
ARTICLE

International Journal of Advanced Robotic Systems

Nonholonomic Motion
Planning Using the
Fast Marching Square Method
Regular Paper

César Arismendi1*, David Álvarez1, Santiago Garrido1 and Luis Moreno1

1 Robotics Lab, Department of Systems and Automation, University Carlos III of Madrid, Leganés, Spain
*Corresponding author(s) E-mail: carismen@ing.uc3m.es

Received 11 June 2014; Accepted 24 January 2015

DOI: 10.5772/60129

© 2015 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Abstract

This research presents two novel approaches to nonholo‐
nomic motion planning. The methodologies presented are
based  on  the  standard  fast  marching  square  path
planning method and its  application  to  car-like  robots.
Under the first method, the environment is considered as
a  three-dimensional  C-space,  with  the  first  two dimen‐
sions  given  by  the  position  of  the  robot  and the  third
dimension by its orientation. This means that we operate
over the configuration space instead of the bi-dimension‐
al environment map. Moreover, the trajectory is comput‐
ed along the C-space taking into account the dimensions
of  the  vehicle,  and  thus  guaranteeing  the  absence  of
collisions.  The  second  method  uses  the  standard  fast
marching square, and takes advantage of the vector field
of  the  velocities  computed  during  the  first  step  of  the
method in order to adapt the motion plan to the control
inputs  that  a  car-like  robot  is  able  to  execute.  Both
methods  ensure  the  smoothness  and  safety  of  the
calculated  paths  in  addition  to  providing  the  control
actions to perform the trajectory.

Keywords Nonholonomic, Path Planning, Fast Marching
Square

1. Introduction

Path planning and the control of autonomous vehicles has
become widespread, not only in industry but also in
everyday life. Currently, several cars in the market offer
autonomous parking systems, there are robotic vacuum
cleaners in millions of houses around the world, and the
use of unmanned aerial vehicles is increasing every day in
many different application fields. All these applications
require the vehicles in question to be capable of working in
a robust manner under a wide variety of environmental
conditions [1], operating without human intervention [2],
and providing some guarantee of task performance [3]. For
all these reasons, these robots need to be able to plan
smooth, reliable and safe trajectories as quickly as possible.

A navigation task for an autonomous mobile robot consists
of finding a control strategy so that the robot reaches a
desired pose while at the same time avoiding colliding with
obstacles in the environment [4, 5]. During the planning
step, there are two main research directions that are
emerging from the different kinds of robots being used.
Some applications focus on robots with simple dynamics
and of negligible size, such that it is valid to reduce the
problem to a classical navigation task. Different approaches
aim to solve the classical navigation problem for mobile

1Int J Adv Robot Syst, 2015, 12:56 | doi: 10.5772/60129

http://crossmark.crossref.org/dialog/?doi=10.5772%2F60129&domain=pdf&date_stamp=2015-01-01


robots with complicated dynamics, such as nonholonomic
or underactuated systems [6, 7].

The path planning problem is formulated in the configu‐
ration space (C-space) [8]. The C-space is the space of all
possible states of the robot. Thus, if we consider a rigid
robot moving in a two-dimensional environment, the
configuration q = x,y,θ T  describes the position of the robot
in the plane and its orientation with respect to the vertical
axis. The majority of planning methods deal with driftless
control affine systems, which have the form:

( )
=1

=
m

i i
i

x h x uå& (1)

where the state ẋ ∈ X  consists of the configuration variables
and their derivatives, h i is a vector field on the state space
of X , and u = u1...um

T ∈U  is the vector of the control
variables. If the configuration is treated as the state, then
x =q. A nonholonomic vehicle is a system which obeys one
or more non-integrable equality constraints above the
derivatives of the configuration variables. This means that
the velocity vector is locally constrained to certain direc‐
tions (for instance, a car is not able to move sideways).

An interesting property of nonholonomic systems is that
they are underactuated yet remain controllable on the
entire state space - this leads to the development of local
control methods which determine the control signal u( ⋅ )
for a given pair of initial and goal configurations (qi,qg),
which are called ‘steering methods’ [9]. Among these
algorithms, some of them are designed to work in special
types of nonholonomic systems: nilpotentizable [10], chain-
formed [11, 12] and differentially flat systems [13]. One
common problem among these methods is that they are
mainly designed to work in the absence of obstacles.

A simple approach to solve the path planning problem in
uncluttered environments consists of taking into account
only the geometric nature of the model. Therefore, a
planner can calculate a set of continuous poses inside the
free configuration space, connecting given initial and final
configurations of the autonomous vehicle. However, if the
problem includes both geometric and kinematic con‐
straints, the above approach may not be sufficient to
describe a solution path, since in those cases a suitable path
planning algorithm has to find a solution, such that it obeys
the motion equation of the kinematic robot model and it is
also safe with respect to avoiding obstacles.

In [4, 5], it is shown that the existence of an admissible path
between two configurations is equivalent to the existence
of any collision-free path between the same configurations.
This is still an open research topic since, to the best knowl‐
edge of the authors, there is no optimal solution available
for the synthesis problem. Most algorithms which propose
a feasible solution can be divided into two main groups.
The first one includes probabilistic sampling-based

roadmap methods [14, 15], which involve iteratively
sampling the free space and using local steering methods
to connect the samples. The second group of techniques use
the previously-mentioned idea of the equivalence between
the existence of pure geometric and nonholonomic paths.
These methods [16, 17] optimize a not necessarily nonho‐
lonomic initial path to obtain a final collision-free concate‐
nation of feasible paths. Both the optimization process and
the path planning are based on potential fields and there‐
fore have local minima that cannot be avoided with
certainty.

Rapidly random trees (RRT) [5] is a well known sampling-
based planner, which is widely used in robotics because of
its quick response. However, the generated paths are
suboptimal and very often require further iterations to be
improved. In this work, the nonholonomic RRT variant for
car-like robots (RRT-NH) [18] is used to compare the results
obtained with our own method.

This paper describes two variations of the standard fast
marching square path planning method (FM2) [19] in order
to apply them to nonholonomic vehicles. The approaches
have been labelled ‘nonholonomic fast marching square’
(FM2-NH). The first of these approaches begins by pre-
computing all the feasible and collision-free poses of the
nonholonomic autonomous vehicle. Next, the FM2 and the
gradient method are used to compute a smooth and reliable
trajectory based on a velocity potential map.. The second
relies on the vector field of the velocities computed in the
first step of the FM2. These vectors are used to adapt the
path planning to meet the constraints in the movement of
a car-like robot. Both approaches calculate smooth and safe
paths while also providing a control plan for the robot.

The remainder of this document is organized as follows.
Section 2 provides an introduction to the fast marching path
planning method and its extension into the fast marching
square algorithm; in Section 3, the adaptation to nonholo‐
nomic planning is explained. In Section 4, different simu‐
lation results show the advantages of the method. Finally,
in Section 5, conclusions are drawn.

2. Fundamentals of the Method

This section presents the most important concepts used in
this work as well as the basis for the presented path
planning approaches.

2.1 Fast Marching and Path Planning

The principle behind the fast marching method (FMM) is
the expansion of a wave: in two dimensions, intuitively, the
method simulates the spreading of a thick liquid as it is
poured into a board, obtaining the time in which the front
reaches every point of the grid. Similar formulations have
been used in other study areas such as fluids mechanics,
molecular dynamics in relation to electrostatics, thermal
analysis, and more. Notwithstanding, it is crucial to
highlight that the most important and peculiar feature of

2 Int J Adv Robot Syst, 2015, 12:56 | doi: 10.5772/60129



the method concerns how the wave expansion is calculated
in arrival time for every cell in a grid. As a consequence of
its particular mathematical formulation, the outputted
potential map of the method presents only a global
minimum and no local minimum whatsoever. There are
many preceding graph search algorithms based on similar
approaches, such as Dijkstra and A ∗, see [20] and [21]
respectively; these search methods have been widely used
and demonstrated to be efficient. Conversely, they have
been proven to be inconsistent in the continuous space [22].

In an homogeneous environment, the FMM generates - at
same levels of the wave - front interface points in circular
form and centred around the source location. In such a case,
all the points in the interface are reached at a given time
homogeneously, and the minimal paths between two
points in the space are always composed of straight lines.

The methods foundation is the same as the one behind the
Fermat principle in optics, which states that a ray of light
which goes through a prismatic glass always takes the
fastest path between any two points; in other words, it takes
the minimum - or optimal path - in time. The interface - or
wavefront - can be a flat curve in 2D, a surface in 3D, or
even (although it may not be possible to represent it
graphically) mathematically generalized to any number of
dimensions. Time T  is calculated for every point as the
wave advances and covers the grid map; the front denomi‐
nated Γ advances always moving in the normal direction.
The FMM is able to receive even more than one source point
as input, and then the wavefront is generated from each
source point. The interface origin points are initialized with
T =0 and the frozen state, according to the names of the
algorithm states. To obtain the geodesic path over a map,
the source point must be unique, which stands for an
entirely global minimum T =0, implying that the rest of
values will always be greater than zero. The speed F  is
established by the velocity potential map, and may vary
from point to point, but it is always positive or equal to zero
within obstacles’ grid points. The values of the front are
described by the Eikonal equation, as given by Sethian [23]:

( )1= ( )F x T xÑ (2)

where x is a point in space, F (x) is the speed of the wave for
that position, and T (x) is the time required by the wave
interface to reach x. Accordingly, the velocity is inversely
proportional to the gradient magnitude of the arrival time
function T (x) :

1 = T
F

Ñ (3)

2.2 Implementation

The solution for the Eikonal equation can be computed
iteratively over a grid map, and the pseudo-code algorithm
for the method is shown by Algorithm 1. Before going into

the details, we will explain the different labels the cells of
the grid map can take.

• UNKNOWN: cells whose T  value is not yet known
because the wavefront has not reached them.

Algorithm 1 Algorithm of the FMM

Input: A grid map G of size m × n, source point x 0

Output: The grid map G with the T value set for all cells

{Initialization}

1: for all gij ∈ x 0 do

2:
3:

gij.T ← 0;
gij.state ← FROZEN;

4: for all gkl ∈ gij.neighbours do

5: if gkl= FROZEN then

6: skip;

7: else

8:
9:

gkl.T ← solveEikonal(gkl);
if gkl.state = NARROW BAND then

10: narrow_band.update_position(gkl);

11: end if

12: if gkl.state = UNKNOWN then

13: gkl.state ← NARROW BAND;

14: narrow_band.insert_in_position(gkl);

15: end if

16: end if

17: end for

{Loop}

18: while narrow_bandNOTEMPTY do

19: gij ← narrow_band.pop_ first()

20: for all gkl ∈ gij.neighbours do

21: if gkl= FROZEN then

22: skip;

23: else

24: gkl.T ← solveEikonal(gkl);

25: end if

26: if gkl.state = NARROW BAND then

27: narrow_band.update_position(gkl);

28: end if

29: if gkl.state = UNKNOWN then

30: gkl.state ← NARROW BAND;

31: narrow_band.insert_in_position(gkl);

32: end if

33: end for

34: end while

35: end for

3César Arismendi, David Álvarez, Santiago Garrido and Luis Moreno:
Nonholonomic Motion Planning Using the Fast Marching Square Method



• FROZEN: cells whose T  value is fixed because they have
been passed over by the wave.

• NARROWBAND: cells that may be part of the wavefront
in the next iteration. They already have a T  value
assigned, but it can change in future iterations of the
algorithm.

