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Abstract

In this paper, we propose a new asymmetric stochastic volatility model whose asymmetry param-
eter can change depending on the intensity of the shock and is modeled as a threshold function
whose threshold depends on past returns. We study the model in terms of leverage and propaga-
tion using a new concept that has recently appeared in the literature. We find that the new model
can generate more leverage and propagation than a well-known asymmetric volatility model. We
also propose to estimate the parameters of the model by cloning data. We compare the estimates
in finite samples of data cloning and a Bayesian approach and find that data cloning is often more
accurate. Data cloning is a general technique for computing maximum likelihood estimators and
their asymptotic variances using a Markov chain Monte Carlo (MCMC) method. The empirical
application shows that the new model often improves the fit compared to the benchmark model.
Finally, the new proposal together with data cloning estimation often leads to more accurate
1-day and 10-day volatility forecasts, especially for return series with high volatility.

Keywords: Asymmetric stochastic volatility, Data cloning, Leverage effect, Propagation,
Volatility forecasting

1. Introduction

In the literature on stochastic volatility, asymmetric volatility effects have traditionally been
modeled either by assuming a negative correlation between returns and future volatility (Harvey
and Shephard, 1996) or by allowing the parameters of the log- volatility equation to differ as a
function of the sign of lagged returns (Breidt, 1996; So et al., 2002). This asymmetric response
of volatility to price changes is also known as the leverage effect.

Catania (2020) proposes a different way of measuring the leverage effect that does not consist
of the correlation between volatility and past returns. The new measure has advantages in that
it does not require the existence of the fourth moment of standardized returns and the variance
process, it can be calculated using only returns, and it allows quantifying the contribution of
leverage to the total variance of the process. Moreover, Catania (2020) shows that the estimator
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of the correlation between volatility and past returns for the leverage effect is inconsistent, i.e.
it often underestimates this effect.

In this paper, we propose a new asymmetric stochastic volatility model whose asymmetric
volatility response parameter depends on the intensity of the shock. It is modeled as a threshold
function whose threshold depends on past returns. If the lagged return is more negative than
the average of the lagged returns of the last 5 days (weekly effect), we consider this as a strong
shock and therefore allow the leverage coefficient to be more negative than that when the lagged
return is less negative than the average of the last 5 returns.

The model is called the threshold asymmetric autoregressive stochastic volatility (TAARSV)
model and is an extension of AARSV, which belongs to the family of generalized asymmetric
stochastic volatility (GASV) proposed by Mao et al. (2020).

We apply the new measure of leverage and propagation of Catania (2020) to the TAARSV and
AARSV models and find that the new proposal is able to produce more leverage and propagation
than AARSV. We also prove mathematically that AARSV is able to generate leverage and
propagation.

Catania (2022) also proposes a new stochastic volatility model that establishes a general
correlation structure between the shock of the return equation and log-volatility at different lags,
and he shows that it improves the fit of leverage and propagation compared to other existing
models in the literature.

Although related to modelling leverage in stochastic volatility models, from a different per-
spective, some work in the literature allows leverage to vary over time. For example, Bandi and
Renò (2012) define leverage as a flexible function that depends on the state of the firm and is
thus variable over time. The state of the firm is measured by the level of spot variance. Yu
(2012) proposes a semiparametric stochastic volatility model in which the correlation between
the return and the volatility innovation depends on the type of news that arrived in the market.
The model is based on a linear spline. Others, such as Bretó (2014), use the Fisher transfor-
mation to allow leverage to change over time. Motivated by Yu (2012), Wu and Wang (2020)
model volatility innovation as a linear spline. On the other hand, Nguyen et al. (2023) assume
that volatility innovation follows a generalized autoregressive score process.

The estimation of the TAARSV is nonstandard. Bermudez et al. (2020) use data cloning (DC)
to estimate several asymmetric stochastic volatility models that assume different distributions
for standardized returns. They find that DC is quite reliable and computationally efficient for
finite samples and can be an effective alternative to existing estimation methods for general
asymmetric volatility models. Therefore, in this paper we also propose the use of DC to estimate
the parameters of the TAARSV model.

Data cloning is a general technique to obtain approximate maximum likelihood estimators
along with their asymptotic variances using an MCMC procedure (Lele et al., 2007, 2010). Its
greatest strength is that changes to the model specification can be easily made. Moreover, the
method is hardly affected by the choice of the prior (proper) distributions of the parameters,
assuming a reasonable number of clones (Lele et al., 2007, 2010).

For the implementation of DC we use the free software dclone in an R framework and for
the Bayesian approach (BA) we use JAGS (Plummer, 2003). The main weakness of the Bayesian
MCMC implementation is its slow convergence and inefficiency in simulation, since it is based
on a single-move Gibbs sampling algorithm as in WinBUGS (see Meyer and Yu, 2000; Yu, 2005,
2012, for the WinBUGS implementation of SV models). DC often improves the accuracy of
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parameter estimates of the models considered in this paper compared to the standard BA, making
it an effective alternative estimation method for more flexible SV models.

