tensor and the source tensor are related via T 0
0 =

g00S 00 ≡ T 00. Thus, since g00 = 1 and g0α = 0, it follows that T 00 = Mδ3 (r − r0). All other

components of the source tensor vanish in the foliation frame. Similar to [Gou07] this corre-

sponds to the pressureless source tensor of an ideal fluid, comoving with the flow generated

the by timelike hypersurface normal vector field e0

T ab = ρuaub = ρu0u0 = Mδ3 (r − r0) .

Here, the energy density ρ is given in terms of ρ = Mδ3 (r − r0) and 4-velocity of the point

mass u = e0 with u0 = 1, such that the point-mass is at rest in the spatial hypersurface in the

0-α-frame.

Now, the according right-hand sides of the equations of motion (2.23) generally become:

δS matter

δN
=
δS matter

δgab

∂gab

∂N
=

√
−detg
2

T a
c gcb ∂gab

∂N
=

√
−detg
2

(
T tt ∂gtt

∂N
+ 2T tr ∂gtr

∂N
+ Tαβ ∂gαβ

∂N

)
(2.29)

=

√
−detg
2

T tt2N =
√
−detg

T 00

N
= sin θ

√
C(r)D(r)Mδ3 (r − r0) , (2.30)

where the 3 + 1-split of the spherically symmetric, stationary metric in (2.2) was inserted.

Furthermore, the following 3 + 1-decompositions for the source tensor can be given in terms

of the dual basis
(
ϵ0, ϵβ

)
as

T tt =T (dt, dt) = T abϵ0
aϵ

0
b

1
N2 = T 00 1

N2 ,

T tα =T (dt, dxα) = T abϵ0
a

−Nα
ϵ0

b

N
+ ϵαb

 = −T 00 Nα

N2 +
T 0α

N
,

Tαβ =T
(
dxα, dxβ

)
= T ab

(
−Nα ϵ

0
a

N
+ ϵαa

) −Nα
ϵ0

b

N
+ ϵ

β
b

 = NαNβ

N2 T 00 − 2
Nα

N
T 0β + T

(
ϵα, ϵβ

)
,

(2.31)

by insertion of the co-frame (1.7). This frame simplifies here, since Nα = Nr, T 0α = 0 and

T
(
ϵα, ϵβ

)
= 0.

Likewise, one finds

δS matter

δNr(r)
=

1
2

√
C(r)D(r)N sin θ

(
T tt ∂gtt

∂Nr + 2T tr ∂gtr

∂Nr + T rr ∂grr

∂Nr

)
=

1
2

√
C(r)D(r)N sin θ

(
T 00 1

N2 (−C(r)2Nr) + 2(−C(r))
−T 00Nr

N2

)
= 0, (2.32)
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as well as,

δS matter

δC(r)
=

1
2

√
C(r)D(r)N sin θ

(
T tt ∂gtt

∂C(r)
+ 2T tr ∂gtr

∂C(r)
+ T rr ∂grr

∂C(r)

)
=

1
2

√
C(r)D(r)N sin θ

(
−T 00 (Nr)2

N2 + 2
−T 00Nr

N2 (−Nr) −
(Nr)2

N2 T 00
)
= 0, (2.33)

and finally

δS matter

δD(r)
= 0. (2.34)

Furthermore, solving

δS geo

δN(r)

∣∣∣∣∣
Nr=0,D=r2

= −
δS matter

δN

∣∣∣∣∣
Nr=0,D=r2

,

⇒ −
r sin(θ) ∂rC(r)

8πGC(r)3/2 +
Λr2 sin(θ)

√
C(r)

8πG
−

sin(θ)
√

C(r)
8πG

+
sin(θ)

8πG
√

C(r)

= − sin θ
√

C(r)r2M
δ(r)δ(θ)δ(ϕ)

r2 sin2 θ
,

⇒ −Mδ(r) δ(θ) δ(ϕ) =
sin θ

8πGC(r)
−

sin θ
8πG

+
r2Λ sin θ

8πG
−

r sin θ ∂rC(r)
8πGC(r)2 ,

with δ3 (r − r0) = δ(r) δ(θ) δ(ϕ)/(r2 sin2 θ) in spherical (polar) coordinates fixes the integration

constant K for the Schwarzschild coordinates.

Now, an integration around the point mass, inspired by [NO12], within the intervall r ∈

(−R,R), ϕ ∈ [0, π) and θ ∈ [0, ϕ), in spherical polar coordinates [AW05] is performed. Using

that outside the point mass, i.e. for r , 0, |R| > r, the solution for C(r) is given by

C(r) =
(
1 −
|r|2Λ

3
+

K
|r|

)−1

,

one thus finds∫ R

−R
dr

∫ π

0
dϕ

∫ π

0
dθ 8πGMδ(r) δ(θ) δ(ϕ) =

∫ R

−R
dr

∫ π

0
dϕ

∫ π

0
dθ

(
− sin θ∂r

(
r

C(r)

)
− sin θ

(
r2Λ − 1

))
,

⇒ 8πGM = − 2π
r

C(r)

∣∣∣∣∣R
−R
− 2π

(
r3Λ

3
− r

)∣∣∣∣∣∣R
−R
,

⇒ K = −2GM.

This is exactly the integration constant required for the metric Schwarzschild (de-Sitter) so-

58



lution. The difference to the conventional derivation of this solution in standard books on

general relativity (see for instance [Ryd09]; [Str13]) is, that one did not employ the Newto-

nian limit solution here to derive the integration constant, but instead fixed it by sourcing the

gravitational field direclty with a point mass. This method is always useful whenever the weak

field limit is not necessarily known, for instance for non-metric theories.

Reissner-Nordström Solution

As a consistency check one can also derive the Reissner-Nordstroem solution for a charged

black hole via the equations of motion derived from gravitational closure. Variation of the

Maxwell action with respect to the geometry consequenlty leads to the source tensor T ab
em of

the electromagnetic field as standard result (see [Str13]) with

T ab
em =

1
4π

(
FbdFacgcd −

1
4

gabFmnFmn

)
.

For a point charge q this leads to

F0r = −
q
r2 , F0r = −

q
r2

1
N2C(r)

,

such that the equations of motion for the matter part - also including the point mass (pm), as

was discussed before - evaluated on the Schwarzschild parameterization become

δS matter, em

δN

∣∣∣∣∣
Nr=0,D=r2

+
δS matter, pm

δN

∣∣∣∣∣
Nr=0,D=r2

=
1
2

√
−detgT ab

em
∂gab

∂N

∣∣∣∣∣
Nr=0,D=r2

+
δS matter, pm

δN

∣∣∣∣∣
Nr=0,D=r2

= −
sin θ
8π

q2

N2r2

1
√

C(r)
+
δS matter, pm

δN

∣∣∣∣∣
Nr=0,D=r2

,

and similarly, omitting the detailed steps

δS matter, em

δNr

∣∣∣∣∣
Nr=0,D=r2

= 0,

δS matter, em

δC(r)

∣∣∣∣∣
Nr=0,D=r2

= −
1
2

sin θ
q2

8πr2N
(C(r))−3/2 ,

δS matter, em

δD(r)

∣∣∣∣∣
Nr=0,D=r2

=
1

8π
q2

r4 sin θ
1

N
√

C(r)
.

Thus, using the equations of motion for r , 0 with

−
δS matter, em

δN

∣∣∣∣∣
Nr=0,D=r2

=
δS geo

δN

∣∣∣∣∣
Nr=0,D=r2

(I), −
δS matter, em

δC(r)

∣∣∣∣∣
Nr=0,D=r2

=
δS geo

δC(r)

∣∣∣∣∣
Nr=0,D=r2

(II),

59



and relating the corresponding expressions by subracting (II) from (I), one finds that the lapse

is given by

N2 =
K2

C(r)
.

Here K2 is a further integration constant, which can be set to 1. With this relation between

lapse and C(r) the equation

−
δS matter, em

δN

∣∣∣∣∣
Nr=0,D=r2

=
δS geo

δN

∣∣∣∣∣
Nr=0,D=r2

,

can be solved outside the point source to find the following result:

C(r) =
(
1 −
Λr2

3
+

K
r
−

Gq
r2

)−1

.

Then, the integration constant K can be fixed again by integrating around the point mass

in spherical polar coordinates, as discussed previously. Again, this leads to K = −2GM,

as expected for the Reisser-Nordström solution. Finally, it can be confirmed by explicitly

inserting this solutions that

−
δS matter, em

δD(r)

∣∣∣∣∣
Nr=0,D=r2

=
δS geo

δD(r)

∣∣∣∣∣
Nr=0,D=r2

,

is fulfilled identically.

Birkhoff Theorem

If stationarity as symmetry condition is not demanded in in the first place, an explicit time-

dependence in the spherically symmetric metric is left. However, it is a well-known fact (see

for instance [Ryd09]) that even in this case one can still find an explicit parameterisation,

where this time-dependence can be absorbed within the time-parameter t′ of the metric. It

only needs to be ensured that dt′ can be written as perfect differential in a specific coordinate

system, such that the Frobenius condition, and thus hypersurface orthogonality for this time-

parameter holds. The Schwarzschild solution, i.e. a spherically symmetric, stationary and

static spacetime for vacuum, can then be recovered. This is the so-called Birkhoff Theorem

(see also [Str13] for more details).

This theorem can also be derived easily from the gravitational action constructed in (2.22),

with only the slight change, that the configuration fields φ1, · · · , φ6, and thus the unkown

functions C(r, t) and D(r, t), as well as the shift Nr(r, t) and the lapse N(r, t) may now also

explicitly depend on the time parameter t. Furthermore, the generalized velocities, which
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need to be inserted into the action, are now given by

k1 = ∂tφ
1(r, t) −

Nr(r, t) ∂rφ
1(r, t) − 2 ∂rNr(r, t)φ1(r, t)

N(r, t)
,

k4 = ∂tφ
4(r, t) −

Nr(r, t) ∂rφ
4(r, t)

N(r, t)
,

k6 = ∂tφ
6(r, t) −

Nr(r, t) ∂rφ
6(r, t)

N(r, t)
.

Variation of the corresponding action with respect to the unknown functions C(r, t), D(r, t),

Nr(r, t) and N(r, t) is a tedious task which can however be performed with Mathematica. The

resulting equations of motion in vacuum

δS geo

δN(r, t)
= 0,

δS geo

δNr(r, t)
= 0,

δS geo

δC(r, t)
= 0,

δS geom

δD(r, t)
= 0,

are have a very involved structure, and are thus omitted here. But they can again be simplified

enourmously by fixing the gauge via Nr(r, t) = 0 and D(r, t) = r2. This leads to the following

equations of motion

δS geo

δN(r, t)

∣∣∣∣∣
Nr=0,D=r2

= −
r sin(θ) ∂rC(r, t)

8πGC(r, t)3/2 +
Λr2 sin(θ)

√
C(r, t)

8πG
−

sin(θ)
√

C(r, t)
8πG

+
sin(θ)

8πG
√

C(r, t)
= 0, (2.35)

δS geo

δNr(r, t)

∣∣∣∣∣
Nr=0,D=r2

= −
r sin(θ) ∂tC(r, t)

8πG
√

C(r, t)N(r, t)
= 0, (2.36)

δS geo

δC(r, t)

∣∣∣∣∣
Nr=0,D=r2

=
r sin(θ) ∂rN(r, t)

8πGC(r, t)3/2 +
Λr2 sin(θ)N(r, t)
16πG

√
C(r, t)

+
sin(θ)N(r, t)

16πGC(r, t)3/2

−
sin(θ)N(r, t)

16πG
√

C(r, t)
= 0, (2.37)

δS geo

δD(r, t)

∣∣∣∣∣
Nr=0,D=r2

=
sin(θ) ∂tC(r, t) ∂tN(r, t)
16πG

√
C(r, t)N(r, t)2

−
sin(θ) ∂rC(r, t) ∂rN(r, t)

16πGC(r, t)3/2 +
sin(θ) (∂tC(r, t))2

32πGC(r, t)3/2N(r, t)

−
sin(θ) ∂rC(r, t) N(r, t)

16πGrC(r, t)3/2 −
sin(θ)∂2

t C(r, t)

16πG
√

C(r, t)N(r, t)
+

sin(θ)∂rN(r, t)
8πGr

√
C(r, t)

+
sin(θ)∂2

r N(r, t)
8πG
√

C(r, t)
+
Λ sin(θ)

√
C(r, t)N(r, t)

8πG
= 0. (2.38)
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From (2.36) it can be read-off, that the explicit time-dependence of C(r, t) = C(r) vanishes.

Thus, one can solve (2.35) to receive

C(r) =
(
1 −

r2Λ

3
+

K
r

)−1

,

as for the time-independent case (2.28) with integration constant K. With this result (2.37)

can in turn be solved, what leads to

N(r, t) = f (t)

√
1 −

r2Λ

3
+

K
r
,

where f (t) is some unknown function of t. Finally, with the given solutions for C(r) and

N(r, t) equation (2.38) is identically fulfilled. At last, the integration constant is again fixed to

K = −2GM, as previously discussed for the time-independent case. Thus, for the final metric

g outside the mass distribution one receives

g = f (t)2
(
1 −

r2Λ

3
−

2GM
r

)
dt2 −

(
1 −

r2Λ

3
−

2GM
r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
,

where the time-parameter can now be replaced by t′ =
∫

f (t)dt to absorb the unknown func-

tion (see for instance [Ryd09]). This takes us back to the stationary case, what confirms the

Birkhoff theorem for a metric spacetime structure.

2.2.2 Painlevé-Gullstrand solution

Next, using the general equations of motion (2.23) it is shown how to derive different types

of solutions for spherically, symmetric spacetimes, like the solution in Painlevé-Gullstrand

coordinates. In the metric case these are chosen such that the spatial hypersurfaces are flat

(see for instance [Bla20]) in the sense that

g =
(
N2 −

(
Nr)2

)
dt2 − 2Nrdtdr − dr2 − r2

(
dθ2 + sin2 θdϕ2

)
,

and all spacetime curvature effects are encoded in the lapse N and the shift Nr instead.

Evaluated on C(r) = 1 and D(r) = r2 the variations of the gravity-part of the action then

become

δS geo

δN(r)

∣∣∣∣∣
C=1,D=r2

= −
r sin(θ)Nr(r) ∂rNr(r)

4πGN(r)2 −
sin(θ)Nr(r)2

8πGN(r)2 +
Λr2 sin(θ)

8πG
= 0, (2.39)
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and

δS geo

δNr(r)

∣∣∣∣∣
C=1,D=r2

=
r sin(θ)Nr(r) ∂rN(r)

4πGN(r)2 = 0, (2.40)

δS geo

δC(r)

∣∣∣∣∣
C=1,D=r2

=
r sin(θ) ∂rN(r)

8πG
+

r sin(θ)Nr(r)2 ∂rN(r)
8πGN(r)2 +

Λr2 sin(θ)N(r)
16πG

−
r sin(θ)Nr(r) ∂rNr(r)

8πGN(r)
−

sin(θ)Nr(r)2

16πGN(r)
= 0, (2.41)

δS geo

δD(r)

∣∣∣∣∣
C=1,D=r2

=
sin(θ) ∂rN(r)

8πGr
+

sin(θ)∂2
r N(r)

8πG
+

sin(θ)Nr(r) ∂rN(r) ∂rNr(r)
8πGN(r)2

+
Λ sin(θ)N(r)

8πG
−

sin(θ)Nr(r) ∂rNr(r)
4πGrN(r)

−
sin(θ) (∂rNr(r))2

8πGN(r)

+
sin(θ)Nr(r)2∂rN(r)

8πGrN(r)2 −
sin(θ)Nr(r)∂2

r Nr(r)
8πGN(r)

= 0, (2.42)

outside of the source. From equation (2.40) it can now be read off, that the lapse should be

contant in r, i.e. N(r) = const., what simplifies the other three equations significantly.

Now, by choosing N(r) = 1 in the following, equation(2.39) can be solved for the shift to yield

Nr(r) =

√
K
r
+

r2Λ

3
.

With these solutions for the lapse and the shift the equations (2.41) and (2.42) are fulfilled

identically. Similarly to the Schwarzschild case, one can now fix the integration constant K

by sourcing the gravitational field with a point mass according to T 00 = Mδ3 (r − r0) in the(
ϵ0, ϵβ

)
-frame.

The variations of S matter with respect to the degrees of freedom N(r), Nr(r), C(r) and D(r)

are then in general again given by (2.30), (2.32), (2.33), (2.34), and need to be evaluated on

the Painlevé-Gullstrand parameterization. While the latter three variations are trivial and the

equations of motion (2.40)-(2.42) are consequently fulfilled identically,

δS geo

δN(r)

∣∣∣∣∣
C=1,D=r2

= −
δS matter

δN(r)

∣∣∣∣∣
C=1,D=r2

yields a condition to fix the integration constant K. The corresponding result is given by

−
r sin(θ)Nr(r)∂rNr(r)

4πG
−

sin(θ)Nr(r)2

8πG
+
Λr2 sin(θ)

8πG
= − sin θr2Mδ(r)δ(θ)δ(ϕ)/(r2 sin2 θ),

⇒Mδ(r)δ(θ)δ(ϕ = −
∂r

(
r (Nr)2

)
sin θ

8πG
+

r2Λ sin θ
8πG

.
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This can then be solved by integrating around the source mass in spherical polar coordinates

with r ∈ (−R,R), ϕ ∈ [0, π) and θ ∈ [0, ϕ). When performing the integration, one uses that for

r , 0 the solution of the shift in these coordinates can be written as

Nr(r) =

√
K
|r|
+

r2Λ

3
.

The parameter r is again replaced by the absolute value |r| in the solution Nr(r), since the

scope of the spherical polar coordinates also allows for negative values of r, which then needs

to be compensated.

Consequently, the integration constant becomes K = 2GM, such that the full metric can be

written as

g =
(
1 −

2GM
r2 −

r2Λ

3

)
dt2 − 2

√
2GM

r2 +
r2Λ

3
dtdr − dr2 − r2

(
dθ2 + sin2 θdϕ2

)
,

as expected for the Painlevé-Gullstrand coordinates. Interestingly, they have the common

interpretation (see also [Bla20]) of spacetime flowing towards the point mass. Though only

in these coordinates the source tensor of the point mass itself - besides the energy density

term T tt - also containts momentum densities T tr and pressure terms T rr, as can be seen by

(2.31) due to the non-vanishing shift. Thus, the interpretation of the dynamics in these specific

coordinates is the following: Spacetime flows towards the point-mass along some specific shift

field, but this point-mass also needs to - in a sense - flow with the same rate and direction to

ensure overall stationarity.

2.3 Summary

To summarize, it was shown in this chapter how to construct the equations of motion for

a spherically symmetric, possibly stationary spacetime sourced by a point mass. The cor-

responding equations of motion have a coupled structure. That makes it hard to solve them

explicitly, without choosing specific coordinates or gauges, which are not connected to Killing

symmetries. It was possible to confirm the Schwarzschild solution, Reissner-Nordström solu-

tion, as well as the Birkhoff theorem in a metric spacetime with the constructed gravity action,

and also the Painlevé-Gullstrand solution in a different parameterization. As a further exam-

ple one might have also considered isotropic coordinates (see [Ryd09]), however the solution

principle stays the same.

These findings are, of course, not surprising, since these are standard results in general relativ-

ity, which itself can also be more generally derived with gravitational closure (see [Dü+18];
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[Due20]; [Wol22]). The objective of this whole discussion was to understand how it is pos-

sible to derive Schwarzschild-type solutions for non-metric spacetime geometries, and how

to generalize specific coordinate choices in these cases. This will, however, prove to be a

challenge already for area-metric spacetimes, as discussed in the next chapter.
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3 Spherically symmetric area-metric spacetimes

In this section it will be discussed how the Killing symmetries of a spherically symmetric,

stationary area-metric spacetime will result in the according symmetry reduced kinematic

input-coefficients for the gravitational closure equations. The overarching goal of this discus-

sion would be to eventually use these coefficients as input to solve the gravitational closure

equations for a spherically symmetric, stationary area-metric case. This is, however, highly

non-trivial, and is open to further research. It is also elaborated, how the hypersurface orthog-

onality condition is described in an area-metric setting, and it will be clarifed what staticity in

the sense of a discrete time-reflection symmetry means in this case. Furthermore, it is shown,

how a spherically symmetric, stationary area-metric spacetime can in general posses birefrin-

gence, what recapitulates the former result by [PWS09]; [SWW10]. Finally, it will also be

discussed which challenges one faces when trying to solve the gravitational closure equations

for this case. These challenges are - so far - obstructive to find a solution in the general case.

3.1 Symmetry reduction and kinematic set-up

The first step in the symmetry reduction is - similar to [Due20]; [Fis17] - to solve the Killing

equations for a spherically symmmetric, stationary area-metric spacetime via:

(
LKiG

)
abcd = 0 for i = 0, . . . , 3 . (3.1)

It is important to note that imposing stationarity and spherical symmetry as symmetry condi-

tions is mathematically well-defined due to application of the Killing condition. Hence, this

ansatz can be generalized from the metric to the area-metric case. It will mainly reproduce the

ansatz for spherical symmetry already worked out by [PWS09]; [SWW10].

Here K0 = ∂t must be timelike in the sense that its respective co-vector shall be in the interior

of the hyperbolicity cone,

ℓ(K0) ∈ C, (3.2)

where the interior needs to be of constant sign. Though this sign can be chosen arbitrarily by

appropriate rescaling as discussed in [Dü+18] one chooses

P(x,Cx) > 0,
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here, as in [Dü+18]. The spatial Killing vector fields implying spherical symmetry are then

again given by

K1 = sin ϕ∂θ + cot θ cos ϕ∂ϕ,

K2 = − cos ϕ∂θ + cot θ sin ϕ∂ϕ,

K3 = ∂ϕ,

while the following othogonality conditions of the Killing vector field can be imposed as

ℓ(K0)(K1) = 0 , ℓ(K0)(K2) = 0 , ℓ(K0)(K3) = 0 . (3.3)

Then, the according principal polynomial P, as well as the dual polynomial P#, have to be cal-

culated from the area-metric Gabcd and its inverse Gabcd, which are received from the Killing

equations. With the corresponding Legendre map ℓx given as

ℓ(Z)(X) =
P#(X,Z,Z,Z)
P#(Z,Z,Z,Z)

. (3.4)

in the alternative observer definition, one can consequently evaluate the orthogonality condi-

tions for the space-like Killig vectors (3.3) spanning a spatial θ-ϕ-hypersurface.

Next, sign conditions for the surviving degrees of freedom of the area-metric will be derived.

They follow from the bihyperbolicity condition for P# and P, and finally from the timelike

condition (3.2) for K0.

Now, the previously described steps of this strategy will be applied in the remainder of this

section to find the area-metric compatible with the above discussed conditions.

Evaluation of the Killing conditions for spherical symmetry and stationarity (3.1) leads to the

following area-metric with 7 unknown functions of r in Petrov representation GMN with index

pairs M,N = tr, tθ, tϕ, rθ, rϕ, θϕ:

Pet (G) =



c1(r) 0 0 0 0 sin(θ)c2(r)
0 c5(r) 0 c4(r) sin(θ)c3(r) 0
0 0 sin2(θ)c5(r) − sin(θ)c3(r) sin2(θ)c4(r) 0
0 c4(r) − sin(θ)c3(r) c6(r) 0 0
0 sin(θ)c3(r) sin2(θ)c4(r) 0 sin2(θ)c6(r) 0

sin(θ)c2(r) 0 0 0 0 sin2(θ)c7(r)


. (3.5)

This result looks similar to the one by [PWS09]; [SWW10]. However, while [PWS09];

[SWW10] presented an area-metric with Gtθrθ = 0 and Gtθrθ = 0, this is not the case here:

Applying the Killing symmetries does in general result in the area-metric components Gtθrθ =

c4(r) and Gtϕrϕ = sin2(θ)c4(r). But still, special coordinates can be chosen such, that these
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area-metric components vanish to arrive at the result of [PWS09]. What this implies for the

principal polynomial will be discussed in section 3.3.

Also the area-metric component Gθϕθϕ = sin2(θ)c7(r) is not specified by the Killing condi-

tions. However, [PWS09] set this component to Gθϕθϕ = sin2(θ)r4. This can be motivated by

choosing the so-called radial Schwarzschild coordinate r defined by the surface area A = 4πr2

of the sphere, i.e. the spatial θ-ϕ-hypersurface with solid angle dΩ on the sphere, such that

dA = dΩr2 = sin θr2dθdϕ.

Then Gθϕθϕ as area measure on this θ-ϕ-hypersurface can be set to

Gθϕθϕdθdϕdθdϕ = dA2 = r4 sin2 θdθdϕdθdϕ.

That defines the radial parameter, which should however be clearly distinguished from the

Euclidean radius r. This is actually similar to the choice of the radial parameter in the metric

case (see 2.2.1), and can hence be seen as generalization to area-metric spacetimes.

Again, it should be highlighted that application of the Killing condition does fulfill symmetric

criticality, while coordinate choices do not. Consequently, the general form (3.5) of the area-

metric will be used for the following calculations of this section.

One can now perform a reparameterization of (3.5) motivated from the area-metric inverse

volume measure

ωG = 24
(
ϵabcdGabcd

)−1
, (3.6)

and the fact, that, according to [Gie+12], the area-metric can be as written as

Gabcd = GCabcd + ω
−1
G ϵabcd, (3.7)

with the cyclic term GCa[bcd] = 0 and a totally antisymmetric term ω−1
G ϵabcd.

First of all evaluation of (3.6) leads to

ω2
G =

9 sin−2(θ)
(c2(r) − 2c3(r))2 ≡

sin−2(θ)
T (r)2 , (3.8)

with the parameterizations c2(r) ≡ T (r) + 2S (r) and c3(r) ≡ S (r) − T (r), as also chosen by

[PWS09] to display the volume form in a more compact way.
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Thus, the area-metric can be displayed according to relation (3.7) as

Pet (G) =



c1(r) 0 0 0 0 s(T (r) + 2S (r))
0 c5(r) 0 c4(r) s(S (r) − T (r)) 0
0 0 s2c5(r) s(T (r) − S (r)) s2c4(r) 0
0 c4(r) s(T (r) − S (r)) c6(r) 0 0
0 s(S (r) − T (r)) s2c4(r) 0 s2c6(r) 0

s(T (r) + 2S (r)) 0 0 0 0 s2c7(r)


, (3.9)

and hence looks more similar to the area-metric derived by [PWS09] with s ≡ sin(θ) for a

compact notation.

The dual principal polynomial can now be evaluated using Mathematica scripts based on

[Dü+20]; [Fis17] and results in

P#(p, p, p, p) = −
1

24
ω2

Gϵ
mnpqϵrstuGmnr(aGb|ps|cGd)qtu pa pb pc pd

= −
1

T (r)2

[
−9S (r)2

(
sin2(θ)pϕ2

+ pθ
2
) (
−2pr ptc4(r) + pt2c5(r) + pr2c6(r)

)
+

(
−2pr ptc1(r)c4(r) + pt2c1(r)c5(r) −

(
(c4(r))2 − c5(r)c6(r)

) (
sin2(θ)pϕ2

+pθ
2
)
+ pr2c1(r)c6(r)

)
(
−2pr ptc4(r) + pt2c5(r) + c7(r)

(
sin2(θ)pϕ2

+ pθ
2
)
+ pr2c6(r)

)]
,

with an arbitrary vector p given by p =
(
pt, pr, pθ, pϕ

)
. This dual principal polynomial pre-

sented is generally birefringent, since it is not possible to express it in a metric induced way.

However, guided by the ansatz given by [PWS09]; [SWW10] the dual principal polynomial

can be rewritten such, that it is induced by a bi-metric structure:

The following definitions

w B sin2 θpϕ2
+ pθ

2
,

u B −2pt prc4(r) + pt2c5(r) + pr2c6(r),

q B c4(r)2 − c5(r)c6(r),

are introduced to simplify notation.
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Then, one finds that

⇒ P#(p, p, p, p) =
−1

T (r)2

[
c1(r)u2 +

(
c1(r)c7(r) − q − 9S (r)2

)
uw − c7(r)qw2

]
=
−c1(r)
T (r)2

(
u − ζ+w

) (
u − ζ−w

)
=
−c1(r)
T (r)2 g+ (p, p) g− (p, p) .

(3.10)

Here the two functions ζ+(r) and ζ−(r) are given by

ζ+/−(r) B
−

(
c1(r)c7(r) − q − 9S (r)2

)
±

√(
c1(r)c7(r) − q − 9S (r)2)2

+ 4c1(r)c7(r)q

2c1(r)
. (3.11)

The two metrics, which directly lead to a double light-cone structure, are given by

g+ = c5(r)dt2 − 2c4(r)dtdr + c6(r)dr2 − ζ+
(
dθ2 + sin2 θdϕ2

)
,

g− = c5(r)dt2 − 2c4(r)dtdr + c6(r)dr2 − ζ−
(
dθ2 + sin2 θdϕ2

)
.

As discussed by [PWS09] this will in general lead to a polarisation split. But, as also pointed

out by [PWS09], the area-metric and the dual principal polynomial can be considered as metric

induced, if ζ+(r) = ζ−(r). This holds if(
c1(r)c7(r) − q − 9S (r)2

)2
= −4c1(r)c7(r)q,

⇒ 4c1(r)c7(r) < 0 for c1(r)c7(r) − q − 9S (r)2 ∈ R,

⇒ − 9S (r)2 = 2
√
|c1(r)c7(r)|q + q + |c1(r)c7(r)| =

( √
|c1(r)c7(r)| +

√
q
)2
.

(3.12)

From this follows that S (r) is either complex valued or zero, thus reproducing the result by

[PWS09]. Also this shows that c1(r) and c7(r) need to have opposite signs to reproduce the

metric limit case. For S (r) = 0 it would then follow that

c1(r) =
−q

c7(r)
=

c5(r)c6(r) − c4(r)2

c7(r)
,

to receive a metric induced dual principal polynomial. Consequenlty , as first pointed out by

[PWS09], small deviations like S (r)/
√

q = σ(r) ≪ 1 with nth derivative σ(r)(n) ≪ 1 and

c1(r) = −(1 + ϵ(r))q/c7(r),

with nth derivative ϵ(r)(n) ≪ 1 already introduce weak birefringence.
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As a side remark, it can be observed that for S (r) = 0, i.e. when excluding birefringence, the

ansatz for the two metrics becomes

g = c5(r)dt2 − 2c4(r)dtdr + c6(r)dr2 + c7(r)
(
dθ2 + sin2 θdϕ2

)
,

recovering the symmetry reduced ansaz (2.1) for the purely metric case. When excluding

birefringence, the area-metric should then be metric induced (see for instance [LH04]) with g

as the according metric.

Now, using the Legendre map as defined in (3.4) it becomes obvious that

ℓ(K0)(K0) = 1,

such that

P#(K0,K0,K0,K0) = P#
tttt =

−c1(r)(c5(r))2

T (r)2 , 0 ⇒ c1(r) , 0 , c5(r) , 0.

Now, the relations (3.3) are evaluated to understand whether orthogonality of K0 with respect

to the vector fields K1, K2, and K3 contains any new information about the area-metric, starting

with K3:

ℓ(K0)(K3) !
= 0

P#(K0,K0,K0,K3)
P#(K0,K0,K0,K0)

!
= 0

T (r)2

c1(r)(c5(r))2 P#
tttϕ

!
= 0 (3.13)

But explicit evaluation of P#
tttϕ with respect to the symmetry reduced area-metric shows that

P#
tttϕ = 0

already, so equation (3.13) is trivially fulfilled. Hence, orthogonality of K0 with respect to K3

is basically already enforced by the Killing symmetries. Also explicit evaluation of P#
tttθ built

from the symmetry reduced area-metric shows that this component of the principal tensor field

vanishes:

P#
tttθ = 0.

71



Consequently, also the orthogonality of K0 with respect to K1 and K2 is trivially fulfilled:

ℓ(K0)(K1) =
P#(K0,K0,K0,K1)
P#(K0,K0,K0,K0)

=
T (r)2

c1(r)(c5(r))2

(
cot θ cos ϕP#

tttϕ + sin ϕP#
tttθ

)
= 0,

ℓ(K0)(K2) =
P#(K0,K0,K0,K2)
P#(K0,K0,K0,K0)

=
T (r)2

c1(r)(c5(r))2

(
cot θ sin ϕP#

tttϕ − cos ϕP#
tttθ

)
= 0.

To conclude the Killing symmetries already enforce orthogonality of the timelike vector field

K0 with respect to the orbits of SO(3), i.e. the spatial θ-ϕ-hypersurface, similar to the metric

case [Str13]. This orthogonality does however not hold in general for vector fields X = ∂r in

radial direction r, as can be seen by the following calculation:

ℓ(K0)(X) =
P#(K0,K0,K0, X)
P#(K0,K0,K0,K0)

=
T (r)2

−c1(r)(c5(r))2 P#
tttr

= −
T (r)2

−c1(r)(c5(r))2

c1(r)c4(r)c5(r)
T (r)2 =

c4(r)
c5(r)

.

One can, however, try to find a coordinate system where c4(r) vanishes similarly to the dis-

cussion in [Str13] by employing the Frobenius integrability theorem, as will be discussed in

section 3.3.

Next, sign relations between the unknown functions in the ansatz for the area-metric are de-

rived by demanding hyperbolicity of the dual prinicpal polynomial P# and the principal poly-

nomial P. This is now different from the ansätze in [PWS09]; [SWW10], where the signs were

fixed such to consistently receive the metric limiting case, while the necessary kinematics in

space-times with generally non-metric geometries were presented in later works [RRS11] and

given in [Sch20]; [Wie18]; [Wol22] in the new, alternative observer definition. According to

[RRS11]; [Gie+12]; [Due20]; [Wol22], and also summarized in section 1.2, the dual principal

polynomial is hyperbolic, if there exists one vector field p(x) with P#(h) , 0, such that for

every vector field q(x) the roots λ(x) of

P# (x, q(x) + λ(x)p(x)) = 0

are real functions.
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Additionally, if a polynomial is reducible into n factors of lower order polynomials as

P# (x) = P#
1(x)P#

2(x)...P#
n(x),

each factor must already be hyperbolic [RRS11]; [Due20]. With these conditions the sign

relations between the unknown functions in (3.10) can be fixed. Since the dual principal

polynomial splits up in a bi-metric way, one needs to ensure that each of the lower order

polynomials g+ (p, p) and g− (p, p) is already hyperbolic. This hints at a Lorentzian signature

for both of the metrics as already discussed in [PWS09] for instance. This can be shown with

the following calculation for g+ (p, p), which will be analogous for g− (p, p). As an explicit

example the vector p = {pt, 0, 0, 0}, for which it holds that g+ (p, p) = c5(r)pt pt , 0, may be

considered, and some vector q = {qt, qr, qθ, qϕ}.

Consequently, one finds

g+ (q + λp, q + λp) = 0,

⇒ c5(r)
(
qtqt + λ2 pt pt + 2λqt pt

)
− 2c4(r)

(
λptqr + qtqr

)
+ c6(r)qrqr − ζ+qθqθ − ζ+ sin2(θ)qϕqϕ = 0,

⇒ g+(q, q) + λ2c5(r)pt pt + 2λ
(
−c4(r)ptqt + c5(r)ptqt

)
= 0,

(3.14)

The roots of this quadratic equation in λ can be derived easily. Then, it can be checked whether

these roots are real by evaluation of the discriminant

4
(
−c4(r)ptqr + c5(r)ptqt

)2
− 4c5(r)pt ptg+(q, q) > 0,

⇒
(
−c4(r)ptqr

)2
− c5(r)pt pt

(
c6(r)qrqr − ζ+(qθqθ + sin2(θ)qϕqϕ)

)
> 0.

Since this needs to hold for every q, two cases are now distinguished to simplify the discussion:

First, consider the case qr = 0, qθ , 0, qϕ , 0 what leads to

− c5(r)pt pt
(
−ζ+(qθqθ + sin2(θ)qϕqϕ)

)
> 0, ⇒ c5(r)ζ+ > 0.

Thus, c5(r) and ζ+ have the same sign.

Next, consider qr , 0, qθ = 0, qϕ = 0 with

(
−c4(r)ptqr

)2
− c5(r)pt ptc6(r)qrqr > 0, ⇒ q = c4(r)2 − c5(r)c6(r) > 0.

So, in general it is concluded that c4(r)2 > c5(r)c6(r), but this needs to hold in any coordinate

system, and thus, also in coordinate systems where the off-diagonal element vanishes locally.
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This hints at c5(r)c6(r) < 0 with opposite signs for c5(r) and c6(r), and consequently also

opposite signs for c6(r) and ζ+.

Evaluation of g− (p, p) in a similar manner also results in

c5(r)ζ− > 0, (3.15)

such that c5(r) needs to have the same sign as ζ−. Consequently, considering ζ− as given

in relation (3.11) and the fact that c1(r) and c7(r) have opposite sign it becomes clear, that

c1(r)ζ− > 0. Hence, these two functions have the same signature, as well as for c1(r)ζ+ > 0.

To summarize the former discussion, the following sign conditions for the hyperbolicity of the

dual principal polynomial were derived:

c1(r)ζ+ > 0, c1(r)ζ− > 0, c1(r)c5(r) > 0,

c1(r)c7(r) < 0, c1(r)c6(r) < 0, c6(r)c7(r) > 0,
(3.16)

This shows that the two metrics g+ and g− must be of Lorentzian signature as expected. Next,

the hyperbolicity condition for the principal polynomial P also has to be ensured. The prin-

cile polynomial is derived similary to the dual polynomial with the inverse area-metric Gabcd

instead, where the inversion condition is stated by [PWS09] as

GabpqGpqcd = 2
(
δa

cδ
b
d − δ

a
dδ

b
q

)
. (3.17)

The principal polynomial is then given by

P(n, n, n, n) = −
1
24
ω2

G−1ϵuvpqϵrstuGuvr(aGb|ps|cGd)qtunanbncnd,

with scalar density factor

ωG−1 = 24
(
ϵabcdGabcd

)−1
.

