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Abstract 
Fluid models of the slow-dynamics of magnetized, weakly-collisional electrons lead to 
build computationally-affordable, long-time simulations of plasma discharges in Hall-
effect and electrodeless plasma thrusters. This paper discusses the main assumptions 
and techniques used in 1D to 3D electron fluid models, and some examples illustrate 
their capabilities. Critical aspects of these fluid models are the expressions for the 
pressure tensor, the heat flux vector, the plasma-wall fluxes, and the high-frequency-
averaged electron transport and heating caused by plasma waves, generated either 
by turbulence or external irradiation. The different orders of magnitude of the three 
scalar momentum equations characterize the electron anisotropic transport. Central 
points of the discussion are: the role of electron inertia, magnetically-aligned meshes 
versus Cartesian-type ones, the use of a thermalized potential and the infinite mobil-
ity limit, the existence of convective-type heat fluxes, and the modeling of the Debye 
sheath, and wall fluxes. Plasma plume models present their own peculiarities, related 
to anomalous parallel cooling and heat flux closures, the matching of finite plume 
domains with quiescent infinity, and solving fully collisionless expansions. Solutions of 
two 1D electron kinetic models are used to derive kinetically-consistent fluid models 
and compare them with more conventional ones.

Keywords: Magnetized fluid modeling, Numerical tools, Electron transport, Hall 
thrusters, Electrodeless plasma thrusters, Magnetic nozzles and plumes

Introduction
In the last decade, plasma propulsion has taken from chemical propulsion the leader-
ship of primary in-space propulsion for many mission types: from large geostationary 
satellites to constellations of mid and mini satellites, space tugs, and plans for Lunar 
and Mars orbiting. !e most mature technologies in plasma propulsion are the gridded 
ion thruster (GIT) and the Hall effect thruster (HET). GITs have better propulsive per-
formances but are less throttable and more complex as a system (mainly electrically). 
Except for interplanetary missions, HETs tend to be cost-optimal, making them the 
dominant technology today [1].

With the boom of new space applications and more ambitious goals for classical ones, 
the requirements on new plasma thrusters are more demanding and varied. !e design, 
testing, and certification of new HET prototypes is a very long and costly process, raising 
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a serious concern on whether the expected large demand will be satisfied on time prop-
erly. !e whole development cycle of a HET would benefit much if reliable, predictive 
simulations tools of all functional aspects of the thruster were available. A central bot-
tleneck to achieve this is the reliable simulation of the plasma discharge, since this deter-
mines the propulsive performances of the thruster, the thermal loads on the thruster 
assembly, the requirements on the electric subsystem, and the degradation of thruster 
surfaces.
!e physics of the plasma discharge in HETs is quite complex in phenomena and not 

fully understood yet, thus explaining the lack of fully predictive models. In particular, 
two characteristics of the discharge are at the core of the modeling issues. First, the 
plasma is rarefied, (i.e. weakly collisional) and the velocity distribution function (VDF) of 
each species can be non-Maxwellian. Plasma-wall interaction and collisional processes 
are specially affected by this. !us, kinetic models are required, at least partially, for a 
fully-consistent description. Second, the plasma is meso-magnetized (i.e. electrons tend 
to be fully magnetized while ions are weakly magnetized in channel and plume), which 
gives rise to (i) anisotropic electron dynamics and (ii) high-frequency, wave-based tur-
bulence. !ese two phenomena lead to the anomalous cross-field transport of electrons, 
which penalizes performances. However, after several decades of research, a minimally-
reliable macroscopic model of that transport, to be implemented in codes describing 
HET long-time performances, is lacking.

In addition to mature plasma propulsion technologies, other ones are being 
researched, looking for potential advantages in terms of cost, simplicity, performances, 
application niche, etcetera. !e electrodeless plasma thruster (EPT) family pertains to 
that category [2]. An EPT consists of two stages. First, there is the thruster channel, 
where plasma production and heating is achieved by absorption of the energy of electro-
magnetic (EM) waves generated by an external emitter. !e second stage is a magnetic 
nozzle (MN) [3], i.e. a longitudinal convergent-divergent magnetic field, created by an 
external magnetic circuit and responsible of channeling and accelerating supersonically 
the plasma beam. !e helicon plasma thruster (HPT) [4–6] and the electron cyclotron 
resonance thruster (ECRT) [7, 8] are two prominent designs of EPTs. While HETs and 
EPTs present obvious differences in their mechanisms to energize the plasma, the elec-
tron modeling framework for both of them is the same. Finally, the electron framework 
for HETs is also applicable to the high efficiency multistage plasma thruster [9] and the 
mid-power applied-field magnetoplasmadynamic thruster [10].
!e weak collisionality of HET and EPT discharges makes particle-in-cell (PIC) formu-

lations very efficient computationally (although noisy) for kinetic models of the plasma 
discharge. However, full-PIC 3D modeling of all plasma species, describing the long-time 
response (i.e. about 1-10 miliseconds) of the discharge is hardly affordable yet because of its 
huge computational cost. !is is due to the smallness of the Debye length and the inverse 
of the plasma frequency. Furthermore, in a PIC formulation, the timesteps for advancing 
neutrals (subindex n), ions(i), and electrons(e) scale typically as !tn ∼ 102!ti ∼ 104!te. 
Consequently (and as it is customary in applied research), practical modeling must sacrifice 
some parts of the physics, and the selection depends on the goals of the study. For instance, 
for the analysis of fundamental phenomena in HETs, such as high-frequency instabilities 
and kinetic aspects of the plasma-wall interaction, the very slow dynamics of neutrals are 
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highly simplified [11, 12]. On the contrary, to carry out parametric analyses of the long-
time, full discharge in both thruster and plume, it is common to adopt: an axisymmetric 
(2D) configuration, the zero-Debye length limit, and a fluid modeling of electrons. !is 
allows a numerical discretization with !te ∼ !ti and larger spatial cells, that, together with 
the lower dimensionality, implies a reduction of about two orders of magnitude in compu-
tational cost (say from 3 months to 1 day).
!is paper is devoted to discuss existing electron fluid models simulating the 1D to 3D 

slow dynamics of the plasma discharge in HETs and EPTs, highlighting capabilities, limi-
tations, and aspects requiring further improvement. !e paper attempts to compile the 
knowledge acquired by the author in developing and applying these fluid models. Natu-
rally, to describe completely the plasma discharge, the electron model must be coupled with 
(kinetic or fluid) models of ions and neutrals. !ese are out of discussion in this paper but 
are treated in many works cited here and in recent reviews on HET discharge modeling 
[12–14].

3D Electron fluid models section describes the general 3D fluid model to be adopted for 
electrons, which corresponds to an 8-moment integral of the Boltzmann equation. High-
frequency and slow dynamics of electrons are distinguished. !e first ones would include 
both wave-based instabilities (in HETs and EPTs) and the plasma response to coherent EM 
waves (in EPTs). !e interest here is on the slow-dynamics model, which includes time-
averaged contributions from high-frequency oscillations and admits the drift-diffusive and 
zero-Debye length limits. Axisymmetric discharges in plasma thrusters section discusses 
the slow-dynamics model for axisymmetric discharges and the issues related to the mag-
netic anisotropy. !e successful implementation of this model in simulation tools for HETs 
and EPTs is illustrated with examples. 1D axial fluid model section presents a reduced 1D 
axial model for HETs, highlighting recent advances. 1D models are quick to run and more 
flexible than 2D ones to analyze aspects such as electron inertia, empirical turbulence mod-
els, or even unstable longitudinal modes. Fluid models from 1D fully kinetic solutions sec-
tion presents two different 1D kinetic models of electrons and the fluid models satisfied by 
their solutions. !ey are meant to illustrate the strengths and weaknesses of conventional 
fluid models. Electron fluid models for large plumes section focuses on the particularities 
of electron fluid models for large plasma plumes. Two cases are considered: a collisionless 
plasma channelled by an axisymmetric MN, and a general 3D scenario for weakly collisional 
plumes. !e Appendix covers the modeling of the Debye sheath. In the zero-Debye length 
limit, these sheaths and their modeling are crucial to couple the quasineutral discharge to 
different types of thruster walls and to determine correctly fluxes of particles, momentum, 
and energy to the walls.

3D Electron !uid models
A general model
Electron macroscopic (i.e. fluid) models are obtained by taking velocity integral moments 
of the Boltzmann equation on the electron VDF. !e main moments provide the equations 
for continuity, momentum, and energy [13, 15]:

(1)∂ne
∂t

+ ∇ · neue = Sp,
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Here, ne is the number density, ue is the macroscopic velocity, ¯̄pe is the pressure tensor, 
pe = neTe = trace( ¯̄pe)/3 is the scalar pressure, je = −eneue is the current density, qe is 
the heat flux vector, E and B are the electromagnetic fields, Sp is the electron production 
rate, and F c and Qc are collisional contributions. If ¯̄pe reduces to pe ¯̄I , and qe is negligible, 
the above equations constitute a closed (isotropic and adiabatic) 5-moment model. !e 
addition of a relation for the heat flux in terms of lower order moments –such as a Fou-
rier’s conductive law for qe(ne,Te) – constitutes the 8-moment isotropic model, typical 
of standard fluid dynamics [15]. !is 8-moment model is the main one being used in the 
literature to describe electrons in HET and EPT discharges.

