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A B S T R A C T

The breakthrough in additive manufacturing (AM) techniques is opening new routes into the conceptualisation
of novel architected materials. However, there are still important roadblocks impeding the full implementation
of these technologies in different application fields such as soft robotics or bioengineering. One of the main
bottlenecks is the difficulty to perform topological optimisation of the structures and their functional design.
To help this endeavour, computational models are essential. Although 3D formulations provide the most
reliable tools, these usually present very high computational costs. Beam models based on 1D formulations
may overcome this limitation but they need to incorporate all the relevant mechanical features of the 3D
problem. Here, we propose a mixed formulation for Timoshenko-type beams to consistently account for axial,
shear and bending contributions under finite deformation theory. The framework is formulated on general bases
and is suitable for most types of materials, allowing for the straightforward particularisation of the constitutive
description. To prove validity of the model, we provide original experimental data on a 3D printed elastomeric
material. We first validate the computational framework using a benchmark problem and compare the beam
formulation predictions with numerical results from an equivalent 3D model. Then, we further validate the
framework and illustrate its flexibility to predict the mechanical response of beam-based structures. To this end,
we perform original experiments and numerical simulations on two types of relevant structures: a rhomboid
lattice and a bi-stable beam structure. In both cases, the numerical results provide a very good agreement
with the experiments by means of both quantitative and qualitative results. Overall, the proposed formulation
provides a useful tool to help at designing new architected materials and metamaterial structures based on
beam components. The framework presented may open new opportunities to guide AM techniques by feeding
machine learning optimisation algorithms.
1. Introduction

Additive manufacturing (AM), also known as 3D printing, has
gained a great interest among both research and industrial fields
during the recent years (Hossain et al., 2020; Hossain and Liao, 2020).
This technology is based on controlled deposition of material and has
been in constant development leading to a wide range of different
techniques. One interesting field that is attracting great attention, is the
use of these techniques to manufacture flexible structures with complex
geometries. In this regard, one may find different alternatives attending
to the nature of the deposition and curing processes: material jetting,
material extrusion and vat photopolymerisation (VPP) (Zhang et al.,
2021; Gao et al., 2015; Wang and Chen, 2015).

Among the different geometrically complex structures, lattice-based
metamaterials are one of the most interesting ones due to the possi-
bility of customising their mechanical properties without the need of

∗ Corresponding author.
E-mail addresses: carperez@ing.uc3m.es (C. Perez-Garcia), jaranda@ing.uc3m.es (J. Aranda-Ruiz), ramon.zaera@ing.uc3m.es (R. Zaera),

danigarc@ing.uc3m.es (D. Garcia-Gonzalez).

changing the material selection (Shishvan et al., 2022; Guo et al., 2020;
Deshpande et al., 2001; Smith et al., 2013; Molavitabrizi et al., 2022).
To this end, these are composed of a repeating pattern known as unit
cell (UC) that defines the mechanical behaviour at the macroscopic
scale. These materials are thus engineered composites designed at the
microstructural level for a desired function. With an appropriate design,
the metamaterial physical properties can be programmed to respond in
a particular manner to a specific stimulus (Lucarini et al., 2022; Wan,
2022; Bastola and Hossain, 2021). Even though this groundbreaking
technology is in constant development and some novel results have
already been obtained, an optimal conceptualisation and design of such
structures is still challenging.

The main roadblock impeding the full implementation of meta-
materials or architected structures relates to their geometrical design.
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The great advance in AM technologies allows for million combinations
of mesostructural arrangements and the determination of the optimal
solution is rarely obvious. Experimental methods for finding such a
solution are not feasible, generating a strong need of efficient com-
putational tools to help in this endeavour. Generally, high fidelity
approaches mostly consist in FE models based on 3D elements. Al-
though 3D models are the most used due to their accuracy, they present
the main disadvantage of requiring a very high computational cost.
This issue becomes a key impediment when complex geometries are
needed. This creates a need for extremely high computational sources
or the search for simplified and efficient computational alternatives.
To fill this gap, 1D models postulate themselves as ideal candidates to
significantly reduce the computational cost. To this end, these models
use a lower number of degrees of freedom while preserving the most
relevant characteristics of the structural and material response. Al-
though some 1D models have been proposed in the literature to address
this problem, most of them do not include important information such
as cross-section stretching effects, the consideration of large strain and
rotation theory or the incorporation of shear force effects (Sauer and
Mergel, 2014; He et al., 2018; Nampally et al., 2019; Ishaquddin and
opalakrishnan, 2021; Damanpack and Bodaghi, 2021; Mergel et al.,
014; Sauer and Wriggers, 2009; Do˘ gruoğlu and Kömürcü, 2019;
epe et al., 2014). In addition to the above 2D formulations, some
uthors have developed three-dimensional approximations that allow
ore complex topologies to be simulated (Ortigosa et al., 2016; Liu
t al., 2021; Yang et al., 2018; Choi et al., 2021; Borković et al., 2022;
uang et al., 2018; Levyakov, 2015). Furthermore, the implementation
f the underlying mechanics of metamaterials in these frameworks is an
nteresting challenge to be achieved. This problem may be solved by
eveloping new FE frameworks that make use of beam elements but
aintain most of the relevant mechanical features.
In this work, we aim at providing an efficient FE framework to

elp at designing 3D-printed structures composed of latticed-based
omponents. The formulation considers all important structural depen-
ences while allowing for the implementation of further considerations
ithout compromising its consistency. To this end, we developed a
ixed FE formulation based on the Geometrically Exact Theory for
imoshenko-type beams to consistently account for axial, shear and
ending contributions under finite deformation theory. The formulation
as been developed in a two-dimensional coordinate system, given
he large number of applications involving these type of lattice con-
igurations (Damanpack et al., 2019; Bodaghi et al., 2017; Alkhader,
020; Bluhm et al., 2020; Chen et al., 2019; Shan et al., 2015; Andrew
t al., 2021; Wang et al., 2020). After particularisation of the consti-
utive equations defining appropriate hyperelastic energy potentials,
he overall framework was validated against original experiments on
M beam-based structures considering lattice and bi-stable analyses.
he complete framework presented has the potential to feed machine
earning algorithms to optimise the design of architected structures.
his may open new routes to conceptualise novel applications in soft
obotics, bioengineering and actuator systems. Additionally, due to
generalised formulation, it may set the basis for metallic lattice
tructures manufacturing design (Schaedler et al., 2011).

