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1 INTRODUCTION 

1.1 Epidemiology of lung cancer 

1.1.1 Incidence and mortality 

Lung cancer has remained amongst the most commonly diagnosed types of cancer for at least 

the last two decades (Schabath and Cote 2019). In 2020, it was the second most common 

cancer type worldwide (2,206,771 new diagnoses [11.4%]), only after breast cancer (2,261,419 

[11.7%]), and was also the deadliest (1,796,144 cancer-related deaths [18%]) (Ferlay J 

2020b). 

In Germany, according to the most recent report from the Federal Statistical Office (German 

Centre for Cancer Registry Data - Robert Koch Institute 2021), in 2017 lung cancer caused 

almost as many deaths (15.7%) as breast cancer (17.7%) among German women. Among 

German men, it was the first cause of cancer-related death (23.4%), surpassing both prostate 

(11.7%) and colorectal cancer (10.5%) combined (Figure 1) (German Centre for Cancer 

Registry Data - Robert Koch Institute 2021).  

Although no data is publicly available for more recent years, the latest projections of German 

national rates reported by the World Health Organization (WHO) for the year 2020 estimated 

lung cancer to be the second most common cancer diagnosis among men (38,436 [11.2%]), 

and the third one among women (26,368 [9.3%]) (Figure 2) (Ferlay J 2020a). Regarding 

mortality, and considering both sexes, the projections estimated lung cancer to remain as the 

first cause of cancer related death (19.9% (50,282) (Figure 3) (Ferlay J 2020a). 

Currently, organized screening programs for breast, cervical and colorectal cancer are offered 

in Germany (Bundesministerium für Gesundheit 2021; Gemeinsamer Bundesausschuss 2020; 

Gemeinsamer Bundesausschuss 2021b). Additionally, voluntary screening examinations for 

skin and prostate cancer are covered by health insurance for eligible subjects, though not in 

the form of structured programs (Bundesministerium für Gesundheit 2021; Gemeinsamer 

Bundesausschuss 2021a). However, so far, no official recommendations have been issued 

regarding strategies for the early detection of lung cancer. 
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Figure 1. Distribution of cancer-related deaths in Germany 2017 across cancer types by sex. 

Data source: (German Centre for Cancer Registry Data - Robert Koch Institute 2021). 

 

.  

 
 

Figure 2. Distribution of new cancer cases in 2020 in Germany across cancer types by sex. 

As published in (Ferlay J 2020a), reprinted with permission. 
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Figure 3. Distribution of cancer-related deaths in Germany in 2020 across cancer types. 

Data source: (Ferlay J 2020a). 

 

1.1.2 Histological classification 

Lung tumors are classified into two major histological groups: non-small cell lung cancer 

(NSCLC) and small-cell lung cancer (SCLC). Up to 85% of lung cancers are NSCLC, which 

can be further classified into adenocarcinomas (40%), squamous cell carcinomas (25%), large 

cell carcinomas (15%), and other less common subtypes (20%) (Figure 4) (Chansky et al. 

2017; Rami-Porta et al. 2014; Schabath and Cote 2019; Wahbah et al. 2007).  

The distribution of histologic subtypes varies by gender and also across countries (Youlden et 

al. 2008). In recent years, the proportion of adenocarcinomas has increased in both men and 

women in various countries in Europe, North America and Oceania (Travis et al. 2011). Among 

men, squamous cell carcinoma used to be the most common histologic subtype worldwide; 

however, since the mid-1990s it has been surpassed by adenocarcinoma in the USA, Canada, 

some European countries, and Japan (Toyoda et al. 2008), a trend that has not been observed 

in countries such as the Netherlands and Spain (Lortet-Tieulent et al. 2014). The increase in 

the number of adenocarcinomas, usually located in the peripheries of the lung, has been 

attributed to deeper tobacco smoke inhalation promoted by the marketing of filtered cigarettes 

as less harmful, mostly in western countries (Lewis et al. 2014; Warren et al. 2014). Among 

women, the gap between the proportion of adenocarcinomas and the proportion of other 

subtypes is larger than in men, which might be attributed to the preference of female smokers 

for filtered and “light” versions of cigarettes (Travis et al. 2011). 
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Figure 4. Histologic classification of lung cancer  

As published in (Schabath and Cote 2019), reprinted with permission. 

 

1.1.3 Risk factors 

1.1.3.1 Tobacco smoking 

Tobacco smoking has been identified as the main risk factor for lung cancer (Thun 2010). In 

western populations, it has been estimated to account for over 80% of all lung cancer 

diagnoses (Bray et al. 2018). Worldwide, about 75% of all lung cancer deaths among men, 

and 50% among women are attributed to it (American Cancer Society 2018). Not only smoking, 

but also indirect exposure, also known as secondhand smoke has been causally linked to lung 

cancer among never smokers, increasing the risk of exposed individuals by up to 28% 

compared to those unexposed (Hori et al. 2016; Kim et al. 2018). 

1.1.3.2 Other risk factors 

Besides tobacco smoking and secondhand tobacco smoke, other risk factors have been 

identified, such as environmental exposure to radon and polluted air (indoors and outdoors) 

(Garzillo et al. 2017; Lubin and Boice 1997), occupational exposure to asbestos, arsenic, 

cadmium and various substances present in the production of rubber, paving, mining, painting, 

as well as exposure to diesel exhaust and radiation (Alberg et al. 2013; American Cancer 

Society 2018; Dela Cruz et al. 2011; Driscoll et al. 2005). 

Additionally, respiratory diseases associated with chronic lung tissue inflammation, such as 

chronic obstructive pulmonary disease (COPD), emphysema (these two being most 

commonly, though not always attributed to smoking), chronic bronchitis, asthma, pneumonia 

and tuberculosis have also been linked to lung cancer risk to various degrees and through 

various possible mechanisms (Brenner et al. 2011; Zhang et al. 2017). Other epidemiological 

risk factors are genetic susceptibility (Bailey-Wilson et al. 2004; Bosse and Amos 2018; McKay 
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et al. 2017) advanced age, malnutrition (Duan et al. 2015; Smith et al. 2012; Sun et al. 2016; 

Yang et al. 2013), and a compromised or suppressed immune system (Engels et al. 2006). 

1.1.3.3 Lung cancer in non-smokers 

About 25% of all lung cancer cases worldwide are found among never smokers, a high 

proportion of these among women (Parkin et al. 2005). Lung tumors among non-smokers are 

most commonly adenocarcinomas with genetic and mutation profiles significantly different from 

those detected among smokers (Rudin et al. 2009). 

Among non-smokers, advanced age has been identified as the most significant risk factor 

(McCarthy et al. 2012). Therefore, with aging populations, especially in western countries such 

as Germany, the number of new lung cancer cases is expected to increase, regardless of the 

efficacy of any anti-tobacco interventions. 

1.1.4 Primary prevention: tobacco control 

Increased taxation, banning of smoking in public places, restrictions and regulations on 

marketing, public awareness and smoking cessation campaigns are some examples of 

tobacco control interventions (American Cancer Society 2018; Arenberg 2019; Bray et al. 

2018) 

In countries such as the United States, these interventions have contributed to a decrease in 

smoking rates (American Cancer Society 2018), a trend that is starting to emerge in other 

developed countries. However, smoking cessation interventions are not always successful and 

even if they are, their effects are noticeable only in the mid to long term since former smokers 

remain at elevated risk for lung cancer and lung cancer-related death over a period of several 

years (Halpern et al. 1993). Therefore, lung cancer is expected to remain a public health issue 

in the 21st century.  

In the short term and for cases in which primary prevention fails and lung cancer develops, 

secondary prevention focuses on reducing the risk of lung-cancer related death by means of 

early detection, timely and accurate diagnosis and appropriate treatment assignment.  

1.1.5 Secondary prevention: early detection 

Given that early-stage lung cancer is usually asymptomatic, the disease is most commonly 

diagnosed at advanced stages of development (stages III –IV) at which survival rates are much 

lower compared to early stages (stage I) (Barnes et al. 2016; National Cancer Institute 2020). 

According to worldwide and German statistics, around 70% of lung cancers are diagnosed in 

advanced stages (stages III to IV) (Figure 5), at which tumors are no longer resectable (Barnes 
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et al. 2016; Travis et al. 2013), and in more than half of the cases at stages at which the 

disease has become metastatic (Sharma et al. 2015). 

 

Figure 5. Distribution of lung cancer stages at first diagnosis by sex, Germany 2015-2016. 

Upper plot: including “death certificate only” cases and cases with missing stage information. Lower plot: only 
cases with available stage information. 

Adapted from (Barnes et al. 2016). 

 
In Germany, 5-year survival rates for metastatic (stage IV) disease have been estimated at 

around 3% for males and 5% for females. In contrast, survival rates for the same time span 

are estimated at 58% and 75% for male and female patients with stage I tumors respectively 

(Figure 6) (Barnes et al. 2016; Goldstraw et al. 2016; Sharma et al. 2015).  

Analysis on pooled data from 16 countries reported similar 5-year rates (stage IV: 0%-10% vs. 

stage I: 68%-92%) for all non-small cell tumors. Moreover, specific analyses on the same data 

have shown how these survival rates vary depending on tumor size, even within early-stage 

categories and as the disease progresses, with estimated 2-year survival rates for stage I 

ranging from 67% to 97%. (Figure 7) (Goldstraw et al. 2016).  

However, it is important to note that the very high survival rates observed for the most recent 

definition of tumor stages IA1 and IA2 (Goldstraw et al. 2016; Nicholson et al. 2016), might be 

in part attributed to the earlier detection of such very small tumors (T1a: ≤1 cm in largest 

diameter; T1b: >1 cm but ≤ 2 cm in largest diameter) made possible by the application of 

imaging techniques with higher resolution. While earlier detection might extend the time from 

detection to death, it might not truly reflect extended survival in terms of lifespan. 

Finally, analyses by tumor histology have shown the association of earlier diagnosis on survival 

rates to be stronger for some lung cancer subtypes. In particular, for NSCLC, 2-year survival 

in advanced stages (IV) is less than 20%, compared to 87% and up to 97% 2-year survival for 

patients with stage I tumors (Goldstraw et al. 2016), and of about 8% (stage IV) vs. 67% and 

up to 93% for SCLC (Figure 8) (Goldstraw et al. 2016; Nicholson et al. 2016). 
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Figure 6. 5-year survival rates by lung cancer UICC stage and sex, Germany 2015-2016 

Abbreviation: UICC: Union for International Cancer Control 

Adapted from (Barnes et al. 2016). 

 

Figure 7. 5-year survival rates by lung cancer clinical stage (NSCLC) 

Abbreviation: IASLC: International Association for the Study of Lung Cancer 

Data source: (Goldstraw et al. 2016) 

 

 

Figure 8. 2-year survival rates by lung cancer clinical stage and histology subtype 

Abbreviation: IASLC: International Association for the Study of Lung Cancer 

Data source: (Goldstraw et al. 2016) and (Nicholson et al. 2016) 
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These statistics suggest that early detection, and therefore a timely diagnosis, could improve 

the survival rates among lung cancer patients. Thus, with the aim of decreasing lung cancer-

specific mortality, the design and implementation of effective and efficient screening programs 

is a topic of current discussion among the scientific community and policy makers worldwide. 

1.2 Lung cancer screening with low-dose computed tomography 

The ultimate goal of lung cancer screening is to reduce lung cancer specific mortality. The first 

step towards this goal is to find an examination method that can detect cancer at stages early 

enough for treatment to have a positive effect on the survival outcomes of screened subjects.  

The following sections describe how low-dose computed tomography (LDCT) has come to be 

the detection method of choice for lung cancer screening and summarizes its risks and 

potential harms. 

1.2.1 Early approaches with chest X-ray 

Starting in the 1960s a number of clinical trials evaluated the effects of imaging-based lung 

cancer screening using chest X-ray (CXR) alone or in combination with other methods such 

as sputum cytology (Sharma et al. 2015). All such trials showed an increase in lung cancer 

detection through screening and some showed a shift towards detection at earlier stages, 

though none of them found a significant reduction in lung cancer mortality that could be 

attributed to CXR as a method for screening (Berlin et al. 1984; Brett 1968; Melamed et al. 

1984; Tockman 1986). With the introduction of more advanced techniques with higher 

resolution such as computed tomography (CT), came a renewed interest amongst the scientific 

community for the investigation of alternative screening methods. 

1.2.2 LDCT-based imaging as screening method 

In the early 1990s low-dose computed tomography (LDCT), preferred to regular computed 

tomography (CT) due to its lower levels of radiation, was evaluated in a number of non-

randomized clinical trials as an imaging method for identifying pulmonary lesions (see (Bach 

et al. 2003b; Sharma et al. 2015) for a summary). The largest of these trials, the „International 

Early Lung Cancer Action Program (I-ELCAP)” (N= 31,567 participants) showed that more 

than 80% of lung cancers identified by means of LDCT were stage I and reported a 92% 10-

year survival rate for patients with disease in this stage who were surgically treated (Henschke 

et al. 2006). 

However, neither a shift towards detection at earlier stages nor prolonged survival as 

measured from the time of diagnosis are enough to prove the efficacy of LDCT screening as a 

means to reduce lung cancer related mortality.  In fact, a necessary condition to justify 
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screening is to prove that, thanks to early detection, the life span of screening participants 

becomes longer than it would have been, had the tumors been detected at a later point in time. 

This evidence, however, can only be obtained by analyzing data from randomized trials. 

Therefore, although all the non-randomized trials showed a shift in tumor stage and some an 

improvement in survival rates, the lack of a randomized control arm did not allow the 

researchers to test whether screening actually reduced mortality. The need for this evidence 

motivated the planning and conduction of a series of randomized clinical trials around the world 

(Table 1). 

The first randomized trial to prove a mortality reduction benefit of LDCT-based compared to 

CXR-based screening was the National Lung Screening Trial (NLST) (Aberle et al. 2011), a 

study conducted in the USA that randomized over 53,000 former or current heavy tobacco 

smokers ages 55 to 75, to three annual rounds of either LDCT or CXR. The preliminary results 

of the trial, published after the first 9 years of follow-up, showed a 20% reduction of lung cancer 

mortality in favor of LDCT (relative risk (RR) = 0.80, 95% CI:[0.73,0.93] (Aberle et al. 2011). 

These results motivated expert societies in the USA such as the Preventive Service Task Force 

(USPSTF) and the National Comprehensive Cancer Network (NCCN) to issue formal 

recommendations in favor of LDCT-screening for early detection in high-risk individuals.  

Though the results of the NLST increased the acceptance of LDCT screening, it was not clear 

whether the mortality reduction shown by the trial could be transferred to populations with other 

characteristics (Arenberg 2019). Also, the NLST produced very high false positive test rates, 

which could be largely attributed to the nodule evaluation criteria used during the trial. With the 

aim of validating the evidence in favor of LDCT as a screening method in other populations, 

and of testing alternative nodule evaluation and management criteria, further randomized trials 

in the USA, China and various European countries have been conducted (Table 1). 

The largest European trial, with a total of 15,792 participants, was the Dutch–Belgian NELSON 

(Horeweg et al. 2014a; Ru Zhao et al. 2011; van Iersel et al. 2007; van Klaveren et al. 2009). 

After 10 years of follow-up since randomization, results from this trial showed an even stronger 

reduction in lung cancer mortality in favor of LDCT than that found after the first 9 years of 

follow-up in the NLST, that is: 24% among men (RR = 0.76, 95% CI:[0.61, 0.94]) and, from a 

smaller subgroup analysis, 33% among women (RR = 0.67, 95% CI:[0.38, 1.14]) (de Koning 

et al. 2020). Thanks to its sample size, the NELSON had enough power to produce statistically 

significant results for its main target population (male former and current smokers), thus being 

the first trial to confirm the benefits of LDCT-based screening in populations outside the USA. 

Smaller randomized trials (Table 1) were conducted in Denmark (DLCST, N=4,104) (Wille et 

al. 2016), Italy (DANTE, N=2,532 (Infante et al. 2009); ITALUNG, N = 3,206 (Paci et al. 2017); 

and MILD, N = 4,099 (Pastorino et al. 2012)), Germany (LUSI N=4,052 (Becker et al. 2015; 
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Becker et al. 2012)), and the USA (LSS, N=3,318) (Doroudi et al. 2018; Gohagan et al. 2004; 

Gohagan et al. 2005). More recent ones are the UK Lung Cancer Screening Trial (UKLS, 

N=4,055) (Baldwin et al. 2011; Field et al. 2016) and the trial conducted by the AME Thoracic 

Surgery Collaborative Group in China (N=6,717) (Yang et al. 2018). A key difference between 

the USA trials (NLST and LSS) and those conducted in other countries is that instead of having 

a control arm without intervention, they compared LDCT to CXR-based screening. 

By 2020, results from almost all smaller trials (except UKLS), as well as an update from the 

NLST after longer follow-up had been published. Initial results of the MILD (Pastorino et al. 

2012), DANTE (Infante et al. 2015), DLCST (Wille et al. 2016) LSS (Croswell et al. 2009; 

Doroudi et al. 2018; Gohagan et al. 2004; Gohagan et al. 2005) showed no indication of a 

favorable effect of LDCT screening on lung cancer-related mortality. In contrast, the AME 

(Yang et al. 2018), LUSI (Becker et al. 2020) and ITALUNG trials (Paci et al. 2017), as well as 

further analyses on data from the MILD trial (Pastorino et al. 2019a) that corrected for incorrect 

randomization, reported point estimates of risk ratios for lung cancer mortality in favor of LDCT 

(Figure 9). However, none of these smaller trials were sufficiently powered to produce 

statistically significant results for the comparison of lung cancer mortality rates between the 

two arms. What is more, some of the trials have been evaluated as being at substantial risk of 

bias (Brodersen et al. 2020; Hoffman et al. 2020). In the AME as well as in DANTE, the sample 

sizes for the screening and control arms were not balanced and the MILD trial failed to 

randomize participants simultaneously; additionally, it reported a higher proportion of current 

smokers in the control versus the intervention group). Finally, after an extended follow-up of 

12.3 years, further analyses on data from the NLST showed a lower reduction in lung-cancer 

mortality compared to the initial results (8%; RR = 0.92, 95% CI:[0.85, 1.00] and 11% dilution-

adjusted; RR = 0.89, 95% CI:[0.80, 0.997]) (National Lung Screening Trial Research Team 

2019). 

Although the conclusions from individual studies seem partially conflicting, a recent meta-

analysis (Hoffman et al. 2020) of the results of all such trials confirmed a reduction in lung 

cancer mortality attributed to LDCT-imaging as a screening method (RR=0.84, 95% CI:[0.75, 

0.93]) (Figure 9).Differences in the effect of LDCT-screening between female and male 

participants have been reported by some randomized trials. Analysis on data from the NLST 

showed a stronger reduction in lung-cancer mortality among women (RR=0.73, 95 % CI:[0.6, 

0.9], RR=0.86 after extended follow-up) than among men (RR=0.93 [95 % CI:[0.8, 1.08], RR 

= 0.97 after extended follow-up). Similar results were reported by the NELSON (RR=0.69 for 

women and 0.86 for men) and the LUSI. 
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Table 1. Characteristics of randomized control trials comparing LDCT with CXR or with a control arm without screening 

Trial 
Country 

Recruitment 
Years 

Trial size 
Intervention / 
control arm 

Inclusion criteria 
Screening 
interval in 
months / 

number of 
rounds 

Evaluation criteria for nodules detected via LDCT 
False Positive 

Rate 
[95% CI] 

Age Smoking Prevalence screen Incidence screens 

LSS 
U.S. 
2000-2001 

3,318 
(1,660/1,658) 

55-74 
≥30 py, 

cessation 
<10 y 

12 / 2 
P: D > 3mm or abnormal 

appearance (spiculation, major 
atelectasis, etc.) 

P: D ≥ 4mm or abnormal 
appearance (spiculation, 
major atelectasis, etc.) 

0.16 
[0.01, 0.01] 

NLST* 
U.S. 
2002–2004 

53,452 
(26,722/26,730) 

55-74 
≥30 py, 

cessation 
<15 y 

12 / 3 P: D ≥ 4mm 
0.23 

[0.23, 0.24] 

DANTE 
Italy 
2001-2006 

2,532 
(1,300/1,232) 

60-74 
≥20 py, 

cessation 
<10 y 

12 / 5 
P: D ≥ 5mm 

 

P: D > 5mm or any growth 
N: no new; no growth; 

NCN≤5mm 

0.24 
[0.22, 0.27] 

NELSON 
Netherlands/Belgium 
2003-2006 
 

15,792 
(13,195/2,594) 

50-74 

>15 c/d, >25 
y or 

>10 c/d, >30 
y, 

cessation 
≤10 y 

12, 24, 
30 / 4 

P: V>500mm3; VDT < 400d 
I: V =50-500mm3, VDT 400-

600d 
N: V <50mm3; VDT > 600d 

P: new > 500mm3, VDT < 
400d 

I: new 50-500mm3, VDT 
400-600d 

N: none, new < 50mm3, 
VDT >600d 

0.01 
[0.01, 0.01] 

DLCST 
Denmark 
2004-2006 

4,104 
(2,052/2,052) 

50-70 
≥20 py, 

cessation 
<10 y 

12 / 5 
P: D > 15mm 
I: D = 5-15mm 
N: D < 5mm 

P: any new; VDT <400d 
I: VDT 400-600d 

N: no new; VDT > 600d 

0.03 
[0.03, 0.03] 

ITALUNG 
Italy 
2004-2006 

3,206 
(1,613/1,593) 

55-69 
≥20 py, 

cessation 
<10 y 

12 / 4 
P: D ≥ 5mm 
N: D < 5mm 

P: new > 3mm; any growth 
N: no new; no growth 

0.19 
[0.18, 0.20] 
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Table 1 (continued). Characteristics of randomized control trials comparing LDCT with CXR or with a control arm without screening 

MILD 
Italy 
2005-2011 

4099 (2376/1723) 49-75 
≥20 py, 

cessation 
<10 y 

12 or 24 / 3 

or 5 

P: V > 250mm3 
I: V = 60–250mm3 
N: V <60mm3 

P: new V > 250mm3 
I: new V 0–250mm3 
N: no new 

 

LUSI 
Germany 
2007-2011 

4,052 
(2,029/2,023) 

50–69 
 NELSON 
eligibility 
criteria 

12 / 5 

P: D >10mm or VDT < 400d 
I: D =5-19mm or VDT 400-
600d  
N: D <5mm or VDT >600d  

P: new > 10mm; VDT 
<400d 
I: VDT 400-600d  
N: no new; no growth; VDT 

>600d  

0.08 
[0.08, 0.09] 

UKLS pilot 
United Kingdom 
2011-2012 

4,055 
(2,028/2027) 

50-75 

5-year lung 
cancer risk 

of ≥5%, 
based on 
the LLPv2 
risk pre- 
diction 
model, 

12 / 2 

P: Solid: V >500mm3 
Solid: Dmin >10mm;  
Part solid, solid component: V 
>500mm3 

I: Solid: V 15-500mm3 
Solid: Dmax 3-9.9mm 
Part solid, non-solid 
component: Dmean≥5mm. 
Part solid, solid component: V 
<500mm3 

N: benign characteristics or 
D<3mm or V<15mm3 

P: new solid: V>500mm3 or  
New solid, pleural based: 
Dmin >10mm 
New part solid, solid 
component: V >500mm3 
or VDT <400 days or new 
solid component of non-
solid nodule 

0.036 
[not reported] or 

0.232 
[not reported] 

AME 
China 
2013-2014 

6,717 
(3,550/3,145) 

45-70 
≥20 py 

cessation 
<15 y 

24 / 2 P: D ≥ 4mm 
0.22 

[0.20, 0.23] 

* The NLST and the LSS compared LDCT vs CXR. The other trials had a control arm without screening (usual care or annual clinical assessment). In the DANTE trial, participants 
of the control arm were offered a baseline CXR and sputum cytology. 

Abbreviations: LDCT: low-dose computed tomography; CXR: chest X-ray; AME: AME Thoracic Surgery Collaborative Group trial; UKLS: United Kingdom Lung Cancer Screening 
Trial ; DANTE: Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays; DLCST: Danish Lung Cancer Screening Trial; ITALUNG: 
Italian Lung Cancer Screening Trial; LDCT: low-dose computed tomography; LSS: Lung Screening Study; LUSI: German Lung Cancer Screening Intervention Trial; NLST: National 
Lung Screening Trial; NR: not reported, y: years, py: pack-years, c/d: cigarettes per day; V: volume, D: diameter, Dmax: longest diameter, Dmean: average diameter, Dmin: 
shortest diameter; VDT: volume doubling time; LLPv2 = Liverpool Lung Project v2 model; P: positive; I: indeterminate; N: negative.
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Figure 9. Forest plot of risk ratios for lung cancer mortality for all randomized screening trials until 
2020 

As published in (Hoffman et al. 2020), reprinted with permission 

 

However, none of these trials showed a statistically significant interaction between treatment 

arm and sex. A hypothesis to explain these differences is the distribution of tumor histological 

types across sexes, (Becker et al. 2019; Pinsky et al. 2013), though this has not been proven.  

1.2.3 Risks and potential harms of LDCT-based lung cancer screening 

As mentioned in the previous section, the mortality reduction benefit provided by LDCT 

screening has been proven in populations in the USA and Europe. However, this benefit must 

be balanced against the various risks to which participants are exposed and against the related 

financial costs. Some of the main risks associated with LDCT screening are exposure to 

potentially harmful radiation, unnecessary and potentially invasive follow-up testing procedures 

or unnecessary treatment as a result of false positive screening test results, and overdiagnosis 

(Bach et al. 2012; Mazzone et al. 2018). These risks are discussed in more detail in the 

following sections. 

1.2.3.1 Radiation exposure 

Each LDCT scan exposes participants to potentially harmful radiation. Estimates of the 

radiation dose per LDCT scan have been reported at about 1.5 mSv with values in the range 

from 0.65 mSv to 2.36 mSv (see (Jonas et al. 2021) for review) a factor of 15 compared to that 

of CXR, but only 20-25% of that received as a result of full-dose chest CT (Oudkerk et al. 2021; 

Sharma et al. 2015). 

Even though the radiation of single LDCT scans seems negligible, its effect is cumulative. 

Repeated exposure as a result of regular, follow-up or confirmatory appointments, the latter 
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usually by means of CT or PET with higher radiation doses (~ 8 and 14 mSv respectively), can 

therefore contribute to a long term increase in cancer risk (Sharma et al. 2015).  

A study conducted on data from the NLST estimated that LDCT-screened participants were 

exposed to a mean effective dose (MED) of 8 mSv as a consequence of three annual screening 

rounds and all further imaging examinations, and predicted 4 radiation-induced cancer deaths 

for each 10,000 subjects (Bach et al. 2012). Analyses on data from the ITALUNG trial 

estimated a MED of 6.2 to 6.8 mSv after 4 annual LDCT rounds and further imaging 

examinations, with predictions of 1.2 to 1.3 and 3.1 to 3.3 radiation-induced cancers per 10,000 

men and women respectively (Mascalchi et al. 2006). Based on data from the COSMOS trial 

(Rampinelli et al. 2017), researchers estimated a MED of 9.3 mSv for men and 13.0 mSv for 

women after 10 years of annual LDCT screening and additional examinations, and predicted 

3 radiation-induced lung- and 5 major cancers per 10,000 screened subjects. According to 

these results, one radiation induced lung cancer would be expected for every 173 diagnosed 

lung cancers and one major radiation-induced cancer for every 108 diagnosed lung cancers. 

Regarding long-term screening, a systematic review combining results from the COSMOS 

(Rampinelli et al. 2017) and the ITALUNG (Mascalchi et al. 2006) trials estimated a cumulative 

exposure of 20.8 mSv and 32.5 mSv after 25 years of screening (in line with the 2013 USPSTF 

recommendations to start at 55 and stop at 80 years). For the German population in particular, 

analyses from the Federal Office for Radiation Protection (Bundesamt für Strahlenschutz) 

(Nekolla E. Bundesamt für Strahlenschutz 2020) indicate that the lifelong risk of developing a 

lethal cancer attributed to radiation to be 0.07% among women and 0.03% among men, 

assuming annual screening between ages 50 to 54 and an effective radiation dose of 1.5 mSv 

per LDCT scan. 

From these results it can be concluded that the cancer risk attributed to the radiation exposure 

of screening-eligible subjects (heavy current or former smokers, ages 50/55 to 80) is 

acceptable, given the mortality reduction benefit of LDCT-based screening in this high-risk 

population. There are however, some additional factors to consider, such as the effects of 

gender and age, with women and younger subjects being at higher risk of radiation-induced 

cancer and cancer-related death. Screening eligibility criteria are therefore important, since the 

balance between benefits and harms would not hold for low-risk subjects, for example for the 

young or the non-smokers, as shown by recent modeling studies (Berrington de Gonzalez et 

al. 2008).  

Two strategies to further improve the balance between the risks of radiation exposure and the 

benefits of screening are to lower the effective dose per scan and to reduce the number of 

unnecessary examinations. The first one can be tackled through technological advances in the 
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field of imaging; the second through the improvement of evaluation criteria for LDCT scan 

results, and the optimal assignment of screening frequency and duration.  

1.2.3.2 False positive findings 

False positive (FP) test results are a major concern in LDCT screening since they lead to 

unnecessary additional radiation exposure from follow-up imaging procedures such as full-

dose CT or positron emission tomography (PET) and in some cases to further, more invasive 

diagnostic verification procedures such as surgery or biopsy. 

The high resolution provided by LDCT imaging allows for the detection of very small nodules, 

most of which turn out to be benign lesions. Analysis on data from the NLST indicate that 36% 

of participants received at least one FP result over three rounds of screening and that 96.4% 

of the nodules identified in the course of the study were benign lesions (Aberle et al. 2011). 

The high rates of FP results in the NLST can be attributed to the fact that the nodules were 

evaluated based only on their size (largest diameter) and with a very low threshold (4mm). 

Following these observations, criteria for nodule evaluation were adapted, culminating in more 

accurate systems such as the Lung CT Screening Reporting and Data System (Lung-RADS®) 

classification which combined nodule size (largest diameter and volume), with nodule growth 

based on short-term follow-up LDCT examinations, and nodule appearance as criteria for 

identifying potentially malignant lung nodules. Analyses showed (Pinsky et al. 2015) that had 

the NLST used the Lung-RADS® criteria, the FP rates would have decreased by up to 52% 

for the baseline and up to 76% for follow-up rounds. Other minor trials either used criteria 

similar to those recommended by the Lung-RADS® (DANTE, DLCST, ITALUNG and LUSI) or 

changed their definition of nodule size from longitudinal to volumetric (MILD, NELSON) (Table 

1). Additionally, the LUSI and NELSON trials included a volumetric measure of nodule growth 

(volume doubling time, VDT) in their evaluation protocols (Table 1). 

Further to simplified criteria, an approach that can potentially improve LDCT-based screening 

is the use of statistical models for nodule malignancy prediction. This alternative has the 

advantages of more accurately reflecting the continuous increase in risk associated with 

changes in the predictive variables, compared to simplified criteria, and of combining several 

subject and nodule characteristics based on LDCT scan images, and potentially other data 

sources, into a single measurement of risk. More details about the modeling approach, its 

advantages and areas for improvement will be discussed in a later section.  

1.2.3.3 Overdiagnosis 

Parts of this chapter have been published previously (González Maldonado et al. 2020b). 

Overdiagnosis refers to the identification of tumors in cases in which they would not have 

become manifest in the absence of screening (Welch and Black 2010). It occurs when tumors 
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are detected within the so-called lead-time, the time by which diagnosis is brought forward 

thanks to early detection, and a period within which a proportion of patients with screen-

detected lung cancer might have died of other causes before the disease would have become 

symptomatic. 

Because a lung cancer diagnosis generally implies referral to aggressive treatment, 

overdiagnosis may cause serious and unnecessary losses in quality of life and unnecessary 

health-care costs (Welch and Black 2010). 

Moreover, given that treatment changes the natural course of disease, overdiagnosis is a 

phenomenon that cannot be directly observed for individual patients. Therefore, the extent of 

overdiagnosis can only be approximated at a group level. 

Using data from randomized trials, the extent of overdiagnosis has been most commonly 

estimated by obtaining the difference in cumulative incidence between the screening arm and 

the control arm. Depending on the trial, controls were subject to no screening (Becker et al. 

2019; de Koning et al. 2020; Heleno et al. 2018; Paci et al. 2017) or to screening with CXR 

(Aberle et al. 2011; Patz et al. 2014). Using data from the NLST, the initially estimated excess 

incidence rate of LDCT relative to CXR after a median post-screening follow-up of 4.5 years 

was 18.5% (95% CI:[5.4%, 30.6%]) (Patz et al. 2014). Initial estimates from trials with a control 

arm without screening, and all at about 5 years post-screening follow-up, varied from zero 

excess in the ITALUNG (Paci et al. 2017) to 67.2% (95% CI:[37.1%, 95.4%]) in the DLCST 

(Heleno et al. 2018). In the Dutch-Belgian NELSON study, at 10 years post-randomization and 

4.5 years post-screening follow-up since last screening participation, the estimated excess 

incidence among men was 19.7% of screen-detected cases (95% CI:[–5.2%, 41.6%]) (de 

Koning et al. 2020). In all these studies, however, follow-up times after screening cessation 

were likely too short to cover the longest possible tumor lead-times, a necessary condition for 

obtaining unbiased estimators of overdiagnosis.  

In fact, excess incidence as an estimator of the magnitude of overdiagnosis depends strongly 

on the length of the post-screening follow-up. A good example of this association is the drop 

in estimated excess incidence calculated on data from the NLST after extended follow-up 

(3.1% at a median post-screening follow-up of 9.3 years). Another weakness of the excess 

incidence method is its sensitivity to deviations from perfect randomization between the 

screening arms. This might in part explain the large variability in estimates across trials, as 

reported in the previous paragraph. Furthermore, even if trials are well randomized and the 

post-screening follow-up period is long enough, excess incidence estimates are very specific 

to the data on which they are calculated and are therefore not transferable to other populations. 

Besides the excess-incidence method, estimates of overdiagnosis have been generated via 

mathematical modeling, extending the screening scenarios of the original trials. Patz et al. 
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(Patz et al. 2014) calculated a lifetime excess incidence of 11% of non-small cell lung cancers 

(NSCLCs) after three annual screenings for a cohort of 60-year-old men and women in the 

USA. This result was based on the estimates of tumor mean pre-clinical sojourn time (MPST) 

and LDCT screening test sensitivity obtained by fitting convolution models to data from the 

NLST.  

An alternative approach was used by Schultz et al. and ten Haaf et al. (Schultz et al. 2012; Ten 

Haaf and de Koning 2015) who, through microsimulation, estimated that overdiagnosis in the 

NLST trial cohort would decrease to 8.6% of all screen-detected cancers after life-time follow-

up. 

These model-based approaches have two main advantages compared to the excess-

incidence method. First, they produce estimates of the magnitude of overdiagnosis that are 

not strongly dependent on the particular screening scenario in which data was collected, which 

makes such estimates more transferable. Second, by modeling the biological (MPST) and 

technological (detection sensitivity of LDCT) factors that influence the risk for overdiagnosis, 

they provide a better understanding of the phenomenon and therefore more transparency in 

the decision-making process.  

1.3 Optimization of LDCT-based screening 

Beyond the identification of an appropriate lung cancer detection method (a question that 

LDCT-imaging has already answered), designing the optimal screening program requires the 

consideration of multiple aspects in order to balance benefits, harms and costs. As with every 

optimization problem, this in turn requires the definition of clear and measurable objective 

functions. In the case of screening programs, there are two main criteria to maximize: net 

clinical benefit and cost-effectiveness. 

