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Abstract
As a follow up to the antimycobacterial screening exercise and the release of GSK´s first

Tres Cantos Antimycobacterial Set (TCAMS-TB), this paper presents the results of a sec-

ond antitubercular screening effort of two hundred and fifty thousand compounds recently

added to the GSK collection. The compounds were further prioritized based on not only anti-

tubercular potency but also on physicochemical characteristics. The 50 most attractive

compounds were then progressed for evaluation in three different predictive computational

biology algorithms based on structural similarity or GSK historical biological assay data in

order to determine their possible mechanisms of action. This effort has resulted in the identi-

fication of novel compounds and their hypothesized targets that will hopefully fuel future TB

drug discovery and target validation programs alike.

Introduction
Although the Millennium Development Goal (MDG) target to halt and reverse the Tuberculo-
sis (TB) epidemic by 2015 has been achieved, the global burden of disease remains enormous.
The World Health Organization (WHO) estimates that about one third of the world’s popula-
tion could be latently infected with Tuberculosis. Although the vast majority will not go on to

PLOSONE | DOI:10.1371/journal.pone.0142293 December 7, 2015 1 / 18

OPEN ACCESS

Citation: Rebollo-Lopez MJ, Lelièvre J, Alvarez-
Gomez D, Castro-Pichel J, Martínez-Jiménez F,
Papadatos G, et al. (2015) Release of 50 new, drug-
like compounds and their computational target
predictions for open source anti-tubercular drug
discovery. PLoS ONE 10(12): e0142293.
doi:10.1371/journal.pone.0142293

Editor: Anil Kumar Tyagi, University of Delhi, INDIA

Received: July 9, 2015

Accepted: October 19, 2015

Published: December 7, 2015

Copyright: © 2015 Rebollo-Lopez et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The data on the 50
antitubercular compounds are available from the
Dryad Digital Repository: http://dx.doi.org/10.5061/
dryad.8r351.

Funding: The research behind these results received
funding from the TB Alliance, the European Union’s
7th framework programme (FP7-2007–2013) under
grant agreement ORCHID no. 261378 and the ERA-
NET Pathogenomics Project GeMoA (PIM2010EPA-
00719). Those funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript. The funder

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0142293&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5061/dryad.8r351
http://dx.doi.org/10.5061/dryad.8r351


develop TB, in 2012 there were 8.6 million new cases of active disease, 1.3 million of which
resulted in death attributable to TB [1].

More worryingly, the increasing prevalence of Multi Drug Resistant (MDR) and Extensively
Drug Resistant (XDR) TB highlights the shortcomings of the present therapeutic options
against the disease [1]. According to WHO, in 2013, there were an estimated 480 000 new cases
of MDR-TB worldwide, 9% of which were found to be practically untreatable XDR-TB. In
2014, XDR-TB has already been reported by 100 countries. Therefore, there is still an urgent
need for new drugs with novel mechanisms of action, able to treat both MDR/XDR and drug
sensitive TB patients in a cost effective way. To not tackle this challenge head on now will be at
our own future peril.

To stimulate community-based research efforts towards the discovery of novel TB therapeu-
tics, and as a follow-up to our previous release of 177 compounds into the public domain [2] as
promising starting points for new TB medicines, we have recently screened the latest chemical
diversity available within GSK compound collections and identified 50 novel, non-cytotoxic,
high quality chemical starting points active against replicatingMycobacterium tuberculosis.
The presentation of this data has been complemented with a multipronged computational
analysis to predict the possible biological targets of each one of these molecules.

Materials and Methods

HTS ATP assay
While the resazurin-based method was a reliable way to test the phenotypic activity of antitu-
bercular compounds, it was unfortunately unsuitable for HTS campaigns given the low signal-
to-noise ratio and the frequent interference of fluorescent compounds. As an alternative to a
resazurin-based readout, we used a commercially available system based on ATP measurement
(BacTiter-Glo, Promega). This assay measured the effect of the compounds on bacterial growth
by determining the amount of ATP per well, which is proportional to the number of living bac-
teria. The reagent caused bacterial cell lysis and generated a luminescent signal proportional to
the amount of ATP present and thus to the number of viable cells in culture. The assay relied
on the activity of a thermostable luciferase and on the properties of a buffer formulation for
extracting ATP from bacteria.

Single Shot inhibition assay
Mycobacterium bovis BCG str. Pasteur 1173P2 (BCG). Bacterial inocula were grown for

4–5 days in Middlebrook 7H9 medium (Difco cat. # 271310) with glucose as carbon source.
The culture medium contained per liter: 4.7 g Middlebrook 7H9 powder, 5 g albumin, 1 g glu-
cose, 0.85 g NaCl, and 0.25 g Tween 80. The solution was sterilized by filtration through a
0.2 mm filter. The HTS assay was carried out in 1536-well sterile plates (Greiner, 782074). The
screening compounds were added to the plates as a 50 nL solution in neat DMSO (Sigma,
D8418) prior to addition of the assay components by using an Echo 555 instrument (Labcyte
Inc). The assay plates were subsequently filled with 5 μL of the bacterial solution (adjusted to
105 bacteria per mL) using a Multidrop Combi NL instrument (Thermo Fischer Scientific
Inc.). Inoculated plates were stacked in groups of 7–8 plates, with the top plate covered with a
sterile lid. Plates were carefully wrapped with aluminum foil to prevent evaporation and
allowed to incubate at 37°C at 80% relative humidity for seven days. After the incubation
period, plates were removed from the incubator and allowed to equilibrate at room tempera-
ture. Freshly reconstituted BacTiter-Glo (5 μL, Promega) was added to each well using the
Multidrop Combi. After standing at room temperature for 7–8 min, the luminescence signal
was quantified with an Acquest reader (Molecular Devices) in the focused luminescence mode.
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Every assay plate contained two columns of negative controls (control 1) with DMSO, which
correspond to 100% activity reactions (maximum luminescence), and two columns of positive
controls (control 2) in which 100% inhibition was reached by adding a known inhibitor (2 μM
rifampicin as standard; bacterial growth completely inhibited). These controls were used to
monitor assay quality through determination of Z´ as well as for normalizing the data on a per-
plate basis. The effect of a given compound is calculated as: % Inhib. = 100 x [(data—ctrl 1)/
(ctrl2—ctrl 1)].

