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Abstract: Tire slip control is one of the most critical topics in vehicle dynamics control, being the basis
of systems such the Anti-lock Braking System (ABS), Traction Control System (TCS) or Electronic
Stability Program (ESP). The highly nonlinear behavior of tire–road contact makes it challenging
to design robust controllers able to find a dynamic stable solution in different working conditions.
Furthermore, road conditions greatly affect the braking performance of vehicles, being lower on
slippery roads than on roads with a high tire friction coefficient. For this reason, by knowing the value
of this coefficient, it is possible to change the slip ratio tracking reference of the tires in order to obtain
the optimal braking performance. In this paper, an H∞ controller is proposed to deal with the tire
slip control problem and maximize the braking forces depending on the road condition. Simulations
are carried out in the vehicular dynamics simulator software CarSim. The proposed controller is able
to make the tire slip follow a given reference based on the friction coefficient for the different tested
road conditions, resulting in a small reference error and good transient response.

Keywords: tire slip control; vehicle dynamics; H∞ control; anti-lock brake system

1. Introduction

Vehicle stability under braking is essential to ensure the integrity of the vehicle’s
passengers and external actors. Wheel locking can affect vehicular motion, diverting the
vehicle from the driver’s desired trajectory or reducing the effectiveness of braking, which
can lead to accidents. In many cases, these accidents and their consequences can be avoided
thanks to the use of active vehicle dynamics control systems.

Tire slip control by means of Anti-lock Braking Systems (ABS) has been one of the
great achievements in automotive vehicle safety. Traditionally, Hydraulically Applied
Brakes (HAB) have been the most common system layout in commercial vehicles. Pressure
modulation in these systems is generally achieved in a stairway style, making it suitable
for threshold-based, fuzzy logic and neural network control [1]. However, alternatives to
these systems are now available, such as the Electro-Hydraulic Brake (EHB) or Electro-
Mechanical Brake (EMB) systems. These are characterized by a faster response compared
with conventional hydraulic systems [2,3] and allow a more precise and continuous control
of the braking torque at the wheels.

Many different control strategies have been proposed to address the ABS control. Rule-
based algorithms compose the majority of solutions nowadays [4] but, in addition to fuzzy
logic [5] and neural network [6,7] controllers, the large amount of tuning parameters make
them extremely time-consuming options and are not able to deal with the uncertainties
and disturbances of the tire–road dynamics. Moreover, none of these methodologies can
assure the stability of the system. Given that brake actuator technology has significantly
advanced in the last two decades, researchers have focused their efforts on more advanced
control techniques to improve ABS performance. In [8], a robust Integral Sliding Mode
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Controller (ISMC) was proposed, demonstrating the importance of reference adaptation
during braking. Nevertheless, ISMCs are feedback techniques, and adding feed-forward
action is not trivial, which limits the performance of the controller. Model Predictive Con-
trol has risen as one of the most promising control alternatives [9,10], offering space for
improvements with respect to state-of-the-art controllers. However, as MPC algorithms are
online strategies for control, the limitation of these systems lies in the computational time
required for the correct operation of the algorithm. Sometimes, in fact, the computation
time is unpredictable, as the system encounters external disturbances that have not been
taken into account in the design, which is a problem for real-time applications where safety
is a critical condition. Moreover, the addition of nonconvex constraints also increases the
computation time, and the online solvers used in the literature only offer convergence to
local optima [11,12]. Classical robust control approaches allow to deal with uncertainties,
disturbances and noise by design, while ensuring stability, and do not present the com-
putational drawback of the above, as the control gains for the controller are calculated
offline [13–17] .

Limited evaluations of robust control techniques are found in the recent literature [1],
and existing ones do not validate their results with a high-order vehicle model [18,19]
and do not present a simultaneous stage of the vehicle state’s estimation. Motivated by
the aforementioned reasons, the design of an H∞ gain-scheduling controller to deal with
the tire slip control problem is presented in this paper, and results are validated with the
vehicle dynamics software simulator CarSim. The main contributions are:

• The proposed controller is able to make the tire slip follow a given reference based
on the TRFC, resulting in a small reference error and good transient response, guar-
anteeing system stability. Since the estimation of the TRFC is not the focus of this
article, it is assumed to be known for making use of any of the most recent literature
algorithms [20–32].