Net benefit, also called net clinical benefit, is a decision analytic measure that allows for a 

direct comparison between benefits and harms of an intervention, and that depends on the 

definition of a “trade-off rate” (Vickers et al. 2016). In the case of lung cancer screening, the 

trade-off rate is most commonly defined in terms of mortality reduction or life years gained 

(LYG) and the risks and harms to which it exposes screening participants. Concrete examples 

are the number needed to screen, number of overdiagnosis, or the number of unnecessary 

invasive confirmatory procedures following false positive test results, per each lung cancer 

death avoided or per each LYG (de Koning et al. 2014; Meza et al. 2021). It follows then, that 

strategies which target the right candidates or that reduce the number of unnecessary invasive 

examinations can help in increasing the net clinical benefit of screening programs. 

Cost-effectiveness, on the other hand, also defined in relative terms, refers to the balance 

between benefits and monetary costs. It is most commonly expressed as the incremental cost-
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effectiveness ratio (ICER), with a denominator that measures the health gain of an intervention, 

such as LYG or alternatively quality life years gained (QALY), relative to the monetary costs 

associated with that health gain (Gold 1996). Simulation studies considering a wide variety of 

screening scenarios (Cressman et al. 2017) have been used for assessing how changes in 

screening strategies affect the ICER. Canadian and European studies (Hofer et al. 2018; 

Tomonaga et al. 2018) have shown how lung cancer screening can become cost-effective 

through the selection of appropriate eligibility criteria, screening frequency, algorithms for the 

evaluation of LDCT imaging findings, and by including tobacco cessation interventions (Black 

et al. 2014; Cressman et al. 2017; Mazzone et al. 2018; McMahon et al. 2011; Ten Haaf et al. 

2017b). Given that CT and, to a lower degree, LDCT examinations are the main drivers of 

increases in costs, strategies to better target the right candidates for screening and to reduce 

unnecessary LDCT screening appointments and confirmatory CT examinations of 

indeterminate nodules can increase cost-effectiveness.  

The following sections describe some strategies for the optimization of LDCT-based screening: 

1) better targeting through the definition of appropriate eligibility criteria, 2) reduction of 

unnecessary examinations by assigning participants to optimal screening frequencies, 3) 

reduction of harms associated with unnecessary confirmatory procedures by appropriately 

evaluating LDCT findings, 4) how the accurate assessment of overdiagnosis risk can help 

reduce the potential harms of screening on an individual basis, and 4) how biomarkers can 

potentially be of help in all previous points. 

1.3.1 Eligibility 

Even though official recommendations have been issued in countries like the USA, there is no 

universal consensus regarding the optimal strategy for the selection of screening participants. 

Defining appropriate eligibility criteria to identify candidates with adequately long life 

expectancy and at sufficiently elevated short-term risk of developing lung cancer can help 

maximize the net clinical benefit and cost-effectiveness of screening programs.  

In the coming sections two approaches for the definition of screening eligibility will be 

described: simplified eligibility criteria, and eligibility based on predicted lung cancer risk.  

1.3.1.1 Simplified eligibility criteria 

Expert organizations in the USA (United States Preventive Services Taskforce - USPSTF) 

(Moyer and USPSTF 2014) and Canada (Canadian Task Force on Preventive Health Care – 

CTFPHC) (Wood 2015) recommend screening eligibility based on lower and upper age limits 

and smoking history and/or smoking behavior (minimum lifetime cumulative smoking exposure 

and maximum time since quitting for ex-smokers). These recommendations are similar to the 

criteria used in the NLST trial (Patz et al. 2016) (55 to 75 years of age, >30 pack-years of 
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smoking, <15 years since smoking cessation), with the only difference being that the USPSTF 

allows participation until the age of 80. The relaxation of the upper age limit was motivated by 

the results of a modeling study in the USA (de Koning et al. 2014) that estimated a stronger 

reduction of cancer mortality relative to the number of screenings performed, compared to 

criteria with 75 years as upper-limit.  

Most screening trials conducted after the NLST also applied age and smoking-based criteria, 

although with different age limits and different parameters related to smoking. In the Dutch-

Belgian NELSON (Horeweg et al. 2014a; van Klaveren et al. 2009) and the German LUSI 

(Becker et al. 2012; Becker et al. 2019) trials, for example, age at entry and stopping were set 

at 50 and 70 years respectively for subjects with a smoking history of at least 10 cigarettes a 

day (cig/day) for at least 30 years (equivalent to 15 pack years) or at least 15 cig/day for 25 

years (approximately 19 pack years). Criteria used by other minor European trials can be seen 

in Table 1. 

The effects of various established or hypothetical selection criteria have been evaluated mainly 

through simulation studies (de Koning et al. 2014; Han et al. 2017; Ten Haaf et al. 2020; Ten 

Haaf et al. 2017b; Tomonaga et al. 2018; Treskova et al. 2017). In the German population, it 

has been estimated that the NLST and USPSTF criteria would select about 3 to 3.2 million 

individuals amongst which 40% to 45% of all yearly new lung cancer cases would occur. In 

contrast, the more inclusive criteria used in the NELSON trial would identify about 47% (11% 

to 17% more) incident cases, but at the cost of screening about 5.5 million (about 45% more) 

individuals (Hüsing and Kaaks 2020).  

Simulations considering higher upper age limits (e.g., 80 instead of 75 years) predicted a 

higher proportion of avoided lung cancer deaths (de Koning et al. 2014). However, studies 

defining screening benefit as life years gained relative to the number of overdiagnosed cases, 

found an upper limit of 75 years to be more efficient than one of 80 years (Han et al. 2017). 

As mentioned in section 1.2.3.1, in high-risk populations, the lung cancer mortality reduction 

of LDCT screening outweighs the long-term lung cancer risk attributed to radiation exposure. 

However, this does not hold for subjects with low short-term lung cancer risk and increased 

risk of radiation-induced cancer (for example, the young). Studies (Bach and Gould 2012; 

Hüsing and Kaaks 2020; Katki et al. 2016) have shown that criteria used in the NLST and 

NELSON trials, as well as those recommended by the USPSTF are prone to defining subjects 

from this group with low lung cancer risk as eligible, exposing them to potential harms though 

they do not benefit from screening. For the German population ages 50-54, a 5-year lung 

cancer risk threshold above which exposure to radiation would be justified has been estimated 

at around 0.5%, assuming 80% detection sensitivity and at least 20% lung-cancer mortality 

reduction for LDCT-based screening (Nekolla E. Bundesamt für Strahlenschutz 2020). 
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Additionally, more caution should be taken when assessing the eligibility of individuals with 

major comorbidities. For them, it is particularly important to weigh their predicted lung cancer 

risks against the harms of confirmatory or diagnostic invasive procedures, given that such 

procedures represent higher risks in this population compared to otherwise healthy individuals 

(Schneider and Arenberg 2015). 

In terms of false-positive test results, a study showed (Pinsky et al. 2018) that amongst NLST-

eligible subjects, the ratio of lung cancer diagnoses to invasive diagnostic workup caused by 

false positive tests went from 1.35 for the 10% of subjects with the lowest 5-year lung cancer 

risk, to about 5.25 in the upper 10%.  

From the previous evidence it can be concluded that the benefit of screening increases 

together with lung cancer risk and that having accurate estimates of individual risk might help 

select the right candidates and in doing so, increase screening efficiency. 

In summary, although simplified eligibility criteria have advantages such as their ease of use 

and their interpretability, they present some drawbacks. Due to their simplicity, they are not 

accurate enough to predict increases in risk related to changes in continuous risk factors such 

as age and time since quitting. Furthermore, they are prone to missing high-risk individuals, as 

well as to including individuals at low-risk for lung cancer or with major comorbidities, who are 

unlikely to benefit from screening.  

1.3.1.2 Eligibility based on predicted lung cancer risk  

An alternative to simplified criteria is the definition of screening eligibility in terms of absolute 

pre-test risk for lung cancer or lung cancer death as predicted by statistical models. Using this 

selection method, screening candidates are those individuals with estimated risks high enough 

to outweigh the associated harms (Hüsing and Kaaks 2020; Katki et al. 2018; Tammemägi et 

al. 2013; Ten Haaf et al. 2017a). Evidence in favor of this approach comes from retrospective 

analyses on data from the NLST trial that reported only 1% of all averted lung cancer deaths 

amongst 20% of participants with the lowest lung cancer risks, but 88% amongst 60% of 

participants at highest risks (Black et al. 2014; Kovalchik et al. 2013).  

So far, around 22 statistical models for the prediction of short-term (1-6 years) risk for lung 

cancer and/or lung cancer death had been published (see (Jonas et al. 2021; Kauczor et al. 

2020; Veronesi et al. 2020) for reviews of these models). Though they vary in complexity and 

in the weighting of predictors, all models are based on subsets or combinations of subject 

characteristics (age, BMI and socio-economic indicators), current or past smoking behavior, 

family or personal health status or history (cancer and/or lung diseases such as COPD or 

emphysema) and exposure to carcinogens.  
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External validations of some of these models have been conducted in cohorts from the USA 

(Katki et al. 2016; Kovalchik et al. 2013; Landy et al. 2019; Tammemägi et al. 2013; Ten Haaf 

et al. 2017a), Germany (Hüsing and Kaaks 2020; Li et al. 2015) and Australia (Weber et al. 

2017). Across studies, the Bach (Bach et al. 2003a), LCRAT (Katki et al. 2016), and 

PLCOm2012 full and simplified models (Tammemägi et al. 2013) have shown good 

discrimination and fair calibration (see (Hüsing and Kaaks 2020; Jonas et al. 2021) for 

reviews). In terms of screening benefits, evaluations of the LCRAT and PLCOm2012 models 

reported higher numbers of screen-preventable deaths compared to the NLST criteria (see 

(Jonas et al. 2021) for review). In some studies, the PLCOm2012 showed also higher cost 

effectiveness (Katki et al. 2016; Kovalchik et al. 2013; Tammemägi et al. 2014; Tammemägi 

et al. 2013). 

In general, risk-based eligibility criteria have been shown to improve screening efficiency and 

cost-effectiveness by identifying 10% to 20% more lung cancer cases amongst equal numbers 

of screening candidates compared to simplified criteria (Hüsing and Kaaks 2020; Katki et al. 

2018; Li et al. 2015; Tammemägi et al. 2013; Ten Haaf et al. 2017a) and by lowering the 

number needed to screen (NNS) per averted lung cancer death (see (Jonas et al. 2021) for 

review). Similar results come from analyses on survey, cohort and lung cancer incidence data 

from Germany (Hüsing and Kaaks 2020; Li et al. 2015) which found the PLCOm2012 model 

to select a higher number of future lung cancer cases among the upper quantiles of risk 

compared to the USPSTF and NLST criteria.  

The main advantage of models compared to criteria, is that they can predict continuous 

changes in risk associated with changes in risk factors also defined in a continuous scale, such 

as age, duration of lifetime smoking and for ex-smokers the time since smoking cessation, 

which makes risk estimates more accurate. Also, besides providing individual risk estimates, 

prediction models are able to make better use of data compared to simplified criteria, since 

they can include a larger number of variables, assign them different weights and model their 

potential interactions. Additionally, they open the possibility of including predictors that go 

beyond demographic and smoking behavior indicators, such as biomarkers (Guida et al. 2018; 

Hanash et al. 2018).  

However, there are some concerns regarding a model-based approach. The major one relates 

to the risk of overdiagnosis. Compared to simplified criteria, risk-based eligibility tends to select 

individuals with a longer history of smoking, who are more likely to die from competing causes 

(Hüsing and Kaaks 2020; Katki et al. 2018; Li et al. 2015; Tammemägi 2018; Tammemägi et 

al. 2013; Ten Haaf et al. 2017a) and therefore receive only moderate benefit in terms of life 

years gained (LYG) and quality-adjusted life years (QALY) (Kumar et al. 2018; Ten Haaf et al. 

2019). An additional concern is the lack of a concrete risk threshold above which to recommend 

screening and the need for it to be revisited over time and across populations. Regarding 
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absolute risks, the use of predictors difficult to quantify, standardize or based on self-reported 

variables (e.g., exposure to carcinogens and history or presence of emphysema or COPD) 

might introduce additional error and hinder model comparability and transferability. Finally, 

even if prediction models would prove to be superior to simplified eligibility criteria, clinical 

practitioners might be discouraged by complex models difficult to use in the absence of 

appropriate information technology (IT) tools.  

An informed decision on whether eligibility should be based on thresholds of lung cancer risk 

predicted by statistical models requires more evidence from screening trials. So far, only one 

such trial, the UKLS, has used a prediction model to evaluate eligibility based on individual 

estimated risks. Results from the pilot study reported 2.1% lung cancer cases identified at the 

first screening round, a higher percentage than that seen in the NLST, by setting a threshold 

of 5% 5-year risk as estimated by the LLPv2 model (Field et al. 2016). 

1.3.2 Screening frequency  

Parts of this chapter have been published previously (González Maldonado et al. 2021a). 

Currently, most trials and screening programs recommend annual screening rounds for all 

eligible subjects. Identifying subjects who would get an equivalent or even higher net benefit 

from less frequent screening could help minimize costs, cumulative radiation exposure and the 

risk for false positive findings, in exchange for a null to minimal reduction in health gains. 

Analyses on data from the NELSON and MILD trials showed that screening at intervals longer 

than a year did not decrease the mortality reduction benefit of LDCT screening (de Koning et 

al. 2018; Pastorino et al. 2019b). However, decreasing screening frequency comes at the cost 

of higher numbers of interval cancers and delayed detections (Yousaf-Khan et al. 2017a). 

Therefore, it is important to weigh in the lung cancer risk of participants into the decision-

making process. Based on these observations, it has been hypothesized that individuals with 

comparatively low short-term risk for lung cancer (e.g., within one to two years following an 

LDCT examination) could still benefit from early detection, by attending subsequent screening 

appointments at intervals longer than a year.  

Further to deciding on the appropriate frequency based on an individual’s lung cancer risk as 

estimated by models such as LCRAT or PLCOm2012, research groups have suggested that 

these estimates of pre-screening risk could be updated by findings from LDCT scan images 

from the baseline and/or further screening rounds in order to increase the accuracy of the 

assignment to longer screening intervals (Maisonneuve et al. 2011; Robbins et al. 2019; Silva 

et al. 2019; Tammemägi et al. 2019b; Yousaf-Khan et al. 2017b). Initial evidence in favor of 

this approach comes from a study by Patz et al. (Patz et al. 2016) which showed that, on data 

from the NLST, the average risk for lung cancer detection at the first annual follow-up screen 



Introduction 

23 

 

was 0.35% for screening participants with no pulmonary nodules of at least 4 mm in largest 

diameter at their initial screen (N=19,066, 73%); and 1.02% among all screening participants 

(N=26,231). Similar results were found in the NELSON trial (Yousaf-Khan et al. 2017b).  

Along these same lines, statistical models have been developed based on subject-

characteristics combined with the presence and characteristics of pulmonary nodules 

(Schreuder et al. 2018) or other radiologic indicators of pulmonary health (emphysema, 

consolidation) (Robbins et al. 2019; Schreuder et al. 2018), as well as general lung cancer risk 

factors such as smoking behavior.  

Schreuder et al. (Schreuder et al. 2018) developed a polynomial model with linear and 2nd-

degree terms for a total of 11 selected risk factors, including age, sex, smoking history, 

personal and family history of cancer, and LDCT scan findings at the initial prevalence screen 

such as pulmonary nodules and emphysema (Polynomial model).  

A different model was developed for use among individuals with a negative LDCT screen (no 

nodules ≥4mm) by Robbins et al. (Robbins et al. 2019). It extends a pre-existing lung cancer 

risk prediction model (Lung Cancer Risk Assessment Tool [LCRAT]) (Katki et al. 2016) based 

on age, smoking history, family history of lung cancer, BMI and education level, by adding 

LDCT data on pulmonary emphysema and consolidation (LCRAT+CT).  

Compared to LDCT imaging data only, these models considerably improved discrimination of 

screening participants by their likelihood of receiving a lung cancer diagnosis either at, or in 

the year following the next screening appointment. Based on the Polynomial and LCRAT+CT 

models it was further estimated that, in the NLST, up to about 45% of annual screenings in the 

second round, and 58% of all annual follow-up (incidence) screenings could have been skipped 

at the cost of delayed diagnosis for a comparatively small proportion of 10% to 24% of screen-

detected cancers (Robbins et al. 2019; Schreuder et al. 2018).  

While promising, both models (LCRAT+CT and Polynomial) were developed and tested 

exclusively on the basis of NLST data and, so far, have not been externally validated on 

independent screening data.  

Finally, just as in the case of risk-based eligibility criteria, the inclusion of biomarkers in 

prediction models for short-term lung cancer risk may contribute to optimize the personalized 

assignment of screening intervals. This approach, however, has not yet been sufficiently 

investigated. 
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1.3.3 Assessment of LDCT results 

Parts of this chapter have been published previously (González Maldonado et al. 2020a). 

1.3.3.1 LDCT-based criteria for lung cancer prediction 

Reducing the number of false positive (FP) test results in order to minimize unnecessary 

radiation exposure and invasive diagnostic procedures while preserving the mortality reduction 

benefit is one of the main goals when designing a screening program.  

Analyses have shown that improvements in evaluation criteria, such as the use of higher 

thresholds for nodule size (longitudinal and volumetric) and the incorporation of information on 

nodule growth, among other nodule criteria, can drastically decrease FP rates without 

hampering the mortality reduction (Pinsky et al. 2015). 

Based on these findings, radiologic and oncologic societies (American College of Radiology 

Committee on Lung-RADS® 2014; Baldwin and Callister 2015; Kanne et al. 2013; MacMahon 

et al. 2017; Wood et al. 2015) have issued recommendations and guidelines to improve the 

assessment of nodule malignancy based on features extracted from their LDCT-scan images. 

More recent studies have investigated the use of statistical models for the prediction of nodule 

malignancy as an alternative to established simplified criteria. The following section describes 

this approach. 

1.3.3.2 LDCT-based models for nodule malignancy prediction 

Various statistical models have been developed that estimate the probability of malignancy for 

nodules seen in LDCT-scan images. Predictor variables in these models are based on 

radiologic features extracted from imaging findings of the lung and on subject characteristics 

such as age, sex, previous and/or current smoking behavior, presence and/or history of lung 

diseases, and personal and/or family history of cancer.  

Early modeling studies were based on clinical data, e.g. at the Mayo (Swensen et al. 1997) 

and Veterans Affairs (VA) clinics (Gould et al. 2007) and Peking University People’s Hospital 

(PKUPH)(Li et al. 2011). However, given that in clinical practice subjects are usually already 

symptomatic and therefore more likely to have cancer at advanced developmental stages, 

those models were trained on images of larger and mostly solid nodules, which makes them 

prone to overestimate the risk of smaller nodules, such as those detected during screening 

(Nair et al. 2018). 

The first malignancy prediction models trained on data from screening contexts were 

developed at Brock University (Toronto, Canada). Data from participants of the Pan-Canadian 

Early Detection of Lung Cancer Study (PanCan) (McWilliams et al. 2013) and the LDCT 

images from their first screening appointment were used to fit four models (PanCan models) 
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(McWilliams et al. 2013) using either parsimonious (PanCan-1) or comprehensive variable 

selection strategies including (PanCan-1b, PanCan-2b) or excluding (PanCan-1a, PanCan-2a) 

nodule spiculation as a predictor. The PanCan-2b model, the most complex one, was recently 

used as basis for further versions using multi-dimensional measurements of nodule size (mean 

diameter or volume) instead of largest nodule diameter (Tammemägi et al. 2019a). A more 

recent model was trained independently on data from participants of the UKLS trial, including 

volume as a measure of nodule size (Marcus et al. 2019). 

External validations of the PanCan models have been carried out on data from the NLST 

(Tammemägi et al. 2019a; White et al. 2017) and of the DLCST (Winkler Wille et al. 2015) in 

terms of discrimination but not of calibration. So far, the UKLS model (Marcus et al. 2019) has 

not been externally validated. 

Further steps towards the improvement of prediction models for nodule malignancy include the 

use of pattern recognition and machine learning methods applied directly to the LDCT scan 

images, instead of relying on models based on pre-extracted nodule features (e.g., nodule size 

or nodule location).  

1.3.4 Overdiagnosis risk and stop-screening criteria 

Defining who should enter a screening program is not enough to guarantee an optimal net 

clinical benefit for participants. Additionally, deciding if and when screening participants should 

stop being examined is also of great relevance. 

Participants who were once eligible might no longer benefit from screening if the quality life 

years they can gain are not significant compared to the harms to which they are exposed; that 

is, if they are at increased risk of overdiagnosis.  

Besides net clinical benefit, seen from the cost-effectiveness perspective, overdiagnosis is also 

a factor to consider when aiming at designing a program for screening. Overdiagnoses that 

lead to overtreatment, represent unnecessary financial costs. Reducing the risk of 

overdiagnosis could also translate in a higher benefit to cost ratio. 

As mentioned in section 1.3.1.1, studies that defined the trade-off between benefits and harms 

in terms of LYG or QALY relative to the number of overdiagnosed cases, found an upper age 

limit of 75 to be more efficient than one of 80 years,, since the latter includes participants with 

limited remaining life expectancies (RLE) (Han et al. 2017). 

However, fixed upper age-limits that apply for all screening participants might not guarantee a 

positive net benefit at an individual level. Instead, accurate personalized estimates of 

overdiagnosis risk tied to indicators of comorbidities, frailty and RLE of participants, preferably 
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monitored over time, could be a better strategy for the optimization of lung cancer screening 

programs. 

1.3.5 Potential of biomarkers as a complementary tool for screening 

Parts of this chapter have been published previously (González Maldonado et al. 2021b). 

Aiming at a better balance between benefits and harms, an alternative line of research focuses 

on identifying less invasive, radiation-free and cost-effective tools for lung cancer detection or 

risk-prediction, that can complement imaging-based screening. Among the most promising 

candidates are molecular biomarkers (Califf 2018) (in the following referred to as biomarkers) 

measured in blood, sputum, and exhaled breath condensates (Chu et al. 2018; Hasan et al. 

2014; Hulbert et al. 2017; Lam et al. 2011; Liang et al. 2018; Lopez-Sanchez et al. 2017; 

Massion et al. 2017; Rodríguez et al. 2021). 

Biomarkers for detection or risk prediction tackle two different problems (Califf 2018). In the 

latter case, as the name indicates, the goal is to accurately predict the risk for cancer-free 

subjects to develop the disease within a certain period of time. An example of a biomarker 

which has shown good performance at predicting short-term lung cancer risk consists of a 

panel of four circulating proteins and one protein precursor measured in blood samples (Guida 

et al. 2018). This panel, combined with information on smoking, was able to discriminate 

subjects developing lung cancer within one year of sample collection from those who remained 

cancer-free (Guida et al. 2018). In the context of screening, risk prediction markers could help 

identify individuals whose risk of developing lung cancer is high enough to justify their eligibility. 

In contrast, detection markers aim at identifying individuals who already have lung cancer, 

ideally at early, still curable stages, with high sensitivity and specificity. This type of markers 

could be used, for example, as a filter for the referral to invasive confirmatory procedures in 

the presence of suspicious or indeterminate nodules detected via LDCT-screening. Markers 

that have shown good detection accuracy are miRNA signatures such as the miR-Test (Bianchi 

et al. 2011; Montani et al. 2015) and the miRNA signature classifier (MSC) (Boeri et al. 2011; 

Sozzi et al. 2014) , as well as autoantibodies to tumor-related antigens (TAAbs) (see 

(Broodman et al. 2017; Du et al. 2018; Qin et al. 2018; Rodríguez et al. 2021) for reviews). 

Most of the biomarker candidates so far identified, have been evaluated only in clinical settings 

in which cancer-free subjects are compared with patients harboring clinically manifest tumors 

(Seijo et al. 2019). An exception are TAAbs, which have been widely tested in clinical and 

screening settings (Broodman et al. 2017; Chapman et al. 2008; Du et al. 2018), and which 

were recently evaluated in a large randomized screening trial (Sullivan and Schembri 2019; 

Sullivan et al. 2017; Sullivan et al. 2021). 
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Higher levels of TAAbs, produced as an immune response to tumor antigens, have been 

observed in cancer patients compared to cancer-free controls (Kaaks et al. 2018; Macdonald 

et al. 2017; Tang et al. 2017). Furthermore, it has been hypothesized that TAAbs are produced 

at very early stages of tumor development. If this hypothesis holds true, TAAbs could be 

suitable markers for early detection (Anderson and LaBaer 2005). 

The ability of individual TAAbs and multi-TAAb panels to discriminate lung cancer patients from 

cancer-free individuals has been compared in a series of studies (Broodman et al. 2017; 

Chapman et al. 2008; Du et al. 2018) with panels showing a better performance compared to 

individual ones. However, while most of the panels showed good specificity, their detection 

sensitivity was only modest (Broodman et al. 2017; Qin et al. 2018; Yang et al. 2019).  

One such panel, measured by the commercially available EarlyCDT®-Lung test (Oncimmune 

Ltd, Nottingham, United Kingdom), is comprised of 7 TAABs (CAGE, GBU4-5, HuD, MAGEA4, 

NY-ESO-1, p53 and SOX2). EarlyCDT®-Lung has been proposed as a “rule-in” diagnostic test 

for lung cancer, with about 90% specificity at 40% sensitivity in clinical studies (Chapman et 

al. 2012; Healey et al. 2017; Jett et al. 2014; Massion et al. 2017). In addition, it has been 

evaluated as a confirmatory test in clinical settings, with the purpose of deciding on further, 

more invasive interventions for subjects with incidentally observed pulmonary nodules (Healey 

et al. 2017; Jett et al. 2014; Massion et al. 2017). Finally, in the context of screening, 

EarlyCDT®-Lung has been recently tested in the Early Cancer detection test Lung cancer 

Scotland (ECLS) (Sullivan and Schembri 2019; Sullivan et al. 2017; Sullivan et al. 2021). In 

the ECLS the panel was tested for its ability to identify high-risk subjects who could benefit 

from LDCT-based screening. 

In summary, although a lot of research has been conducted and a number of promising 

biomarkers have been identified, there is still not enough evidence in favor of the added benefit 

of including biomarkers in screening contexts. Despite the good performance at detection and 

risk-prediction shown by some of the candidates, none have  been included in lung cancer 

screening protocols. 

What is more, even if biomarkers would prove highly accurate at detecting the presence of 

lung cancer, imaging methods would still be required for the localization and treatment of 

tumors. Therefore, even though biomarkers have the potential to complement screening, 

LDCT-based imaging is likely to remain as the gold standard for lung cancer early detection in 

the near future.  

  



Introduction 

28 

 

1.4 Aims and objectives 

The work presented in this thesis analyzes the following key aspects of lung cancer screening, 

using data and blood samples collected as part of the Lung Cancer Screening Intervention 

Trial (LUSI): 

 

1. Personalized assignment of screening intervals for screening participants. Studies have 

shown that screening eligibility criteria based on lung cancer risk, as predicted by models 

such as LCRAT (Katki et al. 2016) or PLCOM2012, could prevent more lung cancer related 

deaths and lead to more life years gained at equivalent numbers of screened subjects, 

compared to the use of simplified criteria (Katki et al. 2018; Tammemägi et al. 2013; Ten 

Haaf et al. 2017a). However, lung cancer risk is quite heterogeneous even among 

screening-eligible subjects. Thus, further to selecting candidates at risks high enough to 

justify at least low-frequency (e.g., biennial) screening, risk stratification could be used to 

assign them to varying screening intervals that optimize net clinical benefits and/or financial 

costs. For this purpose, models for the prediction of short-term lung cancer risk have been 

developed that combine subject-specific risk factors with LDCT imaging findings. Two such 

models are LCRAT+CT (an extension of the LCRAT) (Robbins et al. 2019) and the 

Polynomial model (Schreuder et al. 2018). While promising, these models have not been 

externally validated. The first aim of this study is to evaluate the LCRAT+CT and 

Polynomial models in terms of discrimination when assigning participants to annual vs. 

biennial screening, and to assess the calibration of their predicted risks. 

2. Application of risk prediction models to improve malignancy prediction of nodules detected 

by LDCT screening. The efficiency of LDCT-based screening depends in part on the 

selection of nodule evaluation criteria. For this purpose, several research groups have 

developed statistical models for malignancy prediction of screen-detected nodules, based 

on radiological features and subject characteristics. The second aim of this study is to 

evaluate four of a total of six models originally trained on data from the Pan-Canadian Early 

Detection of Lung Cancer Study (PanCan) (McWilliams et al. 2013; Tammemägi et al. 

2019a), as well as a recent model the UKLS model (all of them originally developed on 

data from screening trials) in terms of discrimination, calibration, and operational 

performance (e.g. sensitivity, specificity, and positive predictive value). Additionally, this 

study also presents findings for a selection of models originally trained on data from clinical 

contexts (Mayo Clinic (Swensen et al. 1997) USA Department of Veterans Affairs (VA) 

clinics (Gould et al. 2007), or Peking University People’s Hospital (PKUPH) (Li et al. 2011)). 
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3. Risk of overdiagnosis and its relationship with age limits for LDCT screening participation. 

Recent analyses (Han et al. 2017; Ten Haaf et al. 2020) suggest that the balance between 

life years gained and the risk of overdiagnosis becomes less favorable when screening is 

offered to individuals with short remaining life expectancy. Thus, accurate estimation of 

overdiagnosis risk is relevant for the defining optimal eligibility criteria and for deciding 

when screening should stop. In particular, choosing appropriate upper age limits may help 

improve the balance between the benefits of early detection and the harms of irrelevant 

diagnoses and unnecessary treatment. The third aim of this study is to estimate the extent 

of overdiagnosis in the LUSI trial and to investigate its relationship with upper age limits for 

eligibility, based on estimates of the mean sojourn time of lung cancer tumors and of the 

sensitivity of LDCT screening. 

4. The use of biomarkers as a complementary method for the selection of candidates for 

LDCT-based screening. Tumor-associated autoantibodies (TAAb) are considered 

promising markers for early detection of lung cancer. So far, however, their detection ability 

has been tested only in clinical contexts, in which tumors are often detected at advanced 

stages, and it has not yet been investigated whether blood TAAb concentrations are 

elevated in patients with small malignant nodules (< 10 mm in diameter), and whether 

antibody tests such as EarlyCDT®-Lung can detect tumors in equally early stages as 

LDCT-based screening. The fourth aim of this study is to address these questions, by 

evaluating the early detection accuracy of EarlyCDT®-Lung, in terms of sensitivity and 

specificity. 

Finally, in the discussion, findings made in this study are put in perspective in terms of how to 

inform policy-making for the implementation of lung cancer screening programs in Germany 

and the rest of Europe. 
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2 MATERIALS AND METHODS 

2.1 The Lung Cancer Screening Intervention Trial (LUSI) 

Parts of this chapter have been published previously (Becker et al. 2015; Becker et al. 2012; 

González Maldonado et al. 2020a; González Maldonado et al. 2021a; González Maldonado et 

al. 2021b; González Maldonado et al. 2020b) 

2.1.1 Trial design and eligibility criteria 

The German Lung Cancer Screening Intervention Trial (LUSI) (Becker et al. 2012; Becker et 

al. 2019) is a randomized trial (ISRCTN30604390 2007) approved by the Medical Ethics 

Committee of the University of Heidelberg (073/2001), and by the German Federal Office for 

Radiation Protection (BfS). The study was conducted in accordance with the Declaration of 

Helsinki (as revised in 2013). All participants enrolled provided written informed consent.  

Details about trial design and mortality-reduction results have been published previously 

(Becker et al. 2015; Becker et al. 2012; Becker et al. 2019). In brief: the recruitment phase of 

the LUSI trial started in October 23, 2007 and stopped in April 11, 2011. Eligible subjects were 

those 50–69 years of age with a history of heavy smoking (≥25 years of smoking of ≥15 

cigarettes per day, or ≥30 years smoking of ≥10 cigarettes per day; ≤10 years since smoking 

cessation). A total of 4,052 men and women, whose records were obtained as a random 

sample from population registries in Heidelberg (Germany) and surroundings, were recruited 

for the study. Participants were randomly assigned to either the screening intervention arm 

(N=2,029), comprised of a LDCT screening at time of randomization plus four annual follow-

up screenings, or a control arm (N=2,023) with no intervention. Active screening was 

conducted between October 2007 and May 2016. 

2.1.2 Image acquisition and reading 

LDCT scans were performed by trained staff at the Radiology Department of the German 

Cancer Research Center (DKFZ) Heidelberg using either a Toshiba 16 row scanner (2007-

Dec 31st 2009), or a Siemens 128 row scanner (March 18th 2010 onwards) with a maximum 

of 1.6–2 mSv radiation exposure(Becker et al. 2012). 

LDCT images were read on a server for computer-aided detection (CAD). Nodule outlines 

generated via automatic segmentation (MEDIAN software, France) were manually corrected 

by the operator to include all parts of the nodule and exclude any adjacent structures. 

Perifissural nodules with oval or triangular shape and/or smooth delineations were excluded 

and identified as lymphatic nodules. Other characteristics collected from the nodules were: 

identifier, location, type (solid, subsolid), shape and border (spiculated, “clear”, other) and 
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presence of calcification. Nodule size measurements (longest and transverse diameters, and 

volume) were automatically derived from the 3D segmented nodule. The lower limit for nodule 

detection was 1mm in diameter (Becker et al. 2012).  

The presence of emphysema was determined at the Department of Diagnostic and 

Interventional Radiology with Nuclear Medicine of the Thoraxklinik at the University of 

Heidelberg via densitometry based on screening LDCT imaging findings, as performed by the 

YACTA software (Jobst et al. 2018; Weinheimer et al. 2011; Wielputz et al. 2014; Wielputz et 

al. 2013). Individual lung voxels with densities ≤ -950 Hounsfield Units were assigned to 

emphysema. Additional software-computed parameters were: total lung volume in inspiration 

(LV), emphysema volume (EV), emphysema index (EI), mean lung density (MLD) and the 15th 

percentile of lung density (15TH) (González Maldonado et al. 2020a; Jobst et al. 2018).  

Further details about image acquisition and reading have been previously published (Becker 

et al. 2012; González Maldonado et al. 2020a; Jobst et al. 2018).  

2.1.3 Nodule evaluation and management protocol 

Nodules detected in participants of the screening arm were evaluated by two trained chest 

radiologists. The further management of nodules was decided based on their size and, for 

those previously detected, based on their growth (Table 2), applying criteria similar to those of 

Henschke et al. (Henschke et al. 1999) and to the Lung CT Screening Reporting and Data 

System (Lung-RADS®) assessment guidelines (American College of Radiology Committee on 

Lung-RADS® 2014; American College of Radiology Committee on Lung-RADS® 2019). 

According to such evaluations, screening participants were: returned to regular annual 

screening, invited for follow-up LDCT at 3- or 6-month intervals or recommended immediate 

diagnostic work-up. Immediate diagnostic work-up was carried out by a cooperating 

pulmonologist, who then decided about further confirmatory procedures or treatment (X-ray, 

full-dose CT, PET, bronchoscopy, video-assisted thoracoscopic surgery (VATS), biopsy, 

antibiotic treatment or short-term follow-up).  

Malignant nodules were identified by communicating the location of the suspicious nodules to 

the thoracic surgeon previous to the resection surgery (via VATS under general anesthesia).  

Further details about evaluation of LDCT findings, management of screen-detected nodules 

and additional diagnostic work-up have been published previously (Becker et al. 2015; Becker 

et al. 2012; Becker et al. 2019). 
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Table 2. LDCT evaluation algorithm applied in the German randomized lung cancer screening trial LUSI. 

