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Theory of holey twistsonic media
María Rosendo López 1, Zhiwang Zhang 2✉, Daniel Torrent3 & Johan Christensen 1,4✉

Rotating two overlapping lattices relative to each other produces the well known moiré

interference patterns and has surprisingly led to strongly correlated superconductivity in

twisted bilayer graphene. This seminal effect that is associated with electrons occupying flat

dispersion bands has stimulated a surge of activities in classical wave physics such as

acoustics to explore equivalent scenarios. Here, we mimic twisted bilayer physics by

employing a rigorous sound wave expansion technique to conduct band engineering in holey

bilayer plates, i.e., twistsonic media. Our numerical findings show how one flexibly is able to

design moiré sound interference characteristics that alone are controlled by the twist angle

and the interlayer air separation. More specifically, our numerical approach provides a sig-

nificant advantage in both computational speed and storage size in comparison with widely

used commercial finite-element-method solvers. We foresee that our findings should sti-

mulate further studies in terms of band engineering and exotic topological twisted phases.
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The moiré effect is possibly best known from the shim-
mering effect seen when two geometrically regular
arrangements are superimposed as in the case of overlaid

textiles, fabrics, parallel lines, etc. These rippled appearances seem
particularly impressive at acute angles, at which the overlaid and
seemingly competing fabrics stand out at large intervals, i.e.,
waves with noticeable moiré wavelength. In an apparent unre-
lated area comprising atomically thin materials such as graphene,
silicene, borophene, etc., or their assembled van der Waals het-
erostructures, a twist among them has shown to give rise to
unprecedented electronic properties. Specifically, rotating two
overlapping graphene monolayers at a so-called magic angle,
gives rise to the collapse of their Dirac cones into flat dispersion
bands, which is associated to an array of intriguing properties,
such as 2D magnetism, Mott-insulating phases and unconven-
tional superconductivity1–6.

Generally speaking, lately, artificial sonic and phononic lattices
have been used widely to explore with acoustic and elastic waves
exotic topological phases and properties, which are hard and
sometimes even out of reach to demonstrate in electronic settings.
An attractive motivation compared to their electronic counter-
parts is their easy fabrication and tunability, which often reveal
novel and unexpected effects to lead to entirely differing analo-
gous connection to the original physical context. Chern insula-
tors, valley-Hall phases and higher-order topological insulators
are a few of many arenas that have been conquered with classical
wave acoustics7–16. Among the latest efforts, several groups have
already demonstrated that structured and twisted bilayer plates
indeed host striking sonic, vibrating and photonic similarities
compared to twisted bilayer graphene physics17–22.

In this paper, we employ a theoretical approach to study how
the twist angle, the plate separation and thickness are the
responsible actors to enable moiré acoustic dispersion engineer-
ing in twistsonic media. The so-called mode-matching technique
(MMT) enables us to conduct an entirely semi-numerical study of
acoustic waves interacting with this complex twisted structure, on
a much faster and storage-efficient basis compared to commer-
cially available finite-element-method solvers like COMSOL. Our
findings showcase how the band flatness, the spectral location of
the bandgaps and the moiré interference patterns can be studied
efficiently, thus providing useful insight into this contemporary
branch of physics.

Results and discussion
Theory. Here we present a numerical technique that allows one to
obtain the band structure of the twistsonic medium that consists
of two rigid plates of thickness h1 and h2 that are separated by a
thin gap of thickness hg, as shown in Fig. 1. Both plates are
perforated by round holes that are periodically distributed in a
unit cell of size a0. The unit cell contains N holes of radius R0α
located at the positions R1

α and R2
α where α= 1, 2, . . . ,N. We

separate the twistsonic medium into five different regions: region
I refers to the first plate onto which sound waves impinge, region
II refers to the field inside the through-holes of the first plate,
region III refers to the gap separating the plates, region IV refers
to the field inside the holes of the second plate and in region V
sound is able to emerge into free-space as shown in Fig. 1b.
This separation of regions is the backbone of our theoretical

formalism that is based on the MMT, which comprises a modal
expansion of the involved pressure and velocity fields in these
zones23,24. We assume that the surrounding medium is air with
mass density and speed of sound ρair= 1.225 kg/m3 and
cair= 343 m/s, respectively, and that the plates are made of steel
or brass, in which the perfect rigid body approximation is very
accurate. Thus, if an incident pressure wave Pin of unitary

amplitude impinges the holey twistsonic medium, the wave will
partially be reflected through diffracted sound and partially be
funneled through the holey twistsonic medium. The pressure in
regions I, III, and V is expanded in terms of plane waves whereas
inside the αth subwavelength hole (regions II and IV), only the
fundamental cavity eigenmode is excited. The pressure fields in
those regions read