Mycobacterium tuberculosisH37Rv (M. tuberculosis). ForM. tuberculosis, the HTS assay
was carried out in sterile 384-well white microtest plates TC surface (353988 BC Falcon). 250
nL of screening compound were added to the plates as a solution in neat DMSO. The inoculum
was standardized to 107 CFU/mL by measuring the OD at 600nm (an OD600 = 0.125 is equiva-
lent to 107 CFU/mL) and then diluted 1 in 100 (105 CFU/mL) in 4.7 g Middlebrook 7H9 pow-
der, 5 g albumin, 1 g glucose, 0.85 g NaCl, and 0.025% Tyloxapol (Sigma T8761). 25 μL of the
105 CFU/mL solution were dispensed in all 384w compound plates. Every assay plate contained
one column of negative control (control 1, 6th column) with neat DMSO and one column of
positive control (control 2, 18th column) in which 100% inhibition was reached by adding a
known inhibitor (0.1 mg/mL of rifampicin, Sigma R3501). The incubation was as described
previously [2]. This time, 10 μL of reconstituted BacTiter-Glo™Microbial Cell viability Assay
(Promega, G8231) reagent was added to each well and the plate was left 30 min at room tem-
perature. The luminescence was measured using the Spectramax M5 (Molecular Devices) with
integration time 250 mseconds (endpoint).

pIC50 ATP assay (M. bovis BCG Pasteur andM. tuberculosis H37Rv)
The assay was performed in 384 well plates forM. tuberculosisH37Rv and in 1536 well plates
forM. bovis BCG Pasteur. For each compound, 11 two-fold dilutions were done in DMSO
(final concentration 1%). The controls were as the ones used for theM. tuberculosis H37Rv Sin-
gle Shot ATP assay. The method used (inocula, incubation, measurement) is the same as in the
M. tuberculosisH37Rv Single Shot ATP assay, maintaining 8 min incubation, once the BacTi-
ter-Glo™ is added, in the case ofM. bovis BCG Pasteur and 30 min forM. tuberculosis H37Rv.

The effect of a given compound was calculated as % inhibition at single shot or pIC50 (Acti-
vityBase, ID Business Solutions Limited). Zprime lower limit had been established at 0.4. Plates
with Zprime values below this cutoff were rejected.

Statistical analysis for HTS
Statistical cutoffs were obtained as the mean plus 3 standard deviations calculated with a robust
algorithm [3] from the population of growth inhibitions; compounds above the statistical cut-
offs were deemed to have significant inhibition compared to the majority of the compounds
that had inhibitions within the noise. A cutoff was calculated for each batch of plates tested in
one day. Previously the plates were corrected for the presence of patterns when necessary by
using an in-house developed plate pattern recognition and fixing algorithm [4].

Pattern Correction
The plates that display gradient patterns were fixed with the Pattern Recognition & Fixing
Algorithm. The algorithm corrects the responses by calculating a robust 2D running median
across the wells and performs a weighted subtraction from the original responses such as it
leaves unmodified the “outlier” responses. Plates with VEP (variance explained by pattern)>
0.35 were deemed in need of pattern fixing.
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Activity against Non-replicatingMycobacterium tuberculosis
Non-Replicating (NR) conditions were induced in Sauton’s-based minimal containing 0.05%
KH2PO4, 0.05% MgSO4, 0.005% ferric ammonium citrate, 0.00001% ZnSO4 and 0.01% NH4Cl
supplemented with 0.05% butyrate, 0.5% BSA, 0.085% NaCl and 0.02% tyloxapol. pH was set
to 5.0 with 2N NaOH and NaNO2 was added from freshly prepared 1M stock (in distilled
H2O) to a final concentration of 0.5mM. NR conditions also included 1% O2 and 5% CO2.

Assay conditions: 150 nL of each compound at 1mM concentration (in 100% DMSO) dis-
pensed in 384 well plates and stored at -20°C. Bacterial pellets obtained from log-phaseM.
tuberculosisH37Rv grown in roller bottles at 37°C and 20% O2 were washed twice with phos-
phate buffer saline (PBS; Difco), which had 0.02% tyloxapol (PBS-Tyloxapol). Bacterial suspen-
sion with an OD of 0.1 at 580 nm was then prepared in NR medium and NaNO2 added fresh
for a final concentration of 0.5 mM. 15 μL of this suspension was dispensed in to each well of
the compound plate. Plates were incubated for 3 days at 37°C in oxygen-controlled incubators
at 1% O2 and 5% CO2. 60 μL of complete 7H9 medium was added to each well after NR expo-
sure and the plates incubated at 37°C with 21% O2 and 5% CO2 to allow outgrowth of bacteria.
OD was read after 7 days using a microplate reader.

