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A B S T R A C T

Off-axis incidence is inherent to sun tracking mirrors, named heliostats. Moreover, heliostat defocus takes place,
provided that the focal length of the mirrors usually differs from their distance to the target. Defocus, along
with high incidence angles, lead to astigmatic aberrations, that are overlooked by analytic functions based on
convolution. This paper presents an analytic function on the image plane that reproduces these aberrations. As
the reflection of the heliostat axes is non-orthogonal with defocus, the identification of the reflected axes plays
a key role in the resulting model. In comparison with Monte Carlo Ray-Tracing, the model shows correlation
coefficients above 90%, except at the tangential and sagittal foci, where the analytic function is indeterminate.
An astigmatic parameter is provided to assess the model validity, which is complementary to UNIZAR at high
incidence angles.
1. Introduction

In Solar Power Tower (SPT) plants, thousands of mirrors
–heliostats– track the sun and concentrate solar radiation into a central
receiver atop a tower. The incidence of sunrays on the mirror is not
normal, which leads to off-axis aberrations or astigmatism (Hénault,
015). As a consequence, the spot size on the target increases, as well
s spillage losses (Igel and Hughes, 1979).
To minimize the effect of astigmatism, some heliostat designs have

een proposed. In contrast to the widely spread azimuth-elevation
racking heliostats, spinning-elevation –or target-aligned– heliostats
ttenuate slightly off-axis aberrations because tangential and sagittal
lanes keep fixed with respect to the reflector (Zaibel et al., 1995; Chen
et al., 2004; Lim et al., 2016).

Along with astigmatism, defocus is another issue inherent to he-
liostats. Because of fabrication constraints, the curvature of the mirror
facets is restricted to a limited set in commercial heliostat fields (Buck
and Teufel, 2009; Meng et al., 2013; Landman et al., 2016). As mirror
focal lengths hardly match the heliostat slant ranges, defocus phenom-
ena take place in the flux distributions.

The accurate mapping of heliostat flux distribution on the receiver
is crucial in the design and operation of SPT plants. Real-time optimiza-
tion of aiming strategies (Sánchez-González et al., 2017; Speetzen and
Richter, 2021), field and receiver control (Camacho et al., 2012), and
optimization of heliostat fields (Cruz et al., 2017) are examples of tasks
that demand fast and accurate tools.

E-mail address: asgonzal@ing.uc3m.es.

Flux mapping approaches can be classified into two categories:
Monte Carlo Ray-Tracing (MCRT) and convolution (Garcia et al., 2008).
The MCRT technique traces a bundle of rays from the sun. The con-
volution approach leads to analytic functions that result from the
superposition of error cones, mainly sunshape and concentration. By
definition, flux mapping based on convolution is faster than MCRT.
On the contrary, aberrations are generally disregarded by the analytic
functions.

Widely known models based on the convolution approach are
HFLCAL, DELSOL, and UNIZAR. HFLCAL is the only analytic function
that includes a term for the astigmatic error (Schwarzbözl et al., 2009).
However, because of its strictly circular Gaussian definition, HFLCAL
just leads to circular distributions that are inappropriate for rectangular
and defocused heliostats. DELSOL uses a Hermite polynomial expan-
sion that takes into account neither astigmatism nor defocus (Walzel
et al., 1977). UNIZAR analytic function is based on the error func-
tion (Collado et al., 1986), and has shown high accuracy in rectan-
gular focused heliostats with off-axis incidence (Sánchez-González and
Santana, 2015).

This paper aims to develop a flux mapping model that reproduces
the aberrations due to heliostat defocus and astigmatism. The astig-
matic theory will be integrated into an existing analytic function,
UNIZAR precisely. As a result, an analytic function will be proposed and
tested for single heliostats depending on their position, incidence angle,
and defocus. The goal is to improve the accuracy of a fast convolution
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Nomenclature

𝐴 Surface area [m2]
𝑎ℎ, 𝑎𝑤 Limits of the convolution integral [m]
𝐶 Concentration ratio of flux density [–]
𝐷 Slant range, mirror-to-target distance [m]
𝐹 Flux density [W/m2]
𝑓 Mirror focal length [m]
𝐼𝑑 Direct normal irradiation [W/m2]
H Position vector of heliostat horizontal axis
 Function based on the Gaussian error

function
𝐽 Jacobian of the conformal transformation

[–]
𝐿 Mirror characteristic length [m]
𝐿𝐻 , 𝐿𝑊 Mirror height and width [m]
𝑙 Image length reflected by the mirror [m]
𝑙ℎ, 𝑙𝑤 Mirror height and width on the image

plane [m]
𝑁 Number of elements
n Normal unit vector
O Position vector of mirror center of curva-

ture
𝑅 Mirror curvature radius [m]
𝑅𝑜𝑡 Rotation matrix
r Reflected unit vector
s Sun unit vector
V Position vector of heliostat vertical axis
𝑋, 𝑌 , 𝑍 Cartesian coordinate axes
𝑥, 𝑦, 𝑧 Coordinates in 𝑋, 𝑌 , 𝑍 directions [m]

Greek symbols

𝛼 Azimuth angle [rad], [deg]
𝛽 Angle between sagittal and horizontal axes

at image plane [rad], [deg]
𝛿 Relative distance to circle of least confusion

[–]
𝜖 Elevation angle [rad], [deg]
𝜂 Optical loss factor [–]
𝜃 Rotation angle at image plane [rad], [deg]
𝜉, 𝜁 Linear transformation of 𝑥, 𝑦 [m]
𝜌 Cross-correlation coefficient [–]
𝜎 Error, standard deviation [mrad]
𝜔 Incidence angle [rad], [deg]

Subscripts

at Atmospheric attenuation
e Effective
h Heliostat
m Mirror
mod Model
n Normal direction
r Reflection direction
ref Reflectivity
s Sagittal
sb Shading and blocking
sg Global system of coordinates

model, which will ultimately increase the reliability of SPT design and

operation tools.
25
sh Heliostat system of coordinates
si Image plane system of coordinates
slp Mirror slope
st SolTrace
sun Sunshape
t Tangential
trk Tracking
uz UNIZAR

Accent symbols

̂ Non-dimensional length relative to 𝐿𝐻
′ Reflection, non-orthogonal

Acronyms

MCRT Monte Carlo Ray-Tracing
RMS Root Mean Square deviation
SPT Solar Power Tower

The manuscript is structured as follows. In Section 2, the theoret-
ical background is presented for both UNIZAR analytic function and
heliostat astigmatism. In Section 3, after a geometric characterization
of astigmatism and defocus, the reflection of heliostat axes is analyzed.
From previous insights, Section 4 presents an analytic function that
ccounts for defocus and astigmatism. Finally, the resulting model is
ontrasted with MCRT, and the model validity is assessed in Section 5.

. Theoretical background

Firstly, UNIZAR analytic function is introduced, followed by the
athematical background behind astigmatic phenomena.