Newly observed nodules 
(First screening round or new in subsequent 

rounds) 

Known nodules 
(Early recalls or subsequent screening 

rounds) 

Outcome 
by nodule size 

Action 
Outcome 

by nodule growth 
Action 

without abnormality or 
nodules < 5mm 

back to routine 
screening 

(12 months) 
- - 

nodules ≥5 and <8 mm 
early recall 
(6 months) 

> 600 VDT back to routine screening 

400 – 600 VDT 
D < 7.5 mm 

early recall 
(6 months) 

nodules ≥8 and ≤10 
mm early recall 

(3 months) 

D ≥ 7.5 mm – 10 mm 
 

early recall 
(3 months) 

 

nodules > 10 mm / 
not highly suspicious 

≤ 400 VDT or 
D > 10 mm 

immediate recall 
 

highly suspicious immediate recall malignant treatment 

  non-malignant 
back to routine 

screening 

 
Abbreviations: VDT: Volume doubling time; D: diameter  

As published in (Becker et al. 2015; González Maldonado et al. 2020a; González Maldonado et al. 2021a; 
González Maldonado et al. 2021b), reprinted with permission 

2.1.4 Evaluation of lung function via spirometry 

Spirometry was performed in all participants of the LDCT arm at their baseline examination 

using MasterScreen IOS (VIASYS Healthcare) to determine 1-second forced expiratory 

volume (FEV1) and forced vital capacity (FVC). The ratio FEV1/FVC was calculated from the 

largest FEV1 and FVC values recorded in any one of two repeated assessments. 

Further details about lung function evaluation via spirometry in the LUSI trial have been 

published previously (González Maldonado et al. 2020a; Jobst et al. 2018). 

2.1.5 Blood sample collection protocol 

Blood samples were collected by trained staff of the LUSI study center at the German Cancer 

Research Center (DKFZ) Heidelberg. A total of 1,576 participants of the screening arm 

provided a baseline blood sample either at the time of their first screening participation 

(N=1,362, round 1 (T0)) or, due to technical issues, at the time they came back for subsequent 

screening rounds (206 in round 2 (T1); 8 in rounds 3 (T2) to 5 (T4)). Such samples were taken 

at the time of non-suspicious findings. Further samples were collected from individuals 

presenting with suspicious LDCT scan results at any screening round, that is, all study 

participants referred to the local hospital clinic for immediate confirmatory diagnostic work-up 
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(N=111), and those returning for 3- (N=132) or 6-month (N=408) follow-up LDCT scans. All 

blood samples were processed within 2 hours of the blood draw. Serum was allowed to clot 

for 30 minutes, followed by centrifugation and aliquoting, before long term storage at -80°C. 

Further details about the blood sample collection protocol of the LUSI trial have been published 

previously (Becker et al. 2012; González Maldonado et al. 2021b). 

2.1.6 End-point definition 

Screen-detected cases were defined as those detected (having suspicious screens that 

eventually led to diagnosis work-up with which diagnosis confirmation was made) at any of the 

5 screening rounds of the study, independently of the time between detection and diagnosis. 

Incident cases were defined as those diagnosed either between two screens (interval cases) 

or in the years following the last screen (Becker et al. 2015; Becker et al. 2019; González 

Maldonado et al. 2020b). 

2.1.7 Prospective case ascertainment  

The prospective incidence of lung cancer in both study arms was ascertained by a combination 

of annual follow-up questionnaires (self-reports) and linkage to cancer and mortality registries. 

Detailed medical record information (pathology reports, medical letters on diagnosis, treatment 

and radiology reports) was obtained for all lung cancer cases by contacting the treating clinics 

(Becker et al. 2012; Becker et al. 2019; González Maldonado et al. 2020b). 

2.1.8 Tumor histology coding 

Tumor histology was coded according to ICD-O-3 version 2003 or 2013 depending of the date 

of diagnosis. Morphology codes were classified as follows: small-cell lung cancers (ICD-O-3: 

8041/3, 8042/3, 8045/3, 8044/3); non–small-cell lung cancers, subdivided into squamous cell 

carcinomas (8070/3, 8072/3, 8071/3, 8083/3, 8076/3, 8078/3), adenocarcinomas (8140/3, 

8255/3, 8250/3, 8480/3, 8550/3, 8260/3, 8310/3, 8490/3, 8046/3), bronchiolo-alveolar 

adenocarcinomas (8250/3, 8253/3) large cell carcinomas (8013/3), carcinoids (8240/3, 8246/3, 

8249/3), unspecified carcinomas (8010/3) and malignant neoplasms (8000/3) (González 

Maldonado et al. 2021b; González Maldonado et al. 2020b). 
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2.2 Participant selection and data collection 

2.2.1 For the validation of prediction models for the assignment of screening 

intervals  

Parts of this chapter have been published previously (González Maldonado et al. 2021a). 

The LCRAT+CT and Polynomial models and, for comparison, the criterion by Patz et al. were 

validated on data from participants of the screening arm of the LUSI trial who fulfilled the 

corresponding eligibility criteria (Patz et al. 2016; Robbins et al. 2019; Schreuder et al. 2018).  

Participants eligible for the validation of the LCRAT+CT model (Robbins et al. 2019) were 

those with at least one negative LDCT scan as defined by the NLST criteria (no nodules ≥4mm 

in longest diameter) and who were at risk for lung cancer detection at the next screening 

appointment (N=1,194 at time point T0, and 1,220, 1,262 and 1,228 at the three following 

incidence screens, at time points T1-T3) (Figure 10).  

 

Figure 10. Participant selection flow chart for the validation of the LCRAT+CT model 

Abbreviations: LDCT: low-dose computed tomography; LC: lung cancer 
† NLST positive: at least one non-calcified nodule ≥4mm in longest diameter; negative: absence of non-calcified 
nodules ≥4mm in longest diameter. ‡ Excluded due to a lung cancer diagnosis based on additional LDCT findings 
in the absence of nodules. 

As published in (González Maldonado et al. 2021a), reprinted with permission. 
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Interval cancers occurring between screening appointments (N=1 in the year between T2 and 

T3 and N=1 in the year between T3 and T4) were excluded (Figure 10). 

The Polynomial model (Schreuder et al. 2018), and the Patz criterion (Patz et al. 2016) were 

validated on data from participants with available LDCT scan images at the first screening 

appointment (baseline screen) and at risk for lung cancer detection at the second annual 

screening appointment (N= 1,889). This excluded interval cancers occurring in the year 

between T0-T1 (N=1, Figure 11).  

Two sensitivity analyses were conducted. First, the Polynomial model was applied to data from 

eligible subjects at all incidence rounds T1-T4 (Figure 11), and the risk of receiving a lung 

cancer diagnosis in subsequent years was estimated based on CT images obtained at the 

annual follow-up (incidence) screens. Second, though the differences in eligibility criteria and 

in the end-points they predict make the two models not directly comparable, the LCRAT+CT 

and Polynomial models were applied to the data set of subjects used for the validation of 

LCRAT+CT (i.e., showing no nodules ≥4mm in longest diameter).  

 
 

Figure 11. Participant selection flow chart for the validation of the Polynomial model 

Abbreviations: LDCT: low-dose computed tomography; LC: lung cancer; SD: screen-detected; IC: interval cancer; 
y: year  

As published in (González Maldonado et al. 2021a), reprinted with permission. 
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2.2.2 For the validation of nodule malignancy prediction models 

Parts of this chapter have been published previously (González Maldonado et al. 2020a). 

From all 2,029 participants of the screening arm of the LUSI trial, those without any non-

calcified nodules in any of the CT scans (N=847) and those with screen-detected lung cancers 

but without unique identification of malignant nodules (N=23) were excluded for this validation 

study (Figure 12).  

The selected nodule malignancy prediction models were evaluated on data from the LDCT 

scan image in which the individual nodules were first seen. 

 

Figure 12. Flow chart illustrating inclusion and exclusion criteria applied to LUSI participants for the 
validation of the selected nodule malignancy prediction models. 

2.2.3 For the estimation of overdiagnosis 

Parts of this chapter have been published previously (González Maldonado et al. 2020b). 

For the estimation of overdiagnosis in the LUSI trial, the end of follow-up for overall and lung 

cancer mortality was fixed on July 2nd 2019, the date of the most recent linkage between the 

trial and the mortality registers. Up until that date, more than 8 years had passed since the last 

trial participant was recruited (April 2011). Regarding lung cancer incidence, data was 

considered complete only until April 30th, 2019. This was decided in order to allow an 

approximate 1-year lag-time between diagnoses and their acknowledgment in the 

corresponding databases (i.e., in the LUSI trial or in the cancer registries). 

LDCT-arm  
N = 2029 

At least one non-
calcified nodule 

observed in any of 
the CT scans 

N = 1182 
Exclude: Screen-

detected lung cancer 
without unique 
identification of 

malignant nodule(s) 
N = 23 No lung cancer or 

screen-detected 
lung cancer with 

unique identification 
of malignant 

nodule(s) 
N = 1159 

Exclude: No non-
calcified nodules 

observed in any of 
the CT scans 

N = 847 
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2.2.4 For the evaluation of the TAAb panel EarlyCDT®-Lung 

Parts of this chapter have been published previously (González Maldonado et al. 2021b). 

A nested case-control design was used for the evaluation of EarlyCDT®-Lung on data from 

participants of the LUSI trial. All 63 screen-detected lung cancer cases and two sets of controls 

were selected. The first control set was a random selection of participants who had remained 

cancer-free until the end of follow up (April 30th 2019), and who provided a baseline blood 

sample (baseline control (BC) group, N=90). The second control set was a random selection 

of participants returning for follow-up scans of suspicious nodules found during the screening 

period but who were not diagnosed with lung cancer (suspicious nodule control (SNC) group, 

N=90) (Figure 13).  

Only 46 of the 63 participants with screen-detected lung cancers and available blood samples 

taken at the time of the suspicious LDCT scan that led to further diagnostic work-up (X-ray, 

full-dose CT, PET, bronchoscopy, VATS, biopsy, antibiotic treatment and short-term follow-up) 

were selected for the intended analyses. Participants in the BC group were represented by the 

blood sample taken at the baseline examination, and those in the SNC group by the sample 

taken at the time of their first suspicious LDCT scan. 

2.2.4.1 Sample processing and laboratory assays 

Autoantibodies to seven tumor-associated antigens (CAGE, GBU4-5, HuD, MAGEA4, NY-

ESO-1, p53, SOX2) were measured with the EarlyCDT®-Lung enzyme-linked immunosorbent 

assay (ELISA) kit (Oncimmune Ltd., Nottingham, United Kingdom). Measurements were 

carried out by trained specialists at the immunoassay laboratory of the division of cancer 

epidemiology of the German Cancer Research Center (DKFZ) Heidelberg, blinded with 

regards to any additional clinical information about the participants from which the samples 

were taken. All assays were performed on serum samples thawed for the first time for the 

purpose of the TAAb measurements, and using a two-plate set-up, according to the 

manufacturer’s instructions. 

The resulting optical density values were entered into the calculation table provided by 

Oncimmune. This calculation table indicated the control Pass/Fail status as well as the test 

result for the patient samples (No Significant Level, Moderate or High). 

2.2.4.2 EarlyCDT®-Lung: interpretation and application 

EarlyCDT®-Lung classifies test results using a proprietary scoring algorithm and autoantibody-

specific cut-off values. “Moderate Level” (M) results are reported if the levels of one or more 

autoantibodies in the panel are above the low cut-off value but all below the high cut-off value, 

and reported as “High Level” (H) if the levels of one or more are above the high cut-off value.
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Figure 13. Flow chart illustrating inclusion and exclusion criteria applied to LUSI participants for the evaluation of EarlyCDT®-Lung. 

As published in (González Maldonado et al. 2021b), reprinted with permission.
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Both M and H results are considered positive results. “No Significant Level” (NS) is reported 

whenever the levels of all autoantibodies in the panel are below the low cut-off value.  

Oncimmune recommends combining the test result with the estimated risk of a given nodule 

being malignant from a model based on age, sex and radiologic (CT) data, as developed in 

the Mayo clinic (Swensen et al. 1997). This recommendation was based on studies for lung 

cancer detection among patients with incidentally observed pulmonary nodules in clinical 

settings (Jett et al. 2014; Massion et al. 2017). 

Early®CDT-Lung is intended to update the risk of patients presenting indeterminate nodules 

i.e., those with 10% - 65% risk of being malignant. For patients having ≥10% malignancy risk 

according to the Mayo model and with H EarlyCDT®-Lung results, and for those with estimated 

risks ≥45% and M test results, further diagnostic work-up is recommended. Any other result, 

including NS, should not affect the clinical management plan.  

So far, no equivalent guidelines have been issued for the use of EarlyCDT®-Lung in population 

screening settings. In particular, no recommendations have been made regarding the scenario 

in which Early®CDT-Lung is used as a case-finding method prior to further CT investigations. 

Given the lack of concrete guidelines, in this study and for the purpose of evaluating the 

sensitivity of Early®CDT-Lung in the context of a screening trial, H or M level results were 

considered positive tests, and NS results were considered negative. This classification is 

equivalent to the 90% specificity/40% sensitivity scenario observed in several clinical studies 

(Chapman et al. 2012; Healey et al. 2017; Jett et al. 2014; Massion et al. 2017). For comparison 

purposes, analyses were also conducted for the alternative classification, defining only H levels 

as positive and M or NS as negative. 

2.3 Statistical analyses 

2.3.1 Validation of prediction models for the assignment of screening intervals  

Parts of this chapter have been published previously (González Maldonado et al. 2021a). 

2.3.1.1 Description of the selected risk prediction models 

The LCRAT+CT model (Robbins et al. 2019) predicts the risk of lung cancer detection at the 

next annual screening by updating the 1-year lung cancer risk estimates obtained by the 

LCRAT model (Katki et al. 2016) with information from CT scan images deemed negative 

according to NLST criteria (absence of pulmonary nodules with largest diameter ≥4 mm). The 

model includes age, smoking history, family history of lung cancer, BMI and education level, 

together with LDCT imaging findings regarding the presence of pulmonary emphysema and 

consolidation (Table 3).  
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The Polynomial model (Schreuder et al. 2018) predicts the risk for lung cancer to be detected 

at the first follow-up screening appointment (T1), or else diagnosed outside screening in the 

year (T1, T2) based on information available at the first screening appointment (T0). It includes 

linear and/or 2nd-degree terms for a total of 11 selected risk factors including age, sex, smoking 

history, personal and family history of cancer, as well as LDCT scan findings such as 

pulmonary nodules and emphysema (Table 3) 

The criterion by Patz (Patz et al. 2016) classifies participants according to the evaluation 

results of their LDCT imaging findings. Participants with negative test results according to 

NLST criteria are considered eligible for skipping the next screening round. 

2.3.1.2 Model-based predictions and its evaluation 

The scores of the LCRAT+CT and Polynomial models, as well as the Patz criterion were 

applied to data from eligible subjects as described in section (2.2.1). 

For a few model variables, data were missing in the LUSI trial. This limitation was handled as 

follows. Race (for which no information was collected in the LUSI) was assumed Caucasian, 

reflecting the predominant demographic composition of the German population. The number 

of parents with lung cancer was assumed to be zero for all participants, given the low 

prevalence of the disease. History of emphysema or COPD (not explicitly asked in the 

recruitment or assessment questionnaires of the LUSI) was replaced by previous diagnosis of 

chronic bronchitis. Missing values (in <2% of participants for all variables) for education, BMI, 

smoking duration and time since quitting smoking were imputed by the median value recorded 

from participants within the same sex and age groups, and within the same smoking status 

group if applicable.  

Participants without nodules were assigned values of zero for all nodule-related 

characteristics. Participants showing nodules, but for which nodule characteristics were 

missing (longest or perpendicular diameter, non-solid/solid, location, spiculation and/or nodule 

count were removed from the analysis (N=0 at T0 and N=88 T1 to T4)). Positive LDCT test 

results were those triggering immediate referral for further diagnostic workup. Indeterminate 

test results were those triggering 3- or 6-months follow-up appointments. 

The categories of the variable “highest education level” defined for the LCRAT+CT model 

according to the USA education system were linked to the available categories from the LUSI 

questionnaires, which were coded according to the German education system, as shown in 

Table 4. 
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Table 3. Coefficients of the LCRAT, LCRAT+CT and Polynomial models. 

LCRAT Polynomial model 

Predictor variable β coefficient Predictor variable β coefficient 

Sex (female) -0.08057 Model constant -28.15 

Race (black/African-American) 0.217892 Age (y) 0.5845 

Race (Hispanic) -0.43413 Age2 (y2) -0.004026 

Race (other ethnicities) -0.39556 Prior diagnosis of cancer 0.5555 

Education (trend) -0.07143 Smoking status (active) 0.5046 

Number of parents with lung 
cancer 

0.4183 Pack-years (y) 0.03922 

Lung disease (COPD or 
emphysema) 

0.563422 Pack-years2 (y2) -0.0001632 

BMI (≤18.5) 0.060925 Prior diagnosis of COPD 0.4144 

Cigarettes per day (>20) 0.310609 
Longest perpendicular diameter 
(mm) 

0.09962 

Pack years [30, 40) 0.491254 
Longest perpendicular diameter2 
(mm2) 

-0.0006524 

Pack years [40, 50) 0.562334 Presence of non-solid nodule 0.4217 

Pack years (≥50) 0.715752 Presence of part solid nodule 0.9108 

log(age) 4.386866 Presence of nodule in upper lobe 0.4685 

log(BMI) -0.72386 Presence of spiculated nodule 0.7512 

log(years quit +1) -0.3209 
Nodule count per scan (per 
additional nodule) 

0.5128 

Years smoked 0.024002 
Nodule count per scan2 (per 
additional nodule2) 

-0.1947 

LCRAT + CT      

Predictor variable Exponent      

Neither emphysema nor 
consolidation 

1.08      

Emphysema 0.96   

Consolidation 0.77   

Abbreviations: LCRAT: Lung Cancer Risk Assessment Tool; y: years; COPD: Chronic obstructive pulmonary 
disease; BMI: body mass index. 

As published in (González Maldonado et al. 2021a), reprinted with permission. 

Discrimination was evaluated via receiver operating characteristic (ROC) analysis. The 

stratified bootstrap method (B=10,000 repetitions) was used for the calculation of 95% 

confidence intervals (95% CI) for the area under the ROC curve (AUC). The method by DeLong 

et al. (DeLong et al. 1988) was used for testing the difference (inferiority) in AUC values of two 

models applied to the same data. Additionally, for all models, the numbers of participants who 

would have been candidates for skipping the next screening appointment were calculated 

using the deciles of predicted risk as thresholds. In addition, percentages of participants who 

would have had their diagnosis delayed if the screening round was skipped were estimated 

(point estimator and 95% CI), together with the percentages of false positive or indeterminate 

screen tests that would have been either avoided or delayed. The Wilson score method with 

continuity correction was used to obtain 95% CIs for the proportions of delayed diagnoses 

(Newcombe 1998). 
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Table 4. Equivalence between the education systems in the USA and Germany, as used for the 
validation of the selected prediction models on data from the LUSI Trial. 

USA Education System German Education System 

1: <12 grade 

kein Schulabschluss 

Volksschulabschluss / Hauptschulabschluss 

Mittlere Reife / Realschulabschluss 

keine berufliche Ausbildung und nicht in beruflicher Ausbildung 

2: High school graduate Noch in Ausbildung (Auszubildender, Student) 

3: Post high school, no 

college 

Fachhochschulreife / Fachoberschulabschluss 

Allgemeine Hochschulreife / Abitur 

Lehre (kaufmännisch) 

Lehre (gewerblich, technisch, landwirtschaftlich) 

4: Associate degree/some 

college 

Berufsfach-/Handelsschulabschluss 

Fach-/Meister-/Technikerschule, Berufs-/Fachakademie 

5: Bachelor’s degree Not applicable 

6: Graduate school 
Fachhochschule (Ingenieurschule) 

Universität, Hochschule 

As published in (González Maldonado et al. 2021a), reprinted with permission. 

Calibration in-the-large (van Calster et al. 2019) was evaluated by comparing the mean 

predicted risk from the LCRAT, LCRAT+CT and Polynomial models to the observed incidence 

within the population of eligible subjects, either by screening round or separately for the 

prevalence and incidence rounds. Additionally, the models’ calibration was evaluated via Brier 

Scores and Spiegelhalter Z-test (Brier 1950; Rufibach 2010; Spiegelhalter 1986). The Brier 

score is used for comparing the calibration of two prediction models, whereas the 

Spiegelhalter's z-statistic (z) is used for testing the null hypothesis of perfect calibration. Lower 

values of the Brier score indicate better calibration, while the null hypothesis of the 

Spiegelhalter’s test is rejected at the significance level α if the absolute value of the z-score is 

larger than the α-quantile of the standard normal distribution (Rufibach 2010). 

Statistical analyses were performed using the R language and environment for statistical 

computing version 3.4.4 (R Core Team 2018) and the lcrisk (Cheung et al. 2018), DescTools 

(Signorell 2020), rms (Harrell 2020), and pROC packages (Robin et al. 2011). 
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2.3.2 Validation of nodule malignancy prediction models 

Parts of this chapter have been published previously (González Maldonado et al. 2020a) 

2.3.2.1 Description of the selected nodule malignancy prediction models 

Eight models from six published studies were selected for its validation on data from the LUSI 

trial. These models are: PanCan-1b (McWilliams et al. 2013) (parsimonious with spiculation), 

PanCan-2b (McWilliams et al. 2013) (full model including spiculation), PanCan-MD 

(Tammemägi et al. 2019a) (with the mean of the largest and perpendicular diameters as nodule 

size), PanCan-VOL (Tammemägi et al. 2019a) (with nodule volume as nodule size), the 

recently developed UKLS model (Marcus et al. 2019), and the models developed in the 

Veterans Affairs (VA) (Gould et al. 2007), Mayo (Swensen et al. 1997) and Peking University 

People´s Hospital (PKUPH) clinics (Li et al. 2011) (Table 5). 

2.3.2.2 Model-based predictions and its evaluation 

For participant-related characteristics, the Mann-Whitney-U-Test was used for investigating 

differences in continuous variables and the Chi-Squared test or Fisher’s exact test for 

categorical variables. Differences in nodule-specific characteristics were analyzed using 

mixed-effects logistic regression including participant as random effect (Jiang 2007). 

Associations between risk of nodule malignancy and radiologic and/or participant-related 

parameters were explored by fitting multivariable logistic regression models via Generalized 

Estimating Equations (GEE) (Hardin and Hilbe 2003; Liang and Zeger 1986). The latter 

statistical method was selected in order to account for the correlation structure of multiple 

pulmonary nodules from any given trial participant. Model selection was based on the quasi-

Akaike Information Criterion (QIC) (Pan 2001).  

The ability of the selected models to discriminate malignant from non-malignant nodules was 

evaluated via cluster-adjusted ROC curves and AUCs (Obuchowski 1997a). Given the 

correlation structure of multiple nodules from any given trial participant, sensitivity, specificity, 

positive and negative predictive values were estimated using GEEs (Coughlin et al. 1992; 

Genders et al. 2012; Smith and Hadgu 1992).  

The calibration of the selected models was assessed by examining observed vs. predicted 

nodule malignancy rates inside the categories of nodule size as defined in the LDCT evaluation 

algorithm of the LUSI trial (<5 mm, 5 to <8 mm, 8 to 10 mm, >10 mm), as well as by deciles of 

predicted risk. The Hosmer-Lemeshow goodness of fit test (Lemeshow and Hosmer 1982) was 

used to examine the fit between predicted and observed malignancy probabilities across 

deciles of predicted risk, and Brier scores  and the Spiegelhalter’s z-test were used to assess 

overall deviations of model risk predictions from observed rates (Rufibach 2010). 
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Table 5. Coefficients of the selected nodule malignancy prediction models 

Predictors / variables 
PanCan 1ba PanCan 2ba PanCan 

MDb 
PanCan VOLc UKLS Mayo PKUPHd VA 

 Intercept -6.6144 -6.7892 -6.5355 -6.4432 -2.2915 -6.8272 -4.496 -8.404 

 
 
Participant-Related 
Characteristics 

Age (years)  0.0287   -0.0257 0.0391 0.070 0.078 

Sex (female vs male) 0.6467 0.6011 0.3749 0.3642 0.5105    

Family history of lung cancere (yes/no)  0.2961   1.9985   2.061 

      Late onset (>60 y)     1.5724    

History of cancerf (excl. lung)     0.5305 1.3388   

Smoking (ever/never)      0.7917  2.061 

Smoking cessation (years/10)        -0.567 

Smoking duration (years)     0.0565    

Asbestos exposure (yes/no)     0.5884    

Asthma (yes/no)     -0.7777    

Bronchitis (yes/no)     1.7616    

Emphysema (yes/no)  0.2953 0.2879 0.2536     

FVC (L)     -1.1693    
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Table 5 (continued). Coefficients of the selected lung-cancer risk prediction models 

Nodule-Related 
Characteristics 

Nodule size (mm, mm3)         

      Largest diameter -5.5537 -5.3854    0.1274 0.0676 0.112 

      Mean diameter   -16.1232      

      Volume    -9.2285 0.00082    

Nodule Type (ref: solid)         

     Non-solid, or GGOg  -0.1276 ref ref 1.6396    

     Part-solid  0.3770 0.7005 0.7439 0.4919    

Nodule location (upper/else)  0.6009 0.6581 0.5029 0.5012 -0.1799 0.7838   

Nodule count per scan   -0.0824 -0.0853 -0.0865     

Spiculation (yes/no) 0.9309 0.7729 0.9699 0.9502  1.0407 0.736  

Border (clear/other)       - 1.408  

 
When applying the PanCan models, nodule size was transformed as follows:  

a For models 1b and 2b: largest diameter’ = (((largest diameter)/10)^(-0.5))-1.58113883 
b For the mean diameter model: mean diameter’ = ln(1/(largest diameter + perpendicular diameter)/2)- 0.6227482239 
c For the volume model: nodule volume’ = (ln(nodule volume)/10)^(-0.5)- 1.619158938, and nodule count was centered: Nodule count’= nodule count – 4 
d In the PKUPH model nodule diameter was measured in centimeters 
e Family history of lung cancer was not available in the data from the LUSI trial and was therefore assigned a value of zero for all participants and all models. 
f For the Mayo model, history of cancer (excluding lung) refers to those diagnosed more than 5 years before randomization 
 

Underlined coefficients indicate variables or variable levels excluded in the alternative version of the UKLS model 
Abbreviations: PanCanMD: PanCan model with mean diameter; PanCanVOL: PanCan model with volume; UKLS: United Kingdom Lung Cancer Screening trial; PKUPH: Peking 
University People´s Hospital; VA: Veterans Affairs; FVC: Forced vital capacity in liters; GGO = Ground Glass Opacity 

As published in (González Maldonado et al. 2020a), reprinted with permission.
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For comparison, three additional multivariable logistic regression models were fitted on data 

from pulmonary nodules first observed in any screening round of the LUSI trial. Such models 

included a larger set of variables compared to the models selected for validation, and differed 

only in the measurement they used to define nodule size: largest diameter, mean diameter or 

nodule volume. The discrimination capacity of these newly fitted models was evaluated with 

the methods applied to the predictions of the models selected for validation. The variability of 

the model performance estimates was assessed using cluster bootstrapping (B=1,000) 

(Obuchowski 1997a). Model selection was done based on the QIC. Feature selection was 

done through backward elimination based on p-values (>0.05). At each elimination step, the 

reduced models were re-ranked according to their QIC as calculated by the function 

“model.sel”, available in the MuMIn R package. 

All analyses were carried out using the R language and environment for statistical computing 

version 3.5.1 (R Core Team 2018), with packages gee (Carey 2019), Hmisc (Harrell et al. 

2020), lme4 (Bates et al. 2015), MuMIn (Barton 2020), rms, pROC (Robin et al. 2011) and 

ROCR (Sing et al. 2005), as well as the “clusteredROC” function (Obuchowski 1997a; 

Obuchowski 1997b). 

2.3.3 Estimation of overdiagnosis and related parameters 

2.3.3.1 Excess incidence 

Parts of this chapter have been published previously (González Maldonado et al. 2020b)  

The extent of overdiagnosis in the LUSI trial was estimated by calculating the excess 

incidence, that is, the difference in cumulative incidence of lung cancer in the LDCT and control 

arms, expressed as a ratio relative to the cumulative incidence of screen-detected lung cancers 

(PS) (Patz 2006; Patz et al. 2014; Welch and Black 2010). Based on an alternative definition, 

excess incidence was also calculated relative to all lung cancers in the LDCT arm of the LUSI 

trial (PA) regardless of whether they were screen-detected or not (Patz et al. 2014). End of 

follow-up for lung cancer diagnosis was set to April 30th 2019. The precision of the estimates 

was assessed by calculating their 95% confidence intervals via bootstrapping (5,000 

repetitions).  

2.3.3.2 Convolution model for clinical incidence and distribution of pre-clinical 
sojourn time 

Besides the estimates of excess incidence, a convolution model for clinical incidence was used 

for the joint estimation of mean pre-clinical tumor sojourn time (MPST) and LDCT-based 

screen detection sensitivity in the screening arm (Straatman et al. 1997; Walter and Day 1983). 

A binomial distribution was assumed for the observed numbers of screen-detected cases and 
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cases diagnosed either in between screening appointments (interval cancers) or after the last 

screening appointment. Then, based on estimates of MPST, probabilities for screen-detected 

tumors to have remained in a pre-clinical (asymptomatic) phase were estimated, depending 

on the follow-up time after screen-detection (Paci et al. 2004; Pashayan et al. 2009). These 

probabilities were obtained for lung cancer overall and for subgroups defined by tumor 

histology. According to the convolution model (Walter and Day 1983), the clinical incidence of 

cancer (symptomatic cancers) at time 𝑡 in the absence of screening is given by: 

𝐼(𝑡) = ∫ 𝑔(𝑠)𝑓(𝑡 − 𝑠 | 𝑠)
𝑡

0

𝑑𝑠 

with g the incidence of cancers in the pre-clinical detectable phase (PDP) of length 𝑋 in which 

tumors are detectable but asymptomatic, and f the density of the pre-clinical sojourn time of 

length 𝑌 (time between T0 the start of the PDP and T2 the tumor’s clinical manifestation).  

In this study, both 𝑋 and 𝑌 were assumed to follow exponential distributions with  𝑟 > 0 (pre-

clinical incidence rate) and 𝜆 > 0 (transition rate from the pre-clinical into the clinical stage), 

such that fX(x) = 𝑟𝑒−𝑟𝑥 and fY(y) = 𝜆𝑒−𝜆𝑦 (Day and Walter 1984; Straatman et al. 1997; Walter 

and Day 1983). Under these assumptions, the expected value of the pre-clinical sojourn time 

(mean pre-clinical sojourn time) can be expressed as 𝐸(𝑌) = 1/𝜆. 

Furthermore, both 𝑟 and 𝜆 lambda were assumed to be constant over time, in agreement with 

the stable disease model. Also, assuming a low incidence of pre-clinical lung cancer, the 

probability density function of the duration of the PDP was approximated as fX(x) = 𝑟𝑒−𝑟𝑥 ≈ 𝑟. 

Under these assumptions, and as suggested by Straatman (Straatman et al. 1997) the clinical 

incidence at time 𝑡 can be written as: 

𝐼(𝑡) ≈ ∫ 𝑟 (∫ 𝜆𝑒−𝜆𝑦𝑑𝑦
𝑡−𝑥

0

)
𝑡

0

𝑑𝑥 = 𝑟𝑡 −
𝑟

𝜆
[1 − 𝑒−𝜆𝑡] 

If screening takes place at  t1, (T0 <  t1), an existing tumor will be detected with probability ϕ 

= sensitivity of the detection method. If detection occurs at T0 < t1 < T2,   T2 − t1 is defined as 

the lead time. An interesting point to notice is that, under the exponential distribution 

assumption, the mean lead time equals mean pre-clinical sojourn time. 

Likelihood of screen-detected and interval cases  

Let screening occur at t1, t2, … , tn years after age a (at which it can be assumed that no one 

has entered the PDP); and let the detection sensitivity be ϕ. Also, let  i0 be the number of 

subjects diagnosed before t1; Nj the number of subjects screened at tj; sj the number of 

screen-detected cases at tj, 1 ≤ j ≤  k; and ij = number of interval (or incident) cancers 

in (tj, tj+1), 1 ≤ j ≤  k . In the absence of loss to follow-up, as described in Straatman 

(Straatman et al. 1997), the vector (i0, s1, i1, … , sk, ik) follows a multinomial distribution.  



Materials and Methods 

48 

 

A difficulty when applying this model in the context of a screening trial, such as the LUSI, is 

that trials usually do not consider a pre-screening period. In the absence of data about 

diagnoses given before the occurrence of the first screening appointment (i0), and in order to 

avoid potential bias through the estimation of the underlying cancer incidence based on data 

from cancer registries of from the control arm of such trials, Straatman (Straatman et al. 1997) 

suggests estimating the mean pre-clinical sojourn time (MPST) and the detection sensitivity by 

maximizing a partial likelihood for the vector of screen-detected and interval lung cancers 

(s1, i1, … , sk, ik). The author further suggests describing such vector as the result of repeated 

binomial experiments, each with  sj + ij trials and  sj successes, with success probability 

P[Sj]ϕ
/(P[Sj]ϕ

+ P[Ij]ϕ
) thus yielding the following partial likelihood: 

ℒ2 = ∏ (
𝑠𝑗 + 𝑖𝑗

𝑠𝑗
) (

𝑃[𝑆𝑗]
𝜙

𝑃[𝑆𝑗]
𝜙

+ 𝑃[𝐼𝑗]
𝜙

)

𝑠𝑗

(1 −
𝑃[𝑆𝑗]

𝜙

𝑃[𝑆𝑗]
𝜙

+ 𝑃[𝐼𝑗]
𝜙

)

𝑖𝑗𝑘

𝑗=1

 

where 

𝑃[𝐼0] ≈ ∫ 𝑟 (∫ 𝜆
𝑡1−𝑥

0

𝑒−𝜆𝑦𝑑𝑦) 
𝑡1

0

𝑑𝑥 = 𝑟𝑡1 −  
𝑟

𝜆
[1 − 𝑒−𝜆𝑡1] 

𝑃[𝑆1]𝜙 = 𝜙𝑃[𝑆1] =   𝜙
𝑟

𝜆
[1 − 𝑒−𝜆𝑡1]  

𝑃[𝐼1]𝜙 = 𝑃[𝑆1](1 − 𝜙)(1 − 𝑒−𝜆(𝑡2−𝑡1)) + 𝑃[𝐼1]

=
𝑟

𝜆
[1 − 𝑒−𝜆𝑡1](1 − 𝜙)[1 − 𝑒−𝜆(𝑡2−𝑡1)] + 𝑟[𝑡2 − 𝑡1] −

𝑟

𝜆
[1 − 𝑒−𝜆(𝑡2−𝑡1)] 

And in general, for 2 < 𝑗 ≤ 𝑘: 

𝑃[𝑆𝑗]
𝜙

= 𝑃[𝑆𝑗−1](1 − 𝜙)𝑒−𝜆(𝑡𝑗−𝑡𝑗−1) + 𝑃[𝑆𝑗]𝜙 

𝑃[𝐼𝑗]
𝜙

= 𝑃[𝑆𝑗](1 − 𝜙) [1 − 𝑒−𝜆(𝑡𝑗+1−𝑡𝑗)] + 𝑃[𝐼𝑗] 

Straatman further suggests the 95% joint confidence region for 𝜆 and 𝜙 to be defined as  

{(λ, ϕ) | 2 [ln (ℒ2(s1, i1, … , sk, ik; λ̂, ϕ̂)) − ln(ℒ2(s1, i1, … , sk, ik; λ, ϕ))] < χ
α
2(2)} 

where ln is the natural logarithm, �̂� and �̂� are the maximum likelihood estimates for (𝜆, 𝜙), and 

𝜒𝛼
2(2) is the quantile 100%𝛼 of χ

α
2(2) distribution. 

Estimation of mean pre-clinical sojourn time (MPST) and LDCT detection sensitivity in data 

from the LUSI trial 

As mentioned in the previous section, the LUSI trial did not consider a pre-screening phase. 