M. tuberculosis inhibition assay (MABA)–H37Rv and resistant strains
The measurement of the minimum inhibitory concentration (MIC) for each tested compound
was performed in 96-well flat-bottom polystyrene microtiter plates. Ten twofold drug dilutions
in neat DMSO starting at 5 mM were performed. These drug solutions (5 μL) were added to
95 μL Middlebrook 7H9 medium (lines A-H, rows 1–10 of the plate layout). Isoniazid was used
as a positive control; eight twofold dilutions of isoniazid starting at 1.2 mM were prepared, and
this control curve (5 μL) was added to 95 μL Middlebrook 7H9 medium (row 11, lines A-H).
Neat DMSO (5 μL) was added to row 12 (growth and blank controls). The inoculums were
standardized to ~1x107 CFUmL-1 and diluted 1:100 in Middlebrook 7H9 broth (Middlebrook
ADC enrichment, a dehydrated culture medium which supports growth of mycobacterial spe-
cies, available from Becton–Dickinson, cat. # 211887), to produce the final inoculum of H37Rv
strain (ATCC25618) and resistant clinical isolates to isoniazid and rifampicin. This inoculum
(100 mL) was added to the entire plate except G-12 and H-12 wells (blank controls). All plates
were placed in a sealed box to prevent drying out of the peripheral wells and were incubated at
37°C without shaking for six days. A resazurin solution was prepared by dissolving one tablet
of resazurin (VWR International Ltd., Resazurin Tablets for Milk Testing, cat.# 330884Y’) in
30 mL sterile phosphate-buffered saline (PBS). Of this solution, 25 μL were added to each well.
Fluorescence was measured (Spectramax M5, Molecular Devices; lex 530 nm, lem 590 nm, cut-
off 570 nm) after 48 h to determine the MIC value.

Intracellular assay
M. tuberculosis H37Rv containing the Photinus pyralis luciferase gene (Hygromicin resistant
plasmid) was grown in 7H9 suplemented with 10% ADC and 0.05% Tyloxapol until the
OD600 is 0.5–0.8. We divided 160 ml of culture in 4 tubes of 50 ml each and pelleted at 2860g
for 10 min. 10 glass beads (4mm) were added in order to disperse the bacterial pellet of each
tube by shaking for 60 seconds. Then 6 ml of fresh RPMI media were added and leave on the
bench for 5 min. Carefully we collected 5 ml of the supernatant and discard the rest. The super-
natants of 4 tubes were collected into the same sterile tube and centrifuged at 402g for 5 min-
utes to avoid any remaining clumps. This dispersed bacterial suspension was diluted into
RPMI-0.05% Tyloxapol and we calculated the volume needed to have a multiplicity of infection
(MOI) of 1, using the following conversion: OD600 0.1 = 1x107 CFU/ml. THP1 cells (ATCC1
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TIB-202 ™) were maintained in complete RPMI1640 (RPMI 1640 HEPES modification, 2 mM
L-glutamine, 1 mM sodium pyruvate, 10% fetal bovine serum) and incubated at 37°C with 5%
CO2. THP1 phagocytes (2x105 cell/mL) were infected for 4 h in a roller bottle with a MOI of 1
in RPMI-20nM PMA and extracellular bacteria were discarded by washing 5 times in complete
RPMI (5 x 402g, 5 min). We dipensed 50 μL/well (10,000 cells/well) of infected THP1 cells in
white 384-well plates with 250nl/ well of compound in DMSO.Plates were incubated for 5 days
at 37°C/ 5% CO2. Then, 25μl of reconstituted Bright-Glo™ Luciferase Assay System (Promega)
were added to each well and plates were incubated at RT for 30 minutes. Finally, the lumines-
cence was read in an Envision system (Perkin Elmer) using these settings: US LUM 384 (cps)
7000004/ Measurement height 0 mm/ Measurement time 0.1 s. Aperture: 384 Plate US Lumi-
nescence aperture.

HepG2 cytotoxicity assay
Actively growing HepG2 cells were removed from a T-175 TC flask using 5 mL Eagle’s MEM
(containing 10% FBS, 1% NEAA, 1% penicillin/streptomycin) and dispersed in the medium by
repeated pipetting. Seeding density was checked to ensure that new monolayers were not>50%
confluent at the time of harvesting. Cell suspension was added to 500 mL of the same medium at
a final density of 1.2x105 cells.mL-1. This cell suspension (25 μL, typically 3000 cells per well) was
dispensed into the wells of 384-well clear-bottom plates (Greiner, cat. # 781091) using a Multi-
drop instrument. Prior to addition of the cell suspension, the screening compounds (250 nL)
were dispensed into the plates with an Echo 555 instrument. Plates were allowed to incubate at
37°C at 80% relative humidity for 48 h under 5% CO2. After the incubation period, the plates
were allowed to equilibrate at room temperature for 30 min before proceeding to develop the
luminescent signal. The signal developer, CellTiter-Glo (Promega) was equilibrated at room tem-
perature for 30 min and added to the plates (25 μL per well) using a Multidrop. The plates were
left for 10 min at room temperature for stabilization and were subsequently read using a ViewLux
instrument (PerkinElmer).

The human biological samples were sourced ethically and their research use was in accord
with the terms of the informed consents.

Physicochemical properties
CLND solubility assay. GSK in-house kinetic solubility assay: 5 μL of 10mM DMSO stock

solution diluted to 100 uL with pH7.4 phosphate buffered saline, equilibrated for 1 hour at
room temperature, filtered through Millipore Multiscreen HTS-PCF filter plates (MSSL BPC).
The filtrate is quantified by suitably calibrated flow injection Chemi-Luminescent Nitrogen
Detection [5]. The standard error of the CLND solubility determination is ±30 μM, the upper
limit of the solubility is 500 μMwhen working from 10 mMDMSO stock solution.