.1. UNIZAR analytic function

Collado et al. (1986) developed an analytic model for the solar flux
istribution produced by focused heliostats. Specifically, two analytic
unctions, named UNIZAR (Collado, 2010), were proposed: one at the
mage plane (i.e., plane perpendicular to the main reflected ray) and an-
ther at the receiver plane. Because of the conformal mapping property
preservation of angles) existing between heliostat and image plane, its
nalytic function is herein utilized as the starting point. Whether the
lux distribution is required at the receiver surface, a projection method
an be utilized, as described elsewhere (Sánchez-González and Santana,
015).
The flux density distribution 𝐹 on the image plane follows Eq. (1)

ccording to UNIZAR analytic function. This function results from the
onvolution of concentration, sunshape and optical errors, that are
odeled as circular Gaussians. Therefore, UNIZAR function represents
two-dimensional Gaussian distribution that is evaluated at 𝜉 and 𝜁 ,
eliostat coordinates on the image plane. The  function, defined in
q. (2), is precisely a combination of the Gaussian error function, 𝑒𝑟𝑓
Eq. (3)).

(𝜉, 𝜁) = cos𝜔
𝐽

𝜂𝑟𝑒𝑓 𝜂𝑠𝑏𝜂𝑎𝑡𝐼𝑑
𝐴𝑚
𝐴ℎ

(𝜉,−𝑎𝑤, 𝑎𝑤)(𝜁,−𝑎ℎ, 𝑎ℎ) (1)

(𝑥, 𝑎, 𝑐) = 0.5 ⋅ [𝑒𝑟𝑓 (𝑥 − 𝑎) − 𝑒𝑟𝑓 (𝑥 − 𝑐)] (2)

𝑟𝑓 (𝑥) = 2
√

𝜋

𝑥

∫
0

𝑒−𝑡𝑑𝑡 (3)

UNIZAR analytic function (Eq. (1)) comprises the direct normal
irradiation (𝐼𝑑), the ratio of mirror to heliostat areas (𝐴𝑚∕𝐴ℎ), and
the optical loss factors – except spillage –, namely: cosine (cos𝜔),
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Fig. 1. Azimuth and elevation angles of heliostat normal (𝐧) and reflected vector (𝐫).

eflectivity (𝜂𝑟𝑒𝑓 ), shading and blocking (𝜂𝑠𝑏), and attenuation (𝜂𝑎𝑡).
long with the previous parameters, Eq. (1) comprises the Jacobian
f the conformal mapping (𝐽 ). This Jacobian results from the transfor-
ation matrix from image to heliostat coordinate systems and follows
q. (4). Further details on UNIZAR function can be found in Collado
t al. (1986). Since another formulation of the Jacobian will be later
resented, subscript 𝑢𝑧 is specific to the original UNIZAR analytic
unction on the image plane.

𝑢𝑧 = (1 − cos𝜔)2 (4)

UNIZAR function assumes spherical, continuous, focused and on-
xis aligned heliostats (Collado et al., 1986). Given a single mirror of
urvature radius 𝑅, its focal length is 𝑓 = 𝑅∕2. Defining 𝐷 slant range
s the mirror-to-target distance, the focused assumption is equivalent
o: 𝐷 = 𝑓 .
Under these circumstances, the reflection of curved mirrors onto the

mage plane –also named heliostat image– follows conformal mapping.
uch a mapping entails a scaling and a rotation of the heliostat image.
he scaling is included through the Jacobian 𝐽 , previously defined in
q. (4), and the Gaussian effective error 𝜎𝑒. This effective error results
rom the convolution of sunshape (𝜎𝑠𝑢𝑛), mirror slope error (𝜎𝑠𝑙𝑝), and
eliostat tracking error (𝜎𝑡𝑟𝑘); as declared in Eq. (5).

𝑒 =
√

𝜎2𝑠𝑢𝑛 + 2
(

1 + cos2 𝜔
)

𝜎2𝑠𝑙𝑝 + 𝜎2𝑡𝑟𝑘 (5)

On the other hand, the rotation of the heliostat image with respect
to the image plane system of coordinates is defined by 𝜃 rotation angle.
For focused heliostats, Collado et al. (1986) determined the rotation
angle (𝜃𝑢𝑧) as a function of azimuth (𝛼) and elevation (𝜖) angles of the
heliostat normal (𝐧) and the reflected vector (𝐫), shown in Fig. 1. The
mathematical expression is in Eq. (6), where 𝛼𝑛𝑟 = 𝛼𝑛 − 𝛼𝑟.

𝜃𝑢𝑧 = arctan
(

−cos 𝜖𝑟 sin 𝛼𝑛𝑟 + cos 𝜖𝑛 sin 𝛼𝑛𝑟
−cos 𝛼𝑛𝑟 + cos 𝜖𝑛 cos 𝜖𝑟 cos 𝛼𝑛𝑟 + sin 𝜖𝑛 sin 𝜖𝑟

)

(6)

The system of coordinates of the image plane (𝑥𝑠𝑖 and 𝑦𝑠𝑖) is or-
hogonal, similarly to the system of coordinates of the heliostat image
𝜉 and 𝜁 , in Eq. (1)). Both systems are linearly related and can be
ransformed from one to the other. This transformation, expressed in
q. (7), entails the aforementioned scaling and rotation of the heliostat
mage, therefore depending on 𝜎𝑒 and 𝜃𝑢𝑧.

𝜉𝑢𝑧 =
𝑥𝑠𝑖 cos 𝜃𝑢𝑧 + 𝑦𝑠𝑖 sin 𝜃𝑢𝑧

√

2 ⋅𝐷 ⋅ 𝜎𝑒

𝜁𝑢𝑧 =
𝑦𝑠𝑖 cos 𝜃𝑢𝑧 − 𝑥𝑠𝑖 sin 𝜃𝑢𝑧

√

2 ⋅𝐷 ⋅ 𝜎𝑒

(7)

Given a rectangular heliostat of 𝐿𝑊 width and 𝐿𝐻 height, its
reflection on the image plane has 𝑙𝑤 and 𝑙ℎ dimensions. Because of
conformal mapping, the original dimensions are affected by the square
26

t

root of the Jacobian, as expressed in Eq. (8). This expression is valid
for focused heliostats (𝑓 = 𝐷), therefore subscript 𝑢𝑧 is again utilized
in Eq. (8). The integration limits, 𝑎𝑤 and 𝑎ℎ in Eq. (1), result from the
scaling of 𝑙𝑤 and 𝑙ℎ to the 𝜉 and 𝜁 system of coordinates, as computed
with Eq. (9).

𝑙𝑤𝑢𝑧 = 𝐿𝑊
√

𝐽𝑢𝑧
𝑙ℎ𝑢𝑧 = 𝐿𝐻

√

𝐽𝑢𝑧
(8)

𝑎𝑤 =
𝑙𝑤∕2

√

2 ⋅𝐷 ⋅ 𝜎𝑒

𝑎ℎ =
𝑙ℎ∕2

√

2 ⋅𝐷 ⋅ 𝜎𝑒

(9)

To make it independent of the instantaneous direct normal irra-
diation (𝐼𝑑), the analytic function can be expressed in terms of 𝐶
concentration ratio of flux density (𝐶 = 𝐹∕𝐼𝑑). In an ideal case where
he optical loss factors (𝜂𝑟𝑒𝑓 , 𝜂𝑠𝑏, 𝜂𝑎𝑡) –except the cosine factor that is
nherent to solar position– are equal to 1, as well as 𝐴𝑚∕𝐴ℎ, Eq. (1)
urns into the Eq. (10). As long as the two-dimensional coordinates
𝑢𝑧 and 𝜁𝑢𝑧 are related to 𝑥𝑠𝑖 and 𝑦𝑠𝑖 coordinates on the image plane
Eq. (7)), the concentration ratio is expressed as 𝐶𝑢𝑧(𝑥𝑠𝑖, 𝑦𝑠𝑖). The
tructure of this expression of the concentration ratio of flux density on
he image plane, which is specific for ideal heliostats (UNIZAR), will be
aken as reference for the analytic function later proposed in Section 4.