Thus estimates of the mean pre-clinical sojourn time (1/𝜆) and LDCT-based lung cancer 
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detection sensitivity (𝜙), were obtained by maximizing ℒ2 under the constraints 𝜆 > 0 and  𝜙 in 

[0,1], as suggested by Straatman (Straatman et al. 1997).  

The date of screening-related detection was defined as the date of the annual scan on which 

suspicious nodules were found, eventually leading to diagnostic work-up (independently of the 

date of diagnosis or histological confirmation). For all incident cases not detected via 

screening, the date of diagnosis was used as endpoint. Estimates for MPST and sensitivity 

were obtained for various values of a (age at which the PDP has not been reached) ranging 

from 0 to 30 years. Age at first screen was taken to be 57 years, which reflects the median age 

at first screen for the participants in the LUSI trial. 

In order to better fit the characteristics of the LUSI trial, the model was further adjusted, as 

suggested by Straatman (Straatman et al. 1997): a) separate models by age at first screening 

(50-59 and 60+ years) were fitted in order to account for the heterogeneity in age at entry, b) 

no adjustment was applied regarding irregular attendance to screenings (>93.4% attendance 

in all rounds), c) loss to follow-up (death or migration) was adjusted by modifying the success 

probability in the partial likelihood including an estimate of the probability of loss to follow-up 

in between screens and after the last screening appointment (<0.6% for all yearly intervals up 

until year 7, 1.4% for years 7-8, 25.6% for years 8-9, 40.6% for years 9-10, 76.9% for years 

10-11), d) increasing incidence with age was taken into account by including the adjustment 

factor suggested by Straatman (Straatman et al. 1997) to the probability of detection in the first 

screening appointment. Additionally, separate models were fitted by tumor histology 

subgroups (adenocarcinomas excluding bronchioalveolar adenocarcinomas (BAC), BAC, 

others). 

Overall model fit was evaluated based on the observed and expected screen-detected cases, 

via the 𝜒 
2 goodness-of-fit test with 5 (number of rounds)–2=3 degrees of freedom.  

Estimation of the probabilities of overdiagnosis and early detection 

Under the assumption of an exponential distribution of pre-clinical sojourn time, which was 

made in this study, the probability of LDCT-based overdiagnosis (probability that a subject with 

an LDCT-detected lung cancer at time 𝑡1 remains asymptomatic within her expected remaining 

lifetime (ERL)) is (Paci et al. 2004; Pashayan et al. 2009): 

𝑝(𝑦 > 𝐸𝑅𝐿 | 𝑦 > 𝑡1) = ∫ 𝜆𝑒−𝜆𝑦𝑑𝑦 = 
∞

𝐸𝑅𝐿

𝑒−𝜆𝐸𝑅𝐿. 

Similarly, the probability that the same screen-detected case becomes symptomatic within the 

next 𝑡 years (for example, within the duration of post-screening follow-up and before death) is: 

𝑃𝑐𝑙𝑖𝑛 =  𝑝(𝑦 < 𝑡) = ∫ 𝜆𝑒−𝜆𝑦𝑑𝑦 =  1 −
𝑡

0

𝑒−𝜆𝑡 
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which can be interpreted as the probability that a screen-detected case was a product of 

early diagnosis rather than overdiagnosis. 

These probabilities can be estimated by substituting �̂�, the reciprocal of the estimated mean 

pre-clinical sojourn time and age-specific estimates of ERL.  

Statistical analyses were performed using the R language and environment for statistical 

computing version 3.4.4 (R Core Team 2018) and the boot package (Canty and Ripley 2019; 

Davison and Hinkley 1997).  

The R-code implemented and applied for the estimation of MPST, LDCT-detection sensitivity 

and proportion of tumors by lead time can be found in the Appendix (Section 10.1). 

2.3.4 Evaluation of the TAAb panel EarlyCDT®-Lung  

Parts of this chapter have been published previously (González Maldonado et al. 2021b). 

The sensitivity of the EarlyCDT®-Lung test was assessed among participants with lung cancer 

detected through LDCT-screening. Additionally, the specificity of the test was assessed in each 

of the two control groups. Positive likelihood ratios (LR+) were calculated based on the 

estimates of sensitivity and specificity. Exact binomial confidence limits were calculated for 

sensitivity, specificity and LR+. Associations of EarlyCDT®-Lung test results with case-control 

status were assessed via logistic regression. Complementary statistical tests were performed 

to assess the relationship between positive test results and tumor characteristics such as size, 

stage or histology. The degree of association between test results and malignancy was 

evaluated among lung cancer patients showing nodules on their LDCT-scans and in the SNC 

group, overall and by categories of nodule size. For continuous variables, medians and ranges 

were reported if the variables were normally distributed, or medians and interquartile ranges 

(IQR) otherwise. Differences in central tendency parameters between groups were tested via 

the non-parametric Kruskal-Wallis Rank Sum Test (Mann-Whitney-U-Test when comparing 

two groups). Differences in distributions of categorical variables were tested via the Chi-

Squared or Fisher’s exact test as appropriate, depending on cell counts. All analyses were 

carried out using the R language and environment for statistical computing version 3.3.3 (R 

Core Team 2017) and the epiR package (Stevenson et al. 2020). 
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3 RESULTS 

3.1 Validation of prediction models for the assignment of screening 

intervals 

Parts of this chapter have been published previously (González Maldonado et al. 2021a). 

There were 1,506 participants eligible for the validation of the LCRAT+CT model and 1,889 

eligible for the validation of the Polynomial model.  

For the LCRAT+CT model, some participants were eligible at multiple rounds, given that they 

remained at risk for lung cancer detection for an extended time period. These were selected 

as follows: 1,194 at the initial (prevalence) screen (T0), and 1,220, 1,262 and 1,228 participants 

at the three following incidence screens (T1-T3) (Figure 10). The median age of these 

participants was 56.80 years range:[50.30, 71.80] at first screening participation. All were long-

term smokers, and 960 of them were males (63.7%). Lung cancer was detected via LDCT for 

24 of these eligible participants; 20 of these detections occurred at the annual screening 

appointment following a negative screening test result and were thus included for the validation 

of LCRAT+CT (Figure 10, Supplementary Table 1).  

All 1,889 participants eligible for the validation of the Polynomial model (Figure 11) were long-

term smokers with a median age of 56.80 years, range:[50.30, 71.90] at first screening 

participation, and 1,238 of them were males (65.5%) (Supplementary Table 1). Eleven out of 

these eligible participants received a lung cancer diagnosis either as a result of further work-

up triggered by positive LDCT findings at T1, or by other means outside screening in the year 

after T1 (Supplementary Table 1). 

3.1.1 Distribution of absolute risk estimates 

Estimates from both models varied widely across participants. The LCRAT+CT estimated risks 

for lung cancer detection at the next annual screening appointment in a range of 0.009% to 

2.76% (Figure 14). Estimated risks for lung cancer diagnosis (screen-detected or diagnosed 

outside screening) in the year [T1, T2) from the Polynomial model ranged from about 0.001% 

to 8.34% (Figure 15). Highest risks estimated by the LCRAT+CT model were obtained for 

individuals with LDCT-based indications of both consolidation and emphysema (N=9, 0.60% 

of eligible participants, contributing with 9 estimated risk values in rounds T0-T3), consolidation 

without emphysema (N=5, 0.33% of eligible participants, contributing with 5 estimated risk 

values in rounds T0-T3), and emphysema (N=786, 52.2% of eligible participants, contributing 

to 2,156 estimated risk values in rounds T0-T3). 
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a) 

 

Figure 14. Distribution of predicted risks for the LCRAT, LCRAT+CT models. 

b) 

 

Figure 15. Distribution of predicted risks for the 

Polynomial model 

As published in (González Maldonado et al. 2021a), reprinted with permission.
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For the Polynomial model, highest risks were estimated for older participants with more pack-

years, higher nodule-count per LDCT scan, higher nodule-count in the upper lobes of the lung, 

and higher count of nodules showing border spiculation.  

3.1.2 Discrimination of participants with short-term lung cancer diagnoses 

Analyzing data from T0 to T3, LCRAT+CT achieved an AUC of 0.73 95% CI:[0.63, 0.82] for the 

discrimination of participants with lung cancer detected at the next screening appointment. For 

comparison, the original LCRAT model without CT data (Katki et al. 2016) showed a lower 

AUC of 0.68 95% CI:[0.57, 0.78] (Supplementary Figure 1). However, the difference in AUC 

between LCRAT and LCRAT+CT was not statistically significant (z=-1.44, p=0.08).  

The Polynomial model applied to data from the baseline (prevalence) screen showed an AUC 

of 0.75 95% CI:[0.67, 0.83] (Supplementary Figure 2) for the discrimination of participants who 

in the following year were diagnosed with lung cancer either through screening or 

independently of screening, from those who remained cancer-free. Applied to the combined 

data from the incidence screening rounds (T1-T4) the AUC was 0.74 95% CI:[0.65, 0.82].  

For comparison purposes, the Polynomial model was applied to individuals presenting no 

nodules ≥4mm in diameter (i.e., eligible for the LCRAT+CT model). In this subset of data, the 

discrimination by the Polynomial model (AUC = 0.76 95% CI:[0.66, 0.87] at T0, AUC = 0.72 

95% CI:[0.62, 0.81] in T0-T3) was similar to that of the LCRAT+CT (AUC of 0.73 95% CI:[0.63, 

0.82]) (Supplementary Figure 3).  

Finally, the dichotomous Patz criterion produced an AUC of 0.56 95% CI:[0.53, 0.72] on 

baseline screen data (Supplementary Figure 4).  

3.1.3 Risk-based assignment to biennial vs annual screening and its effect on 

delayed diagnosis  

According to the risk estimates from LCRAT+CT, skipping about 40% to 50% of annual 

screenings (following a negative screen-test as of NLST criteria), that is, next-screening 

appointments for participants with estimated risks below 0.1% and 0.13% (fourth and fifth 

deciles of risk) respectively, would have avoided or delayed 1 (25% of all false positive test 

results 95% CI:[1.3%, 78.1%]) to 3 (75% 95% CI:[21.9%, 98.7%]) false positive screening tests 

and 3 (42.9% 95% CI:[11.8%, 79.8%]) indeterminate nodule findings, at the cost of 1 (5% 95% 

CI:[0.3%, 26.9%]) to 2 (10% 95% CI:[1.8%, 33.1%]) delayed lung cancer detections (Table 6). 

Using risk estimates from the LCRAT model, at equal proportions of annual screenings 

skipped, there were generally higher numbers of detections delayed compared to LCRAT+CT 

(Figure 16), and slightly higher numbers of false positive or indeterminate screening tests (data 

not shown). 
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Table 6. Potential effects of biennial screening based on risk thresholds from the LCRAT and 
LCRAT+CT models in eligible participants of the LUSI Trial 

Percentile 
of risk 

LCRAT+CT 
next-scan 

risk 

Candidates for 
Longer Interval 

Delayed cancer 
detections 

False positives 
avoided / delayed 

Indeterminates 
avoided / delayed 

N 
(%; 95% CI) 

N 
(%; 95% CI) 

N 
(%; 95% CI) 

N 
(%; 95% CI) 

10th r ≤ 0.03% 491 (10) 
1 

(5; 0.3, 26.9) 
0 

(0; 0, 60.4) 
1 

(14.3; 0.8, 58) 

20th r ≤ 0.05% 981 (20) 
1 

(5; 0.3, 26.9) 
0 

(0; 0, 60.4) 
3 

(42.9; 11.8, 79.8) 

30th r ≤ 0.07% 1,471 (30) 
1 

(5; 0.3, 26.9) 
0 

(0; 0, 60.4) 
3 

(42.9; 11.8, 79.8) 

40th r ≤ 0.1% 1,962 (40) 
1 

(5; 0.3, 26.9) 
1 

(25; 1.3, 78.1) 
3 

(42.9; 11.8, 79.8) 

50th r ≤ 0.13% 2,452 (50) 
2 

(10; 1.8, 33.1) 
3 

(75; 21.9, 98.7) 
3 

(42.9; 11.8, 79.8) 

60th r ≤ 0.17% 2,942 (60) 
5 

(25; 9.6, 49.4) 
3 

(75; 21.9, 98.7) 
4 

(57.1; 20.2, 88.2) 

70th r ≤ 0.23% 3,433 (70) 
7 

(35; 16.3, 59.1) 
3 

(75; 21.9, 98.7) 
4 

(57.1; 20.2, 88.2) 

80th r ≤ 0.32% 3,923 (80) 
12 

(60; 36.4, 80) 
3 

(75; 21.9, 98.7) 
5 

(71.4; 30.3, 94.9) 

90th r ≤ 0.48% 4,413 (90) 
16 

(80; 55.7, 93.4) 
4 

(100; 39.6, 97.6) 
6 

(85.7; 42, 99.2) 

100th r ≤ 2.76% 4,904 (100) 
20 

(100; 80, 99.5) 
4 

(100; 39.6, 97.6) 
7 

(100; 56.1, 98.7) 

As published in (González Maldonado et al. 2021a), reprinted with permission. 

Based on risk estimates from the Polynomial model, skipping the second round (T1) for 40% 

to 50% of participants, that is, those with model risks below 0.13% and 0.17% at T0, would 

have avoided or delayed 10 (40% of all false positive test results 95% CI:[21.8%, 61.1%]) false 

positive screening tests and between 144 (38.8% 95% CI:[33.9%, 44%] and 173 (46.6% 95% 

CI:[41.5% to 51.8%]) indeterminate screenings without delaying any diagnosis (0 95% CI:[0%, 

32.1%]) (Table 7, Figure 17). For comparison, the Patz criterion indicates that if all participants 

(N=1,194; 63.2% 95%CI:[61%, 65.4%]) with a negative T0 scan would have skipped T1, 1 (4% 

[0.2%, 22.3%]) false positive screen tests and 3 (0.8% [0.2%, 2.5%]) indeterminate scans could 

have been avoided, and 6 (54.5% [24.6%, 81.9%]) cancer diagnoses would have been 

delayed. For both the LCRAT+CT and Polynomial models (as applied to their respective 

eligible subsets) no statistically significant association was found between predicted model 

risks and the tumor stage of lung cancers detected upon next annual screening, although this 

analysis was hampered by small overall case-numbers (results not shown). 
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Figure 16. Potential effects of biennial screening based on risk thresholds from the LCRAT and 
LCRAT+CT models in eligible participants of the LUSI trial 

As published in (González Maldonado et al. 2021a), reprinted with permission. 

 

In the combined data from T1 to T4, the Polynomial model predicted 15 (18.8% 95% CI:[11.2%, 

29.4%]) to 17 (21.2% 95% CI:[13.2%, 32.1%]) avoided false positive screen tests and 41 (18% 

95% CI:[13.3%, 23.7%]) to 58 (25.4% [20%, 31.7%]) avoided indeterminate findings at the cost 

of delaying 4 (12.5% [4.1%, 29.9%]) to 6 (18.8% [7.9%, 37%]) lung cancer detections, by 

skipping 40% to 50% next-round screenings (those of participants with risks below 0.14% and 

0.18%) (Table 7). For participants eligible for the LCRAT+CT model (i.e., those presenting no 

pulmonary nodules ≥ 4mm), the Polynomial model predicted 0 (0% 95% CI:[0%, 69%]) avoided 

false positives and 2 (33.3% 95% CI:[6%, 75.9%]) avoided indeterminant results. This was at 

the cost of delaying 3 (13.6% 95% CI:[3.6%, 36%]) lung cancer detections by skipping 50% of 

screenings (i.e., if those with a risk below 0.14% were recommended to skip the screening) 

(Supplementary Table 2, Supplementary Figure 5).
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Figure 17. Potential effects of biennial screening based on risk thresholds the Polynomial model in 
eligible participants of the LUSI Trial 

As published in (González Maldonado et al. 2021a), reprinted with permission 

 

3.1.4 Calibration of absolute lung cancer risk 

All models produced absolute risk estimates that were, on average, considerably lower than 

the observed lung cancer prevalence. Brier scores for the LCRAT, LCRAT+CT and Polynomial 

models were not significantly different from one another, indicating a similar calibration for the 

three models. For LCRAT and LCRAT+CT, the null hypothesis of calibration was rejected at 

α=0.05 when applied to the combined data of screening rounds T0(prevalence round) to T3 (3rd 

incidence screening) (p=0.004 for LCRAT, p=0.002 for LCRAT+CT), and also when applied to 

the data only from the incidence rounds T1 to T3 (p=0.049 for LCRAT and p=0.036 for 

LCRAT+CT). The same hypothesis was rejected at α=0.05 when applied to the estimated risks 

from the Polynomial model from T0 (p=0.032) and T1 to T4 (0.048) (Supplementary Table 3 

Supplementary Table 4). 
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Table 7. Potential effects of biennial screening based on risk thresholds from the Polynomial model in 
eligible participants of the LUSI Trial 

Percent
ile 

 of risk 

Polyno
mial risk 

(T0) 

Candidates for Longer 
Interval 

Delayed 
Cancers 

False positives 
avoided 

Indeterminates 
avoided 

N (%; 95% CI) N (%; 95% CI) N (%; 95% CI) N (%; 95% CI) 

10th 
r ≤ 

0.04% 
189 (10) 0 (0; 0, 32.1) 8 (32; 15.7, 53.6) 83 (22.4; 18.3, 27) 

20th 
r ≤ 

0.07% 
378 (20) 0 (0; 0, 32.1) 9 (36; 18.7, 57.4) 

108 (29.1; 24.6, 
34.1) 

30th 
r ≤ 

0.09% 
567 (30) 0 (0; 0, 32.1) 9 (36; 18.7, 57.4) 

128 (34.5; 29.7, 
39.6) 

40th 
r ≤ 

0.13% 
756 (40) 0 (0; 0, 32.1) 10 (40; 21.8, 61.1) 

144 (38.8; 33.9, 
44) 

50th 
r ≤ 

0.17% 
945 (50) 0 (0; 0, 32.1) 10 (40; 21.8, 61.1) 

173 (46.6; 41.5, 
51.8) 

60th 
r ≤ 

0.23% 
1,133 (60) 

2 (18.2; 3.2, 
52.2) 

11 (44; 25, 64.7) 
195 (52.6; 47.3, 

57.7) 

70th 
r ≤ 

0.31% 
1,322 (70) 

5 (45.5; 18.1, 
75.4) 

14 (56; 35.3, 75) 
237 (63.9; 58.7, 

68.7) 

80th 
r ≤ 

0.43% 
1,511 (80) 

8 (72.7; 39.3, 
92.7) 

17 (68; 46.4, 84.3) 
267 (72; 67.1, 

76.4) 

90th 
r ≤ 

0.71% 
1,700 (90) 

9 (81.8; 47.8, 
96.8) 

20 (80; 58.7, 92.4) 
314 (84.6; 80.5, 

88.1) 

100th r ≤ 8.3% 1,889 (100) 
11 (100; 67.9, 

99.2) 
25 (100; 83.4, 

99.6) 
371 (100; 98.7, 

100) 

Percent
ile 

 of risk 

Polyno
mial risk 
(T1-T4) 

Candidates for Longer 
Interval 

Delayed 
Cancers 

False positives 
avoided 

Indeterminates 
avoided 

N (%; 95% CI) N (%; 95% CI) N (%; 95% CI) N (%; 95% CI) 

10th 
r ≤ 

0.05% 
699 (10) 0 (0; 0.3, 13.3) 13 (16.2; 9.3, 26.6) 16 (7; 4.2, 11.4) 

20th 
r ≤ 

0.08% 
1,395 (20) 1 (3.1; 0.2, 18) 14 (17.5; 10.2, 28) 26 (11.4; 7.7, 16.4) 

30th r ≤ 0.1% 2,090 (30) 
3 (9.4; 2.5, 

26.2) 
15 (18.8; 11.2, 

29.4) 
31 (13.6; 9.6, 18.9) 

40th 
r ≤ 

0.14% 
2,787 (40) 

4 (12.5; 4.1, 
29.9) 

15 (18.8; 11.2, 
29.4) 

41 (18; 13.3, 23.7) 

50th 
r ≤ 

0.18% 
3,483 (50) 

6 (18.8; 7.9, 
37) 

17 (21.2; 13.2, 
32.1) 

58 (25.4; 20, 31.7) 

60th 
r ≤ 

0.23% 
4,181 (60) 

7 (21.9; 9.9, 
40.4) 

20 (25; 16.3, 36.2) 
76 (33.3; 27.3, 

39.9) 

70th 
r ≤ 

0.31% 
4,876 (70) 

12 (37.5; 21.7, 
56.3) 

25 (31.2; 21.6, 
42.7) 

110 (48.2; 41.6, 
54.9) 

80th 
r ≤ 

0.44% 
5,576 (80) 

15 (46.9; 29.5, 
65) 

36 (45; 34, 56.5) 
134 (58.8; 52.1, 

65.2) 

90th 
r ≤ 

0.69% 
6,269 (90) 

21 (65.6; 46.8, 
80.8) 

46 (57.5; 46, 68.3) 
162 (71.1; 64.6, 

76.8) 

100th 
r ≤ 

23.97% 
6,966 (100) 

32 (100; 86.7, 
99.7) 

80 (100; 94.3, 
99.9) 

228 (100; 97.9, 
100) 

As published in (González Maldonado et al. 2021a), reprinted with permission. 
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3.2 Validation of nodule malignancy prediction models 

Parts of this chapter have been published previously (González Maldonado et al. 2020a). 

A total of 62 participants were diagnosed with lung cancer up to 12 months after their last 

LDCT screening participation: 56 of them were screen-detected and 6 were interval cancers 

(Becker et al. 2019). For 54 out of the 56 screen-detected cancer cases, malignancy was linked 

to one (N=51) or more (N=3) nodules. For two screen-detected cases without nodules, the 

decision of referral to further diagnostic work-up was based on other pulmonary abnormalities. 

For two of the 6 interval cases no nodules were observed on LDCT screens; for the other 4, 

with non-suspicious nodules, no information was available to unequivocally link any of these 

to malignancy. Nodules with benign-appearing calcification and all lung cancer cases (N=8) 

for whom lung tumors could not be linked back to a specific nodule were excluded from 

statistical analyses. 

Considering all 5 screening rounds, 1,182 participants of the LDCT arm of the LUSI trial 

showed at least one non-calcified pulmonary nodule. After removing participants with a lung 

cancer diagnosis given after more than one year following the last CT scan or for whom the 

malignant nodule(s) could not be identified in earlier CT images, data was available for 3,903 

pulmonary nodules from 1,159 individuals (Figure 12). Detailed nodule counts by size 

(diameter), type (solid vs. sub-solid), malignancy status and screening round of first 

observation (prevalence or incidence) are shown in Supplementary Table 5. Of the 3,903 

nodules observed, 2883 (32 of them identified as malignant) were first seen during the 

prevalence screen, whereas 1020 nodules (31 malignant), were first observed in one of the 

incidence screens. Irrespective of screening round, over 70% of malignant nodules (25 of 32 

in prevalence round; 25 of 31 in incidence rounds) had a diameter ≥8mm. For all such nodules 

(≥8 mm), the average malignancy rate was higher in the prevalence round (12.8%) compared 

to the incidence round (8.6%); conversely, higher for nodules <8mm first observed in incidence 

rounds (0.8%) compared to the prevalence round (0.3%).  

Irrespective of screening round of first detection, compared to benign nodules, the malignant 

ones were significantly more often located in the left upper lobe, were larger in terms of 

diameter and volume and more often had spiculated borders (Table 8). Participant related 

characteristics (Table 9) significantly associated with diagnosis of malignant nodules include 

age, presence of emphysema, and FEV1; whereas sex, smoking status at randomization 

(current vs. former), smoking duration and intensity, self-reported history of extra-thoracic 

cancer, years since smoking cessation, presence of asthma, bronchitis, and FVC showed no 

significant association in the LUSI data. Family history of cancer was not available in data from 

the LUSI. 



Results 

59 

 

Table 8. Nodule characteristics by malignancy status and screening round 

First seen on Prevalence round Any incidence round Any round 

Characteristic (N (%) 
or median (range)) 

benign malignant P Value benign malignant P Value benign malignant P Value 

Number of nodules  2,851 (98.9) 32 (1.1)  989 (97.0) 31 (3.0)  3840 (98.4) 63 (1.6)  

Diameter (mm) 
4.3 

[2.30, 64.2] 
10.6  

[3.9, 107.7] <0.001  
5.90  

[2.2, 65.6] 
11.60 

 [3.5, 38.7]  

4.8 
[2.2, 65.6] 

11.6 
[3.5, 107.7] <0.001  

Mean diameter (mm) 
3.7  

[1.9, 35.7] 
9.3  

[3.7, 93.7] <0.001  
4.95  

[2, 51.9] 
9.45 

 [2.7, 29.9]  

4.0 
[1.9, 51.9] 

9.4 
[2.75, 93.7] <0.001  

Volume (mm3) 
33.7 

[5, 8960.3] 
384.9 

[19, 17466] <0.001  
63.2 

 [8, 28,947.9] 
355.9 

[21.1, 7,726.8] 0.09  
41.4 

[5.0, 28,947] 
357.1 

[19.3, 17,466] <0.001 

Type (Solid/Subsolid) 
2,561/290 
(89.8/10.2) 

30/2  
(93.8/6.2) 0.01  

862/127 
(87.2/12.8) 28/3 (90.3/9.7) 0.62 

3423/417 
(89.1/10.9) 58/5 (92.1/7.9) 0.09  

Location   

0.03  

  

<0.001  

  

<0.001 

    Right upper 715 (25.1) 9 (28.1) 260 (26.3) 7 (22.6) 975 (25.4) 16 (25.4) 

    Right middle 278 (9.8) 1 (3.1) 98 (9.9) 1 (3.2) 376 (9.8) 2 (3.2) 

    Right lower 682 (23.9) 9 (28.1) 217 (21.9) 4 (12.9) 899 (23.4) 13 (20.6) 

    Left upper 438 (15.4) 9 (28.1) 123 (12.4) 14 (45.2) 561 (14.6) 23 (36.5) 

    Left lower 596 (20.9) 4 (12.5) 251 (25.4) 4 (12.9) 847 (22.1) 8 (12.7) 

    Lingula 111 (3.9) 0 (0.0) 33 (3.3) 1 (3.2) 144 (3.8) 1 (1.6) 

    Unclear 31 (1.1) 0 (0.0) 7 (0.7) 0 (0.0) 38 (1.0) 0 (0.0) 

Nodule shape   

<0.001  

  

0.74  

  

<0.001  
    Spiculated 79 (2.8) 13 (40.6) 114 (11.5) 10 (32.3) 193 (5.0) 23 (36.5) 

    Non-spiculated 2,277(79.9) 11 (34.4) 619 (62.6) 14 (45.2) 2896 (75.4) 25 (39.7) 

    Unclear 495 (17.4) 8 (25.0) 256 (25.9) 7 (22.6) 751 (19.6) 15 (23.8) 

Calcification   

0.86  

  

0.29  

  

0.83     Non-calcified 2,785 (97.7) 30 (96.9) 943 (95.2) 29 (93.5) 3728 (97.1) 60 (95.2) 

    Unclear 66 (2.3) 1 (3.1) 46 (4.7) 2 (6.5) 112 (2.9) 3 (4.8) 

Nodule count p/image  4 [1, 22] 2 [1, 16] 0.32  3 [1, 22] 2 [1, 20] 0.32  4 [1, 22] 2 [1, 20] 0.20  

 

All p-values come from a chi-squared test for the difference in deviance of two mixed-effects logistic models: both with participant as random effect and one of them additionally 
having the corresponding nodule characteristic as fixed effect. 

As published in (González Maldonado et al. 2020a), reprinted with permission.
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Table 9. Participant-related characteristics at time of randomization 

 Non-cases Cases P Value* Overall 

Number of participants 1,105 54  1,159 

Age (median [range] 
57.38 

[50.34, 71.89] 
59.88 

[51.90, 69.98] 
<0.001 

57.63 
[50.34, 71.89] 

Sex (female / male (%)) 379/726 (34.3/65.7) 
17/37 

(31.5/68.5) 
0.78 396/763 (34.2/65.8) 

Smoking status (current / 
former (%)) 

685/420 (62.0/38.0) 
33/21 

(61.1/38.9) 
1 718/441 (61.9/38.1) 

Smoking duration (years) 
(median [range]) 

37.50 
[27.50, 52.50] 

37.50 
[27.50, 52.50] 

0.06 
37.50 

[27.50, 52.50] 

Smoking intensity 
(cigarettes/day) (median 
[range]) 

22.50 
[12.50, 62.50] 

22.50 
[12.50, 62.50] 

0.31 
22.50 

[12.50, 62.50] 

History of cancer (excl. 
lung; > 5 years ago) (yes/no 
(%)) 

2/1,103 (0.2/99.8) 
1/53 

(1.0/98.1) 
0.13 

3/1,156 
(0.3/99.7) 

History of cancer (excl. 
lung) (yes/no (%)) 

103/1,002 (9.3/90.7) 
6/48 

(11.1/88.9) 
0.63 109/1,050 (9.4/90.6) 

Years since quitting 
(excluding current 
smokers) (median [range]) 

4 
[0.04, 13] 

8 
[0.30, 13] 

0.16 
4 

[0.04, 13.00] 

Emphysema at 
randomization (yes/no (%)) 

474/631 (42.9/57.1) 
35/19 

(64.8/35.2) 
0.002 509/650 (43.9/56.1) 

Asthma (yes/no (%)) 
47/1058 

(4.3/95.7) 
0/54 

(0/100) 
0.16 47/1,112 (4.1/95.9) 

Bronchitis (yes/no (%)) 201/904 (18.2/81.8) 
8/46 

(14.8/85.2) 
0.72 209/950 (18.0/82.0) 

FEV1 (median [range]) 
2.88 

[0.66, 6.11] 
2.66 

[1.26, 4.24] 
0.009 

2.87 
[0.66, 6.11] 

FVC (median [range]) 
3.75 

[0.33, 6.78] 
3.45 

[1.96, 5.69] 
0.08 

3.75 
[0.33, 6.78] 

Abbreviations: FEV1: 1-second forced expiratory volume; FVC: Forced vital capacity. 

As published in (González Maldonado et al. 2020a), reprinted with permission. 
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3.2.1 Discrimination of malignant nodules 

For nodules detected at the participants’ first screen (prevalence round), all PanCan models 

showed high discrimination accuracy, with AUCs ranging from 0.93 95% CI:[0.87, 0.99]) 

(PanCan-1b) to 0.94 (PanCan-2b 95% CI:[0.89, 0.99], PanCan-MD 95% CI:[0.91, 0.98], 

PanCan-VOL 95% CI:[0.90, 0.98]) whereas the discrimination by UKLS was poor (AUC=0.58 

95% CI:[0.46, 0.70]). Models originally developed in clinical settings (Mayo, VA, PKUPH) 

showed moderately good discrimination, with AUCs between 0.84 95% CI:[0.76, 0.92] and 

0.89 95% CI:[0.82, 0.97] (Figure 18). The comprehensive PanCan-2b model achieved only 

marginally better discrimination than the parsimonious model (PanCan-1b), and the use of 

volume or two-dimensional perpendicular mean diameter as measures for nodule size 

(PanCan-VOL, PanCan-MD) did not improve discrimination performance over that achieved 

by using largest diameter (PanCan-2b).  

All models showed useful, though reduced discrimination when applied to nodules first noticed 

in any of the incidence rounds (e.g., for the PanCan models, AUCs between 0.81 95% CI:[0.73, 

0.89] and 0.83 95% CI:[0.75, 0.88]) (Figure 19), which may be explained by the low variability 

in nodule size (Table 8, Supplementary Table 5).  

Sensitivity, specificity, positive (PPV) and negative predicted values (NPV) were estimated at 

2%, 5% or 10% risk thresholds for the PanCan and UKLS models (Table 10) applied on 

nodules observed in the prevalence screening round. The PanCan-1b model showed the 

highest sensitivity (80.6% 95% CI:[0.67, 0.94)] at 2% risk to 51.6% 95% CI:[0.32, 0.71] at 10%), 

but lower specificity compared to the other models (90.0%-98.6%). Highest specificity was 

observed for PanCan-MD (95.9% 95% CI:[0.95, 0.97] at 2% risk threshold to 99.1% 95% 

CI:[0.99, 1] at 10%) at the cost of decreased sensitivity (71.5% to 42.8%). At 2% or 5% risk 

thresholds, PPV ranged from, respectively, 8.3% 95% CI:[0.05, 0.12] and 19.3% 95% CI:[0.11, 

0.27] for PanCan-1b, to 17.4% 95% CI:[0.10, 0.24] and 32.7% 95% CI:[0.20, 0.45] for PanCan-

MD. Finally, the UKLS model showed inferior sensitivity and specificity compared to all PanCan 

models. 



Results 

62 

 

 

Figure 18. Receiver Operating Characteristic Curves and AUC with 95% confidence intervals (nodules 
first seen in the prevalence round) 

 
Figure 19. Receiver Operating Characteristic Curves and AUC with 95% confidence intervals (nodules 
first seen in any of the incidence rounds) 

Areas under the curve are accompanied by 95% confidence intervals 

Abbreviations: FPR: False Positive Rate; TPR: True Positive Rate; AUC: Area Under the Curve; MeanDiam: Mean 
diameter: = (largest nodule diameter + perpendicular diameter)/2; Vol: Volume; VA: Veterans Affairs; UKLS: United 
Kingdom Lung Cancer Screening trial. 

As published in (González Maldonado et al. 2020a), reprinted with permission.
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Table 10. Discrimination performance at fixed risk thresholds in LUSI (prevalence round) and other screening studies 

Model, Dataset 
Measure (95% 

Confidence Interval) 

Threshold of Predicted Risk 

0.02 0.05 0.10 

PanCan 1b  
LUSI 

Sensitivity 0.806 (0.67, 0.94) 0.715 (0.56, 0.87) 0.516 (0.32, 0.71) 

Specificity 0.900 (0.89, 0.92) 0.967 (0.96, 0.98) 0.986 (0.98, 0.99) 

PPV 0.083 (0.05, 0.12) 0.193 (0.11, 0.27) 0.287 (0.16, 0.42) 

NPV 0.998 (1, 1) 0.997 (0.99, 1) 0.994 (0.99, 1) 

PanCan 2b  
LUSI 

Sensitivity 0.785 (0.65, 0.92) 0.685 (0.51, 0.86) 0.497 (0.32, 0.67) 

Specificity 0.923 (0.91, 0.94) 0.972 (0.96, 0.98) 0.991 (0.99, 1) 

PPV 0.111 (0.07, 0.16) 0.233 (0.14, 0.32) 0.393 (0.24, 0.55) 

NPV 0.998 (1, 1) 0.996 (0.99, 1) 0.994 (0.99, 1) 

PanCan MD 
LUSI 

Sensitivity 0.715 (0.56, 0.86) 0.663 (0.48, 0.84) 0.428 (0.25, 0.61) 

Specificity 0.959 (0.95, 0.97) 0.984 (0.98, 0.99) 0.991 (0.99, 1) 

PPV 0.174 (0.1, 0.24) 0.327 (0.2, 0.45) 0.356 (0.19, 0.52) 

NPV 0.997 (0.99, 1) 0.996 (0.99, 1) 0.993 (0.99, 1) 

PanCan VOL 
LUSI 

Sensitivity 0.742 (0.6, 0.88) 0.557 (0.37, 0.74) 0.438 (0.26, 0.61) 

Specificity 0.941 (0.93, 0.95) 0.978 (0.97, 0.98) 0.991 (0.99, 0.99) 

PPV 0.136 (0.08, 0.19) 0.239 (0.13, 0.34) 0.351 (0.19, 0.51) 

NPV 0.997 (1, 1) 0.995 (0.99, 1) 0.993 (0.99, 1) 

UKLS 
LUSI 

Sensitivity 0.246 (0.11, 0.39) 0.197 (0.07, 0.33) 0.14 (0.01, 0.27) 

Specificity 0.829 (0.81, 0.85) 0.924 (0.91, 0.94) 0.972 (0.96, 0.98) 

PPV 0.015 (0, 0.03) 0.023 (0, 0.04) 0.042 (0, 0.08) 

NPV 0.990 (0.99, 0.99) 0.990 (0.99, 0.99) 0.990 (0.99, 0.99) 

Abbreviations: PPV= Positive Predictive Value; NPV= Negative Predictive Value; PanCan MD= PanCan model with mean diameter; PanCan VOL= PanCan model with volume. a No 
confidence intervals provided in the original manuscripts. 