The algorithm has three stages: initialization, loop and
finalization. During initialization, T =0 is set in the cell in
which the wave originates and this cell is labelled as
‘frozen’. Afterwards, all its Manhattan neighbours are
labelled as ‘narrowband’ and T  is computed for each of
them.

In each iteration of the loop in Algorithm 1, the Eikonal
equation is solved for the Manhattan neighbours (which
are not labelled as frozen) of the cell in the narrow band
which has a lesser T  value, and this cell is then labelled as
frozen. The narrow band consists of an ordered list, from
the lowest to the highest T  value, of its cells. The finalization
is reached when all the cells are labelled as frozen. The
output is a potential map with an arrival time value T  for
each cell. If the descent gradient is applied, it leads to the
shortest path in time which, in a map with homogeneous
velocity, is the same as the shortest path in distance, and it
is called the ‘geodesic’. Figure 1 shows an FMM path
between two given points.

(a) Geodesic path with
FMM.

(b) Velocity potential
map.

(c) Path obtained with
FM2.

Figure 1. Example of paths obtained with (a) FMM, and with (c)
FM2. The generation of the (b) velocity potential map.

obstacles are not present. It can be seen in Figure 1(a)
that the path obtained using FMM is not safe because
it has no clearance from obstacles; nor is it smooth,
because it permits abrupt turns along the path. These
disadvantages are overcome by the FM2 method, which
we have successfully used with many approaches [24–27].

The FM2 method takes advantage of the ability of the FMM
to compute the time arrival values over an anisotropic -
or uneven - map. This concept was demonstrated first by
Sethian et al. [28]. This means that the velocity in the
free space does not need to be homogeneous, and thus a
velocity potential map can be defined so that the resulting
path overcomes the issues shown by the FMM.

In the case of FM2, the velocity potential map is computed
using FMM. The result of this step can be seen in Figure
1(b), in which we can see a greyscale image that takes
higher values (white and light grey) the further the
positions are from obstacles, and lower ones the closer
they are to the obstacles. If we compute the FMM over
this map, we obtain a time of arrival map, as can be seen
in Figure 1(c). In this case, the shape of the wavefront is
no longer circular, since the velocity is not homogeneous.
Instead, the front of the wave for a certain T value (which
consists of those positions that have the same colour) will
have moved further along the positions of the corridor
that are further away from the obstacles. Moreover, it
can be appreciated that there is a continuous change
in the colour of the wave, which indicates that there
are no abrupt changes in the wavefront’s computation.
These characteristics allow that, when the gradient descent
method is applied from the start to the goal position, a
smooth and safe path can be obtained. This can be seen
in Figure 1(c)), in which the path is represented by the
thin blue line. More detailed considerations regarding the
FM2 can be found in [19]. In the following section, the
necessary modifications introduced in order to apply the
FM2 to nonholonomic vehicles are explained.

3. Fast Marching Square Applied to Nonholonomic
Car-like Robots

A particularly relevant type of robot comprises
nonholonomic robots, which cannot move freely in
any desired direction. Mathematically, this means that
their movements have to meet a set of constraints which
are not imposed by the environment. A typical case is that
of car-like robots (or else robots based on commercial cars).
In this section, the FM2-NH approaches are described. We

discuss the details of how to apply the methods to car-like
robots and how considerations of safety and physics are
taken into account in order to accomplish the robot path
planning problem.

3.1. Nonholonomic Fast Marching Square in C-space

The first approach models the environment in which the
car-like robot has to move as a C-space. In this space, the
first two dimensions consist of the position of the robot
while the third dimension is given by the orientation of
the vehicle. If we compute a trajectory along this C-space,
it is possible to ensure the absence of collisions. In order
to achieve this, we need to take into consideration two
aspects: first, the possible orientations of the vehicle at
every position in the map; and second, for each orientation
we need to take into account the dimensions of the vehicle
in order to know when collisions occur.

In order to consider the aforementioned aspects, some
changes are introduced in the computation of the map on
which the FM2-NH algorithm is applied. The necessary
steps are:

1. Create C-space map. In the first step, the poses that
are not feasible - depending upon the orientation
of the robot - are eliminated. Since, in the path
computation step, the robot is intrinsically considered
as a one-cell body, we need to enlarge the obstacles to
ensure non-collision paths. This enlargement depends
upon the shape of the robot. In the case of car-like
robots, whose shape is rectangular, the expansion of
obstacles is done by adding a rectangular shape whose
size is half the size of the car in both the x and y
dimensions. Furthermore, the rectangle to be added
is turned with respect to the orientation for which
the configuration space is being calculated. Thus, the
safe navigation of the robot is guaranteed, and the
expansion of the wave is shrunk due to the reduction
of the free space. Furthermore, in the case of narrow
entrances that are inaccessible to the robot, the dilation
of the walls closes those entrances, diminishes the
wave expansion area, and as a consequence reduces the
computation time. In this way, the remaining poses
define the three-dimensional free configuration space.
This step is computed n times, n being the amount of
different orientations of the robot for which the C-space
is created. The larger value of n that is chosen, the
smoother the trajectory that will be computed, since
the step in between orientations will be smaller. At
the same time, the larger the value of n, the greater
the amount of computation time that is needed for this
step. An example of the output of this step can be
seen in Figure 2, in which the third dimension is the
orientation of the robot and n = 20. The orientations
are repeated above and below the calculated values in
order to permit manoeuvres.

2. FM2-NH 1st step. A first run of the FMM is carried out
with the C-space map resulting from previous step. In
this particular case, the sources are all those obstacles
points present in the C-space map. The output will
be another grid map with the arriving values T, as
indicated in Algorithm 1. This map is better known as

4 Short Journal Name, 2012, Vol. No, No:2012 www.intechopen.com

Figure 1. Example of paths obtained with (a) FMM, and with (c) FM2. The
generation of the (b) velocity potential map.

2.3 Fast Marching Square

The original FMM approach assumes the isotropy of the
free space; put another way, the environment map has a
uniform velocity value for all the grid positions in which
obstacles are not present. It can be seen in Figure 1 that the
path obtained using FMM is not safe because it has no
clearance from obstacles; nor is it smooth, because it
permits abrupt turns along the path. These disadvantages
are overcome by the FM2 method, which we have success‐
fully used with many approaches [24 - 27].

The FM2 method takes advantage of the ability of the FMM
to compute the time arrival values over an anisotropic - or
uneven - map. This concept was demonstrated first by
Sethian et al. [28]. This means that the velocity in the free
space does not need to be homogeneous, and thus a velocity

potential map can be defined so that the resulting path
overcomes the issues shown by the FMM.

In the case of FM2, the velocity potential map is computed
using FMM. The result of this step can be seen in Figure 1,
in which we can see a greyscale image that takes higher
values (white and light grey) the further the positions are
from obstacles, and lower ones the closer they are to the
obstacles. If we compute the FMM over this map, we obtain
a time of arrival map, as can be seen in Figure 1. In this case,
the shape of the wavefront is no longer circular, since the
velocity is not homogeneous. Instead, the front of the wave
for a certain T  value (which consists of those positions that
have the same colour) will have moved further along the
positions of the corridor that are further away from the
obstacles. Moreover, it can be appreciated that there is a
continuous change in the colour of the wave, which
indicates that there are no abrupt changes in the wave‐
front’s computation. These characteristics allow that, when
the gradient descent method is applied from the start to the
goal position, a smooth and safe path can be obtained. This
can be seen in Figure 1, in which the path is represented by
the thin blue line. More detailed considerations regarding
the FM2 can be found in [19]. In the following section, the
necessary modifications introduced in order to apply the
FM2 to nonholonomic vehicles are explained.

3. Fast Marching Square Applied to Nonholonomic Car-
like Robots

A particularly relevant type of robot comprises nonholo‐
nomic robots, which cannot move freely in any desired
direction. Mathematically, this means that their move‐
ments have to meet a set of constraints which are not
imposed by the environment. A typical case is that of car-
like robots (or else robots based on commercial cars). In this
section, the FM2-NH approaches are described. We discuss
the details of how to apply the methods to car-like robots
and how considerations of safety and physics are taken into
account in order to accomplish the robot path planning
problem.

3.1 Nonholonomic Fast Marching Square in C-space

The first approach models the environment in which the
car-like robot has to move as a C-space. In this space, the
first two dimensions consist of the position of the robot
while the third dimension is given by the orientation of the
vehicle. If we compute a trajectory along this C-space, it is
possible to ensure the absence of collisions. In order to
achieve this, we need to take into consideration two
aspects: first, the possible orientations of the vehicle at
every position in the map; and second, for each orientation
we need to take into account the dimensions of the vehicle
in order to know when collisions occur.

In order to consider the aforementioned aspects, some
changes are introduced in the computation of the map on

4 Int J Adv Robot Syst, 2015, 12:56 | doi: 10.5772/60129



which the FM2-NH algorithm is applied. The necessary
steps are:

1. Create C-space map. In the first step, the poses that are
not feasible - depending upon the orientation of the
robot - are eliminated. Since, in the path computation
step, the robot is intrinsically considered as a one-cell
body, we need to enlarge the obstacles to ensure non-
collision paths. This enlargement depends upon the
shape of the robot. In the case of car-like robots, whose
shape is rectangular, the expansion of obstacles is done
by adding a rectangular shape whose size is half the
size of the car in both the x and y dimensions. Fur‐
thermore, the rectangle to be added is turned with
respect to the orientation for which the configuration
space is being calculated. Thus, the safe navigation of
the robot is guaranteed, and the expansion of the wave
is shrunk due to the reduction of the free space.
Furthermore, in the case of narrow entrances that are
inaccessible to the robot, the dilation of the walls closes
those entrances, diminishes the wave expansion area,
and as a consequence reduces the computation time.
In this way, the remaining poses define the three-
dimensional free configuration space. This step is
computed n times, n being the amount of different
orientations of the robot for which the C-space is
created. The larger value of n that is chosen, the
smoother the trajectory that will be computed, since
the step in between orientations will be smaller. At the
same time, the larger the value of n, the greater the
amount of computation time that is needed for this
step. An example of the output of this step can be seen
in Figure 2, in which the third dimension is the
orientation of the robot and n =20. The orientations are
repeated above and below the calculated values in
order to permit manoeuvres.

Figure 2. Three-dimensional C-space of a car-like robot, where the third
dimension is the orientation

2. FM 2 -NH 1st step. A first run of the FMM is carried out
with the C-space map resulting from previous step. In
this particular case, the sources are all those obstacles
points present in the C-space map. The output will be
another grid map with the arriving values T , as

indicated in Algorithm 1. This map is better known as
the ‘velocity potential map’, and as its name suggests,
it establishes a maximum speed for every point in the
map that should be taken into account when moving
the real robot.

As an additional step, a safety distance M  from which the
obstacles are not taken into account can be established. This
can be easily done since each cell value in the velocity
potential map gives the distance to the nearest obstacle in
time, which can be employed as a clearance metric because
it is proportional to the geometric distance [29]. Therefore,
the velocity potential map can be saturated, and all the grid
point potential values greater than the predefined safety
distance M  are set to M  (which can also be interpreted as
the maximum velocity allowed at that point). This enables
the planner to maintain a prudential distance from any
obstacles, while at the same time the path length is short‐
ened. The reasoning here is that maintaining a clearance
greater than a predefined safety distance would only
increase the path length unnecessarily.