The main contributions of this paper are first to propose a new asymmetric stochastic volatil-
ity model that can generate higher leverage. It is a nesting of other well-known models that
already exist in the literature. Second, we use DC to estimate the new model and compare its
performance with that of a standard Bayesian approach. Third, we use a new concept of leverage
and propagation from Catania (2020) and study the new proposal and the benchmark in terms of
leverage and propagation. The unconditional and conditional tests of superior predictive ability
for volatility forecasting show that the new model and the DC estimation method often perform
better for 1-day volatility forecasts. For 10-day volatility forecasts, the new proposal for Bitcoin
remains the preferred specification.

The paper proceeds as follows. Section 2 introduces the new model and the concept of
leverage and propagation that we follow in this paper. We also prove mathematically that a
nested model is able to generate leverage and propagation and show through simulations that
the new model is able to generate more leverage and propagation than the benchmark. Section 3
describes the DC estimation method and presents a simulation study to analyze the performance
of the estimator in finite samples. Section 4 presents the empirical application and discusses the
prediction results. Section 5 shows the main final conclusions of the paper. The proof and some
empirical results are in the Appendix.

2. Model description

This section proposes a new specification that allows for high leverage and propagation.
Volatility asymmetry depends on the intensity (int) of past returns and the specification is an
extension of the AARSV proposed by Mao et al. (2020).

Let yt be the return at time t, σ2
t its volatility, which is unobservable, ht ≡ log σ2

t , εt an
independent and identically distributed (IID) sequence with mean zero and variance one, ηt
follows a normal distribution with mean zero and variance σ2

η, and εt and ηt are uncorrelated
for all leads and lags. The univariate threshold asymmetric autoregressive stochastic volatility
model (TAARSV) is given by

yt = exp
(
ht
2

)
εt,

ht − µ = φ(ht−1 − µ) + γintεt−1 + ηt,

where

γint =


γ1 if yt−1 < 0 and yt−1 ≤ mean (yt−1, ..., yt−5)
γ2 if yt−1 < 0 and yt−1 > mean (yt−1, ..., yt−5)
0 if yt−1 ≥ 0,

(1)

with γ1 ≤ γ2 and γ1, γ2 < 0.
Volatility is expected to increase more with the size of the shock when the stock market

declines. We assume that |φ| < 1, so that the log variance is weakly stationary.
If we set γint = γ, the model is equivalent to the AARSV model from the GASV family. By
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recursive substitution, ht can be written as follows:

ht − µ =
∞∑
i=1

φi−1γintεt−i +
∞∑
i=1

φi−1ηt−i. (2)

If instead we analyze commodities and are faced with “reverse” leverage, the model can be
adjusted very easily.1

2.1. Leverage and propagation
Bollerslev et al. (2006) define the existence of a “prolonged leverage effect” whenever the

correlation between the variance and past returns is nonzero, i.e., corr(y2t , yt−k) 6= 0 for k > 1.
However, Catania (2020) shows that this estimator for leverage is generally inconsistent, leading
to its underestimation, and proposes a new measure of leverage and propagation given by:

v(s) = V ar[yt|yt−s < 0]− V ar[yt],

so that whenever v(1) > 0, there is leverage.
The existence of leverage propagation at lag s requires that v(s) > 0 for s > 1. The idea

according to Catania (2020) is that if a negative shock occurs at time t− s, volatility at time t
increases more than its unconditional value, and then there is leverage and propagation.

In Theorem 1, we investigate whether a nested model in the system (1) is able to handle
leverage and propagation as defined by Catania (2020).

Theorem 1. Consider the stationary process yt defined by system (1) with |φ| < 1. If εt follows
a normal distribution and γint = γ, then the leverage effect and the propagation till time s is
given by

v(1) = var[yt] [2Φ(−γ)− 1] (3)

where Φ(.) is the accumulative normal distribution,

var[yt] = exp

(
ht
2

)
= exp

(
µ+

γ2 + σ2
η

2(1− φ2)

)
and

v(s) = var[yt]
[
2Φ(−γφ(s−1))− 1

]
for s > 1, (4)

respectively.

Proof in the Appendix.

1In this case, we can define γint as follows

γint =

 γ1 if yt−1 > 0 and yt−1 ≥ mean (yt−1, ..., yt−5)
γ2 if yt−1 > 0 and yt−1 < mean (yt−1, ..., yt−5)
0 if yt−1 ≤ 0,

where γ1 ≥ γ2 and γ1, γ2 > 0.
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To illustrate the results of Theorem 1, we consider five cases involving the parameter set
(µ, φ, γ, ση):

• Case 1: set of parameters (0, 0.98,−0.07, 0.05),

• Case 2: set of parameters (0, 0.70,−0.07, 0.05),

• Case 3: set of parameters (0, 0.98,−0.15, 0.05),

• Case 4: set of parameters (0, 0.98,−0.07, 0.10),

• Case 5: set of parameters (0, 0.98, 0.07, 0.05).

Figure 1 shows that the leverage effect and propagation increase with the absolute value
of γ and also with σ2

η, as expected. In contrast, they decrease with the decrease of volatility
persistence (parameter φ).