As published in (González Maldonado et al. 2020a), reprinted with permission. 
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Table 10 (continued). Discrimination performance at fixed risk thresholds in LUSI (prevalence round) and other screening studies 

Model, 
Dataset, 
Source 

Measure (95% 
Confidence Interval) 

Threshold of Predicted Risk 

0.02 0.05 0.10 

PanCan 1b 
PanCan 
McWilliams, 
2013a 

Sensitivity 0.847 0.714 0.602 

Specificity 0.896 0.955 0.975 

PPV 0.105 0.185 0.254 

NPV 0.998 0.996 0.994 

PanCan-MD 
PanCan 
Tammemägi, 
2018a 

Sensitivity 0.897 0.838 0.701 

Specificity 0.869 0.928 0.962 

PPV 0.124 0.194 0.277 

NPV 0.998 0.996 0.994 

PanCan-VOL 
PanCan 
Tammemägi, 
2018a 

Sensitivity 0.906 0.846 0.692 

Specificity 0.870 0.931 0.963 

PPV 0.126 0.201 0.279 

NPV 0.998 0.997 0.993 

PanCan-2b 
NLST 
White, 2017a 

Sensitivity 0.966 0.931 0.853 

Specificity 0.768 0.893 0.939 

PPV 0.101 0.189 0.274 

NPV 0.999 0.998 0.996 

 
Abbreviations: PPV= Positive Predictive Value; NPV= Negative Predictive Value; MD= mean diameter; VOL= volume. a No confidence intervals provided in the original manuscripts. 

As published in (González Maldonado et al. 2020a), reprinted with permission.
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3.2.2 Calibration of absolute nodule malignancy risk 

Absolute malignancy probabilities predicted by the PanCan-1b model were the closest to the 

observed proportions of malignant nodules detected at the prevalence screening round within 

categories defined by nodule size (Table 11). More detailed analyses within deciles of the 

predicted probability scores (Supplementary Table 6), combined with Hosmer-Lemeshow (HL) 

tests for deviance between predicted and observed rates, showed acceptable calibration for 

PanCan-1b, PanCan-2b and PanCan-VOL, but not for PanCan-MD and UKLS (HL test 

p<0.001). Brier scores and Spiegelhalter-z tests suggested acceptable overall calibration for 

PanCan-1b, PanCan-2b and (borderline; p=0.058) for PanCan-VOL, as well as for UKLS, but 

not PanCan-MD (Supplementary Table 8).  

Malignancy probabilities estimated by models developed in clinical contexts (PKUPH, VA, 

Mayo) were all well above the observed rates (Table 11) thus showing poor calibration 

according to all tests performed.  

None of the models showed acceptable calibration on nodules first observed in the incidence 

screening rounds (Table 12, Supplementary Table 7). 

3.2.3 Nodule malignancy prediction models fitted to LUSI data 

Among the three logistic regression models fitted via GEEs to LUSI data, the model including 

mean diameter as a measure of nodule size produced the best results (QIC=541.6 vs. 549.9 

for largest diameter and 592.2 for nodule volume). With this model as starting point, backward 

feature elimination was performed resulting in a model including: age, years since quitting 

smoking, bronchitis, nodule mean diameter, nodule location, and spiculation (Supplementary 

Table 9). Sex, self-reported history of extra-thoracic cancer, smoking duration, emphysema 

(CT-based), FVC, nodule type and nodule count per scan showed no association with 

malignancy. The final model achieved an AUC=0.90 95% CI:[0.83, 0.93] (bootstrap AUC= 0.88 

95% CI [0.84, 0.92]) for nodules detected in the prevalence round, AUC=0.81 95% CI [0.71, 

0.90] (bootstrap AUC=0.81 95% CI:[0.73, 0.87]) for nodules first detected in the incidence 

round. 
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Table 11. Observed absolute risk for nodule malignancy versus predicted model estimates by nodule size (prevalence round) 

Nodule size is defined as largest diameter in millimeters. Models were applied to the low-dose computed tomography image where nodules where first seen. 

As published in (González Maldonado et al. 2020a), reprinted with permission. 

 

 

Table 12. Observed absolute risk for nodule malignancy versus predicted model estimates by nodule size (incidence rounds) 

Abbreviations: PanCanMD: PanCan model with mean diameter; PanCanVOL: PanCan model with volume; UKLS: United Kingdom Lung Cancer Screening trial; PKUPH: Peking 
University People´s Hospital; VA: Veterans Affairs 

As published in (González Maldonado et al. 2020a), reprinted with permission. 

Nodule size 
(mm) 

Total nodule 
count 

Malignant 
nodule count 

Observed 
malignancy 

rate 

Models fitted on screening data 
Models fitted on data from a 

clinical setting 

PanCan 
1b 

PanCan 
2b 

PanCan 
MD 

PanCan 
VOL 

UKLS Mayo PKUPH VA 

< 5  1,820 1 0.05% 0.2% 0.2% 0.02% 0.1% 1.5% 5.9% 24.5% 20.7% 

5 to < 8  868 6 0.69% 1.3% 0.9% 0.4% 0.7% 1.8% 7.4% 27.6% 23.6% 

8 to 10 110 7 6.36% 4.6% 3.5% 2.3% 3.1% 2.2% 10.6% 34.8% 29.7% 

> 10  85 18 21.18% 18.6% 14.7% 12.9% 11.9% 6.8% 29.1% 52.3% 48.9% 

Total 2,883 32 1.11% 1.2% 0.96% 0.6% 0.7% 1.8% 7.2% 26.6% 22.8% 

Nodule size 
(mm) 

Total nodule 
count 

Malignant 
nodule count 

Observed 
malignancy 

rate 

Models fitted on screening data 
Models fitted on data from a 

clinical setting 

PanCan 
1b 

PanCan 
2b 

PanCan 
MD 

PanCan 
VOL 

UKLS Mayo PKUPH VA 

< 5  253 1 0.4% 0.3% 0.3% 0.03% 0.16% 1.1% 6.2% 25.9% 23.1% 

5 to < 8  475 5 1.1% 1.4% 1.4% 0.5% 0.9% 1.7% 8.7% 35.4% 27.6% 

8 to 10 103 5 4.9% 5.5% 4.9% 2.9% 3.4% 2.3% 14.6% 48.5% 34.3% 

> 10  189 20 10.6% 21.7% 18.5% 15.9% 15.2% 10.3% 36.1% 68.6% 57.3% 

Total 1,020 31 3.0% 5.3% 4.6% 3.5% 3.7% 3.2% 13.7% 40.5% 32.6% 
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3.3 Estimates of overdiagnosis and related parameters 

Parts of this chapter have been published previously (González Maldonado et al. 2020b). 

Data from all 4,052 participants of the LUSI trial were used for estimating the proportion of 

overdiagnosed lung cancer cases. All participants were long-term smokers and 2,622 of them 

were males (64.7%). The median age was 56.9 range:[50.3 - 71.9] years at first screening 

participation. Follow-up for lung cancer diagnosis was defined as the time until the first of the 

following events: lung cancer diagnosis, death, date of loss to follow-up or April 30th 2019. The 

median follow-up time for lung cancer diagnosis as endpoint was 9.77 (range:[0 – 11.5], 

IQR:[8.8 – 10.4], 10th percentile = 8.2) years post-randomization and 5.73 (range:[0 -11.4), 

IQR:[4.8 – 6.3]; 10th percentile = 4.0) years since last screening participation (Supplementary 

Table 10). Until the end of the follow-up period, there were 90 lung cancer cases in the LDCT 

arm, of which 63 were detected by LDCT screening, and 74 cases in the control arm (Figure 

20). As of July 2nd 2019 (set as the end of the follow-up period) the median follow-up time for 

mortality as endpoint was 9.96 years IQR:[9, 10.6] (Supplementary Table 10). 

3.3.1 Excess incidence 

Considering all histologic subtypes, the excess cumulative incidence until April 30th 2019 was 

25.4% 95% CI:-[11.3%, 64.3%], that is, 16 cases expressed as a proportion (PS) of screen-

detected cases, and 17.8% 95% CI:[-7.4%, 44.7%] expressed as a proportion (PA) of all cases 

in the LDCT arm (Table 13, Supplementary Figure 6). 

A total of 37 and 59 adenocarcinomas were diagnosed in the control and LDCT arms 

respectively (Supplementary Table 11). Of those in the LDCT arm, 44 were screen-detected. 

These values lead to estimates of PS=50.0% 95% CI:[14.0%, 88.4%] and PA=37.3% 95% 

CI:[11.5%, 65.4%]. To a large extent, the excess incidence of adenocarcinomas in the LDCT 

arm was influenced by tumors classified as bronchiolo-alveolar carcinomas (BAC). There were 

10 BAC cases in the LDCT arm, 8 of which were screen-detected, and 1 in the control arm (PS 

= 112.5% 95% CI:[68.2%, 113.1%] and PA = 90% 95% CI:[54.3%–164.4%]). 

After excluding BAC tumors, estimates of excess incidence were PS=36.1% 95% CI:[-8.4%, 

84.8%] and PA=26.5% 95% CI:[-5.3, 61.8]. Regarding tumors of other (non-adenocarcinoma) 

histology, there were 31 cases in the LDCT (19 screen-detected) and 37 in the control arm, 

corresponding to estimates of PS=-31.6% 95% CI:[-130.8%, 83.0%] and PA=-19.4% 95% CI:[-

76.8%, 45.6%] (Table 13, Supplementary Table 12).  
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Figure 20. Cumulative lung cancer incidence by years from randomization until diagnosis, study arm and tumor histology 

Abbreviations: LDCT: low-dose computed tomography, Adeno: adenocarcinoma, BAC: bronchiolo-alveolar carcinoma. After a median follow-up time of 9.77 years post-
randomization there were 90 lung cancer cases in the low-dose computed tomography (LDCT) arm, of which 63 were detected by LDCT screening, whereas a total of 74 cases 
were observed in the control arm. A large proportion of lung cancer cases were adenocarcinomas, with 59 cases (10 of them bronchiolo-alveolar carcinomas (BAC)) observed in 
the LDCT arm of which 44 were screen-detected, and 37 (1 BAC) in the control arm.  

As published in (González Maldonado et al. 2020b), reprinted with permission. 
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Table 13. Lung cancer cases by study arm and tumor histology, and excess incidence rates 

  

LDCT Control 
Estimated overdiagnosis 

ratesb (95% CI) 

Tumor histology 
Screen 

detected 
Non-screen 
detecteda 

Subtotal Subtotal PS PA 

All 63 27 90 74 
25.4 

(-11.3, 64.3) 
17.8 

(-7.4, 44.7) 

Adenocarcinoma (%) 44 15 59 37 
50.0 

(14.0, 88.4) 
37.3 

(11.5, 65.4) 

BAC (%) 8 2 10 1 
112.5 

(68.2, 113.1) 
90.0 

(54.3, 164.4) 

Adenocarcinoma non-
BAC (%) 

36 13 49 36 
36.1 

(-8.4, 84.8) 
26.5 

(-5.3, 61.8) 

Other (non- 
adenocarcinoma) (%) 

19 12 31 37 
-31.6 

(-130.8, 83.0) 
-19.4 

(-76.8, 45.6) 

Abbreviations: LDCT: low-dose computed tomography; BAC: bronchiolo-alveolar carcinoma; PS: proportion of 
screen-detected lung cancers; PA: proportion of all lung cancers in the LDCT arm 
a non-screen detected cases are all lung cancer cases diagnosed either between screening rounds or in the follow-
up years after the last screening round. 

As published in (González Maldonado et al. 2020b), reprinted with permission. 

3.3.2 Model-based estimates of mean pre-clinical sojourn time and LDCT 

detection sensitivity 

Based on the convolution model for clinical incidence described in section 2.3.3.2, the 

maximum likelihood estimate (MLE) of the mean pre-clinical sojourn time (MPST) was 5.38 

years 95% CI:[4.76, 5.88] and the MLE of LDCT detection sensitivity was 81.6% 95% 

CI:[74.4%, 88.8%], all histologic subtypes combined. The histological subtype-specific MLEs 

for MPST and detection sensitivity were, respectively, 7.69 years 95% CI:[6.49, 8.77] and 

69.6% 95% CI:[60.8%, 79.2%] for all adenocarcinomas, 7.69 years 95% CI:[6.49, 8.77] and 

62.4% 95% CI:[53.6%, 72.8%] for adenocarcinomas excluding BAC, 8.77 years 95% CI:[6.49, 

12.20] and 100% 95% CI:[92.8%, 100%] for BAC, and 2.89 years 95% CI:[2.49, 3.36] and 

100% 95% CI:[94.4%, 100%] for all non-adenocarcinomas of the lung (Table 14). The model 

fit was good, with a 𝜒 
2-p=0.55 (Supplementary Table 13). 

Additional models were fitted on subgroups defined by age at first screening (50-59 and 60+ 

years) in order to account for the heterogeneity in age at entry to the LUSI trial. This resulted 

in estimates of 5.15 years 95% CI:[4.27, 5.88] and 76% sensitivity 95% CI:[66.4%, 86.4%] in 

the 50–59 years group, and 5.38 years 95% CI:[4.42, 6.49], 93.6% sensitivity 95% CI:[80.8%, 

100%] in the 60+ years group. 
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Table 14. Model-based estimates of mean pre-clinical sojourn time and LDCT detection sensitivity 
overall and by tumor histologic subtype 

 

Mean Pre-clinical Sojourn Time 
(years, 95% CI) 

Sensitivity 
(%, 95% CI) 

Overall 
5.38 

(4.76, 5.88) 
81.6 

(74.4, 88.8) 

Adenocarcinoma 
7.69 

(6.49, 8.77) 
69.6 

(60.8, 79.2) 

BAC 
8.77 

(6.49, 12.20) 
100 

(92.8, 100) 

Adenocarcinoma non-BAC 
7.69 

(6.49, 8.77) 
62.4 

(53.6, 72.8) 

Other (non- adenocarcinoma) 
2.89 

(2.49, 3.36) 
100 

(94.4, 100) 

Abbreviations: LDCT: low-dose computed tomography; BAC: bronchiolo-alveolar carcinoma. 

As published in (González Maldonado et al. 2020b), reprinted with permission. 
  

3.3.3 Estimated proportion of tumors by lead time 

Based on the estimates of MPST, it was further estimated that 47.5% 95% CI:[43.2%, 50.7%] 

of screen-detected tumors had a lead time ≥4 years, 32.8% 95% CI:[28.4%, 36.1%] a lead 

time ≥6 years, and 22.6% 95% CI:[18.6%, 25.7%] a lead time ≥8 years (Table 15), meaning 

that about 48%, 33%, and 23% of screen-detected tumors would have remained in a pre-

clinical phase over respectively, 4, 6, and 8 further years in the absence of screening. For 

screening participants dying within these time periods (i.e., with remaining lifetimes shorter 

than the corresponding lead times), these proportions are equivalent to their probability of lung 

cancer overdiagnosis. 

Table 15. Estimated proportions of screen-detected tumors by lead time (1-Pclin(t)) 

 1- Pclin (95% CI) 

Histologic subtype 4y 6y 8y 10y 12y 

All tumors 
47.5% 

(43.2%, 
50.7%) 

32.8% 
(28.4%, 
36.1%) 

22.6% 
(18.6%, 
25.7%) 

15,6% 
(12,2%, 
18,3%) 

10,7% (8,0%, 
13,0%) 

Adenocarcinoma 
59.5% 

(54.0%, 
63.4%) 

45.8% 
(39.7%, 
50.5%) 

35.3% 
(29.2%, 
40.2%) 

27.3% 
(21.4%, 
32.0%) 

21.0% 
(15.8% 
25.5%) 

BAC 
63.4% 

(54.0%, 
72.0%) 

50.5% 
(39.7%, 
61.1%) 

40.2% 
(29.2%, 
51.9%) 

32.0% 
(21.4%, 
44.0%) 

25.5% 
(15.8%, 
37.4%) 

Adenocarcinoma, 
non-BAC 

59.5% 
(54.0%, 
63.4%) 

45.8% 
(39.7%, 
50.5%) 

35.3% 
(29.2%, 
40.2%) 

27.3% 
(21.4%, 
32.0%) 

21.0% 
(15.8%, 
25.5%) 

Other  
(non-
adenocarcinoma) 

25.1% 
(20.0%, 
30.4%) 

12.5% (9.0%, 
16.7%) 

6.3% 
(4.0%, 9.2%) 

3.1% 
(1.8%, 5.1%) 

1.6% 
(0.8%, 2.8%) 

Abbreviations: BAC: bronchiolo-alveolar carcinoma 

As published in (González Maldonado et al. 2020b), reprinted with permission. 
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3.4 Evaluation of the TAAb panel EarlyCDT®-Lung 

Parts of this chapter have been published previously (González Maldonado et al. 2021b). 

At time of blood collection, the 46 participants in the lung cancer group (32 of them males) 

were older (median: 63.0 years, range:[51.9, 74.5]) than those in the BC (56.8 95% CI:[50.9, 

69.7], p<0.001) and those in the SNC (55.8 95% CI:[50.6, 70.0], p<0.001) (Table 16). 

Lung cancer was detected for 19 (41.3%) participants at the prevalence screening round. For 

one of the participants, lung cancer was detected at the second screening round even in the 

absence of pulmonary nodules, due to the identification of atelectasis in the scan images. All 

tumors detected in the first round were deemed suspicious based on their size. A total of 21 

(80.8%) of the remaining 26 detections in the incidence rounds were done in nodules already 

observed in previous rounds; with 7 of these immediate recall decisions based on nodule 

volume doubling time (VDT). 

3.4.1 Lung cancer detection sensitivity 

The EarlyCDT®-Lung test produced “High Level” (H) test results for 6 out of the 46 participants 

with LDCT-detected lung cancer and no “Moderate Level” (M) test results (Table 16). This 

resulted in an estimated detection sensitivity of 13.0% 95% CI:[4.9%, 26.3%].  

Among participants with nodules <10 mm in diameter, the test produced H results for 1 out of 

11 LDCT-detected lung cancer patients, for an estimated sensitivity of 9.1% 95% CI:[0.23%, 

41.3%]. For participants with nodules ≥10mm, the estimated sensitivity was 14.7% 95% 

CI:[4.9%, 31.1%].  

EarlyCDT®-Lung test results were positive for 5 of 6 tumors in stages IB or higher (sensitivity 

of 22.7%), and for 1 out of 24 stage IA tumors (sensitivity of 4.2%). An H test result was 

associated with a significant shift in tumor stage distribution (p=0.03) towards higher stages 

(83.3% in stages IB and above), compared to patients with negative test results (NS) who were 

predominantly (57.5%) stage IA (Table 17). No significant association of test results with 

malignant nodule size or histology was observed (Table 17). 

3.4.2 Specificity and positive likelihood ratio 

Considering both H and M results as positive, the false-positive detection rates were 11.1% in 

the BC group (specificity of 88.9% 95% CI:[80.5% - 94.5%]) and 8.9% (specificity of 91.1% 

95% CI:[83.2%, 96.1%]) in the SNC group. Based on these estimates, the LR+ was 1.17 95% 

CI:[0.46, 3.03] in the BC group and at 1.47 95% CI:[0.54, 3.98] in the SNC group.  
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If only H results were considered positive, the false positive detection rate was 3.3% (specificity 

of 96.7% 95% CI:[90.6%, 99.3%]) in the BC group and 4.4% (specificity of 95.6% [89.0%, 

98.8%]) in the SNC group. yielding estimates of LR+ of 3.91 95% CI:[1.03, 14.94] and 2.93 

95% CI:[0.87, 9.88] respectively. 

3.4.3 Association between positive EarlyCDT®-Lung test results and the 

presence of lung tumors 

Logistic regression provided insufficient evidence to claim an increased risk of malignancy 

associated with positive test results (H and M) (Odds Ratio (OR): 1.20 95% CI:[0.41, 3.54], 

p=0.74 in the BC group, OR: 1.54 95% CI:[0.5, 4.73], p=0.45 in the SNC group). Considering 

only H results as positive, the same association was moderate, but significant in the BC group 

(OR: 4.35 95% CI:[1.04, 18.28], p=0.04), whereas not enough evidence was found in the SNC 

group (OR: 3.22 95% CI:[0.86, 12.07], p=0.08). 

Analyses comparing data of lung cancer patients with nodules on their CT-Scans (N=45) 

(Table 17) to those of controls in the SNC group, showed no evidence of association between 

test results and malignancy, with ORs of 1.58 95% CI:[0.51, 4.86] and 3.31 95% CI:[0.88, 

12.39] depending on the definition of positive test result (Supplementary Table 15). Similarly, 

there was not enough evidence of association when stratifying by nodule size (Supplementary 

Table 15). 
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Table 16. Subject characteristics and LDCT result by EarlyCDT®-Lung results for lung cancer cases and cancer-free controls. 

Lung Cancer Status Lung cancer No lung cancer (BC) p No lung cancer (SNC) p 

N   46 90  90  

Subject 
characteristics  

Gender  
(Male %) 

32 (69.6) 56 (62.2) 0.51 64 (71.1) 1 

 Age† (years, 
median [range]) 

63.0 
[51.9, 74.5] 

56.8 
[50.9, 69.7] 

0.001 
55.8 

[50.6, 70.0] 
<0.001 

Smoking status‡ 

(Current/ Former, 
%)  

24/22  
(52.2/47.8) 

54/36  
(60.0/40.0) 

0.49 
54/36  

(60.0/40) 
0.49 

EarlyCDT®-Lung Test Result HIGH NS p HIGH MOD NS p HIGH MOD NS p 

N   6 40  3 7 80  4 4 82   

 No nodules 0 0 

1 

3 (100.0) 1 (14.3) 48 (60.0) 

0.15 

0 0 0 

0.11 
LDCT result (%) 

Non-suspicious 0 0 0  4 (57.1) 22 (27.5) 0 0 0 

immediate recall 6 (100) 
36 § 

(90.0) 
0 0 2 (2.5) 0 1 (25.0) 4 (4.9) 

3-month recall 0 0 0 0 1 (1.2) 2 (50.0) 0 10 (12.2) 

6-month recall 0 4 (10.0) 0 2 (28.6) 7 (8.8) 2 (50.0) 3 (75.0) 68 (82.9) 

 
Abbreviations: BC: baseline control group; SNC: suspicious nodules control group; MOD: moderate level test result; NS: non-significant level test result 
† At blood draw 
‡ At randomization. Smokers: at least 25 years smoking of at least 15 cigarettes per day, or at least 30 years smoking of at least 10 cigarettes per day, including former smokers. 
Former smokers are those who had stopped smoking not more than 10 years before invitation to screening 
§ For one subject, the CT scan evaluation at round 2 was deemed suspicious (with immediate recall) even in the absence of pulmonary nodules, due to the identification of atelectasis 
(collapsed lung) in the scan images.  

As published in (González Maldonado et al. 2021b), reprinted with permission. 
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Table 17. Tumor characteristics by EarlyCDT®-Lung result in the lung cancer group. 

EarlyCDT®-Lung Test Result HIGH NS P Total n (col %) 

Detection / 
Diagnosis 

Round of detection (%) 
1st (Prevalence) 3 (50.0) 16 (40.0) 

0.67 
19 (41.3) 

2nd – 5th (Incidence) 3 (50.0) 24 (60.0) 27 (58.7) 

Time detection to diagnosis 
(months, median [range]) 

 2.28 [1.4, 7.8] 3.12 [0.5, 49.8] 0.35 3.00 [0.48, 49.8] 

T
u

m
o

r 
c

h
a

ra
c

te
ri

s
ti

c
s

 

Histology (%) 

Adenocarcinoma 5 (83.3) 27 (67.5) 

1 

32 (69.6) 

Carcinoid 0 2 (5.0) 2 (4.3) 

Large cell 0 1 (2.5) 1 (2.2) 

Small cell 0 3 (7.5) 3 (6.5) 

Squamous cell 1 (16.7) 7 (17.5) 8 (17.4) 

Stage (%) 

IA 1 (16.7) 23 (57.5) 

0.03 

24 (52.2) 

IB 3 (50.0) 5 (12.5) 8 (17.4) 

IIA 1 (16.7) 2 (5.0) 3 (6.5) 

IIB 1 (16.7) 1 (2.5) 2 (4.3) 

IIIA 0 6 (15.0) 6 (13.0) 

IIIB 0 0 0 

IV 0 3 (7.5) 3 (6.5) 

Largest diameter (mm, median 
[range]) 

 15.65 [8.7, 20.9] 12.00 [5.5, 54.1] 0.31 12.00 [5.5, 54.1] 

Largest diameter (mm, %) 

No nodules§ 0 1 (2.5)  1 (2.2) 

5 to <8  0 4 (10.0) 

0.43 

4 (8.7) 

8 to <10 1 (16.7) 6 (15.0) 7 (15.2) 

10 to <20 3 (50.0) 25 (62.5) 28 (60.9) 

>20 2 (33.3) 4 (10.0) 6 (13.0) 

Abbreviations: NS: non-significant. § For one subject, the CT scan evaluation at round 2 was deemed suspicious (with immediate recall) even in the absence of pulmonary 

nodules, due to the identification of atelectasis (collapsed lung) in the scan images. 

As published in (González Maldonado et al. 2021b), reprinted with permission.
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4 DISCUSSION 

The overarching goal of this thesis was to study four relevant aspects for the optimization of 

LDCT-based lung cancer screening programs, namely: the personalized risk-based 

assignment of screening intervals, the use of statistical models for improving malignancy 

prediction of screen-detected nodules, the estimation of overdiagnosis risk and its relationship 

to upper-age limits for screening participation, and the use of biomarkers as complementary 

tools for screening. 

More concretely, data and blood samples collected as part of the German LUSI trial were used 

in order to: 

1. Evaluate the discrimination and absolute risk calibration of two models (LCRAT+CT and 

Polynomial) that predict short-term lung cancer risk based on subject characteristics and 

LDCT imaging findings, and which have been proposed as tools for the identification of 

candidates for biennial vs annual screening. 

2. Evaluate the discrimination and absolute risk calibration of models fitted to data from 

screening (PanCan and UKLS models) or clinical contexts (Mayo, VA, PKUPH), that 

predict the malignancy of screen-detected pulmonary nodules based on their radiological 

features and subject characteristics. 

3. Estimate the extent of overdiagnosis in the LUSI trial via the observed excess incidence, 

and obtain estimates of mean pre-clinical sojourn time (MPST) of tumors and LDCT 

detection sensitivity, via mathematical modeling. Additionally, to study the effect of tumor 

MPST and remaining life expectancy (and therefore age) of screening participants on 

overdiagnosis risk. 

4. Evaluate the TAAb panel measured by the EarlyCDT®-Lung test, in terms of its detection 

sensitivity and specificity on blood samples from screening participants with tumors 

observed in their LDCT screening images. 

The main results of these sub-studies can be summarized as follows: 

1. The LCRAT+CT and Polynomial models showed a good ability to discriminate participants 

diagnosed with lung cancer at the time of their next screening appointment or in the year 

after (AUC=0.73 and 0.75 respectively). The discrimination performance of these models 

was superior to that of the Patz criterion (based solely on nodule size; AUC=0.56) and the 

LCRAT model (based on subject characteristics; AUC= 0.68). Assignment of participants 

with the lowest risks (as predicted by either model) to biennial screening, would have 

caused few delayed diagnoses (e.g., LCRAT+CT: 10% delays; Polynomial: 0 delays, risk 
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< 5th decile). Absolute risk estimates from the two models were, on average, lower than the 

observed rates, indicating poor calibration. 

2. The four selected PanCan models showed excellent discrimination of malignant nodules 

identified in the first (prevalence) screening round (AUC≥0.93 for all models). On the same 

data, the UKLS model showed poor discrimination (AUC=0.58), and the Mayo, VA and 

PKUPH models only moderate discrimination (AUC 0.84-0.89). The calibration of absolute 

malignancy probabilities for nodules detected on the prevalence screen was only 

acceptable for the PanCan-1b, PanCan-2b and Pan-Can-VOL models. None of the models 

showed acceptable calibration when applied to nodules first detected in later screening 

rounds.  

3. The excess incidence observed in the LUSI trial, after 5.73 years post-screening follow-up, 

represented 24.5% of all screen-detected lung cancer cases. The highest excess incidence 

was observed for adenocarcinomas (50.0%) and, in particular, for bronchiolo-alveolar 

carcinomas (BAC) (112.5%). Overall, model-based estimates of mean pre-clinical sojourn 

time (MPST) and detection sensitivity of LDCT were 5.38 years and 81.6% respectively. 

These estimates also varied across histologic subtypes, with the longest MPST obtained 

for BAC tumors (8.77 years), compared to non-adenocarcinomas (2.89 years). Based on 

the overall MPST, it was further estimated that 47.5%, 32.8% and 22.6% of all screen 

detected tumors had lead times longer or equal to 4, 6 and 8 years respectively; proportions 

equivalent to the risk of overdiagnosis for patients with remaining life expectancies shorter 

than the respective lead times. 

4. Positive EarlyCDT®-Lung test results were significantly associated with a shift towards 

advanced tumor stages (83.3% positives in stages ≥ IB; 57.5% negatives in stage IA; 

p=0.03). Specificity ranged from 88.9% in baseline blood samples to 91.1% in samples 

from participants with suspicious imaging findings. However, the TAAb panel showed an 

overall detection sensitivity of only 13.0% and of 9.1% among participants with small 

nodules (<10 mm in diameter) detected via LDCT. 

A discussion on each of the sub-studies that comprise this thesis is presented in the following 

sections.  
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4.1 Validation of prediction models for the assignment of screening 

intervals  

Parts of this chapter have been published previously (González Maldonado et al. 2021a). 

4.1.1 Discrimination of participants with short-term lung cancer diagnoses 

The good discrimination shown by the LCRAT and Polynomial models provides confirmatory 

evidence in favor of its application for the assignment of participants to biennial vs annual 

screening based on lung cancer risk predicted using the findings of the first screening 

examination.  

On secondary analyses, the Polynomial model, though developed for its application on data 

from the prevalence screening round, also achieved good discrimination when evaluated on 

data from later (incidence) screening rounds (AUC=0.74, all incidence rounds combined and 

AUC=0.72 on individuals without any nodules ≥4mm, all rounds combined). Its good 

transferability suggests that the model could also support participant allocation to biennial 

screening further into the screening process. 

Both models showed better discrimination than that of the Patz criterion and the LCRAT model. 

The minor difference in AUC observed between the LCRAT and the LCRAT+CT, suggests that 

a good amount of discrimination performance can be attributed to predictors related to risk 

factors, such as smoking. Although this difference in discrimination did not reach statistical 

significance, and the LCRAT+CT and Polynomial models were only compared to the criterion 

by Patz et al. and not to other models or criteria, these findings suggest that features from 

LDCT images may further improve model performance. Similar observations were made by 

Tammemägi et al. (Tammemägi et al. 2019b), who reported improved discrimination from a 

model adding screening results (PLCOm2012results) to the already well-established 

PLCOm2012 model for lung cancer risk prediction. Our observations also align with those of 

Schreuder et al. who reported superior discrimination from his Polynomial model compared to 

the criterion by Patz (AUC=0.79 vs 0.67) and to other models based solely on subject 

characteristics (Schreuder et al. 2018). 

4.1.2 Risk-based assignment to biennial vs annual screening and its effects on 

delayed diagnosis 

According to Lorenz curves based on predictions from the Polynomial and LCRAT+CT models 

(Figure 16, Figure 17), in populations similar to that of the LUSI trial, individuals who would 

have their diagnosis delayed as a result of biennial screening are likely to be those with the 

highest lung cancer risks, whereas a low proportion of delayed diagnosis is expected among 
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individuals with the lowest predicted risks. As an example, only 10% of all delayed diagnoses 

would have occurred among the 50% of participants with lowest risks estimated by the 

LCRAT+CT model (Figure 16). These results are in line with those reported by Robbins et al. 

(Robbins et al. 2019) who observed 15.2% delayed diagnoses among 40.9% of individuals 

with lowest risks predicted by the LCRAT+CT model. Similarly, 20% of all delayed diagnoses 

would have occurred among 60% of participants with the lowest risks, and 80% of delayed 

diagnoses among the remaining 40% with higher risks as estimated by the Polynomial model 

(Figure 17). 

In contrast, if the second annual screening would have been skipped by participants selected 

according to the Patz criterion, about 54.5% of them would have had their lung cancer 

diagnoses delayed. Thus, assignment to biennial screening based solely on nodule size, 

applied to data from the LUSI trial, did not reach the levels of discrimination required to 

recommend alternative screening schedules. Similarly, Lorenz curves based on risk estimates 

from the LCRAT model showed higher numbers of delayed lung cancer detections compared 

to LCRAT+CT, at equal proportions of annual screenings skipped (Figure 16). It is, however, 

unclear whether the differences in delayed detections according to LCRAT vs LCRAT+CT are 

statistically significant, given the small sample size used for these analyses.  

A limitation of this sub-study is its retrospective nature, which prevented an estimation of the 

actual harms or benefits of skipping a screening appointment (e.g., false-positive test results 

that might be permanently avoided or just postponed). 

Taken together, these findings suggest that risk models that combine subject characteristics 

with LDCT imaging findings are useful tools for the identification of participants for whom 

biennial screening may be economically more efficient at only minor loss of life years gained 

(LYG), and potentially may also improve the trade-off between expected screening benefit 

(LYG) and the harms of overdiagnosis and/or false positive test results. In summary, models 

with similar performance to the ones validated in these analyses could identify those for whom 

biennial screening could provide a higher net clinical benefit and/or higher cost-efficiency 

compared to more frequent (annual) screening.  

4.1.3 Calibration of absolute lung cancer risk 

Absolute lung cancer risk estimates from the LCRAT+CT and Polynomial models were, on 

average, lower than the observed rates of lung cancer, indicating that these prediction models 

might need to be re-calibrated for their use on populations differing from that of the NLST, in 

which they were developed. 

Additionally, predicted risks differed between the two models, suggesting the need for model-

specific risk thresholds on the basis of which participants could be assigned to biennial 



Discussion 

79 

 

screening. In fact, when applied on data from eligible participants of the LUSI trial, 

approximately 10% delayed diagnoses were calculated when using a 0.20% lung cancer risk 

threshold for the Polynomial model, while the same proportion was reached at a 0.13% 

threshold for LCRAT+CT. However, it is important to mention that these two models differ on 

the risks they intend to estimate, the predictors they include, and the sub-populations of 

screening participants on which their application is intended. Due to these intrinsic differences, 

absolute risk estimates from the two models are not directly comparable. 

Similarly, absolute risk thresholds calculated in data from the NLST, as reported by Robbins 

et al. (Robbins et al. 2019), differed from those calculated on data from the LUSI trial. This 

disagreement can be explained by differences in the distribution of lung cancer risks in the two 

populations. This in turn can be attributed in part to the less stringent eligibility criteria of the 

LUSI trial (Table 1) which included a larger proportion of participants at lower risks compared 

to the NLST. 

A more refined assessment of absolute risk calibration was not possible due to the small 

sample size and low case numbers in the data from the LUSI trial. Additionally, a limitation of 

this calibration analysis was the missing data for a subset of predictors such as race and 

number of parents with lung cancer, which may have caused bias in the estimated risks. 

4.2 Validation of nodule malignancy prediction models 

Parts of this chapter have been published previously (González Maldonado et al. 2020a).  