3. FM2-NH 2nd step. The last step of FM2-NH is to
generate an additional FMM wavefront over the
velocity potential map. The obtained surface is used to
obtain an optimal minimal path in time, by following
the minimum gradient direction of the wavefront
potential from the target to the initial point. Because
we have modelled the environment taking into
account the orientations of the vehicle, the obtained
trajectory corresponds to the geodesic path of the
surface along the car-like robot’s orientations.

In Algorithm 2, the C-space FM2-NH approach is presented
in pseudo-code.

Algorithm 2 Algorithm of the C-space FM2 -NH.

Input: A grid map G, start point xinit , goal point xgoal ,

dimensions of the car d, an obstacle grid-point λ

Output: The calculated path ρ and the control actions U

{Initialization}

1: c_space_map ← Create_c_space_map(G, d)

{FM2-NH 1st step: velocity potential map}

2: p_map ← FMM(c_space_map, λ)

{FM2-NH 2st step}

3: fm2_map ← FMM(vp_map, xinit , xgoal )

{Geodesic path and control actions}

4: ρ ← Geodesic_path(fm2_map, xinit , xgoal )

5: U ← Control_actions(fm2_map, path)

A result of a path obtained using the aforementioned steps
is shown in Figure 3. The corresponding C-space is repre‐
sented in Figure 2. The top and bottom configuration values
are connected because the angle wraps around 2π radians.
It can be seen that the resulting path respects the kinematics

5César Arismendi, David Álvarez, Santiago Garrido and Luis Moreno:
Nonholonomic Motion Planning Using the Fast Marching Square Method



constraints imposed by the vehicle while trying to move as
far as possible from obstacles. Since the C-space is built
iteratively by placing the vehicle in every position and with
many different possible orientations, it is a slow task.
However, it can be pre-computed offline and only has to be
done once per map.

Figure 3. C-space FM2-NH applied to the car-like robot in a university
environment

Most of the time, it is not necessary to get as far as possible
of obstacles like it is done in Voronoi diagrams. In Figure
4, the same rooms as in Figure 3 were set as the initial and
goal locations. For this example, the velocity potential map
was saturated with a sufficiently safe distance from any
obstacles. Therefore, the obtained path in Figure 4 is shorter
than the one in Figure 3, and it also maintains a distance
from the obstacles that is safe enough.

In Figure 5, an example of the FM2-NH in C-space is
presented. The environment map is a representation of an
Intel Research Center located in Seattle - the map of this
robotics laboratory is a commonly-used benchmark
dataset. For this example, the velocity potential map was
saturated in the execution of the method.

3.2 Control-based Nonholonomic Fast Marching Square

A particularly relevant feature that has not been sufficiently
highlighted in Section 2 is that, by using the gradient over
the second potential, it is possible to calculate a vector field
whose field lines are paths that go from each point to the
target, moving away from obstacles and walls in the map
environment.

The velocity potential map is then used by the FM2 to create
a second potential T (x). This new potential represents the
arrival time of the wavefront, and in this way the method
gives the arrival time as the third axis. The wave originates

from the goal point and continues to propagate until
reaching the starting point, i.e., the current position of the
robot.

Under the control-based nonholonomic fast marching
square, the FM2 second potential is used to calculate the
gradient values OX  and OY  associated with each grid
point. The result of this operation is the OXY  vector field
of the motion plan. The directions of the gradient vectors
point away from the obstacles. They follow paths across the
different environment points to converge on the goal point.
The magnitude of the vectors can be used to determined

Figure 4. C-space FM2-NH with a saturated velocity potential map applied
to the car-like robot in a university environment

represents the arrival time of the wavefront, and in this
way the method gives the arrival time as the third axis.
The wave originates from the goal point and continues to
propagate until reaching the starting point, i.e., the current
position of the robot.

Under the control-based nonholonomic fast marching
square, the FM2 second potential is used to calculate the
gradient values OX and OY associated with each grid
point. The result of this operation is the OXY vector
field of the motion plan. The directions of the gradient
vectors point away from the obstacles. They follow paths
across the different environment points to converge on the
goal point. The magnitude of the vectors can be used
to determined the velocity of the car-like robot, and as
such the gradient vectors can be used to move the robot
forward. Figures 6 and 7 show a car-like robot drawn over
the vector field of the gradient vectors.

Car-like robots have a limited steering angle, causing them
to move along paths of bounded curvature. In Figure 8,
a car-like robot is presented where R is the centre of the
rear axis as represented by its (x, y) coordinates. The angle
θ is the car orientation with respect to the OX axis. For
the specification of the motion problem, it is necessary to
consider the following nonholonomic constraint:

ẏ cos θ − ẋ sin θ = 0

Moreover, the car-like movement can be modelled with a
unit length between the front and rear axes of the wheels
as:


ẋ
ẏ
θ̇
v̇
φ̇

 =


v cos φ cos θ
v cos φ sin θ

v sin φ
0
0

+


0
0
0
1
0

 v1 +


0
0
0
0
1

 v2 (4)

where the front wheel’s orientation is expressed by φ, the
car velocity by v̇, and the two control inputs are v1, v2,

Figure 4. C-space FM2-NH with a saturated velocity potential map
applied to the car-like robot in a university environment.

Figure 5. Execution of a path obtained with the C-space FM2-NH
method. The environment map is an Intel lab located in Seattle,
and the robot is a car-like robot.

Figure 6. Movement of the vehicle on the vector �eld.

Figure 7. Detailed representation of the vector �eld.

namely the acceleration of the robot and the front wheel’s
angular velocity.

6 Short Journal Name, 2012, Vol. No, No:2012 www.intechopen.com

Figure 5. Execution of a path obtained with the C-space FM2-NH method.
The environment map is an Intel lab located in Seattle, and the robot is a car-
like robot.

6 Int J Adv Robot Syst, 2015, 12:56 | doi: 10.5772/60129



the velocity of the car-like robot, and as such the gradient
vectors can be used to move the robot forward. Figures 6
and 7 show a car-like robot drawn over the vector field of
the gradient vectors.

represents the arrival time of the wavefront, and in this
way the method gives the arrival time as the third axis.
The wave originates from the goal point and continues to
propagate until reaching the starting point, i.e., the current
position of the robot.

Under the control-based nonholonomic fast marching
square, the FM2 second potential is used to calculate the
gradient values OX and OY associated with each grid
point. The result of this operation is the OXY vector
field of the motion plan. The directions of the gradient
vectors point away from the obstacles. They follow paths
across the different environment points to converge on the
goal point. The magnitude of the vectors can be used
to determined the velocity of the car-like robot, and as
such the gradient vectors can be used to move the robot
forward. Figures 6 and 7 show a car-like robot drawn over
the vector field of the gradient vectors.

Car-like robots have a limited steering angle, causing them
to move along paths of bounded curvature. In Figure 8,
a car-like robot is presented where R is the centre of the
rear axis as represented by its (x, y) coordinates. The angle
θ is the car orientation with respect to the OX axis. For
the specification of the motion problem, it is necessary to
consider the following nonholonomic constraint:

ẏ cos θ − ẋ sin θ = 0

Moreover, the car-like movement can be modelled with a
unit length between the front and rear axes of the wheels
as:


ẋ
ẏ
θ̇
v̇
φ̇

 =


v cos φ cos θ
v cos φ sin θ

v sin φ
0
0

+


0
0
0
1
0

 v1 +


0
0
0
0
1

 v2 (4)

where the front wheel’s orientation is expressed by φ, the
car velocity by v̇, and the two control inputs are v1, v2,

Figure 4. C-space FM2-NH with a saturated velocity potential map
applied to the car-like robot in a university environment.

Figure 5. Execution of a path obtained with the C-space FM2-NH
method. The environment map is an Intel lab located in Seattle,
and the robot is a car-like robot.

Figure 6. Movement of the vehicle on the vector �eld.

Figure 7. Detailed representation of the vector �eld.

namely the acceleration of the robot and the front wheel’s
angular velocity.

6 Short Journal Name, 2012, Vol. No, No:2012 www.intechopen.com

Figure 6. Movement of the vehicle on the vector field

Figure 7. Detailed representation of the vector field

Car-like robots have a limited steering angle, causing them
to move along paths of bounded curvature. In Figure 8, a
car-like robot is presented where R is the centre of the rear
axis as represented by its (x,y) coordinates. The angle θ is
the car orientation with respect to the OX  axis. For the
specification of the motion problem, it is necessary to
consider the following nonholonomic constraint:

cos sin = 0y xq q-& &

Moreover, the car-like movement can be modelled with a
unit length between the front and rear axes of the wheels
as:

1 2

cos cos 0 0
cos sin 0 0

= sin 0 0
0 1 0
0 0 1

x v
y v

v vv
v

f q
f q

q f

f

æ ö æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷ ç ÷+ +
ç ÷ ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷ ç ÷
è ø è ø è ø è ø

&
&
&

&
&

(4)

where the front wheel’s orientation is expressed by ϕ, the
car velocity by v̇, and the two control inputs are v1,v2,
namely the acceleration of the robot and the front wheel’s
angular velocity.

This model can be expressed as a constraint on the
curvature radius of the path. This constraint can be
directly included in the algorithm using the vector field
in the form of limits during the path calculation. It is
interesting to note that the variables in Equation 4 are
given by the vector field, except for the control inputs
v1, v2. This means that these control inputs can be easily
deduced, and in this way the method not only gives
the trajectory but also the control inputs to follow that
trajectory. In Figure 9, an example of the φ variable over
a trajectory is presented. It can be appreciated how the
angle in the radians fluctuates between 0 and 2π over time.
The dynamic of the car-like robot, in Equation 1, is used to
find the variable u necessary to ensure the control. Since
the method provides the positions, the velocities and the
vector field, the control can be calculated. Equation 1 can
be solved for the control ui. In Figure 10, the resultant
control signal for a motion plan example is shown.

w

x

y

C

R

θ

φ

Figure 8. A car-like robot model.

Figure 9. The front wheel's orientation φ vs. time for an example
of car-like robot path planning.

In order to compute the complete path from the start to
the goal position and orientation, the path is incrementally
generated, beginning from the initial pose and according
to the following order:

• The front wheels are aligned with the vector field in the
midpoint of the front axis.

Figure 10. The control signal u vs. time for an example of car-like
robot path planning.

• The perpendicular lines to the front and rear wheels are
considered and their intersection is taken as the centre
of the step movement.

• With the previously calculated centre C, the vehicle is
moved a circumference arc of length proportional to the
vector modulus corresponding to that point.

The previous process is repeated from the new point
until the destination point is reached. The final point
and orientation are always reached because the funnel
potential ends at this point and orientation. Finally, the
control inputs for the robot can be computed for the whole
trajectory. Figure 11 shows the result of applying the
algorithm for a parking manoeuvre.

Figure 11. A parking manoeuvre using control-based FM2-NH.

In Algorithm 3, the control-based FM2-NH approach is
presented in pseudo-code.

The result of four examples generated with the
control-based FM2-NH can be observed in Figure 12.
The location and orientation for the start and goal points
were randomly chosen. The presented map represents
a cluttered environment frequently used to test RRT
algorithms. The results of the experiments are discussed
in the following Section 4.

