
 

 

20th International Conference on Renewable Energies and Power Quality (ICREPQ’22) 
Vigo (Spain), 27th to 29th July 2022 

Renewable Energy and Power Quality Journal (RE&PQJ) 
 ISSN 2172-038 X, Volume No.20, September 2022 

  
 

A nested decision tree for event detection in smart grids 
 

J. Turanzas1, M. Alonso1, H. Amaris1, J. Gutierrez1 and S. Pastrana1 
 

1 Electrical Engineering Department 
2 Computer Science and Engineering Department 

Universidad Carlos III de Madrid 
Avda. Universidad, 30 28911 Leganés. Madrid (Spain) Phone:+ 0034 916 248333, e-mail:  
jaime.turanzas@alumnos.uc3m.es, monica.alonso@uc3m.es, hortensia.amaris@uc3m.es, 

josue.gutierrez@alumnos.uc3m.es, spastran@inf.uc3m.es 

Abstract.  
 
Digitalization process experienced by traditional power networks 
towards smart grids extend the challenges faced by power grid 
operators to the field of cybersecurity. False data injection attacks, 
one of the most common cyberattacks in smart grids, could lead 
the power grid to sabotage itself. In this paper, an event detection 
algorithm for cyberattack in smart grids is developed based on a 
decision tree. In order to find the most accurate algorithm, two 
different decision trees with two different goals have been trained: 
one classifies the status of the network, corresponding to an event, 
and the other will classify the location where the event is detected. 
To train the decision trees, a dataset made by co-simulating a 
power network and a communication network has been used. The 
decision trees are going to be compared in different settings by 
changing the division criteria, the dataset used to train them and 
the misclassification cost. After looking at their performance 
independently, the best way to combine them into a single 
algorithm is presented.  
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1. Introduction 
 
Power Systems are critical infrastructures in modern and 
developed countries since the beginning of the 20th century. 
If a power failure is long enough, it could lead to complete 
interruption of key services and the economy.  
 
Unlike more traditional power systems, smart grids have 
greater interactions and communications with intelligent 
devices and have a more complex context. All the 
interactions and communications made between the 
network and the devices involved make smart grids a more 
open environment and highly dependent on the quality and 
reliability of the data. This open environment makes the 
smart grids more vulnerable to intruders and cyberattacks 
that may be critical to the proper functioning of the 
network. 
 
Main detection techniques used in smart grids focus on the 
development of intrusion detection systems (IDS) [1-3].  
The massive incorporation of monitoring and control 
elements in the smart grids generates a huge amount of data 
and information about the state of the network. Modifying 

the information recorded by sensors or smart meters, or 
altering the operating instructions, is part of the 
cyberattacks on smart grids known as FDI (False Data 
Injection). The consequences of these attacks are very 
broad, from electricity theft by altering the demand of low 
voltage consumers, to the disconnection of some generators 
due to erroneous control signals. 
 
Traditionally, techniques based on network models have 
been used to detect cyberattacks on smart grids. However, 
both traditional methods based on state estimation, as well 
as methods of detecting erroneous data, fail in the context 
of Smarts Grids [4], as well as in the real-time detection of 
alterations of measures or operation set points, as is the case 
of FDI type cyberattacks. Currently, techniques based on 
the use of data emerge as an alternative in the detection of 
attacks thanks to the massive availability of data in smart 
grids. This category of tools to detect attacks is the most 
innovative and the one that presents greater complexity due 
to the management of the data to be carried out, which is 
why it is common to use statistical methods and Artificial 
Intelligence techniques, such as Machine Learning (ML) 
for the detection of the attack. 
 
In this paper, we present a ML algorithm, based on a 
decision tree, for FDI cyberattacks. The nested algorithm is 
able to detect twice: the false data and the device attacked 
in a cyberattack. A co-simulation between OMNET++ and 
Simulink is used to create a dataset of FDI attacks to the 
IEEE 14 buses test system. The dataset is used to train the 
algorithm. The results show a good performance of the 
developed algorithm to deal with FDI attack detection. 
 