• The braking forces are maximized depending on road condition.
• Even though a simple vehicle model was taken into consideration for the controller

design, the proposed algorithm was tested in the vehicle dynamics simulator software
CarSim, in which simulations were carried out for different road conditions.

• To consider the longitudinal velocity and tire–road contact time-dependency problem,
a time-varying parameter approach is considered for the synthesis of the controller.
These parameters are considered as pseudomeasures.

• In order to estimate the states of the vehicle and the time-varying parameters with
the information obtained from on-board series-production vehicle sensors, a Kalman
Filter is considered.

The rest of the article is organized as follows: in Section 2, the problem of the H∞
gain-scheduling controller and vehicle states estimation is depicted. Moreover, the braking
problem and dynamics are formulated. In Section 3, the design of the proposed controller is
explained. The controller is tested in Section 4 using CarSim and Simulink, and the results
obtained are analyzed. Finally, the conclusions are drawn in Section 5.

2. Problem Formulation

In this section, the problem of the H∞ gain-scheduling controller and vehicle states
estimation is depicted in Figure 1. The vehicle and friction models used for the controller
are presented subsequently and all the parameters used are shown in Appendix A.

As shown in Figure 1, a Kalman Filter algorithm is used to estimate the braking tire
force of each wheel and the longitudinal velocity of the vehicle. These estimations are
then used to calculate the longitudinal slip on each wheel and for the model used by the
H∞ controller. To simplify the algorithm, the TRFC is supposed to be obtained by some
estimation method [20–32] and the optimal tire slip that maximizes the braking force is
calculated by means of the Burckhardt friction model. Finally, the H∞ controller generates
the necessary braking pressure for each wheel in order to minimize the error between the
optimal and current longitudinal slip.
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Figure 1. Scheme of the control architecture implemented in Simulink and CarSim [20–32].

Vehicle and Friction Models

In this section, the vehicle and friction models used for the controller are presented. A
single-corner model [33] is used to represent the dynamics of the wheel during braking. It
is assumed that the vehicle only moves in the longitudinal direction during the braking
maneuver, as in Figure 2.

Figure 2. Single-corner vehicle model representation.

The dynamics of the single-corner vehicle model depicted in Figure 2 can be expressed
as in [33]: {

Jω̇ = FxR− Tb
Fx = −mv̇x

(1)

where J is the moment of inertia of the wheel, m is the equivalent mass of the single-corner
vehicle model and R is the effective radius of the wheel; ω is the rotational velocity of
the wheel, Tb is the braking torque applied on the wheel, vx is the longitudinal velocity
of the vehicle and Fx is the force originated from the tire–road contact. This force can be
determined by means of the expression

Fx = µ(λ)Fz (2)

where Fz is the vertical load and µ is the instantaneous tire–road friction coefficient. For a
case of straight-line braking, it is considered that µ only depends on the tire slip:

λ =
vx −ωR

vx
(3)

with λ ∈ [0, 1] and λ = 1 meaning that the wheel is locked. In this work, the Burckhardt
friction model is used to characterize the tire–road contact behavior. This model allows to
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obtain the instantaneous friction coefficient for different road condition as a function of the
tire slip:

µ(λ) = c1(1− e−c2λ)− c3λ (4)

where the value of the coefficients c1, c2 and c3 only depends on the road condition, resulting
in different friction curves [34], as in Figure 3.

By using the Burckhardt friction model, it is simple to know the value of the longitudi-
nal tire slip that maximizes the braking force, shown in Table 1.
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Figure 3. Friction coefficient for different road condition according to the Burckhardt model.

Table 1. Burckhardt friction model parameters [34].