An alternative fluid model is the Chew-Goldberger-Low (CGL) one [16], which, for 
near-collisionless electrons immersed in a strong magnetic field B = B1‖ , shows the 
pressure tensor to be diagonal and anisotropic,

!e CGL model adds to Eq. (3) an equation for the parallel energy 3p‖e/2 , and two clo-
sure laws for the components q‖e = qe · 1‖ and q⊥e = qe − q‖e1‖ of the heat flux vector 
qe . Particular cases of the CGL model will be found in Fluid models from 1D fully kinetic 
solutions section. Finally, higher-order models, such as the Grad 13-moment model [17], 
the maximum-entropy 14-moment [18], or Ramos’ 20-moment model [19], consider 
equations for all pressure tensor and heat flux vector components, and different closure 
laws. !ese high order models are currently too ambitious to simulate the electron fluid 
in the complex HET and EPT discharges.

The drift-di!usive, slow-dynamics model
!e electron motion in these discharges includes both fast and slow dynamics, and is 
strongly affected by the magnetic field and the scarcity of collisions. Apart from transient 
phenomena, fast dynamics (with typical times below, say, 1 µs ) are related to oscilla-
tions produced by several instabilities [12–14] and, in EPTs, by the external EM emis-
sion too. !e comprehension of the electron dynamics benefits much from considering 
that fast and slow collective motions can be studied (almost) independently. !e study 
of self-developed turbulence is particularly complex, due to the multiplicity of modes 
and their coupling. Kinetic models, generally particle-based, are needed for a complete 
picture of turbulence [20]. Slow-dynamics fluid models are suitable mainly to analyze 
the plasma transport problem (and thruster performances), but they include, in general, 
secular terms from time-averaged correlations among high-frequency variables. A con-
sistent separation between fast and slow dynamics and the subsequent determination of 
these secular contributions, is still a formidable problem and the main weakness of slow-
dynamics fluid models.

(2)me
∂neue

∂t
+ ∇ · neueue = −eneE + je × B − ∇ · ¯̄pe + F c,

(3)

∂

∂t

(

1

2
meu

2
ene +

3

2
pe

)

+ ∇ ·
[(

1

2
meu

2
ene +

3

2
pe

)

ue + ¯̄pe · ue + qe

]

= je · E + Qc.

(4)¯̄pe = p‖e1‖1‖ + p⊥e(
¯̄I − 1‖1‖).
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In plasma thrusters, the electron population is confined except for small flows (of high 
energy electrons) drifting with the ion flows to the thruster walls and the downstream 
plume. !is justifies to claim the drift-diffusive limit for the electron fluid velocity,

Next, if the electron distribution function is assumed near-Maxwellian, the electron 
pressure tensor is reduced to ¯̄pe ! pe

¯̄I . As a result the one-temperature, drift-diffusive, 
slow-dynamics expressions of the momentum and energy Eqs. (2) and (3) are

with

the flux of electron energy (in the drift-diffusive limit). For sake of simplicity in the 
nomenclature, the symbols for all plasma magnitudes here refer only to values averaged 
over the high-frequency range. !e magnetic field induced by the (mild) electric cur-
rents in HETs and EPTs is marginal, so B in Eq. (6) can be taken just as the static, applied 
magnetic field.

In the drift-diffusive limit and assuming that fourth-order moments are negligible, the 
diffusive equation for qe reduces to [15]

and closes the set of fluid equations. In Eqs. (6), (7), and (9), F c , Qc , and Y c account for 
the collisional contributions, while Fa , Qa , and Y a are the ‘anomalous’ secular terms 
from the high-frequency dynamics (subscript e has been omitted in these two sets of 
variables). From Eq. (6), the electric field work appearing in Eq. (7) is

!e term (−ue · F c) is the standard Joule heating and (−ue · Fa) plus Qa constitutes the 
anomalous electron heating in Eq. (7).
!e above equations constitute the main electron slow-dynamics model to be analyzed 

here. !e discussion will cover, on one side, its application to different discharges and, 
on the other side, the validity of the drift-diffusion limit, the isotropic pressure assump-
tion, and the conductive Fourier’s law (9).

In HETs, the anomalous terms would represent wave-based turbulence; in EPTs they 
would correspond to both turbulence and the plasma interaction with the EM mission. 
For instance, if the high-frequency contribution were due only to a high-frequency elec-
tric field E′ , one would have Fa ≈ 〈n′

eE
′〉 and Qa ≈ 〈j′e · E

′〉 , where 〈〉 means time-aver-
aging over the high-frequency magnitudes (here identified with primes as superscripts). 
In general, high-frequency, short-length electron inertia is expected to contribute to the 

(5)u2e ! c2e ≡ Te/me.

(6)0 = −eneE + je × B − ∇pe + F c + Fa,

(7)∇ · P′′
e = je · E + Qc + Qa −

3

2

∂pe
∂t

.

(8)P′′
e = (5/2)neTeue + qe

(9)0 = −
5pe
2e

∇Te − qe × B + Y c + Y a,

(10)je · E = ue · ∇pe − ue · (F c + Fa).
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wave-based terms too [21, 22]. Consistent expressions for the three wave-based terms, 
Fa , Qa , and Y a , must be obtained from solving the high-frequency dynamics (where the 
drift-diffusive approximation is not expected to apply). In the case of EPTs, partially-
consistent results have been obtained for the spatial map of absorbed power density Qa 
from the external irradiation, while terms Fa and Y a have been ignored so far [23, 24]. 
!e central importance of turbulent transport in HETs is acknowledged since their early 
development [25, 26] and a large effort is being made in determining Fa (e.g. [20]), but 
this turbulent (macroscopic) force lacks a consistent characterization yet. Anyway, the 
discussion of the high-frequency dynamics is out of the scope of this paper. Here, simple 
empirical models, widely used in the HET’s literature, will be used to complete and solve 
the slow-dynamics model.

The quasineutral plasma case
!e electron drift-diffusive fluid model is matched with fluid or kinetic models for the 
different heavy species (neutrals, singly-charged ions,...). !ese provide, for each heavy 
species s, its density ns , particle flux g s ≡ nsus , and higher-order magnitudes. For typical 
thruster conditions the plasma is quasineutral, thus satisfying

with Zs the charge number of species s. !en, the electron continuity Eq. (1) can be sub-
stituted by the current conservation equation,

where ji =
∑

s eZsg s is the ion current density and Sc represents any volumetric source 
of electric current (such as the cathode electron source in some HET models [27]).
!e collisional force F c in Eq. (6) is expressed now as

with µe = e/(meνe) the scalar mobility, νe =
∑

s νes the total electron momentum trans-
fer collision frequency, and jc = ene

∑

s(νes/νe)us the contribution of heavy species to 
F c . Similarly, a Krook model on collisions yields, in Eq. (9),

Using Eq. (13), the momentum Eq. (6) can be re-expressed as a generalized Ohm’s law

where φ is the electric potential (i.e. E = −∇φ ) and

(11)ne =
∑

s

Zsns,

(12)∇ · je = −∇ · ji + Sc,

(13)F c = −mene
∑

s

νes(ue − us) ≡ µ−1
e (je + jc),

(14)Y c = −µ−1
e qe.

(15)je = ¯̄µe ·
(

−ene∇φ + ∇pe − Fa − µ−1
e jc

)

,

(16)¯̄µe = µe





1 χbz − χby
−χbz 1 χbx
χby − χbx 1





−1
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is the mobility tensor, with χ = ωce/νe ≡ Bµe the Hall parameter, and 
(bx, by, bz) = B/B ≡ 1‖ . Next solving Eq. (9) for qe yields the Fourier’s law

which can be replaced in the definition of P′′
e  , Eq. (8). For the strongly-magnetized elec-

tron case of interest, it is χ ! 1 and the tensor ¯̄µe is ill-conditioned [28, 29]. As later sec-
tions discuss this is the key difficulty to obtain accurate numerical solutions of Eqs. (15) 
and (17).

Equations (7) and (8) for the pair (Te,P
′′
e ) have the same functional form than Eqs. (12) 

and (15) for the pair (φ, je) . Hence the same numerical algorithms for the spatial deriva-
tives can be implemented to the two pairs. Still, Eqs. (7)-(8) include nonlinear terms on 
Te , which could require adding iterative schemes, and temporal derivatives.

Finally, the quasineutral plasma model must be completed with a model resolving the 
Debye sheaths around the thruster walls. Generally these are normal sheaths, with the 
wall potential lower than plasma potential, and the potential fall controlling the electron 
flux to the walls. An accurate sheath model for each type of surface is essential to deter-
mine correctly the plasma losses to the wall and the impact energies of heavy species. 
!e Appendix discusses the sheath model and provides expressions for the perpendicu-
lar components of je and P′′

e  at the sheath edges, which are boundary conditions of the 
electron model in the quasineutral plasma.

