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Metamaterials that exhibit a constitutive coupling between their momentum and strain, show promise

in wave manipulation for engineering purposes and are called Willis materials. They were discovered

using an effective-medium theory, showing that their response is nonlocal in space and time. Recently,

we generalized this theory to account for piezoelectricity, and demonstrated that the effective momentum

can depend constitutively on the electric field, thereby enlarging the design space for metamaterials. Here,

we develop the mathematical restrictions on the effective properties of such generalized Willis materials,

owing to passivity, reciprocity, and causality. The establishment of these restrictions is of fundamental sig-

nificance, as they test the validity of theoretical and experimental results—and applicational importance,

since they provide elementary bounds for the maximal response that potential devices may achieve.

DOI: 10.1103/PhysRevApplied.14.064005

I. INTRODUCTION

The response of artificial composites with specially
designed microstructures can fundamentally differ from
the response of their constituents. Such composites are
termed metamaterials, and their features span various solid
facets, including electromagnetic and mechanical proper-
ties [1–6].

A prominent thrust in metamaterial design is wave con-
trol [7–10], where some of the achievements thus far are
wave suppressors, cloaking, negative refraction, and super-
lensing [11–24]. These phenomena are often manifesta-
tions of anomalous effective properties, such as negative
refractive index and negative mass [25–29], which are
analytically determined using homogenization (effective-
medium) theories [30–41]. Notably, Willis has developed
an elastodynamic homogenization theory that predicts that
the momentum and stress can be constitutively coupled to
the strain and the velocity, respectively, by the now-termed
Willis couplings [42–48]. These effective properties con-
stitute additional degrees of freedom to manipulate waves,
as has been demonstrated, e.g., to experimentally real-
ize asymmetric reflection and scattering-free refraction
[49–51].

Recently, Pernas-Salomón and Shmuel [52] have gen-
eralized the homogenization theory of Willis to account
for constituents that linearly deform in response to non-
mechanical fields, such as piezomagnetic and piezoelectric
materials [53,54]. The main observation that the gen-
eralized theory delivers is the emergence of additional
couplings of Willis type between the momentum and
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the velocity to the nonmechanical fields, as illustrated
in Fig. 1. Accordingly, the momentum of piezoelectric
(respectively, piezomagnetic) composites is coupled with
the electric (respectively, magnetic) field, while the veloc-
ity is coupled with the electric displacement field (respec-
tively, magnetic induction). We refer to metamaterials that
exhibit these couplings as generalized Willis materials.
The additional couplings not only enlarge the design space
of metamaterial properties but also reflect a different mech-
anism to actively manipulate waves via nonmechanical
stimuli.

Like all constitutive relations, those that describe Willis
materials—standard and generalized—should respect basic
physical principles. Srivastava [55] and Muhlestein et al.
[56] have derived the mathematical restrictions that fol-
low from reciprocity, passivity, and causality principles
on standard Willis materials in the long-wavelength limit.
Here, we continue their work by developing the restrictions
that follow from these principles for generalized Willis
materials.

Accordingly, in the development of the restrictions, we
account for the coupling between the electric and mechan-
ical governing equations, as well as the additional material
properties in the constitutive relations. Furthermore, the
analysis that we carry out for reciprocity—and to a certain
extent for causality—goes beyond the long-wavelength
limit, hence also providing insights into standard Willis
materials, in addition to the long-wavelength results in
Refs. [55,56].

In the sequel, we show that the obtained mathematical
restrictions elucidate the physical nature of such general-
ized couplings. These restrictions are also of applicational
importance, as pointed out in Refs. [55–57], since they

2331-7019/20/14(6)/064005(19) 064005-1 © 2020 American Physical Society



RENÉ PERNAS-SALOMÓN and GAL SHMUEL PHYS. REV. APPLIED 14, 064005 (2020)

Elasticity 
stress and strain

W
illis coupling Piezo

electr
ic

co
uplin

g

Elasticity 
stress and strain

Dynamics 
momentum and 

Magnetostatics
magnetic induction
and magnetic fieldvelocity

W
illis coupling Piezo

magnetic

co
uplin

g

Dynamics 
momentum and 

velocity

Electrostatics
electric displacement

and electric field

Electromomentum
coupling

Magneto-
momentum 

coupling

FIG. 1. The schematics of the cross-couplings reported by
Pernas-Salomón and Shmuel [52] in composites with elastic-
ity that is intrinsically coupled with other physics, such as
piezoelectric and piezomagnetic materials.

provide means of testing the admissibility of experimental
data and quantifying the maximal response that potential
devices may achieve. For example, Quan et al. [58] have
sought acoustic scatterers with maximum Willis coupling
as follows from passivity and reciprocity, and then have
employed their optimal structure to design metasurfaces
for sound steering.

The paper is structured as follows. In the rest of
this section, we recall relevant developments in Willis
equations, discuss their uniqueness, and summarize our
results before presenting derivations. Section II revisits
the theory that has led to the generalized Willis equations

and introduces a modified formulation, which is moti-
vated by the analysis in Refs. [56,59,60] for the elastic
case. Sections III–V develop the restrictions that passiv-
ity, reciprocity, and causality pose on the effective rela-
tions, respectively. Final comments conclude this paper in
Sec. VI.

A. Relevant developments in Willis equations

Since this work is closely related to Willis equations,
as it provides physical restrictions on their generalization,
a more elaborated review of their relevant developments
is in order. The topics discussed next do not constitute a
complete review of the works in the field and aspects such
as weighted averages [59,61], connections with asymptotic
homogenization [62,63], etc. are not addressed here.

Willis has started to develop his formulation using a
variational approach that extends the concepts of ensemble
averaging and comparison media from elastostatics [42–
44,64]. His effective relations exhibit two notable features,
in addition to the emergence of the cross-couplings men-
tioned earlier. First, they are nonlocal in space—as known
from elastostatics—and in time, even if the response of the
original composite is history independent. (The nonlocal
nature renders the effective relations nonunique, an issue
that is discussed later.) Second, the kernel that describes
the effective mass density is a second-order tensor.

More recently, Willis has developed a formulation that
does not rely on a comparison medium, but rather on the
Green function of the studied composite [46]. Importantly,
he has resolved the lack of uniqueness in the effective prop-
erties, which occurs since the effective strain and velocity
are derived from the same potential (displacement) field.
This has been carried out by adapting the approach of Fietz
and Shvets [65], which introduces an additional driving
source using an eigenstrain, thereby forcing the effective
relative strain and velocity to be independent. While it
is questionable if such eigenstrains can be experimen-
tally prescribed [66], their mathematical inclusion has the
benefit of providing unique effective properties out of an
equivalent class that exists when the eigenstrain vanishes.
Source-driven homogenization has also been adopted later,
in Refs. [67–69]. Having listed the main developments in
Willis theory, we can now point out the common com-
ponents with our theory for media that deform by non-
mechanical stimuli: our theory also relies on ensemble
averaging, incorporates eigenstrains as an additional driv-
ing source, and delivers unique effective properties based
on the Green function of the original composite.

The recent interest in metamaterials [70] has dissem-
inated to Willis effective relations, resulting in a bulk
of papers that present experimental validation in the
long-wavelength limit and analyze their structure [51,58,
60,71–81]. We list next some of the insights that are rel-
evant to this paper. Milton et al. [82] have identified
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the similarity between Willis couplings and bianisotropy
in electromagnetics (see also Refs. [56,58,69,77,83,84]).
Sieck et al. [69] have provided a perceptive analysis on
the source of the cross-couplings in periodic media, con-
cluding that the their nonlocal part originates from multiple
scattering and phase change at the mesoscale, while their
local part originates from asymmetry in the unit cell.
Similarly, Pernas-Salomón and Shmuel [85] have pointed
out the analogy with the broken inversion symmetry in
piezoelectric materials at the atomic scale, which leads to
microscopic electroelastic coupling.

Spatially local couplings have been proposed by Milton
et al. [82]. As pointed out in Ref. [84], the corresponding
equations are the limiting case of the nonlocal equations,
referred to as the Milton-Briane-Willis equations. Accord-
ing to Milton [66], the local form is more physical, owing
to the difficulty in experimentally measuring unique non-
local properties that include the cross-couplings. A local
model has been developed by Milton [59], the stress of
which depends on the acceleration rather than the velocity.
Simpler spatially local models that report acceleration-
dependent stress have been given later in Refs. [56,60,
84,86]. These works suggest that the nonlocal nature of
the operator conceals [87] a more physical constitutive
description—one that employs the strain rate and accel-
eration as additional input functions. Here, we adapt and
examine this suggestion to our settings, by introducing
and analyzing a description that additionally includes the
time derivative of the electric field as an input function,
and find arguments that support the use of the alternative
formulation.