ChromlogD assay. The Chromatographic Hydrophobicity Index (CHI) [6] values were mea-
sured using a reversed phase HPLC column (50 x 2 mm x 3 μMGemini NX C18, Phenomenex,
UK) with fast acetonitrile gradient at starting mobile phase of 100% pH = 7.4 buffer. CHI values
are derived directly from the gradient retention times by using a calibration line obtained for stan-
dard compounds. The CHI value approximates to the volume % organic concentration when the
compound elutes. CHI is linearly transformed into ChromlogD [7] by the formula: ChromlogD =
0.0857CHI-2.00. The average error of the assay is ±3 CHI unit or ±0.25 ChromlogD.

Exploring the 2D chemogenomics space
We applied a multi-category Naïve Bayesian classifier (MCNBC) that was built and trained
using 2D structural and experimental bioactivity information from the ChEMBL database
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version 16 [8]. In brief, the classifier learns the various categories (in this case protein targets)
by considering the enrichment of certain 2D sub-structural features of active compounds
across the protein targets. Given a new, unseen compound, the model calculates a Bayesian
probability score for each target based on the compound’s individual features and produces a
ranked list of likely targets. The model was built in Accelrys Pipeline Pilot (version 8.5) using
standard ECFP_6 fingerprints [9] to encode the chemical structures. Further information on
the model generation and validation can be found in our previous publication [10]. The statisti-
cal significance of the probability scores was assessed with Z-scores. These were computed by
calculating the background probability score distribution for each protein target using all the
compounds in ChEMBL. Lastly, given that the majority of bioactivities in the ChEMBL data-
base are against human, mouse and rat protein targets, the predicted targets were mapped to
their orthologousM. tuberculosis ones using the OrthoMCL [11] database [12].

Exploring the 3D structural space
A network of 3D structural similarities between compounds and targets was built to identify
the most likely targets of a given compound in the GSK dataset. To explore the structural
space, we used nAnnolyze, an improved version of our previously published AnnoLyze algo-
rithm [13], which was based on homology detection through structural superimposition of tar-
gets and their interaction networks to small compounds, similar to previously published
approaches [14, 15]. Briefly, the new algorithm relies in four pre-built layers of interconnected
networks. First, the “GSK Ligand” network where nodes are GSK compounds and edges corre-
spond to their similarity as measured by a previously developed Random Forest Classifier
(RFS) score [10]. The RFS classifier predicts whether two small molecules are likely to bind the
same target-binding site by comparing their structural and chemical properties. Second, the
“PDB Ligand” network where nodes are clusters of highly similar ligands of the Protein Data
Bank (PDB) [16] and edges correspond to their similarity measured by the RFS. The “GSK
Ligand” network is linked to the “PDB ligand” network by edges corresponding to the com-
pound similarity measure by the RFS. Third, the “PDB Protein” network with nodes corre-
sponding to clusters of highly similar small molecule binding-site of proteins in PDB and edges
correspond to their structural similarity as measured with the ProBiS structural superimposi-
tion method [17]. Fourth, the previously built “M. tuberculosisModels” network [10] with
nodes corresponding to predicted small molecules binding-sites in three-dimensional models
ofM. tuberculosis targets and edges correspond to their structural similarity after comparison
by the ProBiS program. The two central networks (that is, “PDB Ligand” and “PDB Protein
Binding-Sites” networks) are connected by co-appearance of the compound and the protein in
any solved structure in the PDB. The “PDB Protein” and the “M. tuberculosisModels” net-
works are linked by the structural comparison between any binding-site in the PDB network
and all binding-sites in models fromM. tuberculosis. Finally, once all the networks are con-
structed, we identified the closest path between any GSK compounds andM. tuberculosis tar-
gets. To score the hit, we used the inverse of the edges weight of the pathway. Next, the final
score is normalized to 1 (being 1 the best score and 0 the worst one) and Z-scored. Specifically,
two different Z-scores are calculated for each prediction. The first, called Global Z-score, is
obtained by running the predictions of all drugs present in DrugBank against all targets and
using the global mean and the global standard deviation to Z-score specific predicted pair.
The Global Z-score represents how good a prediction is given its score in the constructed net-
work. The second, called Local Z-score, is calculated by running the predictions of all drugs
present in DrugBank and retrieving the mean and the standard deviation of the score for a spe-
cific target binding-site. The Local Z-score represent how good a prediction is for a specific
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binding-site; highly promiscuous binding-sites tend to have bad local Z-scores. The nAnnolyze
approach was recently evaluated using all the FDA approved drugs present in PDB. In such
dataset, the nAnnolyze predictions result in an area under the Receiver Operating Characteris-
tic curve (AUC) of 0.70 [18].

The final entire network of comparisons included the 50 compounds from the GSK dataset,
7,609 unique ligands from the PDB, 28,299 unique compound binding-sites in protein struc-
tures from the PDB, and a total of 5,008 structure models fromM. tuberculosis.

Exploring historical assay data
GSK proprietary compound screening databases were queried for any historical assay data
associated withM. tuberculosisH37Rv (M. tuberculosisH37Rv) active compounds. The major-
ity of these screens were against human protein targets. The threshold above which compound
efficacy against specific human targets was considered significant was defined as pIC50 � 5.0
for inhibition or antagonist assays, pEC50� 5.0 for agonist, activation or modulator assays (i.e.
overall pXC50 � 5.0).

Using BLASTP [19] we queried the protein complement of publishedM. tuberculosis
H37Rv for all human targets accepting a homology cutoff of an E-value�1.0e-10 and visual
inspection of the alignments. Putative homologous relationships were confirmed by reciprocal
BLASTP searches of identifiedM. tuberculosisH37Rv homologues against the human RefSeq
protein databases (April 2014).