Therefore, Figure 1 shows that the model proposed by Mao et al. (2020) can generate leverage
and propagation already when γ is negative. When γ is positive, v(s) is negative for several
periods and then converges to zero as s increases. A phenomenon corresponding to the “inverted”
leverage effect and “inverted” propagation.

−0.50

−0.25

0.00

0.25

0.50

0 50 100 150 200
s

v(
s)

Case 1 Case 2 Case 3 Case 4 Case 5

AARSV model

Figure 1. Leverage effect and propagation.

In the case where γint follows the process in the system (1), the leverage and propagation are
analyzed by simulation for two distributions, i.e., we assume that εt follows either a Gaussian or
a Student-t, and we compare the leverage and propagation with those obtained with the AARSV
model.

Thus, for a sample of T observations, v(s) is estimated as

v̂T (s) = ω̂−1T

T∑
t=s+1

y2t I(yt−s < 0)− (T − s)−1
T∑

t=s+1

y2t , (5)
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where I(.) is an indicator function that is one when the argument is true and zero otherwise,
and ω̂−1T =

∑T
t=s+1 I(yt−s < 0); see Catania (2020).

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100
s

v(
s)
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TAARSV model
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v(
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AARSV model

(a) (b)
Figure 2. Simulations: Leverage effect and propagation.

Figure 2, panel (a), shows the leverage effect and propagation for the TAARSV model consid-
ering three cases in terms of the parameter set (µ, φ, γint, ση) = (0, 0.98, (−0.10, −0.03, 0), 0.05)
and the distribution assumed for εt.

Case 1 corresponds to the Gaussian distribution, and cases 2 and 3 correspond to Student-
t(10) and Student-t(5), respectively. The values of the parameters are chosen so that the average
of γint for each generated series is close to −0.07.

Panel (b), on the other hand, corresponds to the AARSV model with the parameter set
(µ, φ, γ, ση) = (0, 0.98,−0.07, 0.05) and different distributions for εt corresponding to those of
the previous two cases. Panel (b) is available for comparison purposes.

We simulate 1000 series of size 5000 with the previously given parameters and calculate v̂T (s)

for each series. The lines in the figure are obtained by averaging the values of v̂T (s) at each s.
Figure 2 shows that the TAARSV model is able to produce larger values for leverage and

propagation for each s, especially compared to the AARSV model. Moreover, the more fat-tailed
the distribution of standardized returns, the larger the values of leverage and propagation for
each s.

All in all, this may suggest that more flexible models may perform better in fitting real
financial time series and consequently in estimating and predicting volatility.

3. Data cloning estimation

The method of data cloning is a computational technique that allows obtaining approximate
estimators of the maximum likelihood (ML) of parameters and their asymptotic variances using
a MCMC procedure (see, e.g, Lele et al., 2007, 2010). It is based on the intuitive idea of running
an experiment several times, always obtaining the same observations.
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In this way, given some observed data y = (y1, . . . , yn), a new data set is formed by creating
K clones of the original observations: y(K) = (y, . . . ,y). It is assumed that the clones are
independent and K is large enough. Accordingly, the likelihood of y(K) is equal to the K-th
power of the likelihood of the original data [L(θ|y)]K , where θ is the vector of parameters.

In general, with data cloning, a MCMC procedure is applied by taking the cloned data
y(K) and multiplying the corresponding likelihood [L(θ|y)]K by a given prior distribution π(θ)
of θ. Then samples are generated from the posterior distributions π(K)(θ|y). The selection
or elicitation of a proper prior distribution is not very important. The mean of the posterior
distribution of θ approximates the ML estimator (θ̂) as the number of clones K increases.
However, as Lele et al. (2010) notes, the convergence of the mean of the posterior distribution to
the ML estimator is faster when the prior distribution is more informative, and then a smaller
number of clones K is required.

For K large enough, π(K)(θ|y) converges to a multivariate normal distribution whose mean
is equal to the ML estimator of θ, and the covariance matrix equal to 1/K times the inverse of
the Fisher information matrix of the ML estimator of θ (see the appendix of Lele et al., 2007,
for details).

In summary, the data cloning algorithm consists of 3 steps:

Step 1: Generate a K-cloned data set y(K) = (y,y, . . . ,y) in such a way that the observed
data vector is repeated K times.

Step 2: Generate random deviates from the posterior distribution by means of an MCMC
algorithm, with any proper prior distribution π(θ) and the cloned data vector y(K) =
(y,y, . . . ,y). The K copies of y are assumed to be independent of each other.

Step 3: Compute sample means and variances of the MCMC chains generated from the pos-
terior distribution of the vector of parameters θ. The means of the posterior distributions
approximate the ML estimates of parameters, and K times the variances of the posterior
distributions coincide with the estimated asymptotic variances of the ML estimators of the
parameters.