 
 
2. Problem Approach 
 
A. State of Art 
 
The high degree of automated communications between the 
new intelligent devices and the smart grid, creates a new 
fissure on the security systems. Today it is easier to attack 
a power system from anywhere, through internet, 
anonymously, using a weakness on the communications 
infrastructure and with a low budget. This new cyberattacks 
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lead to new types of attack like the false data injection 
(FDI) situations in which the attacker injects information 
that replaces all or part of the information being monitored, 
potentially causing the system to sabotage itself. 
 
Event classification methods employ the historical data 
recorded in smart grids (information recorded by data 
acquisition systems, states, and operating instructions) to 
establish the complex nonlinear relationships between the 
available data representing network behavior. Several 
works have applied supervised ML techniques for intrusion 
detection in smart Grids, such as decision trees [5], Support 
Vector Machines (SVM)  [6], Random Forest  [7] and 
Naïve Bayes  [8]. 
 
Yueyu Deng et al. look for reduce the prediction times [9].  
To detect the event, they look at deviations between a load 
forecasting method and the actual load with real-time 
measurements. They used Support Vector Regression 
(SVR) to get the load forecast and then Support Vector 
Machine (SVM) to classify the scenarios as normal or 
FDIA. One of the weak points in this method is that an 
unpredictable event can happen, and the algorithm would 
predict that the system is being attacked. A forecasting 
problem can trigger the predictor and the system cannot be 
under an attack and its behavior is normal within this 
irregularity.  
 
Neural Networks (NN) has been used in many ways to 
detect FDI attacks. Recurrent Neural Networks (RNN) [10] 
is compared with other methods and performance better 
than other methods as SVM. RNN are becoming popular 
due to their ability to temporally contextualise each 
instance. Other NN as Deep Belief Networks (DBN) [11] 
have been compared with SVM in different models and the 
results indicates that each model performance different 
depending on the power system model (SVM performed 
better in IEEE-9,14 and 30 and DBM in IEEE-118 and 
300). 
 
Mario R. Camana Acosta et al. using randomized trees and 
scoring good accuracy results [12]. However, the algorithm 
cannot give more information about where the problem is, 
that is, where the system is being attacked.  
 
Comparing all the papers mentioned, the better results are 
not always offered by the same machine learning method, 
it depends on the system, on the variables measured, the 
dataset and the way in which the method is trained.  
 
B. Our Proposal 
 
In this article we propose a cyberattack detection algorithm. 
The algorithm developed is able to detect not only the data 
modified, but also the attacked device in the grid. Decision 
trees are used for FDI attack detection algorithm. 
 
For the training process, a dataset is developed based on a 
co-simulation between OMNET++ and Simulink under 
normal conditions and simulated FDI attacks. Each 
scenario is labelled with the status of the power grid and the 
location of the attack. The simulation envisaged different 
attacks’ type and location. 

With both labels, the proposed FDI detection algorithm 
look for the combination of two models that better perform: 
 

1) Location:  To detect attacked device of an 
abnormal situation. 

2) Status:  FDI attack on some electrical feature. 
 
 This method is the first to allocate the threat on the smart 
grid and the first trained with data result of co-simulation 
of attacks. The type of attacks proposed are also a new 
feature of our dataset. The final algorithm is the 
combination of these two different models in order to have 
an only FDI attack detection algorithm. 
 
3. Attack Detection: Location and Status  

 
A decision tree is a classifier method which classifies the 
instances using recursive partitioning of data in a tree-like 
model. The algorithm will stop dividing the groups 
according to the criteria we define. The criterion can be a 
minimum number of instances in each group, a maximum 
or minimum depth on the tree or a minimum gain of 
information on each partition.  Starting with the complete 
dataset, it will be split depending on the value of some 
features. The features used as a division criterion on each 
partition is chosen according to the internal homogeneity in 
the groups resulting from the partition and the 
heterogeneity between groups. Depending on the value in 
these features, instances will be directed to one node or 
another. These nodes are groups labelled to optimize the 
accuracy of the model. The criterion used to separate the 
instances (that measures the inner homogeneity and 
external heterogeneity) and how to measure the accuracy of 
the model are hyperparameters.  
 