Statistical assessment of predicted links between compounds and
targets
Wemeasured two different statistics to assess the significance of a particular link between a
chemical compound and a target pathway. Firstly, we calculated the LogOdds (that is, the odds
of an observation given its probability). A feature i (in our case, a compound in or a pathway)
has a probability (pi,c) in the entire dataset and a probability (pi,r) of being at the subset of
selected compounds/pathways. Their LogOdds are defined as the logarithm of its Odds (Oi):

Oi ¼
pi;c

ð1�pi;c Þ
pi;r

ð1�pi;rÞ

Therefore, Odds higher than 1 (or positive LogOdds) indicate over-occurrence of the com-
pound/pathway in the selected subset. Odds smaller than 1 (or negative LogOdds) indicate
under-representation of the compound/pathway in the selected subset. Secondly, a p-value
score was calculated for each predicted link between a compound and a target pathway using a
Fisher's exact test for 2×2 contingency tables comparing two groups of annotations (i.e., the
group of compounds in a given pathway and the group of compounds in the entire dataset)
[20]

Results

Screening process and drug like properties of hits identified
GSK DDW has very recently added to its Corporate small molecule repository some structur-
ally new 254,000 compounds, known as the “Top-up” library, whose diverse profile reflects the
latest intelligence on how specific physicochemical property descriptors (sp3 character, lipophi-
licity/ water solubility, molecular size etc.) can affect attrition at the different stages of the drug
discovery phase. Given the differentiated structural profile of this compound library, we would
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expect novel hits that engage new targets beyond those identified during our previous studies
[2].

We have reported previously how non pathogenic and Biosafety Level 2 friendlyM. bovis
BCG can act as a modest surrogate to predict the antitubercular activity againstM. tuberculosis
H37Rv [2]. It is for this reason that, in this occasion, we decided to undertake parallel screening
activities against both strains. Active compounds meeting the pre-established (Fig 1) threshold
of activity in the primary ATP antimycobacterial assay, were progressed to evaluation in a resa-
zurin based H37Rv assay. This resulted in the identification of 4,231 compounds that exerted
an inhibition ofM. tuberculosisH37Rv growth superior to 35% and, in the case of BCG, 8,529
compounds with growth inhibition values above 40%. At this stage a set of automatic filters
directed towards the identification and elimination of a few remaining undesirable structural
features such as electrophiles, peroxides and Michael acceptors, was applied resulting in a first
reduction on the number hit structures; this set of filters is an updated version of a previously
published one.32 The fraction of undesirable compounds in the “Top up” library is very small
(estimated in 0.08%); however, most of them (ca. 200) showed up in the initial list of hits as
they are reactive compounds prone to cytotoxicity effects.

This first selection was further narrowed through the application of a specifically designed
in house algorithm that helped prioritize highly active structural clusters and remove analogs
showing lower percentages of inhibition. Finally, all known antitubercular classes were manu-
ally removed. The resulting 320 (BCG screening stream) and 216 (H37Rv screening stream)
hits were checked for structural duplication, resulting in 373 compounds that were progressed
to Minimum Inhibitory Concentration (MIC) determination against H37Rv in the MABA
resazurin assay. In order to progress only the most promising hits, we applied very strict

Fig 1. HTS progression cascade leading to 50 confirmed H37Rv-positive compounds.

doi:10.1371/journal.pone.0142293.g001
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selection criteria: we did not select any compound which either did not reach, at least, the 90%
inhibition cutoff or required more than 10μM to reach this threshold. Therefore, only 86 of
these 373 compounds were moved forward (MICs lower or equal to 10 μM). This relatively low
percentage of actives in the H37Rv MABA assay highlights a lack of correlation between the
two readouts employed in this screening effort. The corresponding 86 compounds were then
clustered in chemotypes resulting in a final hit list of 50 representative highly potent com-
pounds, including 37 singletons, five clusters of two representatives and one cluster of three
representatives (Figs 1 and 2 and Table B in S1 File). When tested for MIC determination in
the H37Rv MABA assay, these 50 compounds showed MIC values between 0.2 and 10 μM.
Amongst those 50 hits, 7 were Mtb specific and the rest were all identified as hits in both
screening campaigns (BCG and Mtb). Activity againstM. bovis BCG (pIC50s) is described in
Fig 2 and Table B in S1 File. In order to determine the therapeutic window of the hits, the
HepG2 cytotoxicity of each hit was evaluated. From the dose–response results, 24 compounds
displayed TOX50 between 10 and 100 μM and 26 had no detectable cytotoxic effects (TOX50�
100 μM). The library used in these screens is composed of lead-like compounds with very low
lipophilicity. In addition, the few remaining compounds with reactive substructures were auto-
matically removed (see above), as well as topoisomerase inhibitors that inhibit also eucariotic
cells (Fig 1). As a result, the final 50 compounds have a very high probability of targetting
Mycobacterium through specific mechanisms that would explain the low cytotoxicity observed
in HepG2 cells.

All the 50 hits were also tested for their activity against non-replicatingM. tuberculosis as
described previously [21]. Interestingly, 5 of them were active with pIC50 ranging from 4.5 to
5.2 (equivalent to IC50´s between 31 and 6 μM). Finally, the inhibition of the intracellular
growth of mycobacterium tuberculosis was determined. Out of the 26 representative com-
pounds tested, all but one (TCMDC-143682) were active, with pIC50s above 5. Interestingly, a
set of 10 compounds was also tested against clinical isolates resistant to isoniazid (inhR) or
rifampicin (rifR) and all the compounds were as active as against the reference strain H37Rv
(Fig 2 and Table C).

This new compound set again resides comfortably within the range of properties occupied
by marketed drugs and on average has a slightly lower lipophilicity than the first set (see Figs 2
and 3; Table B in S1 File and Figures C-E in S1 File). The compounds identified generally pre-
sented a combination of a reasonable level of solubility and anti-mycobacterial activity, indicat-
ing their attractiveness as starting points for lead optimisation. No statistically significant
difference in the distributions of physicochemical properties was observed between the 7
H37Rv-specific compounds and rest of the compounds, although they are structurally
dissimilar.