PI ¼ ∑
G
ZG δG0e

iqGz þ rGe
�iqGz

� �
eiðKþGÞ�r

PII ¼Z AII
α e

iq0z þ BII
α e

�iq0z
� �

PIII ¼ ∑
G
ZG τGe

iqGðz�φaÞ þ ΓGe
�iqGðz�φaÞ

� �
eiðKþGÞ�r

PIV ¼Z AIV
α eiq0ðz�φbÞ þ BIV

α e�iq0ðz�φbÞ
� �

PV ¼ ∑
G
ZGtGe

iqGðz�φcÞeiðKþGÞ�r;

ð1Þ

where G is the reciprocal lattice vector, K is the parallel wave
vector, k0= ω/cair is the free-space wavenumber, φa= h1, φb=
h1+ hg and φc= h1+ hg+ h2 are out-of-plane phase contribu-

tions and qG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � jKþ Gj2

q
. The radiation and hole

impedances are written as ZG= k0/qG and Z= k0/q0, respectively,
whereas rG (tG) is the reflection (transmission) coefficient and
Aα, Bα are the modal cavity expansion coefficients. Likewise,
continuity across the boundaries applies to the z-component, i.e.,
the normal component of the acoustic velocities that are

vIz ¼ ∑
G

δG0e
iqGz � rGe

�iqIGz
h i

eiðKþGÞr

vIIz ¼AII
α e

iq0z � BII
α e

�iq0z

vIIIz ¼ ∑
G

τGe
iqGðz�φaÞ � ΓGe

�iqGðz�φaÞ
� �

eiðKþGÞr

vIVz ¼AIV
α eiq0ðz�φbÞ � BIV

α e�iq0ðz�φbÞ

vVz ¼ ∑
G
tGe

iqGðz�φcÞeiðKþGÞr

ð2Þ

As detailed in the Methods section, having all regional fields
defined, we are now able to impose continuity of the respective
fields across the respective interfaces. Moreover, the MMT is
applied by projecting diffracted Bloch modes over the normal
velocity fields and the fundamental cavity mode over the pressure
field. This process introduces an in-plane phase contribution that
defines the intra-layer hole-to-hole interaction within the moiré
supercell. Additionally, at each interface site, we define a set of
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b
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x
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x

Fig. 1 The twistsonic medium. a The rigid bilayer is perforated with N
round holes of radius R0, which are arranged in a honeycomb lattice
comprising a primitive unit cells of size a0 and the moiré super cell of size a.
b The side view of the structure enables one to distinguish the individual
regions used for the MMT.
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modal velocities:

v1α ¼AII
α � BII

α

v01α ¼ � AII
α e

iq0h1 � BII
α e

�iq0h1
� �

v2α ¼AIV
α � BIV

α

v02α ¼ � AIV
α eiq0h2 � BIV

α e�iq0h2
� �

;

ð3Þ

which allow for a highly compact and insightful representation of
the holey twistsonic medium,

Gαα
1 � ϵ1

� �
v1α þ ∑

β≠α
Gαβ
1 v1β � GV

1 v
0
1α ¼ Iα

ψ1
αα þ ϵ1

� �
v01α þ ∑

β≠α
ψ1
αβv

0
1β þ∑

β
Φ1

αβv2β þ GV
1 v1α ¼ 0

ψ2
αα þ ϵ2

� �
v2α þ ∑

β≠α
ψ2
αβv2β þ∑

β
Φ2

αβv
0
1β þ GV

2 v
0
2α ¼ 0

Gαα
2 � ϵ2

� �
v02α þ ∑

β≠α
Gαβ
2 v02β � GV

2 v2α ¼ 0

ð4Þ

where:

Iα ¼ ∑
G
2ZI

GδG0H
1
αðGÞ

H1ð2Þ
α ðGÞ ¼ 2J1ðR0αjKþ GjÞ

R0αjKþ Gj eiðKþGÞR1ð2Þ
α

GV
1 ¼ ZII

i sinðq0h1Þ
GV
2 ¼ ZII

i sinðq0h2Þ

ϵ1 ¼
ZII

i tanðq0h1Þ
ϵ2 ¼

ZII

i tanðq0h2Þ
G1ð2Þ
αβ ¼ ∑

G
ZI
GH

�1ð2Þ
β ðGÞf βH1ð2Þ

α ðGÞ

ψ1ð2Þ
αβ ¼ ∑

G

ZI
GH

�1ð2Þ
β ðGÞf βH1ð2Þ

α ðGÞ
i tanðqIGhgÞ

Φ1ð2Þ
αβ ¼ ∑

G

ZI
GH

�1ð2Þ
β ðGÞf βH1ð2Þ

α ðGÞ
i sinðqIGhgÞ

f β ¼
Ωβ

Ω
¼

πR2
0βffiffiffi

3
p

a2=2
:

ð5Þ

The terms introduced in the system, all have a physical
interpretation. Iα is the irradiation term over the fundamental
cavity mode of the αth hole of the first plate, H1ð2Þ

α is the overlap
function, ϵ1(2) is related to the acoustic bouncing back and forth
inside the holes, GV

1ð2Þ refers to the coupling of the two sides of

each hole, G1ð2Þ
αβ measures the coupling between the holes of each

plate, and finally, ψ1ð2Þ
αβ and Φ1ð2Þ

αβ account for coupling across the
plates. Upon solving the unknown modal coefficients of Eq. (4),
both the cavity expansion and the scattering coefficients can be
determined. The latter can be specifically expressed as

rG ¼ δG0 �∑
β
vβH

�
βðGÞf β

tG ¼ �∑
β
v0βH

�
βðGÞf β:

ð6Þ

Moreover, in the absence of incoming sound, i.e., Iα= 0,
computing the zero determinant of Eq. (4) as a function of both
frequency and the parallel momentum, allows us to determine the
dispersion relation in dependence of the geometrical parameters.
More importantly though, also in dependence of the rotation
angle of the holey twistsonic medium.

Numerical results. In numerically treating the holey twistsonic
medium, the upper layer is considered perforated by N holes that

are placed at sites R1
α ¼ n1a1 þ n2a2, forming a honeycomb lattice

of period a0 and lattice vectors a1;2 ¼ a0½± cosðπ=3Þ; sinðπ=3Þ�.
Beyond this, the N holes of the bottom layer are placed at R2

α ¼
m1b1 þm2b2 where the vectors b1,2 are the rotated counterparts
to a1,2 to account for the twisting. All holes in the study
have circular cross section of radius R0α= 0.25a0. Note that the
moiré pattern in twisted bilayer is not always commensurate
with the original lattice period. Among all possible twisting
angles we can work with, the commensurate angles
θ ¼ arcos½ð3m2 þ 3mþ 1=2Þ=ð3m2 þ 3mþ 1Þ�, for some inte-
gers m, are the ones defining the size of the resulting superlattice
and its underlying sonic moiré interference pattern. Hence, the
twisting induced moiré lattice constant becomes
Lm ¼ a ¼ a0= 2 sinðθ=2Þ� �

, with its corresponding site parameters
Rm= q1t1+ q2t2, with t1;2 ¼ Lm½± cosðπ=6Þ; sinðπ=6Þ�. In what
follows, we show how the size of the supercell alters the dispersive
nature of the holey twisted structure, however, additionally, we
discuss how the gap separation and the plate thickness change the
band flatness and its spectral location, respectively. In this study,
we concentrate on twistsonic media comprising three twist angles,
which means we have to construct three different superlattices.
With respect to the above given formula, we fix those three
configurations, as summarized in Table 1.

Figure 2 displays multiple computed dispersion relations of
twistsonic configurations with constant hole radius and plate
thickness as captured in the figure. The three rows indicate
computations at constant unit cell size, whereas the rows represent a
successive shrinking of the gap separation, i.e., hg= 0.8a0, to
hg= 0.5a0. The solutions of the system correspond to vanishing
determinants, whereas the dispersionless soundlines, i.e., the lattice
singularities are accompanied with large determinant values that are
not solutions to the problem. Reducing the twist angle, i.e.,
increasing the superlattice size leads to an obvious change of the
moiré interference pattern that is indicated by strong modifications
of the dispersionless sound lines seen throughout all examples in
Fig. 2. Moreover, at the K-points in the band diagrams, we predict
distinctive Dirac cones whose respective touching points reside at
identical frequencies (red circles). A more distinctive feature of the
computations is the compression of these Dirac cones when the two
involved plates are pushed together. E.g., for m= 2 at around
ka0=2π ¼ 0:215 we see that the flatness of the dispersion bands of
the cones appear more pronounced when hg is steadily decreased.
This finding shows that not only twisting towards the magic angle
can lead to band flatness, but a more accessible approach, namely to
tune the plate separation, can lead to an equivalent effect. In the
following subsection, we further compare the MMT with the finite-
element method and find that the MMT displays superior
advantages, both in terms of the computational speed and the
storage size.
In the same spirit with the foregoing study in Fig. 2, we now fix

the gap separation as indicated in the caption of Fig. 3, but next to
varying the twist angle (m= 1–3) we also increase the plate
thicknesses, h= h1= h2. What immediately stands out in all
computed band diagrams for the chosen twist angles, is that an
increase of the thickness of both plates leads to a redshift
(towards lower frequencies) of the dispersion branches. We

Table 1 Parameters of the superlattices of three holey
twistsonic media under study.