B. Summary of our results

As discussed above, in Ref. [52], we have devel-
oped a dynamic homogenization theory for piezoelectric
and piezomagnetic composites, which delivers nonlocal
effective relations between suitably defined macroscopic
fields. We have formally shown that additional couplings
emerge in the effective relations between the macroscopic

momentum and velocity to the nonmechanical fields. In
the sequel, we develop the mathematical restrictions that
the effective relations must satisfy in order to respect three
principles.

The first principle that we analyze is passivity, which
at the basic level means that the material does not gener-
ate energy. Formally, we require that the power supplied
by external agents is always greater or equal to the rate of
change of the energy stored by the material. This principle
delivers inequalities for the skew-Hermitian and Hermitian
parts of the Fourier transforms of the effective properties,
as summarized in Table I. If the material exhibits major
symmetries, then these inequalities apply to the imaginary
and real parts of the transforms. If the material is passive
and lossless, we find that the direct couplings—and com-
binations of cross-couplings—must be either Hermitian or
skew-Hermitian.

The second principle that we employ is reciprocity,
which refers to an equality between the power pro-
duced by conjugate fields of different problems. In the
long-wavelength limit, it implies major symmetries for
direct couplings and transpose relations between conju-
gate cross-coupling terms. This result includes the sym-
metries reported in Ref. [56] for the elastic properties
in local Willis materials (i.e., Milton-Briane-Willis mate-
rials). Beyond the long-wavelength limit, we find that
reciprocity requires the nonlocal operator to be self-adjoint
with respect to the spatial variables. Technically, this trans-
lates to an interchange in the functional dependency in
these variables, in addition to the transposition relations
among the couplings (see Table I). From this analysis,
we deduce that the formulation that does not use the
time derivative of the velocity, strain, and electric field
is unphysical, since it corresponds to imaginary properties
in the time domain. By contrast, the modified formulation
that is based on these rates leads to real properties in the
time domain.

The last principle that we employ is causality, which
means that an effect (e.g., momentum) cannot precede
its cause (e.g., an electric field). This principle provides

TABLE I. The mathematical restrictions that the effective description of piezoelectric composites with generalized Willis couplings

satisfy, owing to reciprocity and passivity. The restrictions that result from causality are of the Kramer-Kronig type, namely, L̂′′ (ω) =
− 2

π
−
∫ ∞

0
ωL̂′(z)
z2−ω2 dz, and according to Landau and Lifshitz [89] should apply for any fixed value of κ .

Property Real-space reciprocity Fourier-space reciprocity Passivity when κ = 0

Elasticity C̃ (x, X) = C̃T (X, x) Č (κ) = ČT (−κ) iČSH positive definite

Mass density ρ̃ (x, X) = ρ̃T
(X, x) ρ̌ (κ) = ρ̌

T
(−κ) iρ̌

SH
negative definite

Willis coupling S̃† (x, X) = S̃T (X, x) Š† (κ) = ŠT (−κ) Bound for ŠQH

Modified Willis coupling Ŝ† (x, X) = ŜT (X, x) Ŝ† (κ) = ŜT (−κ) Bound for ŜQSH

Permittivity Ã (x, X) = ÃT (X, x) Ǎ (κ) = ǍT (−κ) iǍSH negative definite

Piezoelectric coupling B̃† (x, X) = B̃T (X, x) B̌† (κ) = B̌T (−κ) Bound for B̌QSH

Electromomentum coupling W̌† (x, X) = W̌T (X, x) W̌† (κ) = W̌T (−κ) Bound for W̌QH

Modified EM coupling Ŵ† (x, X) = ŴT (X, x) Ŵ† (κ) = ŴT (−κ) Bound for ŴQSH
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a connection between the real and imaginary parts of
the (time) transforms of the couplings. The process that
we employ is standard and straightforward and uses the
Plemelj formulas to obtain relations of the Kramers-Kronig
type for the generalized effective properties [88–91]. We
clarify that our study of causality is restricted to the
spatially local equations and note that the corresponding
analysis supports the claim that the alternative formulation
should be favored. Finally, we note that according to Lan-
dau and Lifshitz [89], the Plemelj formulas should hold for
any fixed value of the wavevector.

II. DYNAMIC HOMOGENIZATION OF
PIEZOELECTRIC COMPOSITES

We consider a composite occupying the volume �,
made of piezoelectric phases, driven by time-dependent
body force density f, inelastic strain η, and free-charge
density q. These sources generate in the composite stress
σ , electric displacement D, and momentum density p,
which satisfy the balance equations

∇ · σ + f − ṗ = 0, (1)

and

∇ · D = q, (2)

where the superposed dot denotes a time derivative. At
each material point x, these fields are related to the dis-
placement gradient ∇u, velocity u̇, and electric potential
gradient [92] ∇φ through the constitutive equations of
piezoelectricity [93], namely [94],⎛⎝ σ

D
p

⎞⎠ =
⎛⎝ C BT 0

B −A 0
0 0 ρ

⎞⎠⎛⎝ ∇u − η

∇φ

u̇

⎞⎠ , (3)

where ρ, A, B, and C are the spatially varying [95] local
mass density, dielectric, piezoelectric, and elasticity ten-
sor fields, respectively [96]. In coordinates, these tensors
satisfy

Aij = Aji, Bijk = Bjik, BT
ijk = Bkij ,

Cijkl = Cjikl = Cjilk = Cklij , σij = σji.
(4)

Pernas-Salomón and Shmuel [52] have proposed an effec-
tive description with constitutive equations for the com-
posite by extending the approach of Willis [46]. This has
been carried out by treating the composite as random, such
that its properties are not only functions of x but also of the
particular specimen that belongs to some sample space S.
The expectation value of any property, say ρ, is given by

the ensemble average

〈ρ〉 (x) =
∫

S

ρ (x, y) P (y) dy, (5)

where the parameter y is used to label the specimens and
P is the probability-measure function over S. The govern-
ing equations of our effective description are given by the
following ensemble averages of Eqs. (1) and (2):

∇ · 〈σ 〉 + f − ˙〈p〉 = 0, ∇ · 〈D〉 = q, (6)

in which 〈σ 〉, 〈D〉, and 〈p〉 are the effective fields [97].
Based on the Green (tensor) function of the problem,
Pernas-Salomón and Shmuel [52] have obtained constitu-
tive equations for the effective fields in the form [98]

⎛⎝ 〈σ 〉
〈D〉
〈p〉

⎞⎠ =
⎛⎝ C B† S

B −A W
S† W† R

⎞⎠⎛⎝ 〈∇u〉 − η

〈∇φ〉
〈u̇〉

⎞⎠ , (7)

where the matrix elements are now nonlocal operators
in time and space. (At this point, we do not endow the
couplings with superscript † the meaning that this symbol
usually designates and postpone it to Sec. IV.) We denote
the column vectors on the left- and right-hand sides of
Eq. (7) by 〈h〉 and 〈g〉 and put the latter statement into
formal footing, namely,

〈h〉 (x, t) = L (〈g〉)

=
∫ t

−∞

∫
�

L̃ (x, χ , t − T) 〈g〉 (χ , T) dTdχ , (8)

where L denotes the nonlocal effective constitutive opera-

tor and L̃ is its kernel. In the sequel, we denote by C̃ the

kernel of C, by S̃ the kernel of S , by ρ̃ the kernel of R,
etc. The effective operator exhibits three notable features,
in addition to its spatiotemporal nonlocal nature. First,
it couples 〈σ 〉 with 〈u̇〉, and 〈p〉 with 〈∇u〉, through the
so-called Willis couplings S and S†. Second, (the kernel
of) the effective mass density, ρ̃, is a second-order ten-
sor. As mentioned, these two features—which are absent
from the local constitutive equations and hence represent
metamaterials—have been discovered by Willis [42–44]
in his studies of purely elastic composites. The third dis-
tinctive feature reported by Pernas-Salomón and Shmuel
[52] is the coupling W between 〈D〉 and 〈u̇〉, and the
coupling W† between 〈p〉 and 〈∇φ〉, which we term the
electromomentum coupling. The transition to this effective
description is schematically illustrated in Fig. 2. The kernel
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FIG. 2. The body � is composed of different piezoelectric
materials, the constitutive response of which is given by Eq. (3),
as illustrated at the top of the sketch. Effectively, the response of
the body is nonlocal with additional cross-couplings, as given by
Eq. (7).

of L is endowed with the minor symmetries

C̃ijkl = C̃jikl, C̃ijkl = C̃ijlk, B̃ijk = B̃ikj , B̃
†
ijk = B̃

†
jik,

S̃ijk = S̃jik, S̃
†
ikl = S̃

†
ilk,

(9)

as they translate from the microscopic to the effective
description, owing to the balance of angular momentum
and independence from the antisymmetric part of ∇u. The
major symmetries of the constitutive tensors in Eq. (4)
induce additional symmetries between the effective ten-
sors (and justify the superscript † mentioned above), to be
discussed in Sec. IV and the Appendix.