𝑢𝑧(𝑥𝑠𝑖, 𝑦𝑠𝑖) =
cos𝜔
𝐽𝑢𝑧

⋅ 0.25 ⋅
[

𝑒𝑟𝑓
(

𝜉𝑢𝑧 + 𝑎𝑤
)

− 𝑒𝑟𝑓
(

𝜉𝑢𝑧 − 𝑎𝑤
)]

⋅
[

𝑒𝑟𝑓
(

𝜁𝑢𝑧 + 𝑎ℎ
)

− 𝑒𝑟𝑓
(

𝜁𝑢𝑧 − 𝑎ℎ
)]

(10)

.2. Astigmatism

In on-axis incidence –sun pointing vector coincides with heliostat
ormal vector– the reflected beams collide in a single focus at a distance
= 𝑅∕2 from the spherical heliostat of 𝑅 radius. The sun, heliostat
nd target centers must be aligned to be on-axis, which is a singularity
n SPT systems and actually leads to heliostat shading by the target.
herefore, off-axis incidence is the general rule with angles of incidence
n the heliostat different to zero (𝜔 ≠ 0).
Astigmatic aberrations appear on the flux distribution for off-axis

incidence. Instead of a single focus, two foci emerge from the bundle
of reflected rays. These foci are named tangential and sagittal focus,
with 𝑓𝑡 and 𝑓𝑠 focal lengths. From classical optics (Coddington, 1825),
the tangential and sagittal focal lengths are respectively determined
by Eqs. (11) and (12), which depend on the cosine of the incidence
angle.

𝑓𝑡 = 𝑓 cos𝜔 (11)

𝑓𝑠 =
𝑓

cos𝜔
(12)

The tangential plane is that containing the heliostat normal and the
main sunray, defined as the ray from the sun center to the heliostat
center. The sagittal plane is perpendicular to the tangential plane. Both
planes contain the main reflected ray, defined as the ray from the
heliostat center to the target point. For a heliostat of 𝐿 characteristic
length –i.e. circular reflector–, Fig. 2 shows two views: the tangential
plane (top) and the sagittal plane (bottom). As dictated by the previous
Equations, the tangential focus at 𝑓𝑡 takes place nearer to the reflector
than the sagittal focus at 𝑓𝑠. The flux distribution at the nominal focus
(𝑓 ) is known as circle of least confusion, at which UNIZAR analytic
function is precisely valid (𝐷 = 𝑓 ).

Fig. 2 identifies the length of the reflected heliostat image in tangen-
tial (𝑙𝑡) and sagittal (𝑙𝑠) directions, which depend on the specific 𝐷 slant
ange. Igel and Hughes (1979) and Biggs and Vittitoe (1979) stated
he geometric relationships in the tangential (Eq. (13)) and sagittal
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(Eq. (14)) planes. The size of the sun is neglected herein as long as
it is accounted for within 𝜎𝑒 effective error.

𝐿 cos𝜔
𝑓𝑡

=
𝑙𝑡

𝐷 − 𝑓𝑡
(13)

𝐿
𝑓𝑠

=
𝑙𝑠

𝑓𝑠 −𝐷
(14)

From previous Equations, Igel and Hughes (1979) and Biggs and
ittitoe (1979) solved the reflected lengths in tangential (Eq. (15))
and sagittal (Eq. (16)) directions. These expressions provide a straight
measurement of the astigmatic aberrations depending on 𝜔 incidence
angle and 𝐷 slant range, that differs from 𝑓 nominal focal length
under defocus. From equivalent expressions, Hénault (2015) obtained
representations of astigmatism in circular heliostats as a function of 𝜔
and defocus (𝐷 − 𝑓 ).

𝑙𝑡 = 𝐿|𝐷
𝑓

− cos𝜔| (15)

𝑙𝑠 = 𝐿|1 − 𝐷
𝑓

cos𝜔| (16)

. Analysis on defocus: axes reflection

This Section characterizes the relevant optics for heliostats under
efocus. Firstly, the geometrical parameters are defined. Later, the
eflection of heliostat axes is analyzed.

.1. Geometric characterization

Image planes are those normal to the main reflected ray (𝐫) at any
distance from the mirror. If the distance is the mirror focal length,

he flux distribution is named circle of least confusion; otherwise,
he flux distribution is affected by defocus. Image planes are herein
tilized to generate the flux maps by single mirrors. Relevant angles
nd dimensions are defined for a proper interpretation.
27

p

Fig. 3(a) shows a 3D representation of the image plane, along with
angential and sagittal planes. The Figure specifies the coordinate sys-
ems of image plane (𝑠𝑖), heliostat (𝑠ℎ), and global (𝑠𝑔). As previously
escribed, the tangential plane contains 𝐫 and the heliostat normal 𝐧, as
ell as 𝐬 sun pointing vector at the heliostat center. The sagittal plane
s perpendicular to the tangential plane and contains 𝐫 vector. As long
s the image plane is perpendicular to 𝐫, image, tangential and sagittal
lanes are perpendicular to each other.
The intersection of tangential and sagittal planes with the image

lane is respectively named tangential and sagittal axis, as depicted in
ig. 3(a). At any image plane, tangential and sagittal axes keep fixed
nd perpendicular, since these three planes are orthogonal. The angle
etween the tangential axis and the vertical axis of the image plane
𝑌𝑠𝑖) is defined as 𝛽 angle. Because of the orthogonality property, the
ame 𝛽 angle exists between the sagittal axis and the horizontal axis of
he image plane (𝑋𝑠𝑖).
Fig. 4 shows, for two different slant ranges, 2D views of the image

lane with the representation of tangential and sagittal axes. Through-
ut the paper, a dashed black line is utilized for the tangential axis, and
solid black line for the sagittal axis. Regardless of 𝐷 slant range, 𝛽
ngle is unique and constant given a heliostat and sun position. Taking
dvantage of vector notation, 𝛽 angle can be calculated as the angle
etween 𝑌𝑠𝑖 and the projection of 𝐬 sun vector onto the image plane.
or the transformation of coordinates systems, the reader is referred
o Sánchez-González and Santana (2015).
To analyze the effect of defocus on the flux distribution, we are

nterested in characterizing the reflection of the heliostat, or its axes,
nto the image planes. As shown in Fig. 3(b), the horizontal and vertical
xes of a rectangular heliostat (𝐿𝑊 width and 𝐿𝐻 height) can be
eflected into any image plane. The color coding shown in the Figure
ill be utilized throughout the whole manuscript: horizontal axis in
lue, and vertical axis in green.
Applying Snell’s law on the heliostat axes, their reflection into image
lanes can be computed by means of vector operations. Two angles
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Fig. 3. 3D views for geometric characterization.
t