Applying the Killing conditions to the inverse area-metric leads to a similar results as for the

area-metric, however it is in general parametrized by a different set of unknown functions of

r denoted as

Pet
(
G−1

)
=


c̃1(r) 0 0 0 0 c(2S̃ (r) + T̃ (r))

0 c̃5(r) 0 c̃4(r) c(S̃ (r) − T̃ (r)) 0
0 0 c2c̃5(r) c(T̃ (r) − S̃ (r)) c2c̃4(r) 0
0 c̃4(r) c(T̃ (r) − S̃ (r)) c̃6(r) 0 0
0 c(S̃ (r) − T̃ (r)) c2c̃4(r) 0 c2c̃6(r) 0

c(2S̃ (r) + T̃ (r)) 0 0 0 0 c2c̃7(r)


,

where c ≡ csc(θ) is introduced as short notation.
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Then, the principal polynomial has the following form

P(n, n, n, n) =
−1

T̃ (r)2

[
−9S̃ (r)2

(
csc2(θ)n2

ϕ + n2
θ

) (
−2nrntc̃4(r) + n2

t c̃5(r) + n2
r c̃6(r)

)
+

(
−

(
(c̃4(r))2 − c̃5(r)c̃6(r)

) (
csc2(θ)n2

ϕ + n2
θ

)
−2nrntc̃1(r)c̃4(r) + n2

t c̃1(r)c̃5(r) + n2
r c̃1(r)c̃6(r)

)
(
c̃7(r)

(
csc2(θ)n2

ϕ + n2
θ

)
− 2nrntc̃4(r) + n2

t c̃5(r) + n2
r c̃6(r)

)]
=
−c̃1(r)
T̃ (r)2

g̃+ (n, n) g̃− (n, n) .

(3.18)

It is also of bi-metric structure with the lower order polynomials of degree 2 given by

g̃+ (n, n) = c̃5(r)n2
t − 2c̃4(r)ntnr + c̃6(r)n2

r − ζ̃
+
(
n2
θ + csc2 θn2

ϕ

)
,

g̃− (n, n) = c̃5(r)n2
t − 2c̃4(r)ntnr + c̃6(r)n2

r − ζ̃
−
(
n2
θ + csc2 θn2

ϕ

)
,

and the following abbreviations

q̃ = c̃2
4(r) − c̃5(r)c̃6(r),

ζ̃+/− B
−

(
c̃1(r)c̃7(r) − q̃ − 9S̃ (r)2

)
±

√(
c̃1(r)c̃7(r) − q̃ − 9S̃ (r)2

)2
+ 4c̃1(r)c̃7(r)q̃

2c̃1(r)
.

The hyperbolicity of P was defined in section 1.2 - similary to P# - as the requirement that

there exists a co-vector field n(x) with P(n) , 0 such, that the roots µ(x) of

P (x,m(x) + µ(x)n(x)) = 0

are real functions for any co-vector field m(x) [RRS11]; [Gie+12]. Additionally, if the princi-

pal polynomial is reducible in the sense that it can be expressed as a product of n lower order

polynomials as

P (x) = P1(x)P2(x)...Pn(x),

then each of them must already be hyperbolic [RRS11]; [Due20]. A calculation similar to

(3.14)-(3.15) leads to the following sign conditions for the degrees of freedom of the inverse

area-metric:

c̃1(r)ζ̃+ > 0, c̃1(r)ζ̃− > 0, c̃1(r)c̃5(r) > 0,

c̃1(r)c̃7(r) < 0, c̃1(r)c̃6(r) < 0, c̃6(r)c̃7(r) > 0.
(3.19)
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Now, using the inversion relation (3.17) and Mathematica scripts based on [Fis17] the un-

known functions of the inverse area-metric are expressed in terms of the unknown functions

of the area-metric:

c̃1(r) =
−c7(r)

(2S (r) + T (r))2 − c1(r)c7(r)
, (3.20)

c̃5(r) =
−c6(r)

(S (r) − T (r))2 + c4(r)2 − c5(r)c6(r)
, (3.21)

c̃6(r) =
−c5(r)

(S (r) − T (r))2 + c4(r)2 − c5(r)c6(r)
, (3.22)

c̃7(r) =
−c1(r)

(2S (r) + T (r))2 − c1(r)c7(r)
, (3.23)

c̃4(r) =
c4(r)

(c4(r))2 − c5(r)c6(r) + (S (r) − T (r))2 , (3.24)

T̃ (r) =
1
3

(
2S (r) + T (r)

(2S (r) + T (r))2 − c1(r)c7(r)
+

2T (r) − 2S (r)
(c4(r))2 − c5(r)c6(r) + (S (r) − T (r))2

)
, (3.25)

S̃ (r) =
1
3

(
S (r) − T (r)

(c4(r))2 − c5(r)c6(r) + (S (r) − T (r))2 +
2S (r) + T (r)

(2S (r) + T (r))2 − c1(r)c7(r)

)
. (3.26)

These expressions also verify the sign conditions (3.27): Since c̃1(r) and c̃7(r) need to be of

opposite sign, this should also hold for c1(r) and c7(r), and thus confirms the previous result

(3.12). Similarly, the opposite sign of c5(r) and c6(r) is confirmed by (3.21) and (3.22).

So to summarize the entire discussion, bi-hyperbolicity eventually implies the following sign

condition for the unknown functions in the area-metric:

c1(r)c5(r) > 0, c1(r)c7(r) < 0, c1(r)c6(r) < 0, c6(r)c7(r) > 0, (3.27)

With the requirement that K0 should be timelike, in the sense that its respective co-vector lies

in the interior of the hyperbolicity cone C via equation (3.2) with P(x,Cx) > 0, one can also

conclude further sign conditions for the unknown functions. In the metric case this definition

for a timelike vector Ka with respective co-vector na actually translates to the conventional

requirement that

gabnanb = gabgacgbdKcKd = KbgbdKd = n(K) > 0,

for a {+,−,−,−}-signature.

In the area-metric case the co-vector n = K♭ is instead given by

na = (ℓ(K0))a =
P#

abcdKb
0 Kc

0Kd
0

P# (K0,K0,K0,K0)
=

P#
atttK

t
0Kt

0Kt
0

P#
tttt

,
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where the Legendre map and Kt
0 = 1 were used.

This requirement becomes

P(n, n, n, n) = Pabcdnanbncnd =
PabcdP#

atttP
#
btttP

#
ctttP

#
dttt(K

t
0)4(

P#
tttt

)4 > 0.

Explicitly inserting the expressions for the components of P and P# in terms of the unknown

functions of the area-metric leads to the condition c7(r) > 0.

Thus, together with (3.16), the final results for the sign relations of the unknown functions are

given by the following inequalities:

c7(r) > 0, c6(r) > 0, c1(r) < 0, c5(r) < 0.

To summarize, this section has shown how the Killing conditions for spherical symmetry and

stationarity reduce the degrees of freedom of an area-metric spacetime to seven unknown

functions of r. Employing kinematic requirements like bi-hyperbolicity and the fact that the

Killing vector K0 should be timelike in the sense that its respective co-vector should lie within

the forward hyperbolicity cone C, sign relations for the unknown functions were derived.

As mentioned in the beginning of this section one should be aware that stationarity and spher-

ical symmetry can be imposed in a well-defined way via their according Killing vectors.

Because of that they are no misleading notions, and can generalized from the metric to the

area-metric case. However, are has to be taken of the hypersurface orthogonality condition

of the timelike vector field, as will be discussed in more detail in section 3.3. While in the

metric case this condition implies staticity in the sense of a discrete time-reflection symmetry,

it is unclear whether or how this still holds in the area-metric case [Scha]. Nevertheless, one

can still impose hypersurface orthogonality as a well-defined requirement using the Frobenius

condtion, and find more conditions for the degrees of freedom of the area-metric.

But first, a 3 + 1-split of this spherically symmetric, stationary area-metric spacetime is per-

formed in the next section. The goal is to find the induced geometric fields on the spatial

hypersurfaces. Furthermore, a parameterization for the shift Nα and the lapse fields N is

needed to set up the input coeffcients for the symmetry reduced closure equations.

3.2 3+1-split of an area-metric, spherically symmetric stationary spacetime

Using various contractions of the area-metric one can define for instance 3 spatial hypersurface

fields in a 3 + 1-split of spacetime based on standard methods [ADW08]; [Gou07] for the

metric case. The fields are similar to [Due20], but they are built from the dualized area-metric
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to match the new observer definition in the t-α-frame with basis vectors (∂t, ∂α) and α = 1, 2, 3

denoting the spatial indices:

g̃αβ = −G
(
∂t, ∂α, ∂t, ∂β

)
= −Gt α t β, (3.28)

˜̃gαβ =
1
4

1
detg̃

ϵαµνϵβρσG
(
∂µ, ∂ν, ∂ρ, ∂σ

)
=

1
4

1
detg̃

ϵαµνϵβρσGµ ν ρσ, (3.29)

˜̃̃gαβ =
1
2

1√
detg̃

ϵαδσG
(
∂t, ∂β, ∂δ, ∂σ

)
=

1
2

1√
detg̃

ϵαδσGt β δσ. (3.30)

Here, det g̃ is the determinant of an effective hypersurface metric g̃αβ. The field ˜̃̃gαβ is not

traceless, unlike the analogous relation (1.35), and ˜̃̃gαβ =
(
g̃−1

)βγ ˜̃̃gαγ . The expressions (3.28)-

(3.30) can be related to the hypersurface fields (1.33)-(1.35) in the 0-α-foliation frame via

insertion of ∂t = Ne0 + Nαeα and ∂α = eα.

Thus, the area-metric components Ḡ.... in the foliation frame can be related to the components

G.... in the t-α-coordinate-frame, as will be shown in the following paragraph. For the purely

spatial part it holds that

Ḡµνρσ = det ḡϵαµνϵβρσ ¯̄gαβ = det g̃ϵαµνϵβρσ ˜̃gαβ = Gµνρσ,

and thus
(det ḡ) ¯̄gαβ = (det g̃) ˜̃gαβ. (3.31)

For the component Gt β δσ one finds

Gt β δσ = NḠ0 β δσ + NαḠα β δσ = N
√

ḡ
(
¯̄̄gαγ + δ

α
β

)
ϵαδσ + NαḠαβδσ,

and consequently
˜̃̃gαβ =

√
ḡ
√

g̃
N

(
¯̄̄gαβ + δ

α
β

)
+

√
det g̃ ˜̃gγαϵγδβNδ. (3.32)

Finally, Gt α t β and consequently det g̃ can be expressed via the components of Ḡ in the foliation

frame as

g̃αβ = −Gt α t β = −N2Ḡ0α 0 β − NNγḠγ α 0 β − NNδḠ0α δ β − NγNδḠγ α δ β

=N2 ḡαβ − NNγ
√

det ḡ
(
¯̄̄gσβ + δ

σ
β

)
ϵσγα − NNδ

√
det ḡ

(
¯̄̄gσα + δ

σ
α

)
ϵσδβ

− NγNδdet g̃ ˜̃gσρϵσγαϵρδβ.

(3.33)

Now, explicit evaluation of the expressions (3.28)-(3.30) with the components of the area-

metric for a spherically symmetric, stationary spacetime as displayed in (3.9) leads to the
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following non-vanishing components for the hypersurface fields in the t-α-frame:

g̃αβ : g̃rr = −c1(r), g̃θθ = −c5(r), g̃ϕϕ = −c5(r) sin(θ)2,

det g̃ = −c1(r)c5(r)2 sin(θ)2, (3.34)

˜̃gαβ : ˜̃grr =
−c7(r)

c1(r)c5(r)2 ,
˜̃gθθ =

−c6(r)
c1(r)c5(r)2 ,

˜̃gϕϕ =
−c6(r)

c1(r)c5(r)2 sin(θ)2 , (3.35)

˜̃̃gα
β

: ˜̃̃gr
r =
−2S (r) − T (r)√
−c1(r)c5(r)2

, ˜̃̃gθθ =
−T (r) + S (r)√
−c1(r)c5(r)2

, ˜̃̃gϕϕ =
−T (r) + S (r)√
−c1(r)c5(r)2

,

˜̃̃gθϕ = −
sin(θ) c4(r)√
−c1(r)c5(r)2

, ˜̃̃gϕθ = −
c4(r)

sin(θ)
√
− c1(r)c5(r)2

, (3.36)

By comparison of the results for ˜̃̃gϕθ and ˜̃̃gθϕ with equation (3.32) one can read off, that

¯̄̄gϕθ =
¯̄̄gθϕ = 0,

and finds a radial component of the shift vector Nr:

Nr(r) =
c4(r)
c6(r)

∝ Gtrtθ. (3.37)

Furthermore, since the terms ˜̃̃gθr , ˜̃̃gr
θ,

˜̃̃gϕr , ˜̃̃gr
ϕ vanish, it is concluded from (3.32) that the other

parts of the shift vector field, namely Nθ and Nϕ, are also zero.

This result (3.37) for the shift vector field can also be confirmed by the 3 + 1-decomposition

of the P#
α t t t-component of the dual prinicipal tensor. It can be expressed in terms of the shift

vector field Nα and its other components P#
α β t t, P#

α β γ t, P#
α β γ δ as

P#
α t t t = P#

a b c dea
α

(
Neb

0 + eb
βNβ

) (
Nec

0 + ec
γNγ

) (
Ned

0 + ed
δNδ

)
= N3P#

α 0 0 0 + 3N2NβP#
α β 0 0 + 3NNβNγP#

α β γ 0 + NβNγNδP#
α β γ δ

= 3NβP#
α β t t − 3NβNγP#

α β γ t + NβNγNδP#
α β γ δ, (3.38)

by insertion of ∂t = Ne0 + Nαeα, as well as successive application of the expressions

P#
α β γ 0 =

P#
α β γ t − NδP#

α β γ δ

N
,

P#
α β 0 0 =

P#
α β t t − 2NγNP#

α β γ 0 − NγNδP#
α β γ δ

N2

=
P#
α β t t − 2NγP#

α β γ t + NγNδP#
α β γ δ

N2 ,
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and the annihilation condition

P# (eα, e0, e0, e0) = P#
α 0 0 0 = 0.

Since P#
θ t t t = 0, P#

ϕ t t t = 0, Nθ = 0 and Nϕ = 0 hold, equation (3.38) simplifies to

P#
r t t t = 3NrP#

r r t t − 3NrNrP#
r r r t + NrNrNrP#

r r r r,

which is identically fulfilled for Nr = c4(r)/c6(r) and

P#
r t t t = −

c1(r)c5(r)c4(r)
T (r)2 , P#

r r t t = −
c1(r)

(
2c4(r)2 + c5(r)c6(r)

)
T (r)2 ,

P#
r r r t = −

c1(r)c4(r)c6(r)
T (r)2 , P#

r r r r = −
c1(r)c6(r)2

T (r)2 .

These results of the components of the principal tensor were also found by explicit evaluation

of P#
abcd in the t-α-frame with Mathematica.

Comparing the explicit expressions ˜̃̃gr
r,

˜̃̃gθθ,
˜̃̃gϕϕ given in (3.36) with the decomposition (3.32)

one can additionally conclude that the lapse function N(r) is related to the unknown free

function T (r) via

T (r) sin(θ) = N(r)
√

det ḡ = ωG−1 , (3.39)

with density factor ωG−1 , while the non-vanishing components of ¯̄̄g are given by

¯̄̄gr
r =

2S (r)
T (r)

B 2S(r),

¯̄̄gθθ =
−S (r)
T (r)

B −S(r),

¯̄̄gϕϕ =
−S (r)
T (r)

B −S(r), (3.40)

with reparameterization S(r) B S (r)/T (r).

Next, using the relation (3.31) between the components of ˜̃g and ¯̄g, as well as the explicit

expressions (3.34) and (3.35), one finds that the non-vanishing components of ¯̄g are given by

¯̄grr =
c7(r) sin(θ)2

det ḡ
B C7(r),

¯̄gθθ =
c6(r) sin(θ)2

det ḡ
B C6(r),

¯̄gϕϕ =
c6(r)
det ḡ

B
C6(r)
sin(θ)2 , (3.41)
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with reparameterizations C7(r) B c7(r) sin(θ)2/det ḡ and C6(r) B c6(r) sin(θ)2/det ḡ.

At last, the non-vanishing components of ḡ are determined by relation (3.33) and the explicit

terms in (3.34) to be

ḡrr = −
c1(r)
N2(r)

B −C1(r),

ḡθθ =
1

N2(r)

(
−c5(r) +

c4(r)2

c6(r)

)
B −C5(r),

ḡϕϕ =
1

N2(r)

(
−c5(r) +

c4(r)2

c6(r)

)
sin(θ)2 B −C5(r) sin(θ)2, (3.42)

with reparameterizations C1(r) B c1(r)/N(r)2 and C5(r) B 1/N(r)2
(
c5(r) − c4(r)2/c6(r)

)
.

Thus, the square root of the determinant
√

ḡ is given by

√
det ḡ =

√
−C1(r)C5(r)2 sin(θ) =

1
N(r)3

√
−c1(r)

(
c5(r) −

c4(r)2

c6(r)

)2

sin(θ),

such that with (3.39) it follows that the lapse can be expressed in terms of the unknown degrees

of freedom as

N(r)2 =
1

T (r)

√
−c1(r)c5(r)2 + 2

c1(r)c5(r)c4(r)2

c6(r)
−

c1(r)c4(r)2

c6(r)2 . (3.43)

This expression for the lapse N(r) can be confirmed by the 3 + 1-decomposition of the P#
tttt-

component of the dual principal tensor field via the following steps: At first this component is

explicitly evaluated, what results in

P#
tttt = P#

a b c d

(
Nea

0 + ea
αNα

) (
Neb

0 + eb
βNβ

) (
Nec

0 + ec
γNγ

) (
Ned

0 + ed
δNδ

)
= N4P#

0000 + 4N3NP#
α000 + 6N2NαNβP#

αβ00 + 4NNαNβNγP#
αβγ0

+ NαNβNγNδP#
αβγδ

= N4 + 6NαNβP#
αβtt − 8NαNβNγP#

αβγt + 3NαNβNγNδP#
αβγδ. (3.44)

Then, using the normalization condition P#
0000 = 1, the annihilation condition P#

α000 = 0, the

expressions for P#
rrrr, P#

rrtt, P#
rttt and P#

tttt = −c1(r)c5(r)2/T (r)2, as well as Nr = c4(r)/c6(r),

Nθ = 0, Nϕ = 0 the lapse N(r) can be extracted from (3.44) as

N(r)4 = P#
tttt − 6(Nr(r))2P#

rrtt + 8(Nr(r))3P#
rrrt − 3(Nr(r))4P#

rrrr

= −
c1(r)c5(r)2

T (r)2 + 2
c1(r)c5(r)c4(r)2

c6(t)T (r)2 −
c1(r)c4(r)4

c6(r)2T (r)2 ,
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in accordance with the previous result (3.43).

To summarize, the seven unknown degrees of freedom of the area-metric of a spherically

symmetric, stationary spacetime c1(r), S (r), T (r), c4(r), c5(r), c6(r) and c7(r) were reparam-

eterized using a 3 + 1-decomposition into lapse N(r), radial shift Nr(r), and five degrees of

freedom C1(r), C5(r), C6(r), C7(r) and S(r) for the three hypersurface fields ḡ, ¯̄g and ¯̄̄g. This

decomposition is in general required to derive the symmetry reduced input coefficients to set

up the symmetry reduced closure equation in section 3.4.

However, before discussing this, it will now be elaborated how the notion of hypersurface

orthogonality due to the Frobenius integrability theorem - which corresponds to a specific co-

ordinate choice motivated by time reflection symmetry in the metric case [Str13]; [Wal84] -

can be understood in the context of an area-metric spacetime. It will therefore be shown how

a parametrization is chosen such, that the shift vector field vanishes. If one was able to derive

the gravitational action for an area-metric, spherically symmetric and stationary spacetime -

as would be interesting for future research - the final equations of motion could then also be

simplified, similarly as in the metric case in Chapter 2.

3.3 Discussion on staticity in area-metric spacetime

In standard literature (see for instance [Wal84]) staticity is associated to a discrete time-

reflection symmetry t → −t. In case of a Lorentzian geometry (M, g) this corresponds to

a vanishing off-diagnoal element of the metric gtα = 0, which is in this case both the funda-

mental geometry and the principal tensor field.

As briefly mentioned in section 2.2.1 there is a one to one correspondence between the notion

of staticity gtα = 0 of a spherically symmetric, stationary, metric spacetime and hypersurface

orthogonality of the timelike Killing vector field X = ∂t. This means that a specific coordinate

frame, where spatial hypersurfaces are defined by t = const., can be found. Then, the radial

shift Nr vanishes, i.e. Nr = 0.

However, the concept of staticity in the sense of time-reflection symmetry can not be adapted

so straightforwardly for an area-metric spacetime. Especially, there is the area-metric Gabcd

as basic geometric field on the one hand, and the according dual principal tensor field P#
abcd

on the other hand. Now, the question arises to which of these fields the time-reflection sym-

metry - if at all - applies. If the time-reflection symmetry was to apply to Gabcd, this would

also follow for P#
abcd, but not necessarily the other way round. Additionally, if all terms Gαβγt

vanished, then ωG would not be well-defined, what is also problematic. At this point, it is still

unclear how the notion of staticity as a discrete time-reflection symmetry can be applied to
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make any statements about the area-metric spacetime.

Instead, as already discussed in 2.2.1, one needs to retreat to a mathematically more well-

defined concept, such as the Frobenius condition

ω ∧ dω = 0. (3.45)

If it holds, this ensures that the spacelike hypersurfaces of the spacetime foliation are inte-

grable, and the co-vector ω corresponding to the timelike Killing vector field of the stationary

spacetime is hence hypersurface orthogonal in a specific coordinate frame.

This is possible, since the Frobenius condition itself does not rely on a metric structure, but

employs more general concepts like differential forms and one-forms in a dual space which

can be easily found by application of the Legendre map. Of course, these concepts also exist

for a spacetime manifold with area-metric structure.

Thus, the following discussion of integrability in spherically symmetric, stationary area-metric

spacetime closely follows the steps made in [Str13], but now for an area-metric geometry.

The idea is to show at first that, assuming a coordinate system with a hypersurface orthogonal

timelike Killing vector, the Frobenius follows. Vice versa the Frobenius condition should also

implies that one can choose a coordinate system in the spherically symmetric case, where the

timelike Killing vector field becomes hypersurface orthogonal.

The starting point is the assumption that the timelike Killing vector field denoted by K = ∂τ,

which implies stationartiy of the spacetime [Str13], is hypersurface orthogonal to a specific

choice of spatial sections with τ = const. as the corresponding coordinate. In a 3 + 1-split the

timelike Killing vector ∂t field is generally given by

∂t = Ne0 + Nαeα,

where e0 is the vector orthogonal to the hypersurfaces, so that ∂τ ∝ e0, and hence Nα
τ = 0 in

this specific frame, i.e.

K = ∂τ = Nτe0,

with Nτ as the corresponding lapse. In Section 3.2 it was shown that the radial shift vector

field Nr is generally proportional to the component c4(r) = Gtθrθ(r) one receives by symmetry

reduction of the area-metric in the t-α-coordinates. Consequently, a vanishing shift Nα
τ in the

τ-α-coordinates corresponds to Gτθrθ = 0 in these coordinates.

83



Now, the one-form ω = K♭ can be derived via the Legendre map ℓ(K) ∈ Ω1(M) defined by

(3.4):

ℓ(K) =
P# (K,K,K, ·)
P# (K,K,K,K)

,

⇒ ω = ℓ(K)P# (K,K,K,K) = ℓ(K)ω(K) = P# (K,K,K, ·)

where · denotes an open slot and ω(K) = P# (K,K,K,K) is a normalization factor.

In explicit components this is equivalent to

ωa = P#
abcdKbKcKd = P#

aτττ.

For spatial indices a = α the 3 + 1-decomposition of P#
α t t t was given by (3.38) in a general t-

α-frame. Now, this component vanishes for a hypersurface orthogonal timelike Killing vector

field K = ∂τ due to the vanishing shift vector field in this special frame. Then ω simplifies to

ω = P#
ττττdτ,

where P#
ττττ(r) is a function of r in spherically symmetric, stationary space-time. This expres-

sion fulfills the Frobenius condition since

ω ∧ dω =P#
ττττdτ ∧ d

(
P#
ττττdτ

)
=P#

ττττdτ ∧ ∂rP#
ττττ ∧ dr ∧ dτ

=0,

due to the antisymmetry of the wedge product.

So to summarize, the assumption of hypersurface orthogonality of the timelike Killing vector

field leads to the fulfillment of the Frobenius condition, similar to the metric case, but now for

an area-metric geometry.

Next, the other direction has to be shown: The Frobenius condition should imply that there

is a frame, where the timelike Killing vector field is hypersurface orthogonal, even for an

area-metric geometry. Furthermore, the transformation of the components of the symmetry

reduced area-metric (3.9) in such a frame is investigated.

This part of the proof only works under the condition that K is actually a timelike Killing

vector field, as for example discussed by [Str13]; [Ryd09]. To see this, one first applies, as

also done in [Str13], the interior product iK : Ωr(M)→ Ωr−1(M) ([Nak03]) onto (3.45), what

84



leads to

0 = iK (ω ∧ dω) = ω(K)dω − ω ∧ iK (dω) .

Next, application of Cartan’s formula [Str13]; [Nak03]

LKω = dω (K) + iK (dω) ,

with LKω as Lie derivative of ω along the flow generated by K leads to

0 = ω (K) dω − ω ∧ (LKω − dω (K)) . (3.46)

Following the steps in [Str13] it must now be shown that LKω vanishes, under the condition

that K is a Killing vector field. Care has to be taken here, since the Killing symmetry condition

actually applies to the area-metric in this case, i.e.

LKG = 0.

But since the dual principal polynomial P#, required for the Legendre map to derive ω = K♭,

is built up from the area-metric according to

P#
abcd = −

1
24
ω2

Gϵ
mnpqϵrstuGmnr(aGb|ps|cGd)qtu,

it follows that the symmetries of G are also symmetries of P#, i.e.

LK P# = 0,

in coordinates: Kb∂bP#
apqr + ∂aKbP#

bpqr + ∂pKbP#
abqr + ∂qKbP#

apbr + ∂rKbP#
apqb = 0.

Appendix C elaborates this in more detail.

Thus, the Lie derivative of ω = K♭ with respect to K indeed vanishes, because

LKω = Kb (∂bωa) + ∂aKbωb

= Kb∂b
(
P#

apqrK pKqKr
)
+

(
∂aKb

)
P#

bpqrK pKqKr

= 0,

when inserting the Killing condition for the dual principal polynomial.

Therefore, the exact same arguments made by [Str13] apply, such that (3.46) can be rewritten

as

d
(
ω

ω(K)

)
,
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with ω/ω(K) being a closed form. It is also exact with

ω = ω(K)ℓ(K) = ω(K)dτ,

due to the Poincaré-Lemma, provided a star domain is considered. This expression is orthog-

onal to the spatial hypersurfaces defined by constant τ, which parameterizes time, i.e.

ω(X) = ω(K)dτ(X) = 0,

for X being a hypersurface tangential vector field as in [Str13]. This orthogonality condition

allows to choose specific coordinates, similarly to [Ryd09], who discussed how the orthogo-

nality leads to a special choice of coordinates in the metric case. For the area-metric case the

calculations are analogous:

The time coordinate τ defining the integrable hypersurfaces can be related to annother t-α′-

coordinate system with

τ(x′α, t),

such that

ω = ω(K)dτ = ω(K)
(
∂τ

∂r
dr +

∂τ

∂t
dt

)
. (3.47)

Here, ω(K) is the actual norm of the timelike Killing vector field which is a scalar, and hence

a coordinate invariant. So, in thet-α′-frame one can choose K′ = ∂t with non-vanishing

component K
′t = 1 and corresponding one-form ω′a = P#′

abcdK
′bK

′cK
′d.

The norm ω(K) becomes

ω(K) = P#(K,K,K,K) = P#
abcdKaKbKdKc

= P#′
de f gK

′dK
′eK

′ f K
′g = P#′

tttt = ω(∂t).

On the other hand, direct application of (3.47) to ∂t leads to

ω(∂t) = ω(K) (∂tτdt(∂t) + ∂rτdr(∂t)) = ω(K)∂tτ = P#′
tttt∂tτ,

and thus ∂tτ = 1 holds. Next, application of (3.47) on ∂/∂xα
′

≡ ∂α′ leads to

ω(∂α′) = P#′
tttα′ = P#′

tttt∂α′τ = P#′
tttt∂α′h, (3.48)

where h(xα
′

) is a function of the spatial coordinates.
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Consequently, τ is given by

τ(t, x
′α) = t + h(xα

′

),

and thus

t(τ, xα) = τ − h(xα), (3.49)

while the spatial coordinates of the t-α′-frame and the τ-α-frame are connected by xα
′

= xα

as also stated in [Ryd09].

While the transformation from t-coordinate to τ-coordinate does not affect the timelike Killing

vector field [Ryd09], as well as the component

P#
ττττ = P

′#
abcd

∂x
′a

∂τ

∂x
′b

∂τ

∂x
′c

∂τ

∂x
′d

∂τ
= P

′#
tttt,

one finds the following for the P#
τττα-component

P#
τττα = P

′#
abcd

∂x
′a

∂τ

∂x
′b

∂τ

∂x
′c

∂τ

∂x
′d

∂xα
= −P

′#
tttt∂αh + P

′#
tttα = 0,

due to (3.48). For an area-metric reduced by spherical symmetry and stationarity as discussed

in the previous section, the corresponding principal tensor components P
′#
tttθ = P

′#
tttϕ are zero.

Thus, it holds that ∂θh = ∂ϕh = 0 in this case, so h(r) only depends on the radial parameter.

Using the explicit expressions for P
′#
tttr and P

′#
tttt in the t-α-system results in

∂rh =
P
′#
tttr

P′#tttt
=

c4(r)
c5(r)

= Nr(r)
c6(r)
c5(r)

.

With this expression for ∂rh the chart transformation of the area-metric component

Gabcd = G′e f gh
∂x
′e

∂xa
∂x
′ f

∂xb

∂x
′g

∂xc
∂x
′h

∂xd ,

when going from the t-α-frame to the τ-α-frame is evaluated: Due to equation (3.49) almost

all components of the area-metric G (3.9) are unchanged in the τ-α-frame, except two com-

ponents, namely Gτθrθ and Gτϕrϕ with

Gτθrθ = G′e f gh
∂x
′e

∂τ

∂x
′ f

∂θ

∂x
′g

∂r
∂x
′h

∂θ
= G′tθtθ

∂t
∂r
+G′tθrθ

∂r
∂r
= −c5(r)∂rh(r) + c4(r) = 0,

and similarly for Gτϕrϕ. The area-metric components Gτθrθ and Gτϕrϕ in the τ-α-frame are

then again proportional to the radial shift vector Nr
τ(r) which vanishes in this frame. This is

thus the coordinate system with a hypersurface orthogonal timelike Killing vector field.
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By choosing a time parameterisation τ where Gτθrθ = c4(r) = 0, the Frobenius condition

is identically fulfilled. Interestingly, the components Pταβγ and Pτττα of the principal tensor

field, as well as their correspoding duals P#
ταβγ and P#

τττα also vanish in this case. Hence,

the according principal polynomial P(n) in (3.18), as well as its dual P#(p) in (3.10) actu-

ally become time-reflection symmetric in these coordiates with τ → −τ. This is similar to

the metric case where the components gτα and gτα are zero. Consequently, also the actions

for massless particles (1.2) and massive particles (1.6) in area-metric geometry, and thus the

associated geodesics need to be time-reflection symmetric. The original notion of staticity is

hence regained.

In the first instance, it seemed unclear at first, whether time-reflection symmetry applies al-

ready to the area-metric, or only to the principal polynomial. But the Frobenius condition

enables a choice of coordinates such, that the notion of staticity in the sense of time-reflection

symmetry still applies for the principal polynomial and its dual, but generally not for the area-

metric itself. This is possible, since the shift vanishes in this frame.

That in turn is actually not suprising, given that according to [BS03] and also mentioned in

[Wol22] there always exists a global diffeomorphism between a hyperbolic spacetime mani-

fold M and R× S , where S is a smooth Cauchy hypersurface. This means that one can always

find a coordinate frame, where the shift becomes identically zero, but never the lapse. Thus,

using the Frobenius condition to find the coordinate frame with vanishing shift rather serves

as an explicit confirmation of the general findings by [BS03]. Unfortunately, these special

coordinate choices do not fulfill symmetric criticality [FT02] in general. Hence, they can only

be imposed on the level of the equations of motion. If one was to find those for the area-

metric case, this could however help in finding according Schwarzschild type solutions for

this spacetime structure.

The first step in the construction of an area-metric Schwarzschild solution is to find the input

coefficients for the closure equations similar to [Dü+20], what will be done in the next sec-

tion. Then it will also be discussed why it is still obstructive to find a general Schwarzschild

solution for these spacetimes and how these issues can be addressed in future research.

3.4 Symmetry reduced input coefficients

The gravitational closure equations given in Appendix A are set up via the input coefficients

p#αβ, FA γ
µ and MAγ. In an area-metric geometry their general structure is given in section

1.5. These input coefficient - which encapsulate the essential kinematical information about

the causal structure of area-metric geometry - need to be inserted into the gravitational closure
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equation. Then the according gravitational dynamics need to be derived by solving for the

output coefficients C, CA, CAB and CA1...AN with N ≥ 2 in the corresponding Lagrangian.

If the spacetime possesses Killing symmetries, the principle of symmetric criticality [FT02]

allows to perform a symmetry reduction at the level of the gravitational closure equations,

before solving their simplified versions. So, the first step is to find the input coefficients eval-

uated on spherical symmetry and stationarity. This task can be performed with Mathematica

for instance. Then, inserting these into the closure equations simplifies their general structure.

This was also demonstrated very successfully by [Due20] for FLRW symmetries. The goal is

to find corresponding output coefficients for a spherically symmetric, stationary area-metric

spacetime. This is, however, still a mathematically highly sophisticated task, even if symme-

try reduction is applied. The challenges arising in the solvability in this context will then be

discussed at the end of this section.

From the explicit components of the hypersurface fields evaluated on spherical symmetry and

stationarity (3.40)-(3.42), and (1.38), one finds the corresponding configuration fields φF
∣∣∣
sym

evaluated on symmetries:

φ̄A =
(
−C1(r), 0, 0,−C5(r), 0,− sin2(θ)C5(r)

)A
,

¯̄φA =
(
C7(r), 0, 0,C6(r), 0, csc2(θ)C6(r)

)A
,

¯̄̄φm =

−S(r)
((

csc2(θ) + 1
)
C1(r) + 4C5(r)

)
√

6C1(r)C5(r)
, 0,−

cot(θ)2S(r)
√

6C5(r)
, 0,

cot(θ)2S(r)
√

3C5(r)


m

.

The non-vanishing components of the coefficient p#αβ =
(
p#−1

)αβ
are then given by

p#rr = −
3

C1(r)C5(r)C6(r)
,

p#θθ = −
6

C5(r)
(
C5(r)C6(r) +C1(r)C7(r) − 9S(r)2) ,

p#ϕϕ = csc2(θ)p#ϕϕ.

The tangential deformation coefficients FA γ
µ

∣∣∣∣
sym

as given in (1.39) and evaluated on symmet-

ric configurations are then given by

F Ā γ
µ =
√

2C1(r)
(√

2δĀ
1 δ

r
µδ
γ
r + δ

Ā
2 δ

r
µδ
γ
θ + δ

Ā
3 δ

r
µδ
γ
ϕ

)
+
√

2C5(r)
(√

2δĀ
4 δ

θ
µδ
γ
θ + δ

Ā
2 δ

θ
µδ
γ
r + δ

Ā
5 δ

θ
µδ
γ
ϕ

)
+
√

2 sin2(θ)C5(r)
(√

2δĀ
6 δ

ϕ
µδ

γ
ϕ + δ

Ā
3 δ

ϕ
µδ

γ
r + δ

Ā
5 δ

ϕ
µδ

γ
θ

)
,
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F
¯̄A γ
µ =
√

2C7(r)
(√

2δ
¯̄A

1 δ
r
µδ
γ
r + δ

¯̄A
2 δ

θ
µδ
γ
r + δ

¯̄A
3 δ

ϕ
µδ

γ
r

)
+
√

2C6(r)
(√

2δ
¯̄A

4 δ
θ
µδ
γ
θ + δ

¯̄A
2 δ

r
µδ
γ
θ + δ

¯̄A
5 δ

ϕ
µδ

γ
θ

)
+
√

2 csc2(θ)C6(r)
(√

2δ
¯̄A

6 δ
ϕ
µδ

γ
ϕ + δ

¯̄A
3 δ

r
µδ
γ
ϕ + δ

¯̄A
5 δ

θ
µδ
γ
ϕ

)
,

F
¯̄̄m γ
µ = −

S(r)
C1(r)

4 √
2
3
δ

¯̄̄m
1 δ

r
µδ
γ
r + 2

√
2δ

¯̄̄m
2 δ

θ
µδ
γ
r +

4
√

3
δ

¯̄̄m
3 δ

ϕ
µδ

γ
r + 2

√
2
3
δ

¯̄̄m
5 δ

ϕ
µδ

γ
r


−
S(r)
C5(r)

√2
3
δ

¯̄̄m
1 δ

θ
µδ
γ
θ −
√

2δ
¯̄̄m
2 δ

r
µδ
γ
θ −

√
2
3
δ

¯̄̄m
3 δ

θ
µδ
γ
θ −
√

2δ
¯̄̄m
4 δ

ϕ
µδ

γ
θ +

2
√

3
δ

¯̄̄m
5 δ

θ
µδ
γ
θ


−

csc2(θ)S(r)
C5(r)

√2
3
δ

¯̄̄m
1 δ

ϕ
µδ

γ
ϕ −

2
√

3
δ

¯̄̄m
3 δ

r
µδ
γ
ϕ +

√
2
3
δ

¯̄̄m
3 δ

ϕ
µδ

γ
ϕ −
√

2δ
¯̄̄m
4 δ

θ
µδ
γ
ϕ

−

√
2
3
δ

¯̄̄m
5 δ

r
µδ
γ
ϕ −

2
√

3
δ

¯̄̄m
5 δ

ϕ
µδ

γ
ϕ

 .
At last, the normal deformation coefficients MAγ

∣∣∣
sym, given by (1.40), (1.41) and (1.42), need

to be evaluated on symmetric configurations, what leads to the following non-vanishing con-

tributions

MĀγ =
6
√

2S(r)
√
− sin2(θ)C1(r)C5(r)2

C5(r)
(
C5(r)C6(r) +C1(r)C7(r) − 9S(r)2) (

csc2(θ)δĀ
2 δ

γ
ϕ − δ

Ā
3 δ

γ
θ

)
,

M
¯̄Aγ =

3
√

2S(r)√
− sin2(θ)C1(r)C5(r)2

(
δ

¯̄A
2 δ

γ
ϕ − δ

¯̄A
3 δ

γ
θ

)
,

M
¯̄̄mγ =

(
C5(r)C6(r) −C1(r)C7(r) + 3S(r)2

)
(
C5(r)C6(r) +C1(r)C7(r) − 9S(r)2) √

− sin2(θ)C1(r)C5(r)2

×

√2δ
¯̄̄m
2 δ

γ
ϕ −

2
√

3
δ

¯̄̄m
3 δ

γ
θ −

√
2
3
δ

¯̄̄m
5 δ

γ
θ

 .
Now, as discussed by [Due20] one also needs to evaluate derivatives of the input coefficients

with respect to the configuration fields, and only after derivation they may be evaluated on

symmetric configurations. These terms are, however, omitted here.

