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Abstract

A new method that relies on evolutionary computation concepts is proposed
in this paper to tune the parameters of fractional order PIλDµ controllers, in
which the orders of the integral and derivative parts, λ and µ, respectively, are
fractional. The main advantage of the fractional order controllers is that the
increase in the number of parameters in the controller allows an increase in
the number of control specifications that can be met. A Differential Evolution
(DE) algorithm is proposed to make the controlled system fulfill different
design specifications in time and frequency domains. This method is based
on the minimization of a fitness function, and one of its advantages is that any
requirement could be satisfied if it is properly incorporated into the fitness
function. The tuning method has been implemented to control the position
output of a DC motor. Experiments have been carried out in simulated and
real conditions and they illustrate the effectiveness of this method. The same
tuning technique has been applied to obtain the parameters of integer order
PID controllers for comparison. The results indicate that the specifications
can also be satisfied with integer order controllers for the system studied in
this work.

Keywords: Fractional order PIλDµ Controllers, Differential Evolution,
Evolutionary Algorithms, Robust Control

1. Introduction

Fractional calculus can be defined as a natural extension of the classi-
cal mathematics. Since the earliest theoretical contributions on fractional
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derivatives and integrals made by Euler, Liouville and Abel, fractional order
control has drawn the attention of many researchers [1].

For convenience, Laplace domain notion is commonly used to describe
the fractional integro-differential operation. The Laplace transform of the
fractional derivative/integral under zero initial conditions for order α (0 <
α < 1) is given by

£{aD±α
t f(t)} = s±αF (s). (1)

In [2], Podlubny proposed a generalization of the classical PI and PID
controllers defined as PIλ and PIλDµ, where the integrator order λ and the
differentiator order µ assume real non-integer values. He also proved that
these types of fractional order controllers have better control performances
[3].

This new type of controllers encouraged a lot of works dedicated to frac-
tional order control systems. Many researchers have been working on the
development of new effective tuning techniques for non-integer order con-
trollers by an extension of the classical control theory. A classification of
these tuning methods was presented in [4]. In summary, these methods can
be classified into analytical, rule-based and numerical ones.

In [5], by setting λ=µ, all parameters can be analytically derived by
solving four nonlinear equations based on the gain crossover frequency, phase
margin, phase crossover frequency and gain margin specifications. Based on
the same specifications, the authors further developed this method in [6, 7].
Another widely used specification is the robustness to loop gain variations,
which was proposed by Chen in [8] for fractional PI controllers. In [9, 10,
11], this specification along with the gain crossover frequency and phase
margin was also used to design fractional-order PDµ and PIλ controllers,
respectively. Obviously, the analytical methods are available only when the
equations are simple and their number is as few as possible.

As for the rule-based method, it can easily calculate the controller pa-
rameters based on some tuning rules [12, 13, 14]. However, the plant should
usually be a system having an S-shaped step response. This will limit the
applications of this method.

Besides, the numerical method is another option for tuning the PIλDµ

controller, which is an optimization-based method. In [15], an F-MIGO al-
gorithm for tuning a fractional PI controller was proposed, in which the pa-
rameters of the controller can be obtained by solving an optimization problem
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with the load disturbance constraint. In one of our previous works [16], we
proposed a method for tuning the fractional order PIλDµ controller by solv-
ing a nonlinear optimization problem with five constraints. Considering the
complexity of the equations, the Matlab optimization toolbox was adopted
to solve this problem. However, the success of this method still mainly de-
pends on the initial starting values. In [17], Tepljakov et al. have
applied their tuning method, named FOMCON (“Fractional-order
Modeling and Control”) [18], to fix the parameters of a fractional-
order PD controller for position control of a laboratory modular
servo system. Their numerical method permits the consideration
of specifications in time and frequency domains.

The objective of this work is to develop a novel numerical tuning method
for PIλDµ controllers based on evolutionary optimization techniques. In par-
ticular, we will exploit our previous knowledge about the Differential Evolu-
tion (DE) algorithm [19] to apply this method to the cited purpose.