ith respect to the horizontal axis of the image plane are identified.
𝐻 is the angle between the reflection of the heliostat horizontal axis
blue) and 𝑋𝑠𝑖. Similarly, 𝜃𝑉 is the angle between the reflection of the
eliostat vertical axis (green) and 𝑋𝑠𝑖. These two angles are labeled
n the two representations of image planes in Fig. 4. Both 𝜃𝐻 and
𝑉 are considered positive in counterclockwise direction, as depicted
n Appendix provides the vector procedure to obtain 𝜃𝐻 and 𝜃𝑉 angles.
Unlike the 𝛽 angle which is invariant with the slant range, the

reflections of the heliostat axes evolve depending on the distance to
the image plane. For focused heliostats (image plane at 𝐷 = 𝑓 ),
the reflected axes are orthogonal as represented in Fig. 4(a). Then
𝜃𝑉 = 𝜃𝐻 + 90◦ and 𝜃𝐻 is equal to UNIZAR 𝜃𝑢𝑧 angle (Eq. (6)). However,
28

for defocused heliostats (image plane at 𝐷 ≠ 𝑓 ), the reflected axes 𝛥
are not perpendicular, therefore 𝜃𝑉 ≠ 𝜃𝐻 + 90◦ and 𝜃𝐻 is different
to 𝜃𝑢𝑧 (Fig. 4(b)). The evolution of 𝜃𝐻 and 𝜃𝑉 depending on defocus
is analyzed at the end of this Section.

Another angle that will have a key role later on is that between the
sagittal axis and the heliostat horizontal axis when focused. Namely,
𝛥𝜃𝑠 is the difference between 𝛽 and 𝜃𝑢𝑧, as expressed in Eq. (17) and
graphically depicted in Fig. 4(a). This difference angle, 𝛥𝜃𝑠, defines the
dominant direction: sagittal if < 45◦, or tangential if ≥ 45◦. As 𝛥𝜃𝑠 is
defined between 0◦ and 90◦, if the result from the Eq. (17) is greater
han 90◦, then it must be recomputed as 𝛥𝜃𝑠 = 180◦ − 𝛥𝜃𝑠.
𝜃𝑠 = |𝛽 − 𝜃𝑢𝑧| (17)
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Fig. 4. Image planes, at two slant ranges, showing: tangential and sagittal axes (𝛽
angle), and reflection of heliostat horizontal and vertical axes (𝜃𝐻 and 𝜃𝑉 angles).

3.2. Non-dimensional parameters

To analyze the effect of defocus, several parallel image planes at
different 𝐷 distances from the reflector will be considered. These image
planes virtually range between the tangential focus at 𝑓𝑡 and the sagittal
focus at 𝑓𝑠. To identify these planes, it is defined 𝛿 as the relative
distance to the circle of least confusion. This dimensionless parameter
is calculated with Eq. (18).

𝛿 =
𝐷 − 𝑓
|𝑓 ∗ − 𝑓 |

, where 𝑓 ∗ =

{

𝑓𝑡 = 𝑓 cos𝜔 , if 𝐷 < 𝑓
𝑓𝑠 = 𝑓∕cos𝜔 , if 𝐷 > 𝑓

(18)

Thus, 𝛿 ranges between −1 at the tangential focus (𝐷 = 𝑓𝑡), and +1
t the sagittal focus (𝐷 = 𝑓𝑠), being 0 at the mirror focal length (𝐷 = 𝑓 ).
he 𝛿 relative distance to the circle of least confusion was already
isplayed in Fig. 2
Because of the optical scaling properties of central receiver sys-

ems (Winter et al., 1991), except for the atmospheric attenuation
epending on the specific 𝐷 slant range, dimensions can be expressed as
on-dimensional parameters with respect to the mirror length. Herein
he heliostat height (𝐿𝐻) is taken as the reference dimension. Conse-

̂

29

uently, the non-dimensional heliostat width is 𝐿𝑊 = 𝐿𝑊 ∕𝐿𝐻 , the l
Fig. 5. For 𝑓 = 20, non-dimensional slant range �̂� as a function of incidence angle
(𝜔) and relative distance to the circle of least confusion (𝛿).

non-dimensional focal length is 𝑓 = 𝑓∕𝐿𝐻 , and the non-dimensional
slant range is �̂� = 𝐷∕𝐿𝐻 ; the hat over the symbol denotes non-
imensional lengths. This means that for 𝐿𝐻 = 1 m, the remaining
engths are in meters too. Results in this paper will be presented in
erms of non-dimensional lengths, this way taking advantage of the
caling property of point focus systems.
From Eq. (18), the non-dimensional slant range (�̂�) can be rep-

esented as a function of the relative distance to the circle of least
onfusion (𝛿), as well as 𝑓 and 𝜔. For non-dimensional focal length
qual to 20, Fig. 5 shows the resulting �̂�. For instance, for 𝜔 = 60◦,
he tangential focus is at �̂� = 10 and the sagittal focus is at �̂� = 40.
rom the Figure, it is clear that �̂� is linearly dependent on 𝛿 with two
ntervals with different slope: before (𝛿 < 0) and after (𝛿 > 0) the mirror
ocal length.

.3. Reflection of heliostat axes

Under defocus and astigmatism, the flux distributions on the image
lanes take spot shapes similar to the reflection of the heliostat. There-
ore, we are interested in analyzing how does the reflection of heliostat
xes evolves depending on the slant range. Given a heliostat with fixed
̂ focal length, its axes are reflected into parallel image planes between
he tangential focus (𝛿 = −1) and the sagittal focus (𝛿 = 1).
For a rectangular reflector of width twice its height (𝐿𝑊 = 2 ⋅ 𝐿𝐻)

nd 𝑓 = 20, Fig. 6 shows the reflection of its axes when the incidence
ngle is 60◦. At the circle of least confusion (𝛿 = 0), the reflected hor-
zontal (blue) and vertical (green) axes are perpendicular, as assumed
y UNIZAR. Indeed, 𝜃𝐻 equals 𝜃𝑢𝑧 at the focal length. As the difference
ngle between 𝜃𝑢𝑧 and 𝛽 (Eq. (17)), named 𝛥𝜃𝑠, is greater than 45◦, the
angential direction is dominant for this heliostat configuration.
At all the image planes, Fig. 6 displays the angles between the

eflected axes and the image horizontal axis (𝑋𝑠𝑖). These 𝜃𝐻 and 𝜃𝑉
ngles, that will play a relevant role in the proposed analytic function,
re computed as described in Appendix. The arrowheads signal the pos-
tive endpoints of the reflected axes, i.e. 𝐻 ′ and 𝑉 ′ like in conceptual
igs. 3(b) and 4.
As can be seen in Fig. 6, the reflected axes line up along the sagittal

xis at the tangential focus (𝛿 = −1). Conversely, the reflected axes
ine up along the tangential axis at the sagittal focus (𝛿 = 1). This is in
greement with the astigmatism background described in Section 2.2,
raphically summarized in Fig. 2.
Having a look at the evolution of the reflected axes from the

angential to the sagittal focus (Fig. 6), the horizontal axis (blue) rotates
ounterclockwise and the vertical axis (green), clockwise. Similarly, the

ength of the reflected axes increases with the slant range.
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4. Analytic function with defocus and astigmatism

Section 2 stated the background on UNIZAR function and astigma-
tism principles. The reflected lengths of the heliostat in tangential and
sagittal directions result from Eqs. (15) and (16). For focused heliostats,
both reflected lengths are the same (circular reflector), turning into
Eq. (19). In UNIZAR model for rectangular heliostats, the lengths of
reflection were established by Eq. (8). Making the analogy between
such Eqs. (8) and (19), it is clear that the term in absolute value in
the latter Equation is the square root of UNIZAR Jacobian (Eq. (4)).