One of the main advantages of data cloning is its simple and friendly implementation in
R with the packages dclone (Solymos, 2010) and dcmle (Solymos, 2016). The syntax used in
dclone is similar to the language BUGS.2

On the other hand, this technique is related to the Simulated Annealing technique, where
the power is increased gradually and progressively. In data cloning, the number of clones is
fixed, and although this can lead to a very accurate ML estimate, it can lead to problems such
as difficulty in exploring the entire parameter space and finding global modes if the number of
clones is not large enough. This fact can take a lot of computational time, especially when the
number of clones is large, and therefore makes the method less attractive from a practical point
of view. However, in our work we do not find any problems with convergence, since the sample
sizes in the simulations and the real data are large enough. However, in other cases, when large
data sets are involved, the computation time can be quite high.

2See code example in Appendix A.

7



First, the prior distributions of the parameters of the models must be defined. A suitable set
of prior distributions can be assumed. We consider weakly informative prior distributions based
on the literature on the estimation of SV models:

µ ∼ N(0, 103) 1+φ
2 ∼ Beta(1, 1) σ−2η ∼ Gamma(10−3, 10−3)

γ ∼ N(0, 102) ν ∼ Gamma(2, 0.1),

where ν are the degrees of freedom of the Student-t distribution.
Second, we have determined the optimal number of clones to use. The library dclone contains

several diagnostic measures, such as the function dcdiag, which computes some statistics to help
the user make this decision. One of these statistics is the maximum eigenvalue of the posterior
covariance matrix, provided by Lele et al. (2010), which gives us information about the degeneracy
of the posterior distribution; accordingly, when it is close to zero, the distributions have a small
impact on the results. In our simulations and applications, we use 5 clones.

We have also experimented with a higher number of clones, but the improvement in the
estimates of the parameters is irrelevant. Other measures related to the selection of the optimal
number of clones are the mean square error (MSE) and the R2 statistic. They are both based on
a χ2 approximation and should converge to zero as the number of clones increases. The optimal
number of clones selected by these measures is 5, as before.

3.1. Simulation study
In this subsection, we conduct simulation experiments to evaluate the performance of the

approximated ML estimators for the parameters of the TAARSV model using data cloning,
hereafter referred to as DC estimator, and a standard Bayesian estimator implemented in JAGS,
referred to as BA estimator.

We consider two possible designs for the Monte Carlo experiments, depending on the error
distribution of the standardized returns. They are assumed to follow either aN(0, 1) or a Student-
t with v degrees of freedom. The number of replicates is 200 and the full set of parameter values
for the TAARSV model is (µ, φ, γ1, γ2, σ

2
η, v) = (0.000, 0.980,−0.200,−0.100, 0.050, 5). Finally,

we consider three sample sizes T = 1000, 3000, and 5000.
To determine the parameters of the TAARSV model, we need to make some restrictions. We

assume that the propagation pattern tends to decrease slowly over time. So the constraints are
γ1 ≤ γ2 and γ1, γ2 < 0 imposed by the priors of these parameters, which are:

γ1 ∼ U(−1, 0), γ2 ∼ U(γ1, 0).

The performance of the DC estimator in finite samples for the AARSV model is very accurate
and can be found in Bermudez et al. (2020). With respect to the new model, we find that the
BA estimator is less reliable than the DC estimator in small samples, except for γ2. For this
parameter, both estimators do not perform as well. When the standardized returns follow a
Student-t distribution, we find that the DC estimator provides more accurate estimates of µ, σ2

η,
and the degrees of freedom of the Student-t distribution, even for large sample sizes. All in all,
we conclude that the DC estimator performs quite reasonably for finite samples.
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4. Empirical application

We estimate the new TAARSV proposed in this paper and the AARSV of Mao et al. (2020)
using daily returns for three financial series, namely: Bitcoin (BTC), Nasdaq and S&P 500
(SP500). Bitcoin returns cover the period from September 18, 2014, to August 15, 2022, while
Nasdaq and SP500 returns cover the period from January 4, 2000, to August 12, 2022. The total
number of observations is 2889 and 5689, respectively.

Figure 3 displays the time series of returns. The stock market returns cover the period of the
dot.com crisis, the global financial crisis, and the pandemic crisis, which correspond to periods
of high volatility.

Table 2 shows the descriptive statistics of the returns. The empirical distribution of returns
is leptokurtic, which supports the use of the Student-t distribution to model the standardized
returns. In addition, all series exhibit negative skewness.
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Figure 3. Daily returns in percentage.

Table 2
Descriptive statistics of returns

Data Mean Std. Dev. Skewness Kurtosis

BTC 0.137 3.904 −0.771 10.798
Nasdaq 0.020 1.599 −0.146 6.218
SP500 0.019 1.247 −0.398 10.477

Table 3 presents estimates of the TAARSV and AARSV models using either BA or DC. We
find that estimates of the standard errors of parameters using the DC estimation method are
often smaller than those using BA, suggesting that estimates of parameters using this estimation
method may be more reliable.