DE is an evolutionary algorithm that solves an optimization problem by
iteratively trying to improve a candidate solution according to a fitness value.
In other words, the DE technique can be viewed as a particle-based method
that evolves in time to the solution that yields the lowest value of the fitness
function. In this case, each member of the population will be a possible frac-
tional controller with five parameters to tune. If the system specifications are
properly implemented in the fitness function, it is possible to obtain a con-
troller that makes the system meet the requirements. This is an interesting
feature, because the tuning method is not limited to a number of conditions
like in traditional approaches [1]. In our previous work, this method has been
successfully applied to several tasks for mobile robots [20, 21]. The good
behavior shown by the DE-based techniques encouraged us to im-
plement the method presented in this paper. DE uses a stochastic
gradient search that can be applied to find the solution of multiple
optimization problems. Moreover, it has other interesting charac-
teristics: it can deal with nonlinear state space dynamics and noise
distributions, it does not require any assumptions on the shape of
the posterior density, and the computational resources focus on the
most relevant areas.

The DE-based tuning method is applied here to estimate the parameters
of a PIλDµ controller for a DC motor with a known transfer function. Two
different fitness functions have been modeled to meet specifications in time
or frequency. The algorithm performance has been tested in simulation and
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in the real plant. The same method and the same motor transfer function
have been used to obtain the parameters of a traditional PID controller for
comparison, showing that both types of controllers can be employed to meet
the requirements for the given plant.

Many authors have suggested to use evolutionary optimization techniques
to control processes. Some examples are given here. Chang and Chen [22]
have proposed an adaptive Genetic Algorithm (GA) to tune the parameters
of a fractional PID controller applied to the control of an active magnetic
bearing system. Zhang et al. [23] have implemented a self-organized GA with
“good global search properties and a high convergence speed” to optimize the
parameters of PID controllers, showing simulated results for different plants.
A tuning method based on a GA was designed by Thomas and Poongodi
[24] to select the parameters of a PID controller for a third-order DC motor.
Altinen et al. [25] have applied a tuning method based on GA to tune a
PID controller for a jacketed batch polymerization reactor. Cao and Cao
[26] have developed a tuning method for fractional order PID controllers
that relies on Particle Swarm Optimization (PSO). Korani et al. [27] have
presented “a new algorithm for PID controller tuning based on a combination
of the foraging behavior of E coli bacteria foraging and PSO”. To the best
of our knowledge, most of these algorithms try to minimize variables in the
time-domain, such as the quadratic error of the output. An interesting aspect
of our approach is that it also allows the user to specify multiple constraints
in the frequency-domain.

This paper is organized as follows. The evolutionary technique devel-
oped in this paper, which is applied to the tuning of fractional order PIλDµ

controllers, is detailed in Section 2, introducing two different cost functions
to deal with the design specifications both in time and frequency domains.
The experimental results are presented in Section 3, discussing the results
obtained from the implementation of both cost functions. Finally, the most
important conclusions are summarized in Section 4.

2. DE-based Tuning of PIλDµ Controllers

A new strategy to estimate the parameters of a fractional PIλDµ con-
troller that meets some specifications for a given plant is proposed here. It
relies on the DE algorithm, which is an evolutionary optimization technique
based on the minimization of a fitness function. The block diagram of the
control system is shown in Figure 1. Given a process with a known transfer
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function G(s), the DE-based algorithm calculates the parameters of the frac-
tional controller C(s) in order to satisfy several specifications in closed-loop.

G(s) C(s) 
+ 
- 

Y(s) R(s) 

Plant Fractional PID 
Controller 

Figure 1: Block diagram of the closed-loop system.

The generalized formula of a PIλDµ controller is

C(s) = kp +
ki
sλ

+ kds
µ, (2)

where λ and µ are the fractional orders of the integral and derivative parts
of the controller, respectively. The other variables are the proportional (kp),
integral (ki) and derivative (kd) gains of a classic PID controller. It can
be observed that there are two more parameters to tune in this type of
controllers (λ, µ) when compared to the traditional PID. This means that
more specifications can be met. It is crucial to study which are the most
interesting specifications with regard to the robustness and the performance
of the controlled system.

It is the purpose that the tuning method can be used to fulfill control
specifications both in time and frequency domains. For this reason, two dif-
ferent cost functions will be used, depending on the objectives to be satisfied:
the first one is a cost function defined in the time-domain that minimizes the
error between the output and the reference input; the second one has been
defined to satisfy some specifications in the frequency-domain, including ro-
bustness to gain variations of the plant.

The DE algorithm and cost functions used in this work are described
next. The code has been implemented as a user-defined