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Pilot Decontamination Processing in Cell-Free
Massive MIMO

Alberto Álvarez Polegre, Student Member, IEEE, Luca Sanguinetti, Senior Member, IEEE, and Ana Garcı́a
Armada, Senior Member, IEEE

Abstract—This letter focuses on the pilot contamination prob-
lem in the uplink and downlink of cell-free massive multiple-input
multiple-output networks with different degrees of cooperation
between access points. The optimum minimum mean square error
processing can take advantage of large-scale fading coefficients
for canceling the interference of pilot-sharing user-equipments
and thus achieves asymptotically unbounded capacity. However,
it is computationally demanding and can only be implemented
in a fully centralized network. Here, sub-optimal schemes are
derived that provide unbounded capacity with linear-growing
complexity and using only local channel estimates but global
channel statistics. This makes them suited for both centralized
and distributed networks. In this latter case, the best performance
is achieved with a generalized maximum ratio combiner that
maximizes a capacity bound based on channel statistics only.

Index Terms—Cell-free massive MIMO, pilot contamination,
uplink combining, downlink precoding, reduced-complexity min-
imum mean square error, generalized maximum ratio.

I. INTRODUCTION

The interference generated by user equipments (UEs) that
transmit the same pilot sequence for channel acquisition is
known as pilot contamination [1], [2]. This interference not
only reduces the estimation quality but also makes the channel
estimates statistically dependent. This latter effect makes it
particularly hard to mitigate the interference (known as coher-
ent interference) between these UEs. Although existing in most
networks, this problem has a greater impact on those where
the large number of UEs requires a high pilot-reuse factor.
This was the case of cellular massive multiple-input multiple-
output (mMIMO) networks [1], [2] and has been inherited by
the new cell-free (CF) mMIMO, but to a larger extent due
to the CF implementation [3], [4]. In the beyond 5G era, CF
mMIMO is seen as a promising solution to provide uniform
service for massive Machine Type Communicantions (mMTC)
and Ultra-Reliable Low-Latency Communications (URLLC).
These two use cases can turn pilot contamination into a totally
unmanageable difficulty due to the amount of active UEs.

Signal processing strategies play a key role when dealing
with pilot contamination. Particularly, the minimum mean
square error (MMSE) scheme was shown to achieve optimal
performance in CF mMIMO networks, in contrast to the
classical maximum ratio (MR) strategy, which is severely
limited by coherent interference [5]. The main drawback of
MMSE processing is that it comes at the cost of requiring
a tight synchronized and centralized implementation, and
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high computational resources when the number of access
points (APs) grows large. Considering capacity-limited wired
connections and scalability concerns, such an implementation
may limit the benefits of the CF architecture. As far as we
are concerned, there are not any low-complexity processing
schemes that can deal with pilot contamination available in
the CF mMIMO literature.

Building on [6], in this letter we introduce a reduced-
complexity, though sub-optimal, MMSE-based combining
scheme that achieves unbounded capacity in high pilot-
contaminated CF mMIMO networks (rather than a distributed
mMIMO network) under different degrees of cooperation.
The scheme can be implemented either in a centralized or
a distributed fashion since only local channel estimates are
required, in addition to global channel statistics. An alterna-
tive, yet optimal, scheme is also proposed by using a more
conservative capacity bound that depends solely on statistical
channel knowledge and provides an achievable rate when
channel state information (CSI) is not available for final data
detection. This is the case of a decentralized network in which
the channels are estimated at the APs while data detection
is performed at the central processing unit (CPU). These
combiners are built based on the linear independence expe-
rienced by the global covariance matrices and the asymptotic
behavior for a large number of APs, though they are valid
under a finite regime. Neither of these processing schemes
are constrained by pilot contamination and both show linear-
growing complexity. Thanks to the uplink (UL)-downlink
(DL) duality [7], precoding schemes can be obtained for the
DL segment. These schemes are also valid if a user-centric
approach is taken (e.g., [7], [8]).

Notation: The superscripts T , ∗ and H denote transpose,
conjugate, and Hermitian transpose, respectively. We use
CN (0,R) to denote the circularly symmetric complex Gaus-
sian distribution with zero mean and covariance matrix R. The
expected value of a random variable x is denoted by E{x},
while diag denotes the main diagonal components of a matrix.
We use an � bn to denote an − bn →n→∞ 0 almost surely
for two (random) sequences an, bn.