𝑙𝑡 = 𝑙𝑠 = 𝐿|1 − cos𝜔| ≡ 𝐿
√

𝐽𝑢𝑧 (if 𝐷 = 𝑓 ) (19)

For defocused heliostats, the same analogy applies. Thus, the terms
n absolute value in Eqs. (15) and (16) can be identified as the Ja-
obians in tangential (𝐽𝑡) and sagittal (𝐽𝑠) directions, as stated in
qs. (20) and (21). Instead of the unique Jacobian (𝐽𝑢𝑧) utilized by
NIZAR, these two Jacobians are required to characterize mirrors with
efocus. From their definition, 𝐽𝑡 becomes zero at the tangential focus
𝐷 = 𝑓 cos𝜔) and 𝐽𝑠 = 0 at the sagittal focus (𝐷 = 𝑓∕cos𝜔).

𝐽𝑡 =
(

𝐷
𝑓

− cos𝜔
)2

(20)

𝐽𝑠 =
(

1 − 𝐷
𝑓

cos𝜔
)2

(21)

Following the structure of UNIZAR Eq. (8), the reflected lengths
by rectangular defocused heliostats will be affected by the tangential
and sagittal Jacobians. The reflected length depends on the domi-
nant direction. If the sagittal direction is dominant (𝛥𝜃 < 45◦),
30

𝑠 a
then 𝑙𝑤 = 𝐿𝑊
√

𝐽𝑠 and 𝑙ℎ = 𝐿𝐻
√

𝐽𝑡, otherwise the Jacobians swap.
Eqs. (22) and (23) state the piecewise relations for the reflected width
and height, respectively. At the tangential (𝐽𝑡 = 0) and the sagittal
(𝐽𝑠 = 0) focus, one of the reflected lengths becomes zero, which is in
agreement with the analysis in previous Sections.

𝑙𝑤 =

{

𝐿𝑊
√

𝐽𝑠 , if 𝛥𝜃𝑠 < 45◦

𝐿𝑊
√

𝐽𝑡 , if 𝛥𝜃𝑠 ≥ 45◦
(22)

𝑙ℎ =

{

𝐿𝐻
√

𝐽𝑡 , if 𝛥𝜃𝑠 < 45◦

𝐿𝐻
√

𝐽𝑠 , if 𝛥𝜃𝑠 ≥ 45◦
(23)

Under defocus, the reflected heliostat axes are non-orthogonal. The
two directions are set by 𝜃𝐻 and 𝜃𝑉 angles. The transformation of 𝑥𝑠𝑖
and 𝑦𝑠𝑖 coordinates into 𝜉′ and 𝜁 ′ (the prime denotes non-orthogonal di-
rections) depends on both angles. This transformation follows Eq. (24).
he procedure to determine these two rotation angles (𝜃𝐻 and 𝜃𝑉 ) can
e found in Appendix.

𝜉′ =
𝑦𝑠𝑖 cos 𝜃𝑉 − 𝑥𝑠𝑖 sin 𝜃𝑉

√

2 ⋅𝐷 ⋅ 𝜎𝑒
′ =

𝑦𝑠𝑖 cos 𝜃𝐻 − 𝑥𝑠𝑖 sin 𝜃𝐻
√

2 ⋅𝐷 ⋅ 𝜎𝑒

(24)

While UNIZAR function (Eq. (10)) assumes conformal mapping, it
s required a proper transformation from non-orthogonal 𝜉′ − 𝜁 ′ to
rthogonal 𝜉−𝜁 coordinate systems. Keeping fixed one of the directions
primary), the projection of the other direction (secondary) to the
ormal of the primary one must be undone. Mathematically, this is

chieved by dividing by the sine of the angle between the heliostat
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reflected horizontal and vertical axes: | sin (𝜃𝐻 − 𝜃𝑉 )|. Depending on the
dominant direction (𝛥𝜃𝑠) and the defocus region (𝛿 < 0 or 𝛿 > 0),
the ultimate 𝜉 and 𝜁 coordinates respectively result from piecewise
Eqs. (25) and (26).

𝜉 =

⎧

⎪

⎨

⎪

⎩

𝜉′

| sin (𝜃𝐻 − 𝜃𝑉 )|

{

if 𝛥𝜃𝑠 < 45◦ & 𝐷 < 𝑓 , or
if 𝛥𝜃𝑠 ≥ 45◦ & 𝐷 > 𝑓

𝜉′ otherwise
(25)

𝜁 =

⎧

⎪

⎨

⎪

⎩

𝜁 ′

| sin (𝜃𝐻 − 𝜃𝑉 )|

{

if 𝛥𝜃𝑠 < 45◦ & 𝐷 > 𝑓 , or
if 𝛥𝜃𝑠 ≥ 45◦ & 𝐷 < 𝑓

𝜁 ′ otherwise
(26)

The analytic function of flux concentration on the image plane
for rectangular heliostats under defocus follows the same structure as
UNIZAR function (Eq. (10)). Now, instead of 𝜉𝑢𝑧 and 𝜁𝑢𝑧 coordinates,
𝜉 (Eq. (25)) and 𝜁 (Eq. (26)) applies, so that the analytic function
turns into Eq. (27). The limits of integration (𝑎𝑤 and 𝑎ℎ) still result
from Eq. (9), but 𝑙𝑤 and 𝑙ℎ must be calculated with previous Eqs. (22)
and (23). If reflectivity, shading and blocking, and attenuation losses
are considered, the corresponding factors (𝜂𝑟𝑒𝑓 , 𝜂𝑠𝑏 and 𝜂𝑎𝑡) must be
included in Eq. (27).

𝐶(𝑥𝑠𝑖, 𝑦𝑠𝑖) =
cos𝜔
𝐽

⋅ 0.25 ⋅ [𝑒𝑟𝑓 (𝜉 + 𝑎𝑤) − 𝑒𝑟𝑓 (𝜉 − 𝑎𝑤)]

⋅ [𝑒𝑟𝑓 (𝜁 + 𝑎ℎ) − 𝑒𝑟𝑓 (𝜁 − 𝑎ℎ)]
(27)

The Jacobian, 𝐽 , now is not a single one, but a couple of them:
𝐽𝑡 (Eq. (20)) and 𝐽𝑠 (Eq. (21)). To comply with the conservation of
incident energy on the image plane, the Jacobian must be the geometric
mean of 𝐽𝑡 and 𝐽𝑠, as expressed in the following Equation.

𝐽 =
√

𝐽𝑡𝐽𝑠 (28)

This analytic function for heliostats with defocus (Eq. (27)), how-
ver, is indeterminate at the tangential and sagittal foci. There, one
f the Jacobians becomes zero, and 𝜉 and 𝜁 are indeterminate as
sin (𝜃𝐻 − 𝜃𝑉 )| = 0. Therefore, the application of the proposed analytic
unction is valid from the tangential up to the sagittal focal planes,
xcluding both of them.
It is important to note that for focused reflectors, the proposed

nalytic function is equivalent to UNIZAR. This is true as long as, for
= 𝑓 , the Jacobians (𝐽𝑡 = 𝐽𝑠 = 𝐽𝑢𝑧) and the rotation angles (𝜃𝐻 = 𝜃𝑢𝑧)
ecome the same. Similarly to UNIZAR, the proposed analytic function
s valid for rectangular mirrors, either a whole heliostat or its mirror
acets.

