
Inaugural Dissertation

Submitted to

Combined Faculty of Mathematics, Engineering and Natural Siences

of the

Ruprecht - Karls - University

Heidelberg , Germany

Presented by Maryam Najafian Jazi

Born in: Isfahan, Iran

Oral examination: 16th of December 2022



1



Hippocampal representations of homing based on path
integration

Referees:

Prof. Hannah Monyer
Dr. Alexander Groh
Dr. Amit Agarwal
Dr. Kevin Allen

2



3



Declaration

Declaration according to § 8 (3) b and c of the doctoral degree regulations. a. I

hereby declare that I have written this dissertation myself, and while writing it, I have not

used any other sources or materials except the ones mentioned in the reference

section. b. I hereby declare that I have not applied to be examined at any other

institution. I also have not used this dissertation in this or any other form at any other

institution as an examination paper or any other faculty as a dissertation.

4



Table of Contents

Declaration 4

Table of Contents 5

Summary 7

Zusammenfassung 8

1. Introduction 10
1.1 Path integration 10
1.2 Path Integration In Mammals 11
1.3 Neuronal Circuits Supporting Path Integration 13
1.4 Hippocampus anatomy 17
1.5 Spatial selective neurons contributing to path integration 19

1.5.1  Place cells 19
1.5.2  Head direction cells 22
1.5.3  Grid cells 25
1.5.4  Speed cells 27
1.5.5  Neurons with object-related reference frames 30
1.5.6  Object vector cells 32

1.6 Spatial reference frames in the cognitive map 35
1.7 Experimental paradigms to study PI 36
1.8 Aims of the thesis 38

2. Material and Methods 39
2.1 Apparatus 40
2.2 Subjects 42
2.3 Training procedure 42
2.4 AutoPI task 44
2.5 Analysis of behavioural data 44
2.6 Surgical procedure 46
2.7 Electrophysiological recordings, spike extraction and spike clustering 46
2.8 Analysis of electrophysiological data 48
2.9 Statistical analysis 52

3. Results 52
3.1 Behavioral experiment: 53

3.1.1 Characteristics of the search path predicting homing error 58

5



3.1.2  Above chance level performance after disruption of olfactory cues 63
3.2 Electrophysiological recording from the CA1 region of the hippocampus 65

3.2.1  Pyramidal cell classification 65
3.2.2  Task-dependent hippocampal remapping 72
3.2.3  Lever-box location modulates hippocampal activity during search and homing
behaviour 77
3.3.3  Hippocampal firing fields anchored to the lever box 82
3.3.4  Long search paths associated with reduced directional selectivity of
lever-box-anchored firing fields 86
3.3.5  Lever-box-anchored fields get unstable during inaccurate trials 89
3.3.6  The trial drift of the lever-box-anchored cells correlates with homing direction
during dark trials 92

4. Discussion 94
4.1 Why do we need another behavioural PI paradigm? 95
4.2 Task-dependent activity of place cells 95
4.3 Cells with task-relevant reference frames 97
4.4 PI contributes to the directional selectivity of lever-anchored cells in the dark 99
4.5 Lever-box-anchored fields predict the homing direction 100

5. Limitations and future work 101
6. Conclusion 102

6. References 103

7. Supplementary figures 116

8. List of figures 120

9. List of abbreviations 122

10. Contributions 123

11. Acknowledgement: 124

6



Summary

The ability to plan and execute a journey to a specific destination is essential for

the survival of individuals of different species. Purposeful navigation can be achieved

using landmark-based navigation and path integration. During path integration, the

animal integrates self-motion information to estimate its location. Path integration is

needed when external landmarks, such as visual landmarks, odour or auditory cues, are

unavailable or when the animal visits unfamiliar environments. The study of the

neuronal basis of path integration has been hampered by the lack of behavioural

paradigm assessing path integration that allows simultaneous in vivo

electrophysiological recordings in freely moving animals. Lesion studies have shown

that the hippocampus and parahippocampal area are involved in path integration but the

firing activity of the spatially selective cells, such as place cells, during path integration

is unknown.

Here, we developed a new behavioural paradigm (Automated Path Integration or

AutoPI) to study homing behaviour based on path integration. In this task, a mouse

finds a movable lever on the arena, presses it and returns to its home base to collect a

food reward. Using the AutoPI task, we could record the firing pattern of the neurons in

a large arena and investigate their spatial properties during homing behaviour. We used

silicon probes to record the activity of hippocampal pyramidal cells when mice were

running in AutoPI.

By comparing the firing activity of neurons in the AutoPI task and during random

foraging, we detected a complete reorganisation of hippocampal ensembles. We also

found that several hippocampal pyramidal cells were firing when the animal was close

to the lever (lever-anchored cells), independently of the lever's location on the arena.

The spatial stability of lever-anchored cells was reduced during the trials with inaccurate

homing. Moreover, the firing activity of lever-anchored cells also predicted the homing

direction of the mice. These findings describe how hippocampal neurons with

object-anchored firing fields contribute to homing behavior based on path integration.
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Zusammenfassung
Die Fähigkeit, einen Weg zu einem bestimmten Ziel zu planen und

durchzuführen, ist für das Überleben von Individuen verschiedener Arten von

entscheidender Bedeutung. Eine zielgerichtete Navigation kann mit Hilfe der

landmarkenbasierten Navigation und der Pfadintegration erreicht werden. Bei der

Pfadintegration integriert das Tier Informationen über die Eigenbewegung, um seinen

Standort in der Umgebung zu bestimmen. Die Pfadintegration ist erforderlich, wenn

externe Landmarken wie visuelle Orientierungspunkte, Geruchs- oder Hörzeichen nicht

zur Verfügung stehen oder wenn das Tier eine ihm unbekannte Umgebung aufsucht.

Die Untersuchung der Pfadintegration war dadurch limitiert, dass es bisher kein

Verhaltensparadigma gab, das elektrophysiologische In-vivo-Aufzeichnungen

ermöglichte, während ein Tier eine große Umgebung erkundet. Der Hippocampus und

das parahippocampale Areal sind an der Pfadintegration beteiligt. Allerdings ist die

Aktivität der räumlich selektiven Zellen, wie z. B. der Ortszellen, während der

Pfadintegration unbekannt.

Hier haben wir ein neues Verhaltensparadigma (Automated Path Integration oder

AutoPI) entwickelt, um das auf der Pfadintegration basierende Homing-Verhalten zu

untersuchen. Bei dieser Aufgabe müssen die Mäuse einen beweglichen Hebel in der

Arena finden, ihn betätigen und zur Belohnung zur Ausgangsbasis zurückkehren. Mit

Hilfe der AutoPI-Aufgabe können wir das Feuerungsmuster der Neuronen in einer

großen Arena aufzeichnen und ihre räumlichen Eigenschaften während des Homings in

Licht und Dunkelheit untersuchen. Mit Hilfe von Silizium-Elektroden haben wir die

Aktivität von Pyramidenzellen im Hippocampus während AutoPI und bei der zufälligen

Futtersuche aufgezeichnet.

Durch den Vergleich der Zellaktivität bei der AutoPI-Aufgabe und bei der

zufälligen Futtersuche konnten wir eine vollständige Reorganisation der

Hippocampus-Ensembles feststellen. Wir konnten auch beobachten, dass mehrere

Pyramidenzellen im Hippocampus feuern, wenn sich das Tier in der Nähe des Hebels

befindet (Hebel-verankerte Zellen), unabhängig von der Position des Hebels in der
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Arena. Die räumliche Stabilität der Hebel-verankerten Zellen war reduziert in

Versuchen, die ungenaues Homing aufzeigten. Dadurch konnte die Zielrichtung der

Mäuse durch die Aktivität der Hebel-verankerten Zellen vorhergesagt werden. Diese

Ergebnisse beschreiben wie hippocampale Neuronen, die Objekt-verankerte

Feuermuster aufweisen, zum Homing-Verhalten mittels Pfadintegration beitragen.

9



1. Introduction

1.1 Path integration
Navigation is the ability to plan and execute a route toward a goal. Navigational

strategies include landmark-based navigation and path integration (PI). During

landmark-based navigation, the animal uses external cues to navigate toward a place.

PI, on the other hand, allows the animal to return to their starting point without external

cues. PI, or 'dead-reckoning', was first described by Charles Darwin in 1873. Darwin

argued that both vertebrates and invertebrates could return to their starting point using

the integration of self-motion information. During PI, the animal integrates information

from the self-motion cues (such as vestibular information, optic flow and copies of motor

commands) to calculate its current location and orientation relative to a starting point.

This constant update enables the animal to estimate the direct way back to its home at

any time during an exploratory journey (Walker, 1992; Gallistel & Cramer, 1996) .

Since Darwin, PI has been observed in species ranging from insects to humans

(Ariane S Etienne & Jeffery, 2004, Ariane S. Etienne et al., 1996) . For example, desert

ants can return to their nest after an outward journey of hundred of meters in a

featureless desert (Wehner & Srinivasan, 1981) . In addition, night-active rodents use PI

to navigate during the night when they can not rely on external landmarks (Ariane S.

Etienne et al., 1996). Finally, humans can accomplish navigational tasks that require the

estimation of active or passive displacements using self-motion cues (Wan et al., 2012;

Segen et al., 2021).

PI is an essential mechanism for the animal who has to return home without

external cues. However, when the external landmarks are absent, PI suffers from an

important limitations: it accumulates error with time. Its been shown that animals

estimate their position using multiple sensory modalities such as proprioceptive,
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vestibular, and visual optic flow signals. Each of these signals is processed in their

respective sensory systems. They are then integrated in different brain areas, including

brain stem nuclei and cortical regions. The integration of this multi-sensorial information

leads to estimations of linear and angular velocity (Bassett & Taube, 2001; Britten,

2008). PI-related computations accumulate error in estimating the velocity (due to the

systematic or unbias noise), the time elapsed from the previous events, and the velocity

factor that is required to estimate the following displacement (Stangl et al., 2020).

Because of this accumulation of noise, it has been proposed that during long-distance

journeys the animal uses both path integration and landmark-base navigation to return

home (Ariane S. Etienne et al., 1996 ; McNaughton et al., 2006; Etienne & Jeffery,

2004).

1.2 Path Integration In Mammals
Path integration is usually studied through homing behaviour. For instance,

during the food-carrying task, the animal must search for a large amount of food in an

arena and then return to its nest. One of the difficulties in studying path integration is

confirming that the animal are not using external landmarks such as olfactory, visual or

auditory cues while performing a PI task. Three methods are used to encourage the

animal to rely on PI during homing. These methods includes 1) masking external

landmarks (allocentric cues), 2) using an unfamiliar environment, and 3) creating conflict

between idiotethic (self-motion cues) and external landmarks.

For example Etienne in 190 used the masking method to ensure that hamsters

were using PI. The task of the hamsters was to find their pups in a random place in an

arena, visit a fixed location to get a reward and return to their nest. While hamsters

performed this homing task, Etienne used infrared light, pink noise and sawdust to mask

the potential visual, auditory and olfactory cues (Figure 1, Ariane S. Etienne, 1980).

The second method was to perform the homing experiment in an unfamiliar

environment (Etienne et al., 1985). The third method was to create a conflict between
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external cues such as proximal or distal cues and PI (A. S. Etienne et al., 1995; Ariane

S. Etienne et al., 1986; A. S. Etienne et al., 1985; Etienne et al., 1990). For example,

Etienne and her colleagues designed a circular arena surrounded by a symmetrical

enclosure. Specific visual landmark panoramas were presented against the wall of the

enclosure during the experiment. The arena and the animal's nest were rotated 90

degrees relative to the visual landmark before the start of the test trial. In this situation,

the external panoramic landmarks associated with the nest entrance led the animal to

the previous nest location. However, path integration directed the animal toward the

new location of the nest (A. S. Etienne et al., 1995). Another way to creat a conflict

between PI and external landmarks is to perform rotations of the animal that cannot be

detected by the vestibular system. For example, gerbils were tested to retrieve their

pups from the centre of an arena to their nest located at the border of the arena. The

arena was rotated slowly when the gerbil was in the arena to manipulate the input to the

path integration system. The arena was rotated with a very slow acceleration that is

below the detection threshold of the vestibular system, so that the animal did not

perceive the arena rotation. After the rotation, gerbils returned to their home in a

direction that deviated from the nest by an angle equal to the arena rotation, indicating

that their behavior was guided by path integration (Mittelstaedt & Mittelstaedt, 1980).

12



Figure 1. Homing through PI in the golden hamster A: Outward journey. Before the trial

started, the arena with the nest under the arena was rotated 135 degrees. The nest moved from

position N0° to position N135°. The hamster left the nest from position N135°, and searched for

the pups under infrared light. The animal proceeded to point P1 and then goes to P2, where it is

offered food and fills its pouches. B: Return paths. Only one return path is represented in which

the animal did not reach the arena wall. This figure is adapted from Etienne and K. Jeffery 2004.

1.3 Neuronal Circuits Supporting Path Integration
Lesion studies were the first experiments investigating the brain areas essential

for PI (Whishaw & Tomie, 1997). Previous works showed that damage to the

hippocampus could result in behavioural deficit during spatial navigation paradigms

such as Morris water maze and radial-arm maze tasks (O'Keefe et al., 1971; Morris et

al., 1982; Jarrard, 1995, 1993; O'Keefe & Nadel, 1978). The animal uses the visual

landmark navigation mechanism in the Morris water maze and radial-arm maze.

O'Keefe and Nadel (1978) were probably the first to propose that the hippocampus

could integrate self-motion cues during path integration. Wishaw and his colleagues

were the first to test this hypothesis.

In a first study, Whishaw and Tomie (1997) performed fimbria-fornixlesions in rats

to investigate whether homing behaviour depended on hippocampal formation. The

fornix is a C-shape bundles that acts as one of the major outputs of the hippocampus

(Figure 2). It was previously shown that fimbria-fornix lesions produce memory

impairments typically observed after hippocampal lesions (Gaffan, 1974; Swanson and

Cowan, 1977, 1979, Olton & Papas, 1979).
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Figure 2. Fimbria fornix in the rodent brain. Fibmria are C-shape bundles that are part of the

limbic system and provide the major input and output to the hippocampus. The C-shape bundles

that seperate the two hippocampus are calles fimbria which are joining together again in the

midbrain (called fornix body). The figrue is adapted from Cheung & Cardinal, 2005.

.

In the study by Whishaw and Tomie (1997), rats had to leave their nest under the

arena and search for food in one of the 23 food wells. Rats would carry the large food

pieces to their nest to eat (Whishaw, 1990; Whishaw & Dringenberg, 1992). During the

training phase, the location of the home base remained the same. During the test

session, the home base moved to a new location. Therefore, rats needed to use path

integration to return to the new location of the home base. The experimental apparatus

in this experiment, called food-carrying task, is shown in Figure 3. Rats with

fimbria-fornix lesions were returning to the previous but incorrect home base location.

Control rats could directly return to the new location of their nest. The data from this

study suggested that fimbria-fornix lesioned rats were using visual landmarks to return

to the previous location of the home base. However, they could not use PI to return to

the new location of the home base. In the next experiment, Maaswinkel and his

colleagues (1999) used masks and blindfolds on the control and hippocampal lesioned

rats in the test phase (Maaswinkel et al., 1999). Control and hippocampus-lesioned rats

returned to the familiar and incorrect home base location using visual cues. When
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blindfolded, only control rats returned to the new location of the refuge cage. The author

concluded that rats with hippocampal lesions could not use PI to return to the new

location of the refuge cage in the absence of visual landmarks.

Figure 3. The food-carrying apparatus. The refuge cage is hidden beneath the surface of the

circular open table, and the rat can enter and exit through a hole in the table surface. There are

eight potential entrance and exit holes spaced equidistantly around the table. Locations of food

cups are indicated by open circles (not drawn to scale). This figure is adapted from Whishaw &

Tomie (1997).

The next step to test the neural basis of the path integration was to investigate

whether the brain areas projecting to the hippocampus could also be involved in PI. It

was shown that the vestibular and self-motion information reaches the hippocampus via

the entorhinal, parietal and retrosplenial cortex (Save & Moghaddam, 1996; Smith,

1997). The role of the entorhinal cortex in path integration was first investigated by

Parron and Save (2004). They tested homing accuracy of rats with lesions of the

entorhinal or parietal cortex during a food-carrying task similar to that of Whishaw and

Tomie (1997). To assess the homing accuracy of the animal during homing, they defined

a variable called homing error. Homing error was defined as the angle between the
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home base and the point at which the animal reached the arena's edge. Rats with

entorhinal or parietal lesions had more homing errors (less accurate) during homing

compared to control rats with sham lesions. These findings indicated that the entorhinal

and parietal cortex contribute to homing behaviour. Further studies from Save and

Poucet's laboratory showed that rats with medial entorhinal cortex lesions reduced their

performance during homing. These results highlighted the essential role of the medial

entorhinal cortex in PI (Van Cauter et al., 2012).

Another brain area connected to the hippocampus and entorhinal cortex is the

medial septum. Inactivation of the medial septum strongly reduces the theta oscillation

(6-10 HZ) in the hippocampus and entorhinal cortex (Rawlin et al., 1979; Mizumori et

al., 1990; Koenig et al., 2011) and alters the firing activity of neurons in both regions

(Koenig et al., 2011; Brandon et al., 2011). To test whether the medial septum plays a

role in PI, Jacob and colleagues (2017) inactivated medial septum in rats during a new

distance estimation task on a linear track. In this task, rats had to leave one end of the

track to reach a Plexiglas platform and return to the starting point to receive a food

reward. Rats had to estimate the distance run and return the same distance to get the

reward. During the dark trial, the animal had to estimate the distance run based on

self-motion cues and repeat this behaviour during returning. Besides, Injections of

muscimol into the medial septum increased the variability of the responses when rats

had to run 60 cm. Therefore, the authors suggested that the medial septum is involved

in estimating the distance run and potentially PI (Jacob et al., 2017).