. Continuum mechanics formulation

A two-dimensional mixed finite element formulation based on the
eometrically Exact Theory for Timoshenko-type beam one-
imensional elements is used to consistently account for axial, shear
nd bending contributions under large strains theory (Wriggers, 2008).
his point is essential when describing the mechanical behaviour of
D-printed structures. In this regard, many novel applications are
ased on metamaterial structures where the cross-sectional plane loses
he perpendicularity to the deformed axis. The local deformation of
he cross-section is allowed, imposing the unique restriction of plane
ross-section of the beam after deformations.
2

.1. Kinematics

In a two-dimension Cartesian coordinate system, a straight beam of
ength 𝐿 and rectangular cross-section with height 𝐻 and width 𝐵 is
ocated coincident with the material 𝑋 axis and the spatial 𝑥 axis in
he undeformed configuration 𝛺0, see Fig. 1. In addition, a difference
s made between a global spatial reference system 𝐱 = {𝑥, 𝑦} and a
ocal spatial reference system �̂� = {�̂�, �̂�}, which are related by the
ross-section rotation 𝜃 in the deformed configuration 𝛺.
Let �̄� = {�̄�, �̄�}𝑇 be the displacement vector of the centroid of the

eam cross-section where �̄� and �̄� are the horizontal and the transverse
isplacements, respectively. In this regard, the displacement of a mate-
ial point of the beam from its initial position 𝐗 (𝑋, 𝑌 ) in the reference
onfiguration 𝛺0 to a new position 𝐱 (𝑥, 𝑦) in the current configuration
can be described by the centroid displacement vector �̄� as

(𝐗) =
⎧

⎪

⎨

⎪

⎩

𝑢 (𝑋, 𝑌 , 𝜃) = �̄� (𝑋) − 𝑌 sin 𝜃 (𝑋)
𝑣 (𝑋, 𝑌 , 𝜃) = �̄� (𝑋) + 𝑌 cos 𝜃 (𝑋)

𝜃
, (1)

here 𝑢 and 𝑣 are the horizontal and transverse displacements of the
aterial point.
The strain–displacement relations, derived using the principle of

irtual work (Reissner, 1972), lead to

=

⎧

⎪

⎨

⎪

⎩

𝜆𝑐
𝛾

𝜅

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

[

1 + �̄�′
]

cos 𝜃 + �̄�′ sin 𝜃

�̄�′ cos 𝜃 −
[

1 + �̄�′
]

sin 𝜃

𝜃′

⎫

⎪

⎬

⎪

⎭

, (2)

here 𝜺 = {𝜆𝑐 , 𝛾, 𝜅}𝑇 is the strain vector with 𝜆𝑐 being the stretch of the
entroid, 𝛾 the shear strain over the cross-section and 𝜅 the curvature
f the axis passing through the centroid of the beam. Hereinafter, ( )′
epresents the derivative with respect to the coordinate 𝑋. The strain
ector 𝜺 in Eq. (2) can alternatively be written in its matrix form as

= 𝐑(𝜃) 𝐮∗, (3)

here the matrix 𝐑 corresponds to the rotation matrix from global to
ocal coordinate system defined as

(𝜃) =
⎡

⎢

⎢

⎣

cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1

⎤

⎥

⎥

⎦

, (4)

hereas 𝐮∗ is a vector where the first two terms correspond to the first
olumn of the deformation gradient 𝐅 and the third one corresponds to
he derivative of the cross-section rotation 𝜃′ giving

∗ =

⎧

⎪

⎨

⎪

⎩

1 + 𝑢′

𝑣′

𝜃′

⎫

⎪

⎬

⎪

⎭

. (5)

o define accurately the behaviour of beam-based structures, it is
mportant to describe the cross-section variation due to longitudinal
tretching effects. To this end, the current cross-section height ℎ and
idth 𝑏 are updated as

= ∫

𝐻∕2

−𝐻∕2
𝜆𝑦 (𝑌 ) 𝑑𝑌 , 𝑏 = 𝐵

𝐻 ∫

𝐻∕2

−𝐻∕2
𝜆𝑧 (𝑌 ) 𝑑𝑌 , (6)

where 𝜆𝑦 and 𝜆𝑧 are the stretches in height and width directions, respec-
tively. The method devised for the calculation of the stretches 𝜆𝑦 and
𝜆𝑧 is further detailed in Section 2.3. In these equations, two different
considerations are taken into account. First, cross-section height ℎ and
width 𝑏 are evaluated along the 𝑌 axis that passes through the centroid
of the beam. Secondly, the stretch in width direction 𝜆𝑧 is defined as
a function of coordinate 𝑌 considering the incompressibility condition
𝜆𝑧 =

(

𝜆𝑥 𝜆𝑦
)−1. Note that axial stretch 𝜆𝑥 is function of the curvature
𝜅 and the coordinate 𝑦 as 𝜆𝑥 = 𝜆𝑐 + 𝜅𝑦.
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Fig. 1. Timoshenko beam-type nonlinear kinematics.
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For the sake of convenience, we have considered a straight beam
ligned with the 𝑋 axis. In case the beam had an initial rotation 𝛩, this
must be added to the current cross-section rotation 𝜃. Consequently, the
rotation matrix 𝐑 must be reformulated as

𝐑 (𝛩 + 𝜃) =
⎡

⎢

⎢

⎣

cos (𝛩 + 𝜃) sin (𝛩 + 𝜃) 0
− sin (𝛩 + 𝜃) cos (𝛩 + 𝜃) 0

0 0 1

⎤

⎥

⎥

⎦

. (7)

The previous expression is a particularisation of the general 3D multi-
plicative composition of rotation matrices, which is valid in this case
since both rotation axes are coincident.