When the composite is statistically homogeneous, the
constitutive operator becomes translation invariant, i.e., it
depends only on the difference x − χ ; accordingly, Eq. (8)
has the form of a convolution not only in time but also
in space. Therefore, the Fourier transform with respect to
both time and space yields constitutive relations in the

form of simple products between the transforms of L̃ and
〈g〉. It follows that such an infinite medium admits plane
waves in the form of (the real part of) 〈u〉 = Uei(κ0·x−ω0t)

and 〈φ〉 = �ei(κ0·x−ω0t), for which the nonlocal constitutive
equations are the simple products

〈h〉 (x, t) = Ľ (−κ0, ω0) 〈g〉 (x, t) (10)

in the (x, t) space. (Again, the real part of the equation

should be taken.) We emphasize that Ľ (−κ0, ω0) is the

space-time Fourier transform of L̃ according to the con-
vention

Ľ (κ , ω) =
∫

�

dx
∫

R

dt L̃ (x, t) ei(κ ·x+ωt), (11)

evaluated at (−κ0, ω0). In order not to introduce more
notation to the already large set used here, we also use ˇ(◦)

for transforms that are applied only with respect to one of
the two variables (time or space).

The objective of this work is to determine the mathemat-
ical restrictions imposed on relations (7)—and specifically
on the electromomentum coupling—by the physical prin-
ciples of reciprocity, passivity, and causality. In addition to
form (7), we also analyze the form⎛⎝ 〈σ 〉

〈D〉
〈p〉

⎞⎠ =
⎛⎝ C B† 0

B −A 0
0 0 R

⎞⎠⎛⎝ 〈∇u〉 − η

〈∇φ〉
〈u̇〉

⎞⎠
+

⎛⎝ 0 0 Ŝ
0 0 Ŵ
Ŝ† Ŵ† 0

⎞⎠⎛⎝ 〈∇u̇〉 − η̇〈∇φ̇
〉

〈ü〉

⎞⎠ ,

(12)

where the kernel of the time Fourier transform of Ŝ is
−Š/iω, the kernel of the transform of Ŵ is −W̌/iω, etc.
The motivation for this form is mentioned in Sec. I A and
elaborated next. To this end, it is useful to note that the
derivations that have led Willis [46] and Pernas-Salomón
and Shmuel [52] to their nonlocal operators have been car-
ried out after applying the Fourier transform with respect
to time [99], where in the frequency domain the cross-
coupling terms are products that include the term −iω.
An ambiguity emerges when transforming back to the time
domain: Should −iω be identified with the kernel or with
the time derivative of 〈g〉? The former leads to relations (7)
and the latter to relations (12). The forthcoming analysis
supports form (12), in agreement with Refs. [56,69].

Before we proceed, we note that a similar ambiguity
exists when the transform is applied with respect to the
spatial translation [69]. In this case, spatial derivatives
turn to products with iκ and the inverse transform has the
same problem as with the inversion of products with iω.
We can now highlight the motivation for introducing η:
since it is not derived from a potential, there is no way
to “pull outside” the gradient operator in order to obtain
the effective displacement field and then mistake the effec-
tive velocity for the effective strain by multiplying and
dividing by iω [60]. Evidently, such operations lead to dif-
ferent sets of effective properties and, in particular, a set
without Willis couplings [100]. Since, clearly, the veloc-
ity or strain cannot be derived from the electric potential,
there is no need to introduce an “eigen electric field” in
our theory [101]. Owing to the ambiguity associated with
the nonlocal operator and the difficulty of measuring the
nonlocal cross-coupling, Milton [66,84] has recently advo-
cated either the use of the local cross-coupling or the use
of a nonlocal operator that relates the displacement to the
applied force. While we do not pursue this notion here,
we note that the available experimental evidence for such
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cross-couplings has been obtained when nonlocal inter-
actions are negligible (see, e.g., Refs. [75,78]), thereby
supporting the advocacy of Milton for the local equations.

III. PASSIVITY

The term “passivity” has different uses in the literature.
Here, it is interpreted as in Ref. [102], namely, a system
is passive if there exists a positive-definite stored energy
function for it, determined uniquely by its state variables,
such that the power supplied to the system by external
agents is always greater or equal to the rate of change of its
stored energy. This requirement, in turn, poses restrictions
on the constitutive parameters [55,103]. The implications
of passivity have been employed in Refs. [55,56] to deter-
mine the restrictions on Willis materials. In this section, we
extend the analysis to piezoelectric materials that exhibit
electromomentum coupling, where by assuming passivity
we derive restrictions on the constitutive tensors given in
Eqs. (7) and (12).

We consider a piezoelectric solid of volume � that
is surrounded by air. Across its boundary ∂�, a surface
charge density we and traction t are present, in addition to
the volume densities q and f. For simplicity, eigenstrains
are not considered here, bearing in mind that the effective
properties to be used in the sequel are those identified using
such eigenstrains. Assuming time-harmonic fields, we can
express the complex rate of work done on the piezoelectric
body by the mechanical and electrical sources, namely,

Pc =
∮

∂�

(
t · u̇∗

2
+ φẇe

∗

2

)
da +

∫
�

(
f · u̇∗

2
+ φq̇∗

2

)
dx,

(13)

such that the real part of Pc is the time-average power
delivered by the sources [93]. Using the connections t =
σ · n and D · n = −we, where n is a unit vector in the out-
ward normal direction to ∂�, we obtain a restatement of
the complex Poynting’s theorem for piezoelectric media in
the settings of the quasielectrostatic approximation as [93]

Pc =
∮

∂�

(
σ · u̇∗

2
− φḊ∗

2

)
· nda +

∫
�

(
f · u̇∗

2
+ φq̇∗

2

)
dx

=
∫

�

(
σ : ∇u̇∗

2
+ ṗ · u̇∗

2
− ∇φ · Ḋ∗

2

)
dx. (14)

In the process that led to Eq. (14), we have applied the
divergence theorem and used the field equations (1) and (2)
after the expansion of the divergence operator. The imagi-
nary part of this volume integral relates to the total stored
energy within � (elastic, kinetic, and electric energy) and
its real part is the time-averaged power loss of the system.
Since a passive material cannot generate energy, the inflow
of power is always non-negative and hence P′

c := RePc is
non-negative too, where here and throughout the text we

use ′ and ′′ to denote the real and imaginary parts of any
variable, respectively. This requirement imposes restric-
tions on the permitted values of the constitutive tensors,
when P′

c is expressed using the generalized Willis rela-
tions. Invoking statistical homogeneity and considering
plane-wave solutions (assuming that they are valid), we
employ the form given in Eq. (10) to write the condition
on P′

c as

P′
c = 1

2
Re

{∫
�

(
u̇∗

i,j Čijkluk,l + u̇∗
i,j B̌

†
ijkφ,k + u̇∗

i,j Šijku̇k

− φ∗
,i B̌iklu̇k,l + φ∗

,i Ǎikφ̇,k − φ∗
,i W̌ikük

+ u̇∗
i W̌

†
ikφ̇,k + u̇∗

i Š
†
iklu̇k,l + u̇∗

i ρ̌ikük

)
dx

}
≥ 0; (15)

here, we have used the fact that Re
{∇φ · Ḋ∗} = Re

{∇φ∗ · Ḋ
}
.

The components of Ľ appearing in Eq. (15) are the trans-
forms at (−κ , ω) and we note that by linearity there is
no loss of generality when considering a single κ vector.
Equation (15) is simplified using the following relations.