Burckhardt Parameters Values

Road Condition c1 c2 c3 µmax λopt

Dry asphalt 1.280 23.990 0.520 1.170 0.170
Wet asphalt 0.857 33.820 0.350 0.800 0.130

Wet cobblestone 0.400 33.710 0.120 0.380 0.140
Snow 0.195 94.130 0.060 0.190 0.060

By deriving the Equation (3) and using Equation (1), the dynamics of the tire slip can
be expressed as

λ̇ =
Fx

mvx
λ−

(
1
m
− R2

J

)
Fz

vx
+

R
Jvx

kbPb (5)

where Pb is the pressure of the hydraulic system, and constant kb comes from Tb = kbPb.
In Equation (5), both Fx and vx are pseudomeasure time-varying parameters estimated

by a Kalman Filter algorithm presented later in the document. To facilitate the design of
the controller, the following time-varying parameters are defined:

ρ1(t) = Fx, ρ1 ∈
[
Fx Fx

]
ρ2(t) = 1/vx, ρ2 ∈

[
1/vx 1/vx

]
(6)

where both time-varying parameters ρ1 and ρ2 are bounded within an upper and a lower
bound denoted by “∗” and “∗”, respectively.

By taking x = [λ], u = [Pb] and ρ =
[
ρ1 ρ2

]
from Equation (5), the dynamics of the

longitudinal tire slip can be characterized by

ẋ = A0(ρ)x + B0(ρ)uc + D0d (7)

where
A0 =

ρ1ρ2

m
(8a)
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B0 =
Rρ1kb

J
(8b)

D0 = 1 (8c)

and d is considered as the disturbances: d = −
(

1
m −

R2

J

)
Fz
vx

.

3. Controller Design

In this section, the proposed H∞ controller synthesis is presented, as well as the
proposed algorithm for the vehicle states estimation.

3.1. Controller Design Objectives

The main objective of the controller is to make the tire slip ratio follow the desired
reference r = [λopt] that maximizes the braking force according to the Burckhardt model,
shown in Table 1. Then, the state space of the system expressed in Equation (7) can be
augmented with a new defined state ζ =

∫ t
0 (λ− λopt)dt and η = [λ ζ]T . The dynamics

of the augmented system is

η̇ = A(ρ)η + Bu(ρ)uc + Bdd + Brr (9)

where

A(ρ) =

[
A0 0
1 0

]
, Bu(ρ) =

[
B0
0

]
, Bd =

[
1
0

]
, Br =

[
0
−1

]
(10)

The controlled output of the system is

z = Gη (11)

where G =
[
0 1

]
. The gain controller law proposed for the system in Equation (9) is of

the form
uc(t) = K(t)η (12)

and results in a generalized proportional integral controller whose integral term works
towards eliminating the error with the reference signal, minimizing the error with respect
to the optimal slip ratio.

3.2. Stability Analysis

In order to minimize the controlled output, the H∞ performance inequality is chosen
as in [35]:

||z||22 < γ2
1||r||22 + γ2

1γ2
2||d||22 (13)

and it must be fulfilled for any bounded disturbance d and reference signal r, where γ1 is
the H∞ performance index and γ2 is a weighting factor.

Theorem 1. For a given state feedback gain K, the closed-loop system defined in (9) is asymptotically
stable and guarantees the H∞ performance described in Equation (13) if there is a matrix P = PT � 0
such that 

AT
c P + PAc PBr PBd CT

∗ −γ2
1γ2

2 I 0 0
∗ ∗ −γ2

1 I 0
∗ ∗ ∗ −I

 ≺ 0 (14)

Proof. By choosing a Lyapunov function of the form

V = ηT Pη (15)
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and satisfying V > 0 and V̇ < 0 with

P � 0 (16a)

AT
c P + PAc ≺ 0 (16b)

where Ac is the closed-loop system matrix Ac = A + BK.
Now, let us define a cost function as

∆ = V̇ + zTz− γ2
1γ2

2rTr− γ2
1dTd (17)

To guarantee that the inequality of Equation (14) holds, the cost function defined in
Equation (17) must satisfy

∆(t) < 0, ∀t ≥ 0 (18)

By expressing ∆ in matrix form and applying Schur’s complement to Equation (19), it
ensures Equation (14) to be satisfied, so the proof is concluded.