2.2. Weak formulation

The weak form of the equilibrium is based on the principle of virtual
work as

𝛿𝛱 = 𝛿𝛱𝑖𝑛𝑡 − 𝛿𝛱𝑒𝑥𝑡 = 0, (8)

where 𝛱 is the total potential energy while 𝛱𝑖𝑛𝑡 and 𝛱𝑒𝑥𝑡 are the
contributions of internal and external forces defined, respectively, as

𝛿𝛱𝑖𝑛𝑡 = ∫

𝑙

0

[

𝑁 𝛿𝜆𝑐 +𝑄 𝛿𝛾 +𝑀 𝛿𝜅
]

𝑑𝑥, (9)

𝛿𝛱𝑒𝑥𝑡 = ∫

𝑙

0
[𝑛 𝛿�̄� + 𝑞 𝛿�̄� + 𝑚 𝛿𝜃] 𝑑𝑥, (10)

𝑁 being the axial force, 𝑄 the shear force and 𝑀 the bending mo-
ment, the three of them contained in the stress resultant vector 𝐒𝐫 =
{𝑁,𝑄,𝑀}𝑇 . Moreover, 𝑛, 𝑞 and 𝑚 are the axial and perpendicular
xternal loads and moment per unit length contained in the external
oad vector 𝐪 = {𝑛, 𝑞, 𝑚}𝑇 . Both Eqs. (9) and (10) are integrated along
he beam length 𝑙 in the current configuration 𝛺.
Substituting Eqs. (9) and (10) into Eq. (8), the weak form can be

ewritten in its compact form as

𝛱 = ∫

𝑙

0
𝛿𝜺𝑇 𝐒𝐫 𝑑𝑥 − ∫

𝑙

0
𝛿𝜼𝑇 𝐪 𝑑𝑥 = 0, (11)

here 𝛿𝜼 = {𝛿�̄�, 𝛿�̄�, 𝛿𝜃}𝑇 are the virtual displacements of the centroid
f the beam and the virtual rotation of the cross-section, respectively.
he variation 𝛿𝜺 of the strain measures shown in Eq. (2) for the
geometrically exact model can be expressed as

𝛿𝜺 = 𝐑 (𝜃) 𝛿𝜼′ + 𝜕𝐑 (𝜃)
𝜕𝜃

𝐮∗ 𝛿𝜃. (12)

.3. Constitutive equations

The formulation presented can be generally applied to beam-based
tructures made of any kind of material. Among them, flexible materials
hat can undergo large deformations are of particular interest. This
3

ormulation is also suitable for these materials due to the consideration
f finite deformation theory. To particularise the constitutive descrip-
ion, we have chosen hyperelastic energy potentials for reproducing 3D
rinted lattice structures subjected to large deformations.
Polymeric printable materials are characterised by a non-linear

tress–strain relation and large deformations. The stress–strain consti-
utive relationship is defined from a strain energy density function 𝛹
that is formulated on the deformation gradient 𝐅 allowing to develop
a general formulation.

The deformation gradient 𝐅 considered for a Timoshenko beam in
𝑥–𝑦 plane is defined as

𝐅 =
⎡

⎢

⎢

⎣

𝜆𝑥 0 0
𝛾 𝜆𝑦 0
0 0 𝜆𝑧

⎤

⎥

⎥

⎦

, (13)

where 𝜆𝑥, 𝜆𝑦 and 𝜆𝑧 are the stretches and 𝛾 is the shear deformation
component.

From the definition of this energy, the first Piola–Kirchhoff stress
tensor 𝐏 can be derived as

𝐏 = 𝜕𝛹
𝜕𝐅

, (14)

and the Cauchy stress tensor 𝝈 can be obtained by the relation

𝝈 = 𝐽−1
𝐹 𝐏𝐅𝑇 , (15)

where 𝐽𝐹 is the determinant of the deformation gradient 𝐅.
If the hyperelastic material is assumed incompressible, the first

Piola–Kirchhoff stress tensor must be rewritten as

𝐏 = 𝜕𝛹
𝜕𝐅

− 𝐽𝐹 𝑝𝐅−𝑇 , (16)

where 𝑝 is a Lagrangian multiplier that ensures the incompressibility
condition. Note that the relation in Eq. (15) is still valid. The stretches
𝜆𝑦 and 𝜆𝑧 as well as the pressure p are calculated by solving the system
of equations 𝜎𝑦𝑦 = 0, 𝜎𝑧𝑧 = 0 and det(𝐅) = 1.

From the Cauchy stress tensor, the stress resultant vector 𝐒𝐫 can be
calculated, in the current configuration, as

𝐒𝐫 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁 = ∫ ℎ∕2
−ℎ∕2 𝜎𝑥𝑥 (�̂�) 𝑏 𝑑�̂�

𝑄 = ∫ ℎ∕2
−ℎ∕2 𝜎𝑥𝑦 (�̂�) 𝑏 𝑑�̂�

𝑀 = ∫ ℎ∕2
−ℎ∕2 𝜎𝑥𝑥 (�̂�) �̂� 𝑏 𝑑�̂�

, (17)

where the components of 𝐒𝐫 are integrated along �̂�-direction consider-
ing the current cross-section height ℎ and width 𝑏.

Deriving the stress resultants 𝐒𝐫 = {𝑁,𝑄,𝑀}𝑇 with respect to
the strain variables 𝜺 = {𝜆𝑐 , 𝛾, 𝜅}𝑇 , the stiffness matrix 𝐃, which
relates variation of the stress resultants with strain variation for the
hyperelastic material, can be obtained as

𝐃 =
𝜕𝐒𝐫 . (18)

𝜕𝜺
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Fig. 2. Quadratic elements used in the Timoshenko beam-type nonlinear formulation.
𝐽