Later studies also showed that the retrosplenial cortex is involved in PI. For

instance, Elduayen and Save (2014) tested rats with a lesion in the retrosplenial cortex

in the food-carrying task. The lesioned rats and the control groups could return to the

home base when the task was conducted in light. However, the performance of the rats

with the retrosplenial lesion dropped when the task was performed in darkness

(Elduayen & Save, 2014). In another study by Cooper and Mizomuri (1999), the
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inactivation of the retrosplenial cortex impaired the performance of the rats in a radial

arm maze during darkness. These results suggested that the retrosplenial cortex has an

essential role in PI.

1.4 Hippocampus anatomy
Hippocampus formation is part of the limbic system in the medial temporal lobe in

the shape of a curved tube similar to the seahorse (see Figure 4). The hippocampus

formation includes the hippocampus proper containing CA1, CA2 and CA3, dentate

gyrus, subicular complex and entorhinal cortex. The major input to the hippocampus is

via the perforant path (major input of the hippocampus) that transfers information from

layer II of the entorhinal cortex to the dendate gyrus. Axons in the perforant path have

synaptic contact with the dendrites of granular cells. The granule cells in the dentate

gyrus then project through their axons (mossy fibres) to the pyramidal cells in CA3. The

pyramidal cells in CA3 then project ipsilaterally to CA1 pyramidal cells through Schaffer

collaterals. The contralateral CA3 and CA1 cells transfer information through

commissural connections. Pyramidal CA1 neurons project to the layer V of the

entorhinal cortex forming the major output of the hippocampus. Neurons in layer II of the

entorhinal cortex connect to the CA1 pyramidal neurons via temporoammonic pathway

which then projects back their axons to the layer V of the enthrinal cortex.
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Figure 4. The basic anatomy of the Hippocampus. Basic anatomy of the hippocampus. The
wiring diagram of the hippocampus is traditionally presented as a trisynaptic loop. In addition to
the sequential trisynaptic circuit, there is a dense associative network interconnecting CA3 cells
on the same side. CA3 pyramidal is also innervated by direct input from layer II cells of the
entorhinal cortex (not shown). The distal apical dendrites of CA1 pyramidal neurons receive
direct input from layer III cells of the entorhinal cortex. There is also substantial modulatory input
to hippocampal neurons. The three major subfields have an elegant laminar organization in
which the cell bodies are tightly packed in an interlocking C-shaped arrangement, with afferent
fibres terminating on selective regions of the dendritic tree. The hippocampus is also home to a
rich diversity of inhibitory neurons that are not shown in the figure. Adapted from Neves et al.,
2008.
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1.5 Spatial selective neurons contributing to path
integration

1.5.1 Place cells

O'Keefe and Dostrovsky (1971) discovered the first spatially selective cells while

recording from the dorsal part of the hippocampus. In this experiment, the spontaneous

activity of the cells was recorded during behaviours such as eating, walking, grooming,

drinking, sniffing or when the animal was restrained in a specific direction of the arena.

Some cells in the hippocampus exhibited place-dependent activity in the arena

independent of animal behaviour. Eight units from the 76 units recorded showed

place-dependent activity in the arena. These cells were active when the animal was

restrained in a particular part of the arena (place field) or faced in a specific direction

(see Figure 5) (O'Keefe & Dostrosvky, 1976). These cells were later called place cells.

It was afterwards suggested that the animal's location in its environment could be

inferred from the joint activity of a small sample of place cells (Wilson & McNaughton,

1996). Therefore, place cells are the essential elements of a spatial internal cognitive

map (O'Keefe & Dostrosvky, 1976; 1976; O'Keefe & Nadel, 1979; Moser et al., 2017).

Further studies in the late 1970s and 1980 were dedicated to investigating what

causes the place cells to fire in a special location in the environment. These studies

showed that place cells had a robust directional selectivity when the animal frequently

ran on a restricted path in a radial arm maze with only one arm openned at a time

(McNaughton et al., 1983). This study investigated the spatial properties of pyramidal

cells recorded from the dorsal hippocampus (CA1 and CA3). The correlation between

the firing activity of the cells with the animal’s direction, position and velocity was

observed in this experiment. Pyramidal cells recorded from the CA1 region of the

hippocampus illustrated a higher spatial/directional tuning than cells recorded from CA3
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of the hippocampus. Also, the place fields of neurons recorded from the CA1 region

were larger than that of the CA3 pyramidal cells.

Figure 5. Discovery of place cells. (a) The first place cell that O’Keef and Dostrosvky

recorded. Arrows and letters show positions at which the animal was restrained as it was

pushed or coaxed around the test platform. Letters correspond to positions, and lines indicate

periods of restraint. The firing rate of the cell is illustrated by the frequency histograms at the

bottom of the figure. The bottom lines show spikes at the onset of the unit response at A (1) and

during the absence of response at D (2). Calibration bar, 400 ms. (b) A place field as typically

displayed today. Top: the animal trajectory is shown in grey lines, and the spike locations are

displayed as black dots. Bottom: colour-coded rate map of the same cell; Dark red is the

maximum firing rate, and dark blue is the minimum firing rate in this plot. Adapted from Moser et

al. (2017).

Muller and Kubie (1987) later tested the effect of environmental changes on the

firing activity of place cells. The experimental apparatus in this experiment was a
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cylinder with a diameter of 76 cm and a height of 51 cm. The inferior wall of the cylinder

was grey except for a white cue card attached to the wall of the arena. The first sets of

manipulation showed that rotation of the cue card (in absence of the animal in the

arena) would result in rotation of the place field with an equal angle. However, changing

the cue card size did not affect the place field's size, shape or radial position in the

arena. Removing the cue card from the cylinder wall had similar effects with no change

in the place field's size, shape and radial position. However, it rotated the angular

position of the fields unpredictably. When the arena's size was scaled, some cells

increased their firing fields. Also, changing the shape of the environment from a circle to

a rectangle increased the size of the place field on 36% of active cells in both

environments. These results demonstrated that the place cells respond to the abstract

features of the environment rather than the raw sensory changes in the environment

(Muller et al., 1987).

Foraging studies were soon followed by studies investigating the external origins

of place cell activity. For example, Gothard and his colleagues recorded a population of

hippocampal place cells while a rat was running between a fixed reward site on one

side and a movable reward site mounted on a sliding box (Gothard et al., 1996). First,

rats were trained to run in a shuttle between a box at one end and a fixed reward site at

the other. In the recording session, while the rat ran toward the fixed reward site, the

other box was moved to a new location. The movement of the box created a mismatch

between the initially learned relationship of the boxes and external landmarks in the rat's

environment. Place cells were active at a fixed distance from the origin on the initial part

of the journey. In contrast, place cells firing was more related to the fixed distance to the

journey's destination on the final part of the trial. These results demonstrated that the

position representation of the place cells was updated using path integration on the

outward part of the journey where the box was located behind the animal. However, the

field of the place cells aligned to the external stimulus farther along the journey.
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Together the data suggested that path integration and external sensory information

interact to update the animal's spatial representation.

In another study, O'Keefe and Burgess (1996) recorded the activity of place cells

in four rectangular boxes. The difference between these boxes was in the length of one

of two axes of the rectangle. Place cells fired at a fixed distance from one wall or a

proportion of the distance from opposite walls. These results were similar with previous

studies on linear track or open field representing the effect of PI in defining the firing

activity of the place cells (Gothard et al., 1996a; Gothard et al., 1996b). Subsequently,

Bjerknes and his colleagues (2018) recorded place cells in adults and premature rats

(17th-34th days after birth; P17-P34) running on a linear track. Place cell firing patterns

can be observed in premature rats from when they leave the nest (P16). However, other

spatial selective cells in medial enthorinal cortex such as grid cells with period spatial

firing patterns were not identified until the fourth week of life. Bjerknes and colleagues

tested the distance-dependent firing activity of place cells in a linear track with different

lengths. Both young and adult rats had place fields with a fixed distance from the start

position of the track in light and dark. This result suggested that self-motion cues can be

used to determine the position of the fields when the input from grid cells is unavailable

(Bjerknes et al., 2018).

1.5.2 Head direction cells

Head-direction (HD) cells fire as a function of animal’s head direction in a

horizontal plane independent of animal location or behaviour. HD cells were first

discovered in the presubiculum (Taube et al., 1990a,b). Taube and his colleagues

(1990) recorded HD cells from the dorsal-presubiculum in rats while running in a

cylinder with a white cue card attached to the arena's wall (Taube et al., 1990). They

found that some cells only fired when the animal's head faced a particular angle in
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allocentric (map-based) coordinates called the cell preferred firing direction. The firing

rate of the HD cells was near zero when the head of the animal was not toward the

preferred head direction of the cell (see Figure 6, b-c). However, the firing rate of the

HD cell increased linearly from zero if the animal shifted his head toward the preferred

direction from either side in an angular range of 90 degrees away (Taube, 2007). HD

cells later found also in the anterior dorsal thalamic nucleus (ADN) (Taube, 1995),

lateral mammillary nuclei (Stackman & Taube, 1998), retrosplenial cortex and entorhinal

cortex (Chen et al. 1994, Cho and Sharp 2001, Sargolini et al., 2006), dorsal striatum,

medial precentral cortex (Wiener 1993, Mizumori et al. 2000), CA1 hippocampus

(Leutgeb et al., 2000) and dorsal tegmental nucleus (DTN) (Taube, 2007).

Figure 6. Discovery of head direcion cells. a: Firing rate versus head direction plot for a

typical HD cell. Firing rates are shown plotted in 6◦ bins. b: Responses of an HD cell following a

180◦ rotation of the visual cue card. The cell's preferred firing direction shifted similarly to the

cue rotation (blue line). It returned to its original orientation when the cue card was returned to

its initial position (red line). The initial recording session is shown as a grey line. c: Responses

of two HD cells were recorded simultaneously after removing the visual cue card. Both cells

retained direction-specific firing without the visual cue, but their preferred firing directions shifted

equally and remained in register with one another. Adopted from (Taube, 2007).

Taube and his colleagues performed sets of experiments to determine the

environmental factors influencing the firing rate of HD cells. In the first set of
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experiments, the environmental manipulation was to rotate the cue card attached to the

cylinder wall as Muller and Kubie did for place cells (1987). The rotation of the cue card

by 45 degrees caused a rotation in the preferred direction of the HD cells by an

approximately equal amount. Rotation of the cue card for 90, 180, and 270 degrees

induced the same rotation in the preferred direction of the HD cells. After the rotation of

the cue card to its initial location, the preferred direction of the HD cells also returned to

their initial values. Removal of the cue card caused only an unpredictable shift in the

preferred direction of HD cells. Next, they tested whether the shape of the environment

changed the prefered direction of HD cells. Changing the shape of the environment

from a circular arena to a rectangular one, followed by a counter-clockwise rotation in a

preferred direction of the HD (Taube et al., 1990b; Taube et al., 1990b; Taube, 1995).

These results suggested that external landmarks in a familiar environment predominate

over the PI mechanism and affect the preferred direct of the HD cells.

Some studies also investigated how HD cells fired when the visual landmarks

conflicted with the idiothetic information (self-motion cues). For example, Goodridge and

Taube (1995) recorded the activity of HD cells while rats were running in a cylinder with

a cue card attached to the arena's wall. Afterwards, the rat was returned to the cylinder

with the cue card removed from the arena's wall. The preferred direction of the HD cells

shifted 30° in the absence of the cue card. The authors later argued that during the

sessions without no cue card, the rat used PI resulted in an accumulation of errors in

estimating the direction of the movement. The reintroduction of the familiar cue card to

the cylinder caused an immediate shift from the preferred direction of the HD cells to

their original established orientations. Together, these results suggested that the

directional information from the idiothetic cues can be corrected in the presence of a

salient visual landmark (Goodridge & Taube, 1995).
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1.5.3 Grid cells
The entorhinal cortex is part of the neocortex in the medial temporal lobe. The

entorhinal cortex is usually divided into the medial entorhinal cortex (MEC) and the

lateral entorhinal cortex (LEC). In rodents, the MEC is located in the ventrocaudal

region of the entorhinal cortex and is connected to the LEC and parasubiculum laterally

and rostrally. The subiculum and presubiculum are anterior to the MEC, while the

postrhinal cortex is adjusted dorsally. The MEC sends projections to the cortical and

subcortical regions of the brain, such as the retrosplenial cortex, hippocampus,

amygdala and medial septum (human: Witter et al., 2000; monkey: Witter and Amaral,

1991; rat: Naber et al., 2001; van Strien et al., 2009; Witter et al., 2017). The MEC has

six principle layers (I-VI) that are divided into the superficial layers (I-III) and the deep

layers (layer IV-VI). Layer II and III of the MEC provides the primary spatially modulated

input to the hippocampus formation. Layer II preferentially projects to the dentate gyrus

and CA3, but layer III provides inputs to CA3 and CA1 of the hippocampus. Spatial firing

properties of the cells in superficial layers of the MEC were not studied until the 1990s

(Fyhn et al., 2004).

Quirk and his colleagues (1992) recorded neurons from the superficial layers of

the MEC to search for the origins of the place fields outside of the hippocampus. The

cells recorded from the superficial layers of the MEC showed spatial-specific properties

similar to what was recorded from CA1 hippocampal cells but with a smaller

signal-to-noise ratio. Further experiments also showed that external visual cues could

also control the spatial properties of the MEC cells, like place cells recorded from the

hippocampus. Further studies on the spatial properties of cells in MEC were continued

on 2005 when Hafting and his colleagues targeted tetrodes at the dorsal part of the

MEC, which is the origin of most of the inputs to the dorsal hippocampus (McNaughton

et al., 2006; Hafting et al., 2005)  . They found that a subset of neurons in dorsal MEC

had multiple separated firing fields (Figure 7). These cells were later called grid cells
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with firing fields that formed a regularly tessellating triangular (hexagons) covering the

entire recording environment.
Figure 7. Grid cells have hexagonal firing fields. (a) Sagittal Nissl-stained section indicating

the recording location (red dot) in layer II of the dMEC. The red line indicates the border to the

postrhinal cortex. (b) Firing fields of three simultaneously recorded cells during 30 min of

running in a large circular enclosure. Cell names refer to tetrode (t) and cell (c). The rat's

trajectory (black) with superimposed spike locations (red) is left. Middle, colour-coded rate map

with the peak rate indicated. Red is maximum; dark blue is zero. Right, spatial autocorrelation

for each rate map. Adapted from Hafting et al., (2005).

Hafting and his colleagues calculated the grid cell’s autocorrelogram to identify

the cell's spatial properties. The autocorrelogram is the correlation of the signal with a

shifted copy of itself. The autocorrelogram is usually used to identify the repeated

pattern of a signal and its frequency. The autocorrelogram analysis of grid cells on the

same tetrode suggested that the nearby grid cells share properties such as spacing,

orientation and size of the field. The distance between the central peak and the inner

hexagon's vertices in the autocorrelogram (spacing) was around 2.1 for the cells on the
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same tetrode. The orientation of the grid pattern in the autocorrelogram was defined as

the angle between the reference line (0 degrees) and the nearest vertex of the inner

hexagon in the counterclockwise direction. The grid cell's orientations were minimally

varied across cells recorded on the same tetrode. The last feature was the field's size,

defined as the area covered by the central peak of the autocorrelogram.

The rotation of the cue card by 90 degrees caused the rotation with the same

angle in the phase and orientation of the grid cell pattern. In the next set of experiments,

Hafting and colleagues tested whether removing the external cues would change the

grid pattern of the cells recorded from dorsal MEC. For this purpose, they recorded the

activity of the cells in dorsal MEC in total darkness for 30 minutes after a baseline

session of 10 minutes which was recorded in light in the same arena. Darkness did not

change the spacing, field size or the average firing rate of the cells. In contrast, from the

beginning of the dark trial, most grid cells showed a drift in the grid pattern, suggesting

that the external cues may determine the phase of the grid pattern to align with the

external reference frame. The persistence of the grid pattern in darkness also

suggested that the cells in dorsal MEC might have a role in PI. The authors later

declared that dorsal MEC potentially performs the computation for the PI since the

convergence of the directional input from the dorsal presubiculum and visuospatial input

from the postrihnal cortex happens in dorsal MEC. This hypothesis was later confirmed

by Gil et al., 2018 and Allen et al., 2014; where disrupted grid cells impaired PI.

1.5.4 Speed cells
Previous studies showed that the hippocampal neuronal activity is coupled with

the running speed during locomotion. For example, Vanderwolf and colleagues showed

that the amplitude of the theta rhythm (slow oscillatory activity within 3-10 Hz) in the

CA1 region of the hippocampus increased linearly with running speed (Vanderwolf et

al., 1969). Later, it was also shown that the firing rate of the pyramidal hippocampal and

interneurons was affected by running speed (Terrazas et al., 2005; Góis & Tort, 2018).
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Moreover, the activity of the place cells in the unrestrained situation was abolished

when the restrained animal was moved passively through the environment (Foster et

al., 1989). This result highlighted the importance of self-motion movement for

generating the firing activity of hippocampal neurons (Bruce L. McNaughton et al.,

2006b). Attenuating the self-motion signal also made the size of the place fields large

(Maurer et al., 2005). Later, the movement-speed signal affecting the scale of the place

fields in the hippocampus should be generated outside of the hippocampus (Bruce L.

McNaughton et al., 2006b).