4. Results

In order to test the performance of the method and show
its versatility, this section presents several experiments
and benchmarking results. In Figure 12, four paths are
generated using the control-based FM2-NH with different
initial and goal positions and orientations. It can be
appreciated from the four scenarios in Figure 12 that the
obtained trajectories are smooth and safe from the start to
the goal locations, and in this way the requirements of a

www.intechopen.com AUTHOR LIST:

Nonholonomic Motion Planning Using the Fast Marching Square Method

7

Figure 8. A car-like robot model

This model can be expressed as a constraint on the curva‐
ture radius of the path. This constraint can be directly
included in the algorithm using the vector field in the form
of limits during the path calculation. It is interesting to note
that the variables in Equation 4 are given by the vector field,
except for the control inputs v1 and v2. This means that
these control inputs can be easily deduced, and in this way
the method not only gives the trajectory but also the control
inputs to follow that trajectory. In Figure 9, an example of
the ϕ variable over a trajectory is presented. It can be
appreciated how the angle in the radians fluctuates
between 0 and 2π over time. The dynamic of the car-like
robot, in Equation 1, is used to find the variable u necessary
to ensure the control. Since the method provides the
positions, the velocities and the vector field, the control can
be calculated. Equation 1 can be solved for the control ui. In
Figure 10, the resultant control signal for a motion plan
example is shown.

In order to compute the complete path from the start to the
goal position and orientation, the path is incrementally
generated, beginning from the initial pose and according to
the following order:

• The front wheels are aligned with the vector field in the
midpoint of the front axis.

• The perpendicular lines to the front and rear wheels are
considered and their intersection is taken as the centre of
the step movement.

• With the previously calculated centre C , the vehicle is
moved a circumference arc of length proportional to the
vector modulus corresponding to that point.

7César Arismendi, David Álvarez, Santiago Garrido and Luis Moreno:
Nonholonomic Motion Planning Using the Fast Marching Square Method



The previous process is repeated from the new point until
the destination point is reached. The final point and
orientation are always reached because the funnel potential
ends at this point and orientation. Finally, the control
inputs for the robot can be computed for the whole
trajectory. Figure 11 shows the result of applying the
algorithm for a parking manoeuvre.

This model can be expressed as a constraint on the
curvature radius of the path. This constraint can be
directly included in the algorithm using the vector field
in the form of limits during the path calculation. It is
interesting to note that the variables in Equation 4 are
given by the vector field, except for the control inputs
v1, v2. This means that these control inputs can be easily
deduced, and in this way the method not only gives
the trajectory but also the control inputs to follow that
trajectory. In Figure 9, an example of the φ variable over
a trajectory is presented. It can be appreciated how the
angle in the radians fluctuates between 0 and 2π over time.
The dynamic of the car-like robot, in Equation 1, is used to
find the variable u necessary to ensure the control. Since
the method provides the positions, the velocities and the
vector field, the control can be calculated. Equation 1 can
be solved for the control ui. In Figure 10, the resultant
control signal for a motion plan example is shown.

w

x

y

C

R

θ

φ

Figure 8. A car-like robot model.

Figure 9. The front wheel's orientation φ vs. time for an example
of car-like robot path planning.

In order to compute the complete path from the start to
the goal position and orientation, the path is incrementally
generated, beginning from the initial pose and according
to the following order:

• The front wheels are aligned with the vector field in the
midpoint of the front axis.

Figure 10. The control signal u vs. time for an example of car-like
robot path planning.

• The perpendicular lines to the front and rear wheels are
considered and their intersection is taken as the centre
of the step movement.

• With the previously calculated centre C, the vehicle is
moved a circumference arc of length proportional to the
vector modulus corresponding to that point.

The previous process is repeated from the new point
until the destination point is reached. The final point
and orientation are always reached because the funnel
potential ends at this point and orientation. Finally, the
control inputs for the robot can be computed for the whole
trajectory. Figure 11 shows the result of applying the
algorithm for a parking manoeuvre.

Figure 11. A parking manoeuvre using control-based FM2-NH.

In Algorithm 3, the control-based FM2-NH approach is
presented in pseudo-code.

The result of four examples generated with the
control-based FM2-NH can be observed in Figure 12.
The location and orientation for the start and goal points
were randomly chosen. The presented map represents
a cluttered environment frequently used to test RRT
algorithms. The results of the experiments are discussed
in the following Section 4.

4. Results

In order to test the performance of the method and show
its versatility, this section presents several experiments
and benchmarking results. In Figure 12, four paths are
generated using the control-based FM2-NH with different
initial and goal positions and orientations. It can be
appreciated from the four scenarios in Figure 12 that the
obtained trajectories are smooth and safe from the start to
the goal locations, and in this way the requirements of a

www.intechopen.com AUTHOR LIST:

Nonholonomic Motion Planning Using the Fast Marching Square Method

7

Figure 11. A parking manoeuvre using control-based FM2-NH

In Algorithm 3, the control-based FM2-NH approach is
presented in pseudo-code.

The result of four examples generated with the control-
based FM2-NH can be observed in Figure 12. The location
and orientation for the start and goal points were randomly

This model can be expressed as a constraint on the
curvature radius of the path. This constraint can be
directly included in the algorithm using the vector field
in the form of limits during the path calculation. It is
interesting to note that the variables in Equation 4 are
given by the vector field, except for the control inputs
v1, v2. This means that these control inputs can be easily
deduced, and in this way the method not only gives
the trajectory but also the control inputs to follow that
trajectory. In Figure 9, an example of the φ variable over
a trajectory is presented. It can be appreciated how the
angle in the radians fluctuates between 0 and 2π over time.
The dynamic of the car-like robot, in Equation 1, is used to
find the variable u necessary to ensure the control. Since
the method provides the positions, the velocities and the
vector field, the control can be calculated. Equation 1 can
be solved for the control ui. In Figure 10, the resultant
control signal for a motion plan example is shown.

w

x

y

C

R

θ

φ

Figure 8. A car-like robot model.

Figure 9. The front wheel's orientation φ vs. time for an example
of car-like robot path planning.

In order to compute the complete path from the start to
the goal position and orientation, the path is incrementally
generated, beginning from the initial pose and according
to the following order:

• The front wheels are aligned with the vector field in the
midpoint of the front axis.

Figure 10. The control signal u vs. time for an example of car-like
robot path planning.

• The perpendicular lines to the front and rear wheels are
considered and their intersection is taken as the centre
of the step movement.

• With the previously calculated centre C, the vehicle is
moved a circumference arc of length proportional to the
vector modulus corresponding to that point.

The previous process is repeated from the new point
until the destination point is reached. The final point
and orientation are always reached because the funnel
potential ends at this point and orientation. Finally, the
control inputs for the robot can be computed for the whole
trajectory. Figure 11 shows the result of applying the
algorithm for a parking manoeuvre.

Figure 11. A parking manoeuvre using control-based FM2-NH.

In Algorithm 3, the control-based FM2-NH approach is
presented in pseudo-code.

The result of four examples generated with the
control-based FM2-NH can be observed in Figure 12.
The location and orientation for the start and goal points
were randomly chosen. The presented map represents
a cluttered environment frequently used to test RRT
algorithms. The results of the experiments are discussed
in the following Section 4.

4. Results

In order to test the performance of the method and show
its versatility, this section presents several experiments
and benchmarking results. In Figure 12, four paths are
generated using the control-based FM2-NH with different
initial and goal positions and orientations. It can be
appreciated from the four scenarios in Figure 12 that the
obtained trajectories are smooth and safe from the start to
the goal locations, and in this way the requirements of a

www.intechopen.com AUTHOR LIST:

Nonholonomic Motion Planning Using the Fast Marching Square Method

7

Figure 9. The front wheel’s orientation ϕ vs. time for an example of car-like
robot path planning

This model can be expressed as a constraint on the
curvature radius of the path. This constraint can be
directly included in the algorithm using the vector field
in the form of limits during the path calculation. It is
interesting to note that the variables in Equation 4 are
given by the vector field, except for the control inputs
v1, v2. This means that these control inputs can be easily
deduced, and in this way the method not only gives
the trajectory but also the control inputs to follow that
trajectory. In Figure 9, an example of the φ variable over
a trajectory is presented. It can be appreciated how the
angle in the radians fluctuates between 0 and 2π over time.
The dynamic of the car-like robot, in Equation 1, is used to
find the variable u necessary to ensure the control. Since
the method provides the positions, the velocities and the
vector field, the control can be calculated. Equation 1 can
be solved for the control ui. In Figure 10, the resultant
control signal for a motion plan example is shown.

w

x

y

C

R

θ

φ

Figure 8. A car-like robot model.

Figure 9. The front wheel's orientation φ vs. time for an example
of car-like robot path planning.

In order to compute the complete path from the start to
the goal position and orientation, the path is incrementally
generated, beginning from the initial pose and according
to the following order:

• The front wheels are aligned with the vector field in the
midpoint of the front axis.

Figure 10. The control signal u vs. time for an example of car-like
robot path planning.

• The perpendicular lines to the front and rear wheels are
considered and their intersection is taken as the centre
of the step movement.

• With the previously calculated centre C, the vehicle is
moved a circumference arc of length proportional to the
vector modulus corresponding to that point.

The previous process is repeated from the new point
until the destination point is reached. The final point
and orientation are always reached because the funnel
potential ends at this point and orientation. Finally, the
control inputs for the robot can be computed for the whole
trajectory. Figure 11 shows the result of applying the
algorithm for a parking manoeuvre.

Figure 11. A parking manoeuvre using control-based FM2-NH.

In Algorithm 3, the control-based FM2-NH approach is
presented in pseudo-code.

The result of four examples generated with the
control-based FM2-NH can be observed in Figure 12.
The location and orientation for the start and goal points
were randomly chosen. The presented map represents
a cluttered environment frequently used to test RRT
algorithms. The results of the experiments are discussed
in the following Section 4.

4. Results

In order to test the performance of the method and show
its versatility, this section presents several experiments
and benchmarking results. In Figure 12, four paths are
generated using the control-based FM2-NH with different
initial and goal positions and orientations. It can be
appreciated from the four scenarios in Figure 12 that the
obtained trajectories are smooth and safe from the start to
the goal locations, and in this way the requirements of a

www.intechopen.com AUTHOR LIST:

Nonholonomic Motion Planning Using the Fast Marching Square Method

7

Figure 10. The control signal u vs. time for an example of car-like robot path
planning

chosen. The presented map represents a cluttered environ‐
ment frequently used to test RRT algorithms. The results of
the experiments are discussed in the following Section 4.

Algorithm 3 Algorithm of the control-based FM2 –NH

Input: A grid map G, a start point xinit , a goal point xgoal ,

the dimensions of the car d, an obstacle grid-point λ

Output: The calculated path ρ and the control actions U

{FM2-NH 1st step: velocity potential map}

1: vp_map ← FMM(c_space_map, λ)

{FM2-NH 2st step}

2: fm2_map ← FMM((vp_map, xinit , xgoal ))

{Geodesic path}

3: path ← Geodesic_path((fm2_map, xinit , xgoal ))

{Initialiazation}

4: position ← xinit

5: ρ.add(xinit )

{Loop}

6: while (global_goal ≠ true) do

7: φ ← Calculate_action(G, path, position, d)

8: position ← Advance(φ)

9: ρ.add( position)

10: U ← Calculate_control(fm2_map, position)

11: end while

4. Results

In order to test the performance of the method and show
its  versatility,  this  section  presents  several  experiments
and benchmarking results.  In Figure 12,  four paths are
generated using the control-based FM2-NH with differ‐
ent initial and goal positions and orientations. It can be
appreciated from the four scenarios in Figure 12 that the
obtained trajectories are smooth and safe from the start
to the goal locations, and in this way the requirements of
a good trajectory are fulfilled. The velocity potential field
is shown in Figure 6. For a better view of the details, the
image  has  been  enlarged  and  the  vectors  have  been
normalized.  A  close-up  of  the  Figure  is  presented  in
Figure 7. The methodology exhibits desirable features and
versatility, generating trajectories that work properly for
car-like robots.