As a side remark, Section 3.1 has discussed that, if the free function S (r), and thus S(r)

as defined in Section 3.2, was identically zero with

S (r) = S(r) = 0,

the is no birefringence. The reason is that the principal polynomial and its dual are of metric-

induced shape in this case, and the area-metric is also metric induced. As discussed in Section
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3.1 the function c1(r) is then given by

c1(r) =
c5(r)c6(r) − c4(r)2

c7(r)
,

such that

C1(r) =
1

N(r)2

c5(r)c6(r) − c4(r)2

c7(r)
.

Furthermore, inserting the explicit definitions C5(r) =
(
c5(r)c6(r) − c4(r)2

)
/N(r)2,

C6(r) = c6(r) sin(θ)2/det ḡ and C7(r) = c7(r) sin(θ)2/det ḡ discussed in Section 3.2, leads to

C5(r)C6(r) −C1(r)C7(r) = 0.

Thus, the configuration fields and input coefficients evaluated on symmetric configurations

simplify even further: The third field ¯̄̄φm, and consequently the third FA γ
µ -coefficient, as well

as all three MAγ-coefficients vanish on symmetric configurations with

¯̄̄φm
∣∣∣
sym = 0, F

¯̄̄m γ
µ

∣∣∣∣
sym
= 0, and MAγ

∣∣∣
sym = 0.

Still, their derivatives evaluated on symmetric configurations do not vanish in general. This

is similar to an ansatz with cosmological symmetries for arbitrary spatial curvature K, as dis-

cussed by [Due20]; [Fis17]. For FLRW symmetries the free function S(r) already vanishes

on symmetric configurations due to homogeneity, even though there is still a time dependence

in the unknown functions.

Now, the main problem in solving the closure equations for spherically symmetric space-

times, including cosmological spacetimes for K , 0, is that the non-local deformation MAγ

coefficient does not vanish identically, unlike in the metric case. Even if it vanishes on spe-

cific symmetric configurations, its derivatives generally do not vanish, what leads to a more

complicated structure of the equations. Especially equation (C19N≥2) leads, once MAγ and all

of its spatial derivatives vanish, to the collapse of the dependency of C (φ, ∂φ, · · · ∂nφ) to sec-

ond spatial derivative order in the configuration fields C
(
φ, ∂φ, ∂2φ

)
, as shown by [Dü+18];

[Due20]; [Wol22]. Unfortunately, this does not hold in the case considered here. So, due to the

collapse problem it is generally unclear up to which derivative order CA maximally depends.

Even in the metric case this is not restricted, but that does not pose a problem there, since

CA then becomes a boundary term (see [Wol22] for a thorough discussion). However, for the

area-metric case these conclusions cannot be drawn in general. Only for flat FLRW spacetime

in area-metric geometry [Due20]; [Fis17] the collapse problem can be circumvented, because
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the configuration fields φF do not depend on spatial coordinates in this case. Consequently,

contractions with derivative terms like C:A
γα1...αK and CB:A

γα1...αK with K unknown but finite,

drop out of the closure equations, such that they are simplified significantly. But since this

does not work in general, the collapse problem makes it still unclear how to continue with the

solution scheme. However, possible outlooks to this problem will be given in the next section.

If the collapse problem was fixed, the closure equations would still have a harder structure

compared to the flat FLRW case, but might then be solvable.

3.5 Summary and outlook

In this section the spherically symmetric, stationary area-metric ansatz made by [PWS09], as

well as the according dispersion relations and their implications on light propagation, were

reproduced. Then the 3+ 1-split of the area-metric spacetime was studied, and the connection

between the Frobenius condition and staticity were discussed. Additionally, the symmetry

reduced kinematic input coefficients for the closure equations were evaluated, and the general

problems in solving these equations were discussed.

The greatest difficulty in the solution scheme arises due to the missing collapse to known

derivative order ∂nφ for the dependencies of the output coefficients C and CA. However,

one might only be interested in a subset of solutions for which at most C(φ, ∂φ, ∂2φ) and

CA(φ, ∂φ, ∂2φ), though it is unclear, if there is also interesting physical information in higher

order derivative terms. Hence, before making the effort in solving the very involved structure

of closure equations, it needs to be clarified whether or why it would even be possible to make

assumptions on the dependencies of the output coefficients.

As discussed by [Wol22], the collapse problem may be addressed by directly demanding that

the principal polynomial Pmatter(x, k) of the matter theory is equal to the principal polynomial

Pgravity(x, k) of the gravity theory. This is a very reasonable assumption given that one wants

to ensure a consistent co-evolution of the initial hypersurface data for matter fields and the

gravitational field: [Wol22] mentions that for matter theories the equations of motion generally

contain the same number of temporal and spatial derivatives, which would not be the case for

the equations of motion of a gravity theory, given that the output coefficients C and CA can

depend on arbitrary derivative order ∂nφ. But then, according to [Wol22], dt is a characteristic

co-vector for the geometric symbol, and thus also for the principal polynomial of the gravity

action. Contrary dt is a timelike co-vector for the principal polynomial of the matter action.

Hence, this hints at the fact that a compatibility condition between these principal polynomials

needs to be found to fix the collapse problem. However, even if a rigorous mathematical proof

is still missing, this argument already implies that a collpase of the dependencies of C and
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CA to lower order derivative order, as for instance ∂2φ, needs to occur. The higher derivative

order dependencies of the coefficients C and CA would then only appear as boundary terms

[Wol22]. These are dynamically irrelevant, and do not affect the causality structure set by the

principal polynomial.

All in all, the solution to the collapse problem is the bottleneck for finding specific solutions

for the gravitational closure equations: If this problem was fixed, the gravitational dynamics

could then possibly be found, for instance with methods explained by [Wol22] in more detail.
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4 Intrinsic and extrinsic gravitational flexions

The results on intrinsic flexions presented in section 4.4.1 of this chapter, and parts of section

4.2 indicated therein have been published in

E. S. Giesel, B. Ghosh and B. M. Schäfer,

Monthly Notices of the Royal Astronomical Society (December 2021), 510, 2773–2789,

Intrinsic and extrinsic gravitational flexions.

Further discussion concerning details on the numerical value of the alignment parameter and

updated plots have been updated on ArXiv arXiv:2107.09000v3.

After having discussed basic ideas about constructive gravity and its set-up for symmetries

in spherically symmetric spacetime, the following chapter will introduce and investiagte an

entirely different topic, namely intrinsic alignment and intrinsic flexions in classical gravity.

Intrinsic alignment describes how galaxies orient themselves and deform inside tidal fields in

their surroundings. In turn, intrinsic flexion describe this deformation due to gradients of the

tidal fields. While these concepts seem to be unconnected to the first part of this thesis, the

ideas laid out in the following chapter concerning the modelling of linear alignments, as well

as the machinery summarized to calculate lensing spectra will become important in Chapter

5. There, the ideas of intrinsic alignment and lensing on the one hand, and solutions of the

constructive gravity program in weakly birefringent spacetimes on the other hand, will be

combined to study how area-metric refinements will affect observable quantities in lensing.

This chapter is structures as follows: After giving a short introduction to basic ideas on grav-

itational lensing as a summary of [BS01]; [Bar10]; [BM17]; [SEF92] and the gravitational

lensing flexion, one will further develop the linear alignment model for elliptical galaxies dis-

cussed in [GDS21] to intrinsic flexions. Afterwards the observability of this effect will be

discussed for a survey like Euclid.

4.1 Introduction to gravitational lensing: General description of image
distortions

In gravitational lensing [BS01] the light reaching the observer from far away galaxies is de-

flected at the position of a gravitational lens, which could be a galaxy cluster or a large-scale

distribution of dark matter for instance. Mathematically, this is described by the lens or ray
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tracing equation [BS01]; [SEF92]

β = θ − α (θ) ,

where β is the actual angular position of the source on the sky and θ is the angular postion

of the image on the sky, i.e. the position where the observer sees the source. The reduced

deflection angle α = Dds/Ds α̂ is defined by the deflection angle α̂ times the ratio of the

angular diameter distances between the lens and the source Dds and between the observer

and the source Ds, as depicted in 4.1. One way to derive this lens equation in the frame-

Figure 4.1: Depiction of the lens-system: For the observer the source appears under an angle
θ due to light deflection in the lens-plane with angular diameter distance Dd from
the observer. If there was no gravitational lens, the source would appear under the
true angle β, so the light is deflected by the deflection angle α̂. With the distance
from the source to the observer Ds and the distance from the lens-plane to the
source plane Dds it is possible to convert the deflection angle α̂ to the reduced de-
flection angle as the difference between θ and β. The figure is taken from [BS01].

work of general relativity is by solving, for instance, the geodesic deviation equation which

describes the relative deflection of infinitesimally distant light rays as they propagate to the

observer through a spacetime perturbed by a Newtonian gravitational potential Φ/c2 of the

lens [Bar19a]; [Bar19b].

Alternatively, one can derive an index of refraction n = c′/c = 1 − 2Φ/c2 from the weak field

line-element, i.e.

ds2 = c2
(
1 + 2Φ/c2

)
dt2 −

(
1 − 2Φ/c2

)
dxαdxα ,
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and then extremize the optical path of the light ray from the source to the observer using

Fermat’s principle, as is for instance discussed in [SEF92]; [BS01] 1. This will lead to the

following expression for the reduced deflection angle

α = ∇⊥
2
c2

Dds

Ds

∫
Φ dz , (4.1)

where the gradient of the potential perpendicular to the line-of-sight is integrated along the

latter, i.e. from the observer to the source. At this point of the derivation Born’s approximation

[Bar19a] is used by integrating along the straight, unperturbed line-of-sight, instead of the

actual light path. This simplification applies, since the magnitude of the deflection angles

is often much smaller compared to the length of the integration path. Lensing effects for

the case where Born’s approximation does not hold are for instance discussed in [Sch+12].

For cosmological lensing the derivation is similar because the FLRW-line element perturbed

with a Newtonian potential is used, as discussed in [SEF92]. The result will be very similar

due to the conformal flatness of FLRW spacetime, so light-propagation works similar to flat

Minkowskian spacetime. The distances Dds and Ds denote the angular diameter distances

which are defined by the ratio between the cross section area δA of an object and the solid

angle δΩ under which it appears [Bar19a]. They are generally different from the euclidean

distance in a non-flat geometry like FLRW spacetime.

Now, as for example stated in [BM17], the perpendicular gradient ∇⊥ can be expressed in

terms of a gradient ∇θ = D−1
d ∇θ with respect to the apparent angular position θ, where Dd

is the angular diameter distance from lens to observer. Subsequently, the reduced deflection

angle α from equation (4.1) can be written as the angular gradient of the lensing potential Ψ,

via

α = ∇θΨ ,

Ψ B
2
c2

Dds

DsDd

∫
Φdz ,

such that the ray tracing equation becomes2

β = θ − ∇ψ . (4.2)

1Conerning notation Greek letters α are used to denote spatial indices running from 1 to 3, even though the
conventional notation would be to use Latin indices here instead. However, since in the Chapters 1 to 3 the
notation by [Dü+18] was adopted, Greek letters were used for spatial indices, and Latin letters for spacetime
indices, one will stick to this unconventional notation here, to be consistent with the previous chapters.

2To simplify notation the subscript θ of the angular gradient ∇θ is dropped in the remainder of this chapter.
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Since the actual size of the source δβ is generally much smaller compared to changes in the

deflection angle δθ [BM17] one can approximate the ray tracing equation (4.2) by a first order

Taylor expansion in θ as

δβi ≈
∂βi

∂θ j
δθ j = Ai jδθ j =

(
δi j − Ψi j

)
δθ j with Ψi j B

∂2Ψ

∂θi∂θ j
. (4.3)

In this so-called lens map (4.3), the Jacobian A, is a symmetric tensor in two dimensions3 -

provided that Schwarz’s rule4 applies for Ψi j. Then, it has three degrees of freedom, denoted

by the convergence

a0 B κ =
1
2

(Ψ00 + Ψ11) , (4.4)

which leads to an effective distortion in the size of the image, and the two shear components

a3 B γ+ =
1
2

(Ψ00 − Ψ11) and a1 B γ× = Ψ01 = Ψ10 . (4.5)

which lead to a distortion in the shape of the image. Hence, A acquires the following shape

[SEF92]:

A =

1 − κ − γ+ −γ×

−γ× 1 − κ + γ+

 = 11 − κσ(0) − γ+σ
(3) − γ×σ

(1) =

k=3∑
k=0

akσ
(k). (4.6)

Since it has three independent components, a basis decomposition of the Jacobian in equation

(4.6) into the three Pauli matrices

σ(0) =

 1 0

0 1

 , σ(1) =

 0 1

1 0

 , σ(3) =

 1 0

0 −1

 ,
as described in [Sch+12] makes it possible to extract the various effects of image distortion

due to lensing. As a side remark, the second Pauli matrix

σ(2) =

 0 −i

i 0

 ,
measuring image rotations is antisymmetric, and since the Jacobian is supposed to be sym-

metric there is in fact no contribution from σ(2). Finally, the convergence and the two shear

3In gravitational lensing one explicitly considers images projected on a two dimensional screen, hence the indices
i and j run from 0 to 1.

4If the Born approximation is dropped, for instance, the Jacobian A is generally not symmetric in higher order
correction terms, what is discussed in more detail in [Sch+12].
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components can be recovered by projecting

ak =
1
2

Tr
(
(11 −A)σ(k)

)
,

using the properties σ(i)σ( j) = 11δi j+ iϵi jkσ
(k) and Tr

(
σ(k)

)
= 0 with k > 0 of the Pauli matrices

[Sch+12].

Since for weak lensing, the image of a source is projected into a two-dimensional plane, it is

convenient to describe lensing effects using a complex number representation [Bac+06]. With

the complex gradient operator ∂ and its complex conjugate

∂ = ∂0 + i∂1, and ∂∗ = ∂0 − i∂1 , (4.7)

one can define the deflection angle from the scalar lensing potential Ψ as a vector valued

quantity α = ∂ψ with spin 1. As such it has the required transformation behaviour for the

operator ∂ transforms as ∂ → ∂ exp (iϕ) under rotation with angle ϕ. The convergence κ can

then be derived in the complex notation as

κ =
1
2
∂∗α =

1
2
∂∗∂Ψ ,

which is again a scalar, and hence a spin-0 quantity. The operator ∂ is to be understood as a

spin raising operator, while ∂∗ acts as a spin lowering operator [Bac+06]. The complex shear

γ can then be defined as a spin-2 field with

γ = γ+ + iγ× =
1
2
∂∂Ψ ,

which clearly transforms accordingly as γ → γ exp (i2ϕ) with ϕ as rotation angle.

Using this complex notation simplifies the derivation of higher order lensing distortions by

repeatedly applying the spin ladder operators onto the convergence and shear. For each deriva-

tive order the according spin field decomposition can be infered. This is for instance discussed

in section 4.2 for the lensing flexion as the next order image distortion.

Now, one can measure the shear and size changes of the image compared to the source via the

normalised quadrupole moment

qi j =

∫
d2θ I (θ)∆θi∆θ j∫

d2θ I (θ)
,
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of the surface brightness distribution I (θ). Now, according to [BS01] the complex ellipticity

χ is defined as

χ =
q11 − q22 + 2iq12

q11 + q22
.

Using the lens map (4.3) a transformation law between the source ellipticity χs, also called

intrinsic ellipticity, and the observed, lensed ellipticity χ, can be derived, as discussed in

[BS01]. In the weak lensing limit with κ ≪ 1 and |γ| ≪ 1 this leads to

⟨χ⟩ ≈
〈
χs〉 + 2γ,

as average of the observed ellipticities.

To first order approximation ⟨χs⟩ is often assumed to vanish for large samples [BM17], but in

general there is the possibility of a correction due to intrinsic alignment.

4.2 Flexions in weak lensing

In [Bac+06]; [GB05] the spin operators from equation (4.7) are applied on the comlex shear

in order to derive the flexion as third order image distortion. The flexion generally measures

how bent an image appears, as it might be forming for instance an arc shape. More specifically

one can distinguish a spin-1 flexion field

F =
1
2
∂∂∗∂Ψ = ∂κ = ∂∗γ ,

causing the galaxy center to appear shifted to the observer, illustratively speaking similar to a

fried egg, and a spin-3 field

G =
1
2
∂∂∂Ψ = ∂γ ,

which gives rise to a 3-fold symmetry of the image, analogical to a Mercedes star.

Clearly, under rotation with angle ϕ these transform as F → F exp (iϕ) and G → G exp (3iϕ).

The flexion fields may now be expressed in terms of the shear components as

F = F1 + iF2 = (∂0γ+ + ∂1γ×) + i (∂0γ× − ∂1γ+) , (4.8)

G = G1 + iG2 = (∂0γ+ − ∂1γ×) + i (∂0γ× + ∂1γ+) . (4.9)

The flexions can be related to the ray tracing equation (4.2) by expanding the latter to second

order in the lensed coordinates, as discussed in [Bac+06], yielding a refined lens map

δβi ≈
∂βi

∂θ j
δθ j +

1
2

∂βi

∂θ j∂θk
δθ jδθk = Ai jδθ j +

1
2

Di jkδθ jδθk . (4.10)
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By fixing the index k the tensor

Di jk ≡ ∂kAi j = Fi jk + Gi jk

may then be represented as

(
Di j0

)
i=1,2; j=1,2

=

−2∂0γ+ − ∂1γ× −∂0γ×

−∂0γ× ∂1γ×

 = −1
2

3F1 F2

F2 F1

 − 1
2

G1 G2

G2 −G1

 , (4.11)

with Di j0 = Fi j0 + Gi j0 and

(
Di j1

)
i=1,2; j=1,2

=

−∂0γ× −∂1γ×

−∂1γ× 2∂1γ+ − ∂0γ×

 = −1
2

F2 F1

F1 3F2

 − 1
2

 G2 −G1

−G1 −G2

 , (4.12)

with Di j1 = Fi j1 + Gi j1. The derivatives of the matrix components of A are explicitly evalu-

ated, and identified with the corresponding flexion expressions.

As for the JacobianA it is now possible to find an orthonormal decomposition for the flexion

tensor Di jk: In [Sch+12] the 2× 2× 2 flexion tensor can be rewritten in terms of a 4× 4-block

diagonal matrixD with components (D)i+2k, j+2k = Di jk as

D =


(
Di j0

)
i=1,2; j=1,2

0

0
(
Di j1

)
i=1,2; j=1,2

 .
This can then be decomposed into a set of 4×4-Dirac matrices as a generalisation of the Pauli

matrices and in [Sch+12] one finds for instance 6 distinct Dirac matrices with

∆̃(i) =

σ(i) 0

0 σ(i)

 and ∆̃(3+i) =

σ(i) 0

0 −σ(i)

 .
However, in the course of this work the tensor Di jk is symmetric in all its three indices, unlike

in [Sch+12] where the authors explicitly consider lens-lens coupling and investigate the effect

of loosening the assumption of Born’s approximation. There, the corresponding rank-3 tensor

Di jk discussed in [Sch+12] is only symmetric in the last two indices leading to six degrees

of freedom. Here, in contrast, the rank-3 tensor Di jk has only 4 degrees of freedom, which

reduces the number of linearly independet basis matrices. These are, however, still similar to

the Dirac matrices. It is now possible to derive the proper decompostion of Di jk by following
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the derivation fromA as in [Bac+06] but based on its decomposition (4.6):

D =


(
Di j0

)
i=1,2; j=1,2

0

0
(
Di j1

)
i=1,2; j=1,2

 =
∂0

(
Ai j

)
i=1,2; j=1,2

0

0 ∂1
(
Ai j

)
i=1,2; j=1,2


= −

∂0κσ
(0) + ∂0γ+σ

(3) + ∂0γ×σ
(1) 0

0 ∂1κσ
(0) + ∂1γ+σ

(3) + ∂1γ×σ
(1)

 .
Due to equations (4.4) and (4.5) it follows, that

∂0κ = ∂0γ+ + ∂1γ×, and ∂1κ = −∂1γ+ + ∂0γ× .

This shows, that the required four degrees of freedom ofD can solely be expressed by deriva-

tives of the shear components ∂0γ+, ∂1γ+, ∂0γ× and ∂1γ×. It follows that

D = − ∂0γ+

σ(0) + σ(3) 0

0 0

 − ∂1γ+

0 0

0 σ(3) − σ(0)


− ∂0γ×

σ(1) 0

0 σ(0)

 − ∂1γ×

σ(0) 0

0 σ(1)

 .
Now, using the relations (4.8) and (4.9) one can combine the derivatives of the shear such, that

the 4 distinct degrees of freedom may be rewritten in terms of the two distinct spin fields F

and G with

∂0γ+ =
F1 + G1

2
, and ∂1γ+ =

G2 − F2

2
,

∂0γ× =
F2 + G2

2
, and ∂1γ× =

F1 − G1

2
.

This leads to the following decomposition in terms of the flexion fields, consistent with the

results of [Bac+06]:

D = −
1
2
F1

2σ(0) + σ(3) 0

0 σ(1)

 − 1
2
F2

σ(1) 0

0 2σ(0) − σ(3)


−

1
2
G1

σ(3) 0

0 −σ(1)

 − 1
2
G2

σ(1) 0

0 σ(3)

 .
(4.13)

This would in principle be a valid decomposition into Dirac-type matrices, which are linearly

independent by definition. That can be confirmed by contracting the various matrices in equa-

tion (4.13) with each other, using that the Pauli matrices themselves form an orthonormal basis
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and are traceless. However, for the contractions

1
4

Tr

2σ(0) + σ(3) 0

0 σ(1)

 · 2σ(0) + σ(3) 0

0 σ(1)

 = 3,

1
4

Tr

σ(1) 0

0 2σ(0) − σ(3)

 · σ(1) 0

0 2σ(0) − σ(3)

 = 3,

are not normalized to one, a normalization factor 1/
√

3 is introduced in front of the basis

matrices of the F -flexion field. Then the orthonormal decomposition of Di jk is given by

D =d1
1
√

3

2σ(0) + σ(3) 0

0 σ(1)

 + d2
1
√

3

σ(1) 0

0 2σ(0) − σ(3)


+ d3

σ(3) 0

0 −σ(1)

 + d4

σ(1) 0

0 σ(3)

 ,
(4.14)

where the coefficients are given by

d1 B −

√
3

2
F1, d2 B −

√
3

2
F2, d3 B −

1
2
G1, and d4 B −

1
2
G2.

The corresponding Dirac-type matrix bases for the spin-1 field F and the spin-3 field G are

then given by

spin-1-types: ∆(1) =
1
√

3

2σ(0) + σ(3) 0

0 σ(1)

 , (4.15)

∆(2) =
1
√

3

σ(1) 0

0 2σ(0) − σ(3)

 , (4.16)

spin-3-types: ∆(3) =

σ(3) 0

0 −σ(1)

 , (4.17)

∆(4) =

σ(1) 0

0 σ(3)

 . (4.18)

Consequently, one receives the distinct degrees of freedom of the flexion field by the following

projection

dk =
1
4

Tr
(
D · ∆(k)

)
,

with k = 1, 2, 3, 4.
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4.3 Measurement of the flexion in weak lensing

Similar to convergence and shear the flexion field is an abstract concept which can, however,

be directly measured by its consequential distortion of the surface brightness distribution I (θ).

While for the apparent shape and size changes due to weak lensing the quadrupole moment qi j

is usually considered, the flexions are quantified via the so-called Higher Order Lensing Im-

age’s Characteristics or HOLICs first introduced by [OUF07]. They combine the normalized

octopole moments

qi jk =

∫
d2θ I (θ)∆θi∆θ j∆θk∫

d2θ I (θ)
,

and the normalized hexadecapole moments

qi jkl =

∫
d2θ I (θ)∆θi∆θ j∆θk∆θl∫

d2θ I (θ)
,

to a spin-1 quantity which measures the F -flexion

ζ =
(q000 + q011) + i (q001 + q111)

ξ
,

and a spin-3 quantity which measures the G-flexion

δ =
(q000 − 3q011) + i (3q001 − q111)

ξ
.

Here, ξ is a spin-0 normalization factor

ξ = q0000 + 2q0011 + q1111.

Clearly the definition shows, that the HOLICs ζ and δ, and thus also the flexions, should be

given in units of inverse angle.

[OUF07] then establish a relation between the source octopole moments qs
i jk with coordinates

θ and the measured image octopole moments qi jk with coordinates β via a higher order expan-

sion in the lens equation (4.10) which finally leads them to the following first order relation

between the observable HOLICs and the flexion fields:

⟨ζ⟩ ≈
〈
ζ s〉 + 9

4
F , (4.19)

⟨δ⟩ ≈
〈
δs〉 + 3

4
G . (4.20)
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Here, ⟨ζ⟩ and ⟨δ⟩ are the expectation values of the totally measured spin-1 and the spin-3

HOLICs, while ⟨ζ s⟩ and ⟨δs⟩ denote the expectation values of the intrinsic source HOLICs.

These will be denoted by ⟨∆ζ⟩ and ⟨∆δ⟩ as the intrinsic flexions of the intrinsic alignment

model discussed in equations (4.39) and (4.40) in the latter course of this work. In [OUF07]

one explicitly assumes that the expectation values of the intrinsic HOLICs average to zero

over a sufficiently large sample. However, the necessary corrections due to intrinsic alignment

- and their correlation with lensing flexions - will be quantified using a Jeans-model for the

potential perturbations in section 4.4.1.

As a side remark, [OUF07] refine their relations (4.19) and (4.20) by taking a centroid shift

of the true galaxy center to an apparent center due to lensing into account. This actually leads

to a correction term in the prefactor of the flexion-HOLIC relation, which will, however, be

neglected in the calculations of the present work. Taking it into account does, in turn, achieve

higher accuracy in calculating the correlation functions.

At last, it should be stressed that neither lensing ellipticities nor flexions can simply be di-

rectly measured in particular directions, because the unlensed shape of the galaxy is unknown.

Instead, different lensing quantities need to be compared at different positions on the sky

[BM17]. This means that one actually needs to measure angular correlations of the lensing

quantities x (θ), where the correlation function is given by

ζ (∆θ) B ⟨x (θ) x (θ + ∆θ)⟩ .

The brackets ⟨....⟩ stand for an ensemble average. For homogeneous random fields the cor-

responding Fourier transform of the correlation function is considered. The corresponding

spectrum C (ℓ) is given by

C (ℓ) =
∫

d2ψ ζ (ψ) exp (−iℓ · ψ) ,

where ℓ is the angular wave vector corresponding to the angular separation ∆θ = ψ in real

space [BM17] with magnitude ℓ. More details on the power spectrum and its application

in cosmology and gravitational lensing can be found in standard literature like [Bar19a];

[Dur08].

4.4 Intrinsic flexions in a linear alignment model for elliptical galaxies

After having discussed how flexions arise in weak lensing, this section is dedicated to the

description of intrinsic gravitational flexions. First, basic ideas about intrinsic alignment will
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be reviewed briefly, and afterwards it is shown how intrinsic flexions can be quantified and

measured via a linear intrinsic alignment model. The measurability should then be evaluated

for surveys like Euclid and compared to the measurability of weak lensing flexions.

4.4.1 Summary of basic ideas about intrinsic alignment

Intrinsic alignment of galaxies occurs if these are subject to tidal gravitational fields, for exam-

ple within clusters (see [SKW06]; [Hir+04]; [Hir+07]; [HS10]; [BM17]; [GDS21]; [SCH09]

for more details). The tidal interaction of foreground galaxies with the local large-scale

sturcture (LSS) causes them to align accordingly and leads to intrinsic shape deformations,

like intrinsic ellipticities and other types of shape and size distortions. These have to be

dinstinguished from image distortion effects of background galaxies caused by gravitational

lensing.

In fact, the alignment effects will generallly contaminate the weak lensing signal, thereby

modifying the expected weak lensing spectrum. This will consequently lead to systematic

uncertainties in weak lensing measurements of up to 10% (see [Hir+04]; [HS10]; [BM17] for

more details), for instance in the determination of cosmological parameters, like σ8 = 0.8.

This parameter is a measure for the correlation of density fluctuations within cosmic struc-

tures at scales larger than R = 8h−1Mpc, where h = 0.7 is the Hubble parameter. Thus, to

reach higher accuracy, the weak lensing signal with angular power spectrum CGG has to be

corrected by an intrinsic shape or size correlation of the foreground galaxies measured by the

spectrum CII . Here the subscript II denotes the self-correlation of intrinsic shape distortions,

while the subscript GG denotes the lensing self-correlation. Furthermore, there is a cross-

correlation CGI(ℓ) between the apparent shape change of background galaxies due to lensing

as integrated effect and the actual physical shape change of foreground galaxies aligned in

local tidal field. This is reasonable, for both effects are caused by the same tidal field.

Then the total angular power spectrum C̃ is given by

C̃(ℓ) = CGG(ℓ) +CGI(ℓ) +CII(ℓ),

similar to [HS10]. For the totally measured power spectrum one would generally also need

to add annother noise term. There is, however, no cross-correlation term CIG(ℓ) between the

intrinsic shape for a background galaxy and the lensing effect for a foreground galaxy, as in-

trinsic alginment only happens locally. Thus, the shape of the background galaxy is generally

not affected by the tidal field of the lens deflecting light of the foreground galaxy, due to the

mutual distance.

All in all, it is important to quantify the effects of intrinsic alignment and their correlation
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to image distortions in lensing to reduce systematic errors in the measurement of cosmolog-

ical parameters. Furthermore, intrinsic alignment can be considered as a useful tool to study

possible deviation from general relativity towards modified gravity theories, as is for instance

discussed by [Rei+22]. There the authors studied how intrinsic alignment in combination

with gravitational lensing can be used to test Horndeski gravity, which is however restricted

by the precision of the intrinsic alignment parameter DIA, which will be explained in detail

in the following sections. This parameter basically gives a measure for the sensitivity of the

galaxies to align in the tidal fields, and its precise value is still debated upon, as discussed

by [GDS21]; [Rei+22]. Values within magnitudes of D ≃ 10−4 (
Mpc/h

)2 [TS18]; [Hil+17] to

D ≃ 10−6 (
Mpc/h

)2 [ZSH22] were found from measurements and simulations, while [GDS21]

chose to set the alignment parameter to D ≃ 10−5 (
Mpc/h

)2. All in all, the magnitude of the

alignment parameter is thus determined up to a factor of 10, so for now its value is assumed

to lie between D ≃ 10−6 (
Mpc/h

)2 and D ≃ 10−5 (
Mpc/h

)2. However, as will be discussed

in section 4.4.3 in more detail, a rescaling of the alignment parameter will be necessary for

the numerical evaluation. In this section, one will also summarize the linear alignment model

specified by [GDS21] based on ideas of [Pir+17] for intrinsic ellipticities and sizes and their

correlations with lensing shear and convergence. This linear description on intrinsic alignment

was first introduced by [Hir+07]; [HS10]. The main goal of the next section is to extended and

develop this linear alignment model further to derive the according instrinsic flexion spectra.

4.4.2 Description of intrinsic shapes and flexions

To understand the change of intrinsic ellipticity of a galaxy within a tidal field locally sourced

by the surrounding LSS, the authors of [GDS21] investigate how the stellar density ρ(r) within

the galaxies is altered due to a second order perturbation in the Newtonian gravitational field.

Assuming that this density change should result in an imediate and linear reaction of the

galaxy size and shape itself [GDS21], the second order moments of the corresponding surface

brightness distribution5 ρ(r) - from which the intrinsic ellipticities and shear can be infered

- vary accordingly. The size of the galaxies changes because the volume element is altered

due to a non-vanishing Ricci curvature such that the change in size directly scales with ∆Φ

[GDS21]. To model the unperturbed gravitational field one approximates with a virialised,

self-gravitating, spherical system in steady state with constant velocity dispersion σ2 and

vanishing averaged velocity such that the Jeans-equation, as discussed in [Pir+17] applies:

σ2∂r ln (ρ(r)) = −∂rΦ .

5The surface brightness distribution I(θ) is clearly proportional to the stellar density such that higher order mo-
ments of the former can be directly infered from ρ(r) ∝ I(θ).
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Consequently, the stellar density of the unperturbed system is given by

ρ(r) ∝ exp
(
−
Φ(r)
σ2

)
, (4.21)

what is maximized at the galaxy center set at r = 0, where the potential is minimized. Under

the gravitational influence of surrounding matter one can also perturb the gravitational field to

third order to receive

Φ(r) → Φ(r) +
1
2
∂a∂bΦ rarb +

1
3!
∂a∂b∂cΦ rarbrc, (4.22)

where the - for the moment - spatial derivatives of the potential, abbreviated by ∂ra ≡ ∂a, are

evaluated at the center of the galaxy. As shown in [GDS21] the tidal tensor ∂a∂bΦ gives rise

to intrinsic ellipticities.

Now, the variation of the tidal tensor ∂a∂b∂cΦ should give rise to intrinsic flexions, leading to

bent galaxy shapes, similar to the flexion of gravitational lensing [Bac+06]. In [GDS21] it is

furthermore assumed that projected quantities should be proportional to ρ(r), such that it does

conceptually not make a difference to consider ρ(r) as the 2-dimensional projected quantity

on the celestial sphere6. Hence, the indices a,b and c run from 0 to 1, where

r0 = r cos(ϕ) and r1 = r sin(ϕ)

are the polar coordinates for the spherically shaped, unperturbed galaxy. Next, inserting the

expansion (4.22) into equation (4.21), assuming that the tidal field and its derivative are small,

a first-order Taylor expansion with respect to the higher order derivatives of Φ leads to the

following perturbed density profile ρ′(r):

ρ′(r) ∝ exp
(
−
Φ(r)
σ2

) (
1 −

1
2σ2 ∂a∂bΦ rarb −

1
3!σ2 ∂a∂b∂cΦ rarbrc

)
. (4.23)

In [GDS21] perturbations up to second order are considered only, so the term ∂a∂b∂cΦ is

negelected there.

Under these circumstances, the second moment of the surface brightness distribution, i.e. the

quadrupole

qab =

∫
d2r ρ′(r)rarb

6In fact one could explicitly calculate the projected quantities from the unprojected ones via an Abel transform
[AW05]. This would however only account for a correction factor of order one and is hence neglected for
simplicity, as in [GDS21].
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would be altered in the following way [GDS21]:

∆qcd =

∫
d2r ρ(r)rcrdrarb

∂a∂bΦ

2σ2 = S̃ abcdΦab , (4.24)

with Φab ≡ ∂a∂bΦ and

S̃ abcd ≡
1

2σ2

∫
d2r ρ(r)rcrdrarb

=
1

2σ2

∫ ∞

0
dr r5ρ(r)︸                 ︷︷                 ︸

BDe

∫ 2π

0
dϕ cos(ϕ)4−(a+b+c+d) sin(ϕ)a+b+c+d︸                                             ︷︷                                             ︸

BS abcd

= DeS abcd,

where the radial integral gives rise to an (unnormalized) alignment parameter De, and S abcd is

the angular integral, also called susceptibility, which is totally symmetric in all four indices.

Inclusion of the third order term ∂a∂b∂cΦ does in fact not alter the result of [GDS21] for the

second moment of the surface brightness. This can be shown by the following calculation for

∆qab with ∂a∂b∂cΦ , 0:

∆qcd =

∫
d2r ρ(r)rcrd

(
rarb
Φab

2σ2 + rarbre
Φabe

6σ2

)
=DeS abcdΦab +

∫
d2r ρ(r)rcrdrarbre

Φabe

6σ2

=DeS abcdΦab +
1

6σ2

∫ ∞

0
dr r6ρ(r)

∫ 2π

0
dϕ cos5−(a+b+c+d+e) ϕ sina+b+c+d+e ϕ︸                                               ︷︷                                               ︸

BS abcde

Φabe.

One can quickly verify that the angular integral S abcde, which is totally symmetric, vanishes

for any index combination, i.e.

S abcde =

∫ 2π

0
dϕ cos5−A ϕ sinA ϕ = 0 for A ranging from 0 to 5 ,

where A = a + b + c + d + e is the sum over the small indices, each of them ranging from 0 to

1. Thus ∆qcd is independent of Φabe and is only sourced by the tidal field.

However, the third order term ∂a∂b∂cΦ gives rise to a perturbation in the third order moment

of the surface brightness distribution, i.e. in the octopole moment

qabc =

∫
d2r ρ′(r)rarbrc .
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This change of the octopole moment in turn does not depend on the tidal field ∂a∂bΦ ≡ Φab,

but only its derivative ∂a∂b∂cΦ ≡ Φabc. Now, the third moment of the brightness distribution

∆qabc changes according to

∆qabc =

∫
d2r ρ(r)rarbrc

(
rdre
Φde

2σ2 + rdrer f
Φde f

6σ2

)
=

1
2σ2

∫ ∞

0
dr r6ρ(r)

∫ 2π

0
dϕ cos5−(a+b+c+d+e) ϕ sina+b+c+d+e ϕ︸                                                ︷︷                                                ︸

=0

Φde

+
1

6σ2

∫ ∞

0
dr r7ρ(r)︸                 ︷︷                 ︸

BD f

∫ 2π

0
dϕ cos6−(a+b+c+d+e+ f ) ϕ sina+b+c+d+e+ f ϕ︸                                                      ︷︷                                                      ︸

BS abcde f

Φde f

=D f S abcde fΦde f .

(4.25)

While the term proportional to Φde drops out because it again contains the vanishing angular

integral S abcde, the third derivative of the potential Φde f leads to effective changes in the

third order brightness moment. The radial part of the integral in equation (4.25) leads to an

unnormalized linear alignment parameter D f once more, which is however differently defined

than De. For the angular integral S abcde f one receives the following values:

S abcde f =

∫ 2π

0
dϕ cos6−(a+b+c+d+e+ f ) ϕ sina+b+c+d+e+ f ϕ

=

∫ 2π

0
dϕ cos6−B ϕ sinB ϕ for B = a + b + c + d + e + f ranging from 0 to 6 ,

=


5π
8 for B = 0 and B = 6 ,

0 for B = 1, B = 3 and B = 5 ,
π
8 for B = 2 and B = 4 .