. Results: verification

This Section verifies the presented analytic function for single de-
ocused heliostats. Monte Carlo Ray-Tracing simulations are contrasted
gainst the proposed model. SolTrace, MCRT freeware developed by
REL (Wendelin et al., 2013), is utilized for the verification. Concentra-
ion maps are compared in the next Subsection, followed by an analysis
f the validity of the model.

.1. Flux maps

Flux distributions by the model are compared with those by
olTrace, to assess the ability of the proposed model to reproduce
stigmatic phenomena by single heliostats under defocus. As obtained
rom the analytic function (Eq. (27)), flux maps are expressed in terms
f 𝐶 concentration ratio of flux density, which is independent of the
nstantaneous direct normal irradiation.
To assess the coincidence of the model with respect to MCRT, the

ross-correlation coefficient (𝜌) is used as figure of merit. From 𝐶
concentration ratio by the model (mod) and SolTrace (st) at each 𝑛
point in the image plane, the cross-correlation coefficient is calculated
with Eq. (29), where 𝐶 and 𝜎(𝐶) respectively stand for the average
31

s

and the standard deviation of 𝐶 in the whole meshgrid consisting of
𝑁 points. Along with 𝜌, the root mean square deviation (RMS) of the
concentration ratio is provided in the comparison between flux maps.

𝜌 = 1
𝑁 − 1

𝑁
∑

𝑛=1

(

𝐶𝑠𝑡,𝑛 − 𝐶𝑠𝑡

𝜎
(

𝐶𝑠𝑡
)

)(

𝐶𝑚𝑜𝑑,𝑛 − 𝐶𝑚𝑜𝑑

𝜎
(

𝐶𝑚𝑜𝑑
)

)

(29)

Given a reflector with 𝑓 focal length, the flux maps are generated
at image planes both before and after the circle of least confusion.
Specifically, this Section shows results in the range from 𝛿 = −0.8 to
𝛿 = 0.8, in steps of 0.2. Since the analytic function is indeterminate at
the tangential (𝛿 = −1) and sagittal (𝛿 = 1) focus, both image planes
are discarded.

A large number of cases were run both in SolTrace and the model.
For SolTrace simulations, 20 million rays were traced in each case. Be-
cause of the effect of actual sunshape and incidence angles on the flux
distribution (Landman et al., 2016), a Kuiper sunshape model (Biggs
and Vittitoe, 1979) is introduced in SolTrace simulations. As deduced
by Schwarzbözl et al. (2009), Kuiper sunshape is statistically compa-
rable to a Gaussian distribution of 𝜎𝑠𝑢𝑛 = 2.24 mrad which has been
considered for the proposed and UNIZAR models. In all the cases, a
moderate mirror slope error of 𝜎𝑠𝑙𝑝 = 1 mrad and no tracking error
(𝜎𝑡𝑟𝑘 = 0) have been considered.

In order to compare the spatial flux distributions by single mirrors,
reflectivity and atmospheric attenuation losses are disregarded as long
as they do not affect the flux shape and produce the same absolute ef-
fect (same flux reduction) both in MCRT and analytic models. Whether
specific dimensions are considered, a proper correlation for the atmo-
spheric attenuation must be utilized (Hanrieder et al., 2017). Taking
advantage of the scaling property of SPT systems, lengths are expressed
in terms of non-dimensional parameters. For illustration purposes, three
configurations are shown in this Subsection.

The first case, in Fig. 7, corresponds to a square heliostat ( ̂𝐿𝑊 = 1)
of non-dimensional focal length 𝑓 = 20. To reproduce astigmatic
phenomena, a large incidence angle of 𝜔 = 60◦ is considered. 𝛽 angle
is 40◦. For this case, Fig. 7 shows nine concentration maps, where the
contour isolines are solid and dotted respectively for the model and
SolTrace. For proper comparison, the concentration levels of the six
isolines are fixed at each image plane, according to the values in each
colorbar.

Starting from the image plane at the focal length (𝛿 = 0), the
modeled concentration map (central one in Fig. 7) is almost the same
as that predicted by UNIZAR. The heliostat image shows a quasi-
square shape with rounded corners that virtually matches the MCRT
simulation (𝜌 = 0.992). At image planes towards the tangential focus,
the spot takes a quasi-rhomboid shape that lines up along the sagittal
axis while 𝛿 decreases. Contrarily, while 𝛿 increases (image planes
towards the sagittal focus), quasi-rhomboid distributions line up along
the tangential axis. The size of the spot increases with slant range, while
the concentration levels consequently decrease.

The model reproduces similar distributions to MCRT, even though
the cross-correlation coefficient slightly decreases while approaching
the astigmatic foci. The lowest correlation (85.2%) takes place near
to the sagittal focus (𝛿 = 0.8). While the analytic function leads to a
very stretched rhomboid-like shape, the MCRT map tends towards an
elliptical pattern.

In a second configuration, the heliostat is rectangular, the width
being twice the height ( ̂𝐿𝑊 = 2), and with the same focal length
(𝑓 = 20). Fig. 8 shows the concentration maps for 50◦ of incidence angle
and 20◦ of 𝛽 angle. The heliostat shape (rectangular of 𝐿𝑊 = 2 ⋅ 𝐿𝐻)
ith rounded corners is again noticeable in the circle of least confusion
𝛿 = 0). As 𝛥𝜃𝑠 is smaller than 45◦, the sagittal direction is dominant in
his case.
Good agreement between the model and SolTrace is shown in Fig. 8.

lthough the correlation coefficient decreases when approaching the
stigmatic foci, coefficients are greater than 90% at 𝛿 = ±0.8. At these

lant ranges, the isolines of high 𝐶 (red) fit fairly well to SolTrace.
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In a third configuration (Fig. 9), the rectangular heliostat ( ̂𝐿𝑊 = 2)
has a non-dimensional focal length of 𝑓 = 50 and 𝛽 = 60◦. For an in-
cidence angle of 30◦, Fig. 9(a) shows the concentration maps. SolTrace
simulates elliptical spots that rotate counterclockwise while the slant
range increases. The model predicts such rotations, together with an
additional stretching that is greater than expected. Such elongations are
particularly excessive near the astigmatic foci, where the correlation
coefficient drops to around 60%.

For the same configuration, but a larger incidence angle of 60◦,
ig. 9(b) shows the flux maps. A better fitting between the model and
olTrace is now achieved, with correlation coefficients above 90%,
xcept when reaching the sagittal focus where the correlation drops
o 78.4% (𝛿 = 0.8). Consequently, the proposed model reproduces
ore accurately the distributions produced by defocused heliostats
32
ith high incidence angles, that is, when the astigmatic aberrations are
oteworthy.