An empirical turbulence model
Equation (15) includes Fa as an extra force on the right side. A simple, widely-used, 
empirical model for the turbulent force is [30]

with αa(r) a dimensionless function, to be adjusted with experimental data. Equation 
(18) assumes that Fa is parallel to ue and the turbulence level is ‘comparable’ in the three 
spatial directions, but there is no evidence supporting any of this; in Axisymmetric dis-
charges in plasma thrusters  section, a ‘scalar’ version of this model will be proposed. 
!e appeal of Eq. (18) is that Fa and Y a are easily combined with F c and Y c to constitute 
‘effective’ collisional contributions. !us, turbulence-modified collisional parameters are 
defined as

and they allow us to rewrite Eqs. (15) and (17) as

Clearly, the choice of αa(r) affects the electron response. For plasma discharges in con-
ventional HETs, with quasi-radial magnetic field, expressions of αa(z) with several free 
parameters are being used. !e fitting of these parameters  tries to replicate available 

(17)qe = − ¯̄µe ·
[

(5pe/2e)∇Te − Y a
]

,

(18)Fa = αaBje, Y a = −αaBqe, Qa = 0,

(19)ν∗
e = νe + αaωce, µ∗

e = e/meν
∗
e , χ∗ = Bµ∗

e ,

(20)je = ¯̄µ∗
e ·

(

−ene∇φ + ∇pe − µ−1
e jc

)

,

(21)qe = −
5pe
2e

¯̄µ∗
e · ∇Te.
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experimental data, such as thrust and discharge current [31] or, better, the time-averaged 
φ(z) or uzi(z) in the mid-channel location [32]. A certain consensus on αa(z) suggests it 
is smaller within the channel than in the near plume, and would present a minimum 
around the maximum of Ez(z) [31–34]. In EPTs with a quasi-axial magnetic field, αa =
const is being used [35], partly due to the limited experimental evidence on anomalous 
diffusion in these devices. In HETs with 2D magnetically-shielded (MS) topologies, the 
choice of αa(r) seems more delicate; however, axial functions αa(z) are used too, sup-
ported on the idea that anomalous transport is larger in the near plume than inside the 
MS chamber.

Axisymmetric discharges in plasma thrusters
!is axisymmetric configuration is the most interesting one for plasma thrusters, and 
it still allows the analysis of varied geometrical and magnetic details. A cylindrical ref-
erence frame { 1z , 1r , 1θ } with coordinates (z, r, θ ) is adopted, and ∂/∂θ = 0 is assumed 
for the slow-dynamics discharge. Additionally, a magnetic reference frame { 1‖ , 1! , 1θ } is 
defined, with 1‖ = cosαB1z + sin αB1r , αB the local magnetic angle, and 1! = 1θ × 1‖.

Let us use the notation ∇k ≡ ∂/∂1k for partial derivatives. In the magnetic reference 
frame, the scalar electron momentum equations read

where Eq. (24) does not contain electric and pressure forces. For χ ! 1 , the dominant 
terms in each of these three scalar equations are of different order, indicating the large 
anisotropy of electron dynamics. Furthermore, the relative orders of the three equa-
tions differ between discharge regions, and differ between HETs and EPTs  too. For 
instance, in the acceleration region of a HET, the dominant terms of Eqs. (22) to (24) are, 
respectively,

and typical ratios among them are

(except for the first ratio, tending to be O(1) in the anode region of a HET and in most of 
an EPT discharge). !ese relative values imply that contributions that are small in Eqs. 
(22) and (23), can be essential in the azimuthal momentum Eq. (24). Indeed, this is the 
case of collisional and turbulent azimuthal forces (and electron azimuthal inertia) in the 
absence of azimuthal electric and pressure forces.

In an axisymmetric configuration an alternative to the empirical turbulence model 
(18) is [36]

(22)0 = ene∇‖φ − ∇‖pe + F‖c + F‖a,

(23)0 = jθeB+ ene∇"φ − ∇"pe + F"c + F"a,

(24)0 = −j"eB+ Fθc + Fθa,

ene∇‖φ, ene∇#φ ∼ jθeB, j#eB,

(25)
ene∇‖φ

ene∇#φ
∼

1

10
,

j#eB

jθeB
≡

u#e

uθe
∼

1

100
,
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which has the advantage of affecting only the azimuthal equations. !is facilitates the 
assessment of αa (comparing scalar magnitudes, instead of vector ones) and does not 
introduce a wave-based anomalous transport along the magnetic field. !en, solving for 
the components of the electron current yields

Similarly, the equations for the heat flux read

!e equations for jθe and qθe are uncoupled from the rest, and the contribution of jc to je 
is small generally.

Wall conditions inside the thruster channel imply usually that j‖e ∼ j#e . !erefore, 
for χ∗ " 1 , the parallel and perpendicular derivatives on the right side of Eqs. (27) 
and (28) differ in O(χχ∗) , say O(105) in conventional HETs. As a result, in Eq. (27), we 
expect

!en, to compute correctly j‖e , it is convenient to define a ‘thermalized potential’ [26, 27, 
37]

which measures the deviation of the electron response from the Boltzmann relation; 
here, n0 is a convenient reference value, generally chosen to operate with ne/n0 ∼ 1 . 
Using ! , Eq. (27) becomes

If the turbulence model (18) were used, µe and χ in Eqs. (27)-(32) would be substituted 
by µ∗

e and χ∗ , respectively. For χ∗ " 1 , the only difference between the two turbulence 
models is in Eqs. (27) and (30). Incidentally and as the Appendix further comments, in a 

(26)Fa = αaBjθe1θ , Y a = −αaBqθe1θ , Qa = 0,

(27)j‖e = µe
(

−ene∇‖φ + ∇‖pe
)

− j‖c,

(28)j!e =
µe(−ene∇!φ + ∇!pe)+ χ∗jθc − j!c

1+ χχ∗ ,

(29)jθe = χ∗(j"e − jθc/χ).

(30)q‖e = −µe
5pe
2e

∇‖Te,

(31)q!e = −
µe

1+ χχ∗
5pe
2e

∇!Te,

(32)qθe = χ∗q"e.

(33)ene∇‖φ ≈ Te∇‖ne $ |µ−1
e (j‖e + j‖c) − ne∇‖Te|.

(34)! = φ −
Te

e
ln

ne
n0

,

(35)j‖e = −eneµe∇‖! +
(

1 − ln
ne
n0

)

neµe∇‖Te − j‖c.
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2D inertialess model, Eq. (24) cannot include consistently ‘wall collisionality’, that is the 
loss of azimuthal momentum caused by exchanging magnetized electrons at the walls by 
unmagnetized ones.

Certain HET discharge models [13, 27, 34, 37] apply the so-called Morozov’s col-
lisionless limit, µe → ∞ , to Eqs. (30) and (35). !is yields ∇‖! = 0 and ∇‖Te = 0 , 
that is, magnetic lines are isothermal and the Boltzmann relation, ne ∝ exp(−eφ/Te) , 
applies along them. !e important drawback of this collisionless limit is that j‖e can-
not be computed from the Ohm’s law (35). [An example of the computation of je in 
a collisionless discharge, without Ohm’s law is given in 1D-axial kinetic model of a 
paraxial plume Section.]

Solving the 2D electron fluid equations in a cylindrical mesh yields ∇z! and ∇r! , 
where from ∇‖! = cosαB∇z! + sin αB∇r! . One expects

but small numerical errors in the cylindrical derivatives of !(z, r) is likely to give, incor-
rectly, ∇‖! # ∇$!/χ∗2 . !is error in the solution is known as numerical diffusion, and 
can be avoided by using a magnetic-field-aligned mesh (MFAM), where the derivatives 
of ∇‖! and ∇"! are computed directly.

MFAMs are used for instance in the axisymmetric codes HALL2De [38] and 
HYPHEN [30, 36]. !ese meshes are very suitable for complex, oblique magnetic 
topologies, such as the example shown in Fig. 1(a) for the simulation of a MS-HET; 
notice the singular magnetic point inside the channel, separating regions with quasi-
axial and quasi-radial magnetic lines. !e big issue with MFAMs, well illustrated 
in Fig. 1(a), is they have very irregular cells and the mesh boundaries are not mag-
netically aligned [39]. !is made delicate to derive accurate algorithms for spatial 

(36)∇z! ∼ ∇r! ∼ ∇#! ∼ χ∗2∇‖!,

Fig. 1 Simulation of an axisymmetric MS-HET with HYPHEN for a configuration similar to [31]. a MFAM: 
magnetic lines are in blue and the ortoghonal family is in red; the black box is the location of the central 
cathode which emits electrons and neutrals. b-f Time-averaged 2D maps of ne , Te , φ , and the electron and ion 
currents in a meridian plane (i.e excluding the azimuthal components, ̃ e = je − jθe1θ , and same for ions)
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derivatives in MFAMs, mainly at boundary cells [40, 41]; for instance, algorithms 
based on weighted-least-squares methods lead to numerical diffusion and large errors 
in Eq. (35) at the channel boundaries.
!e code HYPHEN complements the electron slow-dynamics fluid model with 

a PIC model for heavy species. Figure 1 shows a first example of the capabilities of 
the whole code for simulating a MS-HET. !e plasma density and the map of ji are 
determined by the PIC model, and the other three variables by the electron model. 
!e plot (e) of the longitudinal current ̃ e = je − jθe1θ is particularly interesting: the 
cathode-emitted electron current splits into a beam travelling downstream and neu-
tralizing the ion plume, and a beam entering the channel and ionizing neutrals; this 
second beam requires enough collisional events to be driven easily into the channel; 
and, inside the thruster, the lines around the null magnetic point guide the electron 
current, shielding it from the lateral walls. In plot (c) and as expected, ∇‖Te is small 
and magnetic lines are near-isothermal; ∇‖! (not shown here) is small too. On the 
contrary, isopotential lines on φ  are not aligned with the magnetic field due to the 
term ∇‖ne in Eq. (34).