Grid cells were hypothesised to be a good candidate for the computation of path

integration-based navigation. During PI, the instantaneous displacement of the animal

(running speed) is also calculated across short windows to update the animal's current

location in the environment. Therefore, it was suggested that grid cells need information

from the animal's running speed to perform the path integration computations. Previous

studies showed that the running speed correlated with the entorhinal theta frequency

and the firing rate of some of the MEC neurons (Jeewajee et al., 2008). However, it was

unclear whether there is a separate population of cells in MEC that encode the animal's

speed. To test this hypothesis, Kropff and colleagues recorded cells from all layers of

the MEC while rats were running on a 4-meter-long linear track with a computer-driven

bottomless frame (called bottomless car). Using this setup, they could pre-set the

animal's speed while the rat had to run alongside the track (Figure 8). In this

experiment, rats were trained to run fast on the first half of the track and then slow on

the second half of the linear track. There was a fast transition between the two speeds

in the middle. The firing rate of some cells recorded from MEC showed a speed profile

with a firing rate as a function of the animal's speed. Recording the cells in random

foraging showed that 51% percent of the neurons recorded from MEC increased their

firing rate linearly with speed. The data suggested that the speed modulation is similar

in the random foraging task and the bottomless car experiment (Kropff et al., 2015).
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Figure 8. Speed cells in MEC. a: Bottomless car. b: Mean firing rate (green) and running

speed (grey) as a function of position for three representative speed cells in the MEC. Left and

middle linear speed protocol; right, step protocol. Pearson correlations between instantaneous

running speed and firing rate are indicated. c: Representative speed cells during decelerating

and accelerating events of the step protocol (left and right subpanels, respectively). Top, firing

rate (red, left axis) and running speed (grey, right axis) as a function of time relative to the event

onset. Bottom, spike raster plots. This figure is adapted from (Kropff et al., 2015).

The next set of experiments was performed to test whether the speed cells could

be used for path integration. If the speed cells are involved in PI, the animal's running

speed could be obtained by decoding the cells' firing pattern independent of the

experiment's context. MEC cells were recorded when rats were running in an open field
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trial either in the same room or two different rooms. The construction of the running

speed from this data was highly correlated with the track speed of the animal in both

environments. Likewise, the speed cells were recorded in an open field with the light

on-off-on sequence. The speed profile of the cells was invariant across different light

conditions suggesting that speed cells in MEC present a context-independent speed

code and can be used to decode the animal's speed in different sets of experimental

manipulations (Kropff et al., 2015).

1.5.5 Neurons with object-related reference frames

Most of the studies that have been described so far investigated the firing activity

of the cells in an empty open field. However, the natural world is full of irregular and

different geometrical structures. The previous finding demonstrated that the

hippocampal cell firing activity is affected by distal cues (O’Keefe & Nadel, 1978;

Jarrard, 1993). However, how pyramidal hippocampal cell activity can by controlled by

proximal landmark was not studied until 1996. In this experiment, Gothard and her

colleagues investigated the firing activity of place cells in a navigational task that

required the animal to find the reward location relative to the position of two objects

within the open field (Gothard et al., 1996a). The experimental paradigm was a circular

arena surrounded by a black curtain. Five distinct objects were close to the curtain and

act as static background cues. Two objects were located withing the open field and

determined the location of the reward. The position of these two objects changed

between trials. The task of the animal was to find the location of the reward in relation to

the two movable objects. The animal was released from a box in the arena; the animal

then needed to navigate toward the goal location and return to the box, which was then

located in a new location in the arena (Figure 9).
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Figure 9. Hippocampal cells are firing in a global or local reference frames. a. The two

consecutive trials of the task. Note that the box's position changed both at the start and end of

the trial. b. Four possible reference frames that could explain the firing activity of the cells. Two

trial on each reference frame are shown here (stippled line and solid line). The cells rpresented

in this figure is active when the animal is close to the goal and its silence in other part of the

environment. To better present how these cells are binfing to a particular reference frame, four

different ways was used to aligne the trials. In (A) you see the fixed (arena frame). (B)

Represents the landmark reference frame. (C) shows the end-box reference frame and in (D)

the start-box reference frame is shown. All of the spiking firing are concentrated in a single

arena in the landmark/goal reference frame. However, the spikes are distributed in two seperate

areas in other reference frames. The classification of the cells was based on alignment that

resulted in the tightest concentration of firing (i.e., the largest spatial information per spike).

Adapted from Gothard et al., 1996.

Gothard and colleagues characterized three different types of hippocampal cells

in this experiment. 1. Pyramidal cells with fixed place fields in the arena. 2.

goal/landmark-related cells are firing close to the goal independent of the goal's location

or the landmark in the arena. 3. Box-related cells fire when the animal enters or leaves
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the box independent of the box in the arena. Landmark/goal-related cells and

box-related cells fire at a fixed distance from the landmarks, independent of the box's

location relative to the global reference frame. The results from this experiment

suggested that both the fixed landmarks (global reference frame) and movable

landmarks (local reference frames) can define the reference frame encoded by different

subsets of hippocampal cells. Furthermore, the authors also suggested that

task-relevant landmarks or locations can control the firing activity of a subset of

hippocampal place cells.

1.5.6 Object vector cells
Collet and his colleagues (1986) showed that gerbils could restore information

about their distance and orientation from a specific landmark and later use it to return to

their goal. Later theoretical studies suggested that there should be some cells with

vector-coding properties in the hippocampus and subiculum (Collet et al., 1986).

However, it was unclear how the vectorial information was implemented to help

navigation in a natural environment until the early 2010s. For instance, in 2012,

Deshmukh and his colleagues tested the firing activity of the cells in the lateral

entorhinal cortex (LEC) and perirhinal cortex (PRC) in an open field with objects. In

contrast to the study by Gothard et al. (1996), the rats performed a random foraging

task, and the location of the objects was not task-relevant. Data analysis showed that

LEC and PRC contain object-responsive neurons, increasing their firing rate close to the

object. The spatial stability of the cells recorded in LEC was more than spatial stability

of cells recorded in PRC. In addition, some LEC cells presented stable firing fields away

from the object, similar to place cells recorded in the hippocampus. Authors later

suggested that the cells in the PCR represent more non-spatial information while the

cells in LEC display a combined spatial and non-spatial representation of the space

(Deshmukh et al., 2012).

32



The activity of hippocampal pyramidal cells in the present of an object was not

studied until 2013 (Deshmukh & Knierim, 2013). Deshmukh and Knierim studied the

activity of pyramidal cells (CA1 and CA3) when the rat explored an arena with multiple

discrete objects (see Figure 10). Some place cells called landmark-vector cells encode

the animal's spatial location as a vector relationship to local landmarks. A minority of

recorded place cells developed a new place field located at a similar distance and

direction from the object. Also, a small number of cells in CA1 and CA3 increased their

firing rate in the absence of the object in the location where it used to be. Results from

this experiments suggested that hippocampal place cells encode multiple types of

information regarding the location of the animal and the relationship between the

animal's location and the location of landmarks in the environment (Deshmukh &

Knierim, 2013).

Later in 2019, another study showed that a significant fraction of cells located in

the MEC fire when the animal is located at a specific distance or orientation from an

object. The cells recorded in this study, called object-vector cells, are tuned to an object

independent of the object's location in the arena (Høydal et al., 2019). In this

experiment, mice ran in a square or circular arena with one or more objects located in

the arena. On the first trial of the recording session, the mice explored the arena without

the object. In the subsequent trial, an object was located on the floor of the arena and in

the third trial, the object was moved to a different location. The results showed that MEC

object-vector cells fire at a similar distance across objects. This property of the MEC

object-vector cells is similar to that observed in landmark-vector cells in hippocampus.

33



Figure 10. Object-vector cells fire at fixed distances and directions from the object. a:
Schematics of recording environment (bird’s-eye view). Distance and direction (orientation) are

defined in an allocentric frame concerning the object's centre (central circle). East is 0°. b: Top,

colour-coded firing rate maps (with peak rates) showing an example cell that expressed a new

firing field when an object (white circle) was introduced into the recording enclosure (middle).

When the object was moved, the firing field moved accordingly (right). Mouse and cell identifier

numbers are indicated (5 and 3 digits in length, respectively). Bottom, colour-coded vector maps

showing firing rate for cell in the top row as a function of distance (x-axis) and allocentric

orientation (y-axis) from the object's centre. The vector map for the non-object trial is referred to

the object position on the object trial. c: Fractions of grid cells, object-vector cells and border

cells in the entire population of recorded MEC cells. d: A subset of object-vector cells had two

object-vector fields. Symbols as in b. Adapted from Hoydal et al., 2019

Moreover, Høydal and his colleagues recorded the activity of MEC cells in a

familiar (A) and novel environment (B). All the object-vector cells recorded in A also had

object-vector fields in B. The data suggested that the object-vector cells in MEC are

tuned to an object from the first time of exposure to the new object or new environment.
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Therefore, object-vector cells in MEC maintain their distance metrics across the

environment. The data from this experiment suggested that object-vector cells in MEC

are coding the animal's position in the allocentric vector coding system, which is

different from cells observed in the hippocampus and subiculum. Also, the object-vector

cells in MEC differ from object cells in LEC. The object cells in the LEC respond to the

object when the animal is at the object but not when the animal perceives the object

from a distance. Object-vector cells recorded in MEC use stable landmarks as reference

frames in their environment to navigate. Therefore, object-vector cells, unlike object

cells, provide information for the position mapping of the animal in space between the

objects in the environment (Høydal et al., 2019).

1.6 Spatial reference frames in the cognitive map

The hippocampus can encode the animal's position in the environment in relation

to the external landmark (McNaughton et al., 1991). During navigation, the distance and

direction of the animal are updated using self-motion information relative to an external

landmark. The information about the direction and speed of movement is then encoded

by a set of activated place cells relative to a local or global reference frame. In other

words, place cells provide information about the distance and direction (vector) from an

arbitrary point in the frame within a reference frame. Repetitive visits with a constant

internal orientation reference would update the place representation and establish an

association between the visual stimuli and path integrator. Therefore, visual inputs could

realign the system when reference frame mismatches occur (McNaughton et al., 1991).

In an experiment in 1995, Gothard and his colleagues trained a rat to obtain food

in a linear track with one box at each end while recording from CA1 hippocampal cells.

One of the boxes was fixed, and the other could move in 5 different equally spaced

locations on the track. The rat had to run between the boxes to get the reward. While

the rat was in the fixed box, the other box was randomly moved to one of the five
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locations along the track. Two sets of place cells in this experiment were found. The first

one represented a fixed relationship to the static box (global reference frame), and the

other responded in a fixed relationship to the last-experience location of the box (local

reference frame). Many of the box-related cells shifted their place field according to the

new position of the box. Other cells displayed an interaction between the box's distance

and the track's exact location. This data suggested that box-related cells were

influenced by the local spatial cues of the static reference frame (Gothard et al., 1995).

As the rat explores the new environment, the information from external

landmarks is associated with the current reference frame. This information can then be

used to update the animal's position within the reference frame in later visits

(McNaughton et al., 1996). Without visual input or in total darkness, the reference frame

gets updated using the integration of self-motion information, resulting in an

accumulation of errors. However, during light conditions, the association between the

landmark and the path integrator results in the correction of cumulative error

(McNaughton et al., 1996).

1.7 Experimental paradigms to study PI
Food-carrying task has been one of the paradigms used most frequently to study

path integration in rodents. One limitation of this paradigm is that the animal can

performe a limited number of trials per session (up to 10). Therefore, this paradigm is

not ideal for 1. obtaining a reliable performance estimation for each subject and 2.

recording the cell's spatial properties in a relatively large environment. The only study

that investigated the spatial properties of the cells during the food-carrying task was by

Valerio and Taube (2012). They recorded the activity of HD cells while rats were

performing the food-carrying task. Investigating the spatial properties of HD cells does

not require long recording, where the animal needs to explore a large 2D arena

thoroughly. Recording the HD's firing activity in angles ranging between 0 to 360 is

enough for this purpose. Valerio and Tabe recorded the activity of the HD cells in the
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rest box before and after each trial to compare the HD drifts on each trial. The data

showed that the preferred direction of the head-direction cells had a robust correlation

with the heading error of the animal during the homing behaviour in each trial (Valerio &

Taube, 2012). The activity of the other spatial selective neurons during the path

integration task is unknown.

The L maze task is another paradigm used to study path integration. (Allen et al.,

2014, Gil et al., 2018). In this paradigm, the mouse was trained to swim toward a hidden

platform at the end of the L shape corridor during the initial sample trial. Later during

test trials, the mice had to use path integration in total darkness to find the platform.

This paradigm is not very suitable for in vivo electrophysiological recording since it

would involve recording the activity of mice swimming in water which may interfere with

the quality of the recording signal or damage the electrical device (like the amplifire) on

the head of the animal.

The virtual reality (VR) platform is another paradigm used to study path

integration. In this paradigm, the mouse is typically head-fixed or harnessed on a ball

that can be rotated. The optical sensors tracking the optical ball movement can be used

to update the visual display in front of the animal. One of the advantages of head-fixed

virtual setups is that They allow the manipulation of the environment in a way that is not

easy in the real world. Plus, it is possible to perform intracellular recording and

two-photon imaging while the mouse head is fixed. However, there are several critical

disadvantages of VR systems. Lack of translational vestibular input and sensory-motor

feedback modalities are two disadvantages that may be more behavioural relevant than

the visual inputs used in VR setups (Ravassard et al., 2015). Another available

head-fixed setup is the track floating on air (Kislin et al., 2014; Nashaat et al., 2016).

These setups provide the possibility of sensory feedback modalities during the

navigation, besides providing an opportunity for two-photon imaging (Go et al., 2021).

However, the lack of translational vestibular information remains the same.
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1.8 Aims of the thesis
As mentioned before, the firing activity of place are getting updated by PI

information (Gothard el al., 1996). Studies with lesions of hippocampus and enthorinal

cortex also affected the homig behavior based on PI (Whishaw & Tomie, 1997; Save &

Moghaddam, 1996; Parron & save, 2004). However, the firing pattern of place and grid

cells duing a homing behavior based on PI are still unkown due to the lack of a suitable

behavioral paradigm that allow the characterization of the firing activity of place and grid

cells.

During my PhD, I developed a new PI paradigm suitable to perform in vivio

recording during PI behaviour. To study the spatial properties of spatially selective cells,

it is necessary to record the activity of the cells in a large arena. Therefore, it is

necessary to ensure that the animal visits all parts of the environment during navigation.

In the traditional food-carrying task, it is only possible to record a limited number of trials

per session, making it less likely that the animal would explore all parts of the arena. To

overcome the limitations of current PI tasks, I adapted a classic operant conditioning

paradigm (lever press) for the study of homing based on path integration. In the

automated path integration (AutoPI) task, I can record at least 100 trials per session

without human intervention. In this task, the mouse has to leave the home base, search

and press a lever located on the arena and return to the home base to get one small

pellet. Many trials per session, in combination with the variable position of the lever,

ensure that the animal explores all parts of the arena. In the darkness, the ability of the

mouse to return directly to the home base depends on the PI.

We then used our newly developed task to characterize the activity of hippocampal

neurons during a path-integration-dependent homing task for the first time. I tested

whether place cells encode the animal's position in the object-centre reference frame or

the world-centre coordinate system (reference frame anchored to distal landmarks). I

hypothesized that some place cells encode the animal's location in the object-reference
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frame and others within the world-centre reference frame. Therefore, I expect that the

field of the firing rate for some cells is anchored to the task-relevant object rather than

the world-centre reference frame. I also tested whether the activity of hippocampal

neurons correlates with the homing performance of the animal.
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2. Material and Methods

The material and method is adapted from the manuscript with the title of “Hippocampal

firing fields anchored to a moving object predict homing direction during

path-integration-based behavior” currently in progress.

2.1 Apparatus

The AutoPI apparatus had two parts (see Figure 12.a): a home base (20 x 30 x

30.5 cm) and a circular arena (diameter: 80 cm) that was elevated 45 cm above the

floor. The home base was connected to the arena via a bridge (10 x 10 cm). A sliding

door in front of the home base controlled the mouse's access to the bridge and arena.

The mouse received one pellet as a reward in the food-magazine inside the home base.

The food magazine was equipped with an infrared LED and a receiver to detect the

animal's presence. A costumed pellet dispenser was located behind the home base and

delivered one pellet (AIN-76A Rodent tablets 5 mg, TestDiet) to the magazine on each

trial. The arena was mounted on a taper roller bearing to rotate the arena during the

task. Eight walls were fixed to the arena's edge, creating 1.6 cm high walls along the

arena's edge. There was a 10 cm wide opening between the wall inserts. These

openings were located at multiple of 45° on the arena edge, creating eight potential exit

points to access the home base and the bridge. The arena could always orient to have

one of the eight exit points aligned with the position of the bridge on each trial.

The lever was built on a 2-wheel-drive mobile platform containing two servo

motors and an Arduino Nano with a radio frequency module (NRF24L01). The lever

assembly has a 2000mAh lithium battery with a dimension of 13x10 mm. Pressing the

lever down broke an infrared beam located inside the lever assembly. Using a radio

frequency module, I established a bi-directional communication between the Arduino

nano of the lever assembly and a second Arduino Uno that was connected to the

microcomputer controlling the task (Jetson Xavier Nx or Raspberry Pi 4). The lever
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assembly could move to any position and orientation on the arena. Two other Arduino

Unos controlled arena rotation and movement of the door using stepper motors. Two

cameras, one above the circular arena and one above the home base, were used to

monitor the animal behaviour during the AutoPI task. The cameras were connected to a

microcomputer Jetson Xavier Nx or (Raspberry PI 4) and recorded a video at 30 Hz

(640 x 480 pixels) for further offline processing.

To facilitate the communication between different programs (nodes) controlling

individual parts of the system (door, arena, pellet dispenser, cameras, log), the Robot

Operating System (ROS) was used. ROS allowed coordinating computer programs on

different computers, microcomputers, and Arduinos. The task was controlled by a

python script running on a microcomputer. During the task, a log file containing

task-related events (lever press, food delivery, magazine IR beam break, door

operation, arena rotation, etc.) with their respective timestamps was created.