. Finite element framework

.1. Spatial discretisation of the weak formulation

In this section, the weak formulation is discretised for its imple-
entation in the finite element (FE) framework. Let us consider a
wo-dimensional spatial coordinate system 𝐗 = {𝑋, 𝑌 } and a natural
oordinate system 𝝃, see Fig. 2.
The element, with initial length 𝐿𝑒, is discretised into 𝑛𝑒 quadratic

finite beam elements with three nodes each (𝑛𝑛𝑜𝑑𝑒 = 3). Each node
𝑛𝐼 , 𝐼 = 1,… , 3, from the beam element has three degrees of freedom
𝒖𝐼 = {𝑢𝐼 , 𝑣𝐼 , 𝜃𝐼}𝑇 , corresponding to the horizontal and vertical displace-
ments and the rotation of the beam element axis, respectively. Note that
in the case of Fig. 2, the node 𝑛2 is located equidistant to nodes 𝑛1 and
3.
The initial position of an element can be determined as

𝐞 =
𝑛𝑛𝑜𝑑𝑒
∑

𝐼=1
𝐍𝐼 𝐗𝐼 =

𝑛𝑛𝑜𝑑𝑒
∑

𝐼=1
𝐍𝐼

⎧

⎪

⎨

⎪

⎩

𝑋𝐼
𝑌𝐼
𝜃𝐼

⎫

⎪

⎬

⎪

⎭

, (19)

nd the element displacement as

𝐞 =
𝑛𝑛𝑜𝑑𝑒
∑

𝐼=1
𝐍𝐼 𝐮𝐼 =

𝑛𝑛𝑜𝑑𝑒
∑

𝐼=1
𝐍𝐼

⎧

⎪

⎨

⎪

⎩

𝑢𝐼
𝑣𝐼
𝜃𝐼

⎫

⎪

⎬

⎪

⎭

, (20)

here 𝐍𝐼 is the interpolation matrix corresponding to node 𝐼

𝐼 =

⎡

⎢

⎢

⎢

⎣

𝑁𝑢
𝐼 0 0

0 𝑁𝑣
𝐼 0

0 0 𝑁𝜃
𝐼

⎤

⎥

⎥

⎥

⎦

. (21)

For each element, with local node connectivities {1, 2, 3} accord-
ng to Fig. 2, quadratic shape functions are used to avoid locking
ssues (Damanpack and Bodaghi, 2021):

𝑁𝑛
1 (𝜉) =

1
2 [𝜉 − 1] 𝜉

𝑁𝑛
2 (𝜉) = 1 − 𝜉2

𝑁𝑛
3 (𝜉) =

1
2 [𝜉 + 1] 𝜉

, (22)

with 𝑛 = {𝑢, 𝑣, 𝜃} being the active degree of freedom.
The beam element strain measures 𝜺𝒆 can be described as

𝜺𝒆 =
𝑛𝑛𝑜𝑑𝑒
∑

𝐼=1
𝐑 (𝜃) 𝐁𝐼 𝐮∗𝐼 =

𝑛𝑛𝑜𝑑𝑒
∑

𝐼=1
𝐑 (𝜃) 𝐁𝐼

⎧

⎪

⎨

⎪

1 + 𝑢𝐼
𝑣𝐼
𝜃

⎫

⎪

⎬

⎪

, (23)
4

⎩

𝐼
⎭

where 𝐁𝐼 is the interpolation matrix which contains the partial deriva-
tive of the shape functions 𝐍𝐼 , giving

𝐁𝐼 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑁𝑢
𝐼

𝜕𝑋 0 0

0
𝜕𝑁𝑣

𝐼
𝜕𝑋 0

0 0
𝜕𝑁𝜃

𝐼
𝜕𝑋

⎤

⎥

⎥

⎥

⎥

⎦

, (24)

that can be alternatively expressed as

𝐁𝐼 =
𝜕𝐍𝐼
𝜕𝑋

=
𝜕𝐍𝐼
𝜕𝜉

[

𝜕𝑋
𝜕𝜉

]−1
, (25)

where the determinant of the Jacobian matrix 𝐽 can be computed as

=
𝜕𝜉
𝜕𝑋

=
𝐿𝑒
2
. (26)

The displacement vector 𝐮𝐞 obtained in Eq. (20) can be defined con-
sidering the rotation matrix 𝐑 with respect to a local spatial reference
system as

�̂�𝐞 = 𝐑 (𝜃)𝐮𝐞. (27)

Moreover, the strain vector 𝜺𝒆 is similarly defined following Eq. (3).

3.2. Internal and external forces

The internal forces are described throughout the definition of the
internal virtual work. Considering the beam discretisation shown be-
fore, the variation of beam strain measures Eq. (12) is defined now as

𝛿𝜺𝒆 =
𝑛𝑛𝑜𝑑𝑒
∑

𝐼=1
𝐁∗
𝐼 𝛿𝒖∗𝐼 =

𝑛𝑛𝑜𝑑𝑒
∑

𝐼=1
𝐁∗
𝐼

⎧

⎪

⎨

⎪

⎩

𝛿𝑢𝐼
𝛿𝑣𝐼
𝛿𝜃𝐼

⎫

⎪

⎬

⎪

⎭

, (28)

where 𝐁∗
𝐼 is the interpolation matrix of strain variation of node 𝐼

defined as

𝐁∗
𝐼 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑁𝑢
𝐼

𝜕𝑋 cos 𝜃𝑒
𝜕𝑁𝑣

𝐼
𝜕𝑋 sin 𝜃𝑒 𝛼𝑒 𝑁𝜃

𝐼

−
𝜕𝑁𝑢

𝐼
𝜕𝑋 sin 𝜃𝑒

𝜕𝑁𝑣
𝐼

𝜕𝑋 cos 𝜃𝑒 𝛽𝑒 𝑁𝜃
𝐼

0 0
𝜕𝑁𝜃

𝐼
𝜕𝑋

⎤

⎥

⎥

⎥

⎥

⎦

, (29)

with 𝛼𝑒 and 𝛽𝑒 as

⎧

⎪

⎨

⎪

𝛼𝑒 = −
[

1 + 𝑢𝑒′
]

sin 𝜃𝑒 + 𝑣𝑒′ cos 𝜃𝑒

𝛽𝑒 = −
[

1 + 𝑢𝑒′
]

cos 𝜃𝑒 + 𝑣𝑒′ sin 𝜃𝑒
. (30)
⎩
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Note that the 𝐁∗
𝐼 matrix relates nodal degrees of freedom from vector 𝒖𝒆

in global coordinates with the beam deformation in local coordinates.
Taking into account Eqs. (28) and (11), the internal forces 𝐟 𝐞𝐢𝐧𝐭 of the

element can be defined as

𝐟 𝐞𝐢𝐧𝐭𝐼 = ∫𝑙𝑒
𝐁∗
𝑖 𝐒𝐫 𝑑𝑥

𝐟 𝐞𝐢𝐧𝐭 =
𝑛𝑛𝑜𝑑𝑒𝑠
∑

𝐼=1
𝐟 𝐞𝐢𝐧𝐭𝐼

, (31)

that can be expressed in natural coordinates as

𝐟 𝐞𝐢𝐧𝐭𝐼 = ∫

1

−1
𝐁∗
𝐼 (𝜉) 𝐒𝐫 (𝜉)