As a second example, Fig.  2 illustrates, for an ECRT, the coupled stationary 
response of (i) the electron slow-dynamics fluid model with (ii) the high-frequency 
(fluid) model for the electron-wave interaction [35]. !is last one solves the Maxwell 
equations with a plasma cold dielectric tensor, dependent on ne and Te and computes 
Qa = 〈j′e · E

′〉 . Figure  2 plots Qa and the different wave propagation regions in the 
Clemmow-Mullaly-Allis (CMA) diagram [42]. Most of the energy is deposited around 
the ECR surface and the central wave-emitting rod. Nonetheless, the large parallel 
thermal conductivity makes Te almost constant along each magnetic line. !e plasma 
density map in Fig. 2 is determined by both the ionization rate and the density of neu-
trals. In contrast to an ECRT, the propagation and absorption of EM waves in an HPT 
has not a resonance character and the deposition map of Qa is more spread and gives 
rise to more complex maps of Te and φ [23, 24].

1D axial !uid model
1D-axial (1Dz) fully-fluid models are widely used to understand, in a simplified sce-
nario and at a low computational cost: central phenomena of the HET discharge, 
the sensitivity to design and operational conditions, and several longitudinal oscilla-
tions. Most 1Dz HET models [43–48] have considered the discharge only between the 

Fig. 2 Simulation of an axisymmetric ECRT with the hybrid code HYPHEN based on Ref. [35]. From left to 
right: absorbed power density map of external electromagnetic emission and stationary maps of Te and ne .
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anode and a cathode surface, omitting the far plume. An extended model is presented 
here, which includes an internal volumetric cathode, the current-free far plume, and 
electron azimuthal inertia. Regarding this last one, the drift-diffusive approximation 
(5) plus the near closed-drift (25) in a HET implies

so that azimuthal inertia can be considered relevant while still neglecting the other com-
ponents. !e model below will be able to analyze regions where uθe = O(ce) and the 
drift-diffusive approximation fails. For instance, high E × B drifts are expected around 
the channel exit for high voltage operation, but it will shown that this  is not the only 
case.

A 1Dz electron model describes the axisymmetric discharge by averaging electron 
properties along the radial direction. Admitting a variable beam cross-section area 
A(z) the divergence operator of a vector field v in 1Dz becomes

where vz is the r-averaged axial component and the source term vlat accounts for lateral 
fluxes across the boundary of A(z). !us, the proposed 1Dz set of axial, time-dependent, 
quasineutral equations is

Here: variables describe radially-averaged plasma magnitudes, but we again omit modi-
fying the symbols for them; the cathode is modeled as an emission layer of cold electrons 
of thickness !c and volumetric emission Sc , yielding a discharge current Id =

∫

!c
eAScdz ; 

the three source terms with Sw corresponds to losses at the lateral walls, with δs the sec-
ondary electron emission yield of the wall, defined in the Appendix; Ep is the effective 
energy per ionization-created electron [43]; Ew , obtained from Eq. (78) of the sheath 
model, is the effective energy per primary electron lost at the wall; and we assumed 

(37)u2‖e,u
2
"e # u2θe # c2e ,

(38)∇ · v =
1

A

∂

∂z
(Avz)+ vlat ,

(39)∂ne
∂t

+
1

A

∂

∂z
(Aneuze) = Sp + Sc − Sw ,

(40)0 = −jθeBr −
∂pe
∂z

+ ene
∂φ

∂z
− meuzeneν

∗
e ,

(41)me
∂neuθe

∂t
+

me

A

∂

∂z
(Aneuzeuθe) = jzeBr − meuθe

(

neν
∗
e +

Sw
1 − δs

)

,
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)

+
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.
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νejc ! ν∗
e je and Sp + Sc ! neν

∗
e  . !e equations for the quasineutral discharge are com-

pleted with an anode sheath AB. Boundary conditions for the equations are set at (i) the 
edge B of the anode sheath and (ii) the far downstream plume. In addition, the discharge 
voltage Vd is set between the anode and the cathode center.
!e left side of Eq. (41) represents electron azimuthal convection, while electron 

axial convection is always negligible in Eq. (40), as commented above. !e inclusion 
of azimuthal convection also permits to take into account wall collisionality effects in 
Eqs. (41)-(42) as source terms due to the exchange of magnetized primary electrons by 
unmagnetized secondary ones. To be consistent, the azimuthal energy is included in Eq. 
(42). Figure 3, obtained from a full-fluid model [49], depicts an example of the station-
ary solution on electrons from the anode to the far plume, comparing the cases with 
and without azimuthal inertia. !e region around the cathode is quasineutral, avoiding 
the non-physical sheaths created when the cathode is considered as a boundary. One 
limitation of the 1Dz model is that the whole ion beam intersects the cathode layer and 
is directly affected by it (in contrast for instance to the 2D discharge of Fig. 1). !is and 
the remaining magnetic field around the cathode, generate exaggerated bumps of elec-
tric potential and temperature downstream of the cathode. !e profile of uθe , Fig. 3(a), 
shows: the magnetization of electrons when emitted, the posterior demagnetization of 
the electron beam moving downstream, and the relevance of azimuthal inertia there. 
Inertia can also be relevant near the anode and in fact it bounds uθe to O(ce) [50]. !is 

Fig. 3 Axial, stationary profiles for electron magnitudes in a HET channel and plume, based on the 1Dz fluid 
model of [49]: a azimutal velocity, b axial velocity, c electric potential, and d temperature. Red curves are for 
the full model and blue ones for the model without electron inertia. The anode sheath edge B is at z = 0 , E 
is the channel exit, C is the center of the cathode layer, extending ±2.5 mm. The jumps of axial velocity and 
potential in the anode sheath are not plotted
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bound is observed when ion currents and plasma density are very low there, leading to 
−uzeχ

∗ ≤ O(ce) and eventually to the transition from a ‘normal’ to an ‘inverse’ anode 
sheath [51].

In Fig. 3(b), uze changes sign across the cathode region; it becomes equal to the ion 
fluid velocity in the current-free plume, and it is mildly affected by azimuthal inertia 
between anode and cathode. !e profiles of φ and Te , Fig. 3(c)-(d), are little affected by 
electron inertia. !e second peak of Te downstream the cathode is caused by the remain-
ing magnetic field and the anomalous heating prescribed there (an aspect requiring fur-
ther research).
!e 1Dz model is useful to test quickly the sensitivity of HET performances to dif-

ferent conditions and physics. It is therefore a very valuable tool to complement the 
previous 2D(z, r) electron model, which typically takes two orders of magnitude more 
of computational time (e.g. minutes versus tens of hours). For instance, including azi-
muthal inertia in the 2D(z, r) electron model is expensive computationally and compli-
cates numerical convergence. Instead, the 1Dz model has justified (at least partially) to 
implement

in HYPHEN, avoiding regions with nonphysical values uθe ! ce . !e 1Dz model is 
also being helpful to fit quickly the turbulent function αa(z) and to assess downstream 
boundary conditions on the electron energy flux.

Nonetheless, the 1Dz model has the penalty of requiring expressions for the extra 
source terms due to non-axial physics. Unavoidably, this introduces a certain degree of 
arbitrariness which cannot be dismissed when extracting conclusions from this model. 
Furthermore, a 1Dz model makes sense in a HET with a quasi-radial magnetic topology, 
but is much less suitable for a MS-HET. In the case of an EPT with a quasi-axial mag-
netic topology, there is a stronger coupling between 1D axial and radial models [52].

Fluid models from 1D fully kinetic solutions
Solutions from kinetic models can show which are the macroscopic equations fulfilled 
by the plasma in a thruster chamber and plume, and thus define kinetically-consistent 
fluid models. Attention must be paid mainly to the expressions for the pressure tensor, 
the heat flux vector, and boundary conditions. !is procedure has been completed satis-
factorily with the two 1D kinetic models commented next.