A closed-loop navigation system moved the lever to a different location. Before

any movement, the current location and orientation of the lever were estimated using

DeepLabCut. The next lever position and orientation were randomly selected within a

circle centred on the arena centre and a radius of 75% of the arena. The movement

vector was then calculated between the current and future pose of the lever. Using radio

frequency communication, the lever was later moved along the movement vector to the

new location and orientation. DeepLabCut was used to confirm the current location with

the estimated pose that was generated before to prevent possible errors in the position

and orientation of the lever.

Lights and white noise: LED stripes above the arena and the home base were the

only visible light source around the setup. I used an Arduino Uno equipped with a relay

module to turn the visible light on and off. Besides the visible LED stripes, there was

one long infrared LED stripe on the arena and another on top of the home base, which
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remained turned on during the training and testing. A white noise (70 dB) was

generated from a speaker directly above or below the arena.

2.2 Subjects
The subjects were 3- to 6-month-old male wild-type C57BL/6 mice. Mice were

singly housed in 26 cm x 20 cm x 14 cm high cages containing 2 cm of sawdust and 2-3

facial tissues. Mice were kept on a 12 hr light-dark schedule with all procedures

performed during the light phase. All experiments were carried out under the European

Committees Directive (86/609/EEC) and were approved by the Governmental

Supervisory Panel on Animal Experiments of Baden Württemberg in Karlsruhe

(G-236/20). Before starting the familiarization with the home base, the experimenter

handled each mouse for 10 minutes per day for three days. Thirteen mice were included

in the behavioural experiments without electrophysiological recordings.

Food restriction: Three days before the familiarization with the home base started,

mice were put on a diet to reduce their weight to approximately 85 % of their normal

weight. Water was available for mice throughout the day. During the food restriction

period, mice were weighed and fed daily. The food restriction continued until the end of

the experiment.

2.3 Training procedure
Familiarization with the home base: To train mice to get rewards inside the food

magazine, I had three days of familiarization step inside the home base. In these three

days there is no lever inside the home base.The animal was placed in the home base

for 20 minutes per day while the home base door remained closed. The animal received

one food pellet inside the food magazine every 30 seconds. The home base

familiarisation was performed under the standard illumination in the light phase.
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Lever training: Lever training started after three days of familiarization with the home

base. In this step, the lever was placed at one of the six potential positions inside the

home base (Figure. 11.a) and remained in the same position for the entire session. The

lever training session was only 30 minutes unless the mouse pressed the lever 100

times earlier. To obtain the next reward, the mouse had to break the infrared beam of

the food magazine between lever presses. This procedure ensured that the mouse

learned to visit the food magazine after pressing the lever. The lever position in the

home base changed between days.

After the sixth day of the lever training inside the home base, the sliding door was

opened, and the lever was moved to the bridge and remained there for the whole

session. Once the mouse readily pressed the lever at the six possible positions in the

home base, the sliding door was open, and the lever was placed on the bridge at the

beginning of the next session. The lever was gradually moved toward the arena by

approximately 2 cm every two days. If a mouse stopped pressing the lever, the lever

was moved back towards the home base by a few cm until the lever press response

reappeared. If a mouse received fewer than 50 rewards during a 30-minute session, the

lever was at the same position during the next session. Once the lever reached the

arena, the same training procedure continued until the lever was at the centre of the

arena. The lever training from where the lever is at the homebase to the time where the

lever is at the centre of the arena took approximately 16-20 training days.

Arena rotations and door operations: In this step, the home base's sliding door was

closed between trials (when the mouse returned to the baited magazine), and the

session time was extended to 60 minutes. During the first two sessions, no arena

rotations were performed. Subsequently, rotations of the arena by multiples of 45° were

introduced between trials. For two sessions, the lever was at the centre of the arena,

and the arena angle varied between -45° to 45°. The range was then increased to -90°

to 90° for two sessions, and all eight possible orientations were used during the last two

sessions. This training ensured the mice learned to press the lever independently of its
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orientation. White noise (approximately 65 dB) was also introduced at that point and

played throughout the sessions.

Lever movement: In this step, the lever movement to the random locations were added

alongside the area's rotation to one of the possible eight rotations between trials. This

procedure ensured that the mouse could press the lever independently of its orientation

and position. The home base's sliding door was closed between the trials to confine the

mouse in the home base during the arena rotation and lever movements. Mice were

trained in this protocol for five days. All training steps described so far took place with

the visible light sources turned on.

2.4 AutoPI task
There were seven light trials at the beginning of the AutopI task (Figure 12.c).

From the eight trial, the visible light switch was flipped after every trial, creating a trial

sequence alternating between light and dark trials in one session. Note that the white

noise was played throughout the whole session. Each trial started when the home base

door opened. The mouse had to search for the lever, press it and return to the

magazine in the home base to collect the reward. When the mouse broke the infrared

(IR) beam inside the food magazine, the sliding door of the home base got closed, and

the trial ended. If the IR beam was not broken within 240 seconds in a dark trial, the

visible light turned on, and the trial ended in the following food magazine IR beam

break. Each AutoPI session ended after 60 minutes or if the lever was pressed 100

times earlier. The arena rotated to one of the eight possible orientations (multiple of 45°)

and the lever moved to a new random pose every fourth trial. Note that the arena

rotation changed the lever position between the other three trials. This procedure

ensured that the search and homing paths were different across trials.
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2.5 Analysis of behavioural data
The data analysis was performed in Python, using the following packages:

NumPy, Pandas, Scipy, Scikit-Learn, OpenCV, Deeplabcut, Matplotlib, and Seaborn.

The code will be made available on GitHub upon publication.

Object detection from the video: The arena centre and arena radius was calculated

using the houghCircles function from the OpenCV library. I trained convolutional neural

networks (DeepLabCut) to detect the position of the bridge, lever and mouse in the

videos (Mathis et al., 2018). Four body parts were tracked offline to extract the mouse's

position on each video frame. The body parts were the nose, two ears and the base of

the tail. The midpoint between the ears was calculated as the animal position on each

frame.

Trial segmentation: The time stamps from the door opening and closing were obtained

from the event log file of each session. Then I established whether the mouse was in

the home base, on the bridge, on the arena or at the lever. A trial was divided into

journeys, which started each time the mouse ran from the bridge to the arena. If the

mouse pressed the lever during a journey, the mouse running path was divided into

search and homing paths.

To separate the search and homing path of the animal on each trial, I needed to

estimate whether the mouse was at the lever. The contour of the lever was first obtained

and generated in two lever areas by scaling up the lever contour by factors of 1.65 and

2.0. When the mouse’s head entered the smaller (x1.65) lever area, It was considered

that the mouse had reached the lever. The search path ranged from the journey's

beginning until the animal reached the lever. Likewise, the homing path ranged from

when the mouse left the lever until it reached the periphery of the arena. It was

considered that the mouse reached the arena periphery if the mouse was less than 3

cm away from the border of the arena. The length, duration, average speed, and
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complexity were then calculated to characterize animal behaviour on each search and

homing path. Trials in which the centre of the lever box was at a distance larger than 30

cm from the centre of the arena were not used in the analysis.

The path complexity was estimated by first calculating the mean vector length of

the movement direction vector within each path. A logarithmic transformation was

applied to this score (natural logarithm of one plus) to reduce the skewness of the

distribution. I referred to the transformed score as path complexity.

2.6 Surgical procedure
Mice were implanted with one, two or four Buzsaki32 silicon probes

(NeuroNexus) aimed at the CA1 region of the dorsal hippocampus. The probes were

mounted on customised microdrives that allowed independent movement in the

dorso-ventral axis. For the surgery, mice were anaesthetised with isoflurane (1–3%) and

fixed to the stereotaxic instrument. The skull was exposed, and two miniature screws

were inserted into the skull. One of the screws was implanted on top of the cerebellum,

and the other one was implanted anterior to the bregma. The screw located above the

cerebellum served as ground electrodes. Next, the skull and dura above the

hippocampus were removed, and the probes were implanted at the following

coordinates (ML: ±1.8 mm from the midline, AP: 2.0 mm posterior to bregma and DV:

0.6 mm from the surface of the brain). The dental cement was used to fix the microdrive

to the skull. During the first 72 hr post-surgery, mice received a subcutaneous injection

of Carprofen (0.1 mg/kg; Rymadil) every 8 hours. Mice were given a week to recover

after surgery.

46



2.7 Electrophysiological recordings, spike extraction
and spike clustering

Mice were connected to the data acquisition system (RHD2000-Series Amplifier

Evaluation System, Intan Technologies, analogue bandwidth 0.09–7603.77 Hz,

sampling rate 20 kHz) via a lightweight cable (RHD 6-ft (1.8 m) ultra-thin SPI cable). The

recording was controlled using ktan software (https://github.com/kevin-allen/ktan).

Kilosort2 (https://github.com/jamesjun/Kilosort2) was used for spike extraction and

clustering. Automatically generated clusters were visually inspected and manually

refined with Phy (https://github.com/cortex-lab/phy).

Clusters' quality was estimated from the spike-time autocorrelation. A refractory

period ratio was calculated from the spike-time autocorrelation from 0 to 25 ms (bin

size: 0.5). The mean number of spikes from 0 to 1.5 ms was divided by the maximum

number of spikes in any bin between 5 and 25 ms. Any cluster with a refractory period

ratio larger than 0.25 was discarded.

In experiments with the electrophysiological recordings, the position of the animal

was estimated from the location of two infrared LEDs attached to one amplifier (RHD 32

channels or 54 channels). The infrared LEDs were attached to a costumed printed

circuit board in the shape of a bracket. The PCB had one infrared LED (small) on the

left side and two infrared LEDs (large) on the right side of the animal head. The distance

between the small and large LEDs was 3 centimetres. Two cameras with an Infrared

lens were installed on top of the arena and home base to record the position of the

LEDs at 30 or 50 Hz during the task. The location of the mouse was extracted online

from the position of the LEDs (https://github.com/kevin-allen/positrack or

https://github.com/kevin-allen/positrack2).

Cable actuator: To ensure that the recording cable did not interfere with the mouse

behaviour, a 2D motorised linear cable actuator was used. The cable actuator was
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located 153 cm above the arena and had a movement range of 85 x 130 cm in the

horizontal plane. The recording cable was attached to the cable actuator. The aim of the

actuator was that its cable attachment remained directly above the animal to ensure that

the animal could move with equal ease in any direction. The actuator used the online

position tracking data to mirror the mouse's movements.

2.8 Analysis of electrophysiological data
Classification of putative pyramidal cells and interneurons: The presence of ripples

(120-200 Hz) during rest trials was used to determine whether each shank of the silicon

probe was located in the CA1 region. Only neurons recorded from shanks with clear

ripples were considered in the analysis. Then the mean firing rate, spike-time

autocorrelations and the mean waveforms of the neurons were used to classify the

neurons as pyramidal cells or interneurons (Figure 22). Before the clustering, the

principal component analysis was applied to the mean waveforms and spike-time

autocorrelations. The first three respective components from each parameter were then

selected. The resulting six features and the firing rate of the neurons (a total of 7

features) were then used as inputs for the K-mean clustering algorithm with k = 2. The

neurons with the lower firing rate were considered pyramidal cells from the two output

clusters.

Instantaneous firing rate: The instantaneous firing rate (IFR) of individual neurons

was calculated for hippocampal remapping analysis and for correlating the firing rate of

neurons to different behavioural variables. IFR of a cell was obtained by counting the

number of spikes in equally sized time bins and applying a Gaussian smoothing kernel

to the spike count vector. The spike counts were transformed into firing rates by dividing

each spike count by the window size expressed in seconds. For remapping analysis, I

used time bins of 100 ms (SD of smoothing kernel = 100 ms). For correlating IFR to

behavioural variables, I used time bins of 20 ms (SD of smoothing kernel = 40). This

shorter time bin size was chosen to match the sampling rate of the behavioural
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variables (50 Hz). IFR association between two neurons was defined as the correlation

coefficient between their respective IFR vectors.

Firing rate maps: Firing rate maps were generated by dividing the square platform into

3 × 3 cm bins. The time in seconds spent in each bin was calculated, and this

occupancy map was smoothed with a Gaussian kernel (standard deviation of 5 cm).

The number of spikes in each bin was divided by the smoothed occupancy map to

obtain a firing rate map. A smoothing kernel (standard deviation of 5 cm) was applied to

the firing rate map. Firing rate map stability was defined as the correlation coefficient

between the firing rate maps of the same neuron in different conditions, whereas map

similarity was the correlation coefficient between the firing rate maps of two neurons in

the same condition.

Firing rate histograms: Firing rate histograms were calculated by merging the data

from all search paths or all homing paths from the light or dark condition, leading to four

task conditions: search-light, search-dark, homing-light, and homing-dark. Only paths

from journeys, including a lever press, were considered. For each video sample within a

path, I calculated the distance run within the path, time elapsed since the beginning of

the path, y-axis coordinate of the animal position and the animal distance to the lever.

For every neuron, I created a firing rate histogram for each of the four behavioural

variables in each of the four task conditions (16 histograms per neuron).

All histograms contained 20 bins. The time in seconds spent in each bin was

calculated, and this occupancy histogram was smoothed with a Gaussian kernel

(standard deviation of 1 bin). The number of spikes in each bin was divided by the

smoothed occupancy histogram to obtain a firing rate map. Later, a smoothing kernel

(standard deviation of 1 bin) was applied to the firing rate histogram.
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To have a direct comparison between the histograms of light and dark conditions,

the minimum and maximum values of the histogram were set to be the same. In

addition, I applied the following procedure to ensure the sufficient sampling in all bins of

the histogram. The maximal value was obtained by calculating the 90th percentile for

each behavioral variable for light and dark trial separately. To have a sufficeint binning

the smallest 90th percentile of each light and dark trial were selected. The minimum

possible value was selected as the minimum value for the firing rate histogram.

Information scores of firing rate histograms was calculated as previously described,

, where is the probability to be in bin , is the firing rate in bin , and
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is the mean firing rate of the neuron (Skaggs et al., 1996). To calculate the informationλ

score no smoothing was applied.

Trial firing rate matrices: To quantify the reliability of the firing rate of neurons

between trials, the correlation matrix for all pairs of single-trial firing rate histograms

within one session was caclulated. Fo that, the firing rate matrices were created to

perform analysis on single paths. Trial firing rate matrix were based on either

search-light, search-dark, homing-light or homing-dark data. The neuron's firing rate

was calculated for every path as a function of behavioural variables. The behavioural

variables included distance run within the path, the time elapsed since the beginning of

the path, the y-axis coordinate animal position or the animal distance to the lever. The

bin size of the firing rate histogram was 2 cm, 0.15 sec, 2 cm, and 2 cm, respectively.

The single-trial histogram was smoothed with a Gaussian kernel with a standard

deviation of 2 bins. Later, a trial firing rate matrix was obtained by stacking the firing rate

histograms of a neuron from all light or dark trials of one recording session. The mean

of the correlation matrix, excluding the unit diagonal, was named trial firing rate matrix

correlation and reflected how similar the firing rate histograms were across trials.
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Analysis of cell activity around the lever box: To quantify the activity of the cells

around the lever box, the animal distance from the lever was first calculated. The

distance from the lever was defined as the distance between the centre of the animal’s

head and the lever box's closest wall. Histograms with the cell firing rate as a function of

lever distance were calculated. The bin size for the histogram had a 1-cm bin size, and

they were smoothed with a gaussian kernel (SD: 1 cm).

Three possible directional reference frames was considered in which the neuron

could encode directional information (Fig. 27b). In the Cardinal reference frame, the

direction of the animal around the lever box was measured from a vector pointing south.

The original lever-centred data were in the Cardinal reference frame. In the Bridge

reference frame, the direction of the mouse was measured from a vector pointing

toward the centre of the bridge. To transform the data from the Cardinal to the Bridge

reference frame, the vector's angle originating at the centre of the lever box (0,0) and

pointing towards the bridge relative to a vector pointing south (0,-1) was first calculated.

Then, the Cardinal lever-centred position data was rotated by this angle.

In the lever reference frame, the direction of the mouse was measured from a

vector originating at the lever box centre and pointing towards the lever. To transform

the lever-centred data from the cardinal to the Lever reference frame, the angle of the

vector originating at the centre of the lever box (0,0) and pointing towards the lever

relative to a vector pointing south was first calculated. Later, the Cardinal lever-centred

mouse position data was rotated by this angle. In the lever-centred coordinate system,

the coordinates of the lever box were subtracted from the animal position. Each position

of the mouse can be seen as a 2D vector originating at 0,0 and pointing towards the

direction of the mouse around the lever. Data from when the animal was more than 30

cm away from the lever were excluded from the analysis.

51



Next, 2D firing rate maps were generated for each cell using the lever-centred

data of the three directional reference frames. These maps were calculated like the

standard 2D firing rate maps, but the bin size was 1 cm, and the SD of the smoothing

kernel was 2 cm. To quantify the degree of directional selectivity of the neurons around

the lever, I calculated directional firing rate histograms. The directions around the lever

were divided into 10-degree bins. The time in seconds spent in each bin was calculated,

and this occupancy histogram was smoothed with a Gaussian kernel (standard

deviation of 1 bin). The number of spikes in each bin was divided by the smoothed

occupancy histogram to obtain a firing rate histogram. A smoothing kernel (standard

deviation of 1 bin) was later applied to the firing rate histogram. The histogram's peak

firing rate and mean vector length of the directional firing rate were used to measure

directional selectivity.

Directional trial drift: To measure single-trial variability in the orientation of

lever-anchored firing fields, I developed a measure called the trial drift (Supplementary
figure. 2) calculated from the trial matrix. The x-axis of the trial matrix represented the

direction of the mouse relative to the lever box. The trial matrix was first rolled in the

x-axis until the maximal mean firing rate of the neuron was at direction 0

(Supplementary figure. 2b). I then calculated an idealised tuning curve for the neurons

by re-aligning all trials individually so that their peak firing rates were at direction 0

(Supplementary figure. 2c). I next performed a crosscorrelation between the idealised

tuning curve and each row of the trial matrix with the maximal mean firing rate at

direction 0 (Supplementary figure. 2d). The trial drift was the location of the peak in

each row of the convoluted trial matrix (Supplementary figure. 2e).