∆ =

 η
r
d

T AT
c P + PAc + CTC PBr PBd

∗ −γ2
1γ2

2 I 0
∗ ∗ −γ2

1 I

 η
r
d

 (19)

3.3. Gain-Scheduling Feedback Gains Design

As the closed-loop plant of the system is expressed as a function of time-varying
parameters ρ in Equation (9), a polytopic system is generated for describing the dynamics
of the system [36] :

η =
N

∑
i=1

αi(ρ)(Aiη + Bu,i + Bd,id + Br,ir) (20)

where αi(ρ) are the weighting gains that satisfy ∑N
i=1 αi(t) = 1, α(t) > 0 and N = 4 for each

of the four vertices that represent the four linear submodels of the generated polytope, as
shown in Figure 4. These vertices are built from the upper and lower bounds of the Fx and
1/vx parameters 

Π1 = [A(ρ1, ρ2), B(ρ1, ρ2)]

Π2 =
[

A(ρ1, ρ2), B(ρ1, ρ2)
]

Π3 =
[

A(ρ1, ρ2), B(ρ1, ρ2)
]

Π4 =
[

A(ρ1, ρ2), B(ρ1, ρ2)
] (21)

Figure 4. Graphical representation of the four-vertex polytope.
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The weighting gains α(t) are calculated using the values of ρ(t) as follows:

α1(t) =
[
|ρ1 − ρ1||ρ2 − ρ2|/δρ

]
α2(t) =

[
|ρ1 − ρ1||ρ2 − ρ2|/δρ

]
α3(t) =

[
|ρ1 − ρ1||ρ2 − ρ2|/δρ

]
α4(t) =

[
|ρ1 − ρ1||ρ2 − ρ2|/δρ

] (22)

where δρ = |(ρ1 − ρ1)(ρ2 − ρ2)|.
The values of ρ1 and ρ2 can be obtained online and, through them, the final feedback

controller gain K can be obtained as a linear combination of the feedback gain of the Ki
submodels using

K =
N

∑
i=1

αi(ρ)Ki (23)

With the polytopic system in Equation (20) and gain law control in Equation (12), the
controller is asymptotically stable, and the H∞ conditions in Equation (13) are ensured if
there is a definite positive matrix Q, a matrix M and a γ1 > 0 that satisfy the LMI

φi,i ≺ 0, for 1 ≤ i ≤ 4

φi,j + φj,i ≺ 0, for 1 ≤ i ≤ j ≤ 4 (24)

where 
Λij Br Bd QCT

i
∗ −γ2

1γ2
2 I 0 0

∗ ∗ −γ2
1 I 0

∗ ∗ ∗ −I

 ≺ 0 (25)

with Λij = (AiQ + Bu,i Mj) + (AiQ + Bu,i Mj)
T , and the state feedback gain of each sub-

model of the corresponding vertex of the polytope is obtained as

Ki = MiQ−1 (26)

Proof is shown in [36].
In addition, another constraint is used to limit the maximum control output signal

so that the maximum pressure supported by the hydraulic system is not exceeded, thus
limiting the braking torque . The limitation of the output signal is performed as in [37],
where given positive definite matrices Q and M and a positive scalar ε, the maximum
control output of the system in Equation (9) can be limited using the constraint[ 1

ε X M
∗ Q

]
≥ 0 (27)

with X ≤ Pb,max.
The objective controller gains are found by solving the minimization problem

min γ2
1

subject to Q = QT � 0, X = XT , (25) and (27)
(28)

3.4. State Variable Estimation through a Kalman Filter

It is necessary for the control feedback to know the values of the states and the values
of ρ to calculate the gains αi of the polytope. Therefore, Fx, vx and λ have to be estimated.
For this purpose, a Kalman Filter is used to estimate the longitudinal velocity and the
tire braking forces [38], because it allows to estimate the states of a linear system which
cannot be measured directly, in this case tire forces. As the tire forces of every wheel of the
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vehicle are needed, the estimation is performed using Equation (29) into all the wheels of
the vehicle:

−mtv̇x = Fx, f l + Fx, f r + Fx,rl + Fx,rr

Jω̇ f l = Fx, f l R− Tb, f l

Jω̇ f r = Fx, f rR− Tb, f r

Jω̇rl = Fx,r f R− Tb,rl

Jω̇rr = Fx,rrR− Tb,rr (29)

where mt is the total mass of the vehicle, Tb,i is the braking torque and Fx,i is the braking
tire force of the ith wheel. From Equation (29), the following state-space model is derived