1D-radial kinetic model for HETs
A 1D radial (1Dr) fully kinetic model of the radial plasma response in a cross-section of 
an annular HET with a radial magnetic field and dielectric walls has been developed in 
[53–56]. Ions and electrons are treated as PIC macroparticles while (very-slow) neutrals 
constitute just a background population, with the neutral density adjusted to maintain 
a stationary discharge. !e kinetic solution shows that the electron VDF, Fig. 4(a), pre-
sents a large depletion of the radial velocity tail caused by the incomplete replenishment 
of wall-collected electrons, through secondary electron emission, volumetric collisions, 
and wave-based effects. !is tail depletion implies anisotropy, with the electron radial 

uθe = min(−χ∗uze, 2ce)
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temperature, Tre , (i.e. parallel to the magnetic field) lower than the perpendicular tem-
perature, T⊥e(= Tze = Tθe).

Figure 4(b) plots the radial profiles of the electric potential and the electron density. 
Integral moments of the electron VDF at the steady state satisfy the azimuthal momen-
tum equation (in cylindrical coordinates)

which can be compared with Eq. (41) for a fluid 1Dz model. !e term prθe corresponds 
to the non-diagonal, gyroviscous part of the pressure tensor ¯̄pe . It is much smaller 
than the diagonal terms, but it is the only pressure term contributing to the azimuthal 
momentum balance and, indeed, it can be larger than the azimuthal inertia term. !e 
radial profile of prθe is undulated, caused by the collective remain of the gyromotion of 
individual electrons and their reflections within the lateral sheaths. !at gyroviscous 
term is responsible of the radial undulations of jze in Fig. 4(c), which scale with the elec-
tron Larmor radius and resemble the experimentally reported near-wall-conductivity 
phenomenon [57].
!e radial flux of electron energy in this 1Dr plasma turns out to be

(44)1

r2
∂

∂r
[r2(meneureuθe + prθe)] = jzeBr + Fθc + Fθa,

Fig. 4 1D radial results for a cross-section of a HET, based on the kinetic model of Ref. [56]. a Normalized 
electron VDF along vz and vr at mid channel M: f̂ (r)e ∝

∫

fedvθdvz , f̂
(z)
e ∝

∫

fedvθdvr . Radial profiles of 
macroscopic variables: b ne/n̄e with n̄e the radially-averaged value, and φ/φM referenced to φW2

= 0 ; c jze 
and its mean valued indicated by the dashed line; and d P′′

re and its 3 main contributions, in W/cm2 . Points Q1 
and Q2 mark the (approximate) transitions to the Debye sheaths. Wave-based turbulence here is modeled as 
isotropic collision events with frequency 0.01ωce
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where the right side is the standard macroscopic decomposition into enthalpy flux

heat flux qre (parallel to the magnetic field), and gyrosviscous energy flux prθeuθe . !is 
last term matters because of the ordering uθe ! ure,uze . Figure 4(d) depicts the radial 
profiles of the three contributions to P′′

re , showing that all are important. Furthermore, 
the radial heat flux is found to be approximately proportional to the enthalpy flux,

whereas it is uncorrelated with temperature gradients. !is suggests a convective 
character instead of a diffusive one for that flux, a behavior already observed in other 
near-collisionless plasmas, such as laser-induced ones [58], tokamak’s divertors [59], 
and the magnetized plume model discussed in  1D-axial kinetic model of a paraxial 
plume section.
!erefore, the 1Dr kinetic model provides relevant information to validate and 

upgrade the electron fluid model. Some upgrades are affordable, other might have 
a too-high computational cost for the improvements in results they bring with. For 
instance, the use of a mixed convective-diffusive model for the heat flux is affordable, 
as commented in a later section. On the contrary, to include two temperatures and a 
gyroviscous tensor would be a major complication and should be avoided except in fun-
damental studies (or 1D ones). In fact, the 1Dr model provides two partial justifications 
to maintain a single scalar pressure. !e first one is that the radially-undulating gyrovis-
cous term in Eq. (44) becomes marginal when integrated radially [56]. !e second one is 
that the parallel and perpendicular temperatures isotropize quite fast when the magnetic 
field is curved with respect to the wall normal [60, 61]. !e 1Dr kinetic model has also 
stood out the differences between planar and annular channels. In the last case, cylindri-
cal effects due to centrifugal forces and magnetic mirror can generate important radial 
asymmetries, as Fig. 4(c) and (d) confirm.

Another important output of the 1Dr kinetic model is the validation of the two-scale 
spatial approach adopted by electron fluid models, i.e. the clean separation between 
the quasineutral plasma bulk and the very thin Debye sheaths. !is is well illustrated in 
Fig. 4(b) for φ(r) , where points Q1 and Q2 are the transition points between the plasma 
bulk and the sheaths, which here are set where the relative electric charge, defined as 
1 − ne/ni , is a 2%, which coincides very well with a radial ion Mach number close to 1, as 
prescribed by the sonic Bohm criterion at a Debye sheath entrance. Finally, the kinetic 
computation of the electron fluxes towards each wall allowed us [55, 56] to determine 
the values of parameters σrp and a in Eqs. (73) and (77), which measure, for electron 
fluxes, the deviation of the electron VDF from a Maxwellian one. For magnetic fields 
perpendicular to the wall, the replenishment factor σrp is rather low, between 0.05 and 
0.20. However, for curved magnetic fields, σrp is much larger and the temperature ani-
sotropy lower [61].

(45)P′′
re " hre + qre + prθeuθe,

hre = (3Tre/2+ T⊥e)neure,

(46)qre ∝ hre,
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1D-axial kinetic model of a paraxial plume
A second plasma configuration admitting a kinetic solution (for both ions and elec-
trons) and thus the study of macroscopic equations for electrons is the expansion of a 
fully-magnetized plasma in a paraxial (i.e. quasi-1D) magnetic nozzle, a study relevant 
to EPTs. !e paraxial model describes the dynamics of magnetized electrons (and ions) 
along the nozzle axis. !e study has been developed along several works [62–65], which 
have addressed the problem under different perspectives (steady-state versus time-
dependent models, collisionless versus partially-collisional ones, convergent-divergent 
MNs versus divergent-only ones, integral versus differential formulations).

A coil or solenoid creates a magnetic field with convergent-divergent lines, constitut-
ing the MN guiding the plasma; the field strength is maximum at the magnetic throat. 
!e plasma source upstream of the MN is assumed to inject Maxwellian electrons and 
ions upstream of the MN (although other types of VDFs were studied too). For the pur-
poses here, the attention is focused on the electron kinetic and macroscopic properties 
in the divergent region of the MN. In that region, the magnetic field B(z) decreases and 
the (self-consistent) electric potential, φ(z) , is found to decrease monotonically too. 
!erefore, the (inverse) magnetic mirror effect makes electrons to gain parallel velocity 
as they move downstream the MN throat, while φ(z) makes then to lose it. As a result, 
most electrons from the source are reflected back electrostatically to it. Only a small 
fraction of them is ‘free’, having enough energy to flow downstream with the (super-
sonic) ion population, in order that the plasma plume be current-free. Indeed, the total 
potential fall along the MN controls the amount of free electrons needed to satisfy the 
plasma current-free condition (in a similar way as a sheath potential fall next to a die-
lectric wall does, but here the potential fall is ambipolar and extends along the whole 
divergent region) [64]. In addition, the opposing electrostatic and magnetic-mirror 
forces lead to the existence of a third population of doubly-trapped electrons, bouncing 
back and forth between two spatial locations. !ese electrons are unconnected to the 
upstream source (and to infinity downstream), and their steady-state density depends on 
the scarce electron-electron collisionality events [65] or the formation period of the MN 
(in a collisionless scenario)[63]. !e amount of doubly-trapped electrons affects much 
the electric potential profile in the MN, as Fig. 5 (a) shows. !e presence of this doubly-
trapped population of electrons has been identified in other near-collisionless plasma 
configurations, such as Langmuir probes [66].
!e macroscopic behavior of the electrons is obtained from integrating in the parti-

cle velocity space the kinetic solution. In spite of the rather different characteristics of 
the three subpopulations, the whole electron population is found to satisfy the simple 
paraxial equations

(47)neu‖e/B = const,

(48)ene
dφ

dz
−

dp‖e

dz
+ (p‖e − p⊥e)

d ln B

dz
= 0,

(49)
(

−eφ +
3

2
T‖e + T⊥e

)

neu‖e

B
+

q‖e

B
= const,
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where: 1/B is proportional to the effective cross-section area of the plasma beam, and the 
integration constants are obtained at the upstream boundary of the domain. Equation 
(47) expresses the electron flux conservation. Equation (48) is the momentum equation 
which includes the macroscopic magnetic mirror force, and the pressure tensor follows 
Eq. (4). Equation (49) is the conservation of the total electron energy, including the par-
allel heat flux and the electric potential energy; the perpendicular heat flux, q⊥e , is zero 
at the MN axis. Equation (50) is the conservation of the electron perpendicular energy 
at the axis, with qT‖e the parallel flux of transverse heat [67]. Observe that these fluid 
equations are collisionless: collisions of electrons with neutrals and ions are not consid-
ered and electron-electron collisions shape the pressure tensor and the heat fluxes.
!e kinetic solution of this MN model shows that electron temperature anisotropy 

develops in the divergent MN, and both T‖e and T⊥e decrease, Fig.5 (b). Downstream, 
T⊥e goes to zero due to the inverse magnetic mirror on individual electrons, while 
T‖e decreases to an asymptotic nonzero value, T‖e∞ . !e electron cooling is due to 
regions in the VDF velocity space becoming progressively empty or void (see Fig. A2 
in [64]). !e temperature anisotropy yields the magnetic mirror force in the momen-
tum Eq. (48), but this contribution is generally smaller than the one from the gradient 
of p‖e.