2.9 Statistical analysis
The statistical significance of differences between light and dark trials was tested with

the Mann-Whitney rank test from the Scipy package. Furthermore, the linear SVM

model was implemented with the Scikit-Learn package.
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3. Results

Most of the results in this section of the thesis are part of the manuscript with the

same title currently in progress. Most figures and figure legends are taken from the

manuscript that is currently in progress and is co-written by myself.

3.1 Behavioral experiment:

Thirteen mice were trained in the AutoPI task. The training took between 6-8

weeks itself. As was discussed in the material and method section, the training started

with the familiarisation step, followed by the lever training. The first six days of the lever

training were performed with the lever placed inside the home base (Figure 11. a). The

lever location changed between the training sessions to ensure that the mice learned to

follow the lever. The number of lever presses, rewards and rewards ratio (the number

of rewards per minute) are shown in Figure 11. b,c,d.

After each lever press, one pellet was delivered to the magazine. The animal

needed to break the magazine and collect the reward before pressing the lever again.

Otherwise, the lever presses would not lead to a pellet delivery inside the magazine.

This procedure ensured that mice would return to the magazine on each trial. The

number of lever presses and the rewards increased across different days (mice could

get up to 100 rewards). Therefore, the data suggested that mice could learn to press the

lever and collect the pellet inside the food magazine during the first six days of lever

training.

The AutoPI apparatus contained a home base, a circular arena and an

automated lever (Figure 12. a. see material method for more details). The trial started

when the sliding door was opened. After mice could successfully press the lever inside

the home base, the sliding door opened, and the lever was moved further to the arena.
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The mouse needed to leave the home base, navigate to the lever on the arena, press it

and later return to the home base to collect the reward from the magazine (Figure 12.
b). To have a unique path on each trial, the lever orientation and position were changed

on different trials. Besides, the arena was rotated between trials to ensure mice were

not using the odour cues on the arena to navigate to the home base. After mice could

reliably press the lever independent of the lever position and orientation, mice were

tested in darkness. Each AutoPI trial (testing trial) started with seven light trials followed

by alternating between the light and dark trials (Figure 12. c).

Figure 11. Lever Training in the AutoPI task. (a) Schematic showing the different positions of
the lever within the home base when the mice learned to press the lever to trigger food delivery
in the food magazine. The lever changed position between days (from P1 to P6). (b, c and d)
Numbers of lever presses, number of rewards delivered and reward rate across six training days
(P1 to P6) with the lever inside the home base.
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All the light (46 trails) and dark trials (43 trials) in one session has been shown in

Figure 12. d, e. From 67 test sessions recorded from 13 mice, on average, mice

performed 71.45 trials during one hour. On each trial, the mouse had to search for the

lever box, press the lever and return to the home base in a relatively straight line. Mice

ran around the lever box to find and press the lever itself. A journey was defined as

when the mouse entered the arena, searched for the lever and ended when the mouse

returned to the bridge. Sometimes mice needed to perform more than one journey to

complete the trial (Figure 12. f, g). The trial could have several journeys if 1) the

mouse could not find the lever before returning to the home base and 2) the mouse

failed to press the lever before returning to the bridge. Mice performed more journeys

pre-trial during dark trials (Figure 12. h). As a result, the duration of the trials in dark

conditions was more than the light conditions. (Figure 12. i). It was less likely that mice

would find the lever in a given journey in dark trials than in light trials (Figure 12. j).
However, the probability of pressing the lever was similar during the light and dark trials

after finding the lever (Figure 12. k). The statistical unit that is used for figure 9 was

trials. In total, 4453 trials were recorded during the AutoPI task, which contained 2429

light and 2024 dark trials. The same analysis was performed, considering mice as a

statistical unit in Figure 13.

As discussed, the lever was automatically moved to different locations and

orientations to have a unique search path on each trial. All the lever positions of the

trials on the test sessions are presented in Supplementary Fig. 1. a. If the lever

position was outside a circle with a radius of 25 cm, the trial was removed from the

analysis (Supplementary Fig. 1. b). The lever position distribution and the lever's

orientation were random during the test sessions (Supplementary Fig. 1. c).
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Figure 12. Automated path integration task (AutoPI). a, The main apparatus consisted of a
home base, a circular arena, and a lever. The home base contained a food magazine on the
wall opposite the arena. A motorised, inverted sliding door gave access to the bridge that led to
the arena. The lever was built on a motorised platform, allowing the lever box to change its
position and orientation between trials. b: Four main phases of a trial on the AutoPI task. The
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animal leaves the home base to search for the lever on the arena (Search). The mouse then
presses the lever (Press) and returns to the home base (Homing). A food reward is available in
the magazine (Reward). c, Schematic of a testing session. A session started with seven light
trials, followed by a series of trials alternating between light and dark trials. The session ended
after 100 trials or when 60 minutes had elapsed, whichever came first. d, Running path for all
light trials of a test session. The black and the dashed grey circle represent the arena's edge
and periphery, respectively. e, Running path for all dark trials from the same testing session
shown in d. f, Path of the mouse during a single journey of a light trial. g, Path of the mouse
during three journeys of a dark trial. The three journeys are plotted in different colours. h,
Number of journeys per trial for light and dark trials (n = 2429 light and 2024 dark trials,
Mann-Whitney rank tests, P = 6.28 x 10-41). i, Trial duration for light and dark trials (n = 2429
light and 2024 dark trials, Mann-Whitney rank tests, P = 2.40 x 10-142). j, Probability of finding
the lever on journeys associated with light and dark trials (n = 67 light and 67 dark trials,
Mann-Whitney rank tests, P = 6.04 x 10-21). k, Probability of pressing the lever once the lever
had been found during light and dark trials (n = 67 sessions, Mann-Whitney rank tests, P = 8.64
x 10-1). ****P < 0.0001, ns: non-significant.

Figure 13. Behavioral characteristics of light and dark trials. The analysis is similar to that
presented in Fig. 12 h-k but the statistical unit used here is the median of each mouse (n = 13).
a: Number of journeys per trial for light and dark trials (Mann-Whitney rank tests, P = 1.48 x
10-4). b: The trial duration for light and dark trials per trial (P = 7.93 x 10-4). c, Probability of
finding the lever on journeys associated with light and dark trials (P = 2.49 x 10-3). d, Probability
of pressing the lever once the lever had been found during light and dark trials (P = 2.05 x 10-1).
**P < 0.01, ***P < 0.001, ns: non-significant.
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3.1.1 Characteristics of the search path predicting homing error

To compare the navigational behaviour of the mice during the light and dark

trials, the search and homing paths of each trial (journeys) were separated and

compared between the two light conditions. The analysis focused on the trial's journey

in which the lever was pressed. First, the search and homing paths were extracted from

each journey. The search path started when the mouse entered the arena and ended

when the lever was found. The homing path started when the animal left the lever and

ended when the animal reached the periphery of the arena. The path portion of the

animal running around the lever was extracted for this analysis. Examples of search and

homing paths during the light and dark trials are shown in Figure 15. a. As expected,

the mice' search and homing trajectories were more direct during the light trials. During

the light condition, the lever and home base were easily seen so the mice could directly

go to the lever and return to the home base (Figure 15. b-c). However, during the dark

trials, mice had to explore more parts of the arena to find the lever, which resulted in

longer search paths that also lasted longer. Speed was the other parameter to compare

the navigational behaviour during the light and dark trials. The running speed for both of

the search and homing paths was lower during the dark trials compared to the light

trials. During homing, the mean speed in light trials was higher (64.18 cm/sec.) than in

dark (31.58 cm/sec) trials. The next parameter used was the degree of complexity in the

search and homing paths. The mean vector length of the movement direction was first

calculated for each path to calculate the complexity score. Since the scores were

negatively skewed, the natural logarithmic was applied to the mean vector length. I

referred to the transformed score as the complexity score. Six examples of the search

paths with low to high complexity scores are shown in Figure 14.

Search and homing paths of dark trials were generally more complex than the

light trials (Figure 15. b-c). During the dark trial, the homing path were less complex

than the search paths (medians: dark-search = 2.2, dark-homing = 2.0; P = 5.3 x 10-16).

This result suggested that mice returned to the arena periphery using a straighter
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trajectory in light trials compared to the search paths in dark trials. The statistical unit

that was used in this figure was trials.

Figure 14. Examples of the complexity of the search paths. a. Examples of three trials with
less complex search paths are shown here. Search paths are in black, and homing paths are in
red. The complexity score increases from left to right b. Examples of three trials with more
complex search paths.

The features explained so far (length, duration, mean running speed and

complexity and light conditions, eight features) were used to predict whether a trial was

performed in light or dark. I could predict the trial as light or dark with an accuracy of

0.91 using the eight features (SD: 0.012, linear support vector machine model, 10-fold

cross-validation).

Next, calculated the error at the periphery was calculated to quantify how well the

animal returned to the home base after pressing the lever on each trial. The error at the

periphery was an angle between two vectors with the centre of the arena as the origin.

The first vector pointed toward the bridge's centre, and the second vector pointed

toward where the animal first hit the periphery of the arena (Figure 16. c). The error at

the periphery was significantly larger for the dark trials than for the light trials (Figure
16. d). The median error at periphery was 4.26° and 18.15° for light and dark trials,

respectively. Likewise, the error at periphery was significantly lower than the chance
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level in dark trials (chance level: 90°, Wilcoxon signed-rank test, P = 1.37 x 10-289). This

result suggested that mice were not heading toward the home base in a random

direction. In contrast, mice returned to the home base roughly in a direct path but with

more homing error than in the light trials. The same analysis was later performed with

the mice as a statistical unit (Figure 16. d).

During a path integration task, the animal process self-motion cues to estimate

the current position and orientation. However, without visual cues, the integration of

information would accumulate errors in estimating the location and orientation

(Hardcastle et al., 2015). It was expected that during dark trials, the error at the

periphery increases when the distance run or more extended time pass from the start of

the journey. The error can be corrected using known landmarks when the visual

landmarks are available. Therefore, during dark trials in the AutoPI task, the error was

expected to correlate with the length and duration of the search paths. I first divided

dark trials into two halves based on the median length or duration of all dark trials. The

trials with shorter lengths or duration of the search path were classified as short search

paths. The trials with the length and duration above the median were classified as long

search path trials. Larger errors at the periphery were associated with trials with larger

search paths and duration during homing (Figure 15. e and f). The correlation analysis

was then performed between the length and duration of the search path and the error at

the periphery (Figure 16. e). During dark trials, the error at the periphery was positively

correlated with the search path length and duration (Figure 15. g). The positive

correlation between the search path and search length with the error at periphery

supported the hypothesis that mice used path integration during dark trials in the AutoPI

task. There was a non-significant correlation between the length and duration of the

search paths and the error in light trials. During the light trials, mice could use the

known landmarks to correct the accumulation of error during homing. Furthermore, the

same analysis was performed later on the characteristic of the navigational behaviour of

the mice during light and dark, but with mice as a statistical unit (Figure 16 a-b).
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The AutoPI paradigm allowed us to collect enough trials in the dark conditions

where mice had to use path integration. Therefore, the AutoPI paradigm provided a

reliable task to study the neural basis of path integration.

Figure 15. Characteristics of search and homing paths during light and dark trials. a:
Examples of search and homing paths from one testing session during light and dark trials. The
search and homing paths for light and dark trials are shown separately. b: Distribution of search
path duration (Mann-Whitney rank tests, P = 1.2 x 10-142), length (P < 1.0 x 10-310), speed (P =
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1.0 x 10-310), and complexity (P = 2.34 x 10-273) for light and dark trials. The vertical dashed lines
indicate the medians of the distributions (blue: dark trials, orange: light trials). c: Distribution of
homing path duration (P = 2.58 x 10-288) , length (P = 3.66 x 10-23), speed (P = 1.0 x 10-310), and
complexity (P = 2.97 x 10-309) for light and dark trials. d: Cumulative distribution of homing error
at periphery during light and dark trials (Mann-Whitney rank tests, P = 6.94 x 10-294). The dashed
line represents the distribution of error at the periphery expected by chance (homogeneous
distribution). e: Homing error at the periphery for dark trials with short and long search paths
(Mann-Whitney rank tests, P = 5.14 x 10-34). Dark trials were classified based on whether the
search path length was below or above the median of all dark trials. f: Same as in e but for
search path duration (P = 1.1 x 10-26). g: Correlation coefficients between homing error at the
periphery and length (dark: P = 3.3 x 10-26, light: P = 9.7 x 10-2) and duration (dark: P = 1.1 x
10-26, light: P = 5.2 x 10-1) of the search paths. Correlation coefficients are shown separately for
light and dark trials. The significance levels of the correlation coefficients for dark and light trials
are displayed above and below the bars, respectively. ***P < 0.001, ****P < 0.0001, ns:
non-significant.
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Figure 16. Characteristics of search and homing paths during light and dark trials. The
analysis in a and b is similar to Fig2. b-c but the statistical unit used here is the median of each
mouse (n = 13). a: Search path duration (P = 2.6 x 10-5 ), length (P = 7.8 x 10-5), speed (P =
2.08 x 10-5), and complexity (P = 1.65 x 10-5). The light and dark trials are shown separately.
Each circle represents one animal. b: Homing path duration (P = 2.08 x 10-5) , length (P = 3.47 x
10-3), speed (P = 1.65 x 10-5 ), and complexity (P = 2.08 x 10-5). P-values are from
Mann-Whitney rank tests. c: Left: Example of one trial in the AutoPI task. The search and
homing paths are shown in black and red, respectively. Right: Schematic illustrating how error at
the periphery was calculated. Error at the periphery is the angle between two vectors with the
center of the arena as the origin. The first vector pointed towards the center of the bridge and
the second vector pointed towards the position at which the mouse first reached the periphery of
the arena. d: Median error at the periphery for each mouse during light and dark trials (P = 1.64
x 10-5). e: Relationship between homing error at the periphery and the search path length (P =
3.3 x 10-26) and search path duration (P = 1.1 x 10-26). The values were log-transformed (

) to reduce the skewness of the distributions. The P-values refer to the Pearson𝑙𝑛(𝑥 + 1)
correlation coefficients. **P < 0.01, ****P < 0.0001.

3.1.2 Above chance level performance after disruption of
olfactory cues

To ensure that mice are not using the olfactory cues on the arena to return to the

home base, the arena was rotated in between trials. However, it was still possible that

mice use the odour that comes from the pellets behind the home base to return to the

home base. To address this question, a fan with a 35 cm diameter was fixed above the

arena (1.85 m) which directed the air flow toward the ceneter of the arena. The strong

air flow would distribute the smells equally around the arena and should prevent the use

of odour gradiant to navigate back to the home base. Two mice were tested in this

experiment with 3 sessions each. Mice first performed 35 trials with no air flow that

followed with 35 trials with air flow and up to 30 trials without the airflow again. The

homing error at periphery was then calculated for the trials with and without the airflow.

The result showed that the homing accuracy of mice decreased slightly during the dark

trials with air flow (Figure 17. a lower part). Median error at periphery for the dark trials

with the air flow on was 32.63°, and for the dark trials with airflow off was 23.42° (dark
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trials with airflow on: n = 108, dark trials without airflow: n = 188, P = 3.25 x 10-2).

However, the performance of the mice was significantly above the chance level (90°,

Error at periphery: P = 5.63 x 10-13) (Figure 18. a.)

The result from the airflow experiment provides strong evidence that mice used

self-motion cues to return to the home base. There was also a tendency for mice to run

at a lower speed when the airflow was on, although the differences did not reach a

significant level (Figure 18. b-c).

Figure 17. Homing accuracy and running speed with and without an artificial airflow
above the arena. a: Error at periphery for the homing paths of light (top) and dark (bottom)
trials for trials with (blue) and without (red) air flow (Mann-Whitney rank tests, light trials, P =
5.15 x 10-1, dark trials: P = 4.3 x 10-2). b: Homing speed for light (top) and dark (bottom) trials
with and without airflow (Mann-Whitney rank tests, light trials, P = 1.07 x 10-1, dark trials: P =
6.02 x 10-2). c: Search speed for light (top) and dark (bottom) trials with and without airflow
(Mann-Whitney rank tests, light trials, P = 3.02 x 10-1, dark trials: P = 8.16 x 10-2). *P < 0.05, ns:
non significant.
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Figure 18. Cumulative error for error at the periphery in air flow experiment. a: The
cumulative error for all the light trials with (blue, n= 100) and without (red, n= 182) airflow are
shown here (Mann-Whitney rank tests, P = 5.17 x 10-1) (number of mice =2, number of
sessions= 6). The dashed line would represent the error at periphery if the mice were going in
random directions. b: The cumulative error for all the dark trials with (blue, n= 108) and without
(red, n= 147) airflow has been shown here (Mann-Whitney rank tests, P = 4.3 x 10-2). The
dashed line would represent the error at periphery if the mice were going in random directions.
*P < 0.05,,  ns: non significant.

3.2 Electrophysiological recording from the CA1
region of the hippocampus

3.2.1 Pyramidal cell classification
I trained another cohort of 9 mice in the AutoPI task to characterise the activity of

the CA1 pyramidal cells during a path integration task. Mice were implanted with 1, 2 or

4 32-channel silicon probes (Neuronexus) in the CA1 region of the hippocampus. The

coordinate used for the implantation were (ML: ±1.8 mm from the midline, AP: 2.0 mm

posterior to bregma). Mice were trained one more week attached to the recording cable

after the recovery from the surgery. The training was continued until mice could perform

100 trials while attached to the cable. The recording session started with 30 minutes in

the open field. The arena used for the open field was similar to the AutoPI arena and

was located precisely the same position. The home base was moved 30 cm away from
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the arena to prevent the mice from going to the bridge. The random foraging trial was

followed by a 20 minutes rest box where the mouse could sleep. After the rest period,

the mouse performed the AutoPI task for 90-120 minutes. The second rest box was

performed after the AutoPI task (Figure 25. a). The number of sessions recorded from

each mouse is shown in Figure 19. a. The number of cells recorded per mouse and

session is shown in Figure 19. b-c.