In Figure 13, the same four scenarios of Figure 12 are
shown. On this occasion, the paths are generated using the
C-space FM2-NH. The obtained trajectories are smooth and
safe from the start to the goal location, and the results are
very similar to those obtained using the control-based FM2-
NH method.

Different RRT paths are presented in Figures 14, 15, 16 and
17. Each of these RRT figures matches Figure 14 with
regards to the initial and the goal points (including the

8 Int J Adv Robot Syst, 2015, 12:56 | doi: 10.5772/60129



orientation). Figure 14 matches its objectives with Figure
12’s upper left FM2-NH path. Figure 15 has the same
objectives as Figure 12’s upper right FM2-NH path. Figure
16 matches those objectives of Figure 12’s lower left FM2-
NH path. Finally, Figure 17 has the same objectives as
Figure 12’s lower right FM2-NH path. As appreciated in the
Figures, the FM2-NH methodology outperforms the quality
of the paths generated with the RRT-NH method. From a
visual inspection, the FM2-NH-generated paths seem safer,
smoother and shorter. These suspicions will be discussed
in the next section, where benchmarking parameters for
path planners will be introduced.

Algorithm 3 Algorithm of the control-based FM2-NH
Input: A grid map G, a start point xinit, a goal point xgoal ,

the dimensions of the car d, an obstacle grid-point λ
Output: The calculated path ρ and the control actions U

{FM2-NH 1st step: velocity potential map}
1: vp_map← FMM(c_space_map, λ)

{FM2-NH 2st step}
2: f m2_map← FMM((vp_map, xinit, xgoal))

{Geodesic path}
3: path← Geodesic_path(( f m2_map, xinit, xgoal))

{Initialiazation}
4: position← xinit
5: ρ.add(xinit)

{Loop}
6: while (global_goal 6= true) do
7: φ← Calculate_action(G, path, position, d)
8: position← Advance(φ)
9: ρ.add(position)

10: U ← Calculate_control( f m2_map, position)
11: end while

good trajectory are fulfilled. The velocity potential field
is shown in Figure 6. For a better view of the details,
the image has been enlarged and the vectors have been
normalized. A close-up of the Figure is presented in
Figure 7. The methodology exhibits desirable features and
versatility, generating trajectories that work properly for
car-like robots.

Figure 12. Di�erent motion trajectories obtained with
control-based FM2-NH.

In Figure 13, the same four scenarios of Figure 12 are
shown. On this occasion, the paths are generated using
the C-space FM2-NH. The obtained trajectories are smooth
and safe from the start to the goal location, and the results
are very similar to those obtained using the control-based
FM2-NH method.

Different RRT paths are presented in Figures 14, 15, 16
and 17. Each of these RRT figures matches Figure 14

Figure 13. Di�erent motion trajectories obtained with C-space
FM2-NH.

with regards to the initial and the goal points (including
the orientation). Figure 14 matches its objectives with
Figure 12’s upper left FM2-NH path. Figure 15 has the
same objectives as Figure 12’s upper right FM2-NH path.
Figure 16 matches those objectives of Figure 12’s lower left
FM2-NH path. Finally, Figure 17 has the same objectives
as Figure 12’s lower right FM2-NH path. As appreciated
in the Figures, the FM2-NH methodology outperforms the
quality of the paths generated with the RRT-NH method.
From a visual inspection, the FM2-NH-generated paths
seem safer, smoother and shorter. These suspicions will
be discussed in the next section, where benchmarking
parameters for path planners will be introduced.

4.1. Comparison of methods and benchmarkings

The common limitation of all the reactive navigation
methods is that they cannot guarantee global convergence
on the goal location because they use only a fraction of
the information available (the local sensory information).
Some researchers have worked on introducing global
information to the reactive collision avoidance methods
to avoid local trap situations. This approach has
been adopted by Ulrich [30] and uses a look-ahead
verification to analyse the consequences of a given
motion a few steps in advance in order to avoid trap
situations. Other authors exploit the information about
global environment connectivity to avoid trap situations
(Minguez [31]). Those solutions still maintain the classical
two-level approach, and require additional complexity at
the obstacle avoidance level to improve the reliability at
this level. The proposed method is consistent at the local
and global scales because it guarantees a motion path
(if it exists), and it does not require global replanning
supervision to restart the planning when a local trap
is detected or a path is blocked. Furthermore, the
path calculated exhibits good safety and smoothness
characteristics.

8 Short Journal Name, 2012, Vol. No, No:2012 www.intechopen.com

Figure 12. Different motion trajectories obtained with control-based FM2-
NH

Algorithm 3 Algorithm of the control-based FM2-NH
Input: A grid map G, a start point xinit, a goal point xgoal ,

the dimensions of the car d, an obstacle grid-point λ
Output: The calculated path ρ and the control actions U

{FM2-NH 1st step: velocity potential map}
1: vp_map← FMM(c_space_map, λ)

{FM2-NH 2st step}
2: f m2_map← FMM((vp_map, xinit, xgoal))

{Geodesic path}
3: path← Geodesic_path(( f m2_map, xinit, xgoal))

{Initialiazation}
4: position← xinit
5: ρ.add(xinit)

{Loop}
6: while (global_goal 6= true) do
7: φ← Calculate_action(G, path, position, d)
8: position← Advance(φ)
9: ρ.add(position)

10: U ← Calculate_control( f m2_map, position)
11: end while

good trajectory are fulfilled. The velocity potential field
is shown in Figure 6. For a better view of the details,
the image has been enlarged and the vectors have been
normalized. A close-up of the Figure is presented in
Figure 7. The methodology exhibits desirable features and
versatility, generating trajectories that work properly for
car-like robots.

Figure 12. Di�erent motion trajectories obtained with
control-based FM2-NH.

In Figure 13, the same four scenarios of Figure 12 are
shown. On this occasion, the paths are generated using
the C-space FM2-NH. The obtained trajectories are smooth
and safe from the start to the goal location, and the results
are very similar to those obtained using the control-based
FM2-NH method.

Different RRT paths are presented in Figures 14, 15, 16
and 17. Each of these RRT figures matches Figure 14

Figure 13. Di�erent motion trajectories obtained with C-space
FM2-NH.

with regards to the initial and the goal points (including
the orientation). Figure 14 matches its objectives with
Figure 12’s upper left FM2-NH path. Figure 15 has the
same objectives as Figure 12’s upper right FM2-NH path.
Figure 16 matches those objectives of Figure 12’s lower left
FM2-NH path. Finally, Figure 17 has the same objectives
as Figure 12’s lower right FM2-NH path. As appreciated
in the Figures, the FM2-NH methodology outperforms the
quality of the paths generated with the RRT-NH method.
From a visual inspection, the FM2-NH-generated paths
seem safer, smoother and shorter. These suspicions will
be discussed in the next section, where benchmarking
parameters for path planners will be introduced.

4.1. Comparison of methods and benchmarkings

The common limitation of all the reactive navigation
methods is that they cannot guarantee global convergence
on the goal location because they use only a fraction of
the information available (the local sensory information).
Some researchers have worked on introducing global
information to the reactive collision avoidance methods
to avoid local trap situations. This approach has
been adopted by Ulrich [30] and uses a look-ahead
verification to analyse the consequences of a given
motion a few steps in advance in order to avoid trap
situations. Other authors exploit the information about
global environment connectivity to avoid trap situations
(Minguez [31]). Those solutions still maintain the classical
two-level approach, and require additional complexity at
the obstacle avoidance level to improve the reliability at
this level. The proposed method is consistent at the local
and global scales because it guarantees a motion path
(if it exists), and it does not require global replanning
supervision to restart the planning when a local trap
is detected or a path is blocked. Furthermore, the
path calculated exhibits good safety and smoothness
characteristics.

8 Short Journal Name, 2012, Vol. No, No:2012 www.intechopen.com

Figure 13. Different motion trajectories obtained with C-space FM2-NH

Most of the other methods give paths that are not smooth,
even though they only provide a few loose points united
by segments of straight lines. The only methods that
give comparable results are based on harmonic functions
(the solutions of Laplace’s equation), but they have the
problem of slowness.

Rapidly-exploring Random Trees (RRT): RRT is suited for
high-degrees of freedom. It works well with six or
seven degrees of freedom as regards computational time
because it generates paths with a quick response, but
the additional complexity supplied by the nonholonomic
approach makes RRT function less effectively. Our method
has not been tested with higher degrees of freedom, but
for the problem addressed in this work (three-dimensions)
good results are obtained, as set out in this section.

Figure 18 shows two different simulations. On the
left-hand side, the trajectory generated by the fast
marching-NH is clearly shorter than that calculated by the
RRT on the right-hand side. The limitations of the RRT
are specially important in this example, where the results
obtained are very poor. We can illustrate that further
comparisons with Figures 12, 14, 15, 16 and 17.

Figure 14. Motion trajectories obtained with RRT-NH for the �rst
experiment.

In order to provide metrics for the quality of the methods,
the computational time, path length, smoothness and
clearance-planning parameters are introduced below:

• Computational times: The execution time is computed
for each stage of the planning method, whether the
algorithm is calculating a path or else optimizing in
some way an already generated path.

• Path length: This parameter is the sum of the distances
from one way point to the next in the planner
state space. For instance, the results presented here
correspond to a two-dimensional space where the
sum of the Euclidean distances between consecutive

Figure 15. Motion trajectories obtained with RRT-NH for the
second experiment.

Figure 16. Motion trajectories obtained with RRT-NH for the third
experiment.

waypoints is an appropriate metric. Regarding
benchmarking, the path length is usually connected to
the method of performance, since a shorter path could
represent a gain in energy and time. Nevertheless, this
is not always necessarily true because the clearance -
and hence the safety - can be notoriously affected when
the path is the shortest possible.

• Path smoothness: The smoothness of a path refers
to the amplitude of the angles that are described
while the robot follows the trajectory. Concerns
arise when the robot’s turning control is limited to
a certain angle. Even when the mobile robot’s base
is holonomic, and thus capable of turning in any
direction, small angles require less energy for their

www.intechopen.com AUTHOR LIST:

Nonholonomic Motion Planning Using the Fast Marching Square Method

9

Figure 14. Motion trajectories obtained with RRT-NH for the first experi‐
ment

Most of the other methods give paths that are not smooth,
even though they only provide a few loose points united
by segments of straight lines. The only methods that
give comparable results are based on harmonic functions
(the solutions of Laplace’s equation), but they have the
problem of slowness.

Rapidly-exploring Random Trees (RRT): RRT is suited for
high-degrees of freedom. It works well with six or
seven degrees of freedom as regards computational time
because it generates paths with a quick response, but
the additional complexity supplied by the nonholonomic
approach makes RRT function less effectively. Our method
has not been tested with higher degrees of freedom, but
for the problem addressed in this work (three-dimensions)
good results are obtained, as set out in this section.

Figure 18 shows two different simulations. On the
left-hand side, the trajectory generated by the fast
marching-NH is clearly shorter than that calculated by the
RRT on the right-hand side. The limitations of the RRT
are specially important in this example, where the results
obtained are very poor. We can illustrate that further
comparisons with Figures 12, 14, 15, 16 and 17.