To close consistently the macroscopic model, equations for qT‖e and q‖e based on 
lower-moment magnitudes are needed [67]. No simple expressions for them and valid 
in the whole MN have been found yet or even exist. Only the far plume region admits 

(50)neT⊥eu‖e + qT‖e

B2
= const,

Fig. 5 1D axial profiles for electrons in a paraxial MN, based on the kinetic model of Ref. [65]. In a-b The 
vertical dash-dot line is the location of the magnetic throat. In a-c: Te0 and ne0 are upstream values; ν̄ee = 0.1 
(solid), 0.01 (dashed,) 0 (dashed-dot), with ν̄ee the electron-electron collision frequency nondimensionalized 
with a typical electron transit time. In c the line with asterisks is the polytropic relation with γ − 1 = 0.23 . In d 
he = (3T‖e/2+ T⊥e)neu‖e and the curve is for ν̄ee = 0.1
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approximate expressions. First, the factor B−2 in Eq. (50) explains that qT‖e → 0 down-
stream, together with T⊥e . !en, Fig. 5(c) suggests to take [64]

with αq a constant (dependent on the electron-electron collisionality). !is ‘convective’ 
behavior of the parallel heat flux is very similar to the one found in Eq. (46) in the 1Dz 
HET kinetic model. Using Eq. (51) and defining

Equation (49) becomes

!us, in the far paraxial plume, the collisionless electron fluid behaves as an adiabatic 
gas with an specific heat ratio γ , and the electron cooling can be explained macroscopi-
cally as the enthalpy drop caused by the increment in electric potential energy. !is is 
a surprisingly simple behavior for the combination of the three subpopulations of elec-
trons. Using Eq. (48) with p⊥e = 0 to eliminate φ , Eq. (52) yields a B-dependent poly-
tropic equation of state for the parallel temperature,

In summary, the algebraic Eqs. (47) and (51)-(53) constitute the macroscopic model for 
electrons in the far plume of the MN.

So far in this subsection, a magnetized paraxial plume has been considered. Reference 
[68] carried out a similar direct-Vlasov analysis for an unmagnetized paraxial plume. 
An equivalent kinetic solution was found, by just exchanging the magnetic moment 
of magnetized electrons by an action integral on unmagnetized electrons. Hence, the 
macroscopic behavior of the unmagnetized plume features temperature anisotropy and 
cooling too, suggesting them to be robust properties in the expansion of collisionless 
plumes, either magnetized or not. A particle-based formulation of unmagnetized par-
axial plumes led to similar results [69]. Plume cooling has been verified experimentally 
in EPTs [70–72] and in HETs [73, 74]; still, detecting experimentally the temperature 
anisotropy continues to be challenging.

Electron !uid models for large plumes
!e behavior of the plasma discharge in the plume region of a thruster presents some 
differences with respect to the one inside the thruster channel. As shown in the last sub-
section, the lack of wall confinement further reduces plasma collisionality and foments 
non-Maxwellian features in electrons, which are no simple to include in fluid models. In 
addition, plasma plumes are much larger regions than a thruster channel and this raises 
additional numerical challenges. !e next two subsections confront these theoretical 
and numerical problems.

(51)q‖e ≈ αqneT‖eu‖e,

γ = (3+ 2αq)/(1+ 2αq),

(52)−eφ + γT‖e/(γ − 1) = const.

(53)T‖e(B/ne)
γ−1 = const.



Page 20 of 31Ahedo  Journal of Electric Propulsion             (2023) 2:2 

2D collisionless plume in a magnetic nozzle
!e collisionless, fully- kinetic model of a paraxial MN of 1D-axial kinetic model of a 
paraxial plume section was extended in Ref. [75] to a fully-2D MN in the limit of cold, 
fully-magnetized ions. In that configuration, electron Eqs. (47)-(50) apply along each 
magnetic line with line-dependent constants. However, the case of interest in EPTs, with 
weakly magnetized (heavy) ions and reproducing the beam-nozzle detachment has been 
tackled so far only with a fully-fluid 2D model and assuming an isotropic electron pres-
sure. A set of papers have discussed the different physical phenomena in that scenario [3, 
76–81].
!ey consider the full-2D expansion of a collisionless plasma plume in an axisymmet-

ric, divergent MN, shaped by a longitudinal magnetic field B(z, r) . Magnetic streamtubes 
are surfaces ψ(z, r) =const with ψ the magnetic streamfunction, defined by

!e electron submodel uses the continuity and momentum Eqs. (1) and (6) in the sta-
tionary, collisionless limit, and completes them with a simple polytropic law for the sca-
lar pressure,

After straightforward manipulations, the electron fluid turns out to  satisfy the set of 
algebraic equations

!e two first ones state that, for full magnetization, magnetic streamtubes are electron 
streamtubes, and the electron current inside each tube remains constant and equal to 
the upstream value Ge(ψ) . Equation (58) is a polytropic Boltzmann relation along each 
streamtube, with Te(ne) provided by Eq. (55) and !p a thermalized potential apt for poly-
tropic (i.e. non isothermal) electrons.
!e most novel equation in this 2D scenario is (59), which asserts that the electron 

fluid isorotates in each streamtube, implying that any azimuthal electron current must 
be created before entering the collisionless magnetic nozzle. !is equation was obtained 
by applying Eq. (54) to

this one stating that the azimuthal drift is the combination of the E × B and diamagnetic 
drifts. Observe that a relevant feature of this collisionless model is the determination of  
je without having resource to an Ohm’s law.

(54)∇ψ = rB1".

(55)∇ ln pe = γ∇ ln ne.

(56)j!e = 0,

(57)j‖e/B = Ge(ψ),

(58)φ −
γ

γ − 1

Te

e
= #p(ψ),

(59)uθe/r = d"p/dψ .

(60)jθeB = −ene∇#"p,
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!e combination of this algebraic model for electrons with a fluid model for super-
sonic ions yields an hyperbolic set of differential equations for the ions. !is set is 
solved with the method of characteristics lines [76], which is very suitable to construct 
the plume solution from the MN throat to infinity, getting past the turning points of 
the magnetic lines. !e two-fluid model has been very successful in: explaining the 2D 
plume expansion and the magnetic thrust [76], the effects due to electron inertia [78] 
and hot ions [80], the change of nozzle shape due to the induced magnetic field [77, 81], 
and the plasma detachment from the MN via ion demagnetization [79].
!e isotropic and polytropic relation (55) is adequate to reproduce the observed 

electron cooling but it omits the development of pressure anisotropy found in the 1Dz 
kinetic model. To include pressure anisotropy would imply, first, to substitute the alge-
braic Eqs. (58) and (59) by the differential ones,

where the last one includes now the B-curvature drift. Second, closure relations on the 
two temperatures are needed. From the 1Dr kinetic solution, T⊥/B =const and Eq. (53) 
for T‖e could be valid choices. !is extended 2D fluid model with partially-magnetized 
ions has not been deeply analyzed yet. It remains to be proven that it is numerically 
affordable with the method of characteristic lines. Otherwise, the more general treat-
ment of the next subsection could be more convenient.

2D and 3D weakly-collisional plumes
Simulations and experiments have made evident that the electron fluid cools down in 
plasma plumes. However, the simulations with 2D hybrid codes do not always reproduce 
this. For instance, in the EPT case of Fig. 2 with the plume domain extending 3-4 times 
the channel width, plot (b) shows that there is practically no cooling along the magnetic 
lines. !at short plume size is adequate to study the plasma discharge inside the thruster 
channel and near the exit, but it is clearly insufficient to analyze the plume expansion 
into the free space or within a large vacuum chamber. More recent simulations of an 
EPT with HYPHEN [41] demonstrate that a short plume domain can miscalculate 
thruster performances because of the large range of the electromagnetic force and the 
incomplete electron cooling and demagnetization. However, to simulate a large plume 
is both costly and challenging computationally, due to the additional orders of inhomo-
geneity in ne along the whole discharge, the increasing irregularity of cells (mainly if an 
MFAM is used, as observed in Fig. 1), and the possible presence of non-neutral regions. 
Furthermore, in order to achieve a reliable solution with a relatively compact plume 
domain, it is crucial to define physically-consistent conditions at the downstream and 
lateral boundaries of the domain [41, 69].