(4.26)

So for the susceptibility factor S abcde f which is totally symmetric in all its indices the only

non-vanishing contributions are S 000000 = S 111111 =
5π
8 and S 000011 = S 111100 =

π
8 and re-

spective symmetric perturbations.

Next, an appropriate decomposition ofΦabc into an orthonormal basis7 is introduced to extract

the linearly independent contributions to the third order distortions of the galaxy shape, i.e.

the intrinsic flexions. In analogy to the lensing flexions discussed in Chapter 4.2 the follow-

7A decomposition of Φab into a basis of Pauli matrices σ(n)
ab , similar to the decomposition in weak lensing given

by relation (4.6), is thoroughly discussed in [GDS21].
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ing decomposition of Φabc into four 4 × 4 block-diagonal Dirac-type matrices ∆(n) with the

2 × 2 Pauli matrices σ(n) as entries is proposed. These matrices account for intrinsic shape

distortions with either spin-1 or spin-3 symmetry:

spin 1: ∆(1) =
1
√

3

2σ(0) + σ(3) 0

0 σ(1)

 , ∆(2) =
1
√

3

σ(1) 0

0 2σ(0) − σ(3)

 , (4.27)

spin 3: ∆(3) =

σ(3) 0

0 −σ(1)

 , ∆(4) =

σ(1) 0

0 σ(3)

 . (4.28)

As the lensing potential Ψ is sourced by the Newtonian potential Φ of the same structure re-

sponsible for the intrinsic alignment effect, íts third derivative ∂a∂b∂cΨ ≡ Ψabc is proportional

to Φabc. Consequently, the same decomposition into the Dirac-type matrices (4.27) and (4.28)

forΦabc as forΨabc in Chapter 4.2 can be used. This is also a reasonable choice sinceΦabc and

Ψabc are symmetric in all their indices, and thus have four degrees of freedom. Hence, one can

evaluate the change of the galaxy shape ζ1 modulo D f caused by interaction with Φabc ∝ ∆
(1)

as

ζ1 =
1
4
∆qabc∆

(1)
abc ∝

1
4

S abcde f∆
(1)
de f∆

(1)
abc =

3π
4
. (4.29)

The change in shape ζ2 modulo D f generated by Φabc ∝ ∆
(2) is similarly given by

ζ2 =
1
4
∆qabc∆

(2)
abc ∝

1
4

S abcde f∆
(2)
de f∆

(2)
abc =

3π
4
. (4.30)

Both ζ1 and ζ2 measure an intrinsic centroid shift of the galaxy for they arise due to distortions

with spin-1 symmetry. Similarly, the change of shape δ1 modulo D f due to Φabc ∝ ∆
(3) is

received via

δ1 =
1
4
∆qabc∆

(3)
abc ∝

1
4

S abcde f∆
(3)
de f∆

(3)
abc =

π

4
, (4.31)

while δ2 modulo D f is generated by Φabc ∝ ∆
(4) with

δ2 =
1
4
∆qabc∆

(4)
abc ∝

1
4

S abcde f∆
(4)
de f∆

(4)
abc =

π

4
. (4.32)

These account for intrinsic shape distortions which cause the galaxy to establish a three-fold

spin-3 symmetry. Importantly, tidal fields proportional to ∆(n) will not excite distortion modes

proportional to ∆(m) if n , m, because the Dirac matrices form an orthonormal basis8. Inter-

estingly, the observable changes in (4.31) and (4.32) due to the spin-3 field are one third of

the distortions caused by the spin-1 field.

8A similar observation for intrinsic ellipticities and their composition into a basis of Pauli matrices is discussed
in [GDS21].
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As a side remark, it is sketched in the following how the values given in equations (4.29)

to (4.32) can be explicitly derived. Here the 2× 2× 2-tensorial objects ∆qabc should be appro-

priately represented as 4×4 symmetric block-diagonal matrices, so that they can be reasonably

contracted with the 4 × 4-Dirac matrices ∆(n). At first, the octopole moments of the surface

brightness distribution ∆qabc in equations (4.29) to (4.32) may be recast into a 4 × 4 block

diagonal matrix ∆q̃ with components ∆q̃a+2c,b+2c = ∆qabc such, that

∆q̃ ≡

(∆qab0)a=1,2;b=1,2 0

0 (∆qab1)a=1,2;b=1,2


=


(
S ab0de f∆

(n)
de f

)
a=1,2;b=1,2

0

0
(
S ab1de f∆

(n)
de f

)
a=1,2;b=1,2

 .
(4.33)

Here S ab0de f∆
(n)
de f and S ab1de f∆

(n)
de f are components of 2 × 2 matrices each. Now, these com-

ponents S abcde f∆
(n)
de f in (4.33) which are contracted over the indices d,e and f according to

Einstein’s sum convention need to be computed. Therefore, the susceptibility S abcde f can also

be represented by a block-diagonal 4 × 4 matrix S̃ with

S̃ ≡

(S abc de0)d=1,2;e=1,2 0

0 (S abc de1)d=1,2;e=1,2

 ,
where S abc de0 and S abc de1 are in turn components of 2 × 2 matrices, but now with indices e

and d ranging from 0 to 1. Then, the contraction S abcde f∆
(n)
de f can be computed as trace over

the matrix product between S̃ and the Dirac-type matrix ∆(n). Afterwards, taking the trace

over the matrix product between ∆q̃ and the Dirac-type matrix ∆(n) finally leads to the explicit

results (4.29) to (4.32).

Next, the unnormalized alignment parameter D f for the intrinsic flexion is analyzed. It will be

related to the unnormalized alignment parameter De for the intrinsic ellipticities to compare

the magnitude of the two alignment effects. To explicitly compute the radial integrals the pro-

jected stellar density ρ(r) is now modelled by the empirical Sérsic profile [Sér63]; [GD05];

[Vau48]

ρ(r) ∝ exp

−b(n)

( r
r0

)n−1

− 1


 , (4.34)

with

b(n) ≈ 2n −
1
3
,
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and n being the Sérsic index. Using this profile the authors [GDS21] derived the normalized

alignment parameter D̃e for the relative change of the instrinsic ellipticities as

∆ε =
∆q00 − ∆q11

q00 + q11
+ 2i

∆q01

q00 + q11
=

tr
(
∆qabσ

(3)
ab

)
tr

(
qabσ

(0)
ab

) + i
tr

(
∆qabσ

(1)
ab

)
tr

(
qabσ

(0)
ab

)
∝

∫ ∞
0 dr ρ(r)r5∫ ∞
0 dr ρ(r)r3

≡ D̃e .

(4.35)

Here, the change in the quadrupole moments ∆qab is proportional to De ∝
∫ ∞

0 drρ(r)r5, and is

normalized with respect to the size s0 of the unperturbed galaxy

s0 ∝ q00 + q11 =

∫
d2r ρ(r)

(
r2

0 + r2
1

)
= 2π

∫ ∞

0
dr ρ(r)r3.

Inserting the Sérsic profile (5.19) into the expression (4.35) and substituting

x = b
[
(r/rscale)n−1

− 1
]

(4.36)

into the radial integrals, the authors of [GDS21] receive

D̃e = r2
scale

∫ ∞

−b
dx (x/b + 1)6n−1 exp(−x)∫ ∞

−b
dx (x/b + 1)4n−1 exp(−x)

, (4.37)

where rscale is a scale radius for the typical size of an elliptical galaxy. Now, these integrals of

type ∫ ∞

−b
dx

( x
b
+ 1

)m−1
exp(−x), (4.38)

may be further rewritten in terms of the Gamma function Γ(z) [GD05], generally defined by

Γ(z) =
∫ ∞

0
dt tz−1 exp (−t) .
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This can be done by substituting y = x + b into (4.38), as shows the following calculation:∫ ∞

−b
dx

( x
b
+ 1

)m−1
exp(−x) =

∫ ∞

−b
dx

(
1
b

)m−1

(x + b)m−1 exp(−x)

=

∫ ∞

0
dy

(
1
b

)m−1

ym−1 exp(−y + b)

=
exp(b)
bm−1

∫ ∞

0
dy ym−1 exp(−y)

=
exp(b)
bm−1 Γ(m).

Hence D̃e in equation (4.37) is given accordingly by

D̃e = r2
scale

∫ ∞

−b
dx (x/b + 1)6n−1 exp(−x)∫ ∞

−b
dx (x/b + 1)4n−1 exp(−x)

= r2
scaleb−2nΓ(6n)

Γ(4n)
.

While the exact numerical value of the normalized alignment parameter D̃e needs to be mea-

sured or inferred from simulations, its scaling with the Sérsic index n can still be determined.

Similarly one may calculate the normalized alignment parameter D̃ f for the intrinsic flexions

from the change of the HOLICs ([OUF07]) as introduced in section 4.3. However, in the fol-

lowing discussion the HOLICs should - for the moment - be defined as higher order moments

of the projected stellar density distribution ρ(r) in spatial coordinates. This is possible since

I(θ) ∝ ρ(r(θ)). In Section 4.4.4 these HOLICs will then again be rewritten as higher order

moments of the surface brightness distribution. Thus, using the definitions of the quantities

ζ1, ζ2, δ1 and δ2 given in equations (4.29) to (4.32) the intrinsic HOLICs can be expressed as

follows:

The HOLIC with spin-1 symmetry is given by

spin 1 HOLIC: ∆ζ =
4/
√

3ζ1 + i4/
√

3ζ2

ξ
=

1/
√

3
(
∆qabc∆

(1)
abc

)
+ i/
√

3
(
∆qabc∆

(2)
abc

)
ξ

=
(∆q000 + ∆q011) + i (∆q001 + ∆q111)

ξ
,

(4.39)
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while for the HOLIC with spin-3 symmetry one finds

spin 3 HOLIC: ∆δ =
4δ1 + i4δ2

ξ
=

(
∆qabc∆

(3)
abc

)
+ i

(
∆qabc∆

(4)
abc

)
ξ

=
(∆q000 − 3∆q011) + i (3∆q001 − ∆q111)

ξ
.

(4.40)

Here, the normalization factor ξ = q0000 + 2q0011 + q1111 which has zero spin is given by

the trace over the unperturbed hexadecapole moment qabcd =
∫

d2r ρ(r)rarbrcrd. It can be

explicitly calculated via its representation as a 4 × 4 matrix q̃ with components q̃a+2c,b+2d =

qabcd such that

q̃ ≡

(qab00)a=1,2;b=1,2 (qab01)a=1,2;b=1,2

(qab10)a=1,2;b=1,2 (qab11)a=1,2;b=1,2

 .
This is analogous to equation (4.33), but now there are also 2 × 2-block matrices in the off-

diagonal part. As a side remark, one will find a different basis decompostion into Dirac-type

matrices for fourth order perturbations in the field Φabcd, which relates to the various changes

to the hexadecapole moment. In that context, the trace of this higher-order moment would just

be a spin-0 distortion, while there would also be distortions of type spin-2 and spin-4 (see also

[OUF07]).

As shown by relation (4.25), the changes in the octopole moments of the brightness distri-

bution ∆qabc are proportional to D f ∝
∫ ∞

0 dr ρ(r)r7, while for the normalization factor ξ of the

unperturbed distribution one now receives

ξ = q0000 + 2q0011 + q1111 =

∫
d2r ρ(r)

(
r4

0 + 2r2
0r2

1 + r4
1

)
=

∫
d2r ρ(r)r4 = 2π

∫ ∞

0
dr ρ(r)r5.

Hence, the normalized alignment parameter D̃ f for the intrinsic flexions is given by

∆ζ,∆δ ∝ D̃ f ≡

∫ ∞
0 dr ρ(r)r7∫ ∞
0 dr ρ(r)r5

= r2
scale

∫ ∞

−b
dx (x/b + 1)8n−1 exp(−x)∫ ∞

−b
dx (x/b + 1)6n−1 exp(−x)

= r2
scaleb−2nΓ(8n)

Γ(6n)
,

(4.41)
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for the Sérsic profile.

Here, the same substitution as given in equation (4.36) was inserted and rscale is, as before,

the scaling radius for the galaxy size. Next, it may be shown how the ratio of these different

normalized alignment parameters D̃e and D̃ f scales with varying Sérsic index n as

D̃ f

D̃e
=
Γ(8n)Γ(4n)
Γ(6n)2 . (4.42)

This susceptibility ratio is illustrated in Figure 4.2 for different values of the Sérsic index n,

together with the scalings of the susceptibility for intrinsic ellipticities proportional to D̃e, and

for the intrinsic flexions proportional to D̃ f for arbitrary scale radius. While both D̃e and

D̃ f grow by several orders of magnitude with increasing Sérsic index, the susceptibility ratio

grows significantly less in comparison. Especially for small Sérsic indices the susceptibillity

ratio implies that both the intrinsic flexions and intrinsic ellipticities are of the same order of

magnitude. For n = 1 (exponential profile) a ratio of D̃ f /D̃e = 2.1 is received, while for the

other extreme choice of n = 4 (de Vaucouleurs-profile) the ratio is given by D̃ f /D̃e = 16.1.

Higher Sérsic indices than n = 4 occur very rarely and are consequently irrelevant for the

discussion here.

4.4.3 Relations between intrinsic flexions and intrinsic sizes and shapes

In [GDS21] the intrinsic size caused by the tidal field ∂a∂bΦ = Φab is shown to be given by

the Laplacian of the potential ∆Φ due to

s =
1
2
∆qcdσ

(0)
cd =

1
2

∫
d2r ρ(r)rarb

Φab

2σ2 rcrdσ
(0)
cd︸   ︷︷   ︸

r2
0+r2

1=r2

=
1
2

∫
d2r ρ(r)r2 1

2

(
rarb
Φab

2σ2

)
=

1
2

∫
d2r ρ(r)r2 1

2σ2

(
r2

0Φ00 + 2r0r1Φ01 + r2
1Φ11

)
=

∫ 2π

0
dϕ

∫
dr r5ρ(r)

1
4σ2

(
cos2 (ϕ) ∂2

0Φ + 2 cos (ϕ) sin (ϕ) ∂0∂1Φ + sin2 (ϕ) ∂2
1Φ

)
=
π

2
De

(
∂2

0Φ + ∂
2
1

)
Φ =

π

2
De∆Φ.

(4.43)

Next, with the relations (4.29) and (4.30) it will be shown how changes in the intrinsic size

s can be related to the intrinisc spin-1 flexion field. The terms ζ1 and ζ2 are explicitly cal-

culated in terms of third order derivatives of the potential ∂a∂b∂cΦ ≡ Φabc, and the resulting
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Figure 4.2: Scaling of the alignment parameters for intrinsic shapes and their ratio with
different Sérsic indices: The scaling of the alignment parameters (with magnitude
given on the left axis) for both intrinsic ellipticities D̃e (depicted as ε on the green
curve) and flexions D̃ f (depicted as ∆ζ on the red curve) grow by several orders of
magnitude for increasing Sérsic index n, while their ratio (depicted as blue curve
with magnitude given on the right axis) grows at a much lower rate and is still at
order 101 for n = 4 corresponding to de Vaucouleurs profiles. For exponential
profiles (n = 1) the ratio is of order 100.

expression are related to ∂s ∝ ∂∆Φ:

ζ1 =
1
4
∆qabc∆

(1)
abc =

1
4

∫
d2r ρ(r)

Φe f g

6σ2 rer f rg rarbrc∆
(1)
abc︸      ︷︷      ︸

√
3(r3

0+r0r2
1)

=
1
4

∫
d2r ρ(r)

√
3r3

(
cos3 (ϕ) + cos (ϕ) sin2 (ϕ)

) 1
6σ2Φe f g rer f rg

=
1
4

∫
d2r ρ(r)

√
3r3

(
cos3 (ϕ) + cos (ϕ) sin2 (ϕ)

) 1
6σ2

×
(
Φ000r3

0 + 3Φ001r2
0r1 + 3Φ011r2

1r0 + Φ111r3
1

)
=

√
3

4

∫ 2π

0
dϕ

∫
dr ρ(r)r7

(
cos3 (ϕ) + cos (ϕ) sin2 (ϕ)

)
×

1
6σ2

(
Φ000 cos3 (ϕ) + 3Φ001 cos2 (ϕ) sin (ϕ) + 3Φ011 cos (ϕ) sin2 (ϕ) + Φ111 sin3 (ϕ)

)
=

√
3

4
D f

3π
4
∂0∆Φ.

(4.44)116



In a similar calculation ζ2 can be determined as

ζ2 =
1
4
∆qabc∆

(2)
abc =

√
3

4
D f

3π
4
∂1∆Φ . (4.45)

In total, this yields the following relation between the intrinsic size, as it is given in relation

(4.43), and the complex intrinsic spin-1 type flexion field

ζ1 + iζ2 =

√
3

4
D f

3π
4

(∂0 + i∂1)∆Φ =
3
√

3
8

D f

De
∂s ∝ ∂s. (4.46)

The complex derivative operator ∂ = (∂0 + i∂1) is now defined with respect to the spatial

coordinates ∂r = ∂r0 + i∂r1 .

The ratio of the unnormalized alignment parameters for flexion D f and ellipticity De is given

by
D f

De
=

1
3

r2
scaleb−2nΓ(8n)

Γ(6n)
.

The factor 1/3 in the ratio arises because the unnormalized alignment parameter D f for the

intrinsic flexion is defined with a factor 1/(6σ2), since the intrinsic flexion arises as third

order correction in the Jeans-Model of the stellar density (4.25). In contrast, for the intrinsic

ellipticity and size this factor is given by 1/(2σ2) in the definition of De in (4.24).

The relation (4.46) can further be simplified in terms of the spin-1 HOLIC ∆ζ as given in

equation (4.39). One finds

∆ζ =
3
2

D f

De

s0

ξ
∂

(
s
s0

)
=

3
2

D̃ f

3D̃e
∂∆s , (4.47)

where ∆s = s/s0 is the relative size change of the perturbed galaxy compared to the size of

the unperturbed one. Additionally, the ratio D̃ f /D̃e of normalized alignment parameters only

depends on the Sérsic index n according to (4.42).

This result is to be compared to the corresponding definition of the spin-1 flexion field F of

weak lensing which is given by

F = F1 + iF2 = ∂κ.

The convergence κ measures the apparent size change of the image due to lensing, and the

complex derivative operator is defined with respect to the angular coordinates θ, i.e ∂ ≡ ∂θ.

It is apparent that the definition of the weak lensing quantities is very similar to the results of

the intrinsic fields.

Analogously to the previous discussion one can now explicitly calculate the intrinsic ellip-

117



ticities ϵ+ and ϵ× from their definition given in [GDS21]. Then, they are related to the intrinsic

spin-3 type flexions δ1 and δ2. For the ellipticity component ϵ+ one receives

ϵ+ =
1
2
∆qcdσ

(3)
cd =

π

2
De

1
2

(
∂2

0Φ − ∂
2
1Φ

)
, (4.48)

while ϵ× can be written as

ϵ× =
1
2
∆qcdσ

(1)
cd =

π

2
De∂0∂1Φ. (4.49)

Consequently, for the the complex ellipticity ϵ it holds, that

ϵ = ϵ+ + iϵ× =
π

2
De

(
1
2

(
∂2

0Φ − ∂
2
1Φ

)
+ i∂0∂1Φ

)
,

while the complex derivative ∂ϵ with respect to the spatial coordinates ∂ ≡ ∂r is given by

∂ϵ =
π

2
De (∂0 + i∂1)

(
1
2

(
∂2

0Φ − ∂
2
1Φ

)
+ i∂0∂1Φ

)
=
π

2
De

1
2

(
∂3

0Φ − 3∂0∂
2
1Φ + i

(
3∂1∂

2
0Φ − ∂

3
1Φ

))
.

(4.50)

The spin-3 type intrinsic flexion quantity δ1 is explicitly written as

δ1 =
1
4
∆qabc∆

(3)
abc =

1
4

D f
π

4

(
∂3

0Φ − 3∂0∂
2
1Φ

)
, (4.51)

while δ2 is expressed by

δ2 =
1
4
∆qabc∆

(4)
abc =

1
4

D f
π

4

(
3∂2

0∂1Φ − ∂
3
1Φ

)
. (4.52)

Hence, by virtue of relation (4.50), the complex intrinsic spin-3 type flexion becomes

δ1 + iδ2 =
1
4

D f

De
∂ϵ,

such that the spin-3 HOLIC (4.40) ∆δ can be related to the relative ellipticity change ∆ϵ = ϵ/s0

defined in (4.35) via

∆δ =
D f

De

s0

ξ
∂∆ϵ =

D̃ f

3D̃e
∂∆ϵ. (4.53)

This result is analogous to the G flexion of weak lensing given by

G = G1 + iG2 = ∂γ.
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Here ∂γ ≡ ∂θγ denotes the change of the complex shear γ with respect to the angular coor-

dinates of the image. The shear is responsible for apparent ellipticity changes in the lensed

image, while the intrinsic ellipticity ϵ actually influences the physical shape of the galaxy.

To summarize, the analogy between the intrinsic HOLIC ∆ζ to the spin-1 lensing flexion F ,

and between ∆δ to the spin-3 lensing flexion G shows that it is natural to identify these quan-

tities with the intrinsic spin-1 and spin-3 flexion.

Furthermore, there is a numerical factor of 3/2 in result (4.47) for ∆ζ compared to the result

(4.53) for ∆δ. This factor arises since the galaxy distortions due to the intrinsic spin-1 field

are thrice as strong as for the spin-3 field with |∆ζ | ∝ 3 |∆δ| as shown in (4.29)-(4.32). Beyond

that, the factor 1/2 appears for the intrinsic size changes twice as much under the influence of

the tidal field as the intrinsic ellipticites |∆s| ∝ 2 |∆ϵ| as previously shown by [GDS21]. Hence,

this leads to a different numerical prefactor for the two HOLIC relations (4.47) and (4.53).

Now, according to relation (4.41) the normalized alignment parameter D̃ f ∝ r2
scale scales

with squared length. The parameter D̃ f is introduced the proportionality constant between

the intrinsic flexion and the third order derivative in the Newtonian potential Φ. Besides the

parameter D̃ f there is also the angular integral9 S abcde f in relation (4.25), which is part of

the proportionality constant. For simplicity these two constants can be combined to the to-

tal alignment parameter DIA,3 for flexions to describe the proportionality between the shape

distortion of a galaxy due to variations in the tidal field. Thus, one finds that the constant,

relating the intrinsic flexions ∆ζ respectively ∆δ to third order derivative terms ∂a∂b∂cΦ/c2,

can be estimated by

∆δ ∝
c2

6σ2

∫
d2r ρ(r)r6∫
d2r ρ(r)r4︸               ︷︷               ︸
≡DIA,3

∂a∂b∂cΦ

c2 .

While the intrinsic flexion ∆δ should scale with inverse length, the third order derivative of the

potential scales with r−3
scale. Hence, the proportionality constant DIA,3 scales as expected from

relation (4.41) with length squared r2
scale in units of comoving length

(
Mpc/h

)2. This result is

similar to the alignment parameter

DIA,2 =
c2

2σ2

∫
d2r ρ(r)r4∫
d2r ρ(r)r2

∝
c2

2σ2 D̃eS abcd ∝ r2
scale,

found in [GDS21] for the intrinsic ellipticities and sizes which also scales with length squared.

In fact, the two alignment parameters DIA,3 for intrinsic flexions and DIA,2 for intrinsic ellip-

9Here the notation is meant such that S abcde f denotes any of the non-vanishing angular integrals explicitly dis-
cussed in equation (4.26).
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ticities only differ by a numerical prefactor which can be estimated as

DIA,3

DIA,2
=

2σ2

6σ2

D̃ fπ/4

D̃eπ/2
=

1
6
Γ(8n)Γ(4n)
Γ(6n)2 .

Here, the intrinsic δ flexion10 scales with π/4 due to the angular integration, while the intrinsic

ellipticites scale with π/2 as shown by [GDS21]. Hence, for small Sérsic indices around n ≤ 4

the ratio of the two different alignment parameters is less than 100 (see also Figure 4.2).

Now, concerning the value of the alignment parameter used for numerical evaluation of the

intrinsic flexion spectra in Section 4.4.5, a subtlety has to be taken into account. First of

all, the magnitude of the alignment parameter was set to be between D ≃ 10−5 (
Mpc/h

)2 to

D ≃ 10−6 (
Mpc/h

)2 for a galaxy with Sérsic radius of scale rscale ≃ 1kpc. For the Milky Way

this accounts to rscale ≃ 2kpc. However, in the linear alignment model based on a virialised

system, where DIA is supposed to scale with the inverse of the velocity disperion σ2 instead of

the orbital speed typical for Sérsic type galaxies, the typical length scale is actually given by

rvir ≃ 102kpc. For the Milky Way this corresponds to rvir ≃ 200kpc. Thus, since the alignment

parameter scales with DIA ∝ r2
scale the following rescaling is necessary:

D′ ≃
r2

vir

r2
scale

D = 104D ≃ 10−2 (
Mpc/h

)2 ,

for D ≃ 10−6 (
Mpc/h

)2. Thus, also taking a velocity dispersion of σ = 100km/s for sys-

tems like the Milky Way into account the final alignment parameter - modulo a Sérsic index

dependent prefactor - used for the numerical evaluation is given by

DIA ≃
c2

σ2 10−2 (
Mpc/h

)2 .

Next, using the alignment parameters DIA,3 and DIA,2 the relations (4.47) and (4.53) can be

expressed as

∆ζ = 3
DIA,3

DIA,2
∂∆s, (4.54)

∆δ = 2
DIA,3

DIA,2
∂∆ϵ. (4.55)

10For the ζ flexion an additional prefactor 3 is required.
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Furthermore, the intrinsic flexion can be related to variations in the cosmic density contrast δ.

In this context the Poisson equation

∆Φ

c2 =
3
2
Ωm

χ2
H

δ, (4.56)

yields, as shown in [GDS21], the following proportinality between intrinsic size ∆s and den-

sity contrast

∆s ∝ DIA,2
3
2
Ωm

χ2
H

δ ∝ δ,

Due to (4.54) one thus finds

∆ζ ∝ DIA,3
3
2
Ωm

χ2
H

∂δ ∝ ∂δ.

Here, Ωm = 0.3 is the matter density parameter in accordance with ΛCDM.

In the subsequent section it is discussed how the intrinsic flexions are statistically correlated,

and tomographic methods are applied to derive the power spectrum of the intrinsic flexions.

Also the correlation to weak lensing flexions is evaluated, and the amplitude of the lensing

flexion signal is compared to the amplitude of the intrinsic flexion signal.

4.4.4 Tomographic analysis

When it comes to measuring the magnitude of the intrinsic flexions it is not reasonable to do so

for single galaxies. It is rather required to average the intrinsic alignment effect over various

galaxies. For the intrinsic flexions this can be done by tomographic redshift bins, similarly to

[GDS21], where this is method is applied for the intrinisc ellipticities.

An average over the intrinsic quantities like ellipticities or flexions over localized redshift bins

is performed. In the weak lensing approach the tomographic binning [Hu02; JT03; HW05;

AR07; TW04; MCK14] has the advantage that, compared to an average over the full line-of-

sight, higher sensitivities to determine possible non-linear redshift dependencies of cosmolog-

ical parameters are achieved, as stated by [SH11].

In the following discussion the intrinsic flexion spectra will be directly compared to the weak

flexion lensing spectra: One will hereby follow the approach of [GDS21] and weight the in-

trinisc alignment quantities by a normalized redshift distribution of galaxies as proposed by

Euclid [Lau+11]

p(z) =
β

z0Γ ((α + 1)/β)

(
z
z0

)α
exp

− (
z
z0

)β ∝ (
z
z0

)2

exp

− (
z
z0

)β ,
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with β = 3/2 and z0 = 0.64. Next, a line-of-sight integral between the redshifts zA and zA+1

limiting a specific redshift bin A is performed. According to [SSR20] the bin boundaries can

be chosen such, that the number of galaxies in each bin is equal, leading to the same Poisso-

nian error in each bin.

Consider first the normalized spin-3 HOLIC component δ1/ξ. Its according tomographic av-

erage should be written in angular coordinates, i.e. in terms of θ. Here r = θχ is the physical

separation of different points, while θ is the respective angular separation, and χ denotes the

comoving distance between the galaxy and the observer. One can confirm that the spatial

expression δ1/ξ ≡ δ1/ξr has units of inverse comoving length with(
δ1

ξ

)
r
∝
∆qabd

qabcd
∝

∫
d2r ρ(r)rarbrc∫

d2r ρ0(r)rarbrcrd
∝
χ3

χ4

∫
d2θ ρ(θ)θaθbθc∫

d2θ ρ0(θ)θaθbθcθd
∝

(
1
χ

δ1

ξ

)
θ

,

while the according angular HOLIC δ1/ξθ needs to be in units of inverse angle. In the above

calculation the invariance of the volume element

d2r ρ(r) = d2θ ρ(θ),

needs to be taken into account, since the projected stellar density as measure for the surface

brightness scales with inverse length squared, such that the expression for the volume element

does not depend on the comoving distance. In terms of relation (4.29) the angular spin-3

HOLIC component (δ1/ξ)θ is thus given by(
δ1

ξ

)
θ

= χ

(
δ1

ξ

)
r
=

1
4
χDIA,3 ∂ra∂rb∂rc

Φ

c2∆
(3)
abc

=
1
4
χDIA,3

1
χ3 ∂a∂b∂c

Φ

c2∆
(3)
abc =

1
4

DIA,3
1
χ2 ∂a∂b∂c

Φ

c2∆
(3)
abc.

(4.57)

Here, ∂a ≡ ∂θa denotes the angular derivative which is related to the spatial derivative by

∂raχ ≡ ∂θa . As the alignment parameter is proportional to comoving length squared the expres-

sion (4.57) does not scale with length. Now, the angular HOLIC component
(
δ̄1/ξ

)
θ
≡ δ̄1/ξA

averaged over one tomographic A bin is given by

δ̄1

ξ A
=

∫ zA+1

zA

dz p(z)
1
4

DIA,3
D+(a)

a
1
χ2 ∂a∂b∂c

Φ

c2∆
(3)
abc

=

∫ χA+1

χA

dχ p(χ) H(χ)
1
4

DIA,3
D+(a)

a
1
χ2 ∂a∂b∂c

Φ

c2∆
(3)
abc

=
1
4

DIA,3

DIA,2
∂a∂b∂cφA∆

(3)
abc.

(4.58)
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Here, φA can be considered as a line-of-sight averaged alignment potential which has the same

form as in [GDS21] for the intrinsic ellipticites and sizes, namely

φA =

∫ χA+1

χA

dχ p(χ)
H(χ)

c
DIA,2

D+(a)
a

1
χ2

Φ

c2 =

∫
dχ Wφ,A (χ)

Φ

c2 ,

with weighting function

Wφ,A = pA(χ)
H(χ)

c
DIA,2

D+(a)
a

1
χ2 ,

and pA(χ) = p(χ)Θ (χ − χA)Θ (χA+1 − χ) ,
(4.59)

where the Heaviside-functions Θ ensure that the alignment effect is restricted to one localized

bin A. As in [GDS21] the Hubble law was inserted here with −dχH(χ) = cdz and Hub-

ble function H(χ(z)). Furthermore, the potential must be corrected by a linear growth factor

D+(a)/a which arises in the theory of linear sturcture growth [Bar19a]. It takes into account

how the density contrast and hence - by virtue of the Poisson equation - the sourced gravita-

tional potential changes due to the cosmic expansion.

The other HOLIC components can then be expressed accordingly by

δ̄2

ξ A
=

1
4

DIA,3

DIA,2
∂a∂b∂cφA∆

(4)
abc, (4.60)

ζ̄1

ξ A
=

3
4

DIA,3

DIA,2
∂a∂b∂cφA∆

(1)
abc, (4.61)

ζ̄2

ξ A
=

3
4

DIA,3

DIA,2
∂a∂b∂cφA∆

(2)
abc, (4.62)

where the factor 3 in the expressions for the spin-1 HOLIC takes into account, that the in-

trinsic centroid shift is thrice as strong as the three-fold symmetric shape changes δ1 and δ2

as shown by the previous results (4.29) and (4.30). Hence, the third derivative of the line-of

sight projected intrinsic alignment potential φA can be decomposed in terms of the Dirac-type

matrices similarly to the lensing flexions as

∂a∂b∂cφA =
DIA,2

DIA,3

(
1
3
ζ̄1

ξ A
∆

(1)
abc +

1
3
ζ̄2

ξ A
∆

(2)
abc +

δ̄1

ξ A
∆

(3)
abc +

δ̄2

ξ A
∆

(4)
abc

)
.

These results are similar to [GDS21], where a similar decompostion of the intrinsic size and

ellipticities in terms of the Pauli matrices and the same intrinsic alignment potential φA is
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stated as

s̄A =
1
2
∂a∂bφAσ

(0)
ab ,

ϵ̄+A =
1
2
∂a∂bφAσ

(3)
ab ,

ϵ̄×A =
1
2
∂a∂bφAσ

(1)
ab .

Additionally, there is a factor 2 between the intrinsic size and shape as shown in [GDS21].

Consequently, the relations (4.54) and (4.55) between the HOLICs and the changes in size and

ellipticity also hold consistently for the averaged quantities

∆ζ̄A = 3
DIA,3

DIA,2
∂∆s̄A,

∆δ̄A = 2
DIA,3

DIA,2
∂∆ϵ̄A,

and hence must be sourced by the same potential φA.

For the weak lensing flexions the lensing potential ΨB within a tomographic bin B is usually

given by (see also [SH11]; [MCK14] for instance)

ΨB =

∫
dχ WΨ,B (χ)

Φ

c2 ,

with WΨ,B =
2
χ

D+(a)
a

∫ χB+1

max(χ,χB)
dχ′ p

(
χ′

) dz
dχ′

(
1 −

χ

χ′

)
.

As in [GDS21] the weak lensing efficiency WΨ,B can be taken as a weighting function. Unlike

the efficiency function for the intrinisc alignment Wφ,A the weak lensing efficiency function

is non-zero from χ = 0 to χB+1, what takes the lensing effect along the whole line-of-sight

from the observer to the according bin edge into account. Intrinsic alignment on the other

hand only takes place within the specific bin chosen, and alignments in different bins should

be uncorrelated. Analogously to the intrinsic flexions, the decomposition of the weak lensing

flexion within the tomographic bins is given by

∂a∂b∂cΨB = −

√
3

2
F1,B∆

(1)
abc −

√
3

2
F2,B∆

(2)
abc −

1
2
G1,B∆

(3)
abc −

1
2
G2,B∆

(4)
abc,
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such that the relations

−

√
3

2
F1,B =

1
4
∂a∂b∂cΨB∆

(1)
abc, (4.63)

−

√
3

2
F2,B =

1
4
∂a∂b∂cΨB∆

(2)
abc, (4.64)

−
1
2
G1,B =

1
4
∂a∂b∂cΨB∆

(3)
abc, (4.65)

−
1
2
G2,B =

1
4
∂a∂b∂cΨB∆

(4)
abc, (4.66)

hold.

4.4.5 Flexion power spectra

Next, the power spectra for the intrinsic flexions, as well as the according cross-correlations

with the lensing flexions will be derived. The statistical fluctuations in the density variations

and hence potential variations are typically assumed to be described by homogeneous and

isotropic gaussian random fields on the sphere [Dur08]; [Bar19a]. Furthermore, a flat sky

approximation which allows to apply Limber’s equation [BS01]; [Lim54]; [Sch11] is used.

Consequently, the intrinsic self-correlation, i.e. the II-correlation of the alignment potential

φA becomes

〈
φA,abc (ℓ)φ∗B,de f

(
ℓ′
)〉
= (2π)2 δD

(
ℓ − ℓ′

)
CφAφB

abcde f , (4.67)

with

CφAφB
abcde f = ℓaℓbℓcℓdℓeℓ f

〈∫
dχ WφA

Φ

c2 (k = ℓ/χ, χ)
∫

dχ′ WφB

Φ

c2

(
k′ = ℓ′/χ′, χ′

)〉
=︸︷︷︸

Limber

ℓaℓbℓcℓdℓeℓ f

∫
dχ

WφAWφB

χ2 PΦΦ (k = ℓ/χ, χ)

= ℓaℓbℓcℓdℓeℓ f CφAφB(ℓ),

in Fourier space, where the angular derivatives ∂a become the reciprocal wave vector modes

via −iℓa. This result is similar to [GDS21] for the II-spectra of second order derivatives of the

alignment potential. The short hand notation φA,abc denotes ∂a∂b∂cφA, while PΦΦ =
〈
Φ
c2
Φ′

c2

〉
is

the power spectrum of the potential fluctuations sourced from the fluctuations in the cosmic

density field [Bar19a]. Due to the Poisson equation in Fourier space (4.56) the linear power

spectrum for the potential fluctuations is given in terms of the linear power spectrum of the
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density fluctuations Pδδ - normalized to σ8 - as (see also [SH11])

PΦΦ =
(
3Ωm

2χH

)2

k−4Pδδ ∝ kns−4T (k)2.

Here, T (k) is the transfer function obtained from n-Body simulation fits for linear structure

formation by [Bar+86], while Pδδ ∝ kns with spectral index ns ≤ 1 (here ns = 0.96) as

predicted by standard inflational theory of structure formation (see [Bar19a] for more details).

For a non-linear description of structure formation on small scales one can consider, as in

[GDS21], the halo model established by [Smi+03]. For the numerical evaluation of the power

spectra for the intrinisc alignment contribution a Gaussian smoothing of the potential Φ is

introduced to suppress scales smaller than the size of a typical elliptical galaxy, as discussed

by [GDS21].

The cross-correlation of intrinsic alignment with weak gravitational lensing, i.e the GI-term,

are given by

〈
ψA,abc (ℓ)φ∗B,de f

(
ℓ′
)〉
= (2π)2 δD

(
ℓ − ℓ′

)
CψAφB

abcde f ,

with

CψAφB
abcde f =ℓaℓbℓcℓdℓeℓ f

∫
dχ

WψAWφB

χ2 PΦΦ (k = ℓ/χ, χ)

=ℓaℓbℓcℓdℓeℓ f CψAφB(ℓ),

similarly to equations (4.67). Finally, the auto-correlation of the lensing potential, i.e. the

GG-term, can be expressed as

〈
ψA,abc (ℓ)ψ∗B,de f

(
ℓ′
)〉
= (2π)2 δD

(
ℓ − ℓ′

)
CψAψB

abcde f , (4.68)

with

CψAψB
abcde f =ℓaℓbℓcℓdℓeℓ f

∫
dχ

WψAWψB

χ2 PΦΦ (k = ℓ/χ, χ)

=ℓaℓbℓcℓdℓeℓ f CψAψB(ℓ).