Acknowledgements: This work has been supported by
project IRENE-EARTH (PID2020-115323RB-C33 / AEI /
10.13039/501100011033).

II. NETWORK MODEL

We consider a CF mMIMO network with M single-antenna
APs. The APs serve jointly K single-antenna UEs, and are
connected via fronthaul links to a CPU. The standard time
division duplex (TDD) protocol of cellular mMIMO is used [7,
Sec. 2.3.2], where the τc available channel uses are employed
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for: τp for UL training phase, τd for DL payload transmission
and τu for UL payload transmission. Clearly, τc ≥ τp+τd+τu.

The channel between AP m and UE k is hmk ∼
CN (0, βmk) where βmk is the large-scale fading. We as-
sume that hmk and hm′k are uncorrelated for m 6= m′

due to the different location of the APs. We define hk =
[h1k, . . . , hMk]T ∈ CM , which follows a CN (0M ,Rk) dis-
tribution, where Rk = diag(β1k, . . . , βMk) is diagonal. The
matrices {Rk : k = 1, . . . ,K} are assumed to be known,
but practical estimation methods can be found in the literature
(e.g., [9, Sec. IV]).

The same pilot sequence ϕ ∈ Cτp with ‖ϕ‖2 = 1 is used
by all the UEs during the UL training phase. The channel
coefficients {hmk : k = 1 . . . ,K} can be estimated either
directly at AP m or at the the CPU. In the latter case, AP m
sends the received pilot signal to the CPU via the fronthaul
link. Regardless of where the channel estimation is carried out,
the MMSE estimate of hmk is [7, Sec. 4.1]

ĥmk =
βmk
ψm

(
1
√
ρp

ϕHym

)
(1)

where ym is the received pilot signal

ym =
√
ρp

K∑
k=1

hmkϕ + nm (2)

and ρp is the pilot signal-to-noise ratio (SNR) while nm ∈ Cτp
is the (normalized) noise vector with independent elements
distributed as CN (0, 1). Also, we call

ψm = βmk +
K∑

i=1,i6=k

βmi︸ ︷︷ ︸
Interference from pilot-sharing UEs

+
1

ρp
. (3)

The estimates and estimation errors h̃mk = hmk − ĥmk
are independent random variables distributed as ĥmk ∼
CN (0, γmk) with γmk = β2

mk/ψm and h̃mk ∼ CN (0, εmk)
with εmk = βmk − γmk. The interference generated by the
pilot-sharing UEs in (3) is known as pilot contamination,
e.g., [2]. It reduces the estimation quality, and makes the
estimates correlated with ĥmi = βmi

βmk
ĥmk. Both effects de-

teriorate performance but only the second one is responsible
of the coherent interference (e.g., [9]). To perform coherent
processing at multiple APs, knowledge of hk is necessary.
This is obtained as ĥk = [ĥ1k, . . . , ĥMk]T ∈ CM and is
distributed as ĥk ∼ CN (0M ,Γk) with Γk = RkΨ

−1Rk and
Ψ = diag(ψ1, . . . , ψM ) leading to Γk = diag(γ1k, . . . , γMk).

III. UPLINK SIGNAL COMBINING

We address now the UL combining for both centralized and
distributed processing. The optimal MMSE scheme is set as
the upper benchmark that our proposals will be compared to.
In the centralized scenario, each AP m acts only as a relay
that forwards its received signals to the CPU, which performs
both channel estimation and data detection. Assuming error-
free fronthaul links, the joint UL data signal yul available
at the CPU is mathematically equivalent to the signal model
of a single-cell system where the correlated fading hk has

a diagonal spatial covariance matrix. At the CPU, the UE
k data signal estimate is obtained as ŝ ul

k = vHk yul where
vk ∈ CM is the centralized combiner. With MMSE channel
estimation, an achievable spectral efficiency (SE) of UE k
is SEul

k = τu
τc
E
{

log2
(
1 + SINRul

k

)}
where the expectation is

with respect to channel realizations and the effective signal-
to-interference-plus-noise ratio (SINR) is [7, Sec. 5.1.1]