Target Prediction
The final 50 compounds were computationally analyzed with the goal of identifying their likely
target proteins. Our computational approach integrates 2D chemogenomics space (CHEM),
structural comparisons (STR) and historical bioassay data (HIST). The results from this analy-
sis were also compared to those from our previous analysis [10].

2D Chemogenomics space (CHEM). The exploration of the chemical space allowed us to
identify likely targets (Table 1) for the input compounds based on their structural similarity to
compounds with experimentally validated targets deposited in the ChEMBL database [8]. We
applied a multi-category naïve Bayesian classifier (MCNBC) that was built and trained using
structural and bioactivity information from the ChEMBL database [8]. Given a new
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Fig 2. Complete biological profile of selected hit compounds and corresponding physico chemical properties. a Mtb specific. *This compound has
been evaluated against a clinical isolate ofM.tuberculosis resistant to isoniazid and its MIC was in the range of H37Rv (1.6 uM). b Compounds being tested in
the intracellular assay, data will be available from Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.8r351.

doi:10.1371/journal.pone.0142293.g002
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compound, the model calculates a likelihood score based on the molecule's individual sub-
structural/fingerprint features and produces a ranked list of likely targets.

In total, the 50 compounds resulted in 262 statistically significant target associations (at a Z-
score> 2.0) to 221 different proteins in the ChEMBL database from 24 different organisms
(57% of hits are to human proteins). A simple orthology search the OrthoMCL database
against theM. tuberculosis proteins from this set resulted in 128 compound-target relationships
for 61M. tuberculosis proteins, with detectable orthology to 16 organisms (Table C in S1 File).

Historical assay space (HIST). We used the historical GSK bioassay data to develop
hypotheses for the anti-mycobacterial mode of action for the active compounds. Using conser-
vative activity thresholds (pXC50� 5.0) we found that among the 50 compounds active against
M. tuberculosisH37Rv, 25 displayed additional activity in 65 different historical biochemical
assays against human (50 unique genes), bacterial (1 gene) and viral (1 gene) putative targets
(Figure A.A in S1 File). Some compounds were present in multiple historical assays resulting in
a total of 93 assay experiments (Figure A.B in S1 File).

The largest human target classes were G protein coupled receptors (GPCRs) and protein
kinases, which might partly reflect the relative abundance of different ligand classes in GSK’s
pharmacological screening collection. We searched for orthologous sequences of the human
assayed proteins in theM. tuberculosisH37Rv genome using conservative criteria (BLASTP E-
value�1.0e-10) for assigning human-Mycobacterium protein homology. Although there are
significant evolutionary differences betweenMycobacterium and human genomes in terms of
both gene content and amino acid sequence divergence, we still found 17M. tuberculosis
H37Rv gene homologues (Table A in S1 File), which fell into different target class categories
(Figure A in S1 File), including kinases (8 genes), cytochromes (6 genes), other enzymes (2
genes) and ion channels (2 genes).

Fig 3. Plot of calculated chromatographic logD7.4 versus calculatedmolar refraction (CMR). All data
were generated using the latest version of the GSK calculator. Grey crosses represent marketed drugs with
>30% oral bioavailability, white crosses <30% oral bioavailability, and the two disclosed sets by black
squares (the current 50 compounds) or black stars (the CMC2013 set of 177). The line represents a
discriminator between likely good and bad permeability. The chromatographic logD scale gives values
approximately two units higher than the traditional distribution values assessed in octanol/water.

doi:10.1371/journal.pone.0142293.g003
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The specific predictions from the historical assay space search are detailed in S1 File.
3D Structural space (STR). Finally, we applied a Random Forest Score that identified

structural similarities between any compound in the dataset and ligands from the PDB [22].
Each compound in theM. tuberculosis H37Rv dataset is compared to ~7,600 ligands for which
there are known complex structures in the PDB, identifying structural similarities to be
included in a pre-built network of structural relationships between ligands and targets. In total,
the 50 compounds resulted in 1,890 significant target associations (global Z-score< -1) to pro-
teins in a set of modeled three-dimensional structures from theM. tuberculosis proteome (data
not shown).

Table 1. Significant links between compound families and targets.