Besides the auto-correlators
〈
φA,abc (ℓ)φ∗B,de f (ℓ′)

〉
,
〈
ψA,abc (ℓ)ψ∗B,de f (ℓ′)

〉
and the cross-correlator〈

ψA,abc (ℓ)ψ∗B,de f (ℓ′)
〉

there may generally also be non-vanishing cross-correlations between

third order derivatives of the alignment potential, or lensing potential, and their second or-

der derivatives. This is for example also specifically evaluated in [Bac+06] for the cross-
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correlation between lensing convergence and the lensing F flexion. Thus, there are actually

also be the following correlators:

II:
〈
φA,abc (ℓ)φ∗B,de

(
ℓ′
)〉
,

GI:
〈
ψA,abc (ℓ)φ∗B,de

(
ℓ′
)〉

,
〈
ψA,ab (ℓ)φ∗B,cde

(
ℓ′
)〉
,

GG:
〈
ψA,abc (ℓ)ψ∗B,de

(
ℓ′
)〉
.

These would result in cross-correlations between both lensing and intrinsic flexions with shear,

convergence, intrinsic size and intrinsic ellipticities. However, in this thesis only the informa-

tion contained in the pure flexion correlations is considered, even though there might also

be interesting information contained in the cross-correlations between third and second order

derivatives of the potential. These are not elaborated here, but could be considered in further

research.

Using the decompostions (4.58) and (4.60)-(4.62) for the intrinsic flexion components in terms

of the Dirac-type matrices the II-correlations for the flexions can now be derived explicitly.

For the spin-1 field component ζ̄1/ξ one receives the following auto-correlation:〈
ζ̄1

ξ A
(ℓ)

ζ̄1

ξ

∗

B

(
ℓ′
)〉
= (2π)2 δ

(
ℓ − ℓ′

)
C

ζ̄1
ξ

ζ̄1
ξ

AB (ℓ),

with

C
ζ̄1
ξ

ζ̄1
ξ

AB (ℓ) =
9

16

D2
IA,3

D2
IA,2

∆
(1)
abc∆

(1)
de f ℓaℓbℓcℓdℓeℓ f CφAφB(ℓ).

For evaluating the contraction of ℓaℓbℓcℓdℓeℓ f with ∆(1)
abc∆

(1)
de f it is useful to write ℓaℓbℓc decom-

posed into the orthonormal set of Dirac matrices. This is done similarly to [GDS21], where

ℓaℓb is decomposed in terms of Pauli matrices. For ℓaℓbℓc one thus finds the following result

ℓaℓbℓc =
1
4

[√
3ℓ3 cos ϕ∆(1)

abc +
√

3ℓ3 sin ϕ∆(2)
abc + ℓ

3 cos (3ϕ)∆(3)
abc + ℓ

3 sin (3ϕ)∆(4)
abc

]
, (4.69)

with ℓ0 = ℓ cos ϕ and ℓ1 = ℓ sin ϕ. This result also confirms the different spins of the flexion

fields: While the contractions of the Dirac matrices ∆(1) and ∆(2) with ℓaℓbℓc have spin-1

symmetry, the according contractions of ℓaℓbℓc with the Dirac matrices corresponding to the

intrinsic flexion with spin-3 are invariant under 2π/3 rotations. Due to the assumed isotropy

of the random field, the angle ϕ = 0 is fixed, similar to [GDS21], which leaves the correlators
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invariant, but simplifies expression (4.69) to

ℓaℓbℓc =
1
4

[√
3ℓ3∆

(1)
abc + ℓ

3∆
(3)
abc

]
for ϕ = 0 .

Thus, one only needs to evaluate the ζ̄1/ξ-component for the intrinsic spin-1 flexion ∆ζ and

δ̄1/ξ for the intrinsic spin 3 flexion ∆δ. The power spectrum for ∆ζ consequently becomes

C∆ζ∆ζAB (ℓ) = C
4√
3
ζ̄1
ξ

4√
3
ζ̄1
ξ

AB (ℓ) = 9
D2

IA,3

D2
IA,2

ℓ6CφAφB(ℓ),

where the additional factor 4/
√

3 comes from relation (4.39).

Analogously the power spectrum for ∆δ is given by

C∆δ∆δAB (ℓ) = C
4 δ̄1
ξ 4 δ̄1

ξ

AB (ℓ) =
D2

IA,3

D2
IA,2

ℓ6CφAφB(ℓ),

while the cross-correlated power spectrum becomes

C∆ζ∆δAB (ℓ) = C
4√
3
ζ̄1
ξ 4 δ̄1

ξ

AB (ℓ) = 3
D2

IA,3

D2
IA,2

ℓ6CφAφB(ℓ) .

Now, multiplication of the intrinsic flexion fields with the prefactor 4/9 for the intrinsic spin-1

flexion ∆ζ, respectively with the factor 4/3 for the intrinsic spin-3 flexion ∆δ, directly relates

the magnitude of the intrinsic flexion fields to the lensing flexion fields, because of the ap-

proximate results (4.19) and (4.20) from [OUF07] discussed in section 4.3. One thus finds the

following II spectra:

∆ζ∆ζ: C
4
9∆ζ

4
9∆ζ

AB (ℓ) =
16
9

D2
IA,3

D2
IA,2

ℓ6CφAφB(ℓ),

∆δ∆δ: C
4
3∆δ

4
3∆δ

AB (ℓ) =
16
9

D2
IA,3

D2
IA,2

ℓ6CφAφB(ℓ),

∆ζ∆δ: C
4
9∆ζ

4
3∆δ

AB (ℓ) =
16
9

D2
IA,3

D2
IA,2

ℓ6CφAφB(ℓ).

Equation (4.69) can then also be applied to calculate the GG-spectra of the weak lensing

flexions F and G, as well as the according cross-correlations GI. By inserting the expressions

128



(4.63) and (4.65) into (4.68) the following GG-spectra are obtained:

FF : CFFAB (ℓ) =
1

16

(
−2
√

3

)2

∆
(1)
abc∆

(1)
de f ℓaℓbℓcℓdℓeℓ f CψAψB(ℓ) =

1
4
ℓ6CψAψB(ℓ),

GG: CGGAB (ℓ) =
1
16

(−2)2 ∆
(3)
abc∆

(3)
de f ℓaℓbℓcℓdℓeℓ f CψAψB(ℓ) =

1
4
ℓ6CψAψB(ℓ),

FG: CFGAB (ℓ) =
1
16

(−2)2

√
3
∆

(1)
abc∆

(3)
de f ℓaℓbℓcℓdℓeℓ f CψAψB(ℓ) =

1
4
ℓ6CψAψB(ℓ).

Finally, the GI-spectra which correlate the intrinsic flexion with the weak lensing flexion F

are given by

F∆ζ: C
F 4

9∆ζ

AB (ℓ) =
−2
9

DIA,3

DIA,2
∆

(1)
abc∆

(1)
de f ℓaℓbℓcℓdℓeℓ f CψAφB(ℓ) = −

2
3

DIA,3

DIA,2
ℓ6CψAφB(ℓ),

F∆δ: C
F 4

3∆δ

AB (ℓ) =
−2

3
√

3

DIA,3

DIA,2
∆

(1)
abc∆

(3)
de f ℓaℓbℓcℓdℓeℓ f CψAφB(ℓ) = −

2
3

DIA,3

DIA,2
ℓ6CψAφB(ℓ).

The according GI-spectra which relate the intrinsic flexions with the weak lensing flexion G

are expressed as

G∆ζ: C
G 4

9∆ζ

AB (ℓ) =
−2

3
√

3

DIA,3

DIA,2
∆

(3)
abc∆

(1)
de f ℓaℓbℓcℓdℓeℓ f CψAφB(ℓ) = −

2
3

DIA,3

DIA,2
ℓ6CψAφB(ℓ),

G∆δ: C
G 4

3∆δ

AB (ℓ) =
−2
3

DIA,3

DIA,2
∆

(3)
abc∆

(3)
de f ℓaℓbℓcℓdℓeℓ f CψAφB(ℓ) = −

2
3

DIA,3

DIA,2
ℓ6CψAφB(ℓ).

The negative sign of the cross-correlation spectra shows that the intrinsic alignment effect and

weak lensing are actually anti-correlated. The physical meaning of this is generally the fol-

lowing: For an overdense region the background galaxies are magnified due to lensing, while

the foreground galaxies actually get smaller due to intrinsic alignment. For an underdense

region the opposite is the case as discussed in [GDS21].

A measure for the degree of anti-correlation between the intrinisc flexion and the weak lensing

flexion is the Pearson-correlation coefficient rF 4/9∆ζ ≡ rF∆ζ′ , where 4/9∆ζ = ∆ζ′ is intro-

duced to simplify notation. It turns out to be identical to the Pearon-correlation coefficient rγϵ
derived by [GDS21] for the anti-correlation of intrinsic shapes and shear. This holds because

the coefficient is actually an expression for the correlation between the intrinsic alignment
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potential and lensing potential as shown by the following calculation:

rF∆ζ′ =
CF∆ζ

′

AA√
CFFAA C∆ζ

′∆ζ′

AA

=
−2/3DIA,3/DIA,2l6CψAφA(l)√

4/9 D2
IA,3/D

2
IA,2 l6CψAψA(l) l6CφAφA(l)

= −
CψAφA(l)√

CψAψA(l) CφAφA(l)
.

(4.70)

For the Pearson-correlation coefficient rG∆δ′ , with ∆δ′ ≡ 4/3∆δ, the same result is obtained.

Due to the Cauchy-Schwarz inequality
(
CF∆ζ

′

AA

)2
≤ CFFAA C∆ζ

′∆ζ′

AA the correlation coefficient is

bounded between−1 (perfect anti-correlation) and 1 (perfect correlation) as stated in [GDS21].

A value of zero would account for statistical independence of intrinsic flexion from weak lens-

ing flexion. Like in [GDS21] only values C∆ζ
′∆ζ′

AA within the same bin can be accounted for.

The correlation proportional to C∆ζ
′∆ζ′

AB = 0 vanishes for different bins A , B, because the tidal

field in one bin does generally not affect the galaxies in another bin, for their mutual distance

is too large. The Pearson-correlation coefficient is depicted in Figure 4.3 for low, intermediate

and high redshift bins. One can see, that in all three cases the correlation coefficients based on

a model of linear structure formation differ from the coefficients based on a non-linear model

of structure formation for higher multipole order, and thus smaller structures. The reason for

this are the different amplitudes of the spectra based on a non-linear power spectrum, what

will also be specified in the following paragraph.

When making predictions about the observed flexion power spectrum, which includes GG, GI

and II terms one also has to take a Poissonian noise term Nnoise into account [SCH09]. It quan-

tifies the uncertainity in the HOLIC measurement for the auto-correlations Cζζ
AB and Cδδ

AB. In

[OUF07] the dispersion for the intrinsic HOLICs is estimated to beσ∆ζ = σ∆δ = 0.02 arcsec−1

per galaxy. Using the relative scaling factors of 9/4 between the spin-1 HOLIC and the F -

flexion, respectively 3/4 between the spin-3 HOLIC and the G-flexion, derived in [OUF07],

the flexion dispersions are given by σF = 0.009 arcsec−1 per galaxy and σG = 0.027 arcsec−1

per galaxy. However, the noise terms stated by [OUF07] are highly optimistic, and in most

cases the flexion dispersions are much higher. There are a lot of challenges in their estima-

tion as addressed in detail by [Row+13], where the authors discuss various uncertainties in

estimating the lensing flexions from pixel data using Hubble space telescope Ultra Deep Field

data. Amongst them are finite photon numbers in the detectors, systematic errors due to cen-

troid shifts, or the specific choice of point spread function to model effects of the measurement

devices on the measurement, for instance. Also, concrete methods in data evaluation like de-

blending of the pixel data, and calibrations for measuring flexions via shapelet decompositions
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Figure 4.3: Pearson correlation coefficient rF∆ζ′ versus multipole oder l for three differ-
ent redshift bins: The coefficient for the the correlation between intrinsic flexion
of spin 1 and lensing flexion F is identical as in [GDS21] for intrinsic shape and
shear, as shown by (4.70). The scheme is as follows: Low redshift bins: Lower
two dark curves, Intermediate redshift bins: upper pair of curves, High redshift
bins: intermediate pair of bright curves.

introduce further sources of error. The authors [Row+13] also showed, that the uncertaintiy

of the lensing flexion scales with a steeply falling power law

σF = 0.33
(
SNR
100

)−0.83

arcsec−1,

depending on the signal-to-noise ratio (SNR) of the observed galaxies. Thus, according to this

power law an optimistic value of σF = 0.009 arcsec−1 from [OUF07] corresponds to a very

high SNR of about SNR ≈ 7700 for very bright sources. More realistic, but still optimistic

values of σF = 0.04 arcsec−1 as estimated by [GB05] imply SNR ≈ 1300 what is still a high

value. For lower, but actually realistic SNR of fainter sources, like for instance SNR = 100

the dispersion would amount to σF = 0.33 arcsec−1 [Row+13]. In this thesis, one chooses

to evaluate the spectra for all of these dispersions, what will become especially important
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in the numerical evaluation of the attainable cumulated signal-to noise-ratios, as well as the

Fisher-analysis in the following Section 4.4.6. It will be estimated for which noise value an

observation of the intrinsic flexions would actually be possible in a Euclid-like survey, and

which cumulated signal-to-noise ratios might in fact be more realistic with the dipersions

stated by [GB05] and [Row+13].

Now, the total noise contribution for the spectra is given by a Poissonian error with

(
Nnoise,F

)
AB = σ

2
F

ntomo

n̄
δAB, (4.71)

and accordingly for the G flexions. Here ntomo denotes the number of tomographic bins under

consideration. Furthermore, the baseline value of n̄ = 3.545 × 108sr−1 = 30 arcmin−2 is

chosen for the observable galaxy number density in reach of Euclid (see [Lau+11]), noting that

previous studies by [GDS21] used the stretch goal value of n̄ = 4.727×108sr−1 = 40 arcmin−2.

The noise term (4.71) is diagonal, where δAB is the Kronecker delta. This means that only an

error on auto-correlations for the observed HOLICs is considered in the same bin. Also, the

error measurement of the spin-1 flexion and the spin-3 flexion are statistically independent.

In the further discussion only contributions from the spin-1 flexion are considered, since the

error for these flexion types is only a third of the uncertainty for spin-3 flexions.

Figures 4.4 and 4.5 depict the GG, GI and II spectra for the spin-1 flexions for different

Sérsic indices to present two extreme cases. For an exponential galaxy profile the magnitude

expected for the pure lensing spectrum is much larger than for the GG and GI correlations,

while the contributions of these two spectra rise significantly for a de Vaucouleurs profile,

since the susceptibility ratio D̃ f /D̃e between third and second order corrections in intrinsic

alignment grows at least by an order of magnitude between n = 1 and n = 4. Also the

Poissonian uncertainties of spin-1 type flexions for different multipole orders are shown for

the three flexion dispersion discussed previously. They are several orders of magnitude larger

than the signal: For a dispersion of σF = 0.09 arcsec−1 the noise exceeds the signal by two

orders of magnitude for high multipole order, for σF = 0.04 arcsec−1 by three to four orders

of mangitude and for σF = 0.33 arcsec−1 by six to seven orders of magnitude.

4.4.6 Fisher-analysis and signal-to-noise ratio

Next, it will be determined whether one can measure the intrinsic flexions via evaluation of

the cumulative signal-to-noise ratio, and also whether one can reasonably constrain the matter

density parameter Ωm and equation of state parameter w via a Fisher-analysis using the total

flexion signal. For the numerical evaluation in the wCDM-cosmology the following fiducial

values for the cosmological parameters are taken: The dark enery equation of state parameter
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Figure 4.4: Flexion spectra for elliptical galaxies for Sérsic index n = 1: The signal
strength is presented for the different spin-1 flexion spectra for a linear structure
growth model (thin curves), and a non-linear model (bold curves) for a three bin
tomography is depicted for an exponential galaxy profile. The GG-spectrum for
the lensing flexion F is shown in green, the cross-correlation GI with intrinsic
flexion ∆ζ′ = 4/9∆ζ in orange and the II-spectrum for the intrinsic flexion in
blue. The different noise contributions for different flexion dispersions are de-
picted as dashed lines.

is set to w = −0.9 for numerical reasons, but is actually close to −1, the matter density param-

eter to Ωm = 0.3, while the σ8-parameter is set to σ8 = 0.8, the Hubble parameter to h = 0.7,

and finally the scalar spectral index is given by nS = 0.96.

Now, similar to [GDS21] a multivariate likelihood ansatz is made. The first is hereby to set

up the covariance matrix Ci j =
〈
xi(ℓ)x∗j(ℓ

′)
〉

from the measured spectra for the spin-1 flexion.

It estimates the correlations of various cosmological parameters via the Fisher approximation

(see for instance [TTH97]; [HT99]; [SH11]; [SR16] for applications). This method is gener-

ally used to find the parameter set θµ of a physical model from the measured data set xi(ℓ) by
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Figure 4.5: Flexion spectra for elliptical galaxies for Sérsic index n = 4: The signal
strength is presented for the different spin-1 flexion spectra for a linear structure
growth model (thin curves), and a non-linear model (bold curves) for a three bin
tomography is depicted for a de Vaucouleurs galaxy profile. Due to the increase
of the susceptibility ratio in the alignment model the signal strength of the GI- and
II-spectra is one to two orders of magnitude larger compared to the exponential
profile.

mapping from a Gaussian likelihood function

L(xi(ℓ)|θµ) =
1√

(2π)Ndet(C)
exp

(
−

1
2

xi(ℓ)C−1
i j (ℓ, ℓ′) x∗i (ℓ′)

)
∝ exp

(
−
χ2

2

)
,

with

χ2 =
∑
ℓ

tr
[
lnC +C−1D

]
, and data matrix Di j = xi(ℓ)x∗j(ℓ

′),

for the observed data given the model to a multivariate Gaussian distribution in the model pa-

rameters given information on the data. This yields a possible approximation of the posterior

P ∝ exp
(
−

1
2
∆θµFµν∆θ

ν

)
.
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Here, the Fisher information matrix [SH11]; [SR16]; [GDS21]

Fµν ≡ −

〈
∂2

∂θµ∂θν
χ2

2

〉
=

∑
ℓ

2l + 1
2

tr
(
∂C

∂θµ
C−1 ∂C

∂θν
C−1

)
,

evaluated at best fit with multiplicity m = 2ℓ + 1 corresponds to an inverse parameter covari-

ance. Now, the covariance matrix C, with components CAB and A, B as redshift bin indices,

formed from the measured flexion modes Flm (lensing flexion) and ∆ζ′lm (intrinsic flexion) is

given by

CAB(ℓ) =CFFAB (ℓ) +C∆ζ
′∆ζ′

AB (ℓ) +CF∆ζ
′

AB (ℓ) +C∆ζ
′F

AB (ℓ) + σ2
F

ntomo

n̄
δAB

=ℓ6

1
4

CψAψB(ℓ) +
42

9

D2
IA,3

D2
IA,2

CφAφB(ℓ) −
2
3

DIA,3

DIA,2

(
CψAφB(ℓ) +CφAψB(ℓ)

)
+ σ2

F

ntomo

n̄
δAB,

such that it is symmetric in A and B as required by definition. The Cauchy-Schwarz inequality

CF∆ζ
′

AA

2
≤ CFFAA C∆ζ

′∆ζ′

AA

ensures that the diagonal elements are always positive definite, since∣∣∣∣CF∆ζ′AA

∣∣∣∣ ≤ CFFAA > 0, if CFFAA > C∆ζ
′∆ζ′

AA ,

while it holds that ∣∣∣∣CF∆ζ′AA

∣∣∣∣ ≤ C∆ζ
′∆ζ′

AA > 0, for C∆ζ
′∆ζ′

AA > CFFAA .

As discussed earlier, there are also no IG correlations, since terms like C∆ζ
′F

AB should be zero

for A > B while CF∆ζ
′

AB = 0 for B > A, because lensing in lower redshift bins cannot be corre-

lated with intrinsic alignment in higher redshift bins.

Evaluation of the Fisher matrix for the dark energy equation of state parameter w and the mat-

ter density parameter Ωm for the given covariance of the measured flexion modes then leads

to the typical 1-σ ellipsoidal confidence contours. These are depicted in Figure (4.6) for the

highly optimistic dispersion of σF = 0.009 arcsec−1, and in Figure (4.7) for dispersion of

σF = 0.04 arcsec−1 which is also still optimistic. Additionally, the two extreme choices of

Sérsic indices n = 1 and n = 4, i.e. the exponential and the de Vaucouleurs galaxy profile are

compared in these figures. The Fisher ellipses for the dispersion of σF = 0.33 arcsec−1 are not

depicted. They are not constraining at all for Ωm and w, for they would contain a vast amount

of the parameter space becuase the uncertainty is too high compared to the signal strength.
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Figure 4.6: Fisher ellipses in the w-Ωm-plane: Similar to [GDS21] the Fisher ellipses gen-
erated from the full flexion spectra for a wCDM cosmology, with Ωm = 0.3 and
w = −0.9 as fiducial values, are shown. Especially for n = 1, ellipticals only, the 1-
σ confidence contour is not very constraining, with large errors, which are reduced
for the full galaxy sample. If one considers a de Vaucouleurs profile with n = 4
the 1-σ contour gets even more constraining, since the signal strength is increased
with the susceptibility ratio. The flexion noise was chosen asσF = 0.009 arcsec−1.

Here, as in [GDS21], two selection modes are considered: On the one hand, the full survey

can be evaluated for the measurement of flexions, also including spiral galaxies which are sen-

sitive to lensing, but are assumed not be sensitive to the linear alignment model worked out for

intrinsic flexions. So, as done in [GDS21] for the intrinsic sizes and shapes, the GI-flexion-

spectrum signal is weighted by a factor of 1/3. The II-flexion-spectrum singal is reduced by a

factor of 1/9, since only a third of all galaxies are assumed to be elliptical and hence sensitive

to the model. On the other hand, when choosing only elliptical galaxies, the signal size is

not affected, since then all galaxies in the sample would be sensitive of the intrinsic flexion.

However, in this case the Poissonian noise term would be increased by a factor of 3 since the

whole sample size is reduced to 1/3 of the full sample.
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Figure 4.7: Fisher ellipses in the w-Ωm-plane: This plot is similar to Figure 4.6, however
here a higher noise of σF = 0.04 arcsec−1 was chosen. Thus, the confidence
contours are even less constraining.

Thus, the Fisher ellipses in Figure (4.6) for the full galaxy sample (bold lines) are smaller

than for the case, where only the elliptical galaxies are selected (dashed lines). However, for

an exponential galaxy profile with n = 1 the 1-σ-contours in the w-Ωm-plane derived from the

flexion covariance are still less constraining compared to the 1-σ-contours for the ellipticities

[GDS21], since the relative uncertainity in determining the flexions is much larger. Choosing

a de Vaucouleurs profile with n = 4 increases the signal strength for the intrinsic flexion corre-

lation and the according cross-correlation with the lensing flexion. This leads to less extended

1-σ-contours, giving tighter contraints on the correlation of the two parameters w and Ωm.

Since the dispersion by [OUF07] is, however, too optimistic and thus likely underestimates

the uncertainty for flexion measurements, the Fisher constraints depicted in Figure 4.7 seem

to be more realisitic, even though the noise level is still very optimistic. They are even an

order of magnitude less constraining that the ellipses in Figure 4.6. Hence it can be concluded

that the cosmological parameters can hardly be reasonably constrained with flexion measure-

ments.
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Figure 4.8: Cumulative signal-to-noise ratios for flexion spectra for the full galaxy sam-
ple: The flexion noise was chosen to be σF = 0.009 arcsec−1 according to
[OUF07]. The GI (depicted in orange) and II correlations (depicted in blue) are in
general not measurable, neither for exponential (dashed lines) nor de Vaucouleurs
profiles (bold lines) for they do not exceed the critical mark of Σ(ℓ) ≥ 3 in the
presented range of multipole orders. In case of a de Vaucouleurs profile the attain-
able cumulated signal-to-noise ratio goes up to at least Σ(ℓ) ≥ 2 for high multipole
orders. It exceeds the values for the exponential profiles since a lager Sérsic index
increases the effective alignment parameter. The lensing flexion spectra (shown
in green) is measurable very well, with cumulated signal to noise rations of about
Σ(ℓ) ≥ 100 for ℓ ≥ 3000. The GI spectra are futher weighted by a factor q = 1/3,
while the II spectra are weighted by a factor q2.

The effect on the measurability of the flexions for different flexion dispersions will also be-

come clearer when considering the cumulated signal-to-noise ratios Σ (see [TTH97]; [HT99]

and also [SH11] for applications). They estimate whether the intrinsic flexion signals can be

detected by surveys like Euclid

Σ2 =
∑

l

2l + 1
2

tr
(
C−1S C−1S

)
,
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where C is again the covariance matrix, and S the signal matrix under consideration. Thus,

the cumulated signal-to-noise ratio for the GG, GI and II-flexion spectra can be evaluated for

either selection modes, previously discussed, namely by choosing the full galaxy sample, or

by only considering the elliptical galaxies. With the cumulative signal-to-noise ratio it is es-

timated, whether the intrinsic flexion signals might be detectable by Euclid, assuming a 5-bin

tomography and full sky coverage ( fsky = 1), similar to the analysis by [GDS21], to ensure

statistical independence between the different modes. For incomplete sky coverage one then

needs to rescale with the factor fsky accordingly.
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Figure 4.9: Cumulative signal to noise ratios for flexion spectra for choosing only ellip-
tical galaxies: This plot is similar to Figure 4.8 with the dispersion of σF =
0.009 arcsec−1, but here only the elliptical galaxies were selected, such that the
alignment spectra are not suppressed. The noise, however, is generally increased
by a factor of 3 due to the smaller sample size. Thus, the GG signal is decreased,
though it is still being measurable quite well with Σ(ℓ) ≥ 40 for ℓ ≥ 3000. Neither
the GI nor the II spectra would be measurable with Σ(ℓ) ≥ 2 for n = 4 for high
multipole orders, and even less than Σ(ℓ) ≤ 1 (GI) and Σ(ℓ) ≤ 10−1 (II) for n = 1.
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The according signal-to-noise ratios, for both ellitpcals only and the full galaxy sample, are

depicted in Figures (4.8) and (4.9) for the highly optimistic dispersion ofσF = 0.009 arcsec−1,

as well as in (4.10) respectively (4.10) for the still optimistic but more realistic dispersion of

σF = 0.04 arcsec−1. Finally, the same is depicted for the error value of σF = 0.33 arcsec−1 in

(4.12) and (4.12).
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Figure 4.10: Cumulative signal-to-noise ratios for flexion spectra for the full galaxy sam-
ple: This plot is similar to Figure 4.8, however with a higher dispersion of
σF = 0.04 arcsec−1. Hence, the cumulated signal-to-noise ratios are gener-
ally decreased. The lensing flexion would still be measurable with Σ(ℓ) ≥ 5
for ℓ ≥ 3000.

When only choosing elliptical galaxies the cumulated signal-to-noise ratio for the GG-signal

is lowered compared to selecting all galaxies due to the larger Poissonian error, which is

scaled by a factor of 3. However, the signal-to-noise ratio for the intrinsic flexions and cross-

correlations with the lensing flexions is increased, compared to the full galaxy sample selec-

tion mode. For this mode extra suppression factors are multiplied with the spectra (1/3 for

GI, 1/9 for II), to ensure that only the galaxies sensitive to the Jeans-model are considered.
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Figure 4.11: Cumulative signal-to-noise ratios for flexion spectra for elliptical galax-
ies: This plot is similar to Figure 4.9, however with a higher dispersion of
σF = 0.04 arcsec−1 such that the cumulated signal-to-noise ratios are generally
decreased. The lensing flexion is not measurable anymore with only Σ(ℓ) ≥ 2 for
ℓ ≥ 3000. The GG and GI spectra are increased compared to 4.10, however still
not measurable.

Figures 4.8-4.11 show that the intrinsic flexion signals are not even measurable for optimistic

choices of noise. Only for the lowest noise level and for the extreme choice of n = 4 for a de

Vaucouleurs profile one finds a cumulative signal to noise ratio of Σ(ℓ) ≈ 2 for very high mul-

tipole orders for the GI spectrum in both selction modes, and for the II spectrum in elliptical

selection mode. Contrary, the observability of the lensing flexion is guaranteed at least for

the dispersion of σF = 0.009 arcsec−1 and for σF = 0.04 arcsec−1 for ellipticals only. Still,

these dispersions are too optimistic choices for the noise. For more realistical dispersions like

σF = 0.33 arcsec−1 neither lensing nor intrinsic flexions can be observed anymore as shown

in Figures 4.12 and 4.13. Thus, an attainable flexion signal cannot be received at all for these

cases. Consequently, a Fisher estimation does not lead to sufficient results to contrain w orΩm.

This is why only the Fisher ellipses for the two smaller flexion errors were presented. Even for
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Figure 4.12: Cumulative signal-to-noise ratios for flexion spectra for the full galaxy sam-
ple: This plot is similar to Figures 4.8 and 4.10, but with a higher dispersion of
σF = 0.33 arcsec−1, such that the cumulated signal-to-noise ratios are decreased
even futher. The lensing flexion dominating all other signals is still strongly sup-
pressed with Σ(ℓ) ≤ 10−1 for ℓ ≥ 3000.

these cases, the Fisher ellipses do not have comparatively constraining power as those shown

by [GDS21]. These are about one order of magnitude more constraining.

4.5 Summary and outlook

In this chapter basic ideas about weak gravitational lensing [BS01]; [Bar10]; [BM17]; [SEF92],

weak lensing flexion [Bac+06]; [GB05] and later intrinsic alignment [SKW06]; [BM17];

[SCH09] were summarized. Then, the linear alignment model 11 was further developed in-

spired from previous work by [GDS21], to study intrinsic flexions. These were derived from

the octopole moments of the surface brightness distribution, which arise due to third order

perturbations of the gravitational potential. Additionally, the corresponding intrinsic flex-

ion spectra, derived from a tomographic analysis, were compared to the spectra of flexions in

weak lensing via the HOLICs formalism established by [OUF07]; [OUF08]. Furthermore, the

11See also [Hir+04]; [Hir+07]; [HS10]; [Pir+17] for more details on linear alignment.
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Figure 4.13: Cumulative signal-to-noise ratios for flexion spectra for elliptical galaxies:
This plot is similar to Figures 4.9 and 4.11, however with a higher dispersion of
σF = 0.33 arcsec−1 such that the cumulated signal-to-noise ratios are generally
decreased. Since the Poissonian noise is increased for selecting ellipticals only,
the lensing flexion drops to Σ(ℓ) ≥ 10−2 for ℓ ≥ 3000 compared to Figure 4.12.

matching signal-to-noise ratios were estimated for a Euclid-like survey and a Fisher-analysis

was performed for three different flexion noises (σF = 0.009 arcsec−1, σF = 0.04 arcsec−1

and σF = 0.33 arcsec−1) and two extreme choices of Sérsic indices.

The result was that for optimistic noise values the intrinsic lensing flexion can we observed

well with Euclid, but this does not hold for the cross-correlations between lensing and intrinsic

flexion and the intrinsic auto-correlations. Since the attainable flexion signals are quite low

compared to the noise the Fisher-analysis does not sufficiently constrain cosmological param-

eters like w and Ωm. All in all, intrinsic flexions are hardly measurable in upcoming surveys

like Euclid.

As possible outlook one could thus further investigate cross-correlation of the intrinsic flexion

with intrinsic ellipticities, intrinsic sizes or weak lensing ellipticities and convergences in fu-

ture studies. As the amplitude for these effects is larger, the according cross-correlations could
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lead to larger signal strengths, possibly enabling to find signatures of the intrinsic flexions in

the flexion-ellipticity spectra.

The statistical methods used in weak lensing and summarized here, are now further applied

in the following Chapter 5, where tests of the Etherington distance duality violation, and thus

surface brightness conservation violation in area-metric lensing will be invesitgated. Further-

more, one will see that surface brightness fluctuations can also arise in classical astrophysical

applications like intrinsic alignment. The aim of the next chapter is to compare these two

effects quantitatively, and to study their measurability. To achieve this, statistical spectra of

these intrinsic surface brightness fluctuations will be derived in the further course of this thesis.

They then need to be compared to surface brightness fluctuation spectra based on area-metric

refinements of gravity. At last, other observational lensing quantities like the magnification

bias shall also be investigated in regards with these refinements.
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5 Testing the modified Etherington distance duality in

area-metric spacetimes

The results discussed in sections 5.3 and 5.4 of this chapter are also published as

E. S. Giesel, B. Ghosh and B. M. Schäfer,

ArXiv: arXiv:2208.07197, (August 2022)

Etherington duality breaking: gravitational lensing in non-metric spacetimes versus
intrinsic alignments.

and submitted to the Monthly Notices of the Royal Astronomical Society.

Gravitational lensing is a powerful tool to study the phenomenology of modifications to gen-

eral relativity, since the way light is deflected is directly affected. Consequenlty, this translates

to the modifications in the well-known image distortions of sources, like shear or convergence

in weak lensing. Another important observable quantity is the Etherington distance duality,

which relates the luminosity distance and the angular diameter distance. Since it is universal

for metric spacetimes in general relativity, and for photon conserving particle theories, it is

the perfect observable to probe any modifications of these theories. Thus, based on the results

by [SW17], who predicted a modification of this duality in weakly birefringet spacetimes,

it will be discussed further how this can affect other lensing observables like surface bright-

ness or the magnification bias. This is the main objective of this chaper, which is structured

as follows: First it is repeated, based on [GM01] and summarized for instance in [Wit14];

[Due20]; [Fis17], how the concept of covariant energy-momentum conservation can be gen-

eralized from metric spacetimes to area-metric geometries. In the weakly birefingent case,

this generalized concept of covariant energy-momentum conservation results in the photon

currents of sources to be conserved with respect to a different volume measure, as expected

from metric spacetimes via d4x
√
−detg. This leads to the Etherington distance duality mod-

ifications as given in [SW17]. Next, a summary is given on how light propagates in weakly

birefringent spacetime, and how this affects image distortion measures like the effective con-

vergence. Next, it will be described how intrinsic surface brightness fluctuations arise in

general relativity due to intrinsic alignment. The phenomenology of this intrinsic effect turns

out to be similar to a real violation of the conservation of surface brightness in weakly birefin-

gent spacetimes. Finally, modifications of the magnification bias factor in area-metric weak

lensing will be discussed and numerically quantified.
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5.1 Introduction: Energy-momentum conservation in weakly birefringent
spacetimes

General linear electrodynamics, which is reviewed in more detail in [HO03]; [OR02]; [Rub02],

and is defined by the according action

S matter [A; G) = −
1
8

∫
d4x ωG−1(x)Gabcd(x)Fab(x)Fcd(x), (5.1)

allows for surprising effects as vacuum birefringence. Going from this birefringent electrody-

namics to a suitable set of gravitational field equations via the gravitational closure program

as generally introduced in Chapter 1 has, so far, notably been possible for highly symmetric

spacetimes as in [Due20], or in the weak field limit [Sch+17]; [Wol22]. In thia limit weak

birefringence is stipulated in the sense that one considers a Minkowskian metric induced area-

metric background geometry with a purely area-metric perturbation. Then the input coeffi-

cients in this perturbative treatment are derived to find the corresponding perturbed closure

equations. These need to be solved to find a a set of linearized gravitational field equations

in this set-up. The according gravitational Lagrangian is stated in [Sch+17]; [Wol22] in its

general form. After appropriate gauge fixing this finally leads to a set of equations of mo-

tion as stated in [Sch+17]; [Wol22], which are concretized further, if the gravitational field

is sourced by a point-mass, as shown by [Ale20b]; [Ale22]. Then the gravitational dynamics

can be solved explicitly. The according consequences of this weakly area-metric solution on

observables in lensing will be recapitulated and further discussed in the following section.

Special focus will be put on the modification of the Etherington distance duality as predicted

by [SW17]. It relates the angular diameter distance DA and luminosity distance DL via

DL = (1 + z)2DA, (5.2)

and is an important observable for the fundamental geometric structure of spacetime. For a

metric, Lorentzian spacetime it is always given by (5.2), independent of the choice of metric

as shown in [SEF92]. Also in case of a purely Minkowski metric induced area-metric, which

implies non-birefringence [LH04] and is, as already mentioned in Section 1.5, given by

Gabcd =
√
−detg

(
ga[c g d]b

)
ψ + ϕϵabcd,

with ψ as dilaton field, and ϕ as axion field, the authors [Mor+16] find that the Etherington

distance duality is not changed. This is to be expected because the background geometry is,

after all, metric induced.
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Thus, as soon as one deviates from metric geometry, it becomes possible to find imprints on

this observable quantity, even thouh this always needs to be proven explicitly by caluclation

first. In case of weak birefringence the Etherington distance duality is ultimately changed

due to a modification in the energy-momentum conservation law on an area-metric geometry

[SW17]. This will be described in more detail in the following paragraph, summarizing the

discussions in [Wit14]; [Due20]; [Fis17]; [SW17]:

In classical general relavity the (1, 1) energy-momentum tensor T a
b is given by

T a
b = gacS cb = −

2√
−detg

gac δS matter

δgcb ,

with the Hilbert-stress energy tensor as the source tensor S cb. It describes how matter reacts to

variations in the spacetime geometry. Now, in an area-metric geometry going from the (1, 1)

energy momentum tensor T a
b to a (0, 2) source tensor S ab is not straightforward at all, since

indices cannot simply be lowered and raised by using a metric [Wit14]. However, following

[GM01] it is still possible to properly define the so-called Gotay-Mardsen energy-momentum

tensor density for generalized spacetime geometries GA as

T̃ a
b = CAa

b
δS matter

δGA
.

Here, a de-densitization factor f (G)−1, which depends on the specific geometry, can be intro-

duced according to [Fis17]. Then, the tensor density T̃ a
b is related to the corresponding tensor

T a
b by

T a
b = f (G)−1T̃ a

b .

Furthermore, the coefficient CAa
b is defined via the Lie derivative

(LXG)A = Xa∂aGA −CAa
b∂aXb.