SINRul
k =

|vHk ĥk|2

vHk

(
K∑

i=1,i6=k
ĥiĥ

H

i +Z

)
vk

(4)

with Z = diag(z1, . . . , zM ) being diagonal with elements

zm =
K∑
i=1

εmi +
1

ρu
. (5)

This SE is valid for any combiner vk but requires the channel
estimates ĥk and estimation errors h̃k = [h̃1k, . . . , h̃Mk]T to
be independent. This condition is satisfied with the MMSE
channel estimator. An alternative bound that can be applied
along with any channel estimator is the so-called use-and-then-
forget (UatF).1 This yields SEul,UatF

k = τu
τc

log2(1+SINRul,UatF
k ),

where SINRul,UatF
k is given by [7, Sec. 5.1.2]∣∣E{|vHk hk|

}∣∣2
K∑
i=1

E
{∣∣vHk hi

∣∣2}− ∣∣E{|vHk hk|
}∣∣2 + 1

ρu
E
{
‖vk‖2

} (6)

and expectations are with respect to the channel realizations.
Intuitively, SEul,UatF

k is smaller than SEul
k since it relies on a

simplified implementation in which the channel estimates are
not used at the CPU for signal detection.

Regarding the distributed network case, the MMSE channel
estimates are computed locally at the APs and are used to
obtain local estimates of UE data. This approach is more
suitable for those use cases where low-latency is crucial. Let
vmk ∈ C denote the local coefficient that AP m uses for
UE k. Then, the UE k local data estimate is ŝ ul

mk = v∗mky
ul
m,

with yul
m the UL signal at AP m. Any coefficient vmk can be

adopted. Unlike a fully centralized network, however, AP m
can only use its own local channel estimates for the design
of vmk. The local estimates {ŝ ul

mk : m = 1, . . . ,M} are then
sent to the CPU for final decoding. We assume that the final
estimate ŝ ul

k is computed by averaging the local estimates, i.e.,
ŝ ul
k =

∑M
m=1 ŝ

ul
mk. In a distributed network, the CPU does

not have knowledge of channel estimates and thus only the
statistics can be utilized to estimate ŝ ul

k . Since SEul,UatF
k does

not rely on channel estimates, it can be used to compute an
achievable SE in a distributed network [7, Sec. 5.2.1].
A. MMSE Combining

As in cellular mMIMO [5], [9], the SINR in (4) is a
generalized Rayleigh quotient with respect to vk and thus is
maximized by the MMSE combining vector, i.e.

vk = v̌k =

(
K∑
i=1

ĥiĥ
H

i + Z

)−1
ĥk. (7)

1The name comes from the fact that the channel estimates are used for
computing receive combining vectors and then effectively forgotten before
signal detection takes place.
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We will now analyze the asymptotic behavior of SEul
k with the

MMSE as M → ∞. We assume that the global covariance
matrices {Rk : k = 1, . . . ,K} are asymptotically linearly
independent, as analytically defined in [2]. This assumption
is fairly realistic since each entry of Rk is subject to a
different channel gain. This is a key difference between the CF
architecture and traditional single-cell mMIMO systems that
allows CF systems to achieve unbounded capacity even with
single-antenna APs. Under this condition, and building on [2,
Th. 1], the next proposition follows.

Proposition 1. If MMSE combining is used and {Rk : k =
1, . . . ,K} are asymptotically linearly independent, then SEul

k

increases unboundedly as M →∞.

Proof: It follows easily from [2, App. B] since the
centralized case is basically a single-cell mMIMO network
with diagonal spatial correlation matrices.