The settings variation tests are:  
 

1) Training Dataset:  We will compare the results 
between the model trained with complete dataset 
and the dataset without line breakers features. 

2) Division Criteria: The comparison is made 
between Giny Impurity (eq.1) and Information 
Gain (eq.2). 
 

 
(1) 

   
Where pi is the probability of being randomly 
classified as the class i. 

 
(2) 

Where pi is the same as in equation 1 and E is 
Information Entropy: 

 
(3) 

 
3) Misclassification Cost Function: This function 

scores the accuracy of the model. Generally, all 
the classification errors have the same weight and 
all they are undesirable in the same way. 
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Sometimes, there are errors that are more 
important to avoid than others and the 
misclassification cost function need to adjust their 
weights. 
 

We have trained different decision trees and compared their 
results to find the better combination between them, 
looking for one decision tree predicting before the other, 
discarding some cases or not, and studying the difference 
of performance removing some variables or not. 
 
The final algorithm has two different decision trees, one of 
them classifies the location of the attack and the other the 
type of attack 
 
4. Training dataset 
 
The algorithm implemented has been trained with a dataset 
made from co-simulation of IEEE14 test system on 
Simulink receiving information from a communication 
network that send packages of false information simulated 
on OMNET++ (Figure 1).  
 

 
Fig.1. Co-simulation for training dataset creation 

 
The dataset features are shown in Table I. 
 
In the co-simulation false data package has been created 
randomly in OMNET++ and sending to Simulink IEEE 14 
buses test system. These false data substitute original 
electrical features data and, on some occasions, has been 
combined with a false status of the line breakers. The last 
two features (status and bus labels) work as labels for 
supervised decision tree learning developed. Status labels 
are as follow: 
 

1) State 0: Normal Situation 
2) State 2: FDI attack on some electrical feature. 
3) State 3: FDI attack on a line breaker status. A Line 

breaker can appear as closed without being closed. 
4) State 4:  FDI combined attack on line breakers and 

electrical feature. 
 
Line labels stand for the line in which the false data 
appears. Label 0 represents a normal situation, the other 
labels (from 1 to 14) represent the line in which the attack 
has been detected. 
 
The dataset has 8.758 instances corresponding to different 
generation/demand scenarios under normal operation 
conditions or attacks scenarios. The instances 
corresponding to attacks scenarios are balanced in number 
of attack cases of each status and bus breakers. For each 

instance, electrical and logical features have been recorded. 
We have used two datasets: the original one with 8758 
instances, and a second dataset with reduced number of 
normal situations to balance the number of instances in the 
4 classes. Comparing the results, it seems better to keep the 
original distribution to better recognize normal situations, 
which are going to happen most of the time. 
 

Table I. – Dataset Features 
 
Type of Features Quantity Total 

Amount 
Electrical Features 

Active and Reactive Power on 
Generators 

10 10 

Active and Reactive Power on 
Buses 

28 38 

Angle and Module on Buses 28 66 
Angle and Module of Loads 40 106 

Logical Features 
Line Breakers Status 15 121 
Status Label 1 122 
Bus Label 1 123 

 
 
 
5. Results 
 
A. Training Dataset 
 
In order to determine the minimum dataset size and number 
of features for the training process, 4 datasets have been 
used: 
 

Dataset 1.a: The dataset has 8758 instances without line 
breakers status features.  
 
Dataset 1.b: This dataset is a reduction of complete 
Dataset 1.a, and it contains only 3600 instances without 
line breakers status features. 
 
Dataset 2.a: Complete dataset with breaker status 
features. 
 
Dataset 2.b: Reduced dataset 1.a with 3600 instances 
and line breakers status features. 