When using BA, we use the Deviance Information Criterion (DIC) to compare the TAARSV
and the AARSV. According to this criterion, the TAARSV model fits the BTC and SP500 returns
better, while the AARSV model seems to fit the Nasdaq returns best. Moreover, the estimates
obtained with BA and DC are not significantly different for each model. The parameters are
often statistically different from zero.
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Figure 4 shows the estimated volatilities for each return series and each estimation method.
We find that both estimation methods provide fairly similar volatility estimates, although BA
tends to slightly overestimate volatility.
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Figure 4. Estimated volatilities obtained with the TAARSV and AARSV models.
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Table3

EstimatesobtainedusingBAandDC

BA DC
Series Param TAARSV AARSV TAARSV AARSV

BTC µ(1 φ) 0.035 0.049 0.037 0.043
(0.014) (0.014) (0.015) (0.012)

φ 0.969 0.969 0.972 0.972
(0.007) (0.008) (0.007) (0.007)

γ -0.001 0.001
(0.014) (0.013)

γ1 -0.026 -0.014
(0.019) (0.020)

γ2 -0.015 -0.010
(0.015) (0.018)

σ2η 0.075 0.078 0.068 0.068
(0.015) (0.018) (0.013) (0.014)

ν 3.458 3.578 3.413 3.436
(0.276) (0.319) (0.280) (0.283)

DIC 15.074 15.161

Nasdaq µ(1 φ) -0.099 0.007 -0.097 0.006
(0.006) (0.002) (0.006) (0.002)

φ 0.978 0.977 0.980 0.978
(0.003) (0.003) (0.002) (0.003)

γ -0.149 -0.145
(0.010) (0.010)

γ1 -0.246 -0.236
(0.013) (0.015)

γ2 -0.205 -0.225
(0.035) (0.028)

σ2η 0.011 0.021 0.007 0.018
(0.002) (0.003) (0.002) (0.003)

ν 11.915 22.468 10.464 18.292
(1.988) (6.753) (1.321) (4.277)

DIC 18.572 18.499

SP500 µ(1 φ) -0.134 -0.011 -0.130 -0.010
(0.010) (0.030) (0.008) (0.002)

φ 0.972 0.972 0.975 0.974
(0.003) (0.003) (0.003) (0.003)

γ -0.187 -0.180
(0.009) (0.011)

γ1 -0.281 -0.270
(0.020) (0.016)

γ2 -0.233 -0.257
(0.044) (0.030)

σ2η 0.013 0.023 0.008 0.021
(0.003) (0.004) (0.003) (0.003)

ν 8.701 14.670 8.077 12.922
(0.916) (3.366) (0.906) (2.434)

DIC 15.484 15.493

Note:Standarderrorsareinparentheses. ThevaluesoftheDICare

dividedby103.
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4.1. Forecasting results
In this subsection, we present the volatility proxy used to evaluate the forecasting performance

of the models and estimation methods, the loss functions used and their evolution over time
obtained using a rolling window of 90 days, and the results of the unconditional and conditional
tests of superior predictive ability for 1- and 10-day volatility forecasts. Recall that the Basel
Committee requires institutions to calculate value-at-risk for a time horizon of at least 10 days
and, consequently, volatility forecasts for that time horizon.

4.1.1. Proxy of volatility and loss functions
The out-of-sample periods include approximately 252 daily observations from December 7,

2021 to August 15, 2022 for BTC returns and from August 13, 2021 to August 12, 2022 for
Nasdaq and SP500 returns.

As a proxy for volatility, we chose realized volatility (RV) calculated from the 5-minute
returns. Realized volatility on day t is calculated as RVt =

∑M
i=1 r

2
i,t, where M is the total

number of intraday observations and ri,t is the returns calculated from the 5-minute prices on
day t.3

Figure 5 represents the RV for BTC, Nasdaq and SP500. The out-of-sample period is very
volatile. Recall that during this period Russia invaded Ukraine and the Omicron variant emerged,
leading to a rapid and strong spread of the Covid pandemic around the world.
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Figure 5. Realized volatility in the out-of-sample period.

Figures 6 and 7 show the rolling window mean square errors (MSE) and QLIKEs for 1-day
forecasts proposed by Patton (2011) that are robust to the presence of noise in the volatility
proxy.

We first focus on the MSE and find that the patterns are quite similar for the TAARSV and
AARSV models, regardless of the estimation method used. We observe a huge spike around
May 2022 that continues to increase throughout the rest of the out-of-sample period. The week
of May 12, 2022 saw a total meltdown in the crypto world with a sell-off that highlighted the
risks of experimental and unregulated digital currencies. This, along with the impact of higher
interest rates, makes the crypto world nervous. These events increase Bitcoin’s volatility and
models show more difficulty in forecasting.

3Data are from www.firstratedata.com.
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For Nasdaq, we also observe an increase in rolling window MSEs, especially when using the
BA approach. When we estimate the models using DC, we find that the MSEs are on average
smaller than those of the BA approach. We observe an increase in MSEs around February 2022,
corresponding to the uncertainty caused by Russia’s invasion of Ukraine, and then they increase
again until June 2022, perhaps caused by the collapse of cryptocurrencies and the deterioration
of economic forecasts.

For the SP500 and the TAARSV-DC, we find that the rolling window MSEs tend to decrease
after March 2022, while they are larger using BA and peak around May-June 2022. The AARSV
model also shows a peak around May-June 2022 and the MSEs are much lower when using the
DC estimation method.