In a weakly-collisional, current-free plume, where transport along magnetic lines is 
not local, boundary conditions on electron currents and energy fluxes for a finite plume 
region are not obvious. In general, 2D hybrid codes have imposed a zero electric current 
density at each boundary point [27, 30, 38, 82], as if the plume were surrounded by a 

(61)0 = −∇‖p‖e + (p‖e − p⊥e)∇‖ ln B+ ene∇‖φ,

(62)−jθeB = −∇#p⊥e + (p⊥e − p‖e)∇# ln B+ ene∇#φ,
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dielectric wall. A better approach is to consider the plume surrounded by a metallic wall 
of potential φV  . If the plasma beam is current-free, φV  is determined by setting to zero 
the total electric current across the plume boundary [83]. Applying Eq. (74), this implies 
that the wall potential satisfies the integral equation

with ∂Sp and n the contour and the outwards normal of the plume boundary.
Figure  6 compares, for the case of Fig.  1, the electric current loops when applying 

either local or global conditions in the plume. While the main plasma region, between 
the anode and the cathode, is only slightly affected by the plume boundary conditions, 
the electric currents in the plume region are rather different. !ese current loops are 
much more affected by the plume size in the case of local boundary conditions [83]. 
!us, the global boundary condition is a more robust one, and also φV  is rather unaf-
fected by the plume extension (while the local sheath between the plume boundary P and 
the wall V, shrinks with plume size increasing). Hence, the use of the global condition 
allows working with rather compact plume sizes and provides the single downstream 
potential φV  ; also, the electron energy fluxes outward the plume can be computed from 
the expressions in the Appendix.

In the case of the plasma plume expanding into free space, the global condition is the 
correct approach too: it can be postulated that the wall V is the infinity, and the layer 
between the plume boundary P and V would mimic the plume region not been simu-
lated. !is is the first step to define a model of a ‘global downstream matching layer’[83], 
with a whole set of boundary conditions for both (confined) electrons and (nearly free-
expanding) ions between P and infinity.

Turning to heat fluxes, different closures can be postulated for weakly-collisional, 
magnetized plumes. It has already been evidenced that the Fourier’s law (21) fails along 
the magnetic lines. Several alternatives are being considered. A first, empirical one, is to 
modify that Fourier’s law component, introducing an anomalous parallel collisionality νq
:

(63)
∫

∂Sp

dS ji · n =
∫

∂Sp

dS σrp
enec̄e
4

exp
e(φV − φ)

Te
,

Fig. 6 Electric current density in a meridian plane for the case of Fig.1. Comparison of electric current when 
applying different boundary conditions in the plume: a Local conditions with jne = jni ; b global conditions
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For instance, Ref. [41] recovers the observed parallel cooling in an EPT with 
νq/νe ∼ 10 − 100 . Notice that this anomalous parallel cooling, motivated by the emp-
tying of VDF regions and existing even in unmagnetized plumes [68], has a different 
nature than the perpendicular anomalous transport, due to turbulence (i.e. the contribu-
tion αaωce to ν∗

e).
A second, better physically-based alternative, under present assessment within 

HYPHEN, is to keep the conductive Fourier’s law for the perpendicular heat flux, q⊥e 
and use a convective law for the parallel heat flux, q‖e . An issue to be solved here is that 
boundary conditions can be imposed only on q⊥e , while the magnetic lines are oblique 
to the boundary in general.

A third alternative is to implement a convective-only heat flux, which is equivalent to 
express the flux of electron energy, Eq. (8), as

Since the electron energy Eq. (7) can be expressed as

the total electron energy (included the electric potential contribution) is conserved in 
the sourceless, stationary, collisionless case. Since ∇ · ji = 0 in that situation too, it is 
straightforward to obtain, with the aid of the momentum Eq. (6), a polytropic equation 
of state along the electron streamlines,

which yields Eq. (55) if conditions are uniform upstream. !ese results generalize (within 
the isotropic temperature framework) 1D results of the previous section.

EP2PLUS is a simulation code based on a hybrid 3D model to study weakly-collision-
less plumes [84]. 3D scenarios are of interest to study, for instance, asymmetric thruster 
configurations (e.g. a HET with a lateral cathode) or the plume interaction with the sur-
roundings of the thruster and nearby objects [85]. !e code applies the 4-moment elec-
tron model with the polytropic closure (55). Being 3D, turbulence is included through 
the empirical model of Eq. (18). !us, the electron model consists of

where !p is the thermalized potential of Eq. (58) and ρel is the electric charge. An impor-
tant capability of EP2PLUS is to deal with non-neutral subregions. In the quasineutral 

(64)q‖e = −
5pe

2me(νe + νq)
∇‖Te.

(65)P′′
e =

γ

γ − 1
neTeue.

(66)∇ ·
(

P′′
e − eneueφ

)

= (−∇ · ji + Sc)φ + Qc + Qa −
∂

∂t

(

3

2
pe

)

,

(67)(ue · ∇) ln pe = γ (ue · ∇) ln ne,

(68)ne = ni + (ε0/e)∇2φ,

(69)∇ · je = −∇ · ji + Sc − ∂ρel/∂t,

(70)je = ¯̄µ∗
e · (−ene∇!p − µ−1

e jc),
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subregions, Eqs. (69) and (70) yield !p and je , and then φ is obtained from Eq. (58). In 
the non-neutral subregions, the elliptic Poisson Eq. (68) for φ is coupled to an elliptic 
equation for !p [29].

Figure 7 presents an application of EP2PLUS to the unmagnetized plume of a gridded 
ion thruster, when turbulent transport is absent, and the polytropic closure (67) is more 
plausible. Figure 7(b) depicts well the non-neutral region around the grids. Figure 7(c) 
shows the paths of the electron beam emitted by the cathode, while Fig. 7(d) plots the 
paths of the electric current and its complete cancellation downstream the cathode.

In a 3D magnetized scenario, a 3D MFAM is not a practical option. Also, an MFAM 
is unapplicable if a time-dependent induced magnetic field is included, as in some MN 
studies. EP2PLUS uses a 3D Cartesian mesh, but this can present problems of numerical 
diffusion and convergence when χ∗ " 1 and the tensor ¯̄µ∗

e is stiff [87]. At present, the 
code is able to provide reliable solutions for χ∗ up to 50-100 (depending on the particu-
lar plasma scenario). Recent achievements of EP2PLUS with magnetized plumes are the 
following. Reference [29] determines the 3D structure of an initially axisymmetric plume 
under the influence of an oblique geomagnetic field. Reference [88] analyzes the 3D elec-
tron currents in the near plume of a HET with a lateral cathode, their quick azimuthal 
symmetrization, their division in up-bound and down-bound beams, and the neutraliza-
tion of the ion beam current by the second electron beam. Along with these valuable 

Fig. 7 Neutralization of electric charge and current in the 3D near plume of an ion thruster, based on [86]. 
In grey, the 3x5-hole grids simulated with EP2PLUS. The black box at the top is the cathode, which emits 
electrons. a Ion density from the PIC module; b relative electric charge; c electron current density emitted 
from the cathode; and d electric current density
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results, Ref. [29] made also evident the inadequacy of applying a polytropic law in the 
near region of a HET, where the right side of Eq. (66) is far from being negligible.

While the 4-moment model is satisfactory to study the electron currents and to fit an 
empirically observed electron cooling, it misses to model correctly the physical evolu-
tion of the electron energy. !e change of the electron fluid model of EP2PLUS from a 
4-moment to an 8-moment one implies to apply Eqs. (69) and (66) for the divergences of 
je and P′′

e  , while these variables satisfy generalized conductive-convective laws in terms 
of ! and Te [89],

In the quasineutral and non-neutral zones, φ is obtained from Eqs. (34) and (68), 
respectively.

Summary and conclusions
Slow-dynamics of weakly-collisional magnetized electrons in plasma thrusters are ame-
nable to fluid modeling, but present uncertainties on: the pressure tensor; the heat flux; 
fluxes to walls; and time-correlated effects caused by high-frequency oscillations (either 
forced or self-driven) and responsible of wave-based electron transport and heating.
!e discussion has been focused in a one-temperature, drift-diffusive model with clas-

sical conductive heat flux closures and an empirical model for wave-based effects (from 
either turbulence or EM emission). !is is the most prevalent model today for HETs, 
EPTs, and similar thrusters. In magnetized, axisymmetric scenarios, the large anisotropy 
of the mobility tensor ¯̄µe leads to very different electron transport properties along each 
spatial direction. Suitable ways to deal with them have been discussed, including the 
convenience of using magnetic field aligned meshes and thermalized potentials. Simula-
tions providing detailed 2D maps of electron macroscopic variables have illustrated the 
capabilities of the above electron model.

1D axial fluid models have been proposed for quick parametric analyses and testing of 
complementary physics. It has been highlighted the relevant role of azimuthal inertia, 
not only for high-voltage operation, but around the anode and the cathode, and at the 
far plume of a HET discharge.
!e plasma-wall interaction in a thruster channel has a central role on the discharge 

and the performances. Since the plasma is quasineutral, Debye sheaths define that inter-
action. Sheath models providing consistent fluxes of particles, momentum, and energy 
to the walls for different types of walls are found central to determine performances 
associated to the discharge physics. Transition to a positive sheath and to charge satura-
tion conditions can have a large effect on these fluxes.