Figure 19. The number of mice and cells recorded in the CA1 region of the hippocampus.
a: Number of sessions recorded with each mouse during the AutoPI task in the CA1 region. b:
The number of cells recorded from each mouse. c: The number of cells recorded in each
session.

I first detected the cells recorded on the shanks with sharp wave ripples to focus

the analysis on CA1 pyramidal cells. The hippocampal sharp wave ripple (SWR)

oscillations are the largest recorded brain signals with a frequency of 140-200 Hz. The

spontaneus SWR happen as epochs of 50-100 ms. SWR occur during slow-sleep,

awake immobility and some behaviours like eating, drinking and rearing. It is shown that

around 10-20 precent of the pyramidal neurons in the hippocampus produce an action

potential during the SWR (Patel, 2015). The presence of SWR on each shank was used

to determine whether the shanks were located in the CA1. Only neurons recorded from

the recording sites on the shanks with ripples were considered in the data analysis. One

example of channel mapping on a 32-channel silicon probe is shown in figure 20. a.
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The mean waveform of one neuron on the channels with the first eight highest

amplitudes is shown in Figure 20. b.

Figure 20. Channels mapping for 1x32 channel Neuronexus probes is shown here. a. The
mean waveform of one neuron in all channels is presented in blue. b. The mean waveform of
the neuron on the eight channels with the largest amplitude.

To extract the SWR, I first band-passed the raw data with frequencies between

150-200 Hz. Then, the data's power (root mean square) was calculated for each

channel and summed across channels to reduce the variability. I then used the power of

the filtered data to determine the beginning, peak and end of each ripple episode

(Figure 21. b). The threshold of 5 standard deviations above the background mean

power (the reference channel, channel without the ripple) was used to detect the

channels with SWR on each shank (Figure 22). The channels with the SWR were

labelled as channels in the pyramidal cells layer.

Three criteria was set to determine the cells that are outliers. 1) the number of

the spike in the autocorrelation was less than 100 spikes, 2) the refractory ratio was less

than 0.25 ms, 3) the cells were recorded outside the CA1 pyramidal cells layer of the

hippocampus (Figure 23 a-d).

67



Figure 21. Detection of channels with sharp wave ripples. a: Raw signal recorded from the
CA1 region of the hippocampus. Only one of the channels contained sharp wave ripples. b: The
procedure in which the SWR was detected. The grey signal represents the channel containing
SWR. For each session, one channel with SWR and one without (reference channel) were first
detected manually. Later the data was band-pass filtered between the frequencies of 150-200
Hz (blue signal). Then, the square root of the differences (orange signal) between the
band-pass filtered of the raw data and the reference channel was calculated. Finally, a
convolution between the signal (root mean square) and a gaussian filter with the standard
deviation of 10 as a kernel was calculated. I defined the threshold as the five-time standard
deviation of the mean of the convoluted signal presented in red. The convoluted signal itself is
presented as green. I defined the peak as the convoluted signal that is more than the threshold
value.  (Csicsvari et al., 1999).
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Figure 22. SWR detection using the power of the filtered data. Raw data is shown in grey.
The orange signal represents the filter banned data. The last row shows the episode of the
signal with a power higher than 5 SDV above the mean power of the background.

￼Figure 23. Removing spike clusters of poor quality. a: The cells with less than 100 spikes
in the autocorrelation were excluded from the analysis. b: Cells that had a refractory ratio
smaller than 0.25 were excluded. I first calculated the number of spikes within and outside the
refractory period. I calculated the spike time autocorrelation and the mean number of spikes
within the refractory period and divided them by the mean number of spikes outside the
refractory period. Neurons that had a ratio of larger than 0.25 were considered excluded. c: The
number of cells recorded from the pyramidal cell layers vs those recorded from above or below
the pyramidal cell layers.

Out of 1265 cells recorded during the AutoPI task, 758 cells were valid. I used

mean firing rate, spike time autocorrelation and mean waveform to classify the cells as
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pyramidal or interneurons. A principle components analysis (PCA) was applied to the

cell’s mean waveform and spike time autocorrelation before the classification. The first

three components of each of the two features were then selected (in total, six features)

(Figure 24. ci-iii). The trajectory of the cells based on the first two components of mean

waveform and spike time autocorrelations is shown in Figure 24. c iiii. As evident in

Figure. 24 c iiii, it was difficult to separate the cell types based on the first two

components of the PCA. Furthermore, to better separate the interneurons and

pyramidal cells, the mean firing rate was added as another feature for the classification

(7 features in total) as input for the k-mean clustering with the k=2. The data

transformation based on the PCA1 of the autocorrelation vs PCA1 of other features are

plotted in Figure 24. d. Neurons with higher firing rates were identified as interneurons.

The distribution of the mean firing rate, spike time autocorrelation, and mean waveform

of the pyramidal cells vs the interneurons are shown in Figure 24. e-g.

The linear discrimination analysis was applied to identify whether the two cell

types overlap (Figure 24. h). The results demonstrated that the two populations are

largely non-overlapping. Out of 758 valid cells, 441 cells were classified as pyramidal

neurons. The rest of the data analysis focused on the pyramidal cells.
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Figure 24. Classification of recorded neurons into pyramidal cells and interneurons. a:
Example of raw signals recorded from the CA1 region. The red rectangle highlights ripples
recorded from the pyramidal cell layer. Only neurons recorded from shanks with ripples were
included in the analysis. b: Examples of signals recorded near the pyramidal cell layer and
further away (reference channel). c: Transformation of spike waveforms (left) and spike-time
autocorrelations (right) using principal component analysis. i: Examples of spike waveforms and
spike-time autocorrelations of neurons recorded in the pyramidal cell layer. ii: Coefficients of the
first three principal components. iii: Proportion of the variance explained by the first ten
components. iiii: Mean waveforms and spike-time autocorrelations plotted in the first and
second dimensions of the PCA. d: Results of a k-means clustering algorithm applied on the first
three principal components of the waveforms, the first three principal components of the spike
time autocorrelations, and the normalised firing rates. Neurons are plotted using different
combinations of principal components and mean firing rate. e: Distribution of mean firing rate for
putative pyramidal cells (Pyr) and interneurons (Int). f: Mean waveforms of pyramidal cells and
interneurons. g: Mean spike-time autocorrelations of pyramidal cells and interneurons. h: The
linear discriminant analysis (LDA) showed that the pyramidal cells and interneurons were largely
non-overlapping populations.

3.2.2 Task-dependent hippocampal remapping
Each recording session starts with a trial in the open field before the AutoPI trial

(Figure 25. a-c). It was shown that the spatial and directional properties of the

hippocampal place cells change depending on the behavioural task that the animal is

performing (Markus et al., 1995). Therefore, I hypothesised that the activity of the cell

assemblies in the AutoPI task is task-dependent. To test this idea, the activity of the cell

assemblies during the random foraging trials was compared to the activity of the same

assemblies during the AutoPI task. The arena used for the random foraging was in the

same colour, shape, size and location as the arena in the AutoPI task. I had two

differences between the two arenas: 1) the small walls (1.6 cm in height) around the

arena in the open field had no opening to avoid food pellets falling from the arena. 2)

the home base was moved 30 cm away from the arena to prevent the animal from

jumping onto the bridge. Examples of three pyramidal cells during the random foraging

and the AutoPI task are shown in Figure 25. c. Pyramidal cells showed a different firing

rate map in the AutoPI task compared to the random foraging trials, suggesting a

remapping between tasks.
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To test the activity of the cell assemblies, the instantaneous firing rate (IFR) of all

simultaneously recorded pairs of cells (n= 5168 pairs) was first calculated in both

random foraging and the AutoPI (all paths were combined). The analysis was limited to

the pairs of cells that were recorded when the animal was in the circular arena. The IFR

activity of the cells between the first and second halves of the random foraging was

highly correlated (Figure 25. d, RF1-RF2, r = 0.738, P < 1.0 x 10-200). The IFR of the

cells were also correlated when comparing the trials from the first and second halves of

the AutoPI task (T1-T2, r = 0.821, P < 1.0 x 10-200). However, the IFR of the cells

between the random foraging and the AutoPI task were weakly correlated (RF1-T1, r =

0.100, P = 9.2 x 10-13). The comparison between the IFR of the cells in random foraging

and the task showed the near-complete reorganisation (remapping) of the cell

assemblies during the AutoPI task (all paths included). The same comparison was

conducted between the map similarity of the trials in the random foraging vs the AutoPI

trial. The firing rate maps of the cells between the random foraging and the AutoPI task

were not significantly correlated (RF1-T1, r = 0.007, P = 0.625).

The navigational strategies during the light and dark trials differ in the AutoPI task

and during the search and homing behaviors. The search and homing paths of one

session during the light and dark trials are shown in Figure 25. e. The firing rate map of

the cells in different conditions was not similar during the task (Figure 25. f). Different

firing patterns suggested hippocampal reorganisation should have occurred between

different conditions. To test whether different hippocampal assemblies were active

during the light, dark or search and homing behaviour, the IFR of pairs of cells during

these conditions (light versus dark) and different behaviours (search versus homing)

were first calculated (Figure 25. g). The IFR association stability decreased between

the different light conditions and behaviours. For example, the IFR association stability

of the cells between the search and homing behaviour in the light was significantly lower
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than the IFR activity of two sets of trials during the search behaviour in the light

condition (r = 0.161 and 0.537, z = 21.167, P = 2.0 x 10-98).

The IFR association stability and the firing rate map similarity for different

conditions are shown in Figure 26. a-b. The map similarity of the cells between different

conditions also decreases, similar to the IFR association stability. The comparison

between the IFR association stability and the map similarity between the different

conditions versus within the conditions suggested that the hippocampal cells change

their firing pattern between conditions but not within the conditions (Figure 25. c).

These results demonstrated that the cell ensembles change their firing pattern between

light conditions and behaviours in the AutoPI task. Therefore, the firing activity of the

cells in the four different conditions was considered separately for further analysis.
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Figure. 25: Task-induced hippocampal remapping. a: Schematic of a recording session. The
session started with a random foraging trial and a rest trial. The mouse then performed the
AutoPI task for approximately 90-120 minutes, followed by an additional rest trial. b: Path of a
mouse on the circular arena during random foraging (left) and the AutoPI task (right). c:
Example of firing rate maps of three neurons during random foraging (left) and the AutoPI task
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(right). The numbers above the maps indicate the peak firing rates of the neurons. d: Top left:
Instantaneous firing rate (IFR) associations of pairs of neurons (n = 5168) during the first and
second half of the random foraging trial (RF1 and RF2). Bottom left: IFR associations of
neuronal pairs during the first half of the random foraging trial (RF1) and half of the trials on the
AutoPI task (T1) trials. The stability of IFR associations is defined as the correlation coefficient
between the IFR associations across two conditions. Right: IFR association stability across the
different conditions (RF1-RF2, RF1-T1, and T1-T2). T1 and T2 were two independent sets of
trials on the AutoPI task. e: Mouse path during light and dark trials and search and homing
behaviour. f: Example of firing rate maps of three neurons during light and dark trials and search
and homing behaviour. From left to right: search-light, homing-light, search-dark, homing-dark.
g: Left: Matrix containing the stability of IFR associations for pairs of simultaneously recorded
neurons across four different conditions (n = 5168, SL: Search-Light, HL: Homing-Light, SD:
Search-Dark, HD: Homing-Dark). The trials of each condition were divided into two independent
sets of trials (e.g., SL1 and SL2) to allow within-condition comparisons. Right: IFR association
stability with confidence intervals (99%). ****P < 0.0001.

Figure 26. Hippocampal cell assemblies remapped between different conditions in the
AutoPI task. a. The correlation between the random foraging and light conditions of the AutoPI
task. The IFR stability decreases in between conditions. b. The correlation between the map
similarity for the same condition is shown here. c. The correlation coefficient for the IFR
association stability and map similarity within and between different conditions are shown here.
The result suggested that the hippocampal place cells remap in between different light
conditions and different behaviours.
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3.2.3 Lever-box location modulates hippocampal activity
during search and homing behaviour

As mentioned before, the behavioural demand is different in light conditions as

well as in search and homing behaviours. The search and homing paths for each trial

was then identified to characterise the firing activity of the hippocampal pyramidal cells

during search and homing paths. The paths of the animal around the lever were

excluded for this analysis. The firing rate maps of three different cells for each condition

are shown in Figure 27 a. The trial matrix for the search and homing paths of each

neuron was calculated to quantify the reliability of the firing pattern of the cells across

various trials. Each row in the trial matrix shows the cell's firing rate on each trial. The

firing rate of cells in trial matrixes was plotted based on either 1) the position of the

mouse along the y-axis coordinate (the axis parallel to the centre of the bridge and

centre of the arena) or 2) the distance between the mouse and the lever box (Figure
27. a). Two groups of cells were found: 1) Some cells fired in a stable position on the

arena. In the trial matrix of these cells, the cell consistently fired at the same

y-coordinate on the arena on each trial. 2) Another subset of neurons fired close to the

lever box independent of the position of the lever on the arena. In the trial matrix, the

second group of the cells mainly fired at a fixed distance to the lever box.

To estimate the reliability of the firing pattern of the cells based on the two

variable (y-coordinate or the distance of the animal to the lever box), the trial matrix

correlation was then calculated for each variable separately (Figure 27. b,
Supplementary Fig. 2). The trial matrix correlation was calculated for the light

conditions (light and dark) and different behaviours (search and homing). Next, I

compared the proportion of active neurons across different conditions. Only cells with a

firing rate of more than 2.0 Hz were included in this analysis. The proportion of the

active cells in different conditions ranged from 0.436 to 0.516 and was not significantly

changed (chi-squre test, P = 0.309). The factorial ANOVA with the factors of light

conditions and path types was used to assess the differences in the trial matrix
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correlation. The trial matrix correlation with the y-axis coordinates was lower for the

homing behaviour in the dark trials compared to the homing in light trials (P = 0.0015)

(Figure 27. b left). The trial matrix correlation for the distance from the lever box was

lower during the dark compared to the light trials both during the search and homing

behaviour (search P = 1.55-10, homing P = 0.044). Besides, the trial matrix correlation

was lower during search behaviour in the dark trials than during the homing behaviour

in the dark (P = 1.5 x 10-5). The data presented so far suggested that the influence of

the animal's distance to the lever box was more on the firing activity of the hippocampal

place cells during homing behaviour in dark trials. Therefore, the data suggested that

estimating the distance to the lever box requires visual information during search

behaviour.
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Figure. 27: Lever-box location modulates hippocampal activity during search and homing
behaviour. a: Example of pyramidal cells active during the search-light, search-dark,
homing-light, and homing-dark conditions. Three neurons are shown per condition, one per row.
The 2D firing rate map and two trial matrices are shown for each neuron. The number above the
2D firing rate map is the peak firing rate. The first trial matrix shows the firing rate as a function
of the mouse's position on the y-axis (y-axis in the 2D firing map, 0 being the centre of the arena
and -40 the arena's edge near the bridge). The second trial matrix shows the neuron's firing rate
as a function of the distance between the mouse and the lever box. The r value on each matrix
is the trial matrix correlation. b, Mean trial matrix correlation for active pyramidal cells obtained
from trial matrices with y-axis coordinate (left) or distance to the lever box (right). The data are
shown separately for light and dark trials and search and homing behaviour. c, Information
score of 1D firing rate histograms with the firing rate as a function of y-axis coordinate (left) or
distance to the lever box (right). d, Example of a neuron with a firing field anchored to the lever
position during the homing paths of dark trials. i and ii: Trial matrix of the neuron as a function of
the y-axis coordinate and the distance to the lever box, respectively. iii: Y-axis location of the
peak firing rate of the neuron and the y-axis location of the lever for single homing paths in
darkness. The lever box location can predict the location of the peak firing rate of the neuron.
iiii: Distribution of r values between firing rate peak location and lever location obtained after
shuffling the firing rate values within each trial. The observed r value felt outside the random
distribution, indicating a significant correlation between peak rate location and lever location. e,
Percentage of active pyramidal cells for which the location of their peak firing rate was
significantly correlated with the lever position (Search-Light vs Search-Dark: P = 1.7 x 10-7;
Homig-Light vs Homig-Dark: P = 0.48; Search-Dark vs Homing-Dark : P = 3.25 x 10-11). ****P <
0.0001.

The information score was the second measure used to quantify the influence of

the y-axis coordinate and the distance from the lever (Figure 27. c left). All of the trials

from one condition (search-light, search-dark, homing-light and homing-dark) were

merged to calculate the information score in each condition. The firing rate histogram for

each condition was then calculated separately. The information score was calculated

based on the Skaggs et al., 1996 (see material and method). The information score for

the y-axis coordinate was higher during the light than in dark trials (P = 1.7 x 10-4)

(Figure 27. c left). The information score was lower for the search paths in the dark

trials compared to the light trials (P = 1.03 x 10-20). The information scores during the

homing behaviour were not significantly different in light compared to dark trials. This

data suggested that hippocampal neurons can encode the distance from the lever once
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the animal encounters the lever in darkness using path integration. An example of a

hippocampal pyramidal cell that fired at a fixed distance from the lever box is shown in

Figure 27. d i-ii.
Later, the proportion of the cells fired from the lever in a fixed location was

estimated. For this analysis, the trial matrix of the individual neuron was calculated for

each light condition (light and dark) and the behaviours (search and homing) separately.