Compound FamID Target Pathway Essentiality
Prediction

TCMDC-
143652

1 Rv3569c Degradation of aromatic compounds (mtu01220) Steroid degradation (mtu00984) Non

TCMDC-
143653

1 Rv3569c Degradation of aromatic compounds (mtu01220) Steroid degradation (mtu00984) Non

TCMDC-
143657

1 Rv3569c Degradation of aromatic compounds (mtu01220) Steroid degradation (mtu00984) Non

TCMDC-
143650

1 Rv3569c Degradation of aromatic compounds (mtu01220) Steroid degradation (mtu00984) Non

TCMDC-
143666

3 Rv2855 Glutathione metabolism (mtu00480) Yes

TCMDC-
143687

3 Rv0427c Base excision repair (mtu03410) Non

3 Rv1629 Base excision repair (mtu03410) Yes

3 Rv2855 Glutathione metabolism (mtu00480) Yes

TCMDC-
143688

5 Rv1284 Nitrogen metabolism (mtu00910) Yes

TCMDC-
143670

5 Rv3273 Nitrogen metabolism (mtu00910) Non

5 Rv3588c Nitrogen metabolism (mtu00910) Non

5 Rv1284 Nitrogen metabolism (mtu00910) Yes

5 Rv3273 Nitrogen metabolism (mtu00910) Non

5 Rv3588c Nitrogen metabolism (mtu00910) Non

TCMDC-
143649

9 Rv0194 ABC transporters (mtu02010) Non

TCMDC-
143690

13 Rv1284 Nitrogen metabolism (mtu00910) Yes

13 Rv3588c Nitrogen metabolism (mtu00910) Non

TCMDC-
143655

29 Rv1151c Amino sugar and nucleotide sugar metabolism (mtu00520) Non

TCMDC-
143686

36 Rv0233 Purine metabolism (mtu00230) Non

36 Rv0733 Purine metabolism (mtu00230) Non data

36 Rv1843c Purine metabolism (mtu00230) Non

36 Rv2584c Purine metabolism (mtu00230) Non

36 Rv3275c Purine metabolism (mtu00230) Yes

36 Rv3307 Purine metabolism (mtu00230) Non

36 Rv3411c Purine metabolism (mtu00230) Yes

TCMDC-
143685

38 Rv1905c D-Arginine and D-ornithine metabolism (mtu00472) Penicillin and cephalosporin
biosynthesis (mtu00311)

Non

doi:10.1371/journal.pone.0142293.t001
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Predicted targets. The similarities and differences of the predictions of the three indepen-
dent approches are detailed in S1 File.

There were a total of 1,044 uniqueM. tuberculosis targets associated with 112 pathways
annotated in the KEGG database [23]. The KEGG being a suite of databases and associated
software for understanding and simulating higher-order functional behaviours of the cell or
the organism from its genome information. The “mtu” identifiers below refer to the relevant
KEGG pathway ids. The three orthogonal approaches identified 66 different pathways (Fig 4A)
associated to the 50 hit compounds. The relative increment in the number of putatively affected
pathways per compound comparing to the previous TCAMS-TB dataset [10] can be explained
by the higher structural diversity of the novel top-up library. Within the commonly identified
pathways, there are many associated with amino acid and nucleotide metabolism, e.g. the
mtu00260 (Glycine, serine and threonine metabolism), mtu00380 (Tryptophan metabolism),
mtu00330 (Arginine and proline metabolism), mtu00270 (Cysteine and methionine metabo-
lism), mtu00240 (Pyrimidine metabolism), mtu00230 (Purine metabolism), mtu00360 (Phe-
nylalanine metabolism), mtu00290 (Valine, leucine and isoleucine biosynthesis). Some of them
also appear overrepresented in the predictions, e.g phenylalanine, tyrosine and tryptophan bio-
synthesis (Fig 3B). Interestingly, there are others overrepresented pathways not directly associ-
ated with amino acid metabolism such as mtu05152, mtu01220 (Degradation of aromatic
compounds), or mtu00363 (Bisphenol degradation).

To assess the significance of the compound-target predictions using the three different
approaches, we calculated a t-statistics p-value of any compound family-KEGG pathway link
(Methods). There are 8 compounds families significantly associated (p-value< 0.005) to 10
different KEGG pathways. The threshold used in this study is less restrictive than in the prior
study [10] due to the smaller number of compounds. This results in a higher number of associ-
ations found between compounds and KEGG pathways. Family 1 is significantly linked with
both mtu01220 (Degradation of aromatic compounds) and mtu00984 (Steroid degradation).
Specifically, the link found by compounds TCMDC-143652, TCMDC-143653, TCMDC-
143657, and TCMDC-143650 targeting Rv3569c (4,9-DHSA Hydrolase) involved both path-
ways. Family 3 is significantly associated with two different KEGG pathways, mtu00480 (Glu-
tathione metabolism) and mtu003410 (Base excision repair). Specifically, compounds
TCMDC-143687 and TCMDC-143666 are predicted to hit Rv2855 (NADPH-dependent
mycothiol reductase) involved in Glutathionine metabolism and essential for the survival of
the bacteria [24], while TCMDC-143687 is predicted to hit the base excision repair pathway
through Rv0427c (Exodeoxyribonuclease III protein XthA) and Rv1629 (DNA polymerase
I PolA) being the later essential for the growth of the bacteria [24, 25]. Family 5 has a strong
association (p-value 1.0e-08) with mtu00910 (Nitrogen metabolism pathway) an essential
pathway for the bacteria survival. Specifically, compounds TCMDC-143688 and TCMDC-
143670 are predicted to hit Rv1284 (beta-carbonic anhydrase), Rv3273 (carbonate dehydra-
tase) and Rv3588c (beta-carbonic anhydrase CanB) three proteins involved in the Nitrogen
metabolism, where Rv1284 play a key role in the essentiality of this pathway. Moreover, com-
pound TCMDC-143690 belonging to singleton family 13, is also predicted to interact with
Rv1284 and Rv3588c targeting the nitrogen metabolism pathway with a completely different
chemical scaffold. Another interesting significant link is the compound TCMDC-143648 tar-
geting the mtu02010 (ABC transporters pathway) through the Rv0194 target (transmembrane
multidrug efflux pump). Family 29 composed by compound TCMDC-143655 is predicted to
interact with Rv1151c (transcriptional regulatory protein), which is involved in transcriptional
mechanism and belongs to mtu00520 (amino sugar and nucleotide sugar metabolism). Family
36 with compound TCMDC-143686 is significantly associated with the mtu00230 (purine
metabolism) pathway. This compound is predicted to attack the pathway by targeting 7
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Fig 4. Predicted KEGG pathways targeted by the GSK compounds. A) Venn diagram with common
pathways from the three different approaches. B) Most under and over-represented pathways in our
predictions. Panels A) and B) with the same representation as in Figure E in S1 File.

doi:10.1371/journal.pone.0142293.g004
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different proteins in this pathway (Rv0233, Rv0733, Rv1843c, Rv2584, Rv3275c, Rv3307, and
Rv3411c). Among the predicted targets, there are two essential for the bacterial survival [24,
25], the N5-carboxyaminoimidazole ribonucleotide mutase (Rv3275c) and the inosine-5'-
monophosphate dehydrogenase (Rv3411c). Finally, a significant link between Family 38
(TCMDC-143685) and pathways mtu00472 (D-arginine and D-ornithine metabolism) and
mtu00311 (Penicillin and cephalosporin biosynthesis) was also observed trough the target
Rv1905c (a Probable D-amino acid oxidase Aao).