Rotation angle θ m Number of holes N Period a

21.78∘ 1 14 2.65a0
13.17∘ 2 38 4.36a0
9.43∘ 3 74 6.08a0
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observe a complex interplay among moiré scattering features and
localized Fabry-Perot type resonances. The latter originates from
multiple λ-half (wavelength λ= 2π/k0) resonances within the
perforations23. Increasing the plate thickness as in the present
study thus leads to holey twistsonic media capable to host Dirac
features for longer wavelength, i.e., their redshift with growing
plate thickness.
In order to visualize the acoustic moiré interference fringes,

we compute the pressure fields at spectral regions marked by
red circles in Fig. 2. We chose to inspect the insonified side of
the holey twistsonic media, i.e., region I in Fig. 1, onto which
sound waves impinge, thus the first pressure field in Eq. (1) is
to be considered in connection with its complex reflection
coefficient in Eq. (6). In doing so, we first solve the equations
in Eq. (4) to obtain the modal fields. Afterwards, we calculate
the reflection coefficient rG in Eq. (6), upon which we
introduce it in the expression of PI in Eq. (1) for the chosen
plane. At the nearest vicinity of the upper holey plate
(z=−0.001a0) of the three structures under study, the back-
reflected sound unequivocally displays the fingerprints of the
periodic moiré fringes as the computations in Fig. 4 showcase.
We have taken a square-shaped domain (10a0 × 10a0) in each
case, to display the scattered moiré features for comparison. A
remarkable attribute in using holey plates as artificial twisted
structures can be discerned upon close inspection of the field
plots, which is the said complex interplay between twisted
induced moiré pattern and acoustic energy concentrated within
the holes.

Comparing the MMT with the finite-element method. In this
section, we discuss the advantages of the MMT after comparison
with the widely used commercial finite-element-method solver
COMSOL.

(i) The computational speed of the MMT is faster. We
demonstrate that one of the advantages of the MMT is the
computational speed. As shown in Fig. 5, the band diagrams of
identical structures (see caption) are calculated with the MMT
(implemented using the Julia Programming Language) and by
using the commercial finite-element-method (FEM) simulation
software COMSOL Multiphysics. The obtained bands show good
agreement except for a negligible frequency shift. To compare the
computational speed, along the wave vector axis both methods
have identical intervals, i.e., 50 steps. Since the number of
frequencies in COMSOL depends on the available number of
eigensolution, in the MMT we chose 500 points. We ran the
MMT and the FEM COMSOL computations one by one using the
same computer, which is a Dell Precision 7920 workstation with a
Intel(R) Xeon(R) Silver 4210 CPU and 640 GB of RAM. The
computational time using COMSOL is 8077s, whereas that of the
MMT is only 407s, which is almost 20 times faster.
(ii) The storage size of the MMT code is smaller. The storage

size of the FEM COMSOL file is about 1.27 × 107 kB, while the
storage size of the MMT code is only 416 kB, which is about
3.28 × 105 times smaller.

Conclusions
Holey twistsonic media, i.e., the acoustic counterpart of twisted
bilayer graphene have been studied semi-numerically thanks to a
modal expansion approach. In contrast to widely used commer-
cial finite element solvers, our technique produces relatively fast
dispersion relations results without sacrificing storage space.
Holey plates are highly flexible and tunable structures for meta-
materials, topological and twistsonic applications. Hence, we
believe that our tool should serve as solid basis to conduct
experimental studies along this line. We showed how these
acoustic twisted media not only host these flat moiré dispersion

Fig. 2 Dispersion relation of the holey twistsonic medium with different gap separations hg and twist angles. Specifically, we vary the gap from
hg= 0.8a0 to hg= 0.5a0 (four columns) and twist the bilayer according to a m= 1 (θ= 21.78∘), b m= 2 (θ= 13.17∘), and c m= 3 (θ= 9.43∘). The plate
thickness is fixed at h1= h2= h= 2a0. Red circles mark the regions of the field plots in Fig. 4.
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Fig. 3 Dispersion relation of the holey twistsonic medium with different plate thickness h and twist angles. We vary the plate thickness (h= h1= h2)
from h= 1.90a0 to h= 2.05a0 (four columns) and twist the bilayer according to a m= 1 (θ= 21.78∘), b m= 2 (θ= 13.17∘), and c m= 3 (θ= 9.43∘). The gap
separation is fixed at hg= 0.8a0.

Fig. 4 Schematic and Moiré pressure fields at the Dirac cones for three different superlattices. The field plot regions correspond to the red circles in the
band diagram of Fig. 2, with a m= 1, b m= 2, and c m= 3, respectively, and the geometrical parameters hg= 0.8a0 and h1,2= 2a0. At the plane
z=− 0.001a0 we map the normalized pressured fields |PI|/Pin. Here, the blue circles in the contour plots indicate the holes' positions on the upper plate.
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bands, but moreover, that they can be straightforwardly altered
through the involved geometry.