First, we introduce the skew-Hermitian parts of ρ̌, Ǎ, and

Č, namely,

ρ̌SH
ik = 1

2

(
ρ̌ik − ρ̌∗

ki

)
, ǍSH

ik = 1

2

(
Ǎik − Ǎ∗

ki

)
,

ČSH
ijkl = 1

2

(
Čijkl − Č∗

klij

)
,

(16)

to rewrite the terms Re
{
u̇∗

i ρ̌ikük

}
, Re

{
φ∗

,i Ǎikφ̇,k

}
, and

Re
{

u̇∗
i,j Čijkluk,l

}
as

Re
{
u̇∗

i ρ̌ikük

} = 1

2

(
u̇∗

i ρ̌ikük + u̇iρ̌
∗
ikü∗

k

)
= −iωρ̌SH

ik u̇∗
i u̇k, (17a)

Re
{
φ∗

,i Ǎikφ̇,k

}
= 1

2

(
φ∗

,i Ǎikφ̇,k + φ,iǍ
∗
ikφ̇

∗
,k

)
= −iωǍSH

ik φ∗
,iφ,k, (17b)

Re
{

u̇∗
i,j Čijkluk,l

}
= 1

2

(
u̇∗

i,j Čijkluk,l + u̇i,j Č∗
ijklu

∗
k,l

)
= iωČSH

ijklu
∗
i,j uk,l. (17c)

We also note that if

ρ̌ik = ρ̌ki, Ǎik = Ǎki, Čijkl = Čklij , (18)

for all κ , then their skew-Hermitian part is equal to their
imaginary part (and the Hermitian part is equal to the real
part). The remaining terms can be written as
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Re
{

u̇∗
i,j B̌

†
ijkφ,k − φ∗

,i B̌iklu̇k,l

}
= iω

2

(
B̌

†
ijk − B̌∗

kij

)
φ,ku∗

i,j − iω

2

(
B̌

†∗
ijk − B̌kij

)
φ∗

,kui,j ,

= ωRe
{

i
(

B̌
†
ijk − B̌∗

kij

)
φ,ku∗

i,j

}
=: 2ωRe

{
iφ,kB̌

QSH
kij u∗

i,j

}
, (19a)

Re
{

u̇∗
i,j Šijku̇k + u̇∗

i Š
†
iklu̇k,l

}
= iω

2

(
Šijk + Š

†∗
kij

)
u̇ku∗

i,j − iω

2

(
Š∗

ijk + Š
†
kij

)
u̇∗

kui,j ,

= ωRe
{
−i

(
Š∗

ijk + Š
†
kij

)
u̇∗

kui,j

}
=: 2ωRe

{
−iui,j Š

QH
ijk u̇∗

k

}
,

= ωRe
{
−i

(̂
S∗

ijk − Ŝ
†
kij

)
ü∗

kui,j

}
=: 2ωRe

{
iui,j Ŝ

QSH
ijk ü∗

k

}
, (19b)

Re
{

u̇∗
i W̌

†
ikφ̇,k − φ∗

,i W̌iku̇k

}
= iω

2

(
W̌

†∗
ik + W̌ki

)
u̇iφ

∗
,k − iω

2

(
W̌

†
ik + W̌∗

ki

)
u̇∗

i φ,k,

= ωRe
{
−i

(
W̌∗

ki + W̌
†
ik

)
u̇∗

i φ,k

}
=: 2ωRe

{
−iφ,kW̌

QH
ki u̇∗

i

}
,

= ωRe
{
−i

(
Ŵ∗

ki − Ŵ
†
ik

)
ü∗

i φ,k

}
=: 2ωRe

{
iφ,kŴ

QSH
ki ü∗

i

}
. (19c)

If the symmetries

B̌
†
ijk = B̌kij , Ŝ

†
kij = Ŝijk, Ŵ

†
ik = Ŵki (20)

hold for all κ , then (◦)QSH is equivalent to the imaginary
part of (◦), while (◦)QH is equivalent to the real part. As we
show in Sec. IV, symmetries (18) and (20) are compatible
with reciprocity only in the long-wavelength limit. Using
relations (19), Eq. (15) reads

P′
c = ω

2

∫
�

(
u∗

i,j iČSH
ijkluk,l + 2Re

{
φ,kiB̌

QSH
kij u∗

i,j

}
−2Re

{
ui,j iŠ

QH
ijk u̇∗

k

}
− u̇∗

i iρ̌SH
ik u̇k

−φ∗
,i iǍ

SH
ik φ,k − 2Re

{
φ,kiW̌

QH
ki u̇∗

i

})
dx ≥ 0. (21)

To proceed, we follow the argument of Muhlestein et al.
[56], which requires the restriction of subsequent analy-
sis to the long-wavelength limit (κ = 0). In this limiting
case, the strain, velocity, and electric fields in Eq. (21) can
be prescribed arbitrarily and independently of each other
through suitable sets of (boundary and volume) sources.
Accordingly, we can first recover the conclusions of Sri-
vastava [55] and Muhlestein et al. [56] in the limiting
elastic case, by considering a configuration where the
electric field vanishes, for which

P′
c = ω

2

∫
�

(
u∗

i,j iČSH
ijkluk,l − 2Re

{
ui,j iŠ

QH
ijk u̇∗

k

}
−u̇∗

i iρ̌SH
ik u̇k

)
dx ≥ 0, (22)

and in terms of Ŝ,

P′
c = ω

2

∫
�

(
u∗

i,j iČSH
ijkluk,l + 2Re

{
ui,j îS

QSH
ijk ü∗

k

}
−u̇∗

i iρ̌SH
ik u̇k

)
dx ≥ 0. (23)

By setting the velocity to zero, we obtain∫
�

u∗
i,j iČSH

ijkluk,ldx ≥ 0, (24)

where the case of a vanishing strain provides∫
�

u̇∗
i iρ̌SH

ik u̇kdx ≤ 0. (25)

Eqs. (24)–(25) hold for arbitrary strain and velocity fields

if and only if the Hermitian [104] forms iČSH and iρ̌
SH

are positive and negative definite, respectively. If the
medium is not only passive but also lossless, then the

inequalities become equalities, which imply that Č and ρ̌

are Hermitian; this agrees with the notion that Hermitic-
ity implies energy conservation [105–107]. The equalities

further imply that ŠQH and ŜQSH are null.
As mentioned, this analysis recovers the results of Sri-

vastava [55] and Muhlestein et al. [56] for Milton-Briane-
Willis materials (i.e., local Willis materials). To develop
the restrictions on the couplings that arise in the electroe-
lastic setting, we first assume a combination of sources for
which the only nonvanishing field is the electric field. In

064005-7



RENÉ PERNAS-SALOMÓN and GAL SHMUEL PHYS. REV. APPLIED 14, 064005 (2020)

this setting, Eq. (21) provides∫
�

φ∗
,i iǍ

SH
ik φ,kdx ≤ 0. (26)

Since ∇φ is arbitrary, this condition holds if and only if

the Hermitian form iǍSH is negative definite and in the

lossless case this implies that Ǎ is Hermitian, again in
agreement with the association of Hermiticity with energy
conservation. If only the velocity vanishes, we have that∫

�

(
u∗

i,j iČSH
ijkluk,l + 2Re

{
φ,kiB̌

QSH
kij u∗

i,j

}
−φ∗

,i iǍ
SH
ik φ,k

)
dx ≥ 0.

(27)

If only the strain is zero,∫
�

(
−u̇∗

i iρ̌SH
ik u̇k −φ∗

,i iǍ
SH
ik φ,k − 2Re

{
φ,kiW̌

QH
ki u̇∗

i

})
dx ≥ 0,

(28)

from which we obtain

−2Re
{
φ,kiB̌

QSH
kij u∗

i,j

}
≤ u∗

i,j iČSH
ijkluk,l − φ∗

,i iǍ
SH
ik φ,k, (29)

2Re
{
φ,kiW̌

QH
ki u̇∗

i

}
≤ −u̇∗

i iρ̌SH
ik u̇k − φ∗

,i iǍ
SH
ik φ,k, (30)

and the latter is replaced by

−2Re
{
φ,kiŴ

QSH
ki ü∗

i

}
≤ −u̇∗

i iρ̌SH
ik u̇k − φ∗

,i iǍ
SH
ik φ,k, (31)

when expressed in terms of Ŵ. Equations (29)–(31) thus

provide bounds for B̌QSH, W̌QH and ŴQSH and in the
lossless case imply that they are null.

IV. RECIPROCITY

Consider a time-invariant piezoelectric body and two
arbitrary time-harmonic source distributions and denote
these sources and the fields they excite by superscripts 1
and 2, respectively. The body is reciprocal if the power
that distribution 1 produces together with the fields excited
by distribution 2 is equal to the power that distribution 2
produces together with the fields excited by distribution 1.
A schematic illustration of this property is given in Fig. 3.