.2. Model validity

In the previous Subsection, just a few cases were shown. To check
he validity of the model, the cross-correlation coefficient is analyzed in
long series of cases. Both the correlation coefficients by the proposed
odel and UNIZAR, with respect to SolTrace simulations, are provided
n the following.
For 𝑓 = 20, Fig. 10 summarizes the correlation coefficients with

incidence angles from 10◦ to 80◦, in steps of 10◦. The relative distance
to the circle of least confusion, 𝛿, is accounted for in the horizontal
axis of each graph. Each color family denotes a 𝛽 angle, according to
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Fig. 8. Concentration maps in the image plane by the model (solid isolines) and SolTrace (dotted) for several 𝛿 relative distances. Angles: 𝜔 = 50◦, 𝛽 = 20◦. Mirror: 𝑓 = 20,
𝐿𝑊 = 2 ⋅ 𝐿𝐻 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the legend in the top right. Circular markers and solid lines stand for
the model, while triangles and dotted lines for UNIZAR. It is important
to note that UNIZAR, as long as not considering defocus, essentially
generates the same spot regardless of the slant range. Just a slight
scaling effect is introduced by UNIZAR analytic function because of the
presence of 𝐷 in Eqs. (7) and (9), but shape orientation is kept constant.
ecause of the more elongated flux distributions caused by astigmatism,
s shown in previous Subsection, spillage losses in defocused heliostats
ight be higher than expected by UNIZAR.
As can be seen in Fig. 10, UNIZAR outperforms the proposed model

or small incidence angles of 10◦ and 20◦, where astigmatism is minor.
or 𝜔 = 30◦, the correlation coefficients by the model surpass UNIZAR,
ven though 𝜌 may decrease up to 70% near the astigmatic foci.
33

𝑚𝑜𝑑
or incidence angles larger than 30◦, the correlation coefficient rarely
rops below 90% for the model, except near the sagittal focus. On the
ontrary, 𝜌𝑢𝑧 worsens drastically both with 𝜔 and |𝛿|.
Regarding 𝛽 angle, the model behaves better (higher 𝜌) with tangen-

ial and sagittal axes nearer to image plane axes, i.e. 𝛽 angles around 0◦

nd 90◦. Having a look at the case of 𝜔 = 70◦ and 𝛽 = 20◦ (Fig. 10),
noticeable drop in 𝜌𝑚𝑜𝑑 is found in comparison with the rest of 𝛽
ngles. This is attributed to the uncertainty on the dominant direction.
s 𝛥𝜃𝑠 = 46.8◦, tangential direction is taken as dominant and the
orresponding case in Eqs. (22), (23), (25), and (26) applies. Thus, the
proposed model reproduces with lower accuracy the flux distributions
for 𝛥𝜃 close to 45◦.
𝑠
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𝜔

Fig. 9. Concentration maps in the image plane by the model (solid isolines) and SolTrace (dotted) for several 𝛿 relative distances (𝛽 = 60◦). Mirror: 𝑓 = 50, 𝐿𝑊 = 2 ⋅ 𝐿𝐻 . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
For 𝑓 = 50, Fig. 11 summarizes the correlation coefficients, both
by the model and UNIZAR, with respect to MCRT results. UNIZAR
outperforms the model for small incidence angles of 10◦ and 20◦. For

◦ ◦
34

angles of 30 and 40 , UNIZAR starts decreasing the correlation
coefficients but exceeds, except for 𝛽 = 0◦, those by the model,
that clearly fails while approaching the astigmatic foci. For 𝑓 = 50,
incidence angles might be above 40◦ in order to recommend the use

◦
of the model in comparison with UNIZAR. With 𝜔 ≥ 50 , the model
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Fig. 10. For 𝑓 = 20, correlation coefficients by the MODEL and UNIZAR with respect to SolTrace depending on 𝜔 and 𝛿. Mirror dimensions: 𝐿𝑊 = 2 ⋅𝐿𝐻 . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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generally achieves correlation coefficients above 90%, except when
approaching the sagittal focus. In fact, the higher the incidence angle
is, the worse becomes the correlation coefficient towards the sagittal
focus. Nonetheless, it is important to note that at high incidence angles,
distances towards the sagittal focus (high 𝛿) imply impractical long
slant ranges, as can be deduced from Fig. 5.

Comparing the results for 𝑓 = 20 (Fig. 10) and 𝑓 = 50 (Fig. 11),
two conclusions arise. First, the proposed and UNIZAR functions are
complementary; in the event of severe astigmatism and defocus, the
proposed model reproduces the spot aberrations. Secondly, the smaller
the focal length of the reflector is, the wider becomes the range of
incidence angles where the proposed model is more accurate.

Simulations for other focal lengths were carried out to confirm the
second conclusion. From the analysis of simulation results, Fig. 12
shows in a 𝜔 vs. 𝑓 graph the validity region for the proposed model
in a light color.

The validity of the proposed model is therefore directly proportional
to the incidence angle and inversely proportional to the focal length.
Such a relationship is implicitly considering the combined effect of
astigmatism and defocus. To quantify this effect, a parameter has been
introduced with 𝜔 in the numerator and 𝑓 in the denominator. Specif-
ically, it has been found that the ratio

√

𝐽𝑢𝑧∕𝑓 accounts reasonably
well for the impact of astigmatism and defocus. High values of this
parameter imply significant aberrations, and the other way round.
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Contrasting the
√

𝐽𝑢𝑧∕𝑓 parameter with the region of validity in
ig. 12, it turns out that a value of 0.005 establishes an advisable
hreshold to identify the regions of validity for the proposed model
nd UNIZAR. This model validity threshold is expressed in Eq. (30).
Thus, the curved line separating both regions in Fig. 12 correspond to
𝐽𝑢𝑧∕𝑓 = 0.005.

𝐽𝑢𝑧∕𝑓 = 𝐿𝐻
𝑓

(1 − cos𝜔) > 0.005 (Model validity) (30)

For proper interpretation of the validity graph in Fig. 12, let us
remind that 𝑓 is the non-dimensional focal length with respect to the
mirror height, taking advantage of the scaling property in SPT optical
systems, with the exception of attenuation losses. Given a state-of-the-
art field with heliostats of 𝐿𝐻 = 10 m, if the tower is 100 m high, the
first rows of heliostats might have focal lengths of around 𝑓 = 150 m,
which is equivalent to 𝑓 = 15 (=150/10). Therefore, for such heliostats,
the proposed analytic function works fine with incidence angles above
around 20◦. On the contrary, heliostats in the last rows might have focal
lengths of around 𝑓 = 700 m, i.e. 𝑓 = 70. In such a case, the proposed
model is appropriate whether the incidence angles are above 50◦.

6. Conclusions

An analytic function, that deals with defocus and astigmatism in

single heliostats, has been developed. This analytic function is based on
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Fig. 11. For 𝑓 = 50, correlation coefficients by the MODEL and UNIZAR with respect to SolTrace depending on 𝜔 and 𝛿. Mirror dimensions: 𝐿𝑊 = 2 ⋅ 𝐿𝐻 . (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Validity regions (𝑓 − 𝜔 pairs) for the MODEL and UNIZAR, taking the
stigmatic threshold:

√

𝐽𝑢𝑧∕𝑓 = 0.005.
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UNIZAR one at the image plane and has been complemented with the
astigmatism theory. Astigmatic aberrations have been detected when
the incidence angle increases.