Figure 14. Motion trajectories obtained with RRT-NH for the �rst
experiment.

In order to provide metrics for the quality of the methods,
the computational time, path length, smoothness and
clearance-planning parameters are introduced below:

• Computational times: The execution time is computed
for each stage of the planning method, whether the
algorithm is calculating a path or else optimizing in
some way an already generated path.

• Path length: This parameter is the sum of the distances
from one way point to the next in the planner
state space. For instance, the results presented here
correspond to a two-dimensional space where the
sum of the Euclidean distances between consecutive

Figure 15. Motion trajectories obtained with RRT-NH for the
second experiment.

Figure 16. Motion trajectories obtained with RRT-NH for the third
experiment.

waypoints is an appropriate metric. Regarding
benchmarking, the path length is usually connected to
the method of performance, since a shorter path could
represent a gain in energy and time. Nevertheless, this
is not always necessarily true because the clearance -
and hence the safety - can be notoriously affected when
the path is the shortest possible.

• Path smoothness: The smoothness of a path refers
to the amplitude of the angles that are described
while the robot follows the trajectory. Concerns
arise when the robot’s turning control is limited to
a certain angle. Even when the mobile robot’s base
is holonomic, and thus capable of turning in any
direction, small angles require less energy for their

www.intechopen.com AUTHOR LIST:

Nonholonomic Motion Planning Using the Fast Marching Square Method

9

Figure 15. Motion trajectories obtained with RRT-NH for the second
experiment

4.1 Comparison of methods and benchmarking

The common limitation of all the reactive navigation
methods is that they cannot guarantee global convergence
on the goal location because they use only a fraction of the
information available (the local sensory information). Some
researchers have worked on introducing global informa‐
tion to the reactive collision avoidance methods to avoid
local trap situations. This approach has been adopted by
Ulrich [30] and uses a look-ahead verification to analyse the
consequences of a given motion a few steps in advance in
order to avoid trap situations. Other authors exploit the

9César Arismendi, David Álvarez, Santiago Garrido and Luis Moreno:
Nonholonomic Motion Planning Using the Fast Marching Square Method



information about global environment connectivity to
avoid trap situations (Minguez [31]). Those solutions still
maintain the classical two-level approach, and require
additional complexity at the obstacle avoidance level to
improve the reliability at this level. The proposed method
is consistent at the local and global scales because it
guarantees a motion path (if it exists), and it does not
require global replanning supervision to restart the
planning when a local trap is detected or a path is blocked.
Furthermore, the path calculated exhibits good safety and
smoothness characteristics.

Most of the other methods give paths that are not smooth,
even though they only provide a few loose points united
by segments of straight lines. The only methods that
give comparable results are based on harmonic functions
(the solutions of Laplace’s equation), but they have the
problem of slowness.

Rapidly-exploring Random Trees (RRT): RRT is suited for
high-degrees of freedom. It works well with six or
seven degrees of freedom as regards computational time
because it generates paths with a quick response, but
the additional complexity supplied by the nonholonomic
approach makes RRT function less effectively. Our method
has not been tested with higher degrees of freedom, but
for the problem addressed in this work (three-dimensions)
good results are obtained, as set out in this section.

Figure 18 shows two different simulations. On the
left-hand side, the trajectory generated by the fast
marching-NH is clearly shorter than that calculated by the
RRT on the right-hand side. The limitations of the RRT
are specially important in this example, where the results
obtained are very poor. We can illustrate that further
comparisons with Figures 12, 14, 15, 16 and 17.

Figure 14. Motion trajectories obtained with RRT-NH for the �rst
experiment.

In order to provide metrics for the quality of the methods,
the computational time, path length, smoothness and
clearance-planning parameters are introduced below:

• Computational times: The execution time is computed
for each stage of the planning method, whether the
algorithm is calculating a path or else optimizing in
some way an already generated path.

• Path length: This parameter is the sum of the distances
from one way point to the next in the planner
state space. For instance, the results presented here
correspond to a two-dimensional space where the
sum of the Euclidean distances between consecutive

Figure 15. Motion trajectories obtained with RRT-NH for the
second experiment.

Figure 16. Motion trajectories obtained with RRT-NH for the third
experiment.

waypoints is an appropriate metric. Regarding
benchmarking, the path length is usually connected to
the method of performance, since a shorter path could
represent a gain in energy and time. Nevertheless, this
is not always necessarily true because the clearance -
and hence the safety - can be notoriously affected when
the path is the shortest possible.

• Path smoothness: The smoothness of a path refers
to the amplitude of the angles that are described
while the robot follows the trajectory. Concerns
arise when the robot’s turning control is limited to
a certain angle. Even when the mobile robot’s base
is holonomic, and thus capable of turning in any
direction, small angles require less energy for their

www.intechopen.com AUTHOR LIST:

Nonholonomic Motion Planning Using the Fast Marching Square Method

9

Figure 16. Motion trajectories obtained with RRT-NH for the third
experiment

Figure 17. Motion trajectories obtained with RRT-NH for the fourth
experiment

Most of the other methods give paths that are not smooth,
even though they only provide a few loose points united
by segments of straight lines. The only methods that give
comparable results are based on harmonic functions (the
solutions of Laplace’s equation), but they have the problem
of slowness.

Rapidly-exploring Random Trees (RRT): RRT is suited for
high-degrees of freedom. It works well with six or seven
degrees of freedom as regards computational time because
it generates paths with a quick response, but the additional
complexity supplied by the nonholonomic approach makes
RRT function less effectively. Our method has not been
tested with higher degrees of freedom, but for the problem
addressed in this work (three-dimensions) good results are
obtained, as set out in this section.

Figure 18 shows two different simulations. On the left-hand
side, the trajectory generated by the fast marching-NH is
clearly shorter than that calculated by the RRT on the right-
hand side. The limitations of the RRT are specially impor‐
tant in this example, where the results obtained are very
poor. We can illustrate that further comparisons with
Figures 12, 14, 15, 16 and 17.
Figure 17. Motion trajectories obtained with RRT-NH for the
fourth experiment.

50 100 150 200 250 300

50

100

150

200

250

300

Figure 18. Trajectories with control-based FM2-NH (left) and
RRT-NH (right).

execution. Furthermore, when the path is performed
in the real robot, smooth trajectories are more human
friendly since they are more predictable, and rough
paths seem unpredictable and violent when turning. In
[32], a “generic infrastructure for benchmarking motion
planners” is presented and, in particular, an equation to
measure the smoothness (denoted by κ′) is proposed:

κ′ =
1
n

n

∑
i=2

α2
i , (5)

where αi represents the angle between two consecutive
segments of a path with n segments.

• Clearance: This metric is related to the distance from
the trajectory points to the closest obstacle, and it
is determined by the average of the path points’
clearances. It has also been defined in [32]:

µc =
1
n

n

∑
i=1

δi, (6)

where δi represents the Euclidean distance from the
point i of the path to the closest obstacle and n is the
number of points of the path.

• Success rate: This is equal to the percentage of times an
algorithm is able to find a valid solution. Since the
FM2-NH planner is a deterministic algorithm, it will
always find a solution so long as it exists.

Box plots are used to present the benchmarking results in
order to make a comparison between the FM2-NH and the
RRT-NH planners. In the plots, the central band inside the
box is the median. The bottom and top of the box define
the first and third quartiles. The ends of the whiskers
represent the most extreme points not considered outliers.
The outliers are plotted with red crosses when necessary.

Over 25 experiments were conducted for each of the
presented methods. The benchmarking parameters were
calculated for all of them. The box plots in Fig. 19 show the
computational time required by both the the RRT-NH and
the control-based FM2-NH methods in order to calculate
a path. It can be appreciated that the time needed by
the control-based FM2-NH is much lower than the time
required by the RRT technique to generate a path. The
FM2-NH needs milliseconds to obtain results, while the
median time of the RRT algorithm is around 15.1 seconds.
As a consequence, our approach is able to recompute new
trajectories very quickly, so that changes in the goal point
can be addressed.

Figure 19. Computational time benchmarks for RRT-NH and the
control-based FM2-NH method.

In Figure Fig. 20, the computational time required by
the RRT-NH is now compared with the C-space FM2-NH
approach. In this benchmark, the time of the FM2-based
method increased to seconds. However, the time of
the C-space FM2-NH was much lower than that of the
RRT-NH. The C-space FM2-NH needs in median of 3.63283
seconds of computational time.

In Figures 21 and 22, the ratio FM2-NH/RRT-NH is
the variable used to compare both methods. In this
Figure, the rest of the benchmarking parameters (path
length, smoothness ϑ, and clearance ζ) are analysed. The
same configurations - the initial and goal locations and
orientations - were taken. In the case of the path length,
ratios smaller than one would indicate that the FM2-NH
is better. For the smoothness and clearance, higher ratios
mean that the FM2-NH is superior.

In Figure 21, it can be observed that the path length ratio is
smaller than one. This means that the length of the paths
generated with the control-based FM2-NH are smaller in

10 Short Journal Name, 2012, Vol. No, No:2012 www.intechopen.com

Figure 18. Trajectories with control-based FM2-NH (left) and RRT-NH
(right)

In order to provide metrics for the quality of the methods,
the computational time, path length, smoothness and
clearance-planning parameters are introduced below:

• Computational times: The execution time is computed for
each stage of the planning method, whether the algo‐
rithm is calculating a path or else optimizing in some
way an already generated path.

• Path length: This parameter is the sum of the distances
from one way point to the next in the planner state space.
For instance, the results presented here correspond to a
two-dimensional space where the sum of the Euclidean
distances between consecutive waypoints is an appro‐
priate metric. Regarding benchmarking, the path length
is usually connected to the method of performance, since
a shorter path could represent a gain in energy and time.
Nevertheless, this is not always necessarily true because
the clearance - and hence the safety - can be notoriously
affected when the path is the shortest possible.

• Path smoothness: The smoothness of a path refers to the
amplitude of the angles that are described while the
robot follows the trajectory. Concerns arise when the

10 Int J Adv Robot Syst, 2015, 12:56 | doi: 10.5772/60129



robot’s turning control is limited to a certain angle. Even
when the mobile robot’s base is holonomic, and thus
capable of turning in any direction, small angles require
less energy for their execution. Furthermore, when the
path is performed in the real robot, smooth trajectories
are more human friendly since they are more predicta‐
ble, and rough paths seem unpredictable and violent
when turning. In [32], a “generic infrastructure for
benchmarking motion planners” is presented and, in
particular, an equation to measure the smoothness
(denoted by κ ′) is proposed:

2

=2

1= ,
n

i
in

k a¢ å (5)

where αi represents the angle between two consecutive
segments of a path with n segments.

• Clearance: This metric is related to the distance from the
trajectory points to the closest obstacle, and it is deter‐
mined by the average of the path points’ clearances. It
has also been defined in [32]:

=1

1= ,
n

c i
in

m då (6)

where δi represents the Euclidean distance from the point i
of the path to the closest obstacle and n is the number of
points of the path.

• Success rate: This is equal to the percentage of times an
algorithm is able to find a valid solution. Since the FM2-
NH planner is a deterministic algorithm, it will always
find a solution so long as it exists.

Box plots are used to present the benchmarking results in
order to make a comparison between the FM2-NH and the
RRT-NH planners. In the plots, the central band inside the
box is the median. The bottom and top of the box define the
first and third quartiles. The ends of the whiskers represent
the most extreme points not considered outliers. The
outliers are plotted with red crosses when necessary.