The principle of reciprocity is independent of the level
of isotropy and homogeneity of the body [108]; however,
it requires that at each point the symmetry conditions

Aij (x) = Aji (x) , Cijkl (x) = Cklij (x) (32)

are satisfied [109]. In the homogenization process of a
heterogeneous reciprocal body, it is thus required that
the resultant effective properties also satisfy the reci-
procity relation. Muhlestein et al. [56] have shown that

f (1), q(1), u̇(1), φ̇(1) f (2), q(2), u̇(2), φ̇(2)

f (1), q(1), u̇(2), φ̇(2) f (2), q(2), u̇(1), φ̇(1)

Problem 1: Problem 2:

Power by the combination Power by the combination=

FIG. 3. The schematics of the reciprocity principle. The source distributions of problems 1 (cyan) and 2 (gray) are illustrated by
darts. The resultant rates of the displacement and electric potential fields of problems 1 (blue) and 2 (black) are illustrated by arrows.
The body is reciprocal if the power that distribution 1 produces together with the fields excited by distribution 2 (bottom left sketch) is
equal to the power that distribution 2 produces together with the fields excited by distribution 1 (bottom right sketch).
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this requirement imposes the following conditions on the
effective properties of (spatially) local Willis materials:

ρ̌ik = ρ̌ki, Š
†
ijk = Šjki, Čijkl = Čklij , (33)

where the symmetry between Š† and Š is transmitted to the
modified couplings, namely,

Ŝ
†
ijk = Ŝjki. (34)

Here, we first derive the generalization of these conditions
to local materials exhibiting the electromomentum cou-
pling and then analyze the general (nonlocal) case. Our
departure point toward this end is the equations that govern
the response of the body when subjected to two indepen-

dent and arbitrary distributions of force,
{

f
(1)

i , f
(2)

i

}
, and

charge densities
{
q(1), q(2)

}
, namely,(

σ
(1)
ij ,j − ṗ

(1)
i

D
(1)
j ,j

)
+

(
f

(1)
i

−q(1)

)
=

(
0i

0

)
(35)

and (
σ

(2)
ij ,j − ṗ

(2)
i

D
(2)
j ,j

)
+

(
f

(2)
i

−q(2)

)
=

(
0i

0

)
. (36)

We denote the resultant displacement and electric potential

fields by w(1)T :=
{

u
(1)
i , φ(1)

}
and w(2)T :=

{
u

(2)
i , φ(2)

}
,

respectively. Next, we left multiply Eqs. (35) and (36) by
ẇ(2)T and ẇ(1)T, respectively. The difference between the
two products is

σ
(1)
ij ,j u̇

(2)
i + ṗ

(2)
i u̇

(1)
i + u̇

(2)
i f

(1)
i + φ̇(2)D

(1)
j ,j + φ̇(1)q(2)

−
(
σ

(2)
ij ,j u̇

(1)
i + ṗ

(1)
i u̇

(2)
i + u̇

(1)
i f

(2)
i

+ φ̇(1)D
(2)
j ,j + φ̇(2)q(1)

)
= 0, (37)

which can rearranged as

ṗ
(1)
i u̇

(2)
i − ṗ

(2)
i u̇

(1)
i + σ

(1)
ij u̇

(2)
i,j − σ

(2)
ij u̇

(1)
i,j

+ φ̇
(2)
,j D

(1)
j − φ̇

(1)
,j D

(2)
j = 
P, (38)

using the identities

σ
(1)
ij ,j u̇

(2)
i − σ

(2)
ij ,j u̇

(1)
i =

{
σ

(1)
ij u̇

(2)
i − σ

(2)
ij u̇

(1)
i

}
,j

−
(
σ

(1)
ij u̇

(2)
i,j − σ

(2)
ij u̇

(1)
i,j

)
, (39a)

φ̇(2)D
(1)
j ,j − φ̇(1)D

(2)
j ,j =

{
φ̇(2)D

(1)
j − φ̇(1)D

(2)
j

}
,j

−
(
φ̇

(2)
,j D

(1)
j − φ̇

(1)
,j D

(2)
j

)
, (39b)

where


P =
{
σ

(1)
ij u̇

(2)
i + D

(1)
j φ̇(2)

}
,j + f

(1)
i u̇

(2)
i − q(1)φ̇(2)

−
{
σ

(2)
ij u̇

(1)
i + D

(2)
j φ̇(1)

}
,j −

(
f

(2)
i u̇

(1)
i − q(2)φ̇(1)

)
.

(40)

The term 
P is the differential form of the difference
between the power that distribution 1 produces together
with the fields excited by distribution 2 and the power that
distribution 2 produces together with the fields excited by
distribution 1 and hence vanishes if the body is reciprocal.
The global form is obtained by volume integration, conver-
sion of the first and third terms in the integral into surface
integrals using the divergence theorem, and identification

of the boundary sources t
(l)
i = σ

(l)
ij nj and −w(l)

e = D
(l)
j nj of

distribution l.
We now expand the terms on the left-hand side of

Eq. (38) using the effective constitutive Eq. (10) in their
spatially local form (κ = 0) to obtain(

Šijk − Š
†
kij

) (
u̇

(1)

k u
(2)
i,j − u̇

(2)

k u
(1)
i,j

)
+ (

ρ̌ik − ρ̌ki

)
u̇

(2)
i u̇

(1)

k

+
(

W̌ik − W̌
†
ki

) (
u̇

(1)

k φ
(2)
,i − u̇

(2)

k φ
1)
,i

)
+

(
Ǎik − Ǎki

)
φ

(2)

,k φ
(1)
,i

+
(

B̌
†
ijk − B̌kij

) (
φ

(1)

,k u
(2)
i,j − φ

(2)

,k u
(1)
i,j

)
+

(
Čijkl − Čklij

)
u

(1)

k,l u
(2)
i,j = 0. (41)

The arbitrariness of the sources implies that the strain,
electric, and velocity fields are also arbitrary. Accordingly,
for Eq. (41) to hold for any ∇u, u̇, and ∇φ, the effective
constitutive tensors must satisfy

Ǎik = Ǎki, B̌
†
ijk = B̌kij , W̌

†
ki = W̌ik, (42)

in addition to the restrictions given in Eq. (33). It is clear
that the modified couplings Ŵ† and Ŵ exhibit the same

symmetry between W̌† and W̌, such that

Ŵ
†
ki = Ŵik. (43)

In view of Eqs. (33) and (42), we can now revisit the
conclusions in Sec. III and replace the conditions on the
Hermitian and skew-Hermitian parts of the tensors in the
long-wavelength limit by the conditions on their real and
imaginary parts, respectively.

The foregoing analysis is obtained in the long-
wavelength limit. We next derive the general result for
arbitrary wavelengths and show that the restrictions (33)
and (42) are its specialization. This is carried out by
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showing that if the body is reciprocal, then the govern-
ing equations are self-adjoint and in turn so is the Green
function, which renders the constitutive operator L self-
adjoint too. The latter property is remarked only in passing
by Willis [46,48] and Pernas-Salomón and Shmuel [52] in
their respective problems, perhaps because the notion that
reciprocity and self-adjointness are closely related is some-
what known [110,111]. However, since the self-adjoint
structure of the constitutive operator clearly depends on
the definition of the effective description, it is discussed in
more detail here.

To proceed, it is useful to employ the formulation of
Barnett and Lothe [112], who have formulated the piezo-
electric problem in a generalized space using the following
definitions:

Kαiβj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cαiβj , α, β ∈ {1, 2, 3} ,

BT
αij , β = 4, α ∈ {1, 2, 3} ,

Biβj , α = 4, β ∈ {1, 2, 3} ,

−Aij , α = β = 4,


αβ =
{

δαβ , α, β ∈ {1, 2, 3} ,

0, α or β = 4,

bα =
{

fα , α ∈ {1, 2, 3} ,

−q, α = 4,

(44)

where the range of Latin subscripts is limited to {1, 2, 3}.
The unified governing equations in terms of K, �, and b
read, in index notation,{

Kαiβj wβ,j

}
,i
+ ρω2
αβwβ = −bα , (45)

which defines the components Gβγ (x, X) of the Green
matrix via{

Kαiβj Gβγ ,j

}
,i
+ ρω2
αβGβγ = −δαγ δ (x − X) , (46)

where δ (x − X) is the Dirac delta. Equation (46) spells
out explicitly the components of the symbolic Eq. (9)
by Pernas-Salomón and Shmuel [52]. In the Appendix,
we describe the standard procedure to obtain the adjoint
equations and the corresponding adjoint Green tensor and
verify the components of this tensor satisfy

G
†
γβ (x, X) = G∗

βγ (X, x) ; (47)

we thus recover the known result that if the body satisfies

ρ∗ = ρ and K
†
αiβj = Kαiβj , where

K
†
αiβj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CT∗

αiβj , α, β ∈ {1, 2, 3} ,

BT∗
αij , β = 4, α ∈ {1, 2, 3} ,

B∗
iβj , α = 4, β ∈ {1, 2, 3} ,

−AT∗
ij , α = β = 4,

(48)

which is the case by virtue of Eq. (4), then the piezo-
electric problem is self-adjoint [113,114]. As explained in

the Appendix, in this case G
†
γβ (x, X) = Gγβ (x, X), which,

together with the previous result, implies that

Gγβ (x, X) = G∗
βγ (X, x) . (49)

We next recall the expression for the kernel L̃ obtained by
Pernas-Salomón and Shmuel [52], namely,

L̃ = 〈L〉 −
〈
LB

(
BG

)T
L
〉
+ 〈

LBGT〉 〈G〉−T
〈(

BG
)T

L
〉

;

(50)

the symbolic matrix formulation for L̃ translates to the
following components:

L̃αiβj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C̃αiβj , α, β ∈ {1, 2, 3} ,

B̃
†
αij , α ∈ {1, 2, 3} , β = 4,

B̃iβj , α = 4, β ∈ {1, 2, 3} ,

−Ãij , α = β = 4,

S̃iβj , α ∈ {1, 2, 3} , β = 5,

S̃
†
αij , α = 5, β ∈ {1, 2, 3} ,

W̃ij , α = 4 β = 5,

W̃
†
ij , α = 5, β = 4,

ρ̃ij , α = β = 5.