˙̂x f = A f x̂ f + B f u f

y f = C f x̂ f (30)

where the state variables are x f = [vx w f l w f r wrl wrr]T , and the control inputs are
u f = [Tb, f l Tb, f r Tb,rl Tb,rr]

T , which can be known by means of the controller signals.
The measurements are the longitudinal acceleration of the vehicle and the wheel rotation
speeds, y f = [w f l w f r wrl wrr ax]T . All the measurement signals can be obtained
using inertia or velocity sensors. Longitudinal acceleration ax can be measured by an Iner-
tial Measurement Unit (IMU) [39], while the angular velocity of each wheel ω can be mea-
sured with Wheel Pulse Transducers (WPTs) [40]. Even though longitudinal velocity vx can
be measured with an odometer, this can lead to imprecise results; therefore, an estimation of
vx seems to be the best choice. By augmenting the system with the tire forces, the new state-
space variables vector is x f = [vx w f l w f r wrl wrr Fx, f l Fx, f r Fx,rl Fx,rr]T , and
the state equation of the KF written in discrete form is

x f ,k+1 = A f x f ,k + B f u f ,k + vk

y f ,k = C f x f ,k + wk (31)

where

A f =



0 0 0 0 0 1
mt

1
mt

1
mt

1
mt

0 0 0 0 0 R
J 0 0 0

0 0 0 0 0 0 R
J 0 0

0 0 0 0 0 0 0 R
J 0

0 0 0 0 0 0 0 0 R
J

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


, B f =



0 0 0 0
−1

J 0 0 0
0 −1

J 0 0
0 0 −1

J 0
0 0 0 −1

J
0 0 0 0
0 0 0 0
0 0 0 0


,

C f =


0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1

mt
−1
mt

−1
mt

−1
mt

, D f = 05×4

where the time variation is defined using the random walk model, as in [38].
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The KF algorithm has two steps: the time update step and measurement update step.
In the measurement state step, the algorithm uses the measurement to correct the estimation
made in the time update step

x̂ f ,k = x f ,k + Kk(yk − C f x f ,k)

Pk = (I − KkC f )Pk−1(I − KkC f )
T + KkRkKT

k (32)

where
Kk = Pk−1CT

f (C f Pk−1CT
f Rk) (33)

In the time update step, an estimation of the state variables is made using the dynamics
equations of the system

x f ,k+1 = x̂ f ,k

Pk+1 = A f Pk AT
f + Qk (34)

The process noise vk is considered to have zero mean and Qk covariance, the mea-
surement noise vk is considered to have zero mean and Rk covariance and Pk is the states’
covariance. Through these estimations, the tire slip of the wheels can be calculated using
Equation (35). The tire slip is estimated using the measurement of the angular velocity of
the wheels and the estimated longitudinal velocity:

λ̂i =
v̂x −ωiR

v̂x
, for i = f l, f r, rl, rr (35)

4. Simulations and Results
4.1. Simulation Set Up

This section shows the conditions and results of the simulations performed to test the
operation of the H∞ controller designed in the previous section, which is used to control
the slip of the four tires of the vehicle. Simulations are carried out in the vehicle dynamics
software CarSim, which allows to run simulations with a 27-DOF vehicle model [41]. The
controller and state estimator are implemented in Matlab–Simulink. Since during the
braking process the vertical load is not the same on both axles of the vehicle due to the load
transfer from the rear wheels to the front wheels, one controller is calculated for the rear
wheels and another for the front wheels, considering that both the left and right wheels of
the same axle work under identical conditions. The gains of the controller are obtained by
solving the LMI minimization problem using the Robust Control Toolbox.

The limit values for parameters ρ1 and ρ2 are defined in Table 2. The velocity range
considered is 3− 19.44 m/s. The minimum force on the tire is 0 N, and the maximum for
the front occurs when the friction coefficient is maximum, considering load transfer. For the
case of the rear tire, the maximum forces are calculated when only static load is considered

Fxmax, f ront = gµmax(m f +
mthcrµmax

2L
)

Fxmax,rear = gµmaxmr (36)

where L is stated in Table 3. The friction coefficient considered in Equation (36) is the
maximum for the road considered in the simulations, µmax = 1.00.