Discussion
Screening for new antitubercular inhibitors in whole cell based assays still sustains a high pro-
portion of the drug discovery pipeline against TB. While this choice of screening strategy is not
devoid of its own specific issues [26] the completion of a number of screening efforts and, most
importantly, the public release of these datasets, is enabling the in depth validation of novel
Mode-of-Actions (MoA) against TB [27–32]. This target elucidation work, in time, is promis-
ing to open up new opportunities for TB drug discovery where the limitations associated
with the medicinal chemistry optimisation of hits identified by whole cell screening can be
addressed through the support provided by technologies typically associated with target based
discovery programs, e.g. particular target assays and crystallography. We expect that by access-
ing these technologies, a more rational understanding of the optimization process and the early
identification of potential target related toxicological liabilities could be attained.

It is with this goal in mind that we here present a novel set of antitubercular compounds
together with some developability parameters that should provide the TB R&D community
with novel chemical starting points for further discovery or, more importantly, future target
identification programs. The present release incorporates compounds which, on average,
would appear to be in more favourable physical space than those in the previous publication
[2, 10]. Given the predominantly intracellular lifestyle of Mtb and the suspected impact of
non-replicating bacteria in TB chemotherapy [33, 34], we decided to investigate whether the
compounds were capable of inhibiting Mtb growth in THP-1 cells and were active against non-
replicating bacteria. 96% of the compounds tested in the intracellular assay were found to be
active and 10% of the whole set retained activity in the non-replicating assay. On the basis of
the drug-like properties presented in Fig 2 and Table B in S1 File, ten molecules were selected
for further characterisation against isoniazid and rifampicin clinical resistant isolates. All com-
pounds were found to be active within the same range as the reference strain H37Rv.

Interestingly, 7 compounds of the set were Mtb specific (inactive against M. bovis BCG).
While a number of especulative explanations can be postulated, e.g. differences in permeability,
active transport, metabolic state, etc., this lack of correlation highlights the risks associated
with the use of non pathogenic surrogate strains in antitubercular research.

To further characterize the activity of the novel antitubercular compounds, we have inte-
grated a series of orthogonal computational approaches for predicting their putative targets.
Our analysis found nine chemical families targeting 21 different proteins from 13 biochemical
pathways inM. tuberculosis. Within the 21 proteins, there are 5 assessed as essential in previous
studies. The essentiality of these targets makes them top priority targets for further validation.
However, some non-essential targets can have a key role in TB infection in-vivo and therefore
we should consider them in the search of new strategies for defeating TB. Our target identifica-
tion work aims to facilitate further chemical and biochemical experiments to optimize the
properties of the compounds against TB. Optimally, additional computational approaches
could then interrogate the newly generated compounds to further characterize their mode-of-
action. This iterative process is very desirable to maximize the impact of the openly released
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new compounds against TB. In particular, we also release the 3D structural models for the sig-
nificant predictions of targets and compounds identified by the STR approach. Such models
and the predicting binding site could be used for computational docking or molecular dynam-
ics analysis to further validate our prediction

Supporting Information
S1 File. Supporting information, Figures and Tables. Figure A. Target class space. A) For
positive hits inM. tuberculosisH37Rv screens, the distribution of human target classes affected by
compounds based on known human protein potency and selectivity criteria as described in the
text. The number of human targets is indicated for each class as well as the potential number of
Mtb homologous genes (in parentheses). B) Distribution of 25 compounds screened against 1 or
more targets having pIC50 or pEC50 values> 5.5 in 65 assays by human target classes. Some
compounds have historical assay information and potency against multiple target classes.
Also indicated is the number of assays against targets with putative homologues inM. tuberculosis
(in parentheses). Figure B. Box plot of average PFI (calculated Chrom Log D7.4 + #Ar) distribu-
tion of the 177 compounds released previously [2], the current 50 hits and a representative set of
oral drugs. Figure C. Box plot of average calculated Chrom Log D7.4 distribution of the 177
compounds released previously [2], the current 50 hits and a representative set of oral drugs.
Figure D. Box plot of average calculated molar refraction (CMR) distribution of the 177 com-
pounds released previously [2], the current 50 hits and a representative set of oral drugs. Figure
E. Subset of GSK compounds with predicted targets. A) Venn diagram with common com-
pounds with predictions from the three different approaches (that is, in green from the search of
the chemogenomics space, in purple from the search of the structural space, and in red from the
historical data). B) Venn diagram with common compound families with predictions from the
three different approaches. C) Most under and over-represented chemical families in our predic-
tions. Upper plot shows the probability of finding a given family in the original dataset (grey bars)
compared to the probability of finding it in the dataset with predicted targets (blue bars). Lower
plot shows the log odds per selected family (i.e., absolute log odds larger than 0.5). Table A. Pre-
dictedMtbH37Rv gene targets based on homology to 65 historical human target assays for 25
compounds. Notes: a Human target classes are defined in the text. Some compounds were
reported active across more than one target class hence the greater number of total than tested
compounds. bM. tuberculosisH37Rv homologs determined by BLASTP searches using human
target proteins [19]. c Essentiality scoring based on Sassetti et al.[24]. NE = No Evidence from
these sources. Table B. Complete biological profile of selected hit compounds and corresponding
physico chemical properties. Table C. Target association based on the structural similarity of the
hits to compounds with experimentally validated targets deposited in the ChEMBL database.
(PDF)
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