The rolling window QLIKEs show different patterns than the rolling window MSEs for both
models. For BTC, we observe a spike in QLIKEs around May 2022 and then another spike
starting in June 2022 due to the successive turmoil in the crypto world.

For Nasdaq, we observe a large difference between the QLIKEs when forecasts are made using
DC and the QLIKEs calculated when forecasts are made using the BA approach. The former
is significantly smaller except for the period before February 2022. For the AARSV model, we
even find that the pattern of QLIKEs is different. DC shows QLIKEs that decrease over the
out-of-sample period.

Finally, for the SP500, we also find that QLIKEs tend to decrease over time for the two
models when we use the DC estimation method compared to the BA approach.

See Appendix B for figures B.9 and B.10 showing the rolling window MSEs and QLIKEs for
10-day volatility forecasts. The MSEs show that the DC and BA estimation methods provide
fairly similar values for this measure, with the MSEs for the Nasdaq and SP500 model volatility
forecasts tending to be slightly larger. This is especially true for the SP500 and TAARSV models.
The predictability of the models and the patterns for the 10-day forecasts for DC and BA are
closer than those for the 1-day forecasts.
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Figure 6. Rolling window MSE for 1-day volatility forecasts obtained from the TAARSV and
AARSV models using either the Bayesian approach or DC.
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Figure 7. Rolling window QLIKE for 1-day volatility forecasts obtained from the TAARSV and
AARSV models using either the Bayesian approach or DC.

4.1.2. Model confidence set–unconditional superior predictive ability
The predictive performance of the models is evaluated using the Model Confidence Set (MCS)

procedure proposed by Hansen et al. (2011) and programmed in R by Catania and Bernardi
(2015). The procedure of Hansen et al. (2011) consists of a series of statistical tests to create
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a set of models called “Superior Set Model” (SSM). The models in the SSM have statistically
equal predictive ability and are ranked according to the value of a loss function. Test statistics
are calculated for each loss function and evaluate the point predictions.

Table 4 shows the SSM of the prediction models and estimation methods studied. The loss
functions are the squared error (SE) and the QLIKE.4 We use two confidence levels (95% and
80%) to construct the SSM.

In the 1-day forecasts, TAARSV-DC always ranks first in BTC returns, and AARSV-BA and
AARSV-DC are always excluded from the SSM unless we use the loss function QLIKE and the
confidence level 95%. TAARSV-DC and TAARSV-BA appear to have similar predictive abilities.

With respect to Nasdaq returns, we find that both the TAARSV-DC and AARSV-DC models
are always included in the SSM and rank first or second depending on the loss function. Moreover,
in terms of predictive ability, the DC estimation method appears to be superior to the Bayesian
approach for this financial time series.

On the other hand, the results for the 10-day volatility forecasts, the loss function SE and
the confidence level 95% show that TAARSV-DC and AARSV-BA are the best models and
estimation methods in terms of volatility predictability for BTC returns, while TAARSV-BA
and AARSV perform better for the Nasdaq and the SP500. Both models and methods have the
same predictive ability. For the other confidence levels and loss functions, AARSV appears to
be the model that provides the most accurate volatility forecasts. BA also appears to be the
preferred estimation method, except for the SP500.

Table 4
Model confidence set results

The table reports the rankings of volatility forecasters with different loss functions. – means that the
model does not belong to the SSM. The statistical tests are done at 95% and 80% confidence levels. We
use 5000 bootstrap samples.

Series Models Loss functions

1-day-ahead 10-days-ahead
95% 80% 95% 80%

SE QLIKE SE QLIKE SE QLIKE SE QLIKE

BTC TAARSV–BA 2 2 2 2 - - - -
TAARSV–DC 1 1 1 1 2 - - -
AARSV–BA - 3 - - 1 1 1 1
AARSV–DC - - - - - - - -
p-value 0.644 0.069 0.640 0.067 0.075 0.032 0.074 0.041

Nasdaq TAARSV–BA 3 - - - 3 - - -
TAARSV–DC 1 2 1 2 - - - -
AARSV–BA 4 - - - 1 1 1 1
AARSV–DC 2 1 2 1 2 - - -
p-value 0.095 0.795 0.640 0.794 0.117 0.000 0.000 0.000

SP500 TAARSV–BA - - - - 3 - - -
TAARSV–DC - - - - 4 - - -
AARSV–BA - - - - 2 2 2 2
AARSV–DC 1 1 1 1 1 1 1 1
p-value 0.002 0.000 0.002 0.000 0.070 0.223 0.283 0.233

4The SE is defined as (RVt+1 − σ̂t+1)
2, while the QLIKE is defined as qlike ≡ RVt+1

σ̂t+1
− log

(
RVt+1

σ̂t+1

)
− 1.
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4.1.3. Conditional superior predictive ability
Li et al. (2022) use Conditional Superior Predictive Ability (CSPA) tests to evaluate the

performance of predictive models. CSPA tests are advantageous because they examine the per-
formance of models conditional on a state-dependent variable (in this case, RV). The null hy-
pothesis states that the conditional expected loss of the benchmark model does not exceed that
of the competing models for all conditional states where the smallest value of its loss function is
statistically smallest. Rejection of this hypothesis indicates that the alternative models perform
better than the benchmark model in certain states.