  
All datasets have been used to train the location and status 
algorithm to compare their performances and how the 
amount of data affects to the accuracy. As it can be seen in 
results shown in Fig. 2, without line breaker status feature, 
the detection algorithm global accuracy is 76.2%. 
However, it is very difficult to predict an attack of label 3 
(FDI on breakers), only 72 instances have been correctly 
classified, that is the 8.4% of instances related to label 3. 
By the way, training status algorithm with dataset 2.a, the 
accuracy has been improved to 99.98%, as it can be seen in 
Fig. 3. State 3 cyberattack is completed detected with 
dataset 2.a. 
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Fig.2. Confusion Matrix of the decision tree that classifies the 

state of the smart grid. Trained with dataset 1.a. 

 
Fig.3. Confusion Matrix of the decision tree that classifies the 

state of the smart grid. Trained with dataset 2.a 
 

The improvement on the accuracy in dataset 2.a with 
respect dataset 1.a happens in the same way for the location 
algorithm. Fig.4 and Fig. 5 show the confusion matrix for 
dataset 1.b and 2.b training process respectively. As in the 
previous case, incorporation of line breakers features 
improves the performance of detection algorithm from 
79.39% to 100%.  
 
The accuracy after the training with datasets 1.b and 2.b is 
shown in Table II. We can appreciate how the accuracy is 
close to 100% when the training data has the line breakers 
features, case similar to the Table III.  Precision decreases 
dramatically when training is done without line breakers 
features in dataset 1.b, scoring less than 50% of accuracy. 
 
As it can be seen, the performance of location algorithm is 
better than the status algorithm in terms of accuracy, 
79.39% vs 76.2%, with a lower size of the training dataset. 
It can be concluded that status algorithm is more sensitive 
to breaker status feature than to location algorithm. This 
may be due to the number of classes. 
 
The accuracy without breakers is not acceptable for a 
reliable algorithm, and the lack of these features failure to 
detect FDI attack on them. The dataset for training the 
algorithm will have all the instances (most of them, normal 
situations) and all the features shown in Table I. 
 
Table II shows a summary of accuracy for status and 
location algorithm. 
 
 
 
 

B. Division Criteria 
 
All the decision trees trained previously have used Giny 
Impurity as the criteria to divide the instances group in each 
node into two new groups, but it is not the only criterion. 
We show in Table IV the results of the accuracy for a 
decision tree trained with a complete dataset but a different 
criterion. The criterion used was Entropy Information Gain 
whose main difference it has been the computation time. 
The results shown in Table IV show a slightly lower 
accuracy in most of the cases. 
 

 
Fig.4. Confusion Matrix of the decision tree that classifies the 

location of the smart Grid. Trained with dataset 1.a 

 
Fig.5. Confusion Matrix of the decision tree that classifies the 

location of the attack. Trained with dataset 2.a 
 

Table II. – Accuracy with balanced normal situations 
 
 With line 

breakers 
Without line 

breakers 
Status Prediction 99,63% 49,67% 
Location Prediction 99,86% 63,39% 

 
Table III. – Accuracy of individual decision trees 

 
 With line 

breakers  
Without line 

breakers 
Status Prediction 99,98% 76,20% 
Location Prediction 100% 79,39% 

 
Fig.6 shows the confusion matrix of the decision tree 
trained with dataset 1.a. It could be seen that errors’ 
distribution is quite similar to the one presented in Fig. 2. 
Comparing Giny Impurity and Entropy results we can 
conclude that there is no significant accuracy variation 
except in the status prediction without breakers, where 
decrease from a 76,20% accuracy to a 59,83%.  
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Table IV. – Accuracy of individual decision trees using Entropy 
Information Gain as division criterion. Model trained with the 

full dataset. 
 