(51)

Through inspection of the components of Eq. (50) and
employment of the symmetries of G and K and the fact
that L = L∗, we verify the symmetry

L̃αiβj (x, X) = L̃βj αi (X, x) , (52)

where terms associated with the conventional couplings Ã,

B̃, B̃†, C̃, and ρ̃ and the modified couplings Ŵ, Ŵ†, Ŝ, and
Ŝ† also satisfy

L̃αiβj (x, X) = L̃∗
βj αi (X, x) , (53)

while the couplings of Willis type in their original form
satisfy

L̃αiβj (x, X) = −L̃∗
βj αi (X, x) ,

α ∈ {1, 2, 3, 4} , β = 5, and β ∈ {1, 2, 3, 4} , α = 5.
(54)

It is important to note that the symmetry Eq. (52)—which

delivers the self-adjoint property of L̃ as explained
later—originates from the symmetry L = LT and does
not require the composite to be lossless; symmetries (53)
and (54) originate from the assumption that L is also real.
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Interestingly, the modified cross-couplings Ŵ, Ŵ†,
Ŝ, and Ŝ† are related via same symmetry as the con-
ventional couplings, i.e., Eq. (53). The combination of
Eqs. (52)–(54) implies that the conventional couplings and
the modified cross-couplings are real, while those of Willis
type are pure imaginary. Together with fact that according
to Eq. (46) the Green tensor is an even function of ω [115],
this result implies that in the space-time domain the con-

ventional couplings Ã, B̃, B̃†, and C̃, ρ̃ and the coupling
of Willis type Ŝ, Ŝ†, Ŵ, and Ŵ† are real—as they should
be, since they relate real physical quantities. By contrast, in

the space-time domain, the cross-couplings S̃, S̃†, W̃, and
W† are pure imaginary—an unphysical result. This obser-
vation agrees with the analysis of Norris et al. [68] in the

purely elastic case, who have shown that C̃ and ρ̃ are real in

the space-time domain, while S̃ and S̃† are pure imaginary.
For statically homogeneous media, we can employ the

Fourier transform with respect to the translation x − X and
write these symmetries using indices in the transformed
domain as

Č∗
klij (κ , ω) = Čijkl (κ , ω) = Čklij (−κ , ω) , (55a)

B̌∗
kij (κ , ω) = B̌

†
ijk (κ , ω) = B̌kij (−κ , ω) , (55b)

Ǎ∗
ji (κ , ω) = Ǎij (κ , ω) = Ǎji (−κ , ω) , (55c)

ρ̌∗
ji (κ , ω) = ρ̌ij (κ , ω) = ρ̌ji (−κ , ω) , (55d)

for terms associated with conventional couplings; the
modified cross-couplings terms satisfy the same form of
symmetries, such that

Ŝ∗
jki (κ , ω) = Ŝ

†
ijk (κ , ω) = Ŝjki (−κ , ω) , (56a)

Ŵ∗
ji (κ , ω) = Ŵ

†
ij (κ , ω) = Ŵji (−κ , ω) , (56b)

while when they are in their original form, they satisfy

−Š∗
jki (κ , ω) = Š

†
ijk (κ , ω) = Šjki (−κ , ω) , (57a)

−W̌∗
ji (κ , ω) = W̌

†
ij (κ , ω) = W̌ji (−κ , ω) . (57b)

The symmetry between W̃ and W̃† is shown in detail in
the Appendix. It is clear that in the limit κ = 0, the sym-
metries (55) and (57) recover symmetries (33) and (42).
Equations (55)–(57) also endow the adjoint notion to the

symbol † for the nonlocal operators S† and W†, since these
symmetries imply that∫

�

S (u̇ (X)) : ∇u (x)dx =
∫

�

u̇ (x) · S† (∇u (X))dx,

(58a)

∫
�

W (u̇ (X)) · ∇φ (x)dx =
∫

�

u̇ (x) · W† (∇φ (X))dx,

(58b)

as well as for B†, which satisfies∫
�

B (∇u (X)) · ∇φ (x)dx =
∫

�

∇u (x) · B† (∇φ (X))dx;

(59)

the nonlocal operators R, A, and C are self-adjoint in
the above sense. At the cost of repetition, we clarify that
the equality between the middle and rightmost terms in
Eqs. (55)–(57) is obtained by relying only on the fact that
L = LT. This property leads to a self-adjoint effective oper-
ator L in the above sense and, specifically, renders S† and
W† (respectively, Ŝ† and Ŵ†) the adjoints of S and W
(respectively, Ŝ and Ŵ); the same goes for B† and B via
Eq. (59). Otherwise, it would by justified to replace the †
notation to distinguish them from the adjoint operators.

We further clarify that the equality between the left-
hand and middle terms in Eqs. (55)–(57) relies only on
the fact that in the frequency domain, the properties of

the composite satisfy Ľ = ĽT∗, or in other words they are
Hermitian. This does not necessarily imply that L is sym-
metric (although it can be) and it immediately satisfies

Eqs. (24)–(26) as equalities. A case in which Ľ = ĽT∗ and

Ľ �= ĽT corresponds to a nonreciprocal medium, the losses
of which are compensated by the energy it generates, such
that on average the material is lossless and passive (no
energy loss or gain).

V. CAUSALITY

The principle of causality states that an effect must fol-
low its cause. This principle implies the analyticity of
the response functions of linear systems and vice versa,
namely, analyticity implies causality [116,117]. With the
interpretation of the constitutive properties of linear mate-
rials as response functions, causality through analytic-
ity provides relations between the real and imaginary
parts of their (time) Fourier transforms. These relations
were first obtained in electromagnetics for the permeabil-
ity and permittivity tensors, where they are known as
the Kramers-Kronig relations [88–91]. This concept was
applied later on in other branches of physics—and specif-
ically in mechanics—to obtain conditions on the pertinent

064005-11



RENÉ PERNAS-SALOMÓN and GAL SHMUEL PHYS. REV. APPLIED 14, 064005 (2020)

constitutive properties [55,118]. Alù [57,67] has shown
that in certain cases the bianisotropic tensor is essential
for respecting causality in passive media. (We clarify that
the model Alù considered is local.) Indeed, some of the
electromagnetic homogenization schemes from which this
cross-coupling tensor is absent violate causality in such
media [1,119,120]. Analogously, Sieck et al. [69] have
recognized the need in Willis coupling to satisfy causality
by the effective constitutive properties in elastodynamics.
We clarify that the information from the Kramers-Kronig
relations is limited for active media, since it is possible
to realize anomalous responses for real frequencies (such
as antiresonance) using suitable causal polynomials (see,
e.g., Ref. [121]). To get useful results, it is thus necessary
to couple causality with passivity [122].