The source tensor density S̃A is then given by a variation of the matter action with respect to

the spacetime geometry with

S̃A = −rankG
δS matter

δGA
,

which can also be written as a tensor by mulitplication with the de-densitization factor [Fis17].

In area-metric geometry the Gotay-Marsden energy momentum tensor specializes to [Due20]

T a
b = −

4
ωG−1

Gampq δS matter

δGbmpq . (5.3)
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Here, 1/ωG−1 is the de-densitization factor. In [GM01] it is also shown how a covariant energy-

momentum tensor density conservation law can be established on a generalized geometry as

0 = ∂a
(
T̃ a

b

)
−
δS matter

δGA
∂bGA,

similar to the notation by [Fis17]. While in the metric case this becomes the usual local

energy-momentum conservation with respect to the covariant derivative [Fis17]

∂a
( √
−detgT a

b

)
+

1
2

√
−detgT c

dgca∂bgad = 0,

⇒ ∇aT a
b = 0,

the local covariant energy-momentum conservation in the area-metric case is given by [SW17]

∂a
(
ωG−1T a

b

)
−
δS matter

δGcde f ∂bGcde f = 0.

Thus, from (5.3) it can be infered that variation of the action 5.1 with respect to the area-metric

leads to the Gotay-Mardsen energy momentum tensor for area-metric electrodynamics [Fis17]

T a
b =

1
2

Gpaqr
(
FpbFqr −

ωG−1

24
ϵpbqrGcde f FcdFe f

)
.

By subsequent insertion of a WKB ansatz for the field strength Fab one can further derive the

period of oscillation averaged Gotay-Mardsen energy momentum tensor density for propagat-

ing light accordig to the steps laid out in [SW17]; [Fis17], which are based on general ideas

from [SEF92]. Here, conditions like GabcdkbkcAd = 0 have to be applied on the electromag-

netic potential Ap, where kb is the wave co-vector. This condition may be derived by insertion

of the WKB ansatz into the Maxwell equations of area-metric electrodynamics. These are

given by [Fis17]

∂[b F cd] = 0,
1
2

1
ωG−1

∂b
(
ωG−1GabcdFcd

)
= 0.

The according derivation steps are discussed in more detail in [SW17]; [Fis17], and hence

omitted here.

The authors [SW17] finally find that the averaged energy-momentum tensor density is given

by

ωG−1

〈
T a

b

〉
= −

1
4
ωG−1Gpaqr

(
ApA∗q + A∗pAq

)
krkb B Ñakb,
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with photon current density Ña. Hence, the according covariant energy-momentum conserva-

tion law becomes

∂bÑb = ∂b
(
ωG−1 Nb

)
= 0.

This is different from the covariant conservation law in metric geometry which is given by

1√
−detg

∂b
( √
−detgNb

)
= 0, ⇒ ∇aNa = 0,

for it is defined with respect to a different density factor
√
−detg instead of ωG−1 . Here, Na is

the photon current vector.

In a weakly birefringent setting the photon geodesic can actually described by an effective

metric to first order, what will be further discussed in Section 5.2. Contrary, the covariant

consevation law is non-metric, what will lead to a surprising results: The covariant derivative

of the photon current vector with respect to the effective metric is non-vanishing ∇aNa , 0,

such that line-of sight integration of the photon current from the source to the observer leads to

a photon excess, as shown in [SW17] for instance. The implications thereof on the Etherington

distance duality and other observables like surface brightness and the magnification bias in

lensing will be summarized and further developed in this chapter.

5.2 Light propagation and lensing in area-metric spacetimes

In this section basic ideas about light propagation in weakly birefringent spacetimes should

be recapitulated based on works by [Dü+18]; [Sch+17]; [Wol22]; [SW17]; [Ale20b]. Af-

terwards, the weak lensing spectra in such spacetimes should be derived following the steps

discussed in [SEF92]; [BS01]; [Bar10]; [BM17] for instance.

On a flat background with a small perturbation Habcd an ansatz for the area-metric can be

generally given by [SW17]; [Sch+17]; [Ale20b]; [Lic17]

Gabcd = ηacηbd − ηadηbc −
√
−detηϵabcd + Habcd.

The components are specified as

Gtαtβ = −γαβ + Htαtβ = −γαβ + (2A − 1/2U + 1/2V) γαβ,

Gtβγδ = ϵβγδ + Htβγδ = ϵβγδ +

(
3
4

U −
3
4

V − A
)
ϵβγδ,

Gαβγδ = γαγ − γβδ − γαδγβγ + Hαβγδ = (1 + 2U − V)
(
γαγ − γβδ

)
,
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where γαβ is an euclidean metric in spatial three space and a and b are the spacetime indices.

The split of the area-metric components into the functions U(r), V(r) and A(r) is purely kine-

matic. The according dynamics, and thus explicit solutions for these functions, can be derived

again from the gravitational closure equations1 in the weak field limit for a point mass M

as source of the gravitational field. The according solutions are Yukawa refinements of the

Newtonian potential which are given by

A(r) = −
M

4πr
(
κ − κσδ exp (−ηr)

)
,

U(r) = −
M

4πr
κδ exp (−ηr) ,

V(r) =
M

4πr
(
4κ − τκ exp (−ηr)

)
,

as stated for instance in [SW17]; [Sch+17]; [Ale20b]; [Lic17] with r = |r − rM | as the radial

distance from the point-like source, and integration constants κ, δ, η, σ and τ. These are

not specified by the constructive gravity program though, so they need to be determined by

experiments. For abbreviation [SW17] introduce the following definitions

ζ =
1

24
ϵabcdHabcd = ω−1

G − 1, Hab = Hmanbηmn, H = Habηab,

such that the prinicpal polynomial Pabcd and its dual P#
abcd are approximately given by [SW17];

[Lic17]

Pabcd ∝ P(ab P cd) + O
(
H2

)
with Pab = ηab +

1
2

Hab − ζηab,

P#
abcd ∝ P#

(ab P#
cd) + O

(
H2

)
with P#

ab = ηab +
1
2

Hab − ζηab,

P#
00 = (1 + 2A) , P#

αβ = −γαβ

(
1 +

1
2

(V − 3U)
)
,

to first order in the perturbation H. Here, P#
ab is the effective metric for light propagation

[SW17]. To first order the Legendre-map also becomes proportional to the Minkowski metric,

which can thus be used for raising and lowering indices as one is used to in weak field general

relativity [SW17]; [Lic17].

However, for cosmological lensing care has to be taken for the background geometry is actu-

ally not given by a Minkowski metric induced area-metric. Fortunately, as shown by [Due20];

[Fis17] the area-metric for a spatially flat universe (k = 0) is induced by the inverse FLRW-

1As a side remark, the results reviewed here were derived in the observer definition by [RRS11] based on the
Legendre map Lx.
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metric

gab (a(t)) = diag
(
1, a−2(t), a−2(t), a−2(t)

)
,

depending on the scale factors a(t) such that

Gabcd = c(t)2gac (a(t)) gbd (a(t)) − c(t)2gad (a(t)) gbc (a(t)) − c(t)3
√
−detg (a(t))ϵabcd, (5.4)

with an additional scale factor c(t) as extra degree of freedom for the spacetime dynamics.

The time evolution of the two scale factors a(t) and c(t) is determined by three refined Fried-

mann equations which can be derived in the framework of the constructive gravity program,

as done by [Due20]. The first refined Friedmann equation as given in detail in [Due20], but

not stated explicitly here, is basically a constraint equation defining a refined Hubble function

H(a, c). The second Friedmann equation is an evolution equation for the scale factor a(t) ,and,

in contrast to general relativistic cosmology, also a third Friedmann equation emerges as evo-

lution equation for the second scale factor c(t) [Due20]; [Fis17]. These Friedmann equations

are sourced by an ideal fluid which can be related to the generalized Gotay-Mardsen source

tensor (for details refer to [GM01]) in area-metric geometry. Interestingly, this source tensor

contains - besides pressure p(t) and density ρ(t) - another fluid degree of freedom q(t) for

which no physical interpretation has been found yet [Fis17]; [Due20] other than contributing

as gravitational source.

Assuming that to zeroth order the cosmologcial model under consideration is indeed given by

ΛCDM cosmology, the second scale factor can be set close to c(t) = 1. Then, the area-metric

in (5.4) is simply induced by the usual FLRW metric, which is only determined by the the

scale factor a(t). Also all time derivatives need to be close to zero dNc(t)/dt = 0, such that the

scale factor c(t) stays close to one during time evolution. Consequently, the refined Friedmann

equations can be expressed perturbatively [Due20]: The first two of them can - with appro-

priate choice of constants - be expressed in their usual version (see [Bar19a] for instance) in

terms of ρ(t) and p(t) only as

( ȧ
a

)2
=

8πG
3
ρ +
Λ

3
, (5.5)

ä
a
= −

4πG
3

(ρ + 3p) +
Λ

3
. (5.6)

In this case the third Friedmann equation as stated in [Due20], which describes the evolution

of the unknown degree of freedom q(t), still remains as

0 = q + 3ρ +C1 +C2
ȧ
a
+

( ȧ
a

)2
C3 +

ä
a

C4,
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with unknown constants C1 to C4. Though this gives a relation between the density ρ(t)

and pressure p(t) and the unknown degree of freedom q(t), it does not affect the first two

Friedmann equations. Thus, the equations (5.5) will be used to effectively describe cosmology

as in general relativity. Also, the extra degree of freedom q(t) appears in principle also in the

covariant conservation equation of the energy-momentum tensor density and the generalized

Gotay-Marsden source tensor density (for details refer to [GM01]; [Due20]):

0 = ρ̇ + 3
ȧ
a

(ρ + q) + 3
ċ
c

q.

But for ċ = 0, which is assumed here, the last term drops out of the conservation equation. It

is hence demanded, that the background cosmology evolves according to ΛCDM2.

To determine the effective metric P#
ab on a cosmological background as described above, a

standard assumption from lensing (see for instance [SEF92]; [BS01]; [Bar10]) is adjusted

here to include clump contributions. This ansatz is usually done in the context of weak gravi-

tational lensing in general relativity, where the metric is perturbed by local Newtonian poten-

tial contributions. Here, local refers to scales which are small compared to the Hubble length.

Since the FLRW metric is conformally flat this breaks down to a Minkowski metric being

peturbed by a Newtonian potential as discussed in section 4.1. A further requirement to make

this ansatz is that the clump contributions sourcing the Newtonian potentials have to move

slowly with respect to the Hubble flow.

Now, this idea will be generalized to the case of weakly birefringent spacetime: The prinicpal

polynomial and its dual are also conformally3 flat for a cosmological spacetime with Fresnel

tensor

P#
abcd = a2 (ηc) η(ab η cd),

and conformal time ηc with dηc = cdt/a(t). Thus, an appropriate ansatz for the effective

line-element in weakly birefringent spacetime on a cosmological background can be given by

ds2 = P#
abdxadxb = a2 (ηc)

(
(1 + 2A) dη2

c − γαβ

(
1 +

1
2

(V − 3U)
)

dxαdxα

)
. (5.7)

2Even though this assumption can be challenged, one will now continue to explicitly only focus on phenomenol-
ogy caused by the Yukawa corrections in the weak field limit.

3In this context conformality still applies to the Fresnel tensors and hence the principal polynomials as stated in
[PWS09].
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This may also be derived in a calculation similar to [Lic17] by inserting the following area-

metric

Gabcd =gac (a (ηc)) gbd (a (ηc)) − gad (a (ηc)) gbc (a (ηc)) −
√
−detg (a (ηc))ϵabcd

+ a−4 (ηc) Habcd,

with the inverse FLRW metric for conformal time gab (a(ηc)) = a−2 (ηc) ηab, into the definition

of the principal polynomial for general linear electrodynamics (see 1.5).

Now, the effective convergence as introduced in the conventional weak lensing formalism by

[BS01] is adjusted in the following. This is possible here, since the light propagation is effec-

tively metric [SW17], even though the spacetime under consideration is weakly area-metric.

Hence, with the line element as stated in equation (5.7) one can now derive the effective

gravitational lensing effect with standard methods [BS01]; [Bar10]; [BM17]. For photons

propagating on null geodesics defined by this effective metric the following result for speed

of light c′ holds to first order:

ds2 = 0 ⇒ (1 + 2A) dη2
c =

(
1 +

1
2

(V − 3U)
)

dxαdxα,

⇒ c′ =

∣∣∣∣∣∣dx⃗
dt

∣∣∣∣∣∣ =
√

1 + 2A√
1 + 1

2 (V − 3U)
≈ 1 + A −

1
4

(V − 3U)

= 1 −
2Mκ

4πr
−

Mκ

4πr
exp (−ηr) δ

(
3
4
−

1
4
τ

δ
− σ

)
= 1 − 2

G
c2

M
r
− δ̃

G
c2

M
r

exp (−ηr) .

Here, G/c2 ≡ κ/4π is the gravitational constant, and the undetermined area-metric constants

are summarized as δ̃ ≡ δ (3/4 − τ/(4δ) − σ). In this form the single constants δ, τ and σ are

degenerate and cannot be measured separately via lensing, but only the combined factor δ̃.

The total deflection potential for a deflecting point mass is thus given by

ΦDef
(⃗
r
)
= −

GM
c2 |r − rM |

(
1 +

δ̃

2
exp (−η |r − rM |)

)
,

which is the ordinary Newtonian law ΦN (r) with a Yukawa potential ΦY (r) refinement. For

an extended mass distribution this potential can be expressed in a continuum limit as [Rie20]

ΦDef
(⃗
r
)

c2 = −
G
c2

∫
d3r′

ρ (r′)
|r − r′|

−
G
c2

δ̃

2

∫
d3r′

ρ (r′)
|r − r′|

exp
(
−η

∣∣∣r − r′
∣∣∣) . (5.8)
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The corresponding coupled Poisson equation can be given - in a similar way as in [Rie20] -

by

∆ΦDef (r) − η2 (ΦDef (r) − ΦN (r)) = 4πG(1 + δ̃/2)ρ (r) ,

∆ΦN (r) = 4πGρ (r) . (5.9)

Thus, in the continuum limit with (5.8) the expression for c′, and thus the refractive index n

can be written as

c′ = 1 + 2
ΦN (r)

c2 + δ̃
ΦY (r, η)

c2 = 1 + 2
ΦDef (r)

c2 ,

⇒n =
c
c′
≈ 1 − 2

ΦDef (r)
c2 ,

where the deflecting potential ΦDef is simply the Newtonian potential ΦN for vanishing δ̃ = 0.

Thus, in this limit standard gravitational lensing can be recovered consistently.

Extremizing the light path from the source S to the observer along the line of sight according

to Fermat’s priniciple and taking Born’s approximation into account, as discussed in more

detail in [BM17] and also briefly mentioned in Section 4.1, leads to the following deflection

angle α, and thus lensing potential Ψ

Ψ (θ, χS ) =2
∫ χS

0
dχ

χS − χ

χSχ

ΦDef (χθ, χ)
c2 ,

α =∇θΨ (θ, χS ) .

Here, χ is the comoving distance along which the integration is performed, χS is the comoving

distance between the observer and the source, and θ is the angular separation in the image

plane. Notably, the effective convergence κeff is still defined as the gradient of the effective

deflection angle

κeff (θ, χ) =
1
2
∇θ · α (θ, χ) =

1
2
∆θΨ (θ, χ) , (5.10)

as in [BS01] for instance.

In comoving coordinates the system of coupled Poisson equations (5.9) becomes

∆χa−2ΦDef (χθ, χ)
c2 − η2

(
ΦDef (χθ, χ)

c2 −
ΦN (χθ, χ)

c2

)
=

(
1 +

δ̃

2

)
3Ωm0

2χ2
H

δc (χθ, χ) a−3,

∆χa−2ΦN (χθ, χ)
c2 =

3Ωm0

2χ2
H

δc (χθ, χ) a−3. (5.11)

154



Combining these, the Fourier space representation of the deflection potential Φ̃Def (k, χ) with

k = ℓ/χ and ∆χ → −k2 becomes

Φ̃Def

c2 (k, χ) = −
(
k2 + η2a2

)−1
(
1 +

δ̃

2
+ a2η2k−2

)
3Ωm0

2χ2
H

δ̃c (k, χ) a−1. (5.12)

Clearly, in the limit η → 0 and δ̃ → 0 the comoving Newtonian Poisson equation in Fourier

space reemerges. Also, one can read off from the comoving Poisson equations (5.11), that

the Yukawa refinement likely starts to become of interest for late time universe physics: For

early times the scale factor goes to zero, such that the term η2a2 is suppressed. Thus, for early

times it is expected that the Poisson equation is approximately Newtonian, such that structure

formation and as a result the density power spectrum can be assumed to be Pδcδc(k) [Schb].

Now, in a tomographic analysis (for details refer to [MCK14] for instance) an average is

performed over the source redshift distribution for a flux limited survey which is - like in

section 4.4.4 - given as

p(z) =
β

z0Γ ((α + 1)/β)

(
z
z0

)α
e−(z/z0)β ∝ (z/z0)α e

−

(
z

z0

)β
, (5.13)

with α = 2, β = 1.5, z0 = 0.64 [Lau+11]; [LHG07]. Then the lensing potential ΨB within a

tomographic redshift bin B is given as

ΨB (θ) =
∫ χH

0
dχ aWΨ,B (χ)

ΦDef

c2 ,

with WΨ,B (χ) =
2
χ

D+(a)
a

∫ χB+1

max(χ,χB)
dχ′ p

(
χ′

) dz
dχ′

(
1 −

χ

χ′

)
,

with Hubble-function −dχ′H(χ′) = cdz, linear growth factor D+(a) and Hubble length χH .

Thus, one can define the following spectrum for the lensing potential taking Limber’s approx-

imation [Lim54] into account

CΨA ΨB(ℓ) =
∫ χH

0
dχ aWΨ,A(χ)

∫ χH

0
dχ′ aWΨ,B(χ′)

〈
ΦDef

c2 (k = ℓ/χ, χ)
ΦDef

c2

(
k′ = ℓ′/χ′, χ′

)〉
=

∫ χH

0
dχ

a2

χ2c4 WΨ,A(χ)WΨ,B(χ)PΦDef ΦDef (k = ℓ/χ, χ) ,

with the potential power spectrum PΦDef ΦDef . This can be further expressed in terms of the

overdensity fluctuation spectrum Pδcδc(k) ∝ knS T (k)2 by insertion of (5.12). Consequently,

with the definition (5.10) of the effective convergence the respective spectrum in Fourier space
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becomes

Cκeff κeff
AB =

l4

4

∫ χH

0

dχ
χ2 WΨ,A(χ)WΨ,B(χ)

(
k2 + η2a2

)−2
(
1 +

δ̃

2
+ a2η2k−2

)2 9Ω2
m0

4χ4
H

Pδc δc(k)

=
l4

4

∫ χH

0

dχ
χ2 WΨ,A(χ)WΨ,B(χ)k−4

(
1 +

δ̃/2 k2

k2 + η2a2

)2 9Ω2
m0

4χ4
H

Pδc δc(k),

(5.14)

where ∆θ → −ℓ2 is used. The effective lensing magnification spectrum is given by

Cδµeff δµeff
AB (ℓ) = 4Cκeff κeff

AB (ℓ).

However, as will be discussed later, the magnification is not only altered by a different kind of

deflection potential compared to standard lensing, but also a modification of the Etherington

distance dualtiy as discussed in Section 5.3.2.

5.3 Surface brightness fluctuation spectra

The observed surface brightness I and the observed logarithmic surface brightness S of galax-

ies [FHH20] are defined as

S = log10

(F
A

)
= log10 (I) , (5.15)

where F is the measured flux, and A is the observed galaxy image area in squared arc sec-

onds. In conventional gravitational lensing within general relativity the observed surface

brightness I (θ(β)) at image position θ equals - up to redshift correction factors - the intrin-

sic surface brightness I0 (β) of a source at β since it is not changed under light deflection, i.e.

I0 (β) = I (θ(β)) [BS01]; [SEF92].

Now, the influence of local tidal fields ∆Φ due to intrinsic alignment changes the intrinsic size

and thus also the intrinsic cross-sectional area measure A of the galaxies. The surface bright-

ness scales with inverse area or size of the galaxy, measured in terms of the second moments

of the surface brightness distribution, as discussed in the previous Chapter 4. Consequently, it

will be directly affected by intrinsic alignment, as will be presented in the following Section

5.3.1. In general relativity, these variations in the intrinisc surface brightness will directly

translate to variations in the observed surface brightness.

However, in the framework of weakly birefringent spacetimes, the prediction of the viola-

tion of the Etherington distance duality relation, would result in deviations of the surface

brightness conservation law in lensing. This will lead to a variation of the observed surface

brightness compared to the intrinsic one. This effect looks similar to intrinsic surface bright-
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ness variations due to intrinsic alignment in classical astrophysics: For instance, it affects the

respective quadrupole moment of the surface brightness distribution. Consequently, this leads

to an imprint in the apparent size of observed galaxies, similar to intrinsic effects, however

with different parameterization.

Thus, it is important to parameterize both effects separately, as well as to quantify their

strength in their respective regimes to decide which of them would actually be dominant in

an observation. This will be done in the following three sections. Intrinsic surface brightness

fluctuations in classical astrophysics are caused by interaction with local tidal fields. Contrary,

the surface brightness fluctuation in the non-metric theory considered here are a lensing effect

along the entire line of sight. Hence, the two effects do not influence each other, however in

an actual measurement of the surface brightness fluctuation only the sum of both effects can

be measured.

In the next section, the surface brightness effect for classical intrinsic alignment is derived.

Then, the surface brightness variations in Etherington distance duality violating weak lensing

are parameterized. Finally, both effects will be evaluated quantitatively for different parameter

values by considering the shape and amplitude of their respective spectra.

5.3.1 Intrinsic surface brightness variations

At first, details on how intrinsic alignment affects the intrinsic surface brightness of galaxies

will be discussed. A central assumption is hereby, that the influence of local tidal fiels ∆Φ

can lead to an effective change in the source area A, while the total number of stars Nstars

within the galaxies does not change. Since the number of stars determines the light produc-

tion of a galaxy and thus the measured flux density F the simple proportionality Nstars ∝ F

is taken to first oder. However, as an aside, tidal fields could possibly enhance star formation

(see also [Ren10]) due to increased density of molecular gas making the collapse of these gas

clouds more likely. This effect is neglected here for simplicity. Additionally, standard New-

tonian gravity is considered to derive the surface brightness fluctuations caused by intrinsic

alignment. It shall thus be directly contrasted, how intrinsic surface brightness can vary in a

standard description in general relativity, with possible flucutations in lensing due to exotic

gravitational physics. Still, it is reasonable to ask whether or not to include the Yukawa cor-

rections also for the intrinsic alignment model. But because the alignment paramer DIA is

only determined up to a factor 10, the additional effects would not resolvable. This holds true

especially given that the parameterization is chosen here such, that effects due to the area-

metric modifications only become significant on cosmological scales. As will be discussed

later in Section 5.4 this means that the values η and δ will be set to multiples of several inverse

Hubble lengthts, what is very small compared to one. Consequently, the additional effects
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due to area-metric refinements may be absorbed within the alignment parameter DIA. Yet, it

would also be interesting to study, how precisely the linear alignment model itself is modified

by including area-metric corrections, too.

Now, the linear alignment model for intrinsic ellipticities first discussed by [GDS21], and ex-

tended to intrinsic flexions in Chapter 4, is employed. As stated previoulsy, it is based on the

Jeans-equation [Pir+17]

σ2∂r ln (ρ(r)) = −∂rΦ,

where stellar density ρ(r), that is considered to be proportional to the surface brightness dis-

tribution I(r), is given by

ρ(r) = ρ̄1 exp
(
−
Φ(r)
σ2

)
=

Nstars

A1
exp

(
−
Φ(r)
σ2

)
. (5.16)

Here, ρ̄1 = Nstars/A1 ∝ Ī1 = F/A1 is the normalization for ρ(r) with units of stellar area

density. The area is measured in square arcsec when going from radial separation r to angular

separation with r = θχ and χ as comoving distance. Furthermore, Ī1 is the normalization

constant for the surface brightness distribution I(r). Thus, the integration over the galaxy area

gives the number of stars, which is proportional to the flux, as

Nstars =

∫
d2r ρ̄1 exp

(
−
Φ(r)
σ2

)
=

∫
d2r

Nstars

A1
exp

(
−
Φ(r)
σ2

)
⇒ A1 =

∫
d2r exp

(
−
Φ(r)
σ2

)
.

Under the influence of tidal fields the potential becomes, to second order,

Φ(r) → Φ(r) +
1
2
∂a∂b Φ|r=0 rarb , (5.17)

which leads to a change in the stellar area density according to

ρ′(r) = ρ̄2 exp
(
−
Φ(r)
σ2

) (
1 −

1
2σ2Φabrarb

)
=

Nstars

A2
exp

(
−
Φ(r)
σ2

) (
1 −

1
2σ2Φabrarb

)
,

(5.18)

with ∂a∂bΦ ≡ Φab.
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It thus follows for the normalization of the number of stars Nstars that

Nstars =

∫
d2r ρ̄2 exp

(
−
Φ(r)
σ2

) (
1 −

1
2σ2Φabrarb

)
=

∫
d2r

Nstars

A2
exp

(
−
Φ(r)
σ2

) (
1 −

1
2σ2Φabrarb

)
,

⇒ A2 =

∫
d2r exp

(
−
Φ(r)
σ2

) (
1 −

1
2σ2Φabrarb

)
.

Here, ρ̄2 ∝ Ī2 is again the normalization factor in units of stellar area density such that inte-

gration over the density ρ′(r) gives the same number of stars Nstars as in the unperturbed case.

However, ρ̄2 differs from ρ̄1 due to the different definition of A2, compared to A1. Since A1

and A2 are both measures of area it can thus be concluded that the intrinsic area of the galax-

ies changes. To get an analytical expression for this change the Sérsic model is used for the

density

ρ(r) ∝ exp
(
−
Φ(r)
σ2

)
=̂ exp

−b(n)

( r
rscale

)n−1

− 1


 , (5.19)

with b(n) ≈ 2n − 1
3 and n denoting the Sérsic index. Consequently, by using the two substitu-

tions x = b
[
(r/rscale)n−1

− 1
]

and y = x + b, one receives the following result for A1 expressed

in terms of the Gamma function Γ(n):

A1 =

∫
d2r exp

−b(n)

( r
rscale

)n−1

− 1




=

∫ 2π

0
dϕ

∫ ∞

0
drr exp

−b(n)

( r
rscale

)n−1

− 1




= 2π
∫ ∞

−b
dx exp (−x)

n
b

rscale2

( x
b
+ 1

)2n−1

=
2πn

b
r2

scale

∫ ∞

0
dy exp (−(y − b))

(
y − b

b
+ 1

)2n−1

=
2πn
b2n exp(b)r2

scale

∫ ∞

0
dy exp (−y) y2n−1 =

2πn
b2n exp(b)r2

scaleΓ(2n).
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Similarly the area measure A2 can be expressed as

A2 =

∫
d2r exp

−b(n)

( r
rscale

)n−1

− 1


 (1 − 1

2σ2Φabrarb
)

=
2πn
b2n exp(b)r2

scaleΓ(2n) −
∫ 2π

0
dϕ

∫ ∞

0
drr exp

−b(n)

( r
rscale

)n−1

− 1


 1

2σ2Φabrarb

= A1 −

∫ ∞

0
dr exp

−b(n)

( r
rscale

)n−1

− 1


 r3

×

∫ 2π

0

dϕ
2σ2

(
Φ00 cos2(ϕ) + 2Φ01 cos(ϕ) sin(ϕ) + Φ11 sin2(ϕ)

)
= A1 −

π∆Φ

2σ2

∫ ∞

−b
dx exp (−x)

( x
b
+ 1

)4n−1 r4
scale

b

= A1 −
π∆Φ

2σ2

∫ ∞

0
dy exp (−y) y4n−1 r4

scale

b4n n exp(b)

= A1

1 − r2
scale

4b2nσ2

Γ(4n)
Γ(2n)

∆Φ

 B A1 (1 − F(n)∆Φ) ,

where the polar coordinates r0 = r cos ϕ and r1 = r sin ϕ are inserted and F(n) is defined by

F(n) B
r2

scale

4b2nσ2

Γ(4n)
Γ(2n)

.

To conclude, the relative variation in the density distribution normalization factors, and thus

the relative surface brightness, is given by

ρ̄2 − ρ̄1

ρ̄1
=

Nstar/A2 − Nstar/A1

Nstar/A1
=

A1 − A2

A2
=

F/A2 − F/A1

F/A1
=

Ī2 − Ī1

Ī1
,

⇒
δρ̄

ρ̄1
=

δĪ
Ī1
=
−δA
A2
=

F(n)∆Φ
1 − F(n)∆Φ

≈ F(n)∆Φ = −
δA
A1
. (5.20)

In the last step all terms of quadratic or higher order in ∆Φ are neglected due to the weakness

of the tidal fields. For an overdensity it holds that ∆Φ > 0 due to Poisson’s equation. This

leads to an increase in the relative density variation δρ̄/ρ̄1 > 0, and hence surface brightness

variation δĪ/Ī1 > 0. Consequently, the area decreases with δA ≡ A2 − A1 < 0. Insertion of the

Sérsic model into expression (5.20) leads to the explicit result

δĪ
Ī
=

1
4

r2
scaleb−2n c2

σ2

Γ(4n)
Γ(2n)

∆Φ

c2 = c2F(n)
∆Φ

c2 ∝ ∆Φ ∝
δs
s0
≡ ∆s.
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So, ∆Φ causes a change in intrinsic size, and hence also a variation in the surface brightness

distribution. Now, the prefactor c2F(n) can be expressed in terms of the alignment parameter

for the intrinsic ellipticites DIA, since both scale with r2
scale. For intrinsic ellipticities the

alignment parameter scales like

DIA ∝
1
2

c2

σ2

∫
d2r ρ(r)r4∫
d2r ρ(r)r2

.

By rewritting the integral
∫

d2r via polar coordinates and performing the angular integrals,

keeping in mind that changes in the intrinsic ellipticities scale with π/4 [GDS21], the param-

eter DIA can be expressed in terms of the Sérsic model as

DIA ∝
1
2

c2

σ2

π/4
2π

∫
dr ρ(r)r5∫
dr ρ(r)r3

=
1
2

c2

σ2

1
8

r2
scaleb−2nΓ(6n)

Γ(4n)
.

Thus, the surface brightness variation can be compactly expressed as

δĪ
Ī
= 4
Γ(4n)Γ(4n)
Γ(2n)Γ(6n)

DIA
∆Φ

c2 .

To conclude, the following relation between the relative surface brightness fluctuation and the

relative size change from [GDS21] in the linear alignment model is obtained as

δĪ
Ī
∝

1
2

DIA
∆Φ

c2 = |∆s| ⇒
δĪ
Ī
= 2S Sérsic(n) |∆s| .

Since the galaxy is compressed because of intrinsic alignment its surface brightness is en-

hanced and vice versa. Here, the proportionality factor

S Sérsic(n) B 4
Γ(4n)2

Γ(2n)Γ(6n)

is introduced as a scaling relation which takes the internal galactic dynamics into account

via the Sérsic index. The II spectrum of self-correlations of the intrinsic surface brightness

fluctuations CδI/I δI/I
AB is proportional to the intrinsic size spectrum Cs s

AB by [GDS21] because

II : CδI/I δI/I
AB (ℓ) = 4S Sérsic(n)2Cs s

AB(ℓ), (5.21)

with

Cs s
AB(l) = ℓ4

∫
dχ
χ2

D2
IA

c4 Wφ,AWφ,B
9
4
Ω2

m0

χ4
H

k−4Pδcδc ,
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and weighting function

Wφ,A (χ) =
1
χ2 p (z(χ))Θ (χ − χA)Θ (χA+1 − χ)

H (χ)
c

D+(a)
a

,

as discussed in section 4.4.4 in the context of intrinsic flexions. Here A and B denote the

different redshift bins in a tomographic analysis.

As a side remark, the result (5.21) is analogous to the relation between the magnification

fluctuation spectrum and the conventional weak lensing convergence spectrum in the linear

approximation, namely [BS01]:

GG for GR : Cδµδµ
AB (ℓ) ≈ 4Cκκ

AB(ℓ).

However, while for the intrinsic alignment case the equality is exact since it is based on a linear

model in the first place, the relation between the convergence and magnification fluctuation

spectrum is only valid to first order. This is true because the magnification µ in gravitational

lensing is defined non-linearly as the determinant of the inverse Jacobian of the lens map, and

only in the weak lensing case an approximate linear relationship between magnification and

convergence can be established.

After having discussed how surface brightness fluctuations may arise at the level of general

relativity due to intrinsic alignment of galaxies, the next section will show how a similar effect

appears if lensing occurs in an area-metric spacetime.

5.3.2 Surface brightness fluctuation in weakly birefringent lensing

In [SEF92] it is thoroughly shown how one can derive a relativistic version of the surface

brightness conservation in lensing from the Etherington distance duality relation.

Deviations thereof - like for instance predicted for perturbative area-metric gravity [Sch+17];

[SW17]; [Mor+16]; [Ale20b] or even exotic photon decays [BK04] - would actually lead to

violations of surface brightness conservation in gravitational lensing. In the scope of this the-

sis the first option will be analyzed in more detail.

The following discussion of the Etherington distance duality will - for self-consistency -

shortly recapitualte the most important steps in the derivation of the Etherington distance du-

alilty for metric spacetimes based on [SEF92], and its area-metric modifications as discussed

in [SW17]; [Fis17] in more detail.
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The Etherington distance duality establishes a relation between the angular diameter distance

DA ≡

(
dAS

dΩO

)1/2

, (5.22)

and the redshift corrected luminosity distance

DL;cor ≡

(
dAO

dΩS

)1/2

, (5.23)

which is given by the following reprocity relation [SEF92]

DL;cor = (1 + z) DA, (5.24)

on a metric background. The angular diameter DA distance quantifies how the physical cross-

section area of a source dAS is mapped to the solid angle dΩO under which the source appears

to the observer. The redshift corrected luminosity distance DL;cor, i.e. the purely geometrically

defined luminosity distance, tells how the cross-section surface dAO for the photon flux at the

observer’s position scales with the solid angle dΩS into which the source radiates4. The

redshift uncorrected luminosity distance DL wich will be discussed later contains another

factor (1 + z), such that

DL ∝ (1 + z)DL;cor ∝ (1 + z)2DA.

As discussed previously in Section 5.2 a weakly birefringent background geometry leads to

an effectively metric light propagation, so the reciprocity relation (5.24) still holds. For this

effective metric P#
ab it is possible to define an effective covariant derivative ∇a , as stated by

[SW17]; [Fis17]. However, as elaborated by [SW17]; [Fis17] and summarized in Section 5.1

in more detail, the local photon flux conservation is now defined differently in terms of an

area-metric background geometry as

∂b
(
ωG−1 Nb

)
= 0.

Thus, in the effectively metric description of light propagation the corresponding covariant

derivative of the photon flux Na is not zero ∇aNa , 0. This results in a change of the observed

photon flux at the observer’s position due to the geometric structure of spacetime. This would

hold true even after having corrected for standard physical processes like photon absorption

due to dust [SW17].

4In principle, due to aberration, the angular diameter distance also depends on the 4-velocity Uρ
O of the observer

evaluated at the source position, and the redshift corrected luminosity distance depends on the 4-velocity of
the source evaluated at the observer’s position [SEF92].
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In the standard treatment [SEF92] the number of photons emitted during proper time dτS into

the solid angle dΩS within the energy interval ℏdωS by the source is given by

Nγ,emit = dτS dΩS dωS
LωS

4πℏωS
. (5.25)

where the specific luminosity LωS has units of
[
LωS

]
= J ster−2 s−1 Hz−1.

For the number of observed photons within a proper time interval dτO, and within the cross-

section area dAO and energy ℏdωO one gets

Nγ,obs = dτOdAOdωO
FωO

ℏωO
. (5.26)

with the specific flux FωO with units
[
FωO

]
= J m−2 s−1 Hz−1.

Now, due to the modfication in observed photon flux compared to general relativity it holds

according to [SW17]; [Fis17] that

Nγ,obs = (1 + µvio) Nγ,emit. (5.27)

Here, the parameter µvio measures the deviation of ∇aNa from zero, and hence the violation of

the Etherington distance duality relation. Its specific functional form will be discussed later in

more detail. Consequently, by insertion of the photon number counts Nγ,emit (5.25) and Nγ,obs

(5.26), the definition of the corrected luminosity distance DL;cor (5.23), as well as the standard

redshift law

ωS = (1 + z)ωO = (1 + z)ω

into relation (5.27), the following specific flux density is obtained [SW17]; [Fis17]

Fω =
Lω(1+z)

4π(1 + z)D2
L;cor

(1 + µvio). (5.28)

Integration over the frequencies then leads to the flux density [SW17]; [Fis17]

F =
L

4π(1 + z)2D2
L;cor

(1 + µvio) !
=

L
4πD2

L

.

where DL = DL;cor(1 + z)/
√

1 + µvio denotes the uncorrected luminosity distance defined via

its relation to the bolometric luminosity L [SEF92]. Finally, by insertion of DL;cor as given in
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relation (5.24) into DL the modified Etherington distance duality follows [SW17]; [Fis17]

DL

DA (1 + z)2 =
√

1 + µvio . (5.29)

Next, the surface brightness violation is derived by following the steps laid out in [SEF92],

but now for the modified Etherington distance duality relation (5.29): The specific surface

brightness Iω is given in units of [Iω] = Jm−2s−1ster−2Hz−1. According to these units the

observed specific surface brightness Iω;O can be defined as the ratio between the (differential)

flux density dFω at the observer’s position5 and the solid angle dΩO under which this source

appears [SEF92]:

Iω;O =
dFω

dΩO
.

Thus, similar to [SEF92], insertion of the specific flux density

dFω =
dLω(1+z)

4π(1 + z)D2
L;cor

(1 + µvio) =
dLω(1+z)dΩS

4π(1 + z)dAO
(1 + µvio),

leads to

Iω;O =
dL(1+z)ω

4π(1 + z)dAS

dΩS

dAO

dAS

dΩO
(1 + µvio)

=
dL(1+z)ω

4π(1 + z)dAS

D2
A

D2
L;cor

(1 + µvio)

=
dL(1+z)ω

4πdAS

1
(1 + z)3 (1 + µvio)

= I(1+z)ω;S
1

(1 + z)3 (1 + µvio), (5.30)

where the specific surface brightness of the source is given by the ratio between the source

luminosity dL(1+z)ω and its respective surface area element 4πdAS as

I(1+z)ω;S =
dL(1+z)ω

4πdAS
.