Two types of conditional tests are possible: “one-versus-one” in which each model is compared
with an alternative for all pairs of models, and “one-versus-all”, in which each model is compared
with all other competing models; see Li et al. (2022).

Tables 5 and 6 show the results of CSPA tests for 1- and 10-day volatility forecasts using two
loss functions and a 95% confidence level. The results for a confidence level of 80% can be found
in Appendix B. A value of 1 means the null hypothesis is rejected, while a value of 0 means it
is not rejected. The columns indicate the models used for the comparisons.

The CSPA tests (one-versus-all) for the BTC volatility forecasts show that the TAARSV
model weakly dominates its competitors estimated using the DC or the Bayesian approach for
the loss functions SE and QLIKE. This result is confirmed by the one-versus-one CSPA tests,
with the TAARSV model least likely to be rejected when both loss functions are used.

For the Nasdaq volatility forecasts, the one-versus-all CSPA tests show that no model weakly
dominates its competitors. However, the CSPA one-versus-one tests and the two loss functions
show that the AARSV-BA model is most likely to be rejected.

For the SP500 volatility forecasts, the CSPA tests (one-versus-all) also show that no model
weakly dominates its competitors. Nevertheless, both TAARSV-DC and AARSV-BA are most
likely to be rejected using the CSPA tests and the two loss functions.

With a confidence level of 95%, loss functions SE and QLIKE, and predictions for 10 days
ahead, the TAARSV model is the best model for predicting RV. No model weakly dominates the
competitors for the other series.

With a confidence level of 80% and a QLIKE loss function, the results for BTC are slightly
different, with TAARSV-DC and AARSV-BA weakly dominating the others; see Table B.7. The
conclusion for the 95% confidence level also applies here for the Nasdaq and SP500.

Figure 8 shows the estimated difference between the conditional expected loss functions along
with the upper confidence level of 95%; see Li et al. (2022). The loss function used to represent
Figure 8 is the QLIKE. For example, the “diff loss” is defined as the difference between the
QLIKE of the TAARSV-DC and the AARSV-DC.

For 1-day volatility forecasts and BTC, TAARSV-DC performs better at most values of RV,
with AARSV-DC having some advantage at very low values of RV.

For 10-day volatility forecasts, the results are similar. The performance of TAARSV-DC is
better than that of AARSV-BA for most values of RV and is highly significant at values above
6 for Nasdaq volatility forecasts.

For SP500 and 1-day volatility forecasts, the performance of TAARSV-BA is better than that
of AARSV-BA for most RV values and is highly significant at values above 2. For the 10-day
volatility forecasts, the opposite is true, with the performance of AARSV-BA better than that
of TAARSV-BA for values above 2.
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Figure 8. Predicting RV: one-versus-one CSPA tests. Loss function QLIKE.

4.2. Results’ discussion
All in all, and taking into account the 1-day volatility forecasts, the predictive performance of

the methods seems clear for the three series of returns. The BTC returns have higher volatility,
skewness, and kurtosis than those of the Nasdaq and SP500, and the model that fits this data
better and predicts volatility better is the TAARSV, regardless of the estimation method used.

For Nasdaq returns, both TAARSV and AARSV appear to have similar predictive abilities,
but the DC estimation method appears to be preferable. For the SP500, the Hansen et al. (2011)
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method supports the AARSV model estimated with DC, while the CSPA tests (one-versus-one)
reject the TAARSV-BA model and the AARSV-DC model is less likely.

For 10-day volatility forecasts, CSPA also confirms that the TAARSV-DC model weakly
dominates the benchmark model and the BA estimation method. Although there is no model
and estimation method for the Nasdaq and SP500 that weakly dominate the others, the AARSV
model appears to be preferable for forecasting the 10-day volatility of the Nasdaq and SP500.

The main conclusion is that the new model seems to be better suited to forecast the volatility
of return series that have high volatility, kurtosis, and skewness, as is the case with BTC. This
model also works well for the 1-day volatility forecasts of the Nasdaq and the SP500 according to
the CSPA test (one-versus-one). In addition, DC seems to be the estimation method that often
provides more accurate volatility forecasts.

5. Conclusion

In this paper, we propose a new stochastic volatility model that captures the asymmetric
response of volatility with different magnitudes of this response. This model is a nesting of
well-known stochastic volatility models. We explore two estimation methods, data cloning and
a Bayesian approach, to determine which method is best suited for the proposed model, and
estimate a benchmark model for comparison purposes.

The new model is able to generate higher leverage and propagation effects than a basic
asymmetric stochastic volatility model and is best able to predict volatility when return series
have high volatility, kurtosis, and skewness, as in the case of Bitcoin.

For the traditional return series and according to the unconditional and conditional superior
predictive tests, the model often outperforms the basic asymmetric stochastic volatility model
for 1-day volatility forecasts. Performance was evaluated during a particularly volatile period
that included Russia’s invasion of Ukraine and a wave of COVID contagion.