The feedback gains and the H∞ performance index for the front and rear braking
controllers are calculated by choosing a weighting factor γ2 = 1 in order to take into
account the disturbances, shown in Equation (13). The gain matrices obtained are
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K1, f ront = [−21.6,−1765.2], K1,rear = [−26.6,−1873.2]

K2, f ront = [−21.6,−1778.6], K2,rear = [−26.6,−1890.7]

K3, f ront = [−32.9,−2699.5], K3,rear = [−40.6,−2874.8]

K4, f ront = [−32.9,−2699.9], K4,rear = [−40.6,−2873.9]

γ1, f ront = 0.0174, γ1,rear = 0.0144 (37)

Table 2. Polytopes bounds.

Polytope Bounds

Parameter Front Controller Rear Controller

ρ1 5601 N 2737 N
ρ1 0 N 0 N
ρ2 0.33 s/m 0.33 s/m
ρ2 0.0514 s/m 0.0514 s/m

The initial, process and measurement covariances for the Kalman Filter are

P0 = Qk = diag
{

10−7 10−1 10−1 10−1 10−1 5 · 102 5 · 102 5 · 102 5 · 102}T

Rk = diag
{

10−5 10−5 10−5 10−5 10−3}T (38)

where Rk is the covariance considered on the sensors signals.
In order to test the performance of the designed controller, simulations are performed

using the vehicular dynamics software CarSim, considering a C-Class vehicle model. This
category includes series-production vehicles such as Audi A3, Fiat Bravo or Opel Astra,
among others. During the simulation, errors in the sensor measurements are considered.
The controller and estimator are implemented the Simulink environment, Figure 1. The
controller is tested in different road condition in which the vehicle always starts at a velocity
of 70 km/h and starts braking at 0.1 seconds along a straight path. The cut-off speed of
the controller is 3 m/s; below this velocity the actuator applies the maximum allowable
pressure, as the wheel locking at very low velocities does not compromise the braking
maneuver. In all simulations, it is assumed that the friction coefficient µmax is known, and no
error in the estimation is assumed. Hence, the slip reference λopt is obtained by comparing
the estimation of µmax with the closest value from Table 1. The coefficient of friction µmax is
also considered the same for all the wheels; thus, the same reference is always provided to all
the controllers. The results are compared with those obtained with a PID controller with gains
KP = 10, KD = 0.5 and KI = 600 under the same simulation conditions.

Table 3. Vehicle characteristics.

Vehicle Characteristics

Parameter Definition Value Units

m f Front wheel equivalent mass 428.97 kg
mr Rear wheel equivalent mass 279.03 kg
mt Vehicle mass 1416 kg
kb f Front braking constant 300 Nm/MPa
kbr Rear braking constant 200 Nm/MPa

Pb,max Maximum brake pressure 10 MPa
J Spin inertia 0.9 kgm2

R Wheel radius 0.31 m
L Vehicle wheelbase 2.578 m

hcr Center of gravity height 0.35 m
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4.2. Braking with Constant µmax

The braking maneuver is simulated with the following road conditions:

• Road condition 1: road with µmax = 1.00 trying to emulate a dry asphalt road.
• Road condition 2: road with µmax = 0.40 trying to emulate a wet cobblestone road.
• Road condition 3: road with µmax = 0.20 trying to emulate a snowy road.

The results of this simulations can be seen in Figures 5–13. For simplicity, only the
results relative to the wheels of the left side of the vehicle are shown.
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Figure 5. Front tire slip, reference tire slip and brake pressure for µmax = 1.00.
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Figure 6. Rear wheels tire slip for front, reference tire slip and brake pressure for µmax = 1.00.
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Figure 7. Estimated forces by KF compared with CarSim forces for µmax = 1.00.
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Figure 8. Front wheels tire slip, reference tire slip and brake pressure for µmax = 0.40.

In Figures 5, 6, 8, 9, 11 and 12, it can be seen that the designed controller manages
to make the longitudinal tire slip reach the given reference for the three tested different
road conditions better than the PID controller does, especially in the case where the friction
coefficient is high, where the proposed controller presents less steady-state error. The
settling time is approximately 0.1 seconds in all the simulations, being faster than the PID
controller in all the situations.