In this section, we develop the restrictions placed by
causality on the effective properties (3), i.e., when, micro-
scopically, the medium exhibits the intrinsic piezoelec-
tric effect, and macroscopically also exhibits the effective
electromomentum coupling. The framework developed in
Ref. [52] constitutes a platform to carry out this task with

respect to the effective operator L̃, which we recall is non-
local both in space and time. To facilitate the analysis, here
we focus on the long-wavelength limit κ = 0 and neglect
spatially nonlocal effects on causality [123]. Nevertheless,
we recall that according to Landau and Lifshitz [89], the
resultant equations should apply for any fixed value of κ .
Accordingly, we omit the spatial dependency of the fields
in Eq. (8) and rewrite it as

h (t) =
∫ t

−∞
L̃ (t − T) g (T) dT, (60)

bearing in mind that it holds at each material point. Let

τ = t − T; causality implies that L̃ must satisfy

L̃ (τ ) = 0, for τ < 0. (61)

The approach taken here to relate the real and imaginary
parts of its Fourier transform is standard and employs
the Plemelj formulas, see, e.g., Ref. [124]. This approach
is summarized next to provide a self-contained analysis.
As discussed by Nussenzveig [124], certain assumptions

regarding L̃ (t) are required in order for Ľ′ (ω) and Ľ′′ (ω)

to be related, where we recall that ′ and ′′ denote the real
and imaginary parts of a variable, respectively. In view of
Eq. (61), Eq. (11) takes the form

Ľ (ω) =
∫ ∞

0

L̃ (τ ) eiωτ dτ , (62)

where the integral is only over R+, implying that Ľ(ω) has
an analytic continuation in the upper half of the complex

plane. If we further assume at first that L̃(t) is square inte-
grable, then through the Parseval-Plancherel theorem, we

have that Ľ(ω) is square integrable along any line in the
upper half of the complex plane that is parallel to the real
axis, such that [124]

lim
α→±∞ Ľ

(
ω′ + iω′′) = 0, ω′′ ≥ 0. (63)

This property is employed in the application of Cauchy’s
integral formula to a closed curve � about an arbitrary
point ω0 in the upper half of the complex plane,

(
ω′′

0 > 0
)

Ľ (ω0) = 1

2π i

∮
�

Ľ (z)

z − ω0

dz, (64)

in order to show that it reduces to an integration along the
real axis:

Ľ (ω0) = 1

2π i

∫ +∞

−∞

Ľ (z)

z − ω0

dz, z′′ = 0. (65)

The case of real ω0 is obtained using a closed contour that
avoids ω0 by a semicircle of radius ε and, taking the limit
as ε → 0, to show that

Ľ (ω0) = 1

iπ
−
∫ ∞

−∞

Ľ (z)

z − ω0

dz, z′′ = ω′′
0 = 0, (66)

where

−
∫ ∞

−∞
= lim

ε→0

(∫ ω−ε

−∞
+

∫ ∞

ω+ε

)
(67)

denotes the Cauchy principal value. The real and imag-
inary parts of Eq. (66) provide the following relations:

Ľ′ (ω) = 1

π
−
∫ ∞

−∞

Ľ′′ (z)
z − ω

dz, (68a)

Ľ′′ (ω) = − 1

π
−
∫ ∞

−∞

Ľ′ (z)
z − ω

dz (68b)

between the Ľ′ (ω) and Ľ′′ (ω) at any real frequency ω.
An alternative form of the relations given in Eq. (68) is
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obtained using the fact that L̃(t) is real, and hence

Ľ∗ (ω) =
(∫ ∞

0

L̃ (t) eiωtdt

)∗
=

∫ ∞

0

L̃ (t) e−iωtdt = Ľ (−ω),

(69)

leading to

Ľ′ (ω) = Ľ′ (−ω) , (70a)

Ľ′′ (ω) = −Ľ′′ (−ω) . (70b)

The employment of these symmetries leads to

Ľ′(ω) = 2

π
−
∫ ∞

0

zĽ′′ (z)
z2 − ω2

dz, (71a)

Ľ′′(ω) = − 2

π
−
∫ ∞

0

ωĽ′ (z)
z2 − ω2

dz. (71b)

We next examine the case in which Ľ(ω) is not square
integrable but a bounded function. In this case, property
(63), which is needed to obtain Eq. (65), no longer holds

and consequently the relation between Ľ′ (ω) and Ľ′′ (ω)

can be determined only up to an arbitrary real constant.
To determine this constant, a knowledge of the value of

Ľ(ω) at some real frequency is needed. Let us say that Ľ(ω)

is differentiable and known at ω0; then, we can repeat the
procedure that led to Eqs. (68) and (71), except that now

we replace Ľ (ω) by the function


Ľ

ω

(ω) := Ľ (ω) − Ľ (ω0)

ω − ω0

, (72)

since it is bounded for ω → ω0, analytic in the upper half
of the complex plane and square integrable. If we further
assume that ω0 → ∞, the end result can be put in the form

Ľ′ (ω) = 2

π
−
∫ ∞

0

zĽ′′ (z)
z2 − ω2

dz + Ľ′ (∞) , (73a)

Ľ′′ (ω) = − 2

π
−
∫ ∞

0

ωĽ′ (z)
z2 − ω2

dz, (73b)

cf. Eq. (4.7) in Ref. [56]. Equation (73) should hold for all

the tensor-valued (history) functions that comprise Ľ (ω),

i.e., Ã, B̃, B̃†, and C̃, as well as S̃, W̃, their adjoints,
and their modified versions Ŝ and Ŵ. This conclusion
thus generalizes previous works by requiring that the elec-
tromomentum tensor is also subjected to relations of the
Kramer-Kronig type, as expected. We recall that in Sec. IV

show that the Fourier transforms of the constitutive tensors
of reciprocal, passive, and lossless media are all real,
including the modified cross-couplings Ŝ, Ŝ†, and Ŵ and

Ŵ†, and excluding Š, S̃†, W̌, and W̌†, which are pure imag-
inary. When this conclusion is combined with conditions
(73), we obtain in the long-wavelength limit of reciprocal,
passive, and lossless media that

Ǎ (ω) = Ǎ′ (∞) , B̌ (ω) = B̌′ (∞) ,

B̌† (ω) = B̌†′ (∞) , Č (ω) = Č′ (∞) ,

ρ̌ (ω) = ρ̌
′
(∞) , (74)

and, similarly, for the modified cross-couplings Ŝ, Ŝ†, Ŵ,
and Ŵ†,

Ŝ (ω) = Ŝ′ (∞) , Ŝ† (ω) = Ŝ†′ (∞) ,

Ŵ (ω) = Ŵ′ (∞) , Ŵ† (ω) = Ŵ†′ (∞) ,
(75)

where notably, the couplings of Willis type in their original
representation must be null. This is clear from Eq. (73b),
as the integrand on the right-hand side is identically zero
since these couplings are pure imaginary, which then
implies that the left-hand side—which is their imaginary
part—also vanishes.

VI. CLOSURE

Piezoelectric and piezomagnetic materials exhibit intrin-
sic coupling with nonmechanical fields. Recently, it has
been shown that the effective response of composites made
of such constituents exhibits additional cross-couplings
that are absent from the response of the constituents and
are of Willis type [52]. The recent development of such
generalized Willis materials comes with the question:
What are the mathematical restrictions that their constitu-
tive relations should satisfy in order to respect passivity,
reciprocity, and causality? In this paper, we address this
question by adapting standard methodologies used in elec-
tromagnetics, elastodynamics, and mathematics [55,56,
105,124].

We arrive at the following findings. From passivity,
we obtain several inequality conditions on the skew-
Hermitian and Hermitian parts of the Fourier transforms of
the effective properties. From reciprocity, we find certain
symmetry and adjoint relations that the effective opera-
tor satisfies. These conditions generalize the conditions
in Refs. [55,56] for the Milton-Briane-Willis equations
(i.e., the long-wavelength limit of the Willis equations),
not only by accounting for the electromomentum coupling
but also for nonlocal interactions, leading to wave-vector-
dependent conditions. Finally, from causality, we obtain
relations of the Kramer-Kronig type between the real and
imaginary parts of the operator in the frequency domain.
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A summary of the mathematical restrictions is given in
Table I. One implication that follows these restrictions
is that the additional cross-couplings in the time domain
are not with the electric field and velocity but with their
time derivative. This insight is analogous to the insights
in Refs. [56,59,60,69], suggesting acceleration-dependent
stress and strain rate-dependent momentum formulation in
the elastic case.