Under defocus –slant range different to the mirror focal length–, it
has been found that the reflected heliostat axes are not perpendicular.
The heliostat flux distribution shapes along these two non-orthogonal
axes. The model resulting from the proposed analytic function, accounts
for two rotation angles. The vector procedure to determine these 𝜃𝐻
nd 𝜃𝑉 angles has been detailed in Appendix.
The analysis of flux maps has shown that the spot aligns along

he sagittal direction at the tangential focus and, conversely, along the
angential direction at the sagittal focus. The definition of the analytic
unction is piecewise, depending on the dominant direction: tangential
s. sagittal. At the astigmatic foci, the proposed analytic function is
ndeterminate as both rotation angles are the same and | sin (𝜃𝐻 − 𝜃𝑉 )|,
numerator in axis transformation, becomes zero.

Except for slant ranges near the tangential and the sagittal foci,
the proposed model has been compared with MCRT simulations to
assess its validity. When UNIZAR analytic function fails to reproduce
the astigmatic phenomena under defocus, the proposed function has
yielded cross-correlation coefficients above 90%. Results show that the
proposed model is complementary to UNIZAR.

The parameter (1 − cos𝜔)𝐿𝐻∕𝑓 has been identified as a good in-
dicator of the combined effect of astigmatism and defocus. When this
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parameter surpasses 0.005, it has been found that the proposed model
behaves better than the original UNIZAR. In terms of a heliostat field
configuration, the proposed model outperforms for large heliostats,
or small ones near the tower, whenever the incidence angle is high
enough.

Because of the limited computational cost of analytic functions
compared to MCRT, flux mapping with these simplified models is still
advantageous in optimization studies. The proposed analytic function
solves the distribution for defocus and severe astigmatism, but fails
when the slant range approaches the astigmatic focal lengths, especially
the sagittal focus. Hence, it is still pending a universal analytic function,
accurate for any slant range and incidence angle.
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Appendix. Rotation angles

This Appendix describes the vector procedure to determine 𝜃𝐻 and
𝑉 angles. Bold letters denote 3D vectors, which are position vectors
or uppercase letters.
Heliostat mirrors ideally have a spherical surface with 𝑅 curvature

adius equal to twice the focal length (𝑅 = 2𝑓 ). In the heliostat system
f coordinates (𝑠ℎ), the position vector of the mirror center (𝐎𝑠ℎ) is set
ccording to Eq. (A.1).

𝑠ℎ =
(

0 0 𝑅
)

(A.1)

As depicted in Fig. 3(b), the heliostat horizontal and vertical axes
re reflected into the image plane. The angle between the heliostat
eflected axes and the horizontal axis of the image plane determines
rotation angles, as shown in the image plane views in Fig. 4.
For the horizontal axis of the heliostat, its endpoint is named 𝐇, as

hown in Fig. 3(b). Being 𝐿𝑊 the heliostat width, 𝐇𝑠ℎ position vector
s set by Eq. (A.2).

𝑠ℎ =
(

𝐿𝑊 ∕2 0 0
)

(A.2)

The normal unit vector of the heliostat at point 𝐇 is computed with
q. (A.3), on the basis of 𝐎𝑠ℎ virtual center of the spherical mirror.

𝐻,𝑠ℎ =
𝐎𝑠ℎ −𝐇𝑠ℎ
|

|

𝐎𝑠ℎ −𝐇𝑠ℎ
|

|

(A.3)

The main reflected ray at 𝐇 follows Eq. (A.4), according to Snell’s
eflection law. Sun unit vector in the heliostat system of coordinates
𝐬𝑠ℎ) results from its transformation from the global coordinate system
Eq. (A.5)). 𝑅𝑜𝑡𝑔2ℎ is the 3 × 3 rotation matrix from global to heliostat
oordinate systems. The construction of this rotation matrix has been
etailed in (Sánchez-González and Santana, 2015).

𝐫𝐻,𝑠ℎ = 2
(

𝐧𝐻,𝑠ℎ ⋅ 𝐬𝑠ℎ
)

𝐧𝐻,𝑠ℎ − 𝐬𝑠ℎ (A.4)

𝐬𝑠ℎ = 𝑅𝑜𝑡𝑔2ℎ ⋅ 𝐬𝑠𝑔 (A.5)

To transform 𝐫𝐻 reflection vector at 𝐇 from the heliostat (𝑠ℎ) to the
image (𝑠𝑖) system of coordinates, the 3D transformation in Eq. (A.6)
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applies. 𝑅𝑜𝑡ℎ2𝑖 rotation matrix comprises from 𝑅𝑜𝑡ℎ2𝑔 and 𝑅𝑜𝑡𝑔2𝑖 rota-
ion matrices (Eq. (A.7)). The construction of the latter rotation matrix
global to image– has been described too in (Sánchez-González and
antana, 2015).

𝐻,𝑠𝑖 = 𝑅𝑜𝑡ℎ2𝑖 ⋅ 𝐫𝐻,𝑠ℎ (A.6)

𝑜𝑡ℎ2𝑖 = 𝑅𝑜𝑡𝑔2𝑖 ⋅ 𝑅𝑜𝑡ℎ2𝑔 (A.7)

Following Eq. (A.8), 𝐇 position vector is transformed from heliostat
o image coordinate system with 𝑅𝑜𝑡ℎ2𝑖 rotation matrix and

(

0 0 𝐷
)

translation vector, 𝐷 being the slant range.

𝐇𝑠𝑖 = 𝑅𝑜𝑡ℎ2𝑖 ⋅𝐇𝑠ℎ +
(

0 0 𝐷
)

(A.8)

The reflection of 𝐇 into the image plane (𝐇′
𝑠𝑖) finally results from

q. (A.9). The exact distance from 𝐇 to its reflection (𝐇′) is accounted
or by the 𝑧𝑠𝑖(𝐇)∕𝑧𝑠𝑖(𝐧𝐻 ) term, that involves the 𝑧-coordinate of 𝐇 and
𝐻 vectors in the image coordinate system.

′
𝑠𝑖 = 𝐇𝑠𝑖 +

𝑧𝑠𝑖(𝐇)
𝑧𝑠𝑖(𝐫𝐻 )

𝐫𝐻,𝑠𝑖 (A.9)

With the knowledge of 𝐇′
𝑠𝑖, position vector of the reflection in the

mage plane, the angle of the reflected heliostat horizontal axis (𝜃𝐻 )
s straightforward. In Matlab® environment, cart2pol function can be
sed. Alternatively, Eq. (A.10) determines such an angle, but the sign
onvention (positive counterclockwise) must be later applied.

𝐻 = arccos
⎛

⎜

⎜

⎝

𝐇′
𝑠𝑖

|

|

|

𝐇′
𝑠𝑖
|

|

|

⋅
(

1 0 0
)

⎞

⎟

⎟

⎠

(A.10)

For the vertical axis of the heliostat, the angle of its reflection on the
image plane (𝜃𝑉 ) follows equivalent Eq. (A.11). Being 𝐕 the endpoint
of the vertical axis, its position vector in heliostat system of coordinates
is set by Eq. (A.12). To obtain the reflection of 𝐕 into the image plane,
𝐕′
𝑠𝑖, Eqs. (A.3) to (A.9) apply, while substituting 𝐇 by 𝐕.

𝜃𝑉 = arccos
⎛

⎜

⎜

⎝

𝐕′
𝑠𝑖

|

|

|

𝐕′
𝑠𝑖
|

|

|

⋅
(

1 0 0
)

⎞

⎟

⎟

⎠

(A.11)

𝐕𝑠ℎ =
(

0 𝐿𝐻∕2 0
)

(A.12)
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