Integration over all frequencies then leads to the relativistic conversion between the surface

brightness distribution for the observer and the source surface brightness distribution:

IO = IS (1 + z)−4 (1 + µvio) = IO;classic + IO;classic µvio.

5Here, the differential flux density is used to specify that this relation must hold for an extended source rather
than a point source (confirm [SEF92] for details).

165



Here, the classically expected surface brightness conservation law is given by [SEF92]

IO;classic = IS (1 + z)−4 ,

for µvio = 0 and relativistic redshift corrections. Hence, the relative surface brightness varia-

tion in weakly birefringent lensing is in general described by

δI
I
=

IO − IO;classic

IO;classic
= µvio. (5.31)

The authors [SW17] have shown that for a weakly birefringent spacetime with gravity sourced

by a point mass the Etherington distance duality relation is modified according to

DL = (1 + z)2DA

(
1 +

3δGM
2c2

(
e−ηrML

rML
−

e−ηrMO

rMO

))
, (5.32)

such that the violating factor µvio is given in terms of Yukawa refinements. Here, it specifically

holds that ∇aNa = ∂a
(
−3MG/(2r) δ exp(−ηr)

)
Na to first order approximation, so integration

of the photon current from source to observer leads to an effective photon excess [SW17].

The inverse length scale of the Yukawa interaction is parameterised by η, while δ, which can

be intepreted as a coupling to the Newtonian interaction, is unitless. Here, rML = |rL − r′| is
the euclidean distance between the deflector M at position r′ and the light source at rL, and

rMO = |r′ − rO| is the distance between observer and deflector. This expression (5.32) can be

rewritten in the following way for a continuous mass distribution via the density ρ(r′) along

the line of sight, due to the lineartiy of the approximate solution [Rie20]

µvio (rL, rO) =
3δ
2

G
c2

∫
d3 r′ρ(r′)

(
exp(−η|rL − r′|)
|rL − r′|

−
exp(−η|r′ − rO|)
|r′ − rO|

)
.

Then the formula for the Etherington distance duality violation is given by

DL =(1 + z)2DA

(
1 +

3δ
2

G
c2

∫
d3r′ ρ(r′)

(
1

|rL − r′|
exp(−η|rL − r′|) −

1
|r′|

exp(−η|r′|)
))

=(1 + z)2DA

(
1 −

3
2

G
c2 δ

∫
d3r′ ρ(r′)K

(
rL − r′

)
+

∫
d3r′ ρ(r′)K

(
rO − r′

))
=(1 + z)2DA

(
1 −

3
2
δ

(
ΦY(rL)

c2 −
ΦY(rO)

c2

))
,

(5.33)

where the Yukawa potential ΦY(rL) was defined as a convolution of the density distribution

ρ(r′) over the kernel function K(rS − r′) = −G exp(−η|rS − r′|)/|rS − r′|, similar to [New].
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Insertion of a point mass with ρ(r′) = Mδ(rM − r′) then reproduces (5.32).

From (5.33) it may now be concluded, that the effective photon excess measured by µvio as

predicted in birefringent spacetimes is determined by the Yukawa potential difference between

observer and source:

µvio(rS , rO) = −3 δ
(
ΦY(rS )

c2 −
ΦY(rO)

c2

)
. (5.34)

Now, one makes the assumption that the observer does - on average over different sources

and directions - not measure the Yukawa potential at their position. This holds because they

are approximated as ideal Friedmann-Lemaître-Robertson-Walker observer, who only mea-

sure the FLRW geometry locally and are comoving with the Hubble flow [Schb]. Thus, the

effective photon excess factor can be simplified as

µvio (rS ) = −3δ
ΦY (rS )

c2 . (5.35)

This is the photon excess, which reaches the observer from a single source at rS . However, an

average over many sources is required, and the light rays emitted feel a Yukawa potential for

every point mass they pass by on their way from the source to the observer.

Thus, the expression (5.35) is now rewritten in terms of an integral over the comoving distance,

similar to shear or convergence formulas in gravitational lensing. The Yukawa potentialΦY(r)

is hereby projected along the line of sight, weighted by the source distribution of a flux limited

survey (for instance (5.13) as proposed by [Lau+11]). This leads to an averaged violation

factor µ̄vio with

µ̄vio(θ⃗) = −3
∫ χH

0
dχ p (z(χ))Θ (χA − χ)

H (χ)
c

D+(a)δ
ΦY(χθ, χ)

c2 . (5.36)

The line of sight integral can be subdivided into various, extended tomographic bins from the

observer position to some upper boundary denoted by χA. Furthermore, H(χ) is the Hubble

function while D+(a) is the linear growth factor of standard structure formation - provided one

makes the assumption that the description of cosmology does not to change significantly due

to the area-metric structure, as remarked in Section 5.2.

In the linear limit, when generalizing to a continuous mass distribution ρ(r), the potential is

sourced by a Yukawa field equation according to(
∆ − η2

)
ΦY(r) = 4πGρ(r).
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The comoving Poisson equation thus becomes

(
∆χa−2 − η2

) ΦY(χθ, χ)
c2 =

3Ωm0

2χ2
H

δc(χθ, χ)a−3,

with the Laplacian ∆χ in comoving coordinates and the density contrast δc(χθ, χ), which is

related to the density ρ (χθ, χ) via

ρ(χθ, χ) =
3H2

0

8πG
Ωm0a−3δc(χθ, χ),

and the Hubble length χH = c/H0. In Fourier space the Yukawa field equation becomes

−
(
k2a−2 + η2

) Φ̃Y (k, χ)
c2 =

3Ωm0

2χ2
H

δ̃c (k, χ) a−3,

⇒
Φ̃Y (k, χ)

c2 = −
(
k2 + η2a2

)−1 3Ωm0

2χ2
H

δ̃c (k, χ) a−1,

where the tilde ·̃ denotes the Fourier transforms of the repsective quantities and k = ℓ/χ is the

wavenumber associated to χθ, while ℓ is the wavenumber associated to angular separations θ.

Then the line of sight averaged violation factor becomes

˜̄µvio(ℓ) =3
∫ χH

0
dχ p (z(χ))Θ (χA − χ)

H (χ)
c

D+(a)
a

δ
(
k2 + η2a2

)−1 3Ωm0

2χ2
H

δ̃c(k, χ), (5.37)

in Fourier space. A few of these factors are summarized in an appropriate weighting function

as

WY,A (χ) = p (z(χ))Θ (χA − χ)
H (χ)

c
D+(a)

a
.

Application of Limber’s approximation [Lim54] results in the following auto-correlation for

the surface brightness fluctuations due to the Etherington distance duality violation in lensing

as 〈
δ̃I
I Y

(ℓ)
δ̃I
I Y

(ℓ′)
〉
= (2π)2δD

(
ℓ − ℓ′

)
Cµvio µvio

AB (ℓ),

noting that the density fluctuations are distributed according to a homogeneous, isotropic

Gaussian random field (see [Dur08] for instance).
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The according GG spectrum for the Etherington distance duality violation factor µvio is given

by

Cµvio µvio
AB (ℓ) =

〈∫ χH

0
dχ 3WY,A (χ) δ

3Ωm0

2χ2
H

(
k2 + η2a2

)−1
δ̃c(k, χ)∫ χH

0
dχ′ 3WY,B

(
χ′

)
δ

3Ωm0

2χ2
H

(
k2 + η2a2

)−1
δ̃c(k, χ′)

〉
=9

∫ χH

0

dχ
χ2 WY,A (χ) WY,B (χ) δ2 9Ω2

m0

4χ4
H

(
k2 + η2a2

)−2
Pδcδc(k),

(5.38)

where Pδcδc ∝ knS T (k)2 is the standard power spectrum for density fluctuations. As already

discussed in Section 5.2 employing this power spectrum is actually also an approximation.

For a more precise discussion the effect of the Yukawa correction on structure growth, and

hence the power spectrum, needs to be taken into account. This is considered in more detail

by [Rie20]. However, modifications to the power spectrum due to the Yukawa corrections are

of order O (δ), while the surface brightness fluctuations are also of O (δ). Consequently, the

combined terms are of order O
(
δ2

)
, what is neglected here.

Since according to (5.31) the relative surface brightness variation is proportional to µvio, the

GG spectrum for δĪ/ĪY due to the Yukawa correction in the Etherington distance duality rela-

tion is given by

GG : CδĪ/ĪY δĪ/ĪY
AB (ℓ) = Cµvio µvio

AB (ℓ). (5.39)

Also, with (5.21) one can find a cross-correlation
〈
δ̃I/IY(ℓ) δ̃I/I(ℓ′)

〉
of intrinsic surface

brightness fluctuations δ̃I/I(ℓ′) in approximately Newtonian tidal fields and surface brightness

flucutations δ̃I/IY(ℓ) due to the modified Etherington distance duality in area-metric lensing.

The according GI-spectrum is then given by

GI : CδĪ/ĪY δĪ/Ī
AB (ℓ) = − δ3ℓ2

∫
dχ
χ2 DIAS Sérsic(n)Wφ,A(χ)WY,B(χ)

×
9Ω2

m0

4χ4
H

k−2
(
k2 + η2a2

)−1
Pδcδc(k).

(5.40)

If the area-metric refinement parameters are zero, i.e. δ = 0 and η = 0, the GG and GI

spectra of the surface brightness fluctuation vanish, as expected from the surface brightness

conservation law in standard gravitational lensing. Thus, deviations from zero would hint at

a modification of the Etherington distance duality relation - given that systematic effects like
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light absorption along the line of sight have been taken into account.

In the following section the spectra (5.21), (5.39) and (5.40) are investigated numerically and

their relative amplitudes are estimated as functions of the parameter values for η and δ.

5.4 Numerical evaluation of the surface brightness fluctuation spectra

In order to estimate the II, GI and GG spectra as derived in the last two Sections 5.3.1 and

5.3.2 the appropriate numerical values for the constants η and δ need to be estimated. One

possibility to find values for these parameters is to consider experimental bounds of Yukawa

refinements in the gravitational potential, as done by [Hen+21] for the Milky Way for instance.

However, a different approach is followed here: First, it is investiagted which numerical values

the coupling δ and the inverse range η need to have, such that the spectra (5.39) and (5.40)

are bounded from above by the surface brightness fluctuation spectrum (5.21) due to intrinsic

alignment. For estimation of possible values for these parameters a dimensional argument

[Schb] can be made: The comoving Poisson equation for the Yukawa potential in Fourier

space is given by

δ
Φ̃Y (k, χ)

c2 = −
(
k2 + η2a2

)−1 3Ωm0

2
δ

χ2
H

δ̃c (k, χ) a−1,

where the prefactor δ is the area-metric parameter. Now, since k has units of inverse length,

the parameter η has units of inverse length, too. A reasonable choice for a length scale where

effects of new physics, which have not been observed so far, could start to become important

is a multiple m of the Hubble length χH . Therefore, a choice for η−1 can be η−1 = mχH with

m = 1, m = 10 or m = 100 for instance.

Similarly, the coupling δ of the Yukawa correction Φ̃Y to the Newtonian potential can be cho-

sen accordingly. By writing the comoving Poisson equation as above δ can be interpreted

such, that it scales with inverse Hubble length squared χ−2
H . Thus, one can summarize the

coupling δ and the inverse Hubble length into the rescaled coupling
√
δ/χH with units of in-

verse Hubble length. Again, it is estimated, that possible violations from the Newtonian form

could become important at m multiples of the Hubble length. This means that in case the

Yukawa correction becomes important at a scale of mχH , the value corresponding to δ would

be 1/m2 compared to one. So to conclude, the values of the constants δ and η can be un-

derstood in terms of multiples of the inverse Hubble length, giving a scale on which effects

of an area-metric refinement could become observable. Notably however, these choices for

the parameters are still somewhat arbitrary, but sufficient for estimating the amplitudes of the

corresponding GG and GI spectra, compared to the II spectrum.
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In Figures 5.1 and 5.2 the surface brightness fluctuation spectra are shown for two extreme

choices of Sérsic indices, namely n = 1 for the exponential and n = 4 for the de Vaucouleurs

profile. Also different estimations for the parameters η and δ are made corresponding to length

scales of η−1 = 10χH with δ = 10−2, and η−1 = 100χH with δ = 10−4, respectively. However,

spectra with m = 1, i.e. η−1 = χH and δ = 1 are not depicted here, since the parameter

of the Yukawa correction is expected to be small compared to one. The thick curves depict

spectra for a non-linear power spectrum according to [Smi+03], while for the thin curves the

linear power spectrum is used. Also, there is a Gaussian smoothing of the power spectra, as

discussed previously in section 4.4.5.

10 30 100 300 1000 3000
multipole `

10-28

10-25

10-22

10-19

10-16

10-13

10-10

10-7

10-4

10-1

102

105

108

δI
/I

-s
pe

ct
ra

 `
2
/(

2π
)
C
X
Y

A
B
(`

)

C II
AB(`)

CYI
AB(`), η−1 = 10χH, δ= 10−2

CYY
AB(`), η−1 = 10χH, δ= 10−2

CYI
AB(`), η−1 = 100χH, δ= 10−4

CYY
AB(`), η−1 = 100χH, δ= 10−4

nonlinear
linear
size noise

Figure 5.1: Surface brightness variation spectra for Sérsic index n = 1 for a 5-bin tomog-
raphy: The amplitudes of the GI and GG spectra are compared to the II spectrum
for different choices of area-metric parameters, namely η−1 = 10χH with δ = 10−2,
and η−1 = 100χH with δ = 10−4.

The II spectrum (denoted as CII
AB(ℓ)) is dominant in both cases, compared to the GG spectrum

(denoted as CYI
AB(ℓ))and the GI spectrum (denoted as CYY

AB(ℓ)). However, for Sérsic index n = 4

the amplitudes of the spectra are similar in magnitude for small multipole orders ℓ < 10, i.e

for large length scales. This is because the amplitudes of the alignment self-correlation as well
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Figure 5.2: Surface brightness variation spectra for Sérsic index n = 4 for a 5-bin tomog-
raphy: The amplitudes of the GI and GG spectra are compared to the II spectrum
for different choices of area-metric parameters, namely η−1 = 10χH with δ = 10−2,
and η−1 = 100χH with δ = 10−4.

as the cross-correlation are suppressed by the factor S Sérsic(n) = 4Γ(4n)2/ (Γ(2n)Γ(6n)), which

decreases with increasing n. For n = 1 one has S Sérsic(1) = 1.2, while for n = 4 it follows that

S Sérsic(4) = 0.05. Also, while the amplitude of the II spectrum increases with higher multi-

pole orders and hence smaller structures, it decreases for the GI and the GG spectra. Thus, the

surface brightness variation for Etherington distance duality correction in area-metric lensing

is a large scale effect, and suppressed on small scales.

Additionally, the shape for the GG spectra and the GI spectra does not change significantly

for different values of η, and mainly their amplitude is affected by different values of δ, what

will be investigated in more detail later. The noise curve is again estimated via the Poissonian

error
(Nnoise)AB = σ

2
size

ntomo

n̄
δAB ,

where ntomo is the number of bins, σsize = 0.8 the size noise for elliptical galaxies and

n̄ = 3.545 × 108sr−1 denotes the number density in the reach of Euclid [Lau+11]. The size

noise was explicitly used here, since the surface brightness fluctuations δI/I are actually pro-
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portional to size fluctuations δs/s. With the same methods as described in Section 4.4.6 for the

intrinsic flexion one can also find the cumulated signal-to-noise ratios for the CII
AB(ℓ), CYI

AB(ℓ)

and CYY
AB(ℓ) spectra, both for elliptical galaxies and a full galaxy sample for the two choices of

Sérsic indices. These are depicted in Figures 5.3 to 5.6.
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Figure 5.3: Cumulated signal-to-noise ratio for the surface brightness variation spectra
with Sérsic index n = 1, a 5-bin tomography, and elliptical galaxy sample:
The cumulated signal-to-noise ratios of the GI and GG spectra are compared to
the one of the II spectrum for different choices of area-metric parameters, namely
η−1 = 10χH with δ = 10−2, and η−1 = 100χH with δ = 10−4.

For a Euclid-like survey one can see that in most cases, i.e. for both an exponential galaxy

profile or de Vaucouleurs profile, and for ellipticals only, as well as a full galaxy sample, the

cumulated signal-to-noise ratios for the CYI
AB(ℓ) and CYY

AB(ℓ) signals do - by far - not exceed a

signal-to-noise ratio of about Σ(ℓ) = 1. However, observability is possible for Σ(ℓ) = 3, which

is only reached by the cumulated signal-to-noise ratio of the CII
AB(ℓ) spectrum for n = 1 and a

sample of elliptical galaxies only. For a full galaxy sample the signal-to-noise ratio for n = 1

reaches at most Σ(ℓ) = 1, while for n = 4 the magnitude of the signal is between 10−2 and

10−3 for both types of samples.

Furthermore, the cumulated signal-to-noise ratios for the CYI
AB(ℓ) and CYY

AB(ℓ) signals generally
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Figure 5.4: Cumulated signal-to-noise ratio for the surface brightness variation spectra
with Sérsic index n = 4, a 5-bin tomography, and elliptical galaxy sample:
The cumulated signal-to-noise ratios of the GI and GG spectra are compared to
the one of the II spectrum for different choices of area-metric parameters, namely
η−1 = 10χH with δ = 10−2, and η−1 = 100χH with δ = 10−4.

remain flat. This is because the spectra themselves decrease for higher multipole order ℓ such

that the summed up signal does not increase significantly beyond multipole orders of ℓ > 10.

Thus, it is concluded that surface brightness fluctuations are hard to observe even in the context

of general relativity due intrinsic alingment. Additionally, with the surface brightness fluctu-

ation spectra proposed here, it is not possible to measure the area-metric refinements with

surveys like Euclid, if the corresponding parameters η and δ are to be less than η ≤ 1/(10χH)

and δ ≤ 0.01.

Next, it will be investigated in more detail how different choices for the inverse range η would

affect the spectra by fixing the coupling δ to a small value. To fix δ to a plausible value one can

make the following consideration, similar to [Rie20]: If η→ 0 the exponential in the Yukawa

correction goes to 1. Thus, the gravitational potential would actually be a Newtonian potential
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Figure 5.5: Cumulated signal-to-noise ratio for the surface brightness variation spectra
with Sérsic index n = 1, a 5-bin tomography, and full galaxy sample: The
cumulated signal-to-noise ratios of the GI and GG spectra are compared to the
one of the II spectrum for different choices of area-metric parameters, namely
η−1 = 10χH with δ = 10−2, and η−1 = 100χH with δ = 10−4.

with gravitational consant G (1 + δ):

Φ
(
r − r′

)
= −

GM
|r − r′|

(1 + δ) .

Consequently, the numerical value of δ should be limited by the relative uncertainty of G,

which is stated as 2.2 × 10−5 by CODATA [Tie+21]. Thus, for the following considerations

the value for the coupling is set to δ = 10−5, while the values for η will be varied to investi-

gate its effect on the shape of the spectra. Also for simplicity, only the curves for non-linear

structure formation are plotted. This is depicted in Figure 5.7

The shape of the spectra looks similar to the ones in the previous Figures 5.1 and 5.2, however

the amplitdue is suppressed. Accordingly, the cumulated signal-to-noise ratios for elliptical

galaxies and a full galaxy sample are given in Figures 5.8 and 5.9.
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Figure 5.6: Cumulated signal-to-noise ratio for the surface brightness variation spectra
with Sérsic index n = 4, a 5-bin tomography, and full galaxy sample: The
cumulated signal-to-noise ratios of the GI and GG spectra are compared to the
one of the II spectrum for different choices of area-metric parameters, namely
η−1 = 10χH with δ = 10−2, and η−1 = 100χH with δ = 10−4.

The GI and GG spectra, as well as their cumulated signal-to-noise ratios for different val-

ues of η, may also be depicted. However, since the shape of the spectra is not strongly affected

by this parameter, the curves would overlap and would not be distinguishable. Hence, the

curves for different values of η are not plotted here. Yet, it is still possible to compare the ratio

of the GI spectra and the GG spectra for different values of η as shown in Figures 5.10 and

5.11.

The spectra for different η do not vary much in shape and amplitude as long as δ is kept fixed.

Thus, the ratio between CYI
AB (ℓ) spectra, respectively CYY

AB (ℓ) spectra, is close to one, such that

the curves in the Figures 5.10 and 5.11 are close to zero. They even drop exponentially for

increasing multipole order ℓ. Therefore, differences in η would - if resolvable - only be noti-

cable for low multipole orders, and hence large scales.

One specifically uses the ratio - instead of the difference - of two spectra to express the differ-

ence between them, since they depend on η in a non-linear way.
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Figure 5.7: Surface brightness variation spectra for Sérsic index n = 1 and a 5-bin to-
mography: The amplitudes of the GI and GG spectra are compared to the II
spectrum for η−1 = χH , while the value for the coupling is fixed to δ = 10−5.

So, to understand, how the ratio of the different spectra measures a difference in the various

η parameters (denoted η1 and η2 for instance), the following estimation may be done: The

spectra (5.40) and (5.39) depend on η via CYI
AB (ℓ) ∝

(
1 + η2a2

)−1
, and CYY

AB (ℓ) ∝
(
1 + η2a2

)−2
.

Thus, since η is small, this leads to the following approximations:

CYI
AB (η1) ∝

(
1 + η2

1a2
)−1
≈ 1 − η2

1,

CYI
AB (η2) ∝

(
1 + η2

2a2
)−1
≈ 1 − η2

2.

This leads to

⇒
CYI

AB (η1)

CYI
AB (η2)

− 1 ≈
1 − η2

1

1 − η2
2

− 1 ≈ η2
2 − η

2
1 = ∆η

2.
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Figure 5.8: Cumulated signal-to-noise ratio for the surface brightness variation spectra
with Sérsic index n = 1, a 5-bin tomography, and elliptical galaxy sample:
The cumulated signal-to-noise ratios of the GI and GG spectra are compared to
the cumulated signal-to-noise ratio of the II spectrum for η−1 = χH , while the
value for the coupling is fixed to δ = 10−5.

Similarly, it holds that

CYY
AB (η1)

CYY
AB (η2)

− 1 ≈
1 − 2η2

1

1 − 2η2
2

− 1 ≈ 2η2
2 − 2η2

1 = 2∆η2.

To summarize, two effects of surface brightness variations were compared; once in the con-

text of general relativity and intrinsic alignment, and once for a modified Etherington dis-

tance duality in the context of area-metric lensing. Assuming that area-metric corrections are

very weak it was demonstrated, that surface brightness variations due to intrinsic alignment

are dominating. Especially, with a Euclid-like survey only the intrinsic effect may be mea-

sured. Larger parameters might be chosen, as for instance discussed in recent studies [Rie20];

[Hen+21], where the data of rotation curves was fitted. However here, cases were discussed,

where the modifications to the Etherington distance duality occur on scales of at least a few

Hubble lengths.
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Figure 5.9: Cumulated signal-to-noise ratio for the surface brightness variation spectra
with Sérsic index n = 1, a 5-bin tomography, and full galaxy sample: The
cumulated signal-to-noise ratios of the GI and GG spectra are compared to the
cumulated signal-to-noise ratio of the II spectrum for η−1 = χH , while the value
for the coupling is fixed to δ = 10−5.

Another way to test the modified Etherington distance duality in weak lensing is the magnifi-

cation bias factor, as will be discussed in the following section.

5.5 Magnification bias in weakly birefringent spacetimes

Before discussing the magnification bias, the derivation of the flux magnification law of weak

lensing is summarized, following the discussion by [SEF92]; [BS01]. Then it will demon-

strated how this law is altered due to a violation term µvio in the Etherington distance duality

relation.

The relation between observed specific surface brightness Iω (β) and observed specific flux

density Fω for an infinitesimal source at angular position β is generally given by [BS01];

[SEF92]

dFω,obs = Iω (β) d2β. (5.41)
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Figure 5.10: Ratio of the GI spectra for different values of η and fixed δ = 10−5: a) The
ratio CYI

AB

(
ℓ, η−1 = 10χH

)
/CYI

AB

(
ℓ, η−1 = χH

)
−1 is depicted in orange for a 5-bin

tomography.
b) The ratio CYI

AB

(
ℓ, η−1 = 100χH

)
/CYI

AB

(
ℓ, η−1 = 10χH

)
− 1 is depicted in red for

a 5-bin tomography. In both cases the difference between the spectra is close to
zero and exponentially decreasing with increasing multipole order ℓ.

For an extended source integration over the source angular area is required, what leads to

Fω;obs =

∫
d2β Iω (β) .

The Etherington distance duality shall now be inserted into equation (5.41). Thus, it needs to

be expressed via the angular diameter distance DA in (5.22) and the uncorrected luminosity

distance DL as is discussed in the following paragraph.
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Figure 5.11: Ratio of the GG spectra for different values of η and fixed δ = 10−5: a) The
ratio CYY

AB

(
ℓ, η−1 = 10χH

)
/CYY

AB

(
ℓ, η−1 = χH

)
−1 is depicted in orange for a 5-bin

tomography.
b) The ratio CYY

AB

(
ℓ, η−1 = 100χH

)
/CYY

AB

(
ℓ, η−1 = 10χH

)
− 1 is depicted in red for

a 5-bin tomography. In both cases the difference between the spectra is close to
zero and exponentially decreasing with increasing multipole order ℓ.

First of all, the definition

DA =

(
dAS

dΩO

)1/2

,

is inserted into (5.41). Here, the solid angle under which the source appears for the observer

is given by dβ2 = dΩO if no lensing occurs. This leads to

dFω,obs = Iω (β) dAS D−2
A . (5.42)
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If lensing occurs the solid angle dθ2 under which an object appears to the observer in the lense

plane at angular position θ is magnified according to [SEF92]

dθ2 = detA−1dβ2 = µ (θ (β)) dβ2 = µ (θ (β)) dAS D−2
A = dAS D′−2

A ,

⇒ D′A =
1√

µ (θ (β))
DA.

(5.43)

Here,A is the Jacobian of the lens map and the magnification factor µ (θ (β)) is purely geomet-

rically defined as detA−1 ≡ µ (θ (β)). The angular diameter distance scales with the inverse

of the square root of the magnification factor, and thus effectively becomes smaller if lensing

magnification occurs.

Since DL ∝ DA due to the Etherington reciprocity relation, it follows that magnification affects

the luminosity distance as

D′L =
1√

µ (θ (β))
DL.

Thus, also the luminosity distance is effectively decreased due to magnification, it may be

concluded for the flux that [SEF92]

F =
L

4πDL
2 ,

⇒F′ ∝
1

D′2L
∝
µ (θ (β))

D2
L

∝ Fµ (θ (β)) ,

where the luminosity L of the source is not changed. All in all, the increase in flux is ulti-

mately caused by the reduction of the angular diameter distance. Further rewriting (5.42) in

terms of the luminosity distance measure one can directly read off where modifications of the

Etherington distance duality relation will affect the final result for the flux magnification. With

the specific surface brightness Iω (β) given as

Iω (β) =
1

(1 + z)3

dL(1+z)ω

4π dAS
=

1
(1 + z)3

4π dF(1+z)ω D2
L

4πdAS
=

1
(1 + z)4

dFω D2
L

dAS
,

as discussed in (5.30) the flux magnification law can be written as

dFω,obs =
1

(1 + z)4

dFω D2
L

dAS
dAS D′−2

A =
1

(1 + z)4 dFω D2
LD′−2

A = dFωµeff (θ (β)) (1 + µvio) .

(5.44)

Here the Etherington distance duality

DL

DA (1 + z)2 =
√

1 + µvio (θ (β)),
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and the angular diameter distance

D′A = 1/
√
µeff (θ (β))DA

for lensing were inserted. The factor µeff is the effective magnification factor, depending on

the explicit lens map. This result can be confirmed for three examples:

• No lensing and µvio = 0:

dFω,obs = dFω.

The observed flux does not change compared to the emitted flux.

• Standard lensing in general relativity and µvio = 0:

dFω,obs = dFω µ (θ (β)) .

This is the standard flux magnification law in lensing ([SEF92]).

• Area-metric lensing with Yukawa correction term and µvio , 0:

dFω,obs = dFωµeff (θ (β)) (1 + µvio (θ (β)) .

There is an effective magnification factor µeff (θ (β)). It looks different compared to

the factor for standard lensing in general relativity, due to a different kind of effective

metric given in [SW17]. Beyond that there is an additional factor (1+µvio), which arises

because of the Etherington distance duality modification predicted by [SW17]. Thus,

the total flux magnification µtot is then given by

µtot = µeff (1 + µvio) ≈ 1 + δµeff + µvio + δµeffµvio ≈ 1 + 2κeff + µvio,

where the magnification µeff is supposed to be close to one µeff = 1 + δµeff in weak

lensing [BS01].

Finally, the total magnification spectrum is altered compared to [BS01] and given by

Cδµtotδµtot
AB (ℓ) = 4Cκeffκeff

AB (ℓ) + 4Cκeffµvio
AB (ℓ) +Cµvioµvio

AB (ℓ).
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Here the cross-correlation Cκeffµvio
AB (ℓ) is given by

Cκeffµvio
AB (ℓ) =

3
4

l2δ
∫ χH

0

dχ
χ2 WY,A(χ)WΨ,B(χ)

(
1 +

δ̃

2
+ a2η2k−2

)
×

(
k2 + η2a2

)−2
Pδcδc(k),

while the auto-correlations Cκeffκeff
AB (ℓ) is given in equation (5.14), and finally Cµvioµvio

AB (ℓ) is given

in equation (5.38).

Generally, the magnification bias describes how the number count of sources can be increased

or decreased due to gravitational lensing for a flux limited survey [BS01]; [SEF92].

In the standard treatment (for instance discussed in [BS01]) the number density distribution

for observed sources above a certain flux threshold Fmin of a specific survey within a redshift

interval dz is given by

n0 (> Fmin, z) dz.

Without lensing the number density of observed sources would be the number of sources dN

counted within a specific solid angle dΩO = d2β of the observed sky patch. Hence, the number

density scales with the angular diameter distance as

n0 (> Fmin, z) =
dN (> Fmin, z)

dΩO
=

dN (> Fmin, z)
dA

D2
A.

Here, dA denotes the actual area of the observed sky patch in the source plane. Also Fmin

marks the actual flux threshold below which observation of sources is not possible in a flux

limited survey. If no lensing occurs this is equal to the minimally observable flux F = Fmin.

If magnification occurs the sources appear brighter, so the actually observable flux threshold

Fmin is effectively lowered to observe fainter sources. However, also the solid angle of obser-

vation is stretched, such that the effective density of the sources is lowered. These effects are

competing and it depends on the detailed flux law to determine which effect is dominant.

As discussed previously the corresponding flux scales can be expressed via the Etherington

distance duality relation as

Fmin = F(1 + z)4D−2
L D′2A.
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Consequently, if lensing occurs, the number density of the observed galaxies is generally given

by

n (> Fmin, z) =
dN (> Fmin, z)

dΩO
=

dN (> Fmin, z)
dθ2 =

dN
(
> F(1 + z)4D−2

L D′2A, z
)

dA
D′2A

=
1

µeff (θ (β))

dN
(
> F/µeff (θ (β)) (1 + z)4D−2

L D2
A, z

)
dA

D2
A

=
1

µeff (θ (β))
n0

(
>

F
µeff (θ (β))

(1 + z)4D−2
L D2

A, z
)
,

(5.45)

with

dΩO = dθ2 = µeff (θ (β)) dAD−2
A µeff (θ (β)) = dAD′−2

A .

If the Etherington distance duality is not modified, i.e. for general relativity, the result (5.45)

reproduces the number density derived in [BS01] for instance.

From observation it is known [BS01]; [SEF92] that the number density distribution scales

with a flux power law as

n0 (> F, z) ∝ F−αp0(z;> F), (5.46)

with p0(z;> F) as redshift probability distribution of sources with flux larger than some

threshold F. For typical galaxies this distribution is usually given by (5.13).

However, for quasars as sources a different kind of redshift distribution has to be provided,

especially since the maximum abundance of quasars appears at redshifts around z ≈ 2. − 3.

[Pei95], while for galaxies it is between z ≈ 0.9 − 1.5 [Lau+11]. There are various expres-

sions for the quasar distance distribution in [Pei95], but for simplicity the distribution (5.13)

is chosen as functional form for the quasar source distribution p0(z). Yet, one sets z0 = 1.98 -

instead of z0 = 0.64 as for typical galaxies - to ensure that the median of the quasar distance

distribution is around z = 2.8 with redshift value according to [Pei95].

Consequently, due to the flux power law (5.46), the relation (5.45) can be simplfied to

n (> Fmin, z) =
1

µeff (θ (β))
n0

(
>

F
µeff (θ (β))

(1 + z)4D−2
L D2

A, z
)

∝ F−αµeff (θ (β))α−1 (1 + z)−4αD2α
L D−2α

A p0

(
z;>

F
µeff (θ (β))

(1 + z)4D−2
L D2

A

)
.

185



The bias factor can then be obtained by integration over the number density distribution with

respect to the redshift as

q (θ ) =
n (> F)
n0 (> F)

=

∫
dz F−αµeff (θ (β) , z)α−1 (1 + z)−4αD2α

L D−2α
A p0

(
z;> F/µeff (θ (β) , z) (1 + z)4D−2

L D2
A

)∫
dz F−αp0 (> F, z)

=

∫
dz µeff (θ (β) , z)α−1 (1 + z)−4αD2α

L D−2α
A p0

(
z;>

F
µeff (θ (β) , z)

(1 + z)4D−2
L D2

A

)
,

(5.47)

where the magnification µeff (θ (β) , z) is also a function of redshift.

If there is no violation of the Etherington distance duality relation, the expression (5.47) will

simply yield the standard result for the magnification bias factor [BS01]; [SEF92] given as

q (θ ) =
∫

dz µ (θ (β) , z)α−1 (1 + z)−4αD2α
L D−2α

A p0

(
z;>

F
µ (θ (β) , z)

(1 + z)4D−2
L D2

A

)
=

∫
dz µ (θ (β) , z)α−1 p0

(
z;>

F
µ (θ (β) , z)

)
.

If a violation of the Etherington distance duality occurs the magnification bias factor becomes

q (θ ) =
∫

dz µeff (θ (β) , z)α−1 (1 + z)−4αD2α
L D−2α

A p0

(
z;>

F
µeff (θ (β) , z)

(1 + z)4D−2
L D2

A

)
=

∫
dz µeff (θ (β) , z)α−1 (1 + µvio(z))αp0

(
z;>

F
µeff (θ (β) , z) (1 + µvio (θ (β) , z))

)
.

With the magnification factor µeff close to one and thus

µα−1
eff = (1 + δµeff)α−1 ≈ 1 + (α − 1) δµeff,

and the violating factor µvio close to zero such that

(1 + µvio)α ≈ 1 + αµvio,

the bias factor is approximately given by

q (θ) ≈ 1 +
∫

dz (α − 1)δµeff (θ (β) , z) p0 (z) +
∫

dz αµvio (θ (β) , z) p0 (z)

+ O (δµeff (θ (β) , z) µvio (θ (β) , z)) ,
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with short notation

p0 (z) = p0

(
z;>

F
µeff (θ, z) (1 + µvio (θ (β) , z))

)
.

Here, the term proportional to δµeffµvio is neglected to first order approximation, and it was

used that
∫

dz p0 (z) = 1. In this case, the magnification bias factor gets an extra bias term

from the Etherington distance duality violation. Additionally, the effective convergence will

be different compared to conventional gravitational lensing.

Averaging over the source distribution with∫
dz (α − 1)δµeff (θ, z) p0 (z) ≡ (α − 1)δµ̄eff (θ) ,

and ∫
dz αµvio (θ, z) p0 (z) ≡ αµ̄vio (θ) ,

the bias factor is given by

q (θ ) ≈1 + (α − 1)δµ̄eff (θ) + αµ̄vio (θ) . (5.48)

Using that in weak lensing the magnification and convergence are related via

δµeff (θ, χ(z)) ≈ 2κeff (θ, χ(z)) = ∆θΨ (θ, χ(z)) = 2∆θ

∫ χ

0
dχ′

χ − χ′

χχ′
ΦDef

(
χ′θ, χ′

)
,

the average over different sources along the line of sight of the effective magnification fluctu-

ation δµ̄eff
(
θ⃗
)

in equation (5.48) becomes

δµ̄eff (θ) = 2∆θ

∫ χH

0
dχ

dz
dχ

(α − 1)
∫ χ

0
dχ′

χ − χ′

χχ′
ΦDef

(
χ′θ, χ′

)
p0 (z(χ)) .

Standard re-arrangement (see for instance also [BS01]) of the integrals according to Fubini’s

law [AW] and taking the growth factor D+(a) for the density - and hence potential fluctuations

- into account with −dχH (χ) = cdz, leads to

δµ̄eff (θ) = ∆θ

∫ χH

0
dχ
ΦDef

c2 (χθ, χ) aWΨ,B (χ) ,

with weighting function

WΨ,B (χ) =
2
χ

D+(a)
a

∫ χB+1

max(χB,χ)
dχ′ p0

(
z(χ′)

) H(χ′)
c

(
1 −

χ

χ′

)
,
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for a tomographic analysis with red-shift bin B. This is similar to standard results, as for

instance discussed by [LHG07], but with a Yukawa refinement of the deflection potential. For

the term µ̄vio (θ) measuring the averaged photon excess in area-metric spacetime the relation

(5.36) holds as discussed previoulsy. With this result an explicit expression for the modified

magnification bias factor can be obtained.

Now, the magnification bias factor affects the number count and thus the cross-correlation

between observed sources - which could be quasars - and galaxies, tracing the LSS responsible

for lensing. In this case the cross-correlation of the relative number counts is generally given

by [BS01]

ζQG (ϕ) =
〈[

nQ(θ) −
〈
nQ

〉] [
nG(θ + ϕ) − ⟨nG⟩

]〉〈
nQ

〉
⟨nG⟩

.

The number count nQ(θ) for sources - for instance quasars - within a certain angle is then

generally given in terms of the mean number count
〈
nQ

〉
and the magnification bias q as

[BS01]

nQ(θ) = q (θ)
〈
nQ

〉
.