B. Reduced-Complexity MMSE Combining
Although the MMSE combining vector v̌k is optimal and

achieves unbounded capacity (as in cellular mMIMO), it
requires to compute the M ×M matrix inverse in (7) in every
coherence block, which may be too computationally demand-
ing when the network size is large. Note this translates into a
computational complexity that grows with M3. To overcome
this issue, we follow the same approach in [6], and consider
the asymptotic regime. However, in contrast to a distributed
cellular mMIMO network, we consider the asymptotic regime
in CF mMIMO systems to be achieved by letting M → ∞.
This consideration invalidates the straightforward use of those
derivations available in [6] in a CF scenario. Nevertheless,
as shown in the Appendix, we can propose an alternative
combiner vk = v̄k = [v̄1k, . . . , v̄Mk]T with v̄mk given by

v̄mk =
1

K∑
i=1

εmi+
1
ρu

K∑
i=1

bkiĥmi, (8)

where bki is the (k, i)th element of the matrix
(
B + 1

M IK
)−1

.
The entries of B are given by

[B]ki =
1

M

M∑
m=1

βmkβmi(
K∑
i=1

βmi + 1
ρp

)(
K∑
i=1

εmi+
1
ρu

) . (9)

Since v̌k reduces to v̄k in the limiting regime M → ∞,
it follows that also v̄k achieves unbounded capacity in ac-
cordance to Proposition 1.2 Compared to v̌k, however, the
computational complexity required by v̄k is much lower. To
see this, we use ĥmk to obtain

v̄mk = ς̄mk

(
1
√
ρp

ϕHym

)
(10)

where

ς̄mk =
1(

K∑
i=1

βmi + 1
ρp

)(
K∑
i=1

εmi + 1
ρu

) K∑
i=1

bkiβmi. (11)

2In practice, M will not be infinite. Numerical results will show that (8)
works well for practical numbers of APs.

Under the assumption that coefficients {ς̄mk : m = 1, . . . ,M}
are available, from (8) the complexity required for the com-
putation of v̄k = [v̄1k, . . . , v̄Mk]T scales linearly with M ,
rather than as M3 as with MMSE combining. Therefore, we
refer to v̄k as reduced-complexity MMSE (RC-MMSE). If
one considers a centralized CF mMIMO network with limited
computational resources, the RC-MMSE combiner seems to
be the most suitable approach available in the literature3.
Likewise, notice that, if the large-scale coefficients are locally
available at AP m (which is a reasonable assumption since
they change every several coherence intervals and can be
broadcasted by the CPU), v̄mk can be locally computed. This
implies that, unlike the MMSE combiner v̌k, it can also be
adopted in a distributed network. In this case, however, the
UatF bound must be used to compute an achievable SE since
signal detection takes place without channel knowledge in a
distributed network.

C. Generalized Maximum Ratio Combining
The MMSE combiner is obtained as a matrix transformation

of ĥk. Inspired by this, we now assume that vk = W kĥk
where W k is an arbitrary matrix to be optimized. Unlike (7),
we assume that this optimization can only be done on the basis
of channel statistics (rather than of channel estimates). The
question is how to optimally design W k in order to not incur a
significant SE loss. Following [6], [10], and considering again
the asymptotic regime in CF mMIMO, we can use the SINR
in (6) from the UatF bound to obtain:∣∣∣tr(WH

k Rk)
∣∣∣2

K∑
i=1

∣∣∣tr (Ψ−1RkW
H
k Ri

)∣∣∣2+tr
(
W kΓkW

H
k Uk

) (12)

with Uk =
∑K
i=1 Ri+

1
ρu

IM being diagonal. The matrix W k

that maximizes (12) is given by (e.g., [9, Sec. VII])

W k = U−1k

(
K∑
i=1

akiRi

)
R−1k (13)

where aki is the (k, i)th element of the matrix(
A + 1

M IK
)−1

. The entries of A are given by

[A]ki =
1

M

M∑
m=1

βmkβmi(
K∑
i=1

βmi + 1
ρp

)(
K∑
i=1

βmi + 1
ρu

) . (14)

Plugging (13) into vk = W kĥk yields vk = ṽk =
[ṽ1k, . . . , ṽMk]T with (thanks to the diagonal structure of
matrices)

ṽmk =
1

K∑
i=1

βmi + 1
ρu

K∑
i=1

akiĥmi. (15)

We refer to (15) as generalized maximum ratio (GMR) com-
bining. As for MMSE, we can analyze its asymptotic behavior
as M →∞. With [6], [10], the next proposition follows.