𝑙𝑒
2

𝑑𝜉, (32)

where 𝑙𝑒 is the current element length.
Regarding the external forces, these can be computed following a

similar procedure reaching

𝐟 𝐞𝐞𝐱𝐭𝐼 = ∫𝑙𝑒
𝐍𝐼 𝐪 𝑑𝑥

𝐟 𝐞𝐞𝐱𝐭 =
𝑛𝑛𝑜𝑑𝑒𝑠
∑

𝐼=1
𝐟 𝐞𝐞𝐱𝐭𝐼

. (33)

Note that the previous summatories must be understood as an
ssembly process where the total internal and external forces vectors
f the element are constructed from the nodal contributions.

.3. Tangent stiffness matrix

The tangent stiffness matrix 𝐊𝐞 is obtained by the partial derivative
of the associated internal and external force vectors with respect to the
degrees of freedom as

𝐊𝐞
𝐼𝐽 =

𝜕
[

𝐟 𝐞𝐢𝐧𝐭𝐼 − 𝐟 𝐞𝐞𝐱𝐭𝐼
]

𝜕𝐮𝐞𝐽
. (34)

he above expression can be further developed as

𝐞
𝐼𝐽 = ∫𝑙𝑒

𝐁𝑇
𝐼 𝐃 𝐁𝐽 𝑑𝑥 + ∫𝑙𝑒

[

𝑁 𝐆𝐍
𝐼𝐽 +𝑄 𝐆𝐐

𝐼𝐽

]

𝑑𝑥

𝐊𝐞 =
𝑛𝑛𝑜𝑑𝑒𝑠
∑

𝐼=1

𝑛𝑛𝑜𝑑𝑒𝑠
∑

𝐽=1
𝐊𝐞

𝐼𝐽

, (35)

here the first and second terms represent the material and geometrical
omponents of 𝐊𝐞, respectively. As in Eqs. (31) and (33), the previous
ummatories must be understood as an assembly process. The matrices
𝐍
𝐼𝐽 and 𝐆𝐍

𝐼𝐽 are given by

𝐍
𝐼𝐽 =

⎡

⎢

⎢

⎢

⎣

0 0 −𝑁𝑢
𝐼
′ 𝑁𝜃

𝐽 sin 𝜃𝑒

0 0 𝑁𝑣
𝐼
′ 𝑁𝜃

𝐽 cos 𝜃𝑒

−𝑁𝜃
𝐼 𝑁𝑢

𝐽
′ sin 𝜃𝑒 𝑁𝜃

𝐼 𝑁𝑣
𝐼
′ cos 𝜃𝑒 𝛼𝑁𝑒 𝑁𝜃

𝐼 𝑁𝜃
𝐽

⎤

⎥

⎥

⎥

⎦

, (36)

𝐐
𝐼𝐽 =

⎡

⎢

⎢

⎢

⎣

0 0 −𝑁𝑢
𝐼
′ 𝑁𝜃

𝐽 cos 𝜃𝑒

0 0 −𝑁𝑣
𝐼
′ 𝑁𝜃

𝐽 sin 𝜃𝑒

−𝑁𝜃
𝐼 𝑁𝑢

𝐽
′ cos 𝜃𝑒 −𝑁𝜃

𝐼 𝑁𝑣
𝐼
′ sin 𝜃𝑒 𝛼𝑁𝑒 𝑁𝜃

𝐼 𝑁𝜃
𝐽

⎤

⎥

⎥

⎥

⎦

, (37)

here

𝛼𝑁𝑒 = −
[

1 + 𝑢𝑒′
]

cos 𝜃𝑒 − 𝑣𝑒′ sin 𝜃𝑒

𝛼𝑄𝑒 =
[

1 + 𝑢𝑒′
]

sin 𝜃𝑒 − 𝑣𝑒′ cos 𝜃𝑒
. (38)

Note that the variational principle and the FE framework are formu-
ated in the deformed configuration. Although one could easily adapt
he formulation from one to each other, the spatial description allows
or realistic force/moment boundary conditions in a straightforward
anner. This feature is essential when implementing the numerical
5

ramework in some commercial FE software such as Abaqus.
. Particularisation of constitutive equations

In this section, the constitutive equations presented in Section 2.3
re particularised for a specific hyperelastic constitutive model. The
opez-Pamies model for rubber elastic materials is chosen since it accu-
ately reproduces a wide range of deformation modes (Lopez-Pamies,
010). The energy function reads as

=
𝑛
∑

𝑘=1

31−𝛼𝑘
2𝛼𝑘

𝐺𝑘

(

𝐼𝛼𝑘1,𝑘 − 3𝛼𝑘
)

, (39)

where 𝑛 is the model order, i.e., the number of constitutive terms, and
𝐼1 = 𝑡𝑟

(

𝐅𝐓𝐅
)

. 𝐺𝑘 and 𝛼𝑘 are the material parameters. Note that
∑𝑛

𝑘=1 𝐺𝑘
ndicates the shear modulus of the material. The first Piola–Kirchhoff
tress tensor, under incompressibility condition, can be derived as

= 𝜕𝛹
𝜕𝐅

− 𝑝𝐅−𝑇 =
𝑛
∑

𝑘=1
31−𝛼𝑘𝐺𝑘𝐼

𝛼𝑘−1
1,𝑘 𝐅 − 𝑝𝐅−𝑇 . (40)