4.2.1 Discrimination of malignant nodules 

The four selected PanCan models (PanCan-1b, PanCan-2b, PanCan-MD and PanCan-VOL) 

showed good performance for the discrimination of malignant pulmonary nodules observed at 

the first (prevalence) screening round. Compared to the initial versions, the more recent 

PanCan-VOL and PanCan-MD models showed good but no superior discrimination. By 

contrast, applied to data from the same screening round, the UKLS model showed poor 

discrimination. 

The lack of improvement in discrimination shown by PanCan-VOL and PanCan-MD compared 

to the four original variants of the PanCan models confirms the results of evaluations on data 

from the PanCan study (Tammemägi et al. 2019a), but disagree with evaluations made on 

data from the NELSON trial (Horeweg et al. 2014b). These differences might be attributed to 

the nodule size estimation methods applied in each trial. In the LUSI trial, diameters were 

calculated via software, based on a 3-dimensional estimation, which possibly led to higher 

accuracy compared to manual measurements taken in other trials (Han et al. 2018). 
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In data from the LUSI trial, PanCan-1b showed very similar estimates of sensitivity, specificity 

and PPV at selected (2%, 5% or 10%) probability thresholds compared to those from the data 

in which the PanCan models were originally developed (McWilliams et al. 2013). 

Compared to the values reported by the study in which they were first published (Tammemägi 

et al. 2019a), PanCan-VOL and PanCan-MD showed higher sensitivity and lower specificity, 

but similar PPV. In contrast, when validated on data from the NLST (White et al. 2017), the 

PanCan-2b model showed higher sensitivity, lower specificity and similar PPV compared to 

the estimates obtained in this external validation. 

The selected models developed on data from clinical contexts (VA, Mayo, PKUPH) achieved 

only moderate discrimination (AUC 0.84-0.89) (Section 0). The performance and ranking of 

the PanCan, Mayo, VA and PKUPH models, in terms of discrimination, are in line with the 

results from validation studies on clinical data in context of incidentally or symptomatically 

detected pulmonary nodules, which have shown AUCs above 0.80 for these models (Al-Ameri 

et al. 2015; Chung et al. 2018; Deppen et al. 2014; Isbell et al. 2011; Li et al. 2011; Massion 

et al. 2017; Schultz et al. 2008; Xiao et al. 2013) or in context of LDCT screening (Marcus et 

al. 2019; Marshall et al. 2017; Nair et al. 2018; White et al. 2017; Winkler Wille et al. 2015; 

Zhao et al. 2016). 

Finally, both the PanCan and UKLS models showed decreased discrimination performance 

when applied to nodules first observed in later (incidence) rounds.  

Overall, these results suggest that, while the PanCan models can be recommended as tools 

for the identification of malignant nodules identified at the first screening round, none of the 

models here evaluated can be recommended for the identification of malignant nodules 

beyond the prevalence round. 

4.2.2 Calibration of absolute nodule malignancy risks 

Applied to data from the first (prevalence) screen of the LUSI trial, PanCan-1b, PanCan-2b, 

and PanCan-VOL but neither PanCan-MD nor UKLS, showed acceptable calibration of 

absolute malignancy probabilities. 

The acceptable calibration observed from the PanCan-1b, PanCan-2b and PanCan-VOL, 

applied on prevalence screen data, is similar to that seen in evaluations carried out on data 

from a chemoprevention trial by the British Columbia Cancer Agency (BCCA)(McWilliams et 

al. 2013). The same study could only confirm such results for the PanCan-1b and PanCan-2b 

when applying them to NLST data (Nair et al. 2018; White et al. 2017). Independently, the 

latter two PanCan variants (1b, 2b) showed acceptable calibration in data from an Australian 

LDCT pilot screening trial (Marshall et al. 2017; Zhao et al. 2016), while an evaluation of data 
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from the NLST reported unsatisfactory calibration for the PanCan-MD and PanCan-VOL 

models (Tammemägi et al. 2019a). 

None of the models showed acceptable calibration when applied to nodules first observed in 

any of the incidence rounds of the LUSI trial. These results make sense since, given that the 

PanCan and UKLS models were trained on data from prevalence screening rounds, the 

calibration of their estimated risks when applied on data from later rounds is not guaranteed 

(Tammemägi et al. 2019a). In the NLST, for example, the malignancy risk of newly seen 

nodules (≥4-6 or ≥6-8 mm) was higher than that of nodules found at the prevalence screening 

(Pinsky et al. 2017).  

The VA, Mayo and PKUPH models (all developed in clinical settings) showed poor calibration 

when evaluated on data from the LUSI trial, which resembles the results of validation studies 

of the VA and Mayo models carried out using data from the NLST (Nair et al. 2018). 

Thus, given the results previously discussed, only the PanCan models can be recommended 

for the prediction of absolute malignancy risk for nodules observed on the first screening round. 

However, none of the models here evaluated should be considered for malignancy risk 

estimation of nodules detected on later screening rounds. 

4.2.3 Predictors of nodule malignancy in data from the LUSI and other trials 

In multivariable models fitted to data from the LUSI trial, sex showed no predictive value and, 

similarly, age showed only borderline predictive ability. In a parsimonious model obtained via 

feature selection, and in the presence of LDCT features, age, bronchitis (despite their 

borderline significance), and time since cessation were kept as predictors. 

Depending on whether other studies used training data from clinical settings or screening trials, 

predictive variables varied across models. Surprisingly, age, a well-known risk factor for lung 

cancer, was not included in most of the PanCan model variants (PanCan-1b, PanCan-MD, 

PanCan-VOL). However, age was a predictor in the UKLS model and, as mentioned in the 

previous paragraph, was also retained in the multivariable model trained in data from the LUSI 

trial. A similarity between these models is that they included indicators of smoking behavior. 

These findings resemble those of the analyses leading to the UKLS model (Marcus et al. 2019) 

showing that, in multivariable models including age and LDCT imaging features, additional 

smoking-related information (e.g., smoking duration, time since cessation) may improve 

malignancy prediction, even among screening eligible subjects.  

The association between sex and malignancy risk is also heterogeneous across trials. Analysis 

on data from the PanCan and UKLS trials (those leading to the development of the PanCan 

and UKLS models) reported higher malignancy rates among females, while, on the contrary, 

lower malignancy risks were observed in data from female participants of the DLCST, 
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compared to males. This heterogeneity could be attributed to differences in lung cancer 

incidence between females and males across populations and age groups, which in turn might 

be the effect of sex-related differences in smoking habits and shifts in smoking trends over 

time (O'Keeffe et al. 2018). Another important factor to consider when incorporating sex in 

prediction models for tumor malignancy is the difference in distribution of histologic subtypes 

between males and females. Lung tumors found in females are more often adenocarcinomas, 

i.e., slow-growing tumors with longer lead-times, which are therefore more likely to be detected 

by means of screening at early developmental stages (Becker et al. 2019; International 

Association for the Study of Lung Cancer 2019; Pinsky et al. 2013).  

Furthermore, the inclusion of predictors difficult to standardize across populations (definition 

and diagnosis of lung diseases, nodule type categories), may hinder model transferability. In 

fact, a reduced UKLS model (Table 5) ignoring variables with definitions markedly differing 

from those in LUSI, showed a better performance (e.g., AUC=0.79 95% CI:[0.68, 0.89] in the 

prevalence round) compared to the original version. 

In summary, appropriate variable selection is crucial for the comparability, transferability and 

interpretability of prediction models. Thus, care should be taken when fitting models to data 

from different contexts and populations.  

Due to the small sample size of the LUSI trial and the low numbers of malignant nodules 

observed, the calibration (and similarly, the discrimination) of the selected models for nodule 

malignancy prediction could not be evaluated within strata defined by histologic subtypes and 

nodule sizes. Another limitation was related to missing variables or variables with incomplete 

information (i.e., family history of lung or extra-thoracic cancers), which might have led to 

biased risk estimates from the PanCan-2b, UKLS and VA models. 

4.3 Estimates of the extent of overdiagnosis and related parameters 

Parts of this chapter have been published previously (González Maldonado et al. 2020b). 

4.3.1 Excess incidence in the LUSI and other randomized screening trials  

After a median post-screening follow-up of 5.73 years (range:[0, 11.4], IQR:[4.8, 6.3]), there 

was 24.5% (95% CI:[-11.3%, 64.3%]) excess incidence of screen-detected lung cancer cases. 

The excess incidence observed in data from the LUSI trial was slightly higher than the values 

observed in the NELSON trial (19.7% 95% CI:[–5.2%, 41.6%])(de Koning et al. 2020) and in 

the NLST trial (18.5% 95% CI:[5.4%, 30.6%]) (Patz et al. 2014), both at an average follow-up 

of about 4.5 years after last screening. In contrast, after a 5-year follow-up period post-

screening, the Italian ITALUNG study (Paci et al. 2017) reported no excess incidence, but 



Discussion 

83 

 

instead four fewer cases in the LDCT arm compared to the control arm; whereas also at 5 

years after screening cessation, the DLCST (Heleno et al. 2018) reported an excess of 67.2% 

95% CI:[37.1%, 95.4%] of screen-detected cases. Heterogeneity in excess incidence 

estimates across trials may be related to various factors. Among these are: differences in the 

duration of post-screening follow-up, in the rates of death from competing causes, and 

differences in screening frequency protocols (1, 2 and 2.5 years in the NELSON trial, versus 

annual screening in the other studies) (Supplementary Table 16). 

The excess incidence observed in screening trials is mostly an effect of longer lead times as a 

result of earlier tumor detection, and does not necessarily reflect overdiagnosis. Overdiagnosis 

exclusively results when the lead time exceeds the remaining lifetime of participants with 

screen-detected tumors. As follow-up time in randomized stop-screening trials increases, the 

gap in cumulative incidence between screening and control arm becomes progressively 

narrower due to slowly-growing tumors gradually becoming manifest in the control arm. If the 

post-screening follow-up period does not include even the longest detection lead times, excess 

incidence will overestimate the amount of overdiagnosis. In data from the LUSI trial, although 

the median follow-up time after last screening participation was 5.73 years, 25% of participants 

had follow-up times below 4.8 years. Given that not all participants of the LUSI trial had follow-

up times long enough compared to the estimated mean pre-clinical sojourn time of lung tumors, 

the reported excess incidence rates might be inaccurate estimates of overdiagnosis. This 

might have also been the case for other trials such as ITALUNG, DLCST and NELSON. The 

point is well-illustrated by reports from the NLST trial, in which an 18.5% excess incidence 

(LDCT vs CXR) was observed after a follow-up of 4.5 years post-screening (Patz et al. 2014), 

but only 3% was observed after about 9.3 years of extended follow-up (National Lung 

Screening Trial Research Team 2019). It is also important to note that, while excess incidence 

calculated on data from randomized screening trials may provide an overall estimate for the 

screened populations, these estimates might not apply for individuals at highest risk of being 

overdiagnosed, e.g., those with short residual life expectancies. 

Moreover, as an estimator of overdiagnosis, excess incidence is at considerable risk of bias. 

First, bias may occur in the absence of a control arm without intervention. In the NLST, for 

example, in which all control arm participants were screened by (CXR), excess incidence in 

the LDCT arm may underestimate the true magnitude of overdiagnosis and is therefore not 

comparable with estimates from the European trials with control arms without screening and 

low reported contamination rates (Supplementary Table 16). Another potential source of bias 

is confounding, e.g., due to imbalances in pre-screening lung cancer risk between the trial 

arms as a result of imperfect randomization, or due to differences in post-randomization factors 

such as participation in smoking cessation programs. For the DLCST, the investigators 

reported imperfect randomization, resulting in significantly more participants with higher pack-
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years of smoking and a higher proportion of participants with decreased lung function in the 

screening arm compared to the control arm, which may have increased excess lung cancer 

incidence in the screening arm independently of LDCT detection (Wille et al. 2016). In the 

ITALUNG trial, participants in the screening arm were reported to have higher smoking 

cessation rates, and lower rates of relapse into smoking among ex-smokers, as compared to 

participants in the control arm (Pistelli et al. 2019), which may have decreased the observed 

excess lung cancer incidence in the screening arm.  

Furthermore, evidence suggests that excess incidence varies across tumor histologic 

subtypes. This was true in the LUSI trial, in which excess incidence was heterogeneous across 

histologic subtypes, with high excess incidence for all adenocarcinomas (50.0% [14.0%, 

88.4%]), and separately for non-BAC adenocarcinomas (36.1% [-8.4%, 84.8%]) and BAC 

tumors (112.5% [68.2%, 113.1%]). This is in line with the results of analyses in data from the 

NLST with estimates of 22.5% 95% CI:[9.7%, 34.3%] for NSCLC, 78.9% 95% CI:[62.2%, 

93.5%] for BAC, and 11.7 [-3.7%, 25.6%] for NSCLC excluding BAC. 

Evidence suggests that overdiagnosis might also depend on sex. In data from the LUSI trial, 

the observed excess incidence of adenocarcinomas was much larger for women than for men 

(Supplementary Table 11). As mentioned in section 4.2, it has been previously reported 

(Becker et al. 2019) that the distribution of histologic subtypes in participants of the LUSI trial 

differed significantly between men and women, with women showing a higher proportion of 

adenocarcinomas, and a much smaller percentage of small cell tumors. Furthermore, there 

was an enrichment of adenocarcinomas in the LDCT screening arm as compared to the control 

arm, and it was more pronounced among women than among men. These observations 

suggest that women are at increased risk of overdiagnosis. The higher excess incidence of 

adenocarcinomas for women compared with men might be explained by the findings of 

independent analyses on data from the NLST and PLCO [Prostate, Lung, Colorectal Ovarian 

cancer screening) trials (Ten Haaf et al. 2015) that reported a longer mean preclinical sojourn 

time (MPST) for this tumor subtype among women. The observation that women are at higher 

risk of overdiagnosis is further supported by quantitative modeling analyses performed in 

context of the Cancer Intervention and Surveillance Modeling Network (CISNET) (Han et al. 

2017). Additionally, these findings confirm of analyses on data the NELSON and NLST trials 

(de Koning et al. 2020; Pinsky et al. 2013) which suggest that compared to men, women might 

receive a greater lung cancer mortality reduction from LDCT screening. 
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4.3.2 Estimates of mean pre-clinical sojourn time and LDCT detection 

sensitivity 

Further to the calculation of excess incidence, the application of statistical modeling led to 

estimates of 5.38 years 95% CI:[4.76, 5.88] for MPST, and of 81.6% 95% CI:[74.4%, 88.8%] 

for LDCT detection sensitivity, all histologic subtypes combined. 

Longer estimates of MPST were obtained for BAC (8.77 years 95% CI:[6.49, 12.20], combined 

with 100% 95% CI:[92.8%, 100%] sensitivity) and non-BAC adenocarcinomas (7.69 years 95% 

CI:[6.49, 8.77], 62.4% 95% CI:[53.6%, 72.8%] sensitivity) and, and shorter ones (2.89 years 

95% CI:[2.49, 3.36], 100% 95% CI:[94.4%, 100%] sensitivity) for all other subtypes combined. 

These estimates, though based on smaller numbers of cancer cases, resemble those obtained 

based on NLST data (Patz et al. 2014), namely: MPST of 32.1 95% CI:[17.3 – 270.7] years for 

BAC at 38% 95% CI:[7% - 62%] sensitivity, and 3.6 95% CI:[3.00-4.3] years at 83% 95% 

CI:[72%-94%] sensitivity for all other NSCLC tumors. 

The very long estimated MPST for BAC may be particularly noteworthy. Bronchiolo-alveolar 

carcinoma (BAC), a term previously used for tumors characterized by a lepidic growth pattern, 

was recently reclassified as a form of lung adenocarcinoma (Gardiner et al. 2014). BAC tumors 

are characterized by slow growth, more frequently found among affect never-smokers, women, 

and young adults (Boffetta et al. 2011), and are associated with better survival outcomes 

compared to other NSCLC subtypes. Based on distinct radiologic appearances (Ten Haaf et 

al. 2018), identifying patients with adenocarcinomas in situ (AIS) or minimally invasive 

adenocarcinomas (MIA) (both previously included in the BAC subtype) and assigning them to 

less intensive treatment or just active surveillance, could reduce the burden caused by the 

early detection of these slowly growing tumors.  

4.3.3 Estimated proportion of tumors by lead time 

Predictions obtained on the basis of the estimated MPST, suggested high proportions of 

screen-detected tumors with relatively long lead times (approximately 48%, 33% and 23% with 

lead times longer or equal to 4, 6 and 8 years respectively). These proportions suggest than 

individuals with comparatively short remaining life expectancies are at increased risk of 

overdiagnosis. For comparison, proportions predicted on the basis of MPST estimates derived 

from NLST data (Patz et al. 2014) were somewhat lower (Supplementary Table 14).  

Long-term smokers, a subset of which is eligible for screening, may have relatively low residual 

life expectancies at ages 75 or older. For example, for current or former smokers in the USA, 

men and women, age 75-79, remaining lifetime has been estimated at around 7.5 years and 

10.5 years, respectively (Østbye and Taylor 2004). Actually, in the subset of current smokers 
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ages or older, shorter remaining lifetime estimates have been calculated. Thus, according to 

the estimates here reported, on average, 10-20% of screen-detected tumors could be 

overdiagnosed in this population.  

The main strength of this sub-study is the application of mathematical modeling for the joint 

estimation of MPST and detection sensitivity of LDCT-based screening, which goes beyond 

the mere calculation of excess incidence. Moreover, the model used for the parameter 

estimation was chosen to best fit the characteristics of the LUSI trial (Straatman et al. 1997).  

Finally, even though the model-based estimates reported here are subject to significant 

uncertainty, caused by the small sample size of the LUSI trial, they illustrate the dependency 

of overdiagnosis risk on factors that affect the residual life expectancy of screening 

participants, such as age at screen detection and other health indicators. 

Taken together, the results of this modeling exercise confirm findings from previous studies 

regarding the increased risk of overdiagnosis for LDCT screening participants with reduced 

remaining life expectancies. More concretely, they confirm recently published results (Han et 

al. 2017; Ten Haaf et al. 2020) suggesting that the balance between life years gained and the 

risk of overdiagnosis may start becoming less favorable for participants older than 75 years.  

4.4 Evaluation of the TAAb panel EarlyCDT®-Lung 

Parts of this chapter have been published previously (González Maldonado et al. 2021b). 

EarlyCDT®-Lung has been repeatedly evaluated as a test for deciding whether a biopsy or 

surgical intervention is necessary for subjects presenting with incidentally observed pulmonary 

nodules in clinical settings (Healey et al. 2017; Jett et al. 2014; Massion et al. 2017). However, 

there is little evidence about its performance in the context of population screening. The first 

trial to include the EarlyCDT®-Lung in its protocol was the Early detection of Cancer of the 

Lung Scotland (ECLS). In the ECLS, EarlyCDT®-Lung was evaluated for its ability to identify 

subjects likely to harbor a lung tumor, who were then further examined by LDCT (Sullivan and 

Schembri 2019; Sullivan et al. 2017; Sullivan et al. 2021). 

Measured in samples collected in context of the LUSI trial, there was a significant association 

between positive EarlyCDT®-Lung test results and case-control status, and with a shift 

towards advanced tumor stages. Although this confirmed, to a certain degree, its validity as a 

detection test, the estimated sensitivity of this TAAb panel (13.0% 95% CI:[4.9% - 26.3%]) was 

too low for it to be considered of practical diagnostic use in the context of screening. 

Similarly, results from the ECLS showed a statistically significant shift towards earlier stages 

for tumors identified by the TAAb panel (and later confirmed by CXR and LDCT). However, the 

estimated sensitivity was low, with a positive EarlyCDT®-Lung signal found for only 12 out of 
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23 cancer patients in stages I or II (sensitivity of 52.2%, [95% CI 30.6% to 73.2%]) and for 6 

out of 33 patients with Stage-II-IV tumors (sensitivity of 18.2%, [7.0% to 35.5%]) (Sullivan et 

al. 2021). These findings indicate that using the panel as a first filter before LDCT imaging 

might miss the presence of tumors in early stages of development. An observation from the 

authors is that the study was designed for the comparison of the panel in combination with 

LDCT versus standard clinical care, but it was not intended for the comparison of this combined 

strategy vs LDCT alone, a question in need for further research.  

The results of this present evaluation also indicate that EarlyCDT®-Lung may have insufficient 

sensitivity for the identification of screening participants with LDCT-screen-detected 

indeterminate nodules for which invasive diagnostics such as biopsy or surgery should be 

recommended. As mentioned in Section 1.3.5, EarlyCDT®-Lung is marketed as a “rule-in” test, 

meaning that positive test result should help identify patients at increased risk of harboring 

pulmonary tumors, whereas negative results should not modify the clinical management plan, 

i.e., the panel should not be used as a “rule out” test. The low sensitivity of the panel observed 

on data from the LUSI trial confirms the recommendations from the providers. Similarly, 

previous studies (Healey et al. 2017; Jett et al. 2014; Massion et al. 2017) among clinical case 

series or patients with indeterminate nodules (Jett et al. 2014) indicated that the negative 

predictive value (NPV) of the EarlyCDT®-Lung may be too low for it to be used for ruling out 

the need for subjects with suspicious nodules to get more invasive diagnostic procedures such 

as biopsies. Those studies, however, reported higher sensitivities for EarlyCDT®-Lung as a 

lung cancer detection test. 

Finally, regarding the association between a positive test result and the presence of malignant 

lung tumors among subjects with suspicious nodules seen on their LDCT-scan images, the 

positive likelihood ratio estimates reported in this study (1.5 to 1.9 depending on the definition 

of a positive test), despite being non-statistically significant due to the small sample size, are 

in line with those from previous studies (LR+: 2.3 95% CI:[1.3, 4.1], all nodules combined) 

(Healey et al. 2017; Massion et al. 2017). 

Two limitations of this study are the small size of the LUSI trial, leading to wide confidence 

intervals for all reported estimates and the way in which blood samples were collected. 

Furthermore, according to the protocol, no blood samples were taken from participants with 

interval cancers since, by definition, they all received a lung cancer diagnosis without previous 

suspicious findings on their LDCT-scan appointments. Without such samples, it was not 

possible to evaluate whether the EarlyCDT®-Lung test could have detected malignant nodules 

that went undetected by LDCT. 
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4.5 Strengths and limitations 

The four topics analyzed in this thesis are relevant for the design and implementation of lung 

cancer screening programs. These analyses were carried out at a time when discussions on 

how to optimally design such a program are very active in various countries around the world. 

Furthermore, this work presents findings product of the first external validation of the 

LCRAT+CT and Polynomial models, proposed as tools for the risk-based selection of 

candidates for biennial vs. annual screening.  

The analyses regarding nodule malignancy prediction are the first external validation of the 

UKLS, PanCan-MD and PanCan-VOL models for the prediction of malignancy of pulmonary 

nodules detected by LDCT screening. This was also the first evaluation of the PanCan, UKLS, 

Mayo, VA and PKUPH models applied to nodules detected in prevalence vs. incidence 

screening rounds. 

For the estimation of overdiagnosis risk, the work presented in this thesis goes beyond the 

mere estimation of excess incidence. Instead, mathematical modeling was applied in order to 

estimate the biological (tumor mean preclinical sojourn time) and technological (detection 

sensitivity) that influence the risk of tumors being overdiagnosed by LDCT screening. 

Additionally, this thesis shows the results of the first evaluation of the EarlyCDT®-Lung test for 

lung cancer detection in a screening context, as measured in blood samples taken as part of 

the LUSI trial. 

Further strengths of this thesis are inherited from the quality of the data generated by the LUSI 

trial. The structured data collection and management throughout the trial allowed for the unique 

identification of nodules deemed malignant, contrary to other studies, in which malignancy was 

assumed to be always linked to the largest non-calcified nodule (NCN) (Nair et al. 2018; 

Tammemägi et al. 2019a; White et al. 2017), or to studies on biomarkers for lung cancer 

detection (Healey et al. 2017; Massion et al. 2017), in which participants were always 

represented by their largest NCN. Furthermore, in the LUSI trial nodule diameters were 

determined based on a software-based three-dimensional estimation, which was likely more 

precise compared to manual measurements applied in other studies (Han et al. 2018). This 

might have in turn improved the accuracy of estimates from prediction models that included 

diameter as the parameter of choice for nodule size.  

The main limitations of this study are the absence of complete information for some model 

predictors, the small size of the LUSI trial, and the low numbers of cancer cases and of 

malignant nodules observed. Missing data might have led to bias in predicted risks, while the 

small size of the trial led to wide confidence intervals for all reported estimates and low or even 

insufficient power for statistical tests.  
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4.6 Conclusions and outlook 

Lung cancer screening by means of LDCT imaging has been shown to reduce lung cancer 

mortality in randomized control trials in the USA and Europe. These findings have led to the 

institution of national screening programs in countries like the USA (Centers for Medicare & 

Medicaid Services 2015), South Korea (Lee et al. 2019) and Poland (Rzyman et al. 2019) and 

started discussions about their implementation in Canada as well as in some Asian and 

European countries, including Germany. However, designing a screening program to optimally 

balance its mortality reduction benefit and risks, potential harms and associated costs is a 

complex task, with various open questions still awaiting response. 

Main questions are related to, among others: 1) the use of prediction models that can support 

the risk-based assignment of participants to optimal screening frequencies, 2) the use of 

malignancy prediction models to improve nodule evaluation and management, 3) the selection 

of methods that can accurately estimate overdiagnosis risk and how these estimates can 

improve the definition of upper age limits for starting or continuing screening, and, finally 4) the 

identification of biomarkers that could serve as complementary tools at various steps of the 

screening process. 

Extensive research suggests that screening eligibility and personalized assignment of 

screening intervals based on estimates of lung cancer risk can increase the cost-effectiveness 

of screening programs. Similarly, sufficient evidence indicates that more accurate nodule 

evaluation could help reduce costs and harms related to unnecessary confirmatory procedures 

caused by false positive findings. Following these observations, statistical models have been 

developed for the prediction of lung cancer risk and of malignancy of screen-detected nodules. 

Statistical modeling has also been used to estimate the extent of overdiagnosis attributed to 

screening, and to estimate the biological and technological parameters that influence this risk. 

Independently, a separate line of research has focused on the identification of biomarkers to 

complement imaging-based screening, leading to a number of promising candidates. However, 

external validation of such models and candidate biomarkers in data from screening contexts 

is limited.  

This thesis aimed at evaluating a selection of risk prediction models, methods for the estimation 

of overdiagnosis, as well as biomarkers that could help design an optimal screening program. 

Based on analyses carried on data from the German LUSI trial, this thesis reached four main 

conclusions:  

First, the heterogeneity of lung cancer risks among screening-eligible subjects justifies the 

assignment of participants to screening intervals longer than a year. This assignment (e.g., 

annual vs. biennial screening) can be supported by prediction models that discriminate 
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participants who would get a higher net benefit from such a screening schedule on the basis 

of their estimated short-term lung cancer risks. Furthermore, models that incorporate 

predictors derived from LDCT images could enhance discrimination, compared to models 

based only on patient characteristics or only on the presence of pulmonary nodules.  

Second, screening programs would benefit from a statistical modeling approach for nodule 

evaluation. Models for the prediction of nodule malignancy seem to be useful tools for 

optimizing nodule evaluation and management in population screening settings. More 

specifically, models with good discrimination performance, such as the PanCan variants 

validated in this thesis could help reduce the number of false positive test results. However, 

there is the need for well-calibrated models and appropriate risk thresholds for the evaluation 

of nodules detected at various stages of the screening process. 

Third, excess incidence estimates obtained on the basis of data from randomized stop-

screening trials (i.e., with a pre-fixed duration of the screening period) have so far not 

accurately reflected the genuine extent of overdiagnosis. In contrast, statistical modeling could 

be used to produce more transferable and interpretable estimates of overdiagnosis. The 

reasoning behind this hypothesis is that the risk of overdiagnosis strongly depends on both 

biological and technological factors. On the one hand, this risk depends on the relationship 

between the lead time of tumors detected via LDCT and the residual life expectancy (RLE) of 

screening participants. Screening participants presenting with tumors with long estimated lead 

times and comparatively short RLEs are therefore at increased risk of overdiagnosis. On the 

other hand, the lead time depends on the mean preclinical sojourn time (MPST) of different 

tumor subtypes and the sensitivity of the detection method, whereas the RLE depends on age 

at screen detection and indicators of general health. Therefore, a better approach would be to 

combine accurate estimates of such parameters in order to obtain better predictions of 

overdiagnosis risk. Two challenges of this approach are the identification and application of 

appropriate models with which to infer these parameters and the availability of sufficient data 

for their training and validation. Finally, with the right estimates, personalized decisions about 

whether to start or continuing screening could be taken on the basis of these predictions.  

Fourth, there is the potential for biomarkers to improve various aspects of screening programs, 

including eligibility and nodule evaluation. However, even the so far most promising biomarker, 

EarlyCDT®-Lung, widely validated as a lung cancer detection tool in clinical settings, and 

recently evaluated as a pre-screening tool in a large prospective randomized trial (ECLS), has 

shown insufficient sensitivity for the identification of participants with lung tumors detected via 

LDCT in this and other recent studies (Borg et al. 2021; Sullivan et al. 2021). This biomarker 

is therefore not recommended for its use as a tool for pre-selection or for diagnostic triage in 

lung cancer screening programs. More research and more evidence coming from screening 
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studies, as well as cost-effectiveness analyses are required before biomarkers can be 

incorporated into screening programs. 

4.6.1 Outlook and need for further research 

Although statistical models for the assignment of screening intervals and for the prediction of 

nodule malignancy have shown good discrimination ability, evidence regarding their 

transferability to other populations and other timepoints along the screening process is limited. 

Thus, there is a need for their validation in data from screening contexts other than those in 

which they were developed. Furthermore, given that predicted risks depend on the 

demographics and risk-factors of a given population, there is the need for their calibration to 

be evaluated in independent populations and, if necessary, for the models to be re-calibrated 

(Su et al. 2018). Additional work is also needed for the definition of risk thresholds for these 

models that guarantee an optimal net clinical benefit for screening participants and/or 

improvements in cost-effectiveness of screening programs. 

In particular, more research is needed regarding how to develop and apply models for the 

optimization of screening intervals, instead of being constrained to biennial vs annual. In fact, 

the personalized definition of screening intervals based on lung cancer risks and remaining life 

expectancy is currently being investigated (O'Mahony et al. 2015; Toumazis et al. 2019). 

Further attempts at filling the evidence gaps around personalized risk-based screening 

intervals are being made by a number of randomized clinical trials such as SUMMIT, BioMILD 

and 4-IN-THE-LUNG-RUN (Horst et al. 2020; Pastorino 2014; Ten Haaf et al. 2020). 

In the case of malignancy prediction of nodules seen in previous rounds, algorithms are now 

being developed that integrate relevant nodule features on repeated CT screening 

examinations over time to predict the presence of lung cancer (Horeweg et al. 2014b; Huang 

et al. 2019). For individuals screened at regular intervals, models may be further developed to 

incorporate estimates of nodule volume doubling times, determined on early recall follow-up 

CT or directly for nodules already detected on earlier visits when individuals return for annual 

incidence screenings.  

In general, models that rely on LDCT findings, independently of the outcome they intend to 

predict, might become more accurate if trained using advanced modeling techniques based 

on the images instead of on pre-extracted features such as nodule size, location and texture. 

Examples of such approaches are radiomics and machine learning algorithms. Also, any type 

of model intended for risk-based decision making along the screening process could become 

more accurate and better calibrated if they were trained and validated in larger and richer 

datasets, for example based on pooled data worldwide. 
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In terms of overdiagnosis, there is the need to develop multivariable models for predicting an 

individual’s residual life expectancy based on indicators of general health, or even on findings 

about diseases detected in screening CT-scans (Heuvelmans et al. 2019; Yip et al. 2021). A 

further step, also in need of research, could be to incorporate such estimates of residual life 

expectancy into criteria for eligibility (Cheung et al. 2019; Katki et al. 2019) and for stopping 

screening. In fact, lung cancer risk prediction models have been suggested that include 

comorbidities as a proxy of remaining life expectancy (Cheung et al. 2019). 

Biomarkers, on the other hand, if used as a stand-alone tool, need to be superior to current 

risk-prediction models, for example in terms of discrimination. Alternatively, as complementary 

tools, they should improve risk prediction when added to such models. They need to be cost-

effective, easy to apply and minimally invasive. According to findings of recent studies, there 

is the potential for biomarkers to improve not only the eligibility criteria of screening programs 

but also the assignment of screening frequency and the evaluation of nodules. For example, a 

model based on smoking history and a panel of protein markers showed higher sensitivity at a 

fixed specificity for the discrimination of future lung cancer cases, than smoking history alone 

when evaluated on samples from two European cohorts (Guida et al. 2018). First reports from 

the Bio-MILD study indicate that CT screening findings combined with blood microRNA may 

help finding optimal screening intervals (Montani et al. 2015; Pastorino 2014; Sozzi et al. 2014). 

Furthermore, evaluations on data from the Pittsburgh Lung Screening Study suggests that 

blood-based biomarkers can improve the assessment of nodule malignancy (Fehlmann et al. 

2020). Finally, the SUMMIT study aims at evaluating a cell-free nucleic acid blood test in a 

large cohort of subjects with high lung cancer risks as predicted by the PLCO model (Horst et 

al. 2020). However, more external validations in independent screening studies, as well as 

cost-effectiveness analyses are required before biomarkers can be incorporated into screening 

programs. 

Additionally, modeling approaches for the optimization of lung cancer screening might profit 

from sex-specific analyses. There is strong evidence for sex disparities at all stages of 

screening: eligibility, recruitment, assignment of screening frequency, and regarding benefits 

and harms (e.g., mortality reduction rates and risk of overdiagnosis) (see TenHaaf et al. 2020 

for review). Furthermore, evidence from clinical trials seems heterogeneous across different 

screening populations. However, there is limited research regarding a sex-specific risk-based 

approach for the design of screening programs. More research along these lines is urgently 

needed. 

Finally, there are various other aspects of lung cancer screening in need for research, however 

they are outside the scope of this thesis. These include screening of never smokers, successful 

invitation and appropriate distribution of information, unbiased recruitment strategies, 



Discussion 

93 

 

screening uptake and adherence, the incorporation of smoking cessation programs, cost-

effectiveness and the role of health insurance programs. 

4.6.2 Implications for future lung cancer screening programs 

For future screening programs, more reflection will be needed about how to combine risk-

based approaches to identify individuals for initial lung cancer screening, to determine 

optimized time points for follow-up screenings, and to optimally evaluate their imaging findings. 

For example, a two-step strategy could be implemented that uses lung cancer risk models 

such as LCRAT or PLCOM2012 to identify candidates for at least low-frequency (e.g., biennial) 

screening. On a second step, augmented models incorporating risk indicators from the 

baseline LDCT scan, such as LCRAT+CT or PLCOm2021results, could identify participants 

those who would benefit most from more frequent (e.g., annual) screening, or may be even 

combined with models that estimate the optimal length of the screening interval. Once the 

candidates are selected, the number of false positive tests, one of the major concerns of 

screening, could be reduced by predicting the malignancy risk of nodules through statistical 

models based on LDCT imaging findings. For later screening rounds, previous findings could 

be used to obtain more accurate malignancy predictions. 

Regarding improved rules for stopping screening participation, randomized trials as well as the 

first population-wide screening programs have set fixed upper age limits for all screening 

participants. Instead, a recommendation for future screening programs based on the findings 

presented in this thesis, would be to rely on estimates of MPST of different tumor types and of 

RLE of participants for deciding, on an individual basis, when screening should stop. Screening 

participants could be regularly monitored, their remaining lifetime predicted based on their age 

and overall health and on a second step, their risk of being overdiagnosed could be assessed 

based on these estimates relative to the predicted lead times of different tumor histologic 

subtypes. Then, the decision on whether or not to continue screening would be based on pre-

defined thresholds of overdiagnosis risk.  