Figures 7, 10 and 13 show the results of the KF estimations of the tire forces. These
estimates are adjusted to the values provided by CarSim.
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Figure 9. Rear wheels tire slip, reference tire slip and brake pressure for µmax = 0.40.
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Figure 10. Estimated forces by KF compared with CarSim forces for µmax = 0.40.
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Figure 11. Front wheels tire slip, reference tire slip and brake pressure for µmax = 0.20.



Sensors 2023, 23, 1417 14 of 18

0 1 2 3 4 5 6
0

0.05

0.1

rl

Reference H PID

0 1 2 3 4 5 6

Time (s)

0

0.5

1

1.5

2

P
b

rl
 (

M
P

a
)

H PID

Figure 12. Rear wheels tire slip, reference tire slip and brake pressure for µmax = 0.20.
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Figure 13. Estimated forces by KF compared with CarSim forces for µmax = 0.20.

4.3. Braking Test with Changing µmax

In Figures 14–16, a snowy stretch on the road where the vehicle brakes is simulated.
It can be seen that when the sudden friction change occurs, the controller prevents the
slip from increasing too much and thus stopping the wheel from locking. In addition to
that, the controller makes the slip of both the front and rear tires follow the reference λopt,
even though the tires of each axle enter the snowy section at different time instants. The
entering and the exit of the car from the snowy patch is pointed out in Figures 14 and 16
with discontinuous lines. Again, the proposed controller performs better than the PID
controller, as it has a faster response and minimizes error further.
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Figure 14. Front wheels tire slip, reference tire slip and brake pressure for changing µmax.
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Figure 15. Rear wheels tire slip, reference tire slip and brake pressure for changing µmax.
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Figure 16. Estimated forces by KF compared with CarSim forces for changing µmax.
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4.4. Braking Distance Comparison

The braking distances obtained using the designed controller are compared with the ones
obtained using a PID controller and the default braking ABS that CarSim uses. This system
activates and deactivates the brake pressure to maintain the tire slip between two values, 0.1–0.15
for the front wheels and 0.05–0.1 for the rear wheels. The results are shown in Table 4.

Table 4. Braking distances comparison.

Braking Distance (m)

Road: µmax H∞ Controller PID CarSim ABS

1.00 16.21 16.47 17.35
0.40 38.24 38.79 46.38
0.20 81.55 82.65 93.91

0.85→ 0.20→ 0.85 22.68 23.20 24.04

5. Conclusions and Future Works

In this work, an H∞ gain-scheduling controller able to optimize vehicle braking in
an emergency situation was developed, trying to achieve the optimal longitudinal slip
value from the Burckhardt tire model that maximizes the braking force for different road
conditions. The controller was validated through braking simulations under different road
conditions using CarSim and Simulink. It was observed that the controller is able to follow
the reference under different road condition and with a reduced response time. In addition,
its robustness against the variations that occur in the system during braking was verified,
avoiding wheel locks. As part of a future work, communication delays must be taken into
account, and an Event-Triggering mechanism should be applied to reduce the network
communication loads and actuator chattering, leading to a more complete and realistic
braking control.
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Appendix A List of Terms

Table A1. List of terms.

Term Description Unit

λ Longitudinal tire-slip ratio (-)
λopt Optimal longitudinal tire-slip ratio (-)
µmax Tire–road friction coefficient (-)

ω Rotational speed rad/s
c1 First coefficient of Burckhardt model (-)
c2 Second coefficient of Burckhardt model (-)
c3 Third coefficient of Burckhardt model (-)
Fz Vertical load N
hcr Center of gravity height m
J Spin inertia kgm2

kb f Front braking constant Nm/MPa
kbr Rear braking constant Nm/MPa
L Vehicle wheelbase m
L f Distance from center of gravity to front axle m
Lr Distance from center of gravity to rear axle m
mt Vehicle total mass kg
m f Front single-corner model equivalent mass kg
mr Rear single-corner model equivalent mass kg
Pb Brake pressure MPa

Pb,max Maximum brake pressure MPa
R Wheel radius m
vx Longitudinal velocity m/s
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