Taking into account the relation shown in Eq. (15), the Cauchy stress
tensor can be calculated as

𝝈 =
𝑛
∑

𝑘=1
31−𝛼𝑘𝐺𝑘

(

𝐼𝛼𝑘−11,𝑘 𝐅𝐅𝑇
)

− 𝑝 𝐈. (41)

Considering the incompressibility condition, the deformation gradient
𝐅 shown in Eq. (13) and free stress conditions in the transverse plane
to the beam, the relevant Cauchy stress components are defined as

𝜎𝑥𝑥 =
𝑛
∑

𝑘=1
−31−𝛼𝑘 𝐺𝑘

(

𝛾2 (𝜆𝑐 + 𝜅 𝑦) − 2 (𝜆𝑐 + 𝜅 𝑦)3 +
√

4 + 𝛾4 (𝜆𝑐 + 𝜅 𝑦)2
)

(

𝛾2 + (𝜆𝑐 + 𝜅 𝑦)2 +
√

(4+𝛾4 (𝜆𝑐+𝜅 𝑦)2)

(𝜆𝑐+𝜅 𝑦)

)𝛼𝑘

2 (𝛾2 (𝜆𝑐 + 𝜅 𝑦) + (𝜆𝑐 + 𝜅 𝑦)3 +
√

4 + 𝛾4 (𝜆𝑐 + 𝜅 𝑦)2)
,

(42)

𝑥𝑦 =
𝑛
∑

𝑘=1
31−𝛼𝑘 𝐺𝑘 𝛾 (𝜆𝑐 + 𝜅𝑦)

(

𝛾2 + (𝜆𝑐 + 𝜅 𝑦)2 +

√

4 + 𝛾4(𝜆𝑐 + 𝜅𝑦)2

(𝜆𝑐 + 𝜅𝑦)

)−1+𝛼𝑘

,

(43)

here 𝜎𝑥𝑥 and 𝜎𝑥𝑦 are the normal and tangential stresses acting on the
eam cross-section.
The stress resultants 𝐒𝐫 in Eq. (17) are calculated using the Com-

posite Simpson’s 3/8 rule to integrate numerically the normal 𝜎𝑥𝑥 and
tangential 𝜎𝑥𝑦 stress equations considering the current height ℎ and
width 𝑏 of the beam cross-section. The constitutive matrix 𝐃 is obtained
applying central finite difference to derive stress resultants 𝐒𝐫 with
respect to the strain vector 𝜺.

5. Material and experimental method

This section presents the material and methodology used to cali-
brate and validate the proposed computational framework. First, we
introduce the material employed and the characterisation results to
identify the constitutive parameters. Then, we motivate two beam-
structures applications that serve to validate the model and show its
applicability to the metamaterials field.

5.1. Material and constitutive calibration

One of the most promising applications of the model is its ability
to predict the mechanical response of lattice-based structures manufac-
tured by 3D printing technologies. The macrostructural behaviour of

these structures can be modulated by designing specific arrangements
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Fig. 3. Comparison between Lopez-Pamies hyper-elastic model prediction and experimental tensile and compression test results. The shaded region represents the results variability
for different printing orientations.
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of beam elements. In addition, these manufacturing techniques allow
for using flexible polymeric materials that enable for undergoing large
deformations. Among these, we chose a vat photo-polymerisation 3D
printing technique known as Stereolithography (SLA). The material
selected for the application is Flexible 80 A (Formlabs, Somerville, US).
This material is provided in a resin form and cured via a point-by-point
process using ultraviolet (UV) light having high level of accuracy with
good finish and significant reduction of anisotropy.

To provide a first characterisation of the material to feed the consti-
tutive model, we manufactured dog-bone shape specimens with dimen-
sions according to the ASTM D638 standard for tensile characterisation
and, cylindrical specimens with dimension according to the ISO 815-
1:2019 standard for compression characterisation. These specimens
are tested under quasi-static uniaxial tension using a displacement-
controlled ‘‘Instron Series 3400’’ with a 50 N load cell, and with a
testing speed equal to 10 mm/min. Six different samples are considered
to evaluate anisotropy induced by the printing process. In this re-
gard, three building orientations are selected: longitudinal (0◦), oblique
45◦) and transverse (90◦), see Fig. 3. To ensure representativeness
n experimental results, three specimens per printing orientation were
ested giving a total of nine for tensile tests and nine for compression
est. The experimental results of the stress–stretch curves for all these
amples are shown in Fig. 3. No significant dispersion between samples
onditions were observed, with all the samples presenting a mechanical
esponse within the shaded region.
The tensile tests are used to calibrate the constitutive parameters

f the Lopez-Pamies model. The non-linear response of this material
equires the used of two constitutive branches, i.e., two terms in the
odel. The identification of these parameters is done by an optimi-
ation algorithm that reduces the overall error between the model
rediction and the experiment. After calibration, the identified parame-
ers are 𝐺1 = 1.296 MPa, 𝛼1 = 1.611, 𝐺2 = 1.182 MPa and 𝛼2 = −1.936. A
erfect agreement between model and experimental results is obtained,
ith the model prediction being within the experimental region along
he whole stress–stretch curve, see Fig. 3. Note that the comparison is
ade in terms of Cauchy stress (true stress) versus stretch. Also note
hat the material tested can be modelled as isotropic with negligible
ffect of the printing orientation.