Peculiarities of electron models for plasma plumes, caused by their lower collisional-
ity and expansion physics have been stood out. An axisymmetric, stationary, semiana-
lytic fluid model for a magnetic nozzle configuration has been presented to explain the 

(71)je = −ene ¯̄µ∗
e · ∇! + ne

(

1 − ln
ne
n0

)

¯̄µ∗
e · ∇Te −

¯̄µ∗
e

µ∗
e

· jc,

(72)P′′
e =

5

2
Tene

(

ue −
¯̄µ∗
e

e
· ∇Te

)

.
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electron response in a fully-collisionless scenario and the reduction, in that case, of the 
set of electron differential equations to an algebraic one. For a weakly-collisional, 3D sce-
nario, the differences between 4-moment and 8-moment models (with different heat flux 
closures) have been discussed. Also the limited size of the simulated plume and, there-
fore, the importance of defining consistent boundary conditions has been highlighted. 
Global current-free conditions are found, in general, more robust and physical than local 
conditions, and provide a good estimate of the far-downstream electric potential.

Two 1D kinetic electron models have been used to derive kinetically-consistent fluid 
models, and to help characterizing the pressure tensor and the heat flux vector. In the 
two cases, an anisotropic pressure tensor and a parallel heat flux of convective type were 
found. !e inclusion of a non-scalar pressure tensor in a fluid model is a major challenge 
for the simulation of the full 2D or 3D discharge. On the contrary, to consider a convec-
tive parallel heat flux is equivalent to assume an adiabatic response for a poliatomic gas 
(with an intermediate specific heat ratio).

In conclusion, slow-dynamics electron models are being very useful to understand the 
electron transport and the whole plasma discharge in HETs and EPTs, but there is still 
much room for improvement in physical modeling, boundary conditions, and numerical 
implementation. However, the key challenge for a solid reliability of the slow dynamics 
model continues to be the achievement of physically-consistent expressions for the cor-
related effects of the high-frequency dynamics in, at least, the momentum and energy 
equations of the 8-moment slow-dynamics model.

Appendix: The Debye sheath model
In the zero Debye length limit, the quasineutral plasma discharge is coupled to the 
thruster walls by infinitely-thin, unmagnetized, collisionless Debye sheaths. !e sheath 
local solution can thus be expressed as an integral function on the ion and electron 
VDFs. !is function depends on the local electric potential in the sheath, the VDFs at 
the sheath entrance, and the electric and material properties of the wall.
!e plasma sheath transition is defined by the Bohm criterion on the ion and elec-

tron VDFs [90]. For fluid electrons and normal sheaths (i.e. with the wall potential lower 
than the plasma potential) Ref. [91] expressed the Bohm criterion as a sonic-supersonic 
condition, based on a ‘Mach-Bohm number’ on the ion population. Furthemore, for a 
PIC formulation on ions, it showed the need to impose a Bohm forcing algorithm at the 
quasineutral boundary of the discrete PIC mesh in order to attain the correct plasma 
fluxes.

For the purposes here, only electron magnitudes are discussed next. Some surfaces, 
such as ceramics or thermioinic materials, can present strong secondary electron emis-
sion (SEE). In order to deal with this, the sheath model must distinguish between these 
secondary (s) electrons and the primary (p) electrons coming from the quasineutral dis-
charge, while the two populations are ‘merged’ into a single one (population e) within 
the quasineutral discharge [92]. Correct matching of fluxes is established at the sheath 
transition, considering the kinetic, 2-population electron model, inside the sheath, and 
the fluid, 1-population model, in the plasma bulk.
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For a normal sheath, the (perpendicular) electron flux of primary electrons into the 
wall W can be expressed as

where: subindex n in this Appendix means normal to the wall; φWQ = φQ − φW  
is the (positive) sheath potential fall  between the sheath edge Q  and the wall W; 
ce =

√
8Te/πme ; δr is the elastically reflected fraction of primary electrons; and σrp is 

a replenishment factor of the VDF tail of collected electrons, equal to 1 if the electron 
VDF at the sheath edge Q is semi-Maxwellian.

If δs is the macroscopic yield of (true) SEE at the wall, jni is the ion current density to 
the wall, and jn is the electric current density, the local current-voltage balance for the 
sheath is

!e parameters δr and δs depend on the impact energies of electrons and ions. !ey are 
marginal for the metallic surfaces of HETs and EPTs, but they can be large for ceramic 
walls, and, in any case, they depend on the particular material and the energy of primary 
electrons. In fact modeling the SEE with these two parameters is just a simplified version 
of more complete SEE models used in some kinetic simulations [11, 93].

For a dielectric wall, Eq. (74) plus jn = 0 determines the local sheath potential fall as

Since the first logarithm has a very large argument (around 200 for xenon), the effect of 
the second logarithm is relevant only if its argument is very small, which means either 
very low tail replenishment or a SEE yield close to 1; the last term on the right is mar-
ginal due to the Bohm criterion.

For the metallic anode of a HET, the integral relation between the anode potential 
φA and the discharge current is

where the integral domain is the surface ∂SB of the anode sheath edge B.
Regarding electron energy fluxes, the net power density deposited by the whole 

electron population at W is

where: Es is the average emission energy of true SEE, a = 2 for a Maxwellian VDF (and 
a ∼ 1.4 − 2 in the kinetic model of [56]), and the azimuthal electron energy has been 
included for completeness. !e electron power density at the sheath edge Q is

(73)gnp(φWQ) = (1 − δr)σrp
neQceQ

4
exp

−eφWQ

TeQ
,

(74)jn = jni − e(1 − δs)gnp(φWQ).

(75)
eφWQ

TeQ
= ln

√

mi

2πme
+ ln[(1 − δr)(1 − δs)σrp] − ln

jni
eneQ

√

mi

TeQ
.

(76)Id =
∫

∂SB

dS jni −
∫

∂SB

dS σrp
enec̄e
4

exp
e(φA − φ)

Te
,

(77)P′′
neW " gnp(aTeQ +meu

2
θeQ/2 − δsEs),

(78)P′′
neQ = P′′

neW + eφWQ(1 − δs)gnp,
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which is the boundary condition to be imposed to the quasineutral fluid model. Observe 
that the heat flux at Q is nonzero: qneQ = P′′

neQ − (5/2)TeQneQuneQ.
Since secondary electrons are emitted from a wall without (collective) azimuthal 

momentum, the net loss of azimuthal electron momentum at wall W (and sheath edge 
Q) is meuθeQgnp . In a ceramic wall with SEE, this loss amounts to meuθeQjni/e(1 − δs) ,
which, for δs ≈ 1 , can be an important loss term in the azimuthal momentum Eq. (41)
even if the convection terms are omitted. !is effect is known as wall collisionality 
[43] or near-wall conductivity [26, 57]. In an inertialess electron model, as the spa-
tial derivatives of uθe are neglected, a boundary condition on that variable cannot
be imposed and this loss term cannot be taken properly into account. Some 2D(z, r)
models include wall-collisionality effects as an additional contribution to the (volu-
metric) anomalous collisionality [13, 27]. Nonetheless, there is a certain consensus
that wave-based turbulence is more relevant than wall-collisionality for electron
anomalous transport in HETs.

Whereas stationary, normal sheaths are formed around most of the thruster surfaces, 
other situations can arise. For instance, a normal sheath at the anode requires ions flow-
ing sonically to it. If the magnetic field near the anode is too high or the plasma density 
is too low, there is a limit when the ion flow cannot fulfill the Bohm criterion at the 
sheath edge [49, 94] and there is a transition from a normal to an inverse sheath. Ref. 
[95] observed it experimentally in HETs. Ref. [51] derived sheath edge conditions for a
1Dz full-fluid model dealing with both normal and inverse sheaths. !ese are

with T = Te + Ti , η = |Ii/Ie|
√
mi/me , and the ion and electron axial velocities satisfying

the generalized Bohm criterion meu
2
ze +miu

2
zi = T  . Expressions for the sheath poten-

tial fall can be found in  [51] and the normal-to-inverse sheath transition happens for 
η =

√
Ti/Te . Observe that this generalized sheath model requires to implement full

inertia terms in the 1Dz electron equations.
For ceramic walls, as δs increases, the sheath potential fall decreases and the electric 

field at the wall too. Before the normal sheath collapses, this electric field vanishes, and 
the sheath enters into the the charge saturation limit (CSL) and regime [43, 96, 97], 
which is the scenario adopted in many HET simulations [27, 31, 43, 44]. Nonetheless, 
the exact sheath potential fall at the CSL is very sensitive to the ion and electron VDFs, 
and the classical result from Hobbs-Wesson [96] applies only to a fully replenished semi-
Maxwellian VDF. !is would explain that the CSL is very unstable numerically. Sheath 
instabilities and the development of an inverse sheath [98] are alternatives to the CSL 
scenario. Further investigation on these aspects is required.
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