The simulations and empirical application show that data cloning is quite reliable in esti-
mating the parameters of the models and that its advantage over the Bayesian approach is even
greater for small sample sizes. It also leads to smaller standard error estimates and is often
chosen when evaluating forecasts when unconditional and conditional tests of superior predictive
ability are used for 1-day volatility forecasts. For 10-day volatility forecasts, the new model for
Bitcoin remains the preferred specification.
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Appendix A. Proving Theorem 1

Proof Theorem 1. Consider the stationary process yt defined by system (1) with |φ| < 1. If εt
follows a normal distribution and γint = γ, then the leverage effect and the propagation till time
s is given by

v(1) = var[yt] [2Φ(−γ)− 1] , (A.1)

where Φ(.) is the accumulative normal distribution,

var[yt] = exp

(
ht
2

)
= exp

(
µ+

γ2 + σ2
η

2(1− φ2)

)
,

and
v(s) = var[yt]

[
2Φ(−γφ(s−1))− 1

]
for s > 1, (A.2)

respectively.

Proof
We have

var(yt|yt−1 < 0) = E(y2t |yt−1 < 0).

As given the AARSV model,

E(yt|yt−1 < 0) = E

[
exp

(
ht
2

)
· εt
∣∣∣∣ yt−1 < 0

]
=

E

[
exp

(
ht
2

)∣∣∣∣ yt−1 < 0

]
· E(εt|yt−1 < 0) = 0.

On the other hand, var(yt) = exp
(
µ+

σ2
h

2

)
, where σ2

h =
γ2+σ2

η

(1−φ2) .

Computing now the value of

E(y2t |yt−1 < 0) = E
[
exp(ht) · ε2t |yt−1 < 0

]
= E [exp(ht)|yt−1 < 0] .

Replacing ht by equation (2), assuming normality of εt and lognormal distribution of the expo-
nential function, it turns out that

E(y2t |yt−1 < 0) = E [exp (ht)| yt−1 < 0] =

E

[
exp

(
µ+

∞∑
i=1

φ(i−1)γεt−i +
∞∑
i=1

φ(i−1)ηt−i

)∣∣∣∣∣ yt−1 < 0

]

exp

(
µ+

∞∑
i=1

φ2(i−1)σ2
η

2

)
E

[
γεt−1 +

∞∑
i=2

φ(i−1)γεt−i

∣∣∣∣∣ yt−1 < 0

]
=

exp

(
µ+

∞∑
i=1

φ2(i−1)σ2
η

2
+
∞∑
i=2

φ2(i−1)γ2

2

)
· E [exp(γεt−1)|yt−1 < 0] . (A.3)
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Given that (εt−1|yt−1 < 0) is normal truncated distributed and Φ(.) is the accumulative normal
distribution, then

E [exp(γεt−1)|yt−1 < 0] =

∫ 0

−∞
exp(γεt−1)

1√
2π

exp(−ε2t−1/2)

Φ(0)
dεt−1 =

2√
2π

∫ 0

−∞
exp

(
−ε2t−1

2
+ γεt−1

)
dεt−1 =

2Φ(−γ) exp

(
γ2

2

)
. (A.4)

Replacing (A.4) in (A.3) and after some computations, we finally obtain that

E(y2t |yt−1 < 0) =

exp

(
µ+

∞∑
i=1

φ2(i−1)σ2
η

2
+
∞∑
i=2

φ2(i−1)γ2

2

)
2Φ(−γ) exp

(
γ2

2

)
=

2Φ(−γ) exp

(
µ+

∞∑
i=1

φ2(i−1)σ2
η

2
+
∞∑
i=2

φ2(i−1)γ2

2
+
γ2

2

)
, (A.5)

and it is obtained from (A.3) and (A.4) without truncation (conditioning to yt−1 < 0):

var(yt) = E(y2t ) =

exp

(
µ+

∞∑
i=1

φ2(i−1)σ2
η

2
+
∞∑
i=2

φ2(i−1)γ2

2

)
· E [exp(γεt−1)] =

exp

(
µ+

∞∑
i=1

φ2(i−1)σ2
η

2
+
∞∑
i=2

φ2(i−1)γ2

2

)
· exp

(
γ2

2

)
=

exp

(
µ+

∞∑
i=1

φ2(i−1)σ2
η

2
+
∞∑
i=2

φ2(i−1)γ2

2
+
γ2

2

)
.

Then substituting in (A.5):

E(y2t |yt−1 < 0) = 2Φ(−γ)var(yt).

Therefore,
v(1) = var(yt|yt−1 < 0)− var(yt) = var(yt)[2Φ(−γ)− 1].

Proceeding the same way for v(s), we obtain as a general expression for the propagation effect

v(s) = var[yt]
[
2Φ(−γφ(s−1))− 1

]
for s > 1.
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Appendix B. Tables and figures
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Figure B.9. Rolling window MSE (10-day volatility forecasts) for the TAARSV and AARSV
models using either the Bayesian approach or DC.
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Figure B.10. Rolling window QLIKE (10-day volatility forecasts) for the TAARSV and AARSV
models using either the Bayesian approach or DC.
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