.2. Experimental beam-based structures and testing conditions

To illustrate the flexibility and capabilities of the numerical frame-
ork, two different types of structures are considered: (A) a lattice-base
tructure, and (B) a bi-stable structure. Regarding the former, it consists
n a rhomboid lattice geometrically defined by beams with initial length
6

p

= 5 mm, width 𝐵 = 3 mm and aspect ratio 𝐻∕𝐿 = 0.12 rotated
nitially 𝛩 = ±50◦, see Fig. 4.A. This lattice is subjected to a quasi-
tatic tensile test until reaching the breaking load which is close to
eformations between 80% and 85%. To ensure optimal boundary
onditions during the tests, we added handles parts on both the upper
nd lower sample region to attach to the grips (see Fig. 4.C).
Moreover, the second structure chosen corresponds to the unit cell

roposed by Shan et al. (2015), which is specially interesting as it
resents a bi-stability phenomenon. Such a response allows for the tran-
ition between equilibrium states triggered by a mechanical actuation.
n addition, it adds difficulty to the numerical prediction of the problem
ompromising its convergence. The main geometrical features used in
he manufacturing of the samples is presented in Fig. 4.B. Each unit cell
s composed of two solid sections located at the upper and lower parts
nd two beams joining them. These beams have the same dimensions
s those used in the rhomboid lattice. These samples are subjected to
uasi-static compression loading, controlling the displacement of the
pper solid part prior to the contact between the two solid parts occurs
nd obtaining different stable configurations. To ensure repeatability,
hree tests per condition were tested.

. Numerical results

In this section, we first validate the computational framework by
omparing the beam-based formulation (1D model) predictions with
umerical results from an equivalent 3D model. Then, we present the
xperimental results for the lattice-based and the bi-stable structures,
nd use them to further validate the computational framework.

.1. Validation of the computational framework

The computational framework is formulated on the basis of 1D
lements that incorporates mechanical features of 3D beam-based struc-
ures. The first question arising is whether the model can faithfully
eproduce the 3D characteristics of the problem, especially when the
tructure is subjected to important bending and shear components. To
ddress this point, we consider a benchmark problem that is solved
ith our proposed formulation and a fully 3D FE model. The problem
onsists in a clamped-sliding beam that is subjected to a vertical dis-
lacement at the sliding end, as shown in Fig. 5. The initial dimensions
f the beam are the same as those used in the samples tested experimen-
ally. The simulations are run with the commercial software Abaqus
sing implicit integration. For both 1D and 3D models, we describe
he beam material with the calibrated Lopez-Pamies model from the

revious section.
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Fig. 4. Proposed experimental beam-based structures. Sub-panels (A) and (B) present the geometrical features of the unit cells used in the rhomboid and bi-stable lattices
respectively. Sub-panels (C) and (D) show a representative 3D printed samples.

Fig. 5. Benchmark problem to validate the beam formulation against a 3D model: (A) Reference configuration, and (B) Deformed configuration. Comparison between the numerical
results provided by the 1D and 3D models: (C) Horizontal reaction force versus vertical displacement; (D) Vertical reaction force versus vertical displacement; (E) Beam cross-section
height variation of a beam section located at 𝐿∕2; (F) Beam cross-section width variation of a beam section located at 𝐿∕2.
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For the 1D model, we implemented the whole FE framework in
a UEL user-element subroutine, discretising the beam in three-nodes
quadratic elements. Note that the material is assumed incompressible.
Moreover, the 3D model consists of 20-node quadratic hybrid ele-
ments with linear pressure as additional degree of freedom to ensure
incompressibility (C3D20H). The mechanical behaviour of the beam
in the 3D case, i.e., Lopez-Pamies hyperelastic model, was defined
using a UHYPER user-material subroutine. The comparison between
the 1D and 3D models is shown in Fig. 5, in terms of vertical and
horizontal reaction forces in the clamped region of the beam, as well
as cross-sectional height and width versus vertical displacements. The
agreement between both models is almost perfect, indicating a great
reliability of the 1D formulation to simulate beam-based structures
under large deformations.

6.2. Application to lattice and bi-stable structures

The previous results demonstrated the capability of the proposed
formulation to model the mechanical response of a single beam-
structure. Here, we further validate the computational framework
modelling with more complex scenarios and comparing the numerical
results with original experimental data. To this end, we first reproduce
numerically the experiments conducted on the lattice-based structure.
This problem allows for evaluating at once the reliability of the model
to predict the mechanical response of local beam components as
well as synergistic effects from the combined response of different
beam-components. Then, we test the computational framework under
even more complex mechanical conditions that introduce instability
phenomena. To do so, we reproduce the experiments conducted on
the bi-stable structure. Note that all these numerical simulations are
compared with experiments using a flexible material so that important
non-linear responses and large deformations are present.

The results for the rhomboid lattice structure are shown in Fig. 6.A
nd B. This figure provides a comparison between the 1D and 3D
odels prediction of the load evolution with displacement, with the
xperimental data (see Fig. 6.A). The numerical and experimental
urves show a very good agreement. The fit between the experiment
nd the models is almost perfect in the first stages of deformation.
slightly higher discrepancy starts at very large deformations where

he experimental force–displacement curve is almost linear, but the
odelling predictions show a slight softening. This difference can be
xplained by the 3D printing manufacturing process that adds a higher
tiffness in the beam-joints, see Dong and Zhao (2018). These joints
re idealised in the numerical models and, consequently, the effective
ength reduction is not considered accurately. This issue becomes more
elevant in the beam-formulation due to difficulties to represent the
dded joint stiffness. However, this discrepancy is almost negligible
resenting a maximum error below 5%.
Moreover, a geometrical comparison of the sample deformation

t different loading points is provided between the experiments and
he proposed beam formulation (see Fig. 6.B). This figure also plots
he stress distribution in the structure based on the beam-formulation
esults. The three different states chosen correspond to the initial
onfiguration before deformation, a macroscopic strain of the whole
tructure equal to 50%, and a macroscopic strain close to the breaking
oad, i.e., 80%.
The deformed shape of the lattice obtained from the beam-

ormulation is superimposed to the experimental pictures corroborating
n excellent agreement between experimental and modelling results.
or each deformation state highlighted, a close look into a joint region,
oincident with the maximum stresses reached, is included. These
reas are located at the four corners of the lattice as a result of the
aximum stretches reached in those beams and an important local
ending contribution. Related to the numerical framework efficiency,
he time required for the one-dimensional model was 20 times less than
8

he three-dimensional model for the results shown in Fig. 6.A.
Note that other authors have considered similar rhomboid lattice ge-
ometry undergoing large deformations (see Damanpack et al. (2019)).
In this work, however, an alternative manufacturing process (SLA) is
used to obtain the structure using a resin with lower stiffness. These
two facts allowed the authors reach higher stretch values close to twice
the initial macroscopic lattice height and evaluate variations within the
cross-section dimensions. In Fig. 7, the load evolution for a rhomboid
lattice obtained with the 1D model considering and without considering
cross-section variation is compared. The consideration of the cross-
section variation leads to a response that presents a lower stiffness than
without this consideration, what provides more reliable predictions
when compared with experiments. This difference becomes more and
more relevant at high strains.