Similarly, the relative number count fluctuation of foreground galaxies ans structures acting

as lenses is given in terms of the line of sight integrated mean density contrast

δ̄c(θ) =
∫ χH

0
dχ

H(χ)
c

p(z(χ))Θ(χB − χ)D+(a)δc(θχ, χ) ≡
∫ χH

0
dχaWδc,B(χ)δc(θχ, χ),

with weigthing function: Wδc,B(χ) ≡
H(χ)

c
p(z(χ))Θ(χB − χ)

D+(a)
a

,

via a linear relation [BS01]
⟨[nG(θ) − ⟨nG⟩]⟩

⟨nG⟩
= bδ̄c(θ),

with a possibly scale-dependent galaxy bias factor b(k). This galaxy bias factor measures how

the number density of galaxies scales with the mean density contrast. For most applications

one can in fact use a constant bias factor with b ≈ 1 [Dio+13] with a very weak scale de-

pendence only. However, the scale behaviour of the bias factor, especially due to relativistic

corrections on horizon scales is involved in its own right. Details can be found in [Tan+18];

[Dio+13]; [Bal+11] for instance.

The galaxy-quasar cross-correlation is then given by

ζQG (ϕ) =
〈[

nQ(θ) −
〈
nQ

〉] [
nG(θ + ϕ) − ⟨nG⟩

]〉〈
nQ

〉
⟨nG⟩

= b (α − 1)
〈
δµ̄eff (θ) δ̄c(θ + ϕ)

〉
+ bα

〈
µ̄vio (θ) δ̄c(θ + ϕ)

〉
,
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with the according spectrum in Fourier space

CQG
AB (ℓ) = b(α − 1)Cδµ̄eff δ̄c

AB (ℓ) + bαCµ̄vio δ̄c
AB (ℓ). (5.49)

The effective magnification-density spectrum Cδµ̄eff δ̄c
AB (ℓ) is then - using Limber’s approxima-

tion - given by

Cδµ̄eff δ̄c
AB (ℓ) = l2

∫ χH

0
dχ a

WΨ,A(χ)Wδc,B(χ)
χ2

(
k2 + η2a2

)−1

×

(
1 +

δ̃

2
+ a2η2k−2

)
3Ωm0

2χ2
H

Pδcδc(k),
(5.50)

which becomes equivalent to the standard result in [BS01], when setting the constants δ̃ and

η of the area-metric theory to zero. The spectrum measuring the correlation between the

averaged photon excess and the foreground lenses Cµ̄vio δ̄c
AB (ℓ) is given by

Cµ̄vio δ̄c
AB (ℓ) =

3
2

∫ χH

0
dχa

WY,A (χ) Wδc,B(χ)
χ2 δ

(
k2 + η2a2

)−1 3Ωm0

2χ2
H

Pδcδc(k), (5.51)

with weighting function adjusted to account for the quasar distance distribution p0(z) as

WY,A (χ) = p0 (z(χ))Θ (χA − χ)
H (χ)

c
D+(a)

a
.

5.6 Numerical evaluation of the galaxy-quasar cross-correlation spectra

Lastly, the galaxy-quasar cross-correlation spectrum as discussed in Section 5.5 will be de-

picted graphically and compared to the spectrum expected for general relativity. By the same

arguments as in Section 5.4 the coupling parameter δ and the refined parameter δ̃ are set to

δ = δ̃ = 10−5. In general, these two parameters could differ, but for simplicity they are set

equal since, for they should be of similar magnitude. For the range η−1 of the Yukawa in-

teraction one Hubble length η−1 = χH is chosen, noting that different choices for η would

not alter the shape of the spectra a lot, as also discussed in Section 5.4. For the exponent

of the flux power law of the sources α = 2.5 is chosen, what corresponds to an observation

in the optical range [BS01]. The galaxy bias is set to b = 1.5 and is hence in the admissi-

ble range between b = 1 − 2 as discussed in [BS01]. Furthermore,no separation into tomo-

graphic bins is performed to depict the cross-correlation. The corresponding power spectra for

CQG(ℓ) = b(α−1)Cδµ̄eff δ̄c
AB (ℓ)+bαCµ̄vio δ̄c

AB (ℓ) in (5.49), as well as its single constituents Cδµ̄eff δ̄c(ℓ)

in (5.50) and Cµ̄vio δ̄c(ℓ) in (5.51) are illustrated in Figure 5.12. The plots show that the shape

of the spectrum is mainly dominated by the cross-correlation between the density fluctua-
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Figure 5.12: Galaxy-quasar cross-correlation spectrum with area-metric refinements:
The plot shows the power spectrum for the galaxy-quasar cross-correlation
CQG(ℓ) depicted in green, as well as its single constituents Cδµ̄eff δ̄c(ℓ) in orange
and Cµ̄vio δ̄c(ℓ) in blue for δ = δ̃ = 10−5 and η = 1/χH . The thin lines correspond
to a spectrum based on linear structure formation, while the thick lines include
non-linear refinements in the power spectrum according to [Smi+03].

tions and the effective lensing magnification in the area-metric setting. The magnitude of the

spectrum Cµ̄vio δ̄c(ℓ) containing the Etherington distance duality violating term is strongly sup-

pressed and starts at 10−14 for small multipole orders. It then decreases for smaller structures,

while the Cδµ̄eff δ̄c(ℓ) spectrum starts at magnitudes between 10−7 and 10−6, and increases for

larger multipole order. Thus, one may conclude that even for an Etherington distance duality

violating term the quasar magnification bias is mainly dominated by the effective lensing con-

vergence for the parameters chosen. The flux enhancement due to an effective photon excess

only leads to a subdominant effect.

Furthermore, the galaxy-quasar cross-correlation spectrum with area-metric refinements is

compared to the spectrum expected for general relativity. Therefore, setting the area-metric

parameters to zero recovers the standard CQG(ℓ) spectrum. This is illustrated in Figure 5.13.

The CQG(ℓ)GR spectrum as expectted in general relativity is subtracted from the spectrum
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Figure 5.13: Galaxy-quasar cross-correlation spectrum for general relativity and com-
parison to spectrum with area-metric refinements: The plot shows the power
spectrum for the galaxy-quasar cross-correlation CQG(ℓ)GR as expected for gen-
eral relativity (orange curve), as well as its difference ∆CQG(ℓ) to the spectrum
CQG(ℓ)AM containing area-metric refinements (blue curve). Thin lines indicate
a linear power spectrum, while the thick lines are spectra based on non-linear
structure formation.

CQG(ℓ)AM with area-metric refinements. One sees, that in total the area-metric corrections

have no substantial effect on the amplitude of the galaxy-quasar cross-correlation spectrum for

the chosen parameters δ and η: The magnitude of ∆CQG(ℓ) starts around 10−11 for large scales

and increases to 10−9 for small scales, while the amplitude of the power spectrum CQG(ℓ)GR

starts at 10−7 to 10−6 and increases up to 10−3 for multipole orders l ≥ 3000, similar to the

total spectrum in Figure 5.12.

5.7 Summary and outlook

To summarize, it was investigated how area-metric refinements in a weakly birefringent space-

time, which lead to a modification in the Etherington distance duality relation, could have an

effect on observables in lensing like surface brightness, or the magnification bias. On the
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one hand it was demonstrated how surface brightness fluctuations are caused by a modified

Etherington distance duality in area-metric lensing. On the other hand a similar effect is also

already observable in galaxies at the level of classical astrophysics due to intrinsic alignment.

A comparison of both effects shows that the intrinsic alignment effect is dominant and could

even by observed with surveys like Euclid. Contrary, the effects of area-metric gravity would

hardly be observable if the unknown parameters δ and η were as chosen in this work. While

η has only very little effect on the amplitudes of the corresponding spectra, they can be in-

creased by tuning δ accordingly. Choosing δ ∝ 1 the signal strength would even be of similar

magnitude as the signal caused by surface brightness variation due to intrinsic alignment. Yet,

such a value is probably unrealistic for δ, as it would imply that the Yukawa refinement and

Newtonian potential were of similar magnitude. However, even if effects of weak birefrin-

gence in lensing are subdominant, one can still use the spectra as derived in this thesis as a

parameterization for Bayesian inference for instance.

As a further remark, the area-metric theory does not constrain these parameters a priori. Thus,

they were assumed to scale with the Hubble length on cosmological scales. However, Yukawa

corrections can also be investigated locally as done for instance by [Rie20]; [Hen+21] for

galaxy rotation curves. A further remark in this context is, that Yukawa corrections of the po-

tential may generally occur in various f (R)-gravity classes (see for instance [AT10]; [Cli+12];

[Rie20]), but the violation of the Etherington distance duality is a specific property of the

area-metric theory. Furthermore, similar violations may also appear in different contexts, like

exotic photon-axion mixing [BK04] for instance.

As a further remark, the results derived here are first order approximations, and various as-

sumptions were made, like assuming a ΛCDM model on an FLRW metric induced cosmolog-

cial background. Also, for a fully consistent study, Yukawa corrections would need to be

included on galaxy scales and in structure formation models as discussed in [Rie20]. But

then, the questions arises whether these further refinements would actually be resolvabe given

that the magnitude of area-metric refinements in lensing in this first order approximation are

very low. Beyond that, one could loosen the assumption that a simple ΛCDM model is con-

sidered and instead also include higher order corrections of the refined Friedmann equations

in area-metric theory as discussed by [Fis17]; [Due20].
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6 Summary and outlook

This thesis discussed three different main topics, which are summarized in this final chapter.

It will also be discussed which issues and open questions came up within the projects, and

how they could be addressed in future work:

Constructive Gravity and solutions for spherically symmetric spacetimes

Firstly, in Chapter 1, basic ideas about of the constructive gravity program (see for instance

[Dü+18]; [Due20]; [Wol22]) have been summarized. Furthermore, a massive dispersion re-

lation was postulated in the new observer definition, which is based on [Wie18]; [Wol22];

[Sch20], guided by the steps laid out in [RRS11]. Then, the constructive gravity program

was systematically applied to spherically symmetric, metric spacetimes in Chapter 2. The

goal was to construct the metric Schwarzschild solution, and similar types of solutions like

the Painlevé-Gullstrand solution as proof of principle, without employing the gravitational

field equations of general relativity in the process. This calculation also served to demon-

strate how the according steps could possibly be adapted to find similar solutions for more

general spacetime structures. The calculations were performed in the new observer definition

by [Wie18]; [Sch20]; [Wol22], closely guided by steps taken in previous work by [Due20];

[Dü+20]; [Fis17], who used the observer definition by [RRS11] to study FLRW solutions. As

expected, the closure equations produced the standard results known from general relativity.

Next, in Chapter 3, a spherically symmetric, stationary area-metric spacetime was considered.

An according ansatz for this kind of spacetime was worked out to derive the symmetry reduced

input coefficients for the closure equations. Additionally, it was addressed how the notion of

staticity as discrete time-reflection symmetry cannot be generalized to an area-metric. But it

still survives for the principal polynomial and its dual, and thus the massless and massive par-

ticle action. The Schwarzschild spacetime can thus be characterized such, that there is always

a frame where Frobenius integrability condition, and thus hypersurface orthogonality, holds

for the timelike Killing vector field.

It was subsequently discussed, that the collapse problem within the closure equations is most

obstructive for finding a general solution to these even for this symmetry reduced case. This

is also problematic, since, according to [Wol22], the principal polynomial for the matter and

the geometry do not coincide, what they, however, must for a consistent co-evolution. This
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issue could be addressed by explicitly demanding them to be equal. That may lead to more

conditions on the output coefficients, and possibly also solve the collapse problem [Wol22]

However, it is actually desirable that this condition arises in the constructive gravity program

already with sufficient input, and does not have to be enforced in the end to make things con-

sistent.

The difficulty in this case is also, that there is generally a non-vanishing boundary term, which

might depend on ∂nφ to arbitrary order n. It does not see the dynamical evolution but still

appears in the action. While in the metric case this boundary term CA
[
φ
]
= δΛ

[
φ
]
/δφA is

decoupled from all the other output coefficients [Wol22], this is does not hold for a more

general case. Instead, all output coefficients get mixed up in the closure equations due to the

non-vanishing MAγ-coefficient [Wol22]; [Wie]. It is not clear how one could separate them

accordingly.

Another issue is whether all information that is contained in the closure equations is actually

made explicit, i.e. whether the system of partial differential equations contains hidden inte-

grability conditions, which could somehow simplify the general solution or contain further

insights. This problem of involutivity, which was omitted in this thesis, but is still a very

important concept for the constructive gravity program in general, was addressed in [Wie18];

[Wol22] for instance. Especially in [Wol22] it was shown that only the covariance part of

the closure equations, which comes from the second algebra relation (1.19), is in involutive

form. A natural next step would be to show, whether or not this also holds for the system

of countably many partial differential equations coming from the first algebra relation (1.18),

and what can be learned from that.

So all in all, it is likely, that further conditions need to be specified in the constructive gravity

program itself, before further solutions may be found. Another line of thought could be to

study if there is possible further information contained in higher order hypersurface defor-

mation brackets. For instance, efforts were made to study the outcome of tertiary brackets

like

[
H (N1) ,H (N2) ,H (N3)

]
=H (N1)

[
H (N2) ,H (N3)

]
+H (N2)

[
H (N3) ,H (N1)

]
+H (N3)

[
H (N1) ,H (N2)

]
.
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Additionally, also quaternary brackets like

[
H (N1) ,H (N2) ,H (N3) ,H (N4)

]
=H (N1)

[
H (N2) ,H (N3) ,H (N4)

]
+H (N2)

[
H (N3) ,H (N4) ,H (N1)

]
+H (N3)

[
H (N4) ,H (N1) ,H (N2)

]
+H (N4)

[
H (N1) ,H (N2) ,H (N3)

]
,

were studied. The goal was to see if the system of closure equations can be enlarged with

further equations directly containing higher order components of the principal tensor pαβγ

or pαβγδ for example. This idea was inspired by the so called Nambu-brackets in classical

mechanics [Nam73], which can be considered as generalized Poisson brackets. They were

thought of as potential candidates to mimic the higher order commutator brackets stated above

in the canonical description. Unfortunately, the output of the tertiary and quaternary brackets

as given above did not yield functional differential operators on the embedding space Xt. In-

stead, the results also contained terms proportional to δ2/δX2
t and thus these brackets do not

close. However, as discussed with [Scha], these outputs could possibly be used as vector fields

on the tangent space of the embedding space, to construct a suitable algebra in a second order

tangent bundle over Xt, what can be done in future research.

A further interesting idea would be to try to implement the sign conditions which arise when

demanding bihyperbolicity for the principal polynomial and the corresponding dual poly-

nomial [Scha] in the canonical description. The sign conditions are discussed in detail in

[RRS11] for a general principal polynomial. They were also discussed for a spherically sym-

metric, stationary area-metric spacetime in Chapter 2 as explicit example.

At last, and as was already mentioned in the introductory Chapter 0, it would also be an in-

teresting case study to apply the constructive gravity program to a matter action describing

a spinor with coupling to torsion to see which kind of gravity action would arise from this.

One might expect to find a theory similar to ECSK, but of course, this can only be verified by

explicit calculation.

Intrinsic and extrinsic gravitational flexions

In Chapter 4 it was first summarized how flexions arise and can be measured in the context of

weak gravitational lensing, based on works by [Bac+06]; [GB05]; [OUF07]. Flexions are im-

age distortions caused by variations in the tidal field of the lens via third derivatives ∂a∂b∂cΦ

in the gravitational potential Φ of the LSS (large-scale structure). They introduce a centroid

shift, as well as a three-fold symmetry in lensed images of sources. Then, a linear intrin-
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sic alignment model of elliptical galaxies [GDS21], i.e. an alignment of the galaxies within

the local tidal fields, was briefly discussed. In general, it is important to be able to quan-

tify the intrinsic alignment effect precisely, for it is an important systematic error on weak

lensing. With the linear alignment model for elliptical galaxies intrinsic gravitational flexions

were derived accordingly, using the HOLICs formalism introduced by [OUF07]. The intrinsic

flexions introduce an intrinsic shape distortion for elliptical galaxies, similarly to the weak

lensing flexion. The goal was to study, whether these intrinsic effects can be measured with

Euclid-like surveys, and the magnitude of the intrinsic and extrinsic flexion auto- and cross-

correlations were compared for a tomographic analysis. It turned out, that even for optimistic

choices of flexion noise, as stated by [OUF07], the intrinsic effect was not measurable, but

only the lensing flexion auto-correlation spectra. For more realistic choices of flexion disper-

sions, as discussed in [Row+13], the intrinsic flexion auto-correlation and cross-correlation

with lensing flexions is not measurable. Furthermore, this work specified the scaling behavior

and analytical form of the alignment parameter DIA in more detail. This parameter is a propor-

tionality constant measuring the strength of the alignment effect. It was specifically analyzed

how this parameter changes with Sérsic index n, and how it scales for a galaxy in a virialized

model compared to the Sérsic model. This work lead to the publication Intrinsic and extrin-
sic gravitational flexions which appeared in the Monthly Notices of the Royal Astronomical

Society (December 2021), 510, 2773–2789.

To enhance measurability of the intrinsic flexion effect one could investigate the cross-correlation

with intrinsic size and ellipticities, or weak lensing convergence and shear in future work. The

cumulated signal-to-noise ratio is expected to be larger, since ellipticities and size can be mea-

sured with smaller relative uncertainty. But of course a thorough numerical evaluation would

need to be performed to state this more precisely.

A further interesting idea for the linear alignment model in general is to study whether there

may also be a time-dependence in the alignment parameter. This loosens the assumption,

made by [GDS21] of instantaneous backreaction of the galaxy to tidal forces. As discussed by

[SAB21] gravitational potentials of halos can locally be described within a boosted reference

frame. This so-called boosted potential can then - according to [SAB21] - be approximated by

a self-potential of the system and a time-dependent tidal field. The evolution and alignment

of the halos could then be given by this time-dependent tidal field, and thus also the according

galaxy alignment. Finally, this be useful for understanding the time dependence of the tidal

field of the LSS [SAB21]. It would thus be interesting to study in future work, how this time-

dependence might influence the linear alignment model, or whether the alignment parameter

itself could become time-dependent, containing the evolution history of the LSS.
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Phenomenological tests for weakly birefringent spacetimes in weak lensing

Chapter 5 of this thesis thematized the phenomenology of weakly birefringent spacetimes,

which imply a violation of the Etherington distance duality relation. A specific solution in

this context is a weakly area-metric spacetime as predicted in a weak field limit of the con-

structive gravity program, with a point mass as source of the gravitational field [Sch+17];

[Ale20b]. The solution gives rise to additional Yukawa interactions in the gravitational po-

tential, characterized by a coupling parameter δ to the Newtonian interaction, and an inverse

interaction range η. As a remark, the numerical values for these parameters are not specified

by the constructive gravity program. Here, this solution was considered for a continuous mass

distribution, and it was studied how standard quantities in weak gravitational lensing like im-

age convergence are modified by this extra Yukawa potential term.

Another important property of the solution for a weakly birefringent spacetime considered by

[Sch+17]; [Ale20b] is that it violates the Etherington distance duality. This relation specifies

in what way the angular diameter distance, which measures how apparent object sizes scale

compared to their physical size, and the luminosity distance, which is a scaling measure for

brightness and fluxes, are related. Now, for metric spacetimes this duality relation between

these two distance measures is a fundamental. It is violated for weakly birefingent spacetimes

though, as shown by [SW17], and the violation is proportional to a Yukawa potential. The

modification of the Etherington distance duality also translates into a violation of the surface

brightness conservation law in weak lensing. This leads to relative surface brightness fluctu-

ations δI/IY which depend on the Yukawa correction. In this thesis the CδĪ/ĪY δĪ/ĪY
AB (ℓ) spectra

for these surface brightness fluctuations were derived and numerically evaluated. Further-

more, their cumulated signal-to-noise ratio was derived, to estimate their measurability. Here,

the parameter values for δ and η were chosen such, that these violations occur on scales cor-

responding to multiple Hubble lengths. Additionally, the value for δ was chosen to be in the

magnitude of the uncertainty of the gravitational constant G.

It was also shown that there is a similar effect of surface brightness fluctuation arising in the

context of classical linear intrinsic alignment with Newtonian gravity, as was discussed in

Chapter 4. While tidal fields were assumed not to enhance star formation in galaxies to first

order, the flux of these galaxies was not affected. However, they caused changes in intrinsic

size, what leads to an intrinsic surface brightness fluctuation effect with δI/I. The accord-

ing spectra CδĪ/Ī δĪ/Ī
AB (ℓ) for this effect, as well as the cross-correlation CδĪ/ĪY δĪ/Ī

AB (ℓ) with the

Etherington distance duality violating lensing effect were derived. Their shape, amplitude

and the corresponding cumulated signal-to-noise ratio were evaluated. It turned out, that only

the intrinsic effect can be measured with a Euclid-like survey. The magnitude of the surface

brightness fluctuation in a weakly area-metric geometry becomes comparable to the intrinsic
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effect for δ ∝ 1. Thus, with the parameters δ and η chosen in this work it turns out, that the

intrinsic effect is always dominant compared to the effect coming from a weakly birefringent

spacetime. These findings can also be found in the article Etherington duality breaking:
gravitational lensing in non-metric spacetimes versus intrinsic alignments (August 2022),

arXiv:2208.07197, which was submitted to the Monthly Notices of the Royal Astronomical

Society.

It was furthermore discussed how a weakly birefringent area-metric spacetime structure, which

violates the Etherington distance duality relation, affects other observable lensing quantities

like the quasar magnification bias. This bias factor measures how the number count of distant

quasars is affected due to weak lensing for a flux limited survey. There are two competing

effects: On the one hand there is flux magnification, such that sources appear brighter and are

thus more likely to be detected. On the other hand, magnification also leads to an apparent

stretching of the observed sky patch, such that the number density of sources is geometrically

decreased. It was shown that an area-metric refinement to the lensing potential due to the

additional Yukawa potential leads to a change in effective magnification and additional flux

magnification due to the Etherington distance duality violation. However, with the numerical

values chosen here the modification of the galaxy-quasar cross-correlation spectrum compared

to the general relativity case is of magnitude 10−11 to 10−7.

In this thesis some assumptions were made, which could be loosened for a more thorough

investigation in future work: First of all, it was assumed throughout the calculations that the

cosmological model was given by ΛCDM, thereby setting the additional scale factor c, which

arises in the flat area-metric cosmology as additional degree of freedom [Due20]; [Fis17],

to 1. It would be interesting to study, what happens if one were to use the more general

model, though. However, this would still require a better understanding of the flat cosmologi-

cal solution in general, especially the additional source degree of freedom besides density and

pressure found by [Due20]; [Fis17].

Also, it would be interesting to study how the additional Yukawa interaction as predicted in

the weakly birefringent set-up affects the intrinsic alignment model. In the current work it

was assumed, that the corrections would be small on local scales. Thus, they would not be

resolvable within the uncertainty of the alignment parameter DIA, whose numerical value is

only determined up to a factor of 10. The parameters η and δ were chosen such, that they only

become relevant on cosmological scales, with the classical intrinsic alignment effect setting

an upper boundary to the strength of the surface brightness fluctuation. Furthermore, it would

be interesting to study whether an according Yukawa modification of the power spectrum (see

also [Rie20]) might influence the whole results.
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Beyond these additions, it is also important to note, that the observed surface brightness fluc-

tuations are in general also affected by the orientation of the sources with respect to the line of

sight. While observing a galaxy face on, the brightness is of course larger, than observing it

edge on. Crucially, intrinsic alignment in the tidal fields of the LSS not only affect the shape

and size of galaxies. But they also affect, how they get oriented with respect to the field and

the observer, as studied for instance by [KH10].

In a flux limited survey this will also lead to a selection bias, which depends on the intrinsic

alignment strength: Galaxies which are observed face on get selected preferably, what also

affects the galaxy bias b as shown by [KH10]. This in turn can also affect the quasar mag-

nification bias in general, since the galaxy bias also enters in the calculation. It would be

interesting to study how this orientation effect might alter the findings in this thesis, which is

up to further research.

Another important factor when it comes to measuring the surface brightness of sources is the

so-called Malmquist bias [Mal25]: The higher the redshift range observed, i.e. the larger the

distance to the observer, in a flux limited survey, the higher the intrinsic brightness of galax-

ies, which pass the selection process. While galaxies in an overdense region have an increased

surface brightness due to intrinsic alignment, galaxies in an underdense region will be fainter,

and thus they will be selected less likely with increasing redshift. How this bias might affect

the observation of surface brightness fluctuations due to the Etherington distance duality re-

lation is not yet clear, since the sign of δ is not known. If the violating factor µvio is larger

than 0, the sources could appear brighter, therefore being selected with higher probability. On

the other hand if µvio < 0, sources appear fainter, and would be selected less likely for higher

redshifts. How this bias might affect the overall results concerning the spectra and the cu-

mulated signal-to-noise ratio, especially as functions of wavenumber k, is indeed interesting,

especially in regards to actual observations, and up to future research.

To summarize, in the weak field limit it is possible to study the effect of area-metric ge-

ometries on weak lensing observables, like surface brightness variations or the quasar mag-

nification bias. This comes with a caveat, since the corresponding signatures of this exotic

geometry structure are very weak. Especially, when considering surface brightness fluctua-

tions for instance, effects from classical astrophysics like intrinsic alignment have to be taken

into account as well. These were shown to dominate any signatures coming from a non-metric

geometry, such that different ways to test for area-metric spacetimes need to be proposed as

well. Thus, besides analyzing weak lensing observables there is also the perspective to learn

more about the strong gravity regime with modern experiments like LIGO or EHT. How-
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ever, explicit application of the constructive gravity program for deriving solutions in the

strong gravity regime, like the Schwarzschild solution, for area-metric geometries is still out

of reach. Thus, a better understanding of the program itself forms the basis to find different

types of astrophysical solutions on an area-metric spacetime in the future.
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Part I

Appendix
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A Gravitational closure equations

This is the complete set of gravitational closure equations worked out by [Dü+18]; [Due20];

[Wol22]. Here, the LaTex template of [Due20] was adapted to display them within the new,

alternative observer definition based on [Wie18]; [Sch20]; [Wol22], similar to [Wie18]. The

equations split up in the seven individual equations (C1)-(C7), and the sequence equations

(C8N≥2)-(C21odd N≥3).

Seven individual equations

(C1) 0 = −C δ
γ
µ +

∞∑
K=0

(K + 1)
[
C:A

α1...αKγ
(
φA

,µα1...αK + FA
µ
αK+1

,α1...αK+1

)
−C:A

(α1...αK | FA
µ
|γ)

,α1...αK

]
(C2) 0 = −CB δ

γ
µ −CA FA

µ
γ

:B +

∞∑
K=0

(K + 1)
[
CB:A

γα1...αK
(
φA

,µα1...αK + FA
µ
αK+1

,α1...αK+1

)]
−

∞∑
K=0

(K + 1) CB:A
(α1...αK | FA

µ
|γ)

,α1...αK

(C3) 0 = 2 (deg P# − 1)−1 CAB p# ρ(µ| FA
ρ
|ν) +

∞∑
K=0

(K + 1) CB:A
α1...αK (µ| MA|ν)

,α1...αK

−

∞∑
K=0

(−1)K

K + 2

K

 (∂K
α1...αK

C:B
α1...αKµν

)
(C4) 0 = 2 (deg P# − 1)−1 CAB

(
p# µν φA

,ν − p# µν
,γ FA

ν
γ
)
−CA MAµ

:B

−

∞∑
K=0

CB:A
α1...αK MAµ

,α1...αK −

∞∑
K=0

(−1)K (K + 1)
(
∂K
α1...αK

C:A
α1...αKµ

)
(C5) 0 = 2 ∂µ

(
CA MA[µ|

:B MB|γ]
)
− 2 (deg P# − 1)−1 p# ργ[CA φ

A
,ρ + ∂µ(CA FA

ρ
µ )]

+

∞∑
K=0

C:A
α1...αK MAγ

,α1...αK

+

∞∑
K=0

K∑
J=0

(−1)J

K

J

 (J + 1) ∂J
α1...αJ

(
C:A

β1...βK−J(α1...αJ | MA|γ)
,β1...βK−J

)
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(C6) 0 = 6 (deg P# − 1)−1 CAB1B2

(
p# µν φA

,ν − p# µν
,γ FA

ν
γ
)
− 4 CA(B1 | M

Aµ
:|B2)

− 2 CB1B2:A MAµ − 2 CB1B2:A
α MAµ

,α − 2 CB1B2:A
αβ MAµ

,αβ −CB2:B1
µ

−

∞∑
K=0

(−1)K (K + 1)
(
∂K
α1...αK

CB1:B2
µα1...αK

)
(C7) 0 =

∞∑
K=0

K+1∑
J=2

(−1)J

 K

J − 1

  J

N

 (J − 1) ∂J+1
γα1...αJ

(
C:A

β1...βK−J(α1...αJ | MA|γ)
,β1...βK−J

)

Fourteen sequence equations

(C8N≥2) 0 =
∞∑

K=0

K + N

N

 [C:A
β1...βNα1...αK

(
φA

,µα1...αK + FA
µ
αK+1

,α1...αK+1

)
−C:A

(β1...βNα1...αK−1 | FA
µ
|αK )

,α1...αK

]
(C9N≥2) 0 =

∞∑
K=0

K + N

N

 [CB:A
β1...βNα1...αK

(
φA

,µα1...αK + FA
µ
αK+1

,α1...αK+1

)
−CB:A

(β1...βNα1...αK−1 | FA
µ
|αK )

,α1...αK

]
(C10N≥2) 0 = −CB1...BN δ

γ
µ − N CA(B1...BN−1 | F

A
µ
γ

:|BN ) −CB1...BN :A FA
µ
γ +CB1...BN :A

γ φA
,µ

−CB1...BN :A
α FA

µ
γ
,α −CB1...BN :A

α1α2 FA
µ
γ
,α1α2 + 2 CB1...BN :A

αγ φA
,αµ

(C11N≥2) 0 = CB1...BN :A
β1β2 φA

,µ − 2 CB1...BN :A
α(β1 | FA

µ
|β2)

,α −CB1...BN :A
(β1 | FA

µ
|β2)

(C12N≥2) 0 = CB1...BN :A
(β1β2 | FA

µ
|β3)

(C13N≥2) 0 = CB1...BN :A
(β1β2 | MA|β3)

(C14N≥2) 0 = CAB1...BN−1

[
(deg P# − 1)−1 p# ρµFA

ρ
ν − MB[µ| MA|ν]

:B
]

(C15N≥2) 0 = CB1...B̃J ...BN+1:BJ

µν −CB1...BN :BN+1
µν for J = 1 . . .N + 1

(C16N≥2) 0 = N (N + 1) (deg P# − 1)−1 CAB1...BN p# ρ(µ| FA
ρ
|ν) + N CB1...BN :A

(µ| MA|ν)

+ 2 N CB1...BN :A
α(µ| MA|ν)

,α + (N − 2) CB1...BN−1:BN
µν

(C17N≥2) 0 = (N + 2) (N + 1) (deg P# − 1)−1 CAB1...BN+1

(
p# µγφA

,γ − p# µν
,γ FA

ν
γ
)

− (N + 1)2 CA(B1...BN | M
Aµ

:|BN+1) − (N + 1) CB1...BN :A MAµ

− (N + 1) CB1...BN :A
α MAµ

,α − (N + 1) CB1...BN :A
αβ MAµ

,αβ

−

N+1∑
K=0

CB1...B̃K ...BN+1:BK

µ + 2
(
∂γCB1...BN :BN+1

µγ
)
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(C18N≥2) 0 = CB2:B1
µ1...µN −

∞∑
K=0

(−1)K+N

K + N

N

 (∂K
α1...αK

CB1:B2
α1...αKµ1...µN

)
(C19N≥2) 0 =

∞∑
K=0

K + N

N

CB:A
α1...αK (µ1...µN | MA|µN+1)

,α1...αK

+ (−1)K+N

K + N + 1

N + 1

 (∂K
α1...αK

C:B
α1...αKµ1...µN+1

)
(C20even N≥2) 0 =

∞∑
K=N

K+1∑
J=N+1

(−1)J

 K

J − 1

  J

N


× ∂J−N

α1...αJ−N

(
C:A

βJ ...βK (α1...αJ−Nµ1...µN−1 | MA|µN )
,βJ ...βK

)
(C21odd N≥3) 0 = 2

∞∑
K=N−1

 K

N − 1

 C:A
βN ...βK (µ1...µN−1 | MA|µN )

,βN ...βK

−

∞∑
K=N

K+1∑
J=N+1

 K

J − 1

  J

N


× ∂J−N

α1...αJ−N

(
C:A

βJ ...βK (α1...αJ−Nµ1...µN−1 | MA|µN )
,βJ ...βK

)
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B Frobenius’s integrability theorem

As described in detail in the literature (for instance [Str13];[Wal84];[Sei10]) and briefly sum-

marized here the Frobenius integrability theorem arises in the context of integrability of man-

ifolds [Wal84]: For a n-dimensional manifold a k-dimensional subspace S p of the tangent

space S p ⊂ TpM at every point p ∈ M is considered. Now, the question is, whether there

exists a k-dimensional submanifold N such that its tangent space TpN at every point p ∈ N

corresponds to S p. According to the definition in [Str13], S is a k-dimensional distribution

on M, i.e. a smooth map1 p → S p from the point p to the tangent subspace S p, and N is an

integrable manifold of S if for each point p it holds that [Str13]

Tpι · TpN = S p.

Here, ι denotes the inclusion map of the submanifold N into M as ι : N ↪−→ M. The distribution

S is then called integrable if one can find an integral submanifold through each point p ∈ N

[Str13]. In one dimension, finding this integral submanifold specializes to finding the integral

curve of a vector field through every point p. Another version of the Frobenius integrability

theorem states that, if integral submanifolds for S can be found, it is involute [Wal84]. This

means that, if two vector fields X, Y ∈ S then the commutator [X,Y] ∈ S , too.

As demonstrated in [Str13]; [Wal84], the theorem can also be rephrased in terms of differential

one-forms ω ∈ Ω1(M) (for more details on differential forms see [Nak03] for instance). First,

these one-forms ω are required to annihilate the vector fields X ∈ S , i.e.

ω (X) = 0.

According to [Wal84] they thus form a (n − k)-dimensional co-space W∗p ⊂ T ∗p(M). Now,

W∗ ⊂ Ω(M) shall be associated to the distribution S [Str13] as according co-distribution.

With ω ∈ W∗, µα ∈ W∗ and να ∈ Ω1(M) one can finally show that the Frobenius integrability

theorem can also be formulated such, that

dω =
n−k∑
α=1

µα ∧ να, (B.1)

1To phrase it differently the distribution S can be considered as a subspace of the tangent bundle T M, i.e. S ⊆ T M
[Sei10]
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needs to hold to ensure integrability of S [Wal84]. Here, dω denotes the exterior derivative of

the one-form and ∧ the exterior product.

As an explicit example a one-dimensional co-space can be considered, where ω is the one-

form associated with a vector field V such that ω = V♭. Complementary, there is an associated

distribution S as collection of tangent spaces TpN at each point p with N as (n−1)-dimensional

hypersurface of M, and ω(X) = 0 with X ∈ S . The integrability condition (B.1) for S then

simplifies to [Str13]

ω ∧ dω = 0.

This is necessary and sufficient for

ω = gd f

with integrating factor g and d f as a kind of gradient on the hypersurfaces of f = const

[Str13]. Thus, the integral submanifold of the distribution S under consideration can locally

be described by a constant function f (y) with coordinates y, as also discussed more generally

in [Sei10].

Consequently, for the case of a Lorentzian manifold (M, g) it may be shown, that the vector

field X must be orthogonal to the induced spatial hypersufaces, what corresponds to staticity

of the spacetime (see for instance section 2.2.1).

In case of a manifold with an area-metric as underlying geometric structure equipped with

a Legendre map defined by the (dual) principal polynomial one can still establish a notion

of hypersurface orthogonality for a specific choice of foliation. However, the association to

staticity in its original sense as time-reflection symmetry t → −t is generally different, as

discussed in Section 3.3.
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C Killing condition for the dual principal polynomial

According to [PWS09] the area-metric isomorphism, generated by Killing vector fields K is,

similar to the metric case, given by

G f (p) ( f∗u, f∗w, f∗g, f∗h) = Gp (u,w, g, h) . (C.1)

Here, f : M → M is a diffeomorphism mapping a point p ∈ M to f (p) ∈ M with coordinate

charts ϕ(p) = xa and ϕ( f (p)) = ya′ . A push-forward map f∗ is applied to the vector fields u,

w, g and h.

If f corresponds to a small displacement such that ϕ( f (p)) = ya′ = xa′ + ϵKa′ , with ϵ > 0

being infinitesimally small, standard methods as for instance discussed in [Nak03] show that

the isometry condition (C.1) leads to the Killing condition

LKG = 0.

Now, it can be shown that the isometry condition in G also leads to an isometry for P#, such

that the Killing condition also applies to P#: First, one takes the pull-back f ∗ of P#
f (p) and

explicitly evaluates the expression in the coordinate map as

f ∗P#
f (p)(u,w, g, h) = P#

f (p) ( f∗u, f∗w, f∗g, f∗h) ,

⇒ P#
a′b′c′d′(y)∂ya′

∂xa
∂yb′

∂xb
∂yc′

∂xc
∂yd′

∂xd = −
1
24ω

2
G(y)ϵm′n′p′q′ϵr′s′t′u′Gm′n′r′(a′(y)Gb′ |p′s′ |c′(y)Gd′)q′t′u′(y).

Explicit insertion of the isometry condition for the area-metric

Ga′b′c′d′(y)
∂ya′

∂xa
∂yb′

∂xb

∂yc′

∂xc
∂yd′

∂xd = Gabcd(x),

as well as the according transformation behavior of ϵabcd under diffeomorphisms [Car14]

ϵa′b′c′d′ = det
∣∣∣∣∣∂y
∂x

∣∣∣∣∣−1
ϵabcd ∂ya′

∂xa
∂yb′

∂xb

∂yc′

∂xc
∂yd′

∂xd ,

and thus consequently

ωG(y)2 = ωG(x)2det
∣∣∣∣∣∂y
∂x

∣∣∣∣∣2 ,
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leads to

P#
a′b′c′d′(y)

∂ya′

∂xa
∂yb′

∂xb

∂yc′

∂xc
∂yd′

∂xd = P#
abcds(x).

Thus, the isometry condition for P# is obtained as

f ∗P#
f (p)(u,w, g, h) = P#

f (p) ( f∗u, f∗w, f∗g, f∗h) = P#
p (u,w, g, h) ,

for which the Killing equation

LK P# = 0,

follows from infinitesimal shifts sourced by the Killing vector field K.
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