Over 25 experiments were conducted for each of the
presented methods. The benchmarking parameters were
calculated for all of them. The box plots in Fig. 19 show the
computational time required by both the the RRT-NH and
the control-based FM2-NH methods in order to calculate a
path. It can be appreciated that the time needed by the
control-based FM2-NH is much lower than the time
required by the RRT technique to generate a path. The
FM2-NH needs milliseconds to obtain results, while the
median time of the RRT algorithm is around 15.1 seconds.
As a consequence, our approach is able to recompute new
trajectories very quickly, so that changes in the goal point
can be addressed.

Figure 17. Motion trajectories obtained with RRT-NH for the
fourth experiment.

50 100 150 200 250 300

50

100

150

200

250

300

Figure 18. Trajectories with control-based FM2-NH (left) and
RRT-NH (right).

execution. Furthermore, when the path is performed
in the real robot, smooth trajectories are more human
friendly since they are more predictable, and rough
paths seem unpredictable and violent when turning. In
[32], a “generic infrastructure for benchmarking motion
planners” is presented and, in particular, an equation to
measure the smoothness (denoted by κ′) is proposed:

κ′ =
1
n

n

∑
i=2

α2
i , (5)

where αi represents the angle between two consecutive
segments of a path with n segments.

• Clearance: This metric is related to the distance from
the trajectory points to the closest obstacle, and it
is determined by the average of the path points’
clearances. It has also been defined in [32]:

µc =
1
n

n

∑
i=1

δi, (6)

where δi represents the Euclidean distance from the
point i of the path to the closest obstacle and n is the
number of points of the path.

• Success rate: This is equal to the percentage of times an
algorithm is able to find a valid solution. Since the
FM2-NH planner is a deterministic algorithm, it will
always find a solution so long as it exists.

Box plots are used to present the benchmarking results in
order to make a comparison between the FM2-NH and the
RRT-NH planners. In the plots, the central band inside the
box is the median. The bottom and top of the box define
the first and third quartiles. The ends of the whiskers
represent the most extreme points not considered outliers.
The outliers are plotted with red crosses when necessary.

Over 25 experiments were conducted for each of the
presented methods. The benchmarking parameters were
calculated for all of them. The box plots in Fig. 19 show the
computational time required by both the the RRT-NH and
the control-based FM2-NH methods in order to calculate
a path. It can be appreciated that the time needed by
the control-based FM2-NH is much lower than the time
required by the RRT technique to generate a path. The
FM2-NH needs milliseconds to obtain results, while the
median time of the RRT algorithm is around 15.1 seconds.
As a consequence, our approach is able to recompute new
trajectories very quickly, so that changes in the goal point
can be addressed.

Figure 19. Computational time benchmarks for RRT-NH and the
control-based FM2-NH method.

In Figure Fig. 20, the computational time required by
the RRT-NH is now compared with the C-space FM2-NH
approach. In this benchmark, the time of the FM2-based
method increased to seconds. However, the time of
the C-space FM2-NH was much lower than that of the
RRT-NH. The C-space FM2-NH needs in median of 3.63283
seconds of computational time.

In Figures 21 and 22, the ratio FM2-NH/RRT-NH is
the variable used to compare both methods. In this
Figure, the rest of the benchmarking parameters (path
length, smoothness ϑ, and clearance ζ) are analysed. The
same configurations - the initial and goal locations and
orientations - were taken. In the case of the path length,
ratios smaller than one would indicate that the FM2-NH
is better. For the smoothness and clearance, higher ratios
mean that the FM2-NH is superior.

In Figure 21, it can be observed that the path length ratio is
smaller than one. This means that the length of the paths
generated with the control-based FM2-NH are smaller in

10 Short Journal Name, 2012, Vol. No, No:2012 www.intechopen.com

Figure 19. Computational time benchmarks for RRT-NH and the control-
based FM2-NH method

In Figure Fig. 20, the computational time required by the
RRT-NH is now compared with the C-space FM2-NH
approach. In this benchmark, the time of the FM2-based
method increased to seconds. However, the time of the C-
space FM2-NH was much lower than that of the RRT-NH.
The C-space FM2-NH needs in median of 3.63 seconds of
computational time.

Figure 20. Computational time benchmarks for RRT-NH and the
C-space FM2-NH method.

the median than those of RRT-NH. It should be noticed
that, for these examples, the velocity potential map was
not saturated, which means that the length of the FM2-NH
approaches can be further reduced.

Figure 21. Path length, smoothness and clearance benchmarks for
the ratio of RRT-NH divided by the control-based FM2-NH.

The smoothness ratio in Figure 21 approximates to one.
Therefore, the paths are similar in smoothness. This
result was expected because the nonholonomic restrictions
prevent the planners from taking pronounced turns.
Under the regular RRT method, the angle of the turns
tends to be more violent. Finally, the clearance ratio is
greater than one, showing a significant advantage for the
control-based FM2-NH over RRT-NH. Naturally, this was
to be expected since the RRT methods do not consider
safety measures in their implementation; meanwhile, the
FM2-based methods intrinsically include this parameter
through the velocity potential map. In Figure 22,
very similar benchmarking results were obtained for the
C-space FM2-NH. Both approaches generate consistent
trajectories with desirable properties.

Figure 22. Path length, smoothness and clearance benchmarks for
the ratio RRT-NH divided by the C-space FM2-NH.

An additional advantage of the obtained implementation
is the ease of including, through the velocity potential
map, other constraints such as uneven terrains, slopes,
friction, winds or currents (in the case of underwater
applications).

5. Conclusion

The motion planning approaches presented in this
document are based on FM2. They are both able to
generate trajectories of high quality for nonholonomic
mobile robots, i.e., with smoothness and clearance.

Simulations and experiments evidenced how the C-space
and the control-based FM2-NH outperform the RRT-NH
planner results. In the current study, comparing the
FM2-NH methods showed that they generate considerably
shorter paths in length, and that trajectories are more
secure and smooth. Due to its random nature, the RRT-NH
planner exhibits several loops in the trajectories which
produce longer paths; on the other hand, the deterministic
quality of the FM2 method (inherited by our methods)
not only produces more coherent paths without loops,
but also guarantees the computation of a solution if it
exists, a criteria that is not met by RRT-NH or probabilistic
planners.

The computational complexity for the FFM, as well as for
its successor, the FM2, is defined as linear O(n), where
n is the number of grid points in the environment map.
Since the proposed method is based on the later method,
the FM2-NH methods are also highly efficient with a linear
run-time complexity of O(n).

The FM2-NH makes several noteworthy contributions to
path planning. Nevertheless, the most remarkable is
that the algorithms calculate not only good paths but
also provide the control variables needed to execute these
trajectories.

Future work will include combining both solutions and
introducing some changes to make it possible to use them
for dynamic environments.

www.intechopen.com AUTHOR LIST:

Nonholonomic Motion Planning Using the Fast Marching Square Method

11

Figure 20. Computational time benchmarks for RRT-NH and the C-space
FM2-NH method

In Figures 21 and 22, the ratio FM2-NH/RRT-NH is the
variable used to compare both methods. In this Figure, the
rest of the benchmarking parameters (path length, smooth‐
ness k ′, and clearance μc) are analysed. The same configu‐
rations - the initial and goal locations and orientations -
were taken. In the case of the path length, ratios smaller
than one would indicate that the FM2-NH is better. For the
smoothness and clearance, higher ratios mean that the
FM2-NH is superior.

In Figure 21, it can be observed that the path length ratio is
smaller than one. This means that the length of the paths
generated with the control-based FM2-NH are smaller in

11César Arismendi, David Álvarez, Santiago Garrido and Luis Moreno:
Nonholonomic Motion Planning Using the Fast Marching Square Method



the median than those of RRT-NH. It should be noticed that,
for these examples, the velocity potential map was not
saturated, which means that the length of the FM2-NH
approaches can be further reduced.

Figure 20. Computational time benchmarks for RRT-NH and the
C-space FM2-NH method.

the median than those of RRT-NH. It should be noticed
that, for these examples, the velocity potential map was
not saturated, which means that the length of the FM2-NH
approaches can be further reduced.

Figure 21. Path length, smoothness and clearance benchmarks for
the ratio of RRT-NH divided by the control-based FM2-NH.

The smoothness ratio in Figure 21 approximates to one.
Therefore, the paths are similar in smoothness. This
result was expected because the nonholonomic restrictions
prevent the planners from taking pronounced turns.
Under the regular RRT method, the angle of the turns
tends to be more violent. Finally, the clearance ratio is
greater than one, showing a significant advantage for the
control-based FM2-NH over RRT-NH. Naturally, this was
to be expected since the RRT methods do not consider
safety measures in their implementation; meanwhile, the
FM2-based methods intrinsically include this parameter
through the velocity potential map. In Figure 22,
very similar benchmarking results were obtained for the
C-space FM2-NH. Both approaches generate consistent
trajectories with desirable properties.

Figure 22. Path length, smoothness and clearance benchmarks for
the ratio RRT-NH divided by the C-space FM2-NH.

An additional advantage of the obtained implementation
is the ease of including, through the velocity potential
map, other constraints such as uneven terrains, slopes,
friction, winds or currents (in the case of underwater
applications).

5. Conclusion

The motion planning approaches presented in this
document are based on FM2. They are both able to
generate trajectories of high quality for nonholonomic
mobile robots, i.e., with smoothness and clearance.

Simulations and experiments evidenced how the C-space
and the control-based FM2-NH outperform the RRT-NH
planner results. In the current study, comparing the
FM2-NH methods showed that they generate considerably
shorter paths in length, and that trajectories are more
secure and smooth. Due to its random nature, the RRT-NH
planner exhibits several loops in the trajectories which
produce longer paths; on the other hand, the deterministic
quality of the FM2 method (inherited by our methods)
not only produces more coherent paths without loops,
but also guarantees the computation of a solution if it
exists, a criteria that is not met by RRT-NH or probabilistic
planners.

The computational complexity for the FFM, as well as for
its successor, the FM2, is defined as linear O(n), where
n is the number of grid points in the environment map.
Since the proposed method is based on the later method,
the FM2-NH methods are also highly efficient with a linear
run-time complexity of O(n).

The FM2-NH makes several noteworthy contributions to
path planning. Nevertheless, the most remarkable is
that the algorithms calculate not only good paths but
also provide the control variables needed to execute these
trajectories.

Future work will include combining both solutions and
introducing some changes to make it possible to use them
for dynamic environments.

www.intechopen.com AUTHOR LIST:

Nonholonomic Motion Planning Using the Fast Marching Square Method

11

Figure 21. Path length, smoothness and clearance benchmarks for the ratio
of RRT-NH divided by the control-based FM2-NH

The smoothness ratio in Figure 21 approximates to one.
Therefore, the paths are similar in smoothness. This result
was expected because the nonholonomic restrictions
prevent the planners from taking pronounced turns. Under
the regular RRT method, the angle of the turns tends to be
more violent. Finally, the clearance ratio is greater than one,
showing a significant advantage for the control-based FM2-
NH over RRT-NH. Naturally, this was to be expected since
the RRT methods do not consider safety measures in their
implementation; meanwhile, the FM2-based methods
intrinsically include this parameter through the velocity
potential map. In Figure 22, very similar benchmarking
results were obtained for the C-space FM2-NH. Both
approaches generate consistent trajectories with desirable
properties.