In general, whether it is related to assignment of screening intervals or decision making about 

stopping screening, the longitudinal assessment of lung cancer risk is relevant given that it 

does not remain static over a subjects’ lifetime, but rather varies due to ageing and changes 

in lifestyle and behavior (e.g., smoking habits). 

Finally, assuming the search for appropriate biomarkers is successful, future programs might 

become more precise, less invasive and risky, and even more cost-effective by incorporating 

them at various stages of the screening process. 

Overall, these are exciting times. There is now enough evidence in favor of LDCT screening 

as a tool to reduce lung cancer mortality. This evidence has awakened the interest of the 
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scientific and medical community and has drawn the attention of governments and policy 

makers. 

There is a significant amount of research being conducted. Three current major efforts towards 

optimizing screening are the SUMMIT study in the UK, the Italian BioMILD, and 4-IN-THE-

LUNG-RUN, a trial conducted jointly by several European countries, including Germany (Horst 

et al. 2020; Pastorino 2014; Ten Haaf et al. 2020). 

Various countries, in and outside Europe, are taking steps towards the implementation of 

screening programs. Soon, decisions will be made that can potentially save millions of lives. It 

is to be hoped that the findings presented and discussed in this thesis can contribute to inform 

the decision-making process that leads to optimal screening programs and in doing so, help in 

the fight against lung cancer.  
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5 SUMMARY 

More deaths can be attributed to lung cancer, than to any other cancer type. Evidence collected 

over the last 10 years, from randomized trials in the USA and Europe, indicates that screening 

by means of low-dose computed tomography (LDCT) could reduce the number of lung cancer 

(LC) deaths by about 20%-24%. While these findings have led to the implementation of 

screening programs in the USA, South Korea and Poland, discussions on their optimal design 

and execution are still ongoing in various countries, including Germany.  

Optimizing screening means finding the right balance between mortality reduction and risks, 

harms, and monetary costs. LDCT-scans are expensive, expose participants to radiation and 

put them at risk for overdiagnosis, as well as at risk for unnecessary invasive and expensive 

confirmatory procedures triggered by false positive (FP) results. Minimizing the number of 

unnecessary screening and confirmatory examinations should be prioritized. While risk-based 

eligibility has been shown to best target candidates, questions regarding optimal screening 

frequency, accurate nodule evaluation, stop-screening criteria to reduce overdiagnosis, and 

the use of complementary non-invasive diagnostic methods, remain open. Statistical models 

and biomarkers have been developed to help answer these questions. However, there is 

limited evidence of their validity in data from screening contexts and populations other than 

those in which they were developed.  

The analyses presented in this thesis are based on data collected as part of the German Lung 

Cancer Screening Intervention (LUSI) trial in order to validate models that address the 

questions: 1) can candidates for biennial vs annual screening be identified on the basis of their 

LC risk? 2) can the number of FP test results be reduced by accurately estimating the 

malignancy of LDCT-detected nodules? 3) What was the extent of overdiagnosis in the LUSI 

trial and how does overdiagnosis risk relate to the age and remaining lifetime of participants? 

Additionally, blood samples from participants of the LUSI were measured to evaluate: 4) 

whether the well-validated diagnostic biomarker test EarlyCDT®-Lung is sensitive enough to 

detect tumors seen in LDCT images. 

The LCRAT+CT and Polynomial models predict LC risk based on subject characteristics and 

LDCT imaging findings. Results of this first external validation confirmed their ability to identify 

participants with LC detected within 1-2 years after first screening. Discrimination was higher 

compared to a criterion based on nodule size and, to a lesser degree, compared to a model 

based on smoking and subject characteristics (LCRAT). This suggested that while LDCT 

findings can enhance models, most of their performance can could be attributed to information 

on smoking. Skipping 50% of annual LDCT examinations (i.e., for participants with estimated 

risks <5th decile) would have caused <10% delayed diagnoses, indicating that candidates for 

biennial screening could be identified based on their predicted LC risks without compromising 
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on early detection. Absolute risk estimates were, on average, below the observed LC rates, 

indicating poor calibration. 

Models developed using data from the Canadian screening study PanCan showed excellent 

ability to differentiate between tumors and non-malignant nodules seen on LDCT scans taken 

at first screening participation and to accurately predict absolute malignancy risk. However, 

they showed lower performance when applied on data of nodules detected in later rounds. In 

contrast, a model developed on data from the UKLS trial and models developed on data from 

clinical settings did not perform as well in any screening round.  

Excess incidence of screen-detected lung tumors, an estimator of overdiagnosis, was within 

the range of values reported by other trials after similar post-screening follow-up (ca. 5-6 

years). Estimates of mean pre-clinical sojourn time (MPST) and LDCT detection sensitivity 

were obtained via mathematical modeling. The highest excess incidence and longest MPST 

estimates were found among adenocarcinomas. The proportion of tumors with long lead times 

predicted based on MPST estimates (e.g., 23% with lead times ≥8 years) suggested a 

substantial overdiagnosis risk for individuals with residual life expectancies shorter than these 

hypothetical lead times, for example for heavy smokers over the age of 75. 

The tumor autoantibody panel measured by EarlyCDT®-Lung, a test widely validated as a 

diagnostic tool in clinical settings and recently tested as a pre-screening tool in a large 

randomized Scottish trial (ECLS), was found to have insufficient sensitivity for the identification 

of lung tumors detected via LDCT and of participants with screen-detected pulmonary nodules 

for whom more invasive diagnostic procedures should be recommended. 

Overall, the findings presented in this thesis indicate that risk prediction models can help 

optimize LC screening by assigning participants to appropriate screening intervals, and by 

increasing the accuracy of nodule evaluation. However, there is a need for further external 

model validation and re-calibration. Additionally, while excess incidence can provide estimates 

of overdiagnosis risk at a population-level, a better approach would be to obtain  model-based 

personalized estimates of tumor lead and residual lifetime. Better individualized decisions 

about whether to start or stop screening could be taken on the basis of the relationship between 

these estimates and the risk of overdiagnosis. Finally, although there is evidence for the 

potential of biomarkers to complement LC screening, the so far most promising candidate 

(EarlyCDT®-Lung) cannot be recommended as a pre-screening tool given its poor sensitivity 

for the identification of lung tumors detected via LDCT. In conclusion, while steps have been 

taken in the right direction, more research is required in order to answer all open questions 

regarding the optimal design of lung cancer screening programs. 
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6 ZUSAMMENFASSUNG 

Auf Lungenkrebs können mehr Todesfälle zurückgeführt werden als auf jede andere Krebsart. 

Evidenz der letzten 10 Jahre zeigt, dass Screening mittels Niedrigdosis-Computertomografie 

(LDCT) die Anzahl der Todesfälle durch Lungenkrebs (LK) um 20% -24% reduzieren könnte. 

Während diese Erkenntnis zur Einführung von Screening-Programmen in den USA, Südkorea 

und Polen geführt hat, wird in verschiedenen Ländern, darunter auch in Deutschland, noch 

über die optimale Gestaltung und Durchführung diskutiert. 

Screening-Programme zu optimieren bedeutet, die Balance zwischen Mortalitätsreduktion und 

Risiken, negativen Auswirkungen und Kosten, zu finden. LDCT-Scans sind teuer, setzen die 

Teilnehmer Strahlung sowie einem Risiko für Überdiagnose und unnötiger invasiver und teurer 

Abklärungsdiagnostik aus, verursacht durch falsch-positive (FP) Ergebnisse. Die Reduktion 

unnötiger Screenings und Abklärungsdiagnostiken senkt somit Risiken und Kosten. Während 

sich gezeigt hat, dass zu screenende Personen idealerweise risikobasiert ausgewählt werden 

sollten, bleiben Fragen zu optimalen Screening-Intervallen, zur Lungenknotenbewertung, zu 

Abbruch-Kriterien und zur Verwendung nicht-invasiver Diagnostikmethoden offen. Statistische 

Modelle und Biomarker wurden entwickelt, um diese Fragen zu beantworten. Es gibt jedoch 

nur begrenzte Beweise für ihre Gültigkeit in anderen Studienpopulationen. 

Diese Arbeit stellt Analysen, basierend auf Daten aus der deutschen Lung Cancer Screening 

Intervention (LUSI) Studie vor, die Modelle validieren, welche sich mit den folgenden Fragen 

befassen: 1) Können Kandidaten für ein nur zweijährliches Screening anhand ihres LK-Risikos 

identifiziert werden? 2) Kann die Anzahl der FP-Ergebnisse reduziert werden, indem die 

Bösartigkeit von LDCT-detektierten Knoten genau geschätzt wird? 3) Wie hoch war das 

Ausmaß der Überdiagnose in der LUSI-Studie und wie hängt es mit Alter und verbleibender 

Lebensdauer zusammen? Zusätzlich wurden Blutproben von Probanden der Studie 

gemessen, um zu bewerten: 4) ob der diagnostische Biomarker-Test, EarlyCDT®-Lung, 

sensitiv genug ist, um Tumore zu entdecken, die in LDCT-Bildern erkannt wurden. 

Die LCRAT+CT- und Polynomial-Modelle sagen das LK-Risiko basierend auf  Merkmalen der 

Probanden und deren LDCT-Befunden voraus. Die Ergebnisse dieser ersten externen 

Validierung bestätigten die Fähigkeit der Modelle, Teilnehmer zu identifizieren, bei denen LK 

innerhalb von 1-2 Jahren nach dem ersten Screening entdeckt werden konnte. Im Vergleich 

zur Knotengröße als alleinigem Kriterium und zu einem Modell basierend auf Rauchverhalten 

und personenbezogener Risikoindikatoren (LCRAT) war die Diskriminierung der beiden 

erstgenannten Modelle etwas genauer. Dies deutet darauf hin, dass LDCT-Ergebnisse zwar 

Modelle verbessern können, der größte Teil ihrer Leistung jedoch auf Informationen über das 

Rauchverhalten zurückzuführen ist. Eine zweijährliche- anstelle von jährlicher LDCT-

Untersuchung für Teilnehmer mit geschätzten Risiken <5. Dezil hätte zu <10% verzögerten 

Diagnosen geführt. Dies weist darauf hin, dass Kandidaten für ein zweijährliches Screening 

basierend auf ihren vorhergesagten LK-Risiken identifiziert werden könnten, ohne 

Kompromisse bei der Früherkennung einzugehen. Die absoluten Risikoschätzungen lagen im 

Durchschnitt unter den beobachteten LK-Raten, was auf eine schlechte Kalibrierung hindeutet. 
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Modelle, die anhand von Daten aus der kanadischen PanCan Screening-Studie entwickelt 

wurden, zeigten eine ausgezeichnete Fähigkeit, zwischen Tumoren und nicht-bösartigen 

Knoten zu unterscheiden, die in LDCT-Scans bei der ersten Screening-Teilnahme beobachtet 

wurden und konnten das absolute Risiko gut vorhersagen. Sie zeigten jedoch eine geringere 

Leistung, wenn sie auf Daten von Knoten angewendet wurden, die in späteren Runden 

entdeckt wurden. Im Gegensatz dazu zeigte ein Modell, das aufgrund von Daten aus der 

UKLS-Studie-, ebenso wie andere Modelle die anhand von klinischen Daten entwickelt 

wurden, in keiner Screening-Runde vergleichbar gute Leistung. 

Die überhöhte Inzidenz (ÜI) von screen-detektierten (SD) Lungentumoren, lag innerhalb des 

Wertebereichs, der in anderen Studien nach ähnlichem Follow-up (ca. 5-6 Jahre post-

Screening) berichtet wurde. Schätzungen der mittleren präklinischen Verweilzeit (MPST) und 

der LDCT-Sensitivität wurden mittels mathematischer Modellierung geschätzt. Die höchste ÜI 

und längste MPST wurden bei Adenokarzinomen gefunden. Der Anteil der Tumore mit langen 

Vorlaufzeiten, die auf der Grundlage von MPST-Schätzungen vorhergesagt wurden (z. B. 23% 

mit Vorlaufzeiten ≥8 Jahren), deutete auf ein erhebliches Überdiagnoserisiko für Personen mit 

einer Restlebenserwartung hin, die kürzer ist als diese Vorlaufzeiten, beispielsweise für 

Raucher über 75 Jahre. 

Das Tumor Autoantikörper-Panel, gemessen mit EarlyCDT®-Lung, einem Test, der weithin als 

diagnostische Methode in klinischen Umgebungen validiert und kürzlich als Pre-Screening-

Tool in einer großen randomisierten schottischen Studie (ECLS) getestet wurde, wies eine 

unzureichende Sensitivität für die Identifizierung von Lungentumoren auf, die über LDCT 

erkannt wurden. Auch die Sensitivität zur Identifikation von Teilnehmern mit SD-

Lungenknoten, für die invasivere Diagnoseverfahren empfohlen werden sollten, war 

unzureichend. 

Insgesamt deuten die Ergebnisse dieser Arbeit darauf hin, dass Risikovorhersagemodelle 

dazu beitragen können LK-Screening zu optimieren, indem sie Teilnehmer geeigneten 

Screening-Intervallen zuweisen und die Genauigkeit der Lungenknotenbewertung erhöhen. Es 

besteht jedoch Bedarf an weiterer externer Modellvalidierung und Kalibrierung. Während die 

ÜI das Überdiagnoserisiko auf Bevölkerungsebene schätzen kann, ist eine modellbasierte 

personalisierte Schätzung der MPST und der Restlebensdauer zu bevorzugen. Anhand dieser 

Schätzungen und dem Risiko einer Überdiagnose könnten besser individualisierte 

Entscheidungen darüber getroffen werden, ob das Screening gestartet oder abgebrochen 

werden sollte. Obwohl es Hinweise auf das Potenzial von Biomarkern gibt, LK-Screening zu 

ergänzen, kann der bisher vielversprechendste Test, EarlyCDT®-Lung, aufgrund seiner 

niedrigen Sensitivität, nicht als Pre-Screening-Tool empfohlen werden.  

Zusammenfassend, lässt sich feststellen, dass zwar Schritte in die richtige Richtung 

unternommen wurden, jedoch mehr Forschung erforderlich ist, um alle offenen Fragen zur 

optimalen Gestaltung von LK-Screening-Programmen zu beantworten. 
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9 SUPPLEMENTARY MATERIAL 
Supplementary Table 1. Baseline characteristics of eligible participants and their pulmonary nodules 

 Participants eligible for the LCRAT+CT model Participants eligible for the Polynomial model 

 No LC 
LC in any 

round† 
P Total No LC LC at T1

‡ p Total 

N 1482 24  1506 1878 11  1889 

Sex (M/F) 
942/540 

(63.6/36.4) 
18/6 

(75.0/25.0) 
0.346 

960/546 
(63.7/36.3) 

1229/649 
(65.4/34.6) 

9/2 
(81.8/18.2) 

0.411 
1238/651 

(65.5/34.5) 

Age [median, range] 
56.70 

[50.30, 71.80] 
60.20 

[54.60, 70.00] 
<0.001 

56.80 
[50.30, 71.80] 

56.80 
[50.30, 71.90] 

60.20 
[54.60, 69.40] 

0.013 
56.80 

[50.30, 71.90] 

BMI (mean, SD) 26.94 (4.20) 25.73 (3.69) 0.163 26.92 (4.19) 26.91 (4.14) 25.95 (3.28) 0.444 26.90 (4.14) 

COPD or emphysema 
(no/yes) 

1465/17 
(98.9/1.1) 

23/1 
(95.8/4.2) 

0.687 
1488/18 

(98.8/1.2) 
1636/242 

(87.1/12.9) 
8/3 

(72.7/27.3) 
0.334 

1644/245 
(87.0/13.0) 

Asbestos exposure 1482 (100.0) 24 (100.0) - 1506 (100.0) 1819 (96.9) 11 (100.0) 1.000 1830 (96.9) 

Education   0.989    0.916  

< 12th grade 119 (8.0) 2 (8.3)  121 (8.0) 146 (7.8) 1 (9.1)  147 (7.8) 

High school graduate 1 (0.1) 0 (0.0)  1 (0.1) 2 (0.1) 0 (0.0)  2 (0.1) 

Post high school, no 
college 

795 (53.6) 14 (58.3)  809 (53.7) 1014 (54.0) 7 (63.6)  1021 (54.0) 

Associate degree / 
some college 

305 (20.6) 4 (16.7)  309 (20.5) 392 (20.9) 1 (9.1)  393 (20.8) 

Graduate school 262 (17.7) 4 (16.7)  266 (17.7) 324 (17.3) 2 (18.2)  326 (17.3) 

Emphysema in scan 
(no/yes) 

943/539 
(63.6/36.4) 

11/13 (45.8/54.2) 0.114 
954/552 

(63.3/36.7) 
1159/719 

(61.7/38.3) 
5/6 

(45.5/54.5) 
0.427 

1164/725 
(61.6/38.4) 

Consolidation in scan 
(no/yes) 

1475/7 
(99.5/0.5) 

24/0 (100.0/0.0) 1.000 1499/7 (99.5/0.5) 
1867/11 

(99.4/0.6) 
11/0 

(100.0/0.0) 
1.000 

1878/11 
(99.4/0.6) 

As published in (González Maldonado et al. 2021a), reprinted with permission.
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Supplemental Table 1 (continued). Baseline characteristics of eligible participants and their pulmonary nodules. 

† Lung cancer screen-detected at any annual screening appointment. Not necessarily screen-detected at next-screen following a negative one. 
‡ ‡ Lung cancer screen-detected at round 2 (T1) or diagnosed in between round 2 (T1) and round 3(T2). 
Abbreviations: SD: standard deviation; BMI: body mass index; COPD: chronic obstructive pulmonary disease; LC: lung cancer; NCN: non-calcified nodule. 

As published in (González Maldonado et al. 2021a), reprinted with permission. 

 Participants eligible for the LCRAT+CT model Participants eligible for the Polynomial model 

 No LC 
LC in any 

round† 
P Total No LC LC at T1

‡ p Total 

Former smokers 574 6  580 714 3  717 

Years of smoking (SD) 18.27 (4.37) 20.00 (2.74) 0.333 18.28 (4.36) 18.34 (4.40) 19.17 (2.89) 0.745 18.34 (4.39) 

Years since quitting 
(SD) 

4.90 (2.76) 4.33 (2.70) 0.620 4.89 (2.76) 4.85 (2.76) 5.50 (3.46) 0.684 4.85 (2.76) 

Cigarettes per day (SD) 26.24 (12.13) 27.50 (17.32) 0.801 26.25 (12.17) 26.60 (12.29) 30.83 (7.64) 0.552 26.62 (12.27) 

Pack-years (SD) 24.00 (13.07) 28.33 (20.81) 0.423 24.05 (13.15) 24.41 (13.14) 28.85 (3.77) 0.559 24.43 (13.11) 

Current smokers 908 18  926 1164 8  1172 

Years of smoking (SD) 34.87 (4.89) 37.50 (5.94) 0.025 34.92 (4.92) 35.03 (4.91) 38.75 (3.54) 0.033 35.05 (4.91) 

Years since quitting 
(SD) 

0.00 (0.00) 0.00 (0.00) - 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) - 0.00 (0.00) 

Cigarettes per day (SD) 20.40 (8.42) 21.94 (12.11) 0.444 20.43 (8.50) 20.55 (8.60) 25.62 (13.35) 0.098 20.59 (8.64) 

Pack-years (SD) 35.85 (16.02) 41.56 (27.02) 0.141 35.96 (16.30) 36.24 (16.39) 50.55 (29.97) 0.015 36.34 (16.54) 

With at least one NCN     895 6  901 

Longest diameter (SD)     5.75 (3.62) 6.15 (2.40) 0.788 5.75 (3.62) 

Perpendicular 
diameter (SD) 

    3.85 (1.75) 4.47 (1.53) 0.386 3.85 (1.74) 

In upper lobe (%)     524 (58.5) 2 (33.3) 0.405 526 (58.4) 

Solid (%)     853 (95.3) 6 (100.0) 1.000 859 (95.3) 

Spiculated (%)     37 (4.1) 0 (0.0) 1.000 37 (4.1) 
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Supplementary Figure 1. ROC curves for the LCRAT 
(1-year), LCRAT+CT models† 

 

 

 
Supplementary Figure 2. ROC curves for the 
Polynomial model‡ 

  

 
 

 

Supplementary Figure 3. ROC curves for the 
Polynomial model applied to data from participants 
eligible for the LCRAT+CT model 

 

 

 
Supplementary Figure 4. ROC curves for the 
Polynomial model and the Patz criterion applied to T0 
data 

 

Abbreviations: LCRAT: Lung Cancer risk Assessment Tool; AUC: Area under the Curve. 
† Applied to data from LCRAT+CT-eligible participants from T0 to T3. 
‡ Applied to data from Polynomial model eligible participants from T0 or T1 to T4 

As published in (González Maldonado et al. 2021a), reprinted with permission.
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Supplementary Table 2. Potential effect of risk thresholds from the Polynomial model in participants from all screening rounds of the LUSI Trial, eligible for the 
LCRAT+CT model 

Percentile 
 of risk Polynomial risk (T0) 

Candidates for Longer Interval Delayed Cancers False positives avoided Indeterminates avoided 

N (%) N (%; 95% CI) N (%; 95% CI) N (%; 95% CI) 

10th r ≤≤ 0.048 % 120 (10) 0 (0; 1.5, 48.3) 0 (0; 10.8, 94.5) 1 (33.3; 1.8, 87.5) 

20th r ≤ 0.071% 239 (20) 0 (0; 1.5, 48.3) 0 (0; 10.8, 94.5) 1 (33.3; 1.8, 87.5) 

30th r ≤ 0.091% 358 (30) 0 (0; 1.5, 48.3) 0 (0; 10.8, 94.5) 1 (33.3; 1.8, 87.5) 

40th r ≤ 0.12% 478 (40) 0 (0; 1.5, 48.3) 0 (0; 10.8, 94.5) 1 (33.3; 1.8, 87.5) 

50th r ≤ 0.15% 597 (50) 0 (0; 1.5, 48.3) 0 (0; 10.8, 94.5) 1 (33.3; 1.8, 87.5) 

60th r ≤ 0.20% 716 (60) 0 (0; 1.5, 48.3) 0 (0; 10.8, 94.5) 1 (33.3; 1.8, 87.5) 

70th r ≤ 0.25% 836 (70) 3 (50; 13.9, 86.1) 0 (0; 10.8, 94.5) 2 (66.7; 12.5, 98.2) 

80th r ≤ 0.35% 955 (80) 4 (66.7; 24.1, 94) 0 (0; 10.8, 94.5) 2 (66.7; 12.5, 98.2) 

90th r ≤ 0.55% 1074 (90) 5 (83.3; 36.5, 99.1) 1 (100; 5.5, 100) 2 (66.7; 12.5, 98.2) 

100th r ≤ 3.1% 1194 (100) 6 (100; 51.7, 100) 1 (100; 5.5, 100) 3 (100; 31, 100) 

Percentile 
 of risk Polynomial risk (T0-T3) 

Candidates for Longer Interval Delayed Cancers False positives avoided Indeterminates avoided 

N (%) N (%; 95% CI) N (%; 95% CI) N (%; 95% CI) 

10th r ≤ 0.048  476 (10) 0 (0; 0.4,18.5) 0 (0; 3.2, 69) 1 (16.7; 0.9, 63.5) 

20th r ≤ 0.071 950 (20) 1 (4.5; 0.2, 24.9) 0 (0; 3.2, 69) 1 (16.7; 0.9, 63.5) 

30th r ≤ 0.090 1428 (30) 2 (9.1; 1.6, 30.6) 0 (0; 3.2, 69) 1 (16.7; 0.9, 63.5) 

40th r ≤ 0.12 1899 (40) 3 (13.6; 3.6, 36) 0 (0; 3.2, 69) 2 (33.3; 6, 75.9) 

50th r ≤ 0.14 2378 (50) 3 (13.6; 3.6, 36) 0 (0; 3.2, 69) 2 (33.3; 6, 75.9) 

60th r ≤ 0.18 2851 (60) 5 (22.7; 8.7, 45.8) 1 (33.3; 1.8, 87.5) 3 (50; 13.9, 86.1) 

70th r ≤ 0.23 3325 (70) 7 (31.8; 14.7, 54.9) 1 (33.3; 1.8, 87.5) 4(66.7; 24.1, 94) 

80th r ≤ 0.32 3798 (80) 14 (63.6; 40.8, 82) 1 (33.3; 1.8, 87.5) 5 (83.3; 36.5, 99.1) 

90th r ≤ 0.49 4273 (90) 18 (81.8; 59, 94) 2 (66.7; 12.5, 98.2) 6 (100; 51.7, 100) 

100th r ≤ 7.6  4748 (100) 22(100; 81.5, 99.6) 3 (100; 31, 96.8) 6 (100; 51.7, 100) 

Abbreviation: LCRAT: Lung Cancer risk Assessment Tool 

As published in (González Maldonado et al. 2021a), reprinted with permission. 
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Supplementary Figure 5. Potential effect of risk thresholds from the Polynomial model in participants from all screening rounds of the LUSI Trial, eligible for the 
LCRAT+CT model 

Abbreviations: LCRAT: Lung Cancer risk Assessment Tool. 

As published in (González Maldonado et al. 2021a), reprinted with permission. 
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Supplementary Table 3. Observed incidence and mean predicted risk from the LCRAT, LCRAT+CT in 
subjects eligible for the LCRAT+CT model 

Screening 
round 

Observed incidence 
at next scan (%) 

Mean predicted risk (%) 
BS; Sp-Z (p-value) † 

LCRAT LCRAT + CT LCRAT LCRAT + CT 

T0 to T3 20/4904 (0.41) 0.22 0.21 0.004;2.88 (0.004) 0.004; 3.09 (0.002) 

First round 
(T0) 

6/1194 (0.50) 0.19 0.18 0.005; 2.44 (0.015) 0.005; 2.68 (0.007) 

Second round 
(T1) 

3/1220 (0.25) 0.21 0.20 0.002; 0.27 (0.787) 0.002; 0.39 (0.693) 

Third round 
(T2) 

5/1262 (0.40) 0.23 0.22 0.004; 1.28 (0.201) 0.004; 1.36 (0.175) 

Fourth round 
(T3) 

6/1228 (0.49) 0.24 0.24 0.005; 1.82 (0.069) 0.005; 1.82 (0.069) 

T1 to T3 14/3710 (0.38) 0.23 0.22 0.004; 1.97 (0.049) 0.004; 2.10 (0.036) 

As published in (González Maldonado et al. 2021a), reprinted with permission. 

 
 
Supplementary Table 4. Observed incidence and mean predicted risk from the Polynomial model 

Screening 
round 

Observed incidence in [Tn, 
Tn+1) ‡ (%) 

Mean predicted risk (%) BS; Sp-Z (p-value) † 

Polynomial model  

First round 
(T0) 

11/1889 (0.58) 0.31 0.006; 2.14 (0.032) 

Second round 
(T1) 

11/1737 (0.63) 0.33 0.006; 2.28 (0.023) 

Third round 
(T2) 

10/1728 (0.57) 0.32 0.006; 1.91 (0.055) 

Fourth round 
(T3) 

10/1726 (0.58) 0.36 0.006; 1.71 (0.088) 

Fifth round 
(T4) 

1/1754(0.057) 0.32 0.006; -1.95 (0.052) 

T1 to T4 32/6966 0.46 0.33 0.005; 1.98 (0.048) 

†Brier Score, Spiegelhalter’s Z-Score and Spiegelhalter’s test p-value. ‡ For the purpose of evaluating model 
calibration, the observed lung cancer incidence in the subset of participants eligible for the Polynomial model was 
calculated only among those with a valid prediction from the model (i.e., after removing those with NA for risks). 

As published in (González Maldonado et al. 2021a), reprinted with permission. 
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Supplementary Table 5. Nodule count by size, screening round (prevalent vs. incident), malignancy status, and nodule type 

  First seen on the prevalence round First seen on any incidence round First seen on any round 

Nodule count (%) benign malignant benign malignant benign malignant 

Nodule size 
(largest diameter 

in mm) 

solid 
sub-
solid 

solid 
sub-
solid 

solid sub-solid solid 
sub-
solid 

solid sub-solid solid 
sub-
solid 

2772 79 19 13 875 114 21 10 3647 193 40 23 

≤ 3 
 213 
(7.7)  

 3 (3.8)   0 (0.0)   0 (0.0)   16 (1.8)  0 (0.0)   0 (0.0)   0 (0.0)   229 (6.3)    3 (1.6)   0 (0.0)   0 (0.0)  

> 3 and ≤ 4 1038 (37.4)  13 (16.5)   1 (5.3)   0 (0.0)  121(13.8)  1 (0.9)   0 (0.0)   1 (10.0)  1159 (31.8)   14 (7.3)   1 (2.5)   1 (4.3)  

> 4 and ≤ 5  649 (23.4)   5 (6.3)   1 (5.3)   0 (0.0)  136 (15.5)   10 (8.8)   0 (0.0)   0 (0.0)   785 (21.5)   15 (7.8)   1 (2.5)   0 (0.0)  

> 5 and ≤ 6  366 (13.2)  14 (17.7)   2 (10.5)   0 (0.0)  221 (25.3)   19 (16.7)   1 (4.8)   0 (0.0)   587 (16.1)   33 (17.1)   3 (7.5)   0 (0.0)  

> 6 and ≤ 8  368 (13.3)  24 (30.4)   5 (26.3)   0 (0.0)  190 (21.7)   16 (14.0)   3 (14.3)   1 (10.0)   558 (15.3)   40 (20.7)   8 (20.0)   1 (4.3)  

> 8 and ≤ 10 83 (3.0)   8 (10.1)   2 (10.5)   3 (23.1)   73 (8.3)   17 (14.9)   4 (19.0)   1 (10.0)   156 (4.3)   25 (13.0)   6 (15.0)   4 (17.4)  

> 10  55 (2.0)  12 (15.2)   8 (42.1)  10 (76.9)  118 (13.5)   51 (44.7)  13 (61.9)   7 (70.0)   173 (4.7)   63 (32.6)  21 (52.5)  17 (73.9)  

As published in (González Maldonado et al. 2020a), reprinted with permission.
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Supplementary Table 6. Observed versus predicted nodule malignancy rates by deciles of predicted risk (prevalence round) 

Prediction 
Model 

Observed and predicted 
values 

Deciles of predicted nodule malignancy (prevalence round) 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

PanCan 1b 

Decile cut-offs % 
(0.01-
0.07) 

(0.07-
0.12) 

(0.12-
0.16) 

(0.16-
0.25) 

(0.25-
0.32) 

(0.32-
0.47) 

(0.47-
0.68) 

(0.68-
1.1) 

(1.1-
2.25) 

(2.25-
79.87) 

Nodule count 318 275 289 281 284 316 256 290 285 289 

Malignant nodule count 0 1 0 0 0 1 0 1 3 25 

Observed malignancy % 0.00 0.36 0.00 0.00 0.00 0.32 0.00 0.34 1.05 8.00 

Predicted malignancy % 0.05 0.10 0.14 0.20 0.28 0.40 0.58 0.87 1.52 8.42 

PanCan 2b 

Decile cut-offs % 
(0.01-
0.05) 

(0.05-
0.09) 

(0.09-
0.12) 

(0.12-
0.17) 

(0.17-
0.24) 

(0.24-
0.34) 

(0.34-
0.51) 

(0.51-
0.83) 

(0.83-
1.54) 

(1.54-
68.07) 

Nodule count 289 288 290 286 289 288 288 288 288 289 

Malignant nodule count 0 0 0 1 0 0 0 2 3 26 

Observed malignancy % 0.00 0.00 0.00 0.35 0.00 0.00 0.00 0.69 1.04 9.00 

Predicted malignancy % 0.04 0.07 0.10 0.15 0.20 0.28 0.42 0.65 1.12 6.57 

PanCan MD 

Decile cut-offs % 
(0-0) (0-0) (0-0) (0-0.01) 

(0.01-
0.02) 

(0.02-
0.05) 

(0.05-
0.11) 

(0.11-
0.26) 

(0.26-
0.74) 

(0.74-
70.76) 

Nodule count 290 287 288 288 289 288 288 288 288 289 

Malignant nodule count 0 0 0 0 0 1 0 4 1 26 

Observed malignancy % 0.00 0.00 0.00 0.00 0.00 0.35 0.00 1.39 0.35 9.00 

Predicted malignancy % 0.00 0.00 0.00 0.01 0.02 0.03 0.07 0.18 0.45 5.16 

PanCan VOL 

Decile cut-offs % 
(0-0.02) 

(0.02-
0.04) 

(0.04-
0.06) 

(0.06-
0.09) 

(0.09-
0.13) 

(0.13-
0.2) 

(0.2-
0.31) 

(0.31-
0.54) 

(0.54-
1.15) 

(1.15-
61.11) 

Nodule count 289 288 288 288 289 288 288 288 288 289 

Malignant nodule count 0 0 0 0 0 1 0 3 3 25 

Observed malignancy % 0.0 0.0 0.0 0.0 0.0 0.4 0.0 1.0 1.0 8.7 

Predicted malignancy % 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.4 0.8 5.5 

As published in (González Maldonado et al. 2020a), reprinted with permission.
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Supplemental Table 6 (continued). Observed versus predicted nodule malignancy rates by deciles of predicted risk (prevalence round) 

Prediction 
Model 

Observed and predicted 
values 

Deciles of predicted nodule malignancy (prevalence round) - continued 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

UKLS 

Decile cut-offs % 
(0-0.06) 

(0.06-
0.1) 

(0.1-
0.15) 

(0.15-
0.22) 

(0.22-
0.36) 

(0.36-
0.61) 

(0.61-
1.14) 

(1.14-
1.94) 

(1.94-
4.36) 

(4.36-
100) 

Nodule count 281 280 281 280 281 280 280 281 280 281 

Malignant nodule count 2 2 4 5 0 1 4 4 3 5 

Observed malignancy % 0.71 0.71 1.42 1.79 0.00 0.36 1.43 1.42 1.07 1.78 

Predicted malignancy % 0.04 0.08 0.13 0.18 0.28 0.46 0.81 1.52 2.94 12.67 

Mayo 

Decile cut-offs % 
(2.5-3.3) 

(3.3-
3.72) 

(3.72-
4.18) 

(4.18-
4.8) (4.8-5.7) 

(5.7-
6.66) 

(6.66-
7.7) 

(7.7-
9.08) 

(9.08-
11.05) 

(11.05-
100) 

Nodule count 290 287 288 288 289 288 288 288 288 289 

Malignant nodule count 0 1 0 1 0 1 1 2 0 26 

Observed malignancy % 0.00 0.35 0.00 0.35 0.00 0.35 0.35 0.69 0.00 9.00 

Predicted malignancy % 3.02 3.52 3.96 4.49 5.20 6.19 7.17 8.36 9.90 20.22 

PKUPH 

Decile cut-offs % 
(10.55-
12.91) 

(12.91-
14.26) 

(14.26-
16.27) 

(16.27-
18.42) 

(18.42-
20.83) 

(20.83-
24.18) 

(24.18-
28.35) 

(28.35-
37.28) 

(37.28-
52.47) 

(52.47-
99.92) 

Nodule count 289 288 288 288 290 287 288 288 288 289 

Malignant nodule count 0 0 1 1 1 0 3 3 3 20 

Observed malignancy % 0.00 0.00 0.35 0.35 0.34 0.00 1.04 1.04 1.04 6.92 

Predicted malignancy % 12.17 13.60 15.21 17.33 19.67 22.43 26.29 32.03 44.00 63.63 

VA 

Decile cut-offs % 
(8.24-
13.79) 

(13.79-
15.32) 

(15.32-
16.74) 

(16.74-
18.43) 

(18.43-
20.3) 

(20.3-
22.67) 

(22.67-
25.79) 

(25.79-
29.32) 

(29.32-
34.62) 

(34.62-
100) 