We conclude this paper by highlighting the applicational
impact of our results. Our conclusions assess how energy
is converted in such metamaterials and, in turn, what is
the efficiency that devices based on these cross-couplings
can achieve. Indeed, the counterpart of our conclusions in
the acoustic setting [55–57] has guided Quan et al. [58]
in the design of metasurfaces with maximum Willis cou-
pling for sound steering. Similarly, we expect this work
to promote the design of devices that exploit the electro-
momentum coupling to efficiently manipulate mechanical
waves.
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APPENDIX: DERIVATIONS RELATED TO THE
ADJOINT OPERATOR AND GREEN TENSOR

The left-hand side of Eq. (45) defines the action of an
operator M on the vector field w. Accordingly, the left-
hand side of Eq. (45) is the α component of the action of
M on the vector field G.(γ ), the components of which are
Gβ(γ ), β = 1, 2, 3, 4. The adjoint operator M† is defined
via the Green identity〈

M (w), v
〉
�

− 〈
w,M† (v)

〉
�

= B.T., (A1)

where〈
M (w), v

〉
�

:=
∫

�

M (w) · v∗dx =
∫

�

{M (w)}α v∗
αdx

(A2)

and B.T. denotes boundary terms associated with a sur-
face integral of some bilinear function of w, v, and their
derivatives, where the superscript ∗ denotes the complex-
conjugate operation. Setting w = w(1) and v = w(2), we
obtain

〈
M (w), v

〉
�

=
∫

�

({
Cijklu

(1)

k,l + BT
ijkφ

(1)

,k

}
,j

u
(2)∗
i +

{
Bijku

(1)

k,l − Aij φ
(1)
,j

}
,i
φ(2)∗ + ω2ρu

(1)
i u

(2)∗
i

)
dx

=
∫

�

(
u

(1)

k

{
Cijklu

(2)∗
i,j + BT

kjiφ
(2)∗
,i

}
,j

+ φ(1)
{

Bijku
(2)∗
j ,k − Aij φ

(2)∗
,i

}
,i
+ u

(1)
i ω2ρu

(2)∗
i

)
dx

=
∫

�

(
u

(1)

k

{
CT

klij u
(2)∗
i,j + BT

kjiφ
(2)∗
,i

}
,j

+ φ(1)
{

Bijku
(2)∗
j ,k − AT

jiφ
(2)∗
,i

}
,i
+ u

(1)
i ω2ρu

(2)∗
i

)
dx

=
∫

�

(
u

(1)

k

{
CT∗

klij u
(2)
i,j + BT∗

kji φ
(2)
,i

}∗

,j
+ φ(1)

{
B∗

ijku
(2)

j ,k − AT∗
ji φ

(2)
,i

}∗

,i
+ u

(1)
i

{
ω2ρ∗u

(2)
i

}∗)
dx

= 〈
w,M† (v)

〉
�

, (A3)

using integration by parts, where the boundary terms that result in the process are indeed bilinear functions of w and v
and are omitted from Eq. (A3) for brevity. This identifies M† with the adjoint equations

{
K

†
αiβj wβ,j

}
,i
+ ρ∗ω2
αβwβ = mα , (A4)
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where

K
†
αiβj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CT∗

αiβj , α, β ∈ {1, 2, 3} ,

BT∗
αiβ , β = 4, α ∈ {1, 2, 3} ,

B∗
iβj , α = 4, β ∈ {1, 2, 3} ,

−AT∗
ij , α = β = 4.

(A5)

Accordingly, the components of the adjoint Green matrix

G
†
βγ (x, X) are defined by{
K

†
αiβj G

†
βγ ,j

}
,i
+ ρ∗ω2
αβG

†
βγ = −δαγ δ (x − X) . (A6)

Following the standard procedure, we set wα (χ , x) =
Gα(γ ) (χ , x) and vα (χ , X) = G

†
α(β) (χ , X), and employ

Eqs. (45)–(A1), (A4) and (A6) to show that〈
M (w), v

〉
�

− 〈
w,M† (v)

〉
�

=
∫

�

{
MG.(γ ) (χ , x)

}
α

G
†∗
α(β) (χ , X)dχ

−
∫

�

Gα(γ ) (χ , x)
{
M†G

†
α(β) (χ , X)

}∗
dχ

=
∫

�

δαγ δ (χ − x) G
†∗
α(β) (χ , X)dχ

−
∫

�

Gα(γ ) (χ , x) δαβδ (χ − X)dχ

= G
†∗
γ (β) (x, X) − Gβ(γ ) (X, x) = 0, (A7)

and hence G
†
γβ (x, X) = G∗

βγ (X, x) . If the body satisfies

K
†
αiβj = Kαiβj and ρ∗ = ρ—which is the case by virtue

of Eq. (4)—then the problem is self-adjoint, as Eq. (45)
is identical to Eq. (A4). In this case M = M†, hence

G
†
γβ (x, X) = Gγβ (x, X), which, together with the previous

result, implies that

Gγβ (x, X) = G∗
βγ (X, x) . (A8)

As discussed in Sec. IV, the symmetries of G are required

in showing that L̃—which is a function of G—satisfies the
symmetries that are given by Eqs. (52)–(54), i.e., it is self-

adjoint. The components of L̃ involve lengthy expressions,
which we omit here. We choose, however, to provide an

expression for W̌ and W̌† and show the symmetry that we
report in the body of the paper. We begin by writing the

result for W̌† from Eq. (50) as

W̃†(x, X) = −α32 + γ 32, (A9)

where α32 and γ 32 are the (3,2) entries of the sym-

bolic 3 × 3 block matrices α =
〈
LB

(
BG

)T
L
〉

and γ =〈
LBGT

〉 〈
G

〉−T
〈(

BG
)T

L
〉
, which read

α32(x, X) = s
〈
ρ(X)

(∇XGT
11

)
BT(X)

〉
− s

〈
ρ(x)

(∇XGT
21

)
A(X)

〉
, (A10)

γ 32(x, X) = s
〈
ρ(x)GT

11

〉 〈
VT

11

〉 〈(∇XGT
11

)
BT(X)

〉 − s
〈
ρ(x)GT

11

〉 〈
VT

11

〉 〈(∇XGT
21

)
A(X)

〉
+ s

〈
ρ(x)GT

21

〉 〈
VT

12

〉 〈(∇XGT
11

)
BT(X)

〉 − s
〈
ρ(x)GT

21

〉 〈
VT

12

〉 〈(∇XGT
21

)
A(X)

〉
+ s

〈
ρ(x)GT

11

〉 〈
VT

21

〉 〈(∇XGT
12

)
BT(X)

〉 − s
〈
ρ(x)GT

11

〉 〈
VT

21

〉 〈(∇XGT
22

)
A(X)

〉
+ s

〈
ρ(x)GT

21

〉 〈
VT

22

〉 〈(∇XGT
12

)
BT(X)

〉 − s
〈
ρ(x)GT

21

〉 〈
VT

22

〉 〈(∇XG22) A(X)〉 , (A11)

where

V ≡ G−1 =
(

V11 V12

V21 V22

)
. (A12)

Note that if G satisfies the symmetry GT∗(x, X) =
G(X, x), then GT∗(x, X)−1 = G(X, x)−1 and, conse-
quently, VT∗(x, X) = V(X, x), so

VT∗
pq (x, X) = Vqp(X, x). (A13)

On the other hand, from Eq. (50) we have

W̃T∗(X, x) = −αT∗
23 (X, x) + γ T∗

23 (X, x), (A14)

where

αT∗
23 (X, x) = s∗ 〈

ρT∗(x)
(∇x′G∗

11

)
BT∗(X)

〉
− s∗ 〈

ρT∗(x)
(∇x′G∗

12

)
AT∗(X)

〉
, (A15)
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γ T∗
23 (X, x) = s∗ 〈

ρT∗(x)G∗
11

〉 〈
V∗

11

〉 〈(∇x′G∗
11

)
BT∗(X)

〉 − s∗ 〈
ρT∗(x)G∗

11

〉 〈
V∗

11

〉 〈(∇x′G∗
12

)
AT∗(X)

〉
+ s∗ 〈

ρT∗(x)G∗
11

〉 〈
V∗

12

〉 〈(∇x′G∗
21

)
BT∗(X)

〉 − s∗ 〈
ρT∗(x)G∗

11

〉 〈
V∗

12

〉 〈(∇x′G∗
22

)
AT∗(X)

〉
+ s∗ 〈

ρT∗(x)G∗
12

〉 〈
V∗

21

〉 〈(∇x′G∗
11

)
BT∗(X)

〉 − s∗ 〈
ρT∗(x)G∗

12

〉 〈
V∗

21

〉 〈(∇x′G∗
12

)
AT∗(X)

〉
+ s∗ 〈

ρT∗(x)G∗
12

〉 〈
V∗

22

〉 〈(∇x′G∗
21

)
BT∗(X)

〉 − s∗ 〈
ρT∗(x)G∗

12

〉 〈V22〉
〈(∇x′G∗

22

)
AT∗(X)

〉
. (A16)

Note that if LT∗ = L, since GT∗(X, x) = G(x, X), Eq. (A13)
holds and α32(x, X) = −α23

T∗(X, x), γ 32(x, X) = −γ 23
T∗

(X, x), for s = −iω, indicating that W̃†(x, X) = −W̃T∗
(X, x). We assume statistically homogeneous media, so
W̃†(x − X) = −W̃T∗(X − x) and its Fourier transform
leads to the relation W̌†(κ) = −W̌T∗(κ) or

W̌†(κ , ω) = −W̌T∗(κ , ω), (A17)

which is the first relation in Eq. (57b). If L is real, from the
Fourier transform of Eq. (52) we have

W̌†(κ , ω) = W̌T(−κ , ω). (A18)

Finally, from Eqs. (A17) and (A18) we obtain the relation

W̌(κ , ω) = −W̌∗(−κ , ω). (A19)
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