Figure 20. Computational time benchmarks for RRT-NH and the
C-space FM2-NH method.

the median than those of RRT-NH. It should be noticed
that, for these examples, the velocity potential map was
not saturated, which means that the length of the FM2-NH
approaches can be further reduced.

Figure 21. Path length, smoothness and clearance benchmarks for
the ratio of RRT-NH divided by the control-based FM2-NH.

The smoothness ratio in Figure 21 approximates to one.
Therefore, the paths are similar in smoothness. This
result was expected because the nonholonomic restrictions
prevent the planners from taking pronounced turns.
Under the regular RRT method, the angle of the turns
tends to be more violent. Finally, the clearance ratio is
greater than one, showing a significant advantage for the
control-based FM2-NH over RRT-NH. Naturally, this was
to be expected since the RRT methods do not consider
safety measures in their implementation; meanwhile, the
FM2-based methods intrinsically include this parameter
through the velocity potential map. In Figure 22,
very similar benchmarking results were obtained for the
C-space FM2-NH. Both approaches generate consistent
trajectories with desirable properties.

Figure 22. Path length, smoothness and clearance benchmarks for
the ratio RRT-NH divided by the C-space FM2-NH.

An additional advantage of the obtained implementation
is the ease of including, through the velocity potential
map, other constraints such as uneven terrains, slopes,
friction, winds or currents (in the case of underwater
applications).

5. Conclusion

The motion planning approaches presented in this
document are based on FM2. They are both able to
generate trajectories of high quality for nonholonomic
mobile robots, i.e., with smoothness and clearance.

Simulations and experiments evidenced how the C-space
and the control-based FM2-NH outperform the RRT-NH
planner results. In the current study, comparing the
FM2-NH methods showed that they generate considerably
shorter paths in length, and that trajectories are more
secure and smooth. Due to its random nature, the RRT-NH
planner exhibits several loops in the trajectories which
produce longer paths; on the other hand, the deterministic
quality of the FM2 method (inherited by our methods)
not only produces more coherent paths without loops,
but also guarantees the computation of a solution if it
exists, a criteria that is not met by RRT-NH or probabilistic
planners.

The computational complexity for the FFM, as well as for
its successor, the FM2, is defined as linear O(n), where
n is the number of grid points in the environment map.
Since the proposed method is based on the later method,
the FM2-NH methods are also highly efficient with a linear
run-time complexity of O(n).

The FM2-NH makes several noteworthy contributions to
path planning. Nevertheless, the most remarkable is
that the algorithms calculate not only good paths but
also provide the control variables needed to execute these
trajectories.

Future work will include combining both solutions and
introducing some changes to make it possible to use them
for dynamic environments.

www.intechopen.com AUTHOR LIST:

Nonholonomic Motion Planning Using the Fast Marching Square Method

11

Figure 22. Path length, smoothness and clearance benchmarks for the ratio
RRT-NH divided by the C-space FM2-NH

An additional advantage of the obtained implementation
is the ease of including, through the velocity potential map,
other constraints such as uneven terrains, slopes, friction,
winds or currents (in the case of underwater applications).

5. Conclusion

The motion planning approaches presented in this docu‐
ment are based on FM2. They are both able to generate
trajectories of high quality for nonholonomic mobile
robots, i.e., with smoothness and clearance.

Simulations and experiments evidenced how the C-space
and the control-based FM2-NH outperform the RRT-NH
planner results. In the current study, comparing the FM2-
NH methods showed that they generate considerably
shorter paths in length, and that trajectories are more secure
and smooth. Due to its random nature, the RRT-NH
planner exhibits several loops in the trajectories which
produce longer paths; on the other hand, the deterministic
quality of the FM2 method (inherited by our methods) not
only produces more coherent paths without loops, but also
guarantees the computation of a solution if it exists, a
criteria that is not met by RRT-NH or probabilistic planners.

The computational complexity for the FMM, as well as for
its successor, the FM2, is defined as linear O(n), where n is
the number of grid points in the environment map. Since
the proposed method is based on the later method, the
FM2-NH methods are also highly efficient with a linear run-
time complexity of O(n).

The FM2-NH makes several noteworthy contributions to
path planning. Nevertheless, the most remarkable is that
the algorithms calculate not only good paths but also
provide the control variables needed to execute these
trajectories.

Future work will include combining both solutions and
introducing some changes to make it possible to use them
for dynamic environments.

6. Acknowledgements

This work is funded by project number DPI2010-17772, by
the Spanish Ministry of Science and Innovation, and also
by the RoboCity2030-II-CM project (S2009/DPI-1559),
funded by Programas de Actividades I+D en la Comunidad
de Madrid, and co-funded by the Structural Funds of the
EU.

7. References

[1] B. Adams, C. Breazeal, R.A. Brooks, and B. Scassel‐
lati. Humanoid robots: a new kind of tool. IEEE
Intelligent Systems, 15(4):25–31, July 2000.

[2] J. Borenstein and Y. Koren. The vector field histo‐
gram-fast obstacle avoidance for mobile robots.

12 Int J Adv Robot Syst, 2015, 12:56 | doi: 10.5772/60129



IEEE Transactions on Robotics and Automation, 7(3):
278–288, June 1991.

[3] H. Moravec and A. Elfes. High resolution maps
from wide angle sonar. In Proceedings. 1985 IEEE
International Conference on Robotics and Automation,
volume 2, pages 116–121. Institute of Electrical and
Electronics Engineers, March 1985.

[4] Jean-Claude Latombe. Robot Motion Planning.
Kluwer Academic Publishers, Norwell, MA, USA,
July 1991.

[5] Steven Michael LaValle. Planning Algorithms.
Cambridge University Press, 2006.

[6] David C. Conner, Alfred A. Rizzi, and Howie
Choset. Integrated planning and control for convex-
bodied nonholonomic systems using local feedback
control policies. In Proceedings of Robotics: Science and
Systems, Philadelphia, 2006.

[7] David C. Conner, Hadas Kress-gazit, Howie
Choset, and Alfred A. Rizzi. Valet parking without
a valet. In IEEE/RSJ International Conference on
Intelligent Robots & Systems, 2007.

[8] T. Lozano-Perez. Spatial Planning: A Configuration
Space Approach. IEEE Transactions on Computers,
C-32(2):108–120, February 1983.

[9] Domokos Kiss and Gábor Tevesz. Nonholonomic
Path Planning for a Point Robot with Car-Like
Kinematics. Periodica Polytechnica Electrical Engi‐
neering, 57(3):65, August 2013.

[10] G. Lafferriere and H. J. Sussmann. Motion Planning
For Controllable Systems Without Drift. In Proceed‐
ings of the IEEE International Conference on Robotics
and Automation, pages 1148–1153, 1991.

[11] R.M. Murray and S.S. Sastry. Nonholonomic
motion planning: steering using sinusoids. IEEE
Transactions on Automatic Control, 38(5):700–716,
May 1993.

[12] S. Sekhavat and J.-P. Laumond. Topological
property for collision-free nonholonomic motion
planning: the case of sinusoidal inputs for chained
form systems. IEEE Transactions on Robotics and
Automation, 14(5):671–680, 1998.

[13] Michel Fliess, Jean Lévine, and Pierre Rouchon.
Flatness and defect of nonlinear systems: Introduc‐
tory theory and examples. International Journal of
Control, 61:1327–1361, 1995.

[14] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H.
Overmars. Probabilistic roadmaps for path plan‐
ning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):
566–580, 1996.

[15] Steven Michael LaValle. Rapidly-Exploring Ran‐
dom Trees A New Tool for Path Planning. Technical
report, Iowa State University, 1998.

[16] J.-P. Laumond, P.E. Jacobs, M. Taix, and R.M.
Murray. A motion planner for nonholonomic
mobile robots. IEEE Transactions on Robotics and
Automation, 10(5):577–593, 1994.

[17] S. Sekhavat and M. Chyba. Nonholonomic defor‐
mation of a potential field for motion planning. In
Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No.99CH36288C),
volume 1, pages 817–822. IEEE, 1999.

[18] SM LaValle and JJ Kuffner Jr. Rapidly-exploring
random trees: Progress and prospects. Technical
report, Iowa State University, 2000.

[19] Santiago Garrido, Luis Moreno, Dolores Blanco,
and Fernando Martin. FM2: a real Fast Marching
sensor-based Motion Planner. In 2007 IEEE/ASME
international conference on Advanced intelligent
mechatronics, pages 1–6, 2007.

[20] E. W. Dijkstra. A Note on Two Problems in Con‐
nexion with Graphs. Numerische Mathematik, 1(1):
269–271, December 1959.

[21] Peter Hart, Nils Nilsson, and Bertram Raphael. A
Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[22] Laurent D. Cohen and Ron Kimmel. Global Mini‐
mum for Active Contour Models: A Minimal Path
Approach. International Journal of Computer Vision,
24(1):57–78, August 1997.

[23] J. A. Sethian. Level Set Methods and Fast Marching
Methods: Evolving Interfaces in Computational Geome‐
try, Fluid Mechanics, Computer Vision, and Materials
Science. Cambridge University Press, 1999.

[24] S Garrido and L Moreno. FM2: a real-time sensor-
based feedback controller for mobile robots.
International Journal of Robotics and Automation, 24(1):
48–65, 2009.

[25] Santiago Garrido, Luis Moreno, Javier V., and Pedro
U. General Path Planning Methodology for Leader-
Follower Robot Formations. International Journal of
Advanced Robotic Systems, page 1, January 2013.

[26] Cesar Arismendi, Fernando Martin, Santiago
Garrido, and Luis Moreno. Smooth anytime motion
planning using Fast Marching. In Eurocon 2013,
pages 1972–1979. IEEE, July 2013.

[27] Javier V. Gómez, Alberto Vale, Santiago Garrido,
and Luis Moreno. Performance analysis of fast
marching-based motion planning for autonomous

13César Arismendi, David Álvarez, Santiago Garrido and Luis Moreno:
Nonholonomic Motion Planning Using the Fast Marching Square Method



mobile robots in ITER scenarios. Robotics and
Autonomous Systems, October 2014.

[28] JA Sethian and A Vladimirsky. Ordered upwind
methods for static Hamilton–Jacobi equations:
Theory and algorithms. SIAM Journal on Numerical
Analysis, 2003.

[29] Alberto Valero-Gomez, Javier V. Gomez, Santiago
Garrido, and Luis Moreno. The Path to Efficiency:
Fast Marching Method for Safer, More Efficient
Mobile Robot Trajectories. IEEE Robotics & Automa‐
tion Magazine, 20(4):111–120, December 2013.

[30] I. Ulrich and J. Borenstein. VFH*: local obstacle
avoidance with look-ahead verification. In Proceed‐
ings 2000 ICRA. Millennium Conference. IEEE

International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), volume
3, pages 2505–2511. IEEE, 2000.

[31] J. Minguez, L. Montano, T. Simeon, and R. Alami.
Global nearness diagram navigation (GND). In
Proceedings 2001 ICRA. IEEE International Conference
on Robotics and Automation (Cat. No.01CH37164),
volume 1, pages 33–39. IEEE, 2001.

[32] Benjamin Cohen, Ioan A. Sucan, and Sachin Chitta.
A generic infrastructure for benchmarking motion
planners. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 589–595.
IEEE, October 2012.

14 Int J Adv Robot Syst, 2015, 12:56 | doi: 10.5772/60129