The results for the bi-stable structure are shown in Fig. 6.C and D.
Fig. 6.C compares the experimental and numerical results from both
1D and 3D models by means of force–displacement curve. As in the
experimental test, displacement control has been imposed as boundary
condition. In case of prescribing Neumann boundary conditions, the
integration algorithm would require the use of arc-length methods
to surpass the instability. The bi-stable transition in the experimental
curve can be clearly observed by the null value reached in the force
evolution, indicating a relative maximum in the energy evolution.
This instability phenomenon is accurately captured by both the beam-
formulation and the 3D model. Regarding this, all experimental and
numerical curves reach the minimum force for the same displacement
value. However, there is a higher difference between curves in the
maximum force value and overall stiffness of the structure. The max-
imum displacements are close to 1 mm and show a worse agreement
with the 1D model prediction. The first and most important source of
discrepancy is the difficulty to experimentally keep the whole structure
within the vertical plane, contrary to the numerical simulations that
reproduce this in an ideal fashion. Due to the slenderness of the beams
and without gluing the bottom and upper solid parts, any change
in the alignment of the beam might result in slight out of plane
movements which are corrected by the structured itself while it is
compressed. However, this issue affects to the maximum and minimum
experimental values. Still related to the boundary conditions, in the
1D model the end of the beam is fixed, whereas in the 3D model this
boundary condition does not apply. Instead, the remaining geometry
of the structure, i.e., non-beam region, is modelled as a deformable
body. Similar to the previous analysis for the lattice structure, we
compare experimental and numerical results by means of geometrical
deformation, see Fig. 6.D. For this structure, we consider four rele-
vant deformation states: (1) initial configuration, (2) deformation at
reaching the maximum force, (3) deformation at reaching the minimum
force, and (4) deformation prior to reaching contact between the beam
and the supporting regions. The stress values are plotted in absolute
value to show maximum stress concentration regions (note that for each
beam section there are simultaneously tensile and compressive stresses
due to bending). This problem is especially relevant for validation
purposes as bending plays a very important role and, on top of that,
the instability phenomenon associated to buckling can compromise the
convergence of the numerical integration scheme. The importance of
the bending contribution can be clearly observed by comparing the
third and fourth states, where the maximum stress values are lower
in the latter despite presenting higher stretching.

7. Conclusions

In this work, we propose a mixed formulation for Timoshenko-
type beams, considering finite deformations, and its implementation
within a robust computational framework that allows for predicting
the mechanical response of architected structures. One of the novelties
of the proposed work relies on a numerical framework for the beam-
type elements that accounts for heterogeneous deformations within the

cross-section, consistently with large strains theory and accounted for
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Fig. 6. Experimental and modelling results for the rhomboid structure: (A) Comparison of the experimental force–displacement curves with the 1D and 3D models predictions, and
B) geometrical deformation of the lattice, computed with the 1D model, at different deformation states indicated in sub-panel (A). These deformed shapes are overlapped with
he corresponding experimental pictures, plotting the stress distribution within the lattice structure. Experimental and modelling results for the bi-stable structure: (C) Comparison
f the experimental force–displacement curves with the 1D and 3D models predictions, and (D) geometrical deformation of the lattice, computed with the 1D model, at different
eformation states indicated in sub-panel (C). These deformed shapes are overlapped with the corresponding experimental pictures, plotting the stress distribution within the lattice
tructure.
Fig. 7. Load versus stretch predictions using the beam-formulation when considering and without considering the heterogeneous variations along the cross-section for the rhomboid
lattice structure.
axial, shear and bending contributions. This is done by considering the
evolution of local stretches in height and width directions along the
beam cross-section. This allows for a better description of normal and
shear stress values within the cross-section and, consequently, more
accurate stress resultant values. Furthermore, the complete framework
9

is formulated on general bases allowing for the straightforward partic-
ularisation of the constitutive description, making it suitable for most
types of materials. Contrary to other previous works, we formulate
the whole framework in the deformed configuration. Although one
could easily adapt the formulation from one to each other, the spatial
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description allows for realistic force/moment boundary conditions in
a straightforward manner. In addition, this description is especially
interesting as many commercial software impose it.

To prove validity of the model we provide original experimental
data on an elastomeric material manufactured using 3D printing by SLA
with negligible anisotropic behaviour. After characterisation tests, the
constitutive parameters are calibrated and the numerical framework
is implemented in an implicit FE framework. The benchmark problem
used to test reliability with respect to a 3D finite element model shows
a perfect agreement with a considerable computational cost reduction.
After that, we further validate experimentally the framework on two
types of relevant complex beam-based structures: a rhomboid lattice
and a bi-stable beam structure. In both cases, the numerical results
provide a very good agreement with the experiments by means of both
quantitative results, i.e., force–displacement curves, and qualitative
results, i.e., geometrical deformation mechanisms. It should be noted
the complexity of the problems tested that involve large deformations,
important local bending and instability phenomena.

Overall, the proposed formulation provides an efficient solution to
simulate the mechanical response of architected materials and meta-
material structures based on beam components. Along with the ad-
vanced additive manufacturing techniques available in the literature,
it opens new opportunities to conceptualise novel functional struc-
tures. Promising avenues following this work are related to the use
of multifunctional materials such as electro- (Soldner et al., 2021;
Nasimsobhan et al., 2022; Mawassy et al., 2021; Chen et al., 2021) or
magneto-active (Garcia-Gonzalez and Hossain, 2021; Moreno-Mateos
t al., 2022; Yan et al., 2021; Sano et al., 2022) polymers. Another
interesting application relies on the potential to couple the framework
to machine learning algorithms for topological optimisation (Sun et al.,
2022; Bastek et al., 2022), as well as its extension to three-dimensional
problems.
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