Methods
The semi-analytical method used to compute the dispersion relations as well as the
pressure fields is the Mode Matching Technique, whose details are derived in this
section.

Let us assume that we have two acoustically rigid plates of thickness h1 and h2
placed in the xy plane at z= 0. Both plates are periodically perforated by N round
holes of radius R0α and located at the positions R1

α and R2
α where α= 1, 2, . . . ,N in

a unit cell of size a0. These two plates are separated by a thin layer of thickness hg.
We assume that the plates are made of steel or brass, in which the perfect rigid
body approximation is very accurate. If the system is irradiated by an incident wave
Pin of unitary amplitude and propagating along the z axis with wavenumber
k ¼ Kþ q0 ẑ, the same scattering properties are obtained in different frequency
regimes by scaling all the geometrical parameteres with the same factor.

In order to apply the Mode Matching Technique, five different regions are taking
into account: region I refers to the first plate onto which sound waves impinge,
region II refers to the field inside the through-holes of the first plate, region III
refers to the gap separating the plates, region IV refers to the field inside the holes
of the second plate and in region V sound is able to emerge into free-space. We
assume that the surrounding medium is air, with the mass density ρair and speed of
sound cair.

In regions I, III and V the pressure is expanded in terms of plane waves whereas
inside the holes the field is written as a linear combination of the corresponding
waveguide eigenmodes:

PI ¼ Pin þ PR ¼ ∑
G
ZG δG0e

iqGz þ rGe
�iqGz

� �
eiðKþGÞr

PII ¼ Z AII
α e

iq0z þ BII
α e

�iq0z
� �

PIII ¼ ∑
G
ZG τGe

iqGðz�φaÞ þ ΓGe
�iqGðz�φaÞ

� �
eiðKþGÞr

PIV ¼ Z AIV
α eiq0 ðz�φbÞ þ BIV

α e�iq0ðz�φb Þ
� �

PV ¼ PT ¼ ∑
G
ZGtGe

iqGðz�φc ÞeiðKþGÞr

ð7Þ

where G is the reciprocal lattice vector, K is the Bloch wave vector, k0= ω/cair is the
incident wave vector, φa= h1, φb= h1+ hg and φc= h1+ hg+ h2 are the phases we
introduce in order to center the axis in the bottom or upper part of the layers,
qG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � jKþ Gj2

q
. The radiated and hole impedance are written as ZG= k0/

qG and Z= k0/q0, respectively, whereas rG(tG) is the reflection (transmission)
coefficient and Aα, Bα are the modal cavity expansion coefficients. Based on the
subwavelength scales of the holes, it is assumed that only their fundamental mode
is exited, so q0= c1/c2k0.

In the following, we show the normal velocity within the different regions, which
is obtained deriving the pressure of each region with respect to the z-axis.

vIz ¼ ∑
G

δG0e
iqGz � rGe

�iqGz
� �

eiðKþGÞr

vIIz ¼AII
α e

iq0z � BII
α e

�iq0z

vIIIz ¼ ∑
G

τGe
iqG ðz�φaÞ � ΓGe

�iqGðz�φaÞ
� �

eiðKþGÞr

vIVz ¼AIV
α eiq0 ðz�φbÞ � BIV

α e�iq0 ðz�φbÞ

vVz ¼ ∑
G
tGe

iqGðz�φc ÞeiðKþGÞr

ð8Þ

The Mode Matching Technique is applied by projecting the Bloch modes with
the normal velocity field and the cavity modes for the pressure field:

● Pressure: First, we impose the continuity of the pressure at the upper
(z= 0) and bottom (z= h) part of the α holes:Z Z

Ωα

PIjz¼0dΩα ¼
Z Z

Ωα

PIIjz¼0dΩαZ Z
Ωα

PIIjz¼h1
dΩα ¼

Z Z
Ωα

PIIIjz¼h1
dΩαZ Z

Ωα

PIIIjz¼h1þhg
dΩα ¼

Z Z
Ωα

PIVjz¼h1þhg
dΩαZ Z

Ωα

PIVjz¼h1þhgþh2
dΩα ¼

Z Z
Ωα

PVjz¼h1þhgþh2
dΩα

ð9Þ

By subtituting the pressure field in the previous expressions:Z Z
Ωα

∑
G
ZG δG0 þ rG
� �

eiðKþGÞrdΩα ¼
Z Z

Ωα

Z AII
α þ BII

α

� �
dΩαZ Z

Ωα

Z AII
α e

iq0h1 þ BII
α e

�iq0h1
� �

dΩα ¼ ∑
G
ZG τG þ ΓG
� �

eiðKþGÞrdΩαZ Z
Ωα

∑
G
ZG τGe

iqGhg þ ΓGe
�iqGhg

� �
eiðKþGÞrdΩα ¼

Z Z
Ωα

Z AIV
α þ BIV

α

� �
dΩαZ Z

Ωα

Z AIV
α eiq0h2 þ BIV

α e�iq0h2
� �

dΩα ¼
Z Z

Ωα

∑
G
ZGtGe

iðKþGÞrdΩα

ð10Þ
After doing the integrals we get:

∑
G
ZG δG0 þ rG
� �

H1
αðGÞ ¼ Z AII

α þ BII
α

� �
Z AII

α e
iq0h1 þ BII

α e
�iq0h1

� � ¼ ∑
G
ZG τG þ ΓG
� �

H1
αðGÞ

∑
G
ZG τGe

iqGhg þ ΓGe
�iqGhg

� �
H2

αðGÞ ¼ Z AIV
α þ BIV

α

� �
Z AIV

α eiq0h2 þ BIV
α e�iq0h2

� � ¼ ∑
G
ZGtGH

2
αðGÞ

ð11Þ

● Normal velocity: we impose the continuity of the normal velocity through
along the entire unit cell.Z Z

Ω
vIz jz¼0e

�iðKþG0 ÞrdΩ ¼
Z Z

Ω
vIIz jz¼0e

�iðKþG0 ÞrdΩZ Z
Ω
vIIz jz¼h1

e�iðKþG0 ÞrdΩ ¼
Z Z

Ω
vIIIz jz¼h1

e�iðKþG0 ÞrdΩZ Z
Ω
vIIIz jz¼h1þhg

e�iðKþG0 ÞrdΩ ¼
Z Z

Ω
vIVz jz¼h1þhg

e�iðKþG0 ÞrdΩZ Z
Ω
vIVz jz¼h1þhgþh2

e�iðKþG0 ÞrdΩ ¼
Z Z

Ω
vVz jz¼h1þhgþh2

e�iðKþG0 ÞrdΩ

ð12Þ

By subtituting the normal velocity field in the previous expressions:Z Z
Ω
∑
G

δG0 � rG
� �

eiðKþGÞre�iðKþG0 ÞrdΩ ¼ ∑
α

Z Z
Ωα

AII
α � BII

α

� �
e�iðKþG0 ÞrdΩα

∑
α

Z Z
Ωα

AII
α e

iq0h1 � BII
α e

�iq0h1
� �

e�iðKþG0 ÞrdΩα ¼
Z Z

Ω
∑
G

τG � ΓG
� �

eiðKþGÞre�iðKþG0 ÞrdΩZ Z
Ω
∑
G

τGe
iqGhg � ΓGe

�iqGhg
� �

eiðKþGÞre�iðKþG0 ÞrdΩ ¼ ∑
α

Z Z
Ωα

AIV
α � BIV

α

� �
e�iðKþG0 ÞrdΩα

∑
α

Z Z
Ωα

AIV
α eiq0h2 � BIV

α e�iq0h2
� �

e�iðKþG0 ÞrdΩα ¼
Z Z

Ω
∑
G
tGe

iðKþGÞre�iðKþG0 ÞrdΩ

ð13Þ
After doing the integrals we get:

∑
G

δG0 � rG
� � ¼ ∑

α
AII
α � BII

α

� �
H1�

α ðGÞf α
∑
α

AII
α e

iq0h1 � BII
α e

�iq0h1
� �

H1�
α ðGÞf α ¼ ∑

G
τG � ΓG
� �

∑
G

τGe
iqGhg � ΓGe

�iqGhg
� � ¼ ∑

α
AIV
α � BIV

α

� �
H2�

α ðGÞf α
∑
α

AIV
α eiq0h2 � BIV

α e�iq0h2
� �

H2�
α ðGÞf α ¼ ∑

G
tG

ð14Þ

After applying the mode matching technique through the pressure and the
normal velocity field, we obtained a system of 8 equations and 8 unknowns wich
are: rG; τG; ΓG; tG;A

II
α ;B

II
α ;A

IV
α and BIV

α . In order to solve the system, we are going
to first eliminate four of these unknowns by reducing the system from 8 to 4
equations. For doing that, we will combine the result of applying the mode
matching through the normal velocity of one region, with the result of applying the
method to the pressure field as we can see in the following equations:

∑
G
ZG δG0 þ rG
� �

H1
αðGÞ ¼ Z AII

α þ BII
α

� �
δG0 � rG
� � ¼ ∑

α
AII
α � BII

α

� �
H1�

α ðGÞf α
ð15Þ

Fig. 5 Comparison between MMT and the FEM calculations. Band
diagrams calculated with the MMT (blue lines) and the FEM (gray circles).
The geometrical parameters are m= 1, θ= 21.78∘, h= 2a0 and hg= 0.8a0.
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Z AII
α e

iq0h1 þ BII
α e

�iq0h1
� � ¼ ∑

G
ZG τG þ ΓG
� �

H1
αðGÞ

∑α AII
α e

iq0h1 � BII
α e

iq0h1
� �

H1�
α ðGÞf α ¼ ∑

G
τG � ΓG
� � ð16Þ

∑
G
ZG τGe

iqGhg þ ΓGe
�iqGhg

� �
H2

αðGÞ ¼ Z AIV
α þ BIV

α

� �
τGe

iqGhg � ΓGe
�iqGhg

� � ¼ ∑
α

AIV
α � BIV

α

� �
H2�

α ðGÞf α
ð17Þ

Z AIV
α eiq0h2 þ BIV

α e�iq0h2
� � ¼ ∑

G
ZV
GtGH

2
αðGÞ

∑
α

AIV
α eiq0h2 � BIV

α e�iq0h2
� �

H2�
α ðGÞf α ¼ ∑

G
tG:

ð18Þ

In order to reduce the system to four equations, we first eliminate rG in (15),
afterwards τG and ΓG in Eq. (16) and (17) and finally, tG in Eq. (18). We then
express the resulting system of equations in terms of the modal velocities:

v1α ¼AII
α � BII

α

v01α ¼ � AII
α e

iq0h1 � BII
α e

�iq0h1
� �

v2α ¼AIV
α � BIV

α

v02α ¼ � AIV
α eiq0h2 � BIV

α e�iq0h2
� �

ð19Þ

First equation

rG ¼ δG0 �∑
β

AII
β � BII

β

� �
H1�

β ðGÞf β

ZII AII
α þ BII

α

� �þ∑
G
ZG ∑

β
AII
β � BII

β

� �
H1�

β ðGÞf βH1
αðGÞ ¼ ∑

G
ZG2δG0H

1
αðGÞ

ZII � v01α
i sinðq0h1Þ

� v1α
i tanðq0h1Þ

	 

þ∑

β
MI

αβv1β ¼ ∑
G
ZI
G2δG0H

1
αðGÞ

ð20Þ

Fourth Equation

tG ¼ ∑
β

AIV
β eiq0h2 � BIV

β e�iq0h2
� �

H2�
β ðGÞf β

ZIV � v2α
i sinðq0h2Þ

� v02α
i tanðq0h2Þ2

	 

þ∑

β
MV

αβv
0
2β ¼ 0

ð21Þ

Second equation
Eliminating ΓG from Eq. (16)

ΓG ¼ τG �∑
β

AII
β e

iq0h1 � BII
β e

�iq0h1
� �

H1�
β ðGÞf β

Z AII
α e

iq0h1 þ BII
α e

�iq0h1
� �þ∑

β
Mαβ AII

β e
iq0h1 � BII

β e
�iq0h1

� �
¼ ∑

G
ZG2τGH

1
αðGÞ

� Z
i sinðq0h1Þ

v1α �
Z

i tanðq0h1Þ
v01α �∑

β
Mαβv

0
1β ¼ ∑

G
ZG2τGH

1
αðGÞ ð22Þ

Eliminating τG from Eq. (16)

τG ¼ ΓG þ∑
β

AII
β e

iq0h1 � BII
β e

�iq0h1
� �

H1�
β ðGÞf β

Z AII
α e

iq0h1 þ BII
α e

�iq0h1
� ��∑

β
Mαβ AII

β e
iq0h1 � BII

β e
�iq0h1

� �
¼ ∑

G
ZG2ΓGH

1
αðGÞ

� Z
i sinðq0h1Þ

v1α �
Z

i tanðq0h1Þ
v01α þ∑

β
Mαβv

0
1β ¼ ∑

G
ZG2ΓGH

1
αðGÞ ð23Þ

By doing (22)eiq
III
G hg - (23)e�iqIIIG hg we get:

� Z
i sinðq0h1Þ

v1α eiqGhg � e�iqGhg
� �� Z

i tanðq0h1Þ
v01α eiqGhg � e�iqGhg
� �

�∑
β
Mαβv

0
1β eiqGhg þ e�iqGhg
� �

¼ ∑
G
ZG2H

1
αðGÞ τGe

iqGhg � ΓGe
�iqGhg

� �

We divide the whole equation by eiq
III
G hg � e�iqIIIG hg

� Z
i sinðq0h1Þ

v1α �
Z

i tanðq0h1Þ
v01α �∑

β
Mαβv

0
1β

eiqGhg þ e�iqGhg
� �
eiq

III
G hg � e�iqGhg

� �
� ∑β2Mαβ

eiqGhg � e�iqGhg
� � v2β ¼ 0

ZII

i sinðq0h1Þ
v1α þ

Z
i tanðq0h1Þ

v01α þ∑
α
Mαβv

0
1β

cosðqGhg Þ
i sinðqGhg Þ

þ∑
β

Mαβ

i sinðqGhg Þ
v2β ¼ 0

Mαα

i tanðqGhg Þ
þ Z

i tanðq0h1Þ

 !
v01α þ ∑

β≠α

Mαβ

i tanðqGhg Þ
v01β þ∑

β

Mαβ

i sinðqGhg Þ
v2β þ

Z
i sinðq0h1Þ

v1α ¼ 0

ð24Þ

Third equation
Eliminating τGe

iqIIIG hg from Eq. (17):

Z AIV
α þ BIV

α

� ��∑
β
Mαβ AIV

β � BIV
β

� �
¼ ∑

G
ZG2ΓGe

�iqGhg H2
αðGÞ

� Z
i sinðq0h2Þ

v02α �
Z

i tanðq0h2Þ
v2α �∑

β
Mαβv2β ¼ ∑

G
ZG2ΓGe

�iqGhg H2
αðGÞ ð25Þ

Eliminating ΓGe
�iqGhg fromEq. (17):

Z AIV
α þ BIV

α

� �þ∑
β
Mαβ AIV

β � BIV
β

� �
¼ ∑

G
ZG2τGe

iqGhg H2
αðGÞ

� Z
i sinðq0h2Þ

v02α �
Z

i tanðq0h2Þ
v2α þ∑

β
Mαβv2β ¼ ∑

G
ZG2τGe

iqGhg H2
αðGÞ ð26Þ

By doing -(25)eiq
III
G hg + (26)e�iqIIIG hg we get:

Z
i sinðq0h2Þ

v02α eiqGhg � e�iqGhg
� �þ Z

i tanðq0h2Þ
v2α eiqGhg � e�iqGhg
� �

þ∑
β
Mαβv2β eiqGhg � e�iqGhg

� �
¼ ∑

G
ZG2H

2
αðGÞ τG � ΓG

� �
We divide the whole equation by eiq

III
G hg � e�iqIIIG hg

Z
i sinðq0h2Þ

v02α þ
Z

i tanðq0h2Þ
v2α þ∑

β
Mαβv2β

eiqGhg � e�iqGhg
� �
eiqGhg � e�iqGhg
� �

þ∑
β

2Mαβ

eiqGhg � e�iqGhg
� � v01β ¼ 0

Z
i sinðq0h2Þ

v02α þ
Z

i tanðq0h2Þ
v2α þ∑

β
Mαβv2β

2 cosðqGhg Þ
2i sinðqGhg Þ

�∑
β

2Mαβ

2i sinðqGhg Þ
� v01β ¼ 0

Mαα

i tanðqGhg Þ
þ Z

i tanðq0h2Þ

 !
v2α þ ∑

β≠α

Mαβ

i tanðqGhg Þ
v2β

þ∑
β

Mαβ

i sinðqGhg Þ
v01β þ

Z
i sinðq0h2Þ

v02α ¼ 0

ð27Þ

Final system of equations As this is a linear system of equations, we can express
it in matrix formulation. Thus, the modal velocities can be easily solved by means
of the following expression:

ð28Þ
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with:

Mαβ ¼ ∑
G
ZGH

�
βðGÞf βHαðGÞ

Iα ¼ ∑
G
2ZGδG0H

1
αðGÞ

H1ð2Þ
α ðGÞ ¼ 2J1ðR0αjKþ GjÞ

R0αjKþ Gj eiðKþGÞR1ð2Þ
α

GV
1 ¼ Z

i sinðq0h1Þ
GV
2 ¼ Z

i sinðq0h2Þ
ϵ1 ¼

Z
i tanðq0h1Þ

ϵ2 ¼
Z

i tanðq0h2Þ
G1ð2Þ
αβ ¼ ∑

G
ZGH

�1ð2Þ
β ðGÞf βH1ð2Þ

α ðGÞ

ψ1ð2Þ
αβ ¼ ∑

G

ZGH
�1ð2Þ
β ðGÞf βH1ð2Þ

α ðGÞ
i tanðqIIIG hg Þ

Φ1ð2Þ
αβ ¼ ∑

G

ZGH
�1ð2Þ
β ðGÞf βH1ð2Þ

α ðGÞ
i sinðqGhg Þ

f β ¼
Ωβ

Ω
¼

πR2
0βffiffiffi

3
p

a2=2

ð29Þ

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.

Code availability
The code for obtaining the results of this work are available from the corresponding
author upon reasonable request.
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