3Though not shown here due to the lack of space, the RC-MMSE combiner
outperforms the proposed local MMSE (L-MMSE) schemes in [5] under full
pilot reuse.
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TABLEI:Simulationparameters

Parameter Value
Carrierfrequency 2GHz
Pathlossexponent(α) 3.76
Shadowingstandarddeviation(σχ) 10
Noisefigureatreceivers 7dB
DLtransmissionpower 200mW
ULtransmissionpower 100mW
Channelcoherenceintervallength(τc) 200samples
Trainingphaseintervallength(τp) 1sample
Payloadphaseintervallength(τd=τu) (τc τp)/2samples

Proposition2. IfGMRcombiningisusedand {Rk :
k=1,...,K}areasymptoticallylinearlyindependent,then
SEul,UatFk increasesunboundedlyasM →∞.

ThispropositionshowsthatGMRhasthesamescaling
behaviorofMMSEandRC-MMSEasM →∞.AswithRC-
MMSE,thisisachievedbyusingonlythechannelstatistics.
Moreover,GMRhasthesamecomplexityofRC-MMSEasit
followsbyplugginghmk into(15)toobtain

ṽmk =̃ςmk
1
√
ρp
ϕHym (16)

where

ς̃mk =
1

K

i=1

βmi+
1
ρp

K

i=1

βmi+
1
ρu

K

i=1

akiβmi.(17)

ThekeydifferencewithrespecttoRC-MMSEin(8)isthe
scalingfactorς̃mk,whichdoesnotdependonthevariances
{εmi :i=1,...,K}ofthechannelestimationerrorsbuton
thelarge-scalefadingcoefficients{βmi :i=1,...,K}.This
isbecause(15)maximizesSEul,UatFk ,whichdoesnottakeinto
accounttheimperfectCSIinthedecodingprocess.AsRC-
MMSE,GMRcanalsobeusedinadecentralizednetwork.
Whatsmore,anytimeadistributedscenariowithglobalstatis-
ticsknowledgeisconsidered,GMRshouldbeusedsinceitis
theoptimalschemeforMR-basedprocessing.

IV.DOWNLINKSIGNALPRECODING

WenowconsidertheDLanddesigntheprecodingschemes
forcentralizedanddecentralizednetworks.AsintheUL,
themostadvancedDLimplementationisafullycentralized
operation, wherethe APonlyactasrelaysthattransmit
signalsgeneratedbytheCPU.Adistributedoperationisalso
possibleintheDLwheretheCPUencodestheDLdatasignals
{sdlk:k=1,...,K}andsendsthemtotheAP,whichselects
theprecodingcoefficientsonthebasisoflocalestimates.This
isthekeydifferencebetweenthetwooperationmodesinthe
DL.TheinformationavailableattheUEforsignaldetection
isthesamewithbothimplementations.Sincethereareno
DLpilots,inbothcasesUEshavenoknowledgeofchannel
estimatesandmustrelyonstatistics.AnachievableSEcanbe
computedforthetwooperationmodesbyusingthechannel
hardeningbound.ThisyieldsSEdlk=

τd
τc
log2(1+SINR

dl
k)with

[7,Sec.6.1.1]

SINRdlk=
E |hHkwk|

2

K

i=1

E |hHkwi|
2 − E |hHkwk|

2

+ 1
ρd

.(18)

(a)UL.

(b)DL.

Fig.1:CDFofaverageSEperUEforK=20.

Asseen,SEdlk dependsontheprecodingvectors{wi:i=
1,...,K}ofallUEs.ThisstandsincontrasttotheUL
SEandmakesoptimalprecodingdesignhard.Acommon
heuristicapproachreliesontheUL-DLduality[7,Sec.6.1.2],
whichholdsbetweentheUatFboundandhardeningbound.
Motivatedbythisduality,weselecttheDLprecodingvectors
aswk=

vk√
E{|vHkvk|}

.Precodingvectorscanbechosenon

thebasisofRC-MMSEorGMRforeithercentralizedor
distributednetworks.Ontheotherhand,theMMSEprecoder
canonlybeusedwithacentralizedimplementation.