Moreover, it was tested whether the location of the peak of the firing in the y-axis

correlated with the coordinates of the lever- box. Neurons considered in this analysis

had two criteria: 1) The average peak of the firing rate above 7.5 Hz in the y-axis

coordinate or the lever distance trial matrix. 2) Significant correlation for the trial matrix

correlation of the cells in the y-axis coordinate or the distance from the lever box. The

number of neurons for each condition were as following: search-light = 105, search-dark

= 108, homing-light= 81, homing-dark= 75 (chi-square test P = 0.02). The peak firing

rate location of the cells against the lever box location in the y-axis coordinate is shown

in figure 25. d iii. It was hypothesised that neurons that fire at a fixed distance from the

lever box should have a positive correlation between the position of the peak of the

firing rate and the lever box's position (Figure 27. d iii). The correlation coefficient of the

cells between the firing peak's location and the lever box's position was then calculated.

Neurons with the significant r value were classified as cells encoding the lever distance

from the animal.

During the search-light and search-dark, 20.95% and 7.41% of the cells were

influenced by the animal's distance from the lever box (Figure 27. e). The percentage of

the cells that encoded the lever distance was higher for search behaviour during light

trials than in dark trials (chi-square test, P = 1.7 x 10-7). However, The percentage of

the cells encoding the lever distance was not significantly higher than chance during the

search behaviour in dark trials (chance level of 5%, chi-square, P = 0.18). In addition,

25.93 % and 26.67% of the cells encoded the lever distance during the homing-light and

homing-dark, respectively. The differences between the percentages of the cells during
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the homing behaviour in light vs dark were insignificant (P = 0.48). The percentage of

the cells encoding the lever distance during the dark trial was higher for homing

behaviour than in the search behaviour (P = 3.25 x 10-11). The result showed that the

lever distance from the animal influenced approximately 25% of the cells during homing.

3.3.3 Hippocampal firing fields anchored to the lever box

I found that some hippocampal pyramidal cells are firing at a fixed distance to the

lever box during the search and homing behaviour. Here I am focusing on the firing

pattern of the cells when the mouse was at the lever box. On each trial, the mouse

typically circled around the lever before finding and pressing the lever. It was

hypothesized that some hippocampal place cells are firing consistently close to the lever

but independent of the lever position on the arena. To quantify that, I first overly the

spikes of each neuron on the single path of the mouse during single trials. It was found

that several neurons fired when the mouse was around the lever. These cells were later

called lever-box-anchored cells (Figure 28. a). The firing rate of the cells as a function

of the animal's distance to the lever was then calculated. Some neurons showed a clear

peak within 10 cm from the lever box. The peaks of the spikes occurred when the

mouse was around the lever, where the animal spent more time than at the other

distances. The result from this analysis suggested that many neurons fire at a given

distance from the lever on most trials and independent of the lever box position in the

arena (Figure 28. a). The data also suggested that the cells fired when the animal was

in a specific direction around the lever box (Figure 28. a).

I then transformed the position data so that the centre of the lever box was

located at (0,0). This data transformation allowed us to generate the firing rate map with

the lever box always at the centre of the map. To calculate the directional selectivity of

the cells, I needed to compute the direction relative to a reference vector. The origin of

the reference vector was set to the centre of the lever box, and set the directional
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reference frame for the analysis. Three directional reference frames were considered as

illustrated in figure 26. b. In the cardinal reference frame, the reference frame is pointing

toward the south. Nevertheless, in the bridge reference frame, the reference vector

pointed toward the Bridge's centre. The reference vector pointed toward the lever

direction in the lever reference frame. Then I calculated the firing rate map and the polar

firing histogram for each neuron in all three reference frames (Figure 28. b). The

animal's position was limited to 12 cm from the lever box for this analysis. Most neurons

had higher firing rates and directional selectivity in the Bridge and Cardinal reference

frame than in the lever reference frame (Figure 28. c).

Using three reference frames, I could identify the cells with stable firing fields

when the animal was around the lever. Three criteria was defiend for the cell as the

lever-box-anchored cell. 1) The peak of the firing rate as a function of the lever distance

occurs within a 10 cm distance from the lever box. 2) Peak of the firing rate larger than

7.5 Hz 3) The map similarity of larger than 0.4 between the 2D firing rate maps of the

same cell as a function of the lever distance when considering two different sets of trials

in one condition. Using these three criteria, I could identify 23-25% of the hippocampal

pyramidal cells within the Cardinal and Bridge reference frame (Figure 28. e). The

percentage of the lever-box-anchored cells was significantly higher in the Cardinal and

Bridge reference frame compared to the lever reference frame (chi-square tests, all P <

0.05). However, the differences between the number of cells in the Cardinal and Bridge

reference frames were insignificant (all P values > 0.05). In addition, there were no

significant differences between the percentage of the lever-box-anchored cells in the

light vs dark trials in any of the reference frames (chi-square tests, all P > 0.05). Then, I

calculated the preferred direction of the lever-box-anchored cells from the polar firing

histogram rate. The firing fields were distributed homogenously around the lever box in

all three reference frames. (Rayleigh tests, all P > 0.05) (Figure 28. e).
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Next, I compared the cells' spatial coding in all three reference frames. To do that, I first

calculated the mean vector length of the cells from the polar rate histogram around the

lever box. Then, an ANOVA test was ran on the mean vector length of the cells from the

polar firing rate histograms. All the pyramidal cells showed the significant effect of

lightening (F = 12.10, P = 5.1 x 10-4) and reference frame (F = 98.10, P = 9.0 x 10-42).

There were significant differences between the mean vector length of the cells in

Cardinal and Bridge reference frames compared to the lever reference frame (P = 8.1 x

10-15 and P = 1.4 x 10-13, correspondingly). The differences between the reference

frames remained when limited the analysis  was limited to the lever-box-anchored cells.

When the lever was close to the x-axis centre of the arena, the Cardinal and Bridge

reference frames were nearly aligned. Therefore, It was expected a slight change in the

mean vector length of the cells when comparing the Bridge and Cardinal reference

frames. To contrast the Bridge and the Cardinal reference frame more directly, I focused

the analysis on the cells classified as lever-box-anchored cells in the Bridge and/or the

Cardinal reference frame. Then, the within-neuron comparison was performed on the

mean vector length of the cells in the two reference frames (Figure 28. g-h). The mean

vector length in the Cardinal reference frame was larger than in the Bridge reference

frame (Wilcoxon signed-rank tests, dark: P = 9.7 x 10-6, light: P = 0.0038). This result

suggested that most of the firing fields around the lever were best encoded in the

Cardinal reference frame.
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Figure. 28. Hippocampal firing fields anchored to the position of the lever box. a:
Examples of four neurons (two in light trials, two in dark trials, one per row) with firing fields near
the lever box. Left: Spikes (dots) on the mouse paths (grey lines) during three trials. The spikes
of the different trials are plotted using different colours. Middle: Firing rate as a function of
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distance from the lever box. Right: Trial matrix containing the neuron's firing rate as a function of
distance from the lever box. Each row of the matrix represents a single journey on the arena
where the animal pressed the lever. b: Schematic depicting three possible directional reference
frames when calculating the firing rate of a neuron around the lever box. Cardinal: Direction is
calculated relative to a vector pointing south. Bridge: Direction is relative to a vector pointing
towards the bridge's centre. Lever: Direction is relative to a vector starting at the centre of the
lever box and pointing towards the lever itself. c: Lever-box-centered firing rate maps and polar
firing rate histograms in three different lever-box-centred reference frames (Cardinal, Bridge,
and Lever). The maps and polar firing rate histogram include the data from all journeys in which
the mouse pressed the lever. The polar plot shows the firing rate of the neuron as a function of
the direction of a vector originating at the lever box centre and pointing towards the head of the
mouse. The data in the first and second rows are from two different neurons and light and dark
trials, respectively. d: Distribution of peak-firing-rate distance from the lever box. Many neurons
had firing rate peaks close to the lever box. e: Percentage of neurons with a firing field anchored
to the lever box position. f: Mean vector length of the lever-centred circular firing rate histogram
in different reference frames. g: Change in mean vector length of the lever-centred circular firing
rate histogram between the Cardinal and Bridge reference frames for dark trials (Wilcoxon
signed-rank test, P = 3.48 x 10-5). h: Same as g but for light trials (P = 0.013). *P < 0.05, ****P
< 0.0001.

3.3.4 Long search paths associated with reduced
directional selectivity of lever-box-anchored firing fields

During the dark trials in the AutoPI task, mice were updating their position and

orientation estimation using path integration. So far, It was found that a subpopulation of

hippocampal place cells are anchored to the lever box. It was also found that the

lever-box-anchored cells have directional selectivity and fire in a specific direction from

the lever-box itself. Therefore, there should be an accumulation of errors that would

affect the directional selectivity of the lever-box-anchored cells (Hardcastle et al., 2015,

Pérez-Escobar et al., 2016). To test this hypothesis, I first divided the trials into two

equally sized groups based on the length of the search paths. The trials with the search

paths shorter than the median of the search path length were categorized as short

search path trials. The trials with the length of the search paths larger than the median

were long search path trials (Figure 29. a). The mean vector length (MVL) and the peak
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of the firing rate were used for short and long search paths separately to quantify the

directional selectivity of the cells around the lever.

The data showed that the mean vector length and the peak of the firing rate were

higher for shorter search path trials (Figure 29. b-c). To assess the stability of the cell's

firing rate around the lever, I calculated the trial matrix for each short and long trial

separately. Each line of the trial matrix contained the cell's firing rate as a function of the

direction of the mouse around the lever box. To quantify the stability of the firing rate, I

then calculated the trial matrix correlation across different trials of the same type. The

data showed a higher trial matrix correlation for the trials with shorter search paths than

those with longer search paths (Figure 29. d). To assess the similarity of the directional

selectivity of the cells during search paths, another parameter called average directional

trial drift was defiened, which was calculated from the trial matrices (Supplementary
Fig. 2, see material method). The trial with shorter search paths showed a smaller trial

drift (Figure 29. e). The same analysis was performed for the search duration instead of

the length of the search path, and the same result was observed (Supplementary Fig.
3). Together, these results demonstrated that during the longer search paths, the

directional selectivity of the lever-box anchored cells dropped. Therefore, It could be

suggested that during dark trials that the animal had to use path integration, the activity

of the lever-box-anchored cells was affected by the search path’s length and duration.
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Figure. 29. Search path length influences the directional selectivity of lever-anchored
firing fields during dark trials. a: Examples of two neurons with a lever-box-anchored firing
field during dark trials. Their firing activity around the lever box is shown separately for trials with
short (left) and long (right) search paths. For each neuron, four plots are shown for dark trials
with short and long search paths. Top-left: Search paths (dark grey) of the animal during dark
trials. The number indicates the median length of the search path. Bottom-left: 2D
lever-box-centered firing rate map. The number indicates the peak firing rate. Top-right:

88



Directional firing rate histogram showing the firing rate of the neuron as a function of the
direction of the mouse from the lever-box centre. The number indicates the polar plot's mean
vector length (MVL). Bottom-right: Trial matrix of the neuron. Each row of the matrix is the firing
rate as a function of the direction of the mouse from the lever-box centre for a single trial. The
number above the matrix refers to the trial matrix correlation. b,c,d,e: Quantification of the
differences in directional selectivity around the lever box between trials with short and long
search paths. Only neurons with a lever-box-anchored field in the Cardinal reference frame
were considered (n = 108). Directional selectivity was measured using the MVL (b) and peak
rate of the directional polar histogram (c), the trial matrix correlation (d), and the directional trial
drift (e). The plots show the differences between scores for trials with short and long search
paths [(Short) - (Long)]. A value above 0 means the score was higher for trials with short search
paths. P-values are from Wilcoxon signed-rank tests. *P < 0.05, ***P < 0.001,  ****P < 0.0001.

3.3.5 Lever-box-anchored fields get unstable during
inaccurate trials

As mentioned, the mean vector length and the peak of the firing rate directional

histogram of the lever-box-anchored cells decreases during the long search paths.

Based on this observation, it was asked whether the firing pattern of the

lever-box-anchored cells correlated with the homing accuracy of the animal during the

homing behaviour. It was hypothesised that the directional selectivity of the

lever-box-anchored cells was reduced during the inaccurate trials. To test this

hypothesis, the dark trials were first divided into two sets of equally size datasets based

on the median of the homing error at the periphery of each session (Figure 30 a.). The

trials with a lower error at the periphery than the session median were classified as

accurate. In contrast, the trials with the error at the periphery higher than the median of

the error at periphery were classified as inaccurate trials. In addition, the directional

selectivity of the cells was estimated using the mean vector length of the directional

firing rate histogram and the trial matrix correlation of the cells (Figure 30. a-b). The

mean vector length and the trial matrix correlation were larger for dark trials with

accurate homing compared to the trials with inaccurate homing. To assess the

directional selectivity of the cells during homing in dark trials, another parameter called

trial drift was defined (see Material and Method). The average preferred direction of the
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cell in all trials was first caculated and compared that to the directional tuning of the cell

inaccurate and inaccurate trials (P = 0.0091). Investigation of the mean firing rate of the

cells in accurate versus inaccurate trials also showed a decrease in the mean firing rate

of the cells in inaccurate trials (P = 0.014). Together this data suggested that the

lever-box-anchored firing fields were more stable during accurate homing in dark trials.
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Figure 30: Direction of lever-box-anchored fields predicts homing direction during dark
trials: a, Example of two neurons (one per row) with a lever-anchored firing field during dark
trials. The activity at the lever box is shown separately for trials with accurate (left) and
inaccurate (right) homing. Left: Homing paths of the mouse. The blue dots indicate the locations
at which the mouse reached the arena periphery. The number indicates the median homing
error in radian at the periphery of the arena. Middle: 2D lever-box-centred firing rate map. The
number indicates the peak firing rate. Right: Directional firing rate histograms in the Cardinal
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reference frame. The mean vector length (MVL) and peak rate are shown above the plot. b,
Differences between the mean vector length and trial matrix correlation obtained from dark trials
with accurate and inaccurate homing. A positive difference indicates a higher score during
accurate trials than inaccurate trials. c, Example of four neurons with a significant correlation
between the direction of its firing field around the lever and the homing direction of the mouse
during dark trials. i, Left: 2D lever-box-centred firing rate map. Middle: Homing paths of the
mouse. The colour of the homing path indicates whether the mouse reached the periphery of
the arena on the left (blue) or right (red) side of the mean homing direction of the recording
session. Right: Directional firing rate histogram for trials in which the mouse reached the
periphery of the arena on the left (blue) or right (red) side of the mean homing direction. The
dashed lines indicate the mean firing direction of the directional firing rate histograms. ii, Trial
matrix and homing direction of the mouse. The trial matrix shows the firing rate of the neuron on
each dark trial as a function of the direction around the lever box. The trials were sorted
according to the homing direction of the mouse, which is displayed as a red line. iii, Trial drift of
the neuron on each dark trial plotted against the homing direction of the mouse. The peak firing
rate direction was rotated so that its preferred direction was 0. The regression line, together with
the correlation coefficient (r) and slope of the regression line (s), are shown. d, Percentage of
the lever-anchored neurons with a significant positive, negative, or non-significant correlation
between the trial drift of the neuron and the homing direction of the mouse. e, Distribution of
correlation coefficients between the trial drift of the neuron and the homing direction of the
mouse for all neurons with a lever anchored firing field. f, Distribution of regression slopes
between the trial drift of the neuron and the homing direction of the mouse for all neurons with a
lever-box-anchored firing field. **P < 0.01, ****P < 0.0001.

3.3.6 The trial drift of the lever-box-anchored cells
correlates with homing direction during dark trials

It was next hypothesised whether the homing direction of the mouse could be predicted

from the directional selectivity of the lever-box-anchored cells on each trial. To do that,

the homing direction of the cells was first calculated as an angle between the two

vectors originating at the centre of the lever box. One of the vectors points towards the

centre of the bridge, and the other one towards the point where the mouse first hits the

periphery of the arena. For each session, I classified the trials into two groups based on

whether the homing direction of the trial was below or above the median homing

direction of the session (Figure 30. ci, middle row). Then I calculated the polar firing

92



rate histogram for dark trials for both sets separately. Some cells changed their

preferred directional selectivity associated with the homing direction of the cells. To

check whether the changes were significant, I compared the changes with the homing

direction vectors after shuffling the homing vector 500 times. The preferred direction of

the cells significantly changed in association with the homing direction (P < 0.05) in 25

% of the neurons (27/108 neurons). The changes were also statistically significant when

considering all the lever box-anchored cells for this analysis (n = 108 neurons,

supplementary fig . 4 a,b,c,d). Then, it was tested whether different lever positions

caused the changes that was observed. First, the analysis was limitedto the trials where

the lever was located near the centre of the arena (supplementary fig . 4 a,b,c,d).

Finally, it was tested whether there is a linear relationship between the trial drift in the

firing direction of a neuron and the homing direction (Figure 30. c ii, iii). First, I sort

trials based on the amount of homing error and plot the trial drift based on homing error.

(Figure 30. c ii). Later, a circular-circular correlation was performed between the trial

drift and the homing direction of the mouse (Figure 30. c iii). It was observed a

significant correlation in 26.9 % of the lever-box-anchored neurons. 24.1 % of the cells

had a positive r value with a significant correlation (vs 2.8 % with a negative r value)

(Figure 30. d). At the population level, a significantly more positive correlation

coefficient was observed (Figure 30. e). Our result indicated that the clockwise trial drift

in the neuron's activity caused a clockwise rotation of the homing direction. In addition,

the slope of the regression line was generally smaller than one indicating that trial drift

in the homing direction of the neuron was usually smaller than the change in the homing

direction of the animal (Figure 30. f). Together, the data suggested that the directional

firing of the hippocampal pyramidal cells around the lever box was linked to the homing

direction of the animal.
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4. Discussion

Animals with lesions in the hippocampus showed a deficit in the tasks requiring

PI (Whishaw, I. Q. & Tomie, 1997; Maaswinkel et al., 1999; McNaughton et al., 2006).