Nodule count 289 288 288 289 289 287 288 288 290 287 

Malignant nodule count 1 0 0 1 1 1 3 1 6 18 

Observed malignancy % 0.35 0.00 0.00 0.35 0.35 0.35 1.04 0.35 2.07 6.27 

Predicted malignancy % 12.17 14.60 16.06 17.58 19.34 21.44 24.11 27.50 31.91 42.96 

Models were applied to the low-dose computed tomography image where nodules were first seen. 
Abbreviations: MD: mean diameter; VOL: volume; UKLS: United Kingdom Lung Cancer Screening trial; PKUPH: Peking University People´s Hospital; VA: Veterans Affairs 

As published in (González Maldonado et al. 2020a), reprinted with permission.
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Supplementary Table 7. Observed versus predicted nodule malignancy rates by deciles of predicted risk (incidence rounds) 

Prediction 
Model 

Observed and predicted values 
Deciles of predicted nodule malignancy (incidence rounds) 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

PanCan 1b 

Decile cut-offs % 
(0.01-
0.16) 

(0.16-
0.37) 

(0.37-
0.58) 

(0.58-
0.82) 

(0.82-
1.16) 

(1.16-
1.74) 

(1.74-
2.92) 

(2.92-
6.4) 

(6.4-
14.86) 

(14.86-
82.52) 

Nodule count 102 112 93 101 104 100 102 102 103 101 

Malignant nodule count 0 0 0 2 2 0 4 5 5 13 

Observed malignancy % 0.00% 0.00% 0.00% 1.98% 1.92% 0.00% 3.92% 4.90% 4.85% 12.87% 

Predicted malignancy % 0.09% 0.27% 0.47% 0.70% 0.98% 1.43% 2.24% 4.47% 9.66% 33.09% 

PanCan 2b 

Decile cut-offs % 
(0-0.13) 

(0.13-
0.32) 

(0.32-
0.55) 

(0.55-
0.79) 

(0.79-
1.16) 

(1.16-
1.63) 

(1.63-
2.62) 

(2.62-
5.26) 

(5.26-
12.74) 

(12.74-
81.97) 

Nodule count 102 102 102 102 102 102 102 102 102 102 

Malignant nodule count 0 0 0 1 1 0 3 6 10 10 

Observed malignancy % 0.00% 0.00% 0.00% 0.98% 0.98% 0.00% 2.94% 5.88% 9.80% 9.80% 

Predicted malignancy % 0.07% 0.22% 0.43% 0.66% 0.95% 1.39% 2.12% 3.76% 8.17% 28.63% 

PanCan MD 

Decile cut-offs % 
(0-0) (0-0.04) 

(0.04-
0.09) 

(0.09-
0.17) 

(0.17-
0.31) 

(0.31-
0.53) 

(0.53-
1.26) 

(1.26-
3.23) 

(3.23-
9.77) 

(9.77-
78.07) 

Nodule count  102 102 102 102 102 102 102 102 102 102 

Malignant nodule count 1 0 0 0 0 2 1 8 9 10 

Observed malignancy % 0.98% 0.00% 0.00% 0.00% 0.00% 1.96% 0.98% 7.84% 8.82% 9.80% 

Predicted malignancy % 0.00% 0.02% 0.06% 0.13% 0.24% 0.41% 0.84% 2.04% 5.39% 25.89% 

PanCan VOL 

Decile cut-offs % 
(0-0.05) 

(0.05-
0.14) 

(0.14-
0.26) 

(0.26-
0.42) 

(0.42-
0.61) 

(0.61-
0.94) 

(0.94-
1.71) 

(1.71-
3.44) 

(3.44-
9.76) 

(9.76-
71.91) 

Nodule count 102 102 102 102 102 102 102 102 102 102 

Malignant nodule count 0 0 1 0 1 3 2 6 6 12 

Observed malignancy % 0.00% 0.00% 0.98% 0.00% 0.98% 2.94% 1.96% 5.88% 5.88% 11.76% 

Predicted malignancy % 0.03% 0.09% 0.20% 0.34% 0.51% 0.75% 1.25% 2.45% 5.50% 25.09% 

As published in (González Maldonado et al. 2020a), reprinted with permission. 
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Supplementary Table 7 (continued). Observed versus predicted nodule malignancy rates by deciles of predicted risk (incidence rounds) 

 

Prediction 
Model 

Observed and predicted values 
Deciles of predicted nodule malignancy (incidence rounds) - continued 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

UKLS 

Decile cut-offs % 
(0.01-
0.07) 

(0.07-
0.13) 

(0.13-
0.18) 

(0.18-
0.3) 

(0.3-
0.48) 

(0.48-
0.78) 

(0.78-
1.4) 

(1.4-
2.55) 

(2.55-
6.51) 

(6.51-
100) 

Nodule count 100 99 99 99 100 99 99 99 99 100 

Malignant nodule count 0 2 4 5 2 3 1 4 5 5 

Observed malignancy % 0.00% 2.02% 4.04% 5.05% 2.00% 3.03% 1.01% 4.04% 5.05% 5.00% 

Predicted malignancy % 0.04% 0.10% 0.15% 0.23% 0.37% 0.64% 1.03% 1.86% 3.89% 25.29% 

Mayo 

Decile cut-offs % 
(2.71-
4.02) 

(4.02-
4.8) 

(4.8-
5.77) 

(5.77-
6.95) 

(6.95-
8.28) 

(8.28-
9.79) 

(9.79-
12.4) 

(12.4-
16.72) 

(16.72-
29.15) 

(29.15-
99.87) 

Nodule count 102 102 101 102 101 102 101 102 101 102 

Malignant nodule count 0 1 0 2 0 2 2 4 6 14 

Observed malignancy % 0.00% 0.98% 0.00% 1.96% 0.00% 1.96% 1.98% 3.92% 5.94% 13.73% 

Predicted malignancy % 3.55% 4.37% 5.29% 6.32% 7.64% 9.04% 10.91% 14.16% 21.70% 54.07% 

PKUPH 

Decile cut-offs % 
(11.54-
15.81) 

(15.81-
17.93) 

(17.93-
21.67) 

(21.67-
25.69) 

(25.69-
32.11) 

(32.11-
40.21) 

(40.21-
55.03) 

(55.03-
66.37) 

(66.37-
77.76) 

(77.76-
99.46) 

Nodule count 102 102 102 102 102 102 102 102 102 102 

Malignant nodule count 0 0 1 1 1 4 7 1 7 9 

Observed malignancy % 0.00% 0.00% 0.98% 0.98% 0.98% 3.92% 6.86% 0.98% 6.86% 8.82% 

Predicted malignancy % 14.18% 16.73% 19.88% 23.47% 28.55% 36.30% 47.59% 60.99% 71.38% 86.04% 

VA 

Decile cut-offs % 
(9.07-
16.71) 

(16.71-
19.07) 

(19.07-
21.24) 

(21.24-
24.82) 

(24.82-
28.01) 

(28.01-
32.06) 

(32.06-
36.49) 

(36.49-
43.3) 

(43.3-
54.58) 

(54.58-
99.77) 

Nodule count 102 102 101 102 101 102 101 102 101 102 

Malignant nodule count 0 0 0 1 3 1 2 4 6 14 

Observed malignancy % 0.00% 0.00% 0.00% 0.98% 2.97% 0.98% 1.98% 3.92% 5.94% 13.73% 

Predicted malignancy % 14.22% 18.00% 20.06% 22.85% 26.30% 30.03% 34.23% 39.74% 48.35% 72.26% 

Models were applied to the low-dose computed tomography image where nodules were first seen. 
Abbreviations: MD: mean diameter; VOL: volume; UKLS: United Kingdom Lung Cancer Screening trial; PKUPH: Peking University People´s Hospital; VA: Veterans Affairs 

As published in (González Maldonado et al. 2020a), reprinted with permission.
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Supplementary Table 8. Evaluation of absolute risk calibration of the selected models when applied on 
nodules first observed in the prevalence or incidence rounds 

Models were applied to the low-dose computed tomography image where nodules were first seen. 
Abbreviations: HL: Hosmer-Lemeshow; BS: Brier Score; Sp. Z-Stat: Spiegelhalter Z-Statistic; Sp.Test p: 
Spiegelhalter Z-Test p-value; MD: mean diameter; VOL: volume; UKLS: United Kingdom Lung Cancer Screening 
trial; PKUPH: Peking University People´s Hospital; VA: Veterans Affairs 

As published in (González Maldonado et al. 2020a), reprinted with permission.

 Estimate, 
Test Statistic 

or 
p-value 

Risk Prediction Model 

PanCan 
1b 

PanCan 
2b 

PanCan 
MD 

PanCan 
VOL 

UKLS Mayo PKUPH VA 

Prevalence 
round 

HL Stat 7.71 7.23 30.53 10.89 158.99 162.32 1119.9 774.38 

HL Test p 0.56 0.61 <0.001 0.28 <0.001 <0.001 <0.001 <0.001 

BS all 0.009 0.009 0.009 0.009 0.012 0.014 0.094 0.063 

Sp. Z-Stat -1.081 0.436 3.888 1.978 -1.076 -12.63 -19.35 -25.24 

Sp. Test p 0.28 0.67 <0.001 0.05 0.28 <0.001 <0.001 <0.001 

Incidence 
rounds 

HL Stat 20.67 12.72 71.08 17.62 283.03 114.56 992.27 478.43 

HL Test p <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

BS all 0.034 0.034 0.033 0.032 0.041 0.053 0.214 0.134 

Sp. Z-Stat -1.114 -0.277 2.123 1.273 7.09 -6.052 4.925 -9.303 

Sp. Test p 0.27 0.78 0.03 0.20 <0.001 <0.001 <0.001 <0.001 
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Supplementary Table 9. Coefficients of multivariable logistic regression models fitted on data from the 
LUSI trial 

 
All factors included After variable selection  

Covariate β-coef 95% CI p-value β-coef 95% CI p-value 

Intercept -8.27 (-12.16, -4.38) <0.001 -9.88 (-13.03, -6.73) <0.001 

Age 0.07 (0.003, 0.14) 0.05 0.06 (0.01, 0.11) 0.02 

Sex -0.23 (-1.07, 0.60) 0.59    

History of cancer 

(excl. thorax) 
0.04 (-0.89, 0.97) 0.94    

Years since quit smoking 0.74 (-0.19, 1.68) 0.13 0.83 (-0.15, 1.82) 0.10 

Smoking duration (years) -0.03 (-0.11, 0.04) 0.39    

Emphysema 0.23 (-0.41, 0.88) 0.49    

Bronchitis -1.22 (-2.34, -0.11) 0.04 -1.23 (-2.29, -0.17) 0.03 

FVC -0.18 (-0.60, 0.24) 0.41    

Nodule size (MD, mm) 0.14 (0.09, 0.19) <0.001 0.14 (0.09, 0.19) <0.001 

Nodule type -0.58 (-1.67, 0.50) 0.30    

Nodule location (upper 
vs middle-or-lower) 

1.23 (0.39, 2.07) 0.004 1.23 (0.35, 2.11) 0.01 

Nodule count per scan -0.06 (-0.18, 0.06) 0.34    

Nodule spiculation 1.64 (0.93, 2.35) <0.001 1.72 (1.02, 2.42) <0.001 

Abbreviation: MD = mean diameter = (largest diameter + perpendicular diameter)/2 

As published in (González Maldonado et al. 2020a), reprinted with permission. 
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Supplementary Table 10. Basic characteristics of LUSI trial participants at randomization and at the end 
of follow-up 

Characteristics (at time of 
randomization or recruitment) 

Intervention arm Control arm p-valuea Total 

  n (% by arm) n (% by arm)  n (% overall) 

Participants 2,029 (50.1) 2,023 (49.9)  4,052 (100) 

Sex (male)  1,315 (50.1) 1,307 (49.9) 0.92 2,622 (64.7) 

Age at first screening (years, median 
[range])  

56.9 
[50.3, 71.9] 

56.9 
[50.3, 71.8] 

 56.9 
[50.3, 71.9] 

Age at 1st screening 
(years, age group) 

[50 – 55) 788 (39.0) 772 (38.2) 

0.69 

1560 (38.5) 

[55 – 60) 557 (27.5) 570 (28.2) 1127 (27.8) 

[60 – 65) 380 (18.8) 398 (19.7) 778 (19.2) 

>65 304 (15.0) 283 (14.0) 587 (13.6) 

Current smokers  1,259 (50.2) 1,248 (49.8) 

0.84  

2,506 (61.9) 

Former smokers  770 (49.8) 775 (50.2) 1,546 (38.1) 

Observation time since 
randomizationb (Median 
[IQR ]) 

Incidence 
9.76 

[8.8 – 10.4] 
9.77 

[8.8 – 10.4] 
0.52 

9.77 
[8.8 - 10.4] 

Mortality 
9.96 

[9.0 – 10.6] 
9.96 

[9.0 – 10.6] 
0.91 

9.96 
[9.0 – 10.6] 

Observation time after 
last screenb (Median 
[IQR]) 

Incidence 
5.73 

[4.8 – 6.3] 
-  - 

Mortality 
5.94 

[5.0 – 6.6] 
-  - 

Participants lost to follow-up  6 (0.3) 9 (0.4) 0.60 15 

Total number of lung cancers  90 (4.4) 74 (3.7) 0.24 164 

Number of deathsc 183 (9.0) 174 (8.6) 0.69 357 

Number of deaths from lung cancer  33 (1.6) 44 (2.2) 0.24 77 

Self- or clinician-
initiated X-ray or 
LDCT diagnostics 
for screening 
purposes 

a. During the 
active screening 
period 

12 98 < 0.001 110 

b. After the active 
screening period / 
after 5th 
questionnaire 

132 166 0.05 298 

a p-Value from a chi-squared test for categorical variables or from a Mann–Whitney U test for the difference in 
continuous variables between the two study arms. 
bUntil April 30th 2019 for lung cancer as endpoint (incidence) and until July 2nd 2019 for mortality.  
cUntil July 2nd 2019 (last vital status update from registry). 

As published in (González Maldonado et al. 2020b), reprinted with permission.
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Supplementary Figure 6. Annual incidence rates by study arm and excess incidence rates between study arms by years since randomization 

As published in (González Maldonado et al. 2020b), reprinted with permission.
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Supplementary Table 11. Lung cancer cases by tumor histology, study arm and sex 

  Control LDCT   

Tumor histology Male Female Subtotal Male Female Subtotal Total 

nonBAC Adenocarcinoma  24 12 36 31 18 49 85 

BAC Adenocarcinoma 0 1 1 4 6 10 11 

BAC (8250/3) 0 1 1 3 6 9 10 

Mucinous BAC (8253/3) 0 0 0 1 0 1 1 

cTX cN0 cM1a 1 0 1 1 0 1 2 

pT1 pN0 cM0 1 1 2 0 0 0 2 

pT1a pN0 cM0 0 2 2 0 0 0 2 

pT1b pN1 pM1b 0 1 1 0 0 0 1 

pT2 pN0 cM0 0 1 1 0 0 0 1 

pT2a pN0 cM0 2 0 2 0 0 0 2 

pT3 pN0 cM0 0 1 1 0 0 0 1 

Squamous cell 11 4 15 13 2 15 30 

Small cell 11 6 17 9 1 10 27 

Large cell 1 0 1 1 0 1 2 

Carcinoid 1 0 1 2 0 2 3 

Malignant neoplasm 0 1 1 1 0 1 2 

Unspecified 2 0 2 2 0 2 4 

Total 50 24 74 63 27 90 164 

        

  Male Female   

Tumor histology Control LDCT Subtotal Control LDCT Subtotal Sum 

nonBAC Adenocarcinoma 24 31 55 12 18 30 85 

BAC Adenocarcinoma 0 4 4 1 6 7 11 

BAC (8250/3) 0 3 3 1 6 7 10 

Mucinous BAC (8253/3) 0 1 1 0 0 0 1 

cTX cN0 cM1a 0 1 1 1 0 1 2 

pT1 pN0 cM0 0 1 1 0 1 1 2 

pT1a pN0 cM0 0 0 0 0 2 2 2 

pT1b pN1 pM1b 0 0 0 0 1 1 1 

pT2 pN0 cM0 0 0 0 0 1 1 1 

pT2a pN0 cM0 0 2 2 0 0 0 2 

pT3 pN0 cM0 0 0 0 0 1 1 1 

Squamous cell 11 13 24 4 2 6 30 

Small cell 11 9 20 6 1 7 27 

Large cell 1 1 2 0 0 0 2 

Carcinoid 1 2 3 0 0 0 3 

Malignant neoplasm 0 1 1 1 0 1 2 

Unspecified 2 2 4 0 0 0 4 

Total 50 63 113 24 27 51 164 

As published in (González Maldonado et al. 2020b), reprinted with permission.
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Supplementary Table 12. Incidence by study arm and excess incidence by years since randomization 

  
Years since 

randomization 
(0,1] (1,2] (2,3] (3,4] (4,5] (5,6] (6,7] (7,8] (8,9] (9,10] (10,11] 

LDCT 

Cases 19 15 13 9 7 5 6 6 2 5 3 

nonBAC 
Adenocarcinoma 
(%) 

10 (52.6) 10 (66.7) 7 (53.8) 6 (66.7) 3 (42.9) 2 (40.0) 1 (16.7) 3 (50.0) 1 (50.0) 4 (80.0) 2 (66.7) 

BAC (%) 2 (10.5) 1(6.7) 1 (7.7) 2 (22.2) 1 (14.3) 1 (20.0) 1 (16.7) 0 0 0 1 (33.3) 

Other (%) 7 (36.8) 4 (26.7) 5 (38.5) 1 (11.1) 3 (42.9) 2 (40.0) 4 (66.7) 3 (50.0) 1 (20.0) 1 (20.0) 0 

Screen-detected 18 15 11 8 5 4 2 0 0 0 0 

nonBAC 
Adenocarcinoma 
(%) a 

9 (90) 10 (100) 7 (100) 5 (83.3) 3 (100) 2 (100) 0 0 0 0 0 

BAC (%) a 2 (100) 1 (100) 1 (100) 2 (100) 1 (100) 0 1 (100) 0 0 0 0 

Other (%) a 7 (100) 4 (100) 3 (60) 1 (100) 1 (33.3) 2 (100) 1 (25) 0 0 0 0 

Control 

Cases 4 7 8 13 4 6 12 8 6 6 0 

nonBAC 
Adenocarcinoma 
(%) 

2 (50.0) 4 (57.1) 3 (37.5) 7 (53.8) 2 (50.0) 0 8 (66.7) 5 (62.5) 3 (50.0) 2 (33.3) 0 

BAC (%) 0 0 0 0 1 (25.0) 0 0 0 0 0 0 

Other (%) 2 (50.0) 3 (42.9) 5 (62.5) 6 (46.2) 1 (25.0) 6 (100) 4 (33.3) 3 (37.5) 3 (50.0) 4 (66.7) 0 

Excess 
incidence 

All subtypes 15 8 5 -4 3 -1 -6 -2 -4 -1 3 

nonBAC 
Adenocarcinoma 

8 6 4 -1 1 2 -7 -2 -2 2 2 

BAC 2 1 1 2 0 1 1 0 0 0 1 

Other 5 1 0 -5 2 -4 0 0 -2 -3 0 

a Percentage of screen-detected tumors relative to all tumors of the same histologic subtype in the LDCT arm. 

As published in (González Maldonado et al. 2020b), reprinted with permission.
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Supplementary Table 13. Model fit based on observed and expected screen-detected and non-screen 
detected lung cancer cases 

Screening round 
or post-

screening years 
Screened 

Screen-
detected 

cases (SDC) 

Non-screen 
detecteda 

cases 
(IC) 

Expected 
SDC 

Expected 
IC 

𝜒 
2 statistic, p-

value 

R1 2028 24 1 23.55 1.45 

1.95, p= 0.58 

R2 1892 11 0 9.99 1.01 

R3 1849 10 2 10.48 1.52 

R4 1826 9 1 8.73 1.27 

0-1 y after R5 1810 9 2 9.85 1.15 

0-2 y after R5b 
 9 3 8.73 3.27 1.28, p= 0.73 

0-3 y after R5b  9 7 9.12 6.88 1.25, p= 0.74 

0-4 y after R5b  9 13 9.87 12.13 1.39, p= 0.71 

0-5 y after R5b  9 15 9.32 14.68 1.27, p= 0.74 

0-6 y after R5b  9 20 10.43 18.57 1.56, p= 0.67 

0-7 y after R5b  9 23 11.51 20.49 2.11, p= 0.55 

a Non-screen detected cases are interval cancer cases (diagnosed in between screening appointments or within 
one year of the last screening appointment, following a negative screening appointment), as well as lung cancer 
cases diagnosed later than one year after last screening. 
b These numbers represent cumulative lung cancer incidence in the years following the last screening 
appointment (screen-detected cases after R5 remain constant in the absence of screening and non-screen 
detected cases continue to be diagnosed in the subsequent years). For example, in the period 0-4 years after R5, 
there were 2 interval cancers in the first year after screening and 11 diagnoses in the years 2 to 4 after R5 for a 
total of 13 non-screen detected cases. 

As published in (González Maldonado et al. 2020b), reprinted with permission. 

 
Supplementary Table 14. Estimated proportions of screen-detected tumors by lead time ((1 – Pclin(t)) 

 1 – Pclin (95% CI) 

Histologic subtype 4y 6y 8y 10y 12y 

Non-small cell lung cancers 
non- BAC 

32.9% 
(26.4%, 
39.4%) 

18.9% 
(13.5%, 
24.8%) 

10.8% 
(6.9%, 
15.6%) 

6.2% 
(3.6%, 
9.8%) 

3.6% 
(1.8%, 
6.1%) 

BAC 
88.3% 

(79.4%, 
98.5%) 

83.0% 
(70.7%, 
97.8%) 

77.9% 
(63.0%, 
97.1%) 

73.2% 
(56.1%, 
96.4%) 

68.8% 
(50.0%, 
95.7%) 

a Probabilities calculated based on the estimates of mean pre-clinical sojourn time and sensitivity published by 
Patz et al. 20188. 

As published in (González Maldonado et al. 2020b), reprinted with permission. 
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Supplementary Table 15. Performance of EarlyCDT®-Lung amongst subjects with suspicious nodules by nodule size. 

 

EarlyCDT®-
Lung result 

HIGH MOD NS OR [95% CI] LR+ 

Lung cancer 
status 

LC No LC LC No LC LC No LC Positive = High 
Positive = High or 

Moderate 
Positive = High 

Positive = High or 
Moderate 

Largest 
diameter 

< 10 1 4 0 3 10 78 
2.03 

[0.20, 19.95] 
1.11 

[0.12, 10.02] 
1.93 

[0.24, 15.77] 
1.10 

[0.16, 7.53] 

≥≥ 10 5 0 0 1 29 4 --- 
0.69 

[0.06, 7.51] 
1.17 

[1.02, 1.35) 
0.95 

[0.65, 1.39] 

Overall† 6 4 0 4 39 82 
3.31 

[0.88, 12.39] 
1.58  

[0.51, 4.86] 
1.92 

[1.09, 3.40] 
1.50 

[0.55, 4.06] 

† For one subject, the CT scan evaluation at round 2 was deemed suspicious (with immediate recall) even in the absence of pulmonary nodules, due to the identification of atelectasis 
(collapsed lung) in the scan images. That subject was excluded for these analyses. 

As published in (González Maldonado et al. 2020b), reprinted with permission. 
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Supplementary Table 16. Trial characteristics and corresponding overdiagnosis estimates defined as 
the fraction of screen-detected lung cancers 

Trial namea 
Age limits for 

eligibility 
(years) 

FU after last 
screen 
(years)b 

Participation rate 
Contamination 

rate 

Estimated 
Overdiagnosis, PS, 

(95% CI) 

DLCST  
(Heleno 2018) 

50–70 5 95.5% 20.3% 0.67 (0.37, 0.96) 

ITALUNG  
(Paci 2017, Paci 
2020) 

55–69 

5 

81% 

Not reported (NR) –0.11 (NR) 

8.3c NR -0.24 (NR) 

LUSI  
(this study) 

50–69 5.71d 
Lowest at R4 with 
93.4% and highest 
at R1 with 99.9% 

13.0%e 
(264/2023) 

0.25 (-0.11, 0.64) 

NELSON 
(deKoning 2020) 

50–74 

4.5 
85.8% in total 

(lowest at R4 with 
67.4%, highest at 
R1 with 95.8%) 

NR 

0.20 (–0.05, 0.42) 

5.5 0.09 (-0.18, 0.32) 

NLST 
(Patz 2014; 
NLST Team 2019) 

55-74 

4.5f 

95% 

NR 
0.19  

(0.05, 0.31) 

9.3f NR 
0.03  
(NR) 

a Results shown in this table come from studies receiving a quality rating of 1: properly powered and conducted 
randomized clinical trial. 
b Reported approximate post-screening follow up in the original publications. 
c Approximate post-screening follow-up calculated as originally reported median post-randomization follow-up = 
11.3 - 3 years corresponding to 4 screening rounds. 
d Median follow-up time after an individual’s last screening appointment and until 30.04.2019.  
e Contamination rate: percentage of participants in the control group with at least one test (LDCT or X-rays) during 
the active phase or during follow-up for lung cancer screening purposes outside the LUSI trial. 
f Median follow-up time after an individual’s last screening appointment as reported by the NLST team. 

As published in (González Maldonado et al. 2020b), reprinted with permission.
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10 APPENDIX 

10.1 R code (convolution model)  

################################################################################ 
# Author: Sandra Gonzalez Maldonado 
# Goal: Estimate tumor mean pre-clinical sojourn time,  
#       LDCT detection sensitivity, lead time and  
#       the proportion of tumors with lead times below a certain value,  
#       using a convolution model 
# Method implemented using a multinomial distribution for the vector of  
# screen-detected and interval cancers 
# Literature: Straatman H et al 1997.  
# Estimating Lead Time and Sensitivity in a Screening Program without  
# Estimating the Incidence in the Screened Group. Biometrics 
# Modification: P[I0] = 0 <- null incidence between recruitment and first screen  
 
############################################################################ 
#------       Model-based estimation : Convolution model   ----------------# 
# --     assuming an exponential distribution of sojourn times  -----------# 
############################################################################ 
#---------                ALL HISTOLOGIES, ALL AGES       ----------------#    
   # Vector with the screening rounds 
    screens 
   # Age at entry 
    age_entry 
   # Years of follow-up since randomization 
    yearsofFU 
   # Observed prevalent cases at screening times 
    S_vect 
   # Observed interval cases 
    I_vect_screenperiod  
   # Incident cases post-screening 
    (I_vect <- I_vect_screenperiod+ c(0,0,0,0,post_sc_cases)) 
    
estimate_results <- list() 
    
# Consider different ages at which tumor genesis starts    
    
  for (a in c(1:6)) 
  { 
   age_tumor_genesis <- c(0, 10, 20, 30, 40, 45)   
     
  print( t_vect <- age_entry - age_tumor_genesis[a] + c(0,1,2,3,4,yearsofFU)) 
    
#################################################################### 
# Estimate lambda (1/MST) and theta = sensitivity 
# By maximizing the PARTIAL LOG-LIKELIHOOD of a multinomial distribution 
  
partial_loglik_f <- function(x){ 
         
        l = x[1] 
        theta = x[2] 
        r <- 0.001 # This parameter disappears in the partial log likelihood;  
                   # it can be set to any arbitrary value                      
 
  # Calculate probabilities of screen-detected and interval cases  
  # separately as in Straatman 1997 (Biometrics) 
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  # Ignore the pre-screening period (0 to t1), as in method 1 in Straatman 1997 
         
   P_S <- c(rep(0,length(screens))) ; P_I <- c(rep(0,length(screens))) 
         
   P_S[1] <- (r/l)*(1-(1/(l*t_vect[1]))+ 
                       exp(-l*t_vect[1])/(l*t_vect[1]))*(1-exp(-l*t_vect[1]))  
    
   P_I[1] <- r*(t_vect[2]-t_vect[1]) - (r/l)*(1-exp(-l*(t_vect[2]-t_vect[1]))) 
         
   if (length(screens)>1){  
    for (j in c(2:length(screens))){ 
      P_S[j] = (r/l)*(1-exp(-l*(t_vect[j]-t_vect[j-1]))) 
      P_I[j] = r*(t_vect[j+1]-t_vect[j]) - 
         (r/l)*(1-exp(-l*(t_vect[j+1]-t_vect[j]))) 
        }} 
         
  #  Considering sensitivity = theta in (0,1] 
       
      P_S_theta <- c(rep(0,length(screens))) 
      P_I_theta <- c(rep(0,length(screens))) 
         
      P_S_theta[1] = P_S[1]*theta 
      P_I_theta[1] = P_S[1]*(1-theta)*(1-exp(-l*(t_vect[2]-t_vect[1])))+P_I[1] 
       
  if (length(screens)>1){     
    for (j in c(2:length(screens))){ 
      P_S_theta[j] = P_S[j]*theta +  
         P_S[j-1]*(1-theta)*(exp(-l*(t_vect[j]-t_vect[j-1]))) 
       
      P_I_theta[j] = P_I[j]+(1-theta)*P_S[j]*(1-exp(-l*(t_vect[j+1]-t_vect[j]))) 
        }} 
       
   s_logps <- sum(S_vect*log(P_S_theta/(P_S_theta + (1-p_l/2)*P_I_theta))) 
   i_logpi <- sum(I_vect*log(1-(P_S_theta/(P_S_theta + (1-p_l/2)*P_I_theta)))) 
         
   LL <-  s_logps + i_logpi  
         
        return(LL) 
} 
    
  # Matrix defining the constrains on lambda >=0 and 0<=theta<=1    
       
    ui <- matrix(c(1, 0,  0, 1,  0, -1), ncol = 2, byrow= T) 
    ci <- c(0,0,-1) 
   
  # Maximize the partial log-likelihood by applying constrained maximization           
       
    maxima <- constrOptim(theta = c(0.3, 0.8), # initialize parameters 
                          f= partial_loglik_f, grad = NULL,  
                          ui = ui, ci = ci, 
                          control = list(fnscale = -1))$par 
       
  # Calculate the function on a grid, in order to find the confidence regions       
       
    MST_SENS = expand.grid(x=seq(0.01, 1, 0.008),  
                           y=seq(0.2,1, 0.008))   
       
    results <- apply(as.matrix(MST_SENS), 1, partial_loglik_f)   
  # get arg max of the likelihood function 
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    MST_SENS[which(results == max(results, na.rm = T)),] 
       
    (l_hat <- MST_SENS[which(results == max(results, na.rm = T)),1]) 
    (theta_hat <- MST_SENS[which(results == max(results, na.rm = T)),2]) 
       
  # Estimated mean sojourn time (1/lambda_hat), and sensitivity 
       
    (mean_sojourn_time <- 1/l_hat) 
    (sens_hat <- theta_hat) 
       
  # Calculate confidence regions  
       
   # Get the quantiles of a chi-squared distribution with 
   # two degrees of freedom as suggested in Walter and Day 1984 
       
   chi2_90 <- qchisq(0.9, df = 2, ncp = 0, lower.tail = FALSE, log.p = FALSE) 
   chi2_95 <- qchisq(0.95, df = 2, ncp = 0, lower.tail = FALSE, log.p = FALSE) 
       
   # calculate the regions based on whether twice the distance to the maximum  
   # is less than the chisquare quantile  
       
   conf_region_90 <- MST_SENS[which((partial_loglik_f(maxima)  - results )  
                                    < chi2_90/2),] 
   (conf_MST_90  <- c(1/max(conf_region_90[,1], na.rm = T),  
                      1/min(conf_region_90[,1], na.rm = T))) 
    
   (conf_sens_90  <- c(min(conf_region_90[,2], na.rm = T),  
                       max(conf_region_90[,2], na.rm = T))) 
       
   conf_region_95 <- MST_SENS[which((partial_loglik_f(maxima)   - results )  
                                    < chi2_95/2),] 
   (conf_MST_95  <- c(1/max(conf_region_95[,1], na.rm = T),  
                      1/min(conf_region_95[,1], na.rm = T))) 
    
   (conf_sens_95  <- c(min(conf_region_95[,2], na.rm = T),  
                       max(conf_region_95[,2], na.rm = T))) 
       
      estimate_results[[a]] <- c(age_tumor_genesis[a], mean_sojourn_time, 
                                 conf_MST_90, conf_MST_95, 
                                 sens_hat, conf_sens_90, conf_sens_95)   
  } 
    
   estimate_results_df <- data.frame(do.call(rbind, estimate_results)) 
    
   names(estimate_results_df) <- c("age_tumorgenesis_start", "MST",  
                                   "MST_90%CI_L", "MST_90%CI_U",  
                                   "MST_95%CI_L", "MST_95%CI_U",  
                                   "SENS", "SENS_90%CI_L", "SENS_90%CI_U",  
                                   "SENS_95%CI_L", "SENS_95%CI_U") 
   (estimate_results_df ) 
    
##########################################################################   
#---------    CALCULATE PROPORTION OF TUMORS BY LEAD TIMES   ------------#    
##########################################################################    
 
   print("Proportion becoming clinical: 1- exp(-lambda*t) all") 
      for (t in c(4, 6, 8, 10, 12))  
      {print(exp(-t*(1/estimate_results[[1]][2]))) 
       print("CIs low") 
       print( exp(-t*(1/estimate_results[[1]][6]))) 
       print("CIs upper") 
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       print( exp(-t*(1/estimate_results[[1]][5]))) 
      } 
    
##########################################################################   
#----- EXPECTED SCREEN DETECTED CASES (SDC) AND INTERVAL CASES (IC) -----# 
########################################################################## 
 
   t_vect <- age_entry  + c(0,1,2,3,4,yearsofFU) 
    
   expected_SD_INT <- function(x){ 
      
     l = x[1] 
     theta = x[2] 
      
     P_S <- c(rep(0,length(screens))) ; P_I <- c(rep(0,length(screens))) 
      
     P_S[1] <- (r/l)*(1-(1/(l*t_vect[1]))+ 
                         exp(-l*t_vect[1])/(l*t_vect[1]))*(1-exp(-l*t_vect[1]))  
     P_I[1] <- r*(t_vect[2]-t_vect[1]) - (r/l)*(1-exp(-l*(t_vect[2]-t_vect[1]))) 
      
     if (length(screens)>1){  
       for (j in c(2:length(screens))){ 
         P_S[j] = (r/l)*(1-exp(-l*(t_vect[j]-t_vect[j-1]))) 
         P_I[j] = r*(t_vect[j+1]-t_vect[j]) - 
            (r/l)*(1-exp(-l*(t_vect[j+1]-t_vect[j]))) 
       }} 
      
     #  Considering sensitivity = theta in (0,1] 
      
       P_S_theta <- c(rep(0,length(screens))) 
       P_I_theta <- c(rep(0,length(screens))) 
         
       P_S_theta[1] = P_S[1]*theta 
       P_I_theta[1] = P_S[1]*(1-theta)*(1-exp(-l*(t_vect[2]-t_vect[1])))+P_I[1] 
      
      if (length(screens)>1){     
       for (j in c(2:length(screens))){ 
       P_S_theta[j] = P_S[j]*theta +  
               P_S[j-1]*(1-theta)*(exp(-l*(t_vect[j]-t_vect[j-1]))) 
             
       P_I_theta[j] = P_I[j]+ 
            (1-theta)*P_S[j]*(1-exp(-l*(t_vect[j+1]-t_vect[j]))) 
          }} 
      
     return(c(P_S_theta, P_I_theta)) 
      
   }       
    
   ##------  Calculate expected proportions of SDCs and ICs  --------------# 
     
   #    All 
     r<- 0.08 # This parameter disappears in the partial log likelihood 
     probs <- expected_SD_INT(c(1/estimate_results_df$MST[1],  
                                estimate_results_df$SENS[1])) 
     probs_sd <- probs[1:5] 
     probs_int  <- probs[6:10] 
     exp_proportion_sd <- probs_sd/(probs_sd + (1-p_l/2)*probs_int)  
      
###############################################################################      
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