V.PERFORMANCEANALYSIS

Upnextthesystemperformanceisshownfortheproposed
schemes.ThesimulationparametersarereportedinTableI.
APswillberandomlydeployedwithinasquarecoveragearea
ofsideD.Thelarge-scalefadingcoefficientsarecomputedas

βmk[dB]=−35.3+10αlog10(dmk)+χmk−σ
2
n (19)

whereαisthepathlossexponent,dmk isthedistancebetween
APm andUEk,χmk ∼ N(0,σ

2
χ)istheshadowfading

componentandσ2nthenoisevariance.
Thecumulativedistributionfunction(CDF)fortheUL
averageSEperUEisshowninFig.1a.Thenumberof
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Fig. 2: Average UL SE per UE for K = 5.

APs is set to M = 100 and K = 20 randomly distributed
UEs are dropped with D = 250 m. Both centralized and
distributed versions of the RC-MMSE and GMR combiners are
considered. As upper and lower benchmarks, the centralized
MMSE and distributed MR combiners are also presented. This
latter scheme is computed by letting the entries of vk be
vmk = ĥmk. Regarding centralized schemes, the proposed
RC-MMSE scheme nearly matches the optimal combiner.
This proves this new scheme is a very suitable alternative
for lowering the required computational resources with little
performance loss under severe pilot contamination. On the
other side, the GMR shows a considerable gap. We can notably
point out that for low SNR both RC-MMSE and GMR match
each other. This is due to the fact that the RC-MMSE combiner
relies on having good channel estimates, while GMR relies
on channel coefficients instead. Focusing on the distributed
approaches, the GMR combiner outperforms the RC-MMSE.
This is reasonable since GMR is designed for maximization
of the UatF bound.

The DL segment is shown in Fig. 1b for the same setup.
Power allocation coefficients with MMSE and RC-MMSE
are selected following a network-wide approach by letting
ηmk = ηk = 1/K, while these are selected as ηmk =√
βmk/

∑K
i=1

√
βmi for the distributed GMR scheme. Thanks

to the UL-DL duality, the channel hardening bound gives
nearly the same DL performance as the UatF bound in UL.
This proves that RC-MMSE is unsuitable for a scenario in
which only the statistics of channels are available.

Fig. 2 shows the asymptotic behavior of the average UL
SE per UE for K = 4 with increasing M . The UEs are
located in the center of the area being 5 m apart from each
other with D = 1000 m. The optimal MMSE shows the
best performance and confirms that CF mMIMO networks can
indeed achieve unbounded capacity in the asymptotic regime
(as stated in Proposition 1). Likewise, both RC-MMSE and
GMR centralized combiners SE grows unboundedly with M .
In agreement to Proposition 2, the distributed approach of
GMR shows the same asymptotic behavior, though the UatF
bound considerably underestimates its performance. Lastly, the
poor SE showed by the RC-MMSE proves that it is not an
adequate scheme under statistical CSI.

VI. CONCLUSIONS

This letter focused on pilot decontamination in CF mMIMO.
Building on linear independence of correlation matrices, the
RC-MMSE combining was proposed as an alternative to cen-
tralized MMSE that almost matches the optimal performance
and is asymptotically optimal. This scheme turns out to be a
more than fitting approach for centralized computationally-
limited networks. The GMR alternative scheme was also
derived showing the same asymptotic behavior but maximizing
the UatF. This approach is the upper-bound of MR-based
CF networks. Both schemes are valid for a finite number of
APs and have linear increasing complexity (in contrast to the
optimal MMSE). By the UL-DL duality, the same performance
can be achieved in DL where the GMR alternative serves as
an optimal approach for MR-based precoders.

APPENDIX

We define Ĥ = [ĥ1, . . . , ĥK ] ∈ CM×K and use the matrix
inversion lemma to get (after multiplying and dividing by M )

v̌k ,
1

M
Z−1Ĥ

(
1

M
ĤHZ−1Ĥ +

1

M
IK

)−1
ek (20)

from which v̌mk is obtained as (by neglecting the factor 1/M ,
since it does not affect the SINR in (4))

v̌mk ,
1

zm
ĥTm

(
1

M
ĤHZ−1Ĥ +

1

M
IK

)−1
ek (21)

with ĥm = [ĥm1, . . . , ĥmK ]T ∈ CK . By exploiting the fact
that, as M →∞,

1

M

[
ĤHZ−1Ĥ

]
`j

=
1

M
ĥH` Z−1ĥj �

1

M
tr
(
RjΨ

−1R`Z
−1)

the combiner v̄mk defined in (8) follows.
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