Previous theoretical and experimental work also emphasised the role of pyramidal

hippocampal cells in integrating self-motion cues during homing behaviour based on PI

(Gothard et al., 1996a; Gothard et al., 1996b). Moreover, self-motion cues determine the

place fields in premature rats when the input from the grid cells is still unavailable

(Bjerknes et al., 2018). However, only a few studies investigated the activity of spatially

selective neurons during PI tasks in freely moving rodents (Valerio & Taube, 2012b).

In this thesis, it was asked 1) whether the activity of place cells during the PI task

is the same as random foraging trial and 2) whether successful navigation in a PI task

would also affect the firing activity of place cells. A new PI task was developed that

enabled us to record the cell's spatial properties when the animal engaged in a PI task.

During the AutoPI task, the animal needed to search for a movable lever on a circular

arena, press it and return to the home base for a reward. I compared the activity of

place cell ensembles during the random foraging and AutoPI task. Near global

remapping occurred between the random foraging versus the AutoPI task. During the

AutoPI task itself, different cell ensembles were active in search and homing behaviours

and under different light conditions. Place cells were either firing in a fixed place in the

environment, encoded the distance between the animal and the lever box, or had a

firing field close to the lever box (lever-box-anchored cells) independent of the lever

location. The lever-box anchored cells had directional selectivity and were only active if

the animal was in a specific direction from the lever in the Cardinal reference frame. In

the darkness, when the animal had to use PI, the directional tuning of the

lever-box-anchored cells was reduced in long search paths or during inaccurate

homing. A significant correlation between the peak of the firing direction of
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lever-box-anchored neurons and homing direction of the animal in single trials was also

observed.

4.1 Why do we need another behavioural PI paradigm?

Food carrying task is one of the common paradigms to study PI. However, it is

not possible to record the cell’s spatially selective properties in a large environment

using this paradigm (Maaswinkel et al., 1999; Hines & Whishaw, 2005; Valerio & Taube,

2012b). The neural basis of PI can also be studied in head-fixed rodents running on a

floating ball. Linear track experiments, rotating balls together with adaptable visual

stimuli, and floating arenas are some of the VR platforms that have been used so far to

assess distance estimation using PI in 1D environments (Ravassard et al., 2015; Kislin

et al., 2014; Nashaat et al., 2016; Go et al., 2021). One of the major limitation of VR

tasks with the head-fixed or body-fixed paradigm is that it creates conflict between the

vestibular cues and motor feedbacks which is rarely seen during navigation in the real

world. AutoPI paradigm enabled us to 1) record more than 100 trials per session in an

automated platform. 2) provided a paradigm for freely moving mice in 2D with more

resemblance to the natural environment. 3) ensure having unique search paths on each

trial on the AutoPI task enforcing the animal to use the within-trial information for

homing, unlike most PI tasks in using a VR platform. 4) The automated setup allowed

scaling up the training procedure in which large number of mice could be trained.

Altogether, the AutoPI paradigm provides a new platform to assess the neural basis of

PI in a 2D environment in freely moving mice.

4.2 Task-dependent activity of place cells

The activity of place cells in the random foraging trial was compared to the

AutoPI trials. A complete reorganisation of neural ensembles was observed between

the two tasks. This result is similar to the previous observation by Markus and his
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colleagues in 1995. In this experiment, the activity of place cells was compared in the

random foraging task with the radial arm maze. The directional selectivity of the cells

was higher in the radial arm maze in comparison to the random foraging task. The

activity of the place cells was also investigated when the animal had to search for the

food in a fixed location on the arena versus when the food was scattered randomly

during the foraging task. The navigational tasks performed here were different in some

aspects, such as visual environment, motor behaviours (such as linear and angular

velocities) and behavioural context (presence or absence of a goal). The results showed

that the place fields were changing to a different location or went utterly silent when

comparing the place cell’s activity between the random foraging and radial arm maze

(Markus et al., 1995). Reorganisation of the CA1 place cells between the random

foraging and AutoPI task can be explained by the change of navigational strategies

needed in these two tasks, resulting in the use of different sensory modalities

(Geva-Sagiv et al., 2016; Radvansky et al., 2021).

Moreover, In the AutoPI task, the various light conditions might result in the

different behavioural demands that remapped the CA1 place activity in between

conditions. It was shown before that most place cells preserved their firing pattern

without visual landmarks in the random foraging experiment (Quirk et al., 2008; Zhang

et al., 2014). During random foraging, the animal does not need to plan a defined

destination for its path. Therefore, the behavioural demand would remain the same in

light and dark conditions. However, in the AutoPI task, removing the visual landmark

would force the animal to plan its path based on PI instead of directly running to the

lever or the home base. As a result, the running speed, length of the path, and

complexity changed in light versus dark conditions in the AutoPI task.
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4.3 Cells with task-relevant reference frames

Some hippocampal place cells encoded the animal's distance to or from the lever

during the search and homing paths in the AutoPI task. I also recorded place cells with

fixed place fields on the arena relative to the room. Interestingly, place cells only encode

the animal's distance to the lever during the search paths in light trials when the lever

was visible. In contrast, during homing, the cells encoded the animal's distance to the

lever in both light and dark trials. Our data suggest that the animal's distance to the

lever was encoded in dark trials using PI. This conclusion is in line with previous work

showing a contribution of self-motion cues in determining the location of place fields.

(Gothard et al., 1996b; Rivard et al., 2004; Bjerknes et al., 2018). For example, Gothard

and her colleagues (1996) reported that place cells were more encoding the animal's

distance relative to their starting point in a linear track with different lengths using PI.

Also, place cells in premature rats encode the animal's distance to the starting point in a

linear track with changeable length even when the grid cells are not entirely developed

(Bjerknes et al., 2018).

In addition to the classical place cells with a fixed place field on the arena and the

cells that encode the animal's distance from the lever, I found some cells that were

active when the mouse was at the lever (distance of less than 10 cm from the lever)

called lever-box-anchored cells. Lever-box-anchored cells were active close to the lever

box independent of the lever's location on the arena in a lever-box reference frame

(task-relevant object reference frame). Lever-box-anchored cells are similar to the

goal/landmark-centre reference frame that Gothard and colleagues reported in 1996. In

their experiments, rats were released from a box with a random location on an arena to

find a reward before returning to the box for another reward. The position of the reward

was near two objects on the arena. The location of the objects, together with the reward

location, changed between trials, forcing the animal to rely mostly on visual landmarks

for navigation. They found cells with a 1) fixed place field on the arena, 2) goal/landmark
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cells that fired close to the goal or landmark independent of the location of the goal or

landmark on the arena. 3) box-related cells that only fired when the rat was entering or

closing the box (Gothard et al., 1996b). The goal/landmark cells are very similar to our

lever-box-anchored cells described in my thesis.

In yet another study, Rivard and his colleagues recorded a subpopulation of the

hippocampus cells that fire the animal's position relative to the environment's barrier

regardless of the barrier location in the environment (Rivard et al., 2004). In this

experiment, the position of the barrier was either fixed on the arena or it was moved to

another location. When the barrier was fixed on the arena the cells behaved like

classical place cells with a fixed place field on the arena. However, when the barrier was

moved to a new location providing information about the barrier's locatoin on the arena.

Together our results are inconsistent with the previous ones suggesting that a

subpopulation of hippocampal cells encodes the animal's location in a fixed spatial

frame (room frame), and other subpopulations encode the animal's location in

task-dependent or object-dependent reference frames.

Furthermore, it was shown that the cells with the object-related firing fields were

encoding the animal's location relative to the object in the darkness. The

lever-box-anchored cells also fired the direction of the animal relative to the lever in the

Cardinal reference frame in the AutoPI task. The directional selectivity of the

lever-box-anchored cells in darkness, therefore might provide information about the

position of the animal relative the lever using PI. The directional selectivity of these cells

is similar to what was observed in the landmark-vector cells before in the hippocampus

and MEC (Høydal et al., 2019; Dannenberg et al., 2020). Therefore, our data suggest

that the activity of the lever-box-anchored cells and their directional selectivity can be

related to the HD cells. The HD system can integrate the angular self-motion cues to

estimate the direction of the animal related to the lever. Moreover, the homing direction

of the animal on each trial also correlates to the homing direction. These data are
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consistent with what Valerio and Taube (2012) observed in HD cells during a PI task. In

addition, the MEC contains cells like HD, border and object-vector cells that make it a

good candidate for translation of the HD signal to the position-direction codes reflected

in lever-box-anchored cells. Border cells demonstrated directional selectivity coherent

with the preferred direction of HD cells (Solstad et al., 2008). I assumed that the input

from the border cells and object-vector cells in MEC to the hippocampus could

contribute to the lever-box-anchored firing field in the AutoPI task. However, the

characterisation of spatially selective cells in MEC in the AutoPI task is needed to

understand the mechanism behind the formation of lever-box-anchored fields.

4.4 PI contributes to the directional selectivity of lever-anchored cells in
the dark

The animal needed to integrate the linear and angular cues during the search

paths to return to the home base in dark trials in the AutoPI task. To ensure that the

animal uses PI in the dark, it was masked the potential auditory and olfactory cues

using white noise and arena rotation. Using PI and in the absence of external

landmarks, the accumulation of error increased with the length and duration of the

search paths in the AutoPI task as it was previously reported (Allen et al., 2014; Valerio

& Taube, 2012; Gil et al., 2018; Müller & Wehner, 1988; Stangl et al., 2020). The

positive correlation between the search path's length and duration and the homing error

in dark trials suggested that mice used PI in the AutoPI task.

It was also observed that the directional representation of the place cells around

the lever box is getting updated in dark trials. When the length of the search paths

increased in the dark trials, the variability in the direction selectivity of the

lever-box-anchored cells also increased. The lever-box-anchored fields were located

relative to the lever box (task/object-related reference frame) but not the global

reference frame in the room (Cardinal reference frame). Therefore, the error in
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estimating the movement during the search path should not affect the firing field stability

since the field's location was set when the animal encountered the lever. Furthermore,

the directionality of the firing fields for the lever-box-anchored cells correlated to the

homing direction of the animal. Our data suggested that although the linear PI was not

critical to set the directional selectivity of the lever-box-anchored cells, it was still

required for accurate homing in the AutoPI task.

4.5 Lever-box-anchored fields predict the homing direction

Approximately 25% of the hippocampal pyramidal cells recorded in the AutoPI

task had directional firing fields around the lever box. The preferred direction of the

lever-box-anchored cells around the lever could also predict the homing direction of the

animal. For instance, when the preferred direction of the lever-box-anchored cells

rotated clockwise relative to the average preferred direction of the cell, the homing

direction of the mouse on a given trial also rotated clockwise, respectively. Although,

object-related firing fields have been reported in the hippocampus and MEC (Høydal et

al., 2019; Deshmukh & Knierim, 2013). However, our results suggested that the

object-task-related firing fields would also encode the information relevant to the homing

direction of the animal during PI. It was hypothesised that 1) lever-box-anchored firing

fields contribute to the homing behaviour by providing information in a Cardinal

reference frame contributing to planning the homing direction. 2) A subpopulation of

CA1 pyramidal cells that are active at the lever encode the time of the path on each trial

when the animal reaches the lever and needs to plan for homing direction (Dragoi &

Buzsáki, 2006). 3) The hippocampal cells contribute to the homing behaviour by

providing spatial information, a series of meaningful events and the time points where

the animal needs to decide in which direction it needs to go (Eichenbaum et al., 1999;

Dragoi & Buzsáki, 2006; Buzsáki & Moser, 2013). I propose that hippocampal CA1 cells

provide a cognitive plan to organise a homing direction in a homing based on the PI

task.
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5. Limitations and future work

A new behavioural paradigm to study homing based on path integration was

developed in this thesis. The role of the hippocampal pyramidal cells was then

investigated during the dark trials where the animal used PI. To confirm that the

hippocampus is essential for homing behavirour in the AutoPI task, we would need to

assess homing ability after manipulating the activity of hippocampal neurons during the

task. One strategy could be to excite interneurons using channelrhodopsin to reduce the

activity of principal cells. Light stimulation could be delivered during the search path up

until the time at which the animal presses the lever. Based on previous lesion studies

that showed a role of the hippocampus in homing based on path integration, I would

hypothesize that the optogenetic manipulation of interneuron populations in the

hippocampus would impair homing accuracy selectively during dark trials.

Another potential improvement on the experiments presented in this thesis would

be to add controls for the potential use of odours. For instance, the pellets that are

located behind the home base might provide an olfactory cue for the mice to return to

the home base. For instance, one could move the home base to a new location while

the mouse was in the arena during the dark trial, which would be difficult to implement.

Another possible manipulation could be to train the mice in a paradigm with two or more

home bases. Only returning to one of them would lead to the reward on each trial.

Multiple pellet sources around the arena would reduce the chance of using odour cues

to navigate back to the home base. However, adding multiple home bases to the

paradigm would have expanded the training period, which is already long (6-8 weeks). It

should also be noted that mice performed way above chance level during dark trials in

which a strong airflow made the use of olfactory cues unlikely, suggesting that the

performance of mice during dark trials likely depended on path integration.

It was argued in the discussion that the lever-box-anchored cells are

task-relevant, and the directional selectivity of these cells predicts the homing direction
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of the mouse during homing. The observation of lever-box-anchored cells also raised

the question of whether the cells observed around the lever are the same as the

object-vector-anchored cells in MEC or other brain areas. To have a better control

experiment for this question, one would need to compare the spatial properties of the

cells during the random foraging task but with the lever located on the arena. I would

hypothesise that the pyramidal cells would not fire around the lever during the random

foraging trial.

6. Conclusion

I extended a classical operant conditioning protocol to study PI in mice. A

population of hippocampal cells (lever-box-anchored) fired when the animal was running

around the lever before starting its homing path. The lever-box-anchored cells were

firing in a lever reference frame with the lever at its centre. The directional selectivity of

these neurons was relative to the room reference frame. Our finding rules out the

hypothesis that during a homing task all hippocampal neurons fire in a global and stable

reference frame that includes the start and end of a journey. A next step could be to

investigate the firing patterns of grid cells located in the MEC, one of the main inputs to

the hippocampus. The implicit assumption in the grid cell literature is that grid cells

should fire in a global reference frame during a PI task. This assumption will soon be

addressed using the behavioral paradigm I developed in my thesis.
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7. Supplementary figures

Supplementary Fig. 1. Position and orientation of the lever box on the arena. a,
Distribution of lever box position on the arena for trials of the test sessions. The red circle
indicated the maximal distance (25 cm) between the lever box centre and the arena centre for a
trial to be included in the analysis. b, The lever box position distribution for trials included in the
analysis. c, Distribution of distance between the lever box and the centre of the arena for all
trials of the test sessions. d, Distribution of lever box orientation for all trials of the test sessions.

Supplementary Fig. 2. Procedure to calculate the trial matrix correlation. a, Trial matrix
showing the firing rate of a neuron on each trial as a function of a behavioural variable, here the
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direction of the mouse around the lever box. b, Same trial matrix as in a but rotated by 90°
anti-clockwise. c, Correlation matrix showing the Pearson correlation coefficients between all
pairs of trials. The trial matrix correlation is the mean of the correlation matrix after excluding the
values of the main diagonal.

Supplementary Fig. 3. Procedure to calculate the directional trial drift of
lever-box-anchored fields. a, Trial matrix showing the firing rate of a neuron on every trial as a
function of the direction of the mouse relative to the lever box. b, Trial matrix after shifting all
trials together so that the highest mean firing rate is aligned to 0. This preserves the relative
direction of firing across trials. c, Trial matrix after aligning the firing rate on each trial so that its
peak is at 0. This eliminates the potential drift of the preferred direction on each trial. It was
calculated the mean firing rate as a function of direction (white line), which served as an
idealised tuning curve of the neuron. d, Cross-correlation between the firing rate on each trial
(matrix shown in b) and the idealised tuning curve of the neuron (white line in c). e, Same as in
d, but fewer trials are shown. The vertical red bars, which are aligned to the peak of each trial's
cross-correlation, represent the neuron's directional trial driftthe cross-correlation of each trial,
represent the directional trial drift of the neuron. f, Distribution of directional trial drift for a
lever-box-anchored neuron during the dark trials of a single session.
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Supplementary Fig. 4. Effect of search path duration and search heading error on the
directional selectivity of lever-box-anchored firing fields. a, Change in directional selectivity
between trials with short and long search path duration. Trials were divided into two equal-sized
groups containing short and long search duration trialstrials with short and long search duration.
Spatial directionality was assessed using the mean vector length (MVL) and peak rate of the
directional firing rate histogram, the trial matrix correlation and the directional trial drift. The plots
show the difference in these four measures of directional selectivity between trials with short
and long search paths ([(Short) - (Long)], Wilcoxon signed-rank tests, MVL: P = 4.0 x 10-5 , peak
rate: P = 4.13 x 10-9 , trial matrix correlation: P = 1.35 x 10-7 , and trial drift: P = 1.36 x 10-4 ). b,
Same as a but for search heading error instead of search path duration. The plots show the
difference in directional selectivity between trials with low and high heading errors during the
search path ([(Short) - (Long)]). Heading error during the search path was defined as the angle
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between a vector pointing in the direction of movement of the mouse and a vector from the
animal head to the center of the lever box. The angle was calculated at 30 Hz, and the median
of each trial was calculated. Trials were classified as low and high heading errors based on
whether their heading error was lower or higher than the median of each recording session
(Wilcoxon signed-rank tests, MVL: P = 0.0012, peak rate: P = 8.14 x 10-9, trial matrix correlation:
P = 1.35 x 10-7, and trial drift: P = 5.42 x 10-5 ). **P < 0.01, ***P < 0.001, ****P < 0.0001.
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