 With line 
breakers  

Without line 
breakers 

Status Prediction 99,98% 59,83% 
Location Prediction 99,95% 78,83% 

 
 

 
Fig.6. Confusion Matrix of the decision tree that classifies the 

state of the smart grid. Trained with dataset 1.a 
 
B. Weights 
 
The misclassification function is the function that gives the 
accuracy score of each model. Initially, this function 
understand that all misclassification errors are undesirable 
in the same way, but in the case of study it is not true. 
 
In case of a cyberattack, it is better to predict a case of 
attack and being a false alarm rather than ignore an intruder. 
That is the reason why we tested training decision trees 
with different weights for each class of error. The weights 
have been configured in such a way that an error that causes 
an attack to be ignored is penalised more heavily than an 
error that confuses types of attack. 
 
Results presented in Fig. 7 show confusion matrix of a 
decision tree that predict the state of the power system. It 
has been trained with dataset 1.a. 
 
The global accuracy is similar in all cases as we can see in 
Table V with a slight improvement in the results, but the 
main difference is on the distribution of the errors.  
 

Table V. – Accuracy of individual decision trees using 
unbalanced weights 

 
 With line 

breakers  
Without line 

breakers 
Status Prediction 99,93% 72,04% 
Location Prediction 99,99% 80,34% 

 
Fig.7. Confusion Matrix of the decision tree that classifies the 

state of the smart grid. Trained with dataset 1.a and with Entropy 
Information Gain division criteria 

 
D. Nested Algorithm 
 
From the results above, apart from the differences in 
performance in the configurations we can obtain the 
following conclusions: 
 

1) Dataset without Breakers:  The dataset with 
breakers instances is pretty accurate, there is 
barely any room for improvement.  

2) Location status ignores fewer attacks:  Looking at 
the first column of the confusion matrices we can 
appreciate that there are more instances classified 
as classes corresponding to attacks in status 
predictors rather than in location predictors. This 
may be due to the more classes in location 
predictors. The final model will use the location 
status to be the algorithm to classify if there is an 
attack or not. 

3) The division criteria and weights: The differences 
are small enough to discard them in this first 
nested model, but can be interesting training the 
location predictor with the unbalanced 
misclassification cost function 

 
Considering the previous conclusions, the nested final 
model first classifies the attack’s location and then 
classifies the attack’s types as soon as the data is received. 
In all cases, the location algorithm is more accurate than the 
state algorithm, that is the reason why the algorithm has this 
workflow.  
 
Fig. 9 show the results of the nested FDI algorithm. As it 
can be seen, the status algorithm accuracy of the nested 
algorithm trained with dataset 1.b is improved compared to 
individual status algorithm. Moreover, misclassification 
attacks have been reduced in a 50%. 

 
Table VI. – Accuracy of individual decision trees using the 

nested Model compared with the results of Table II. 
 

 Simple FDI 
Algorithm 

Nested FDI 
Algorithm 

Status Prediction 76,20% 80,59% 
Location Prediction 79,39% 79,39% 
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Fig.9. Confusion Matrix of the nested model that classifies the 

state of the smart grid. Trained with dataset 1.a  
 
 
5. Conclusion 
 
To deal with smart grids cyber challenges, in this paper an 
event detection algorithm is developed. The event detection 
algorithm objectives are twice: detect an event (status) and 
detect the location of the event (location), that is, the device 
attacked. Two decision trees have been developed to deal 
with individual objectives. The final event detection 
algorithm combined both individual decision trees in a 
nested algorithm in order to improve the accuracy of the 
event detector. 
 
Looking at the results of individual decision trees 
performance, it can be observed that the algorithms using 
the features corresponding to the breakers status make 
almost none misclassification even when FDI attack takes 
place in the smart grid. The inconvenient of these 
algorithms is that depends on available information. 
 
In order to reduce the number of features or data involved 
in the event detector, a nested algorithm has been proposed. 
The results of individual decision trees been shown that 
accuracy of location algorithm is higher than accuracy of 
status algorithm. For that reason, the nested event detector 
algorithm predicts first the attack location and second the 
status. The results of the nested algorithm demonstrate an 
improvement in the status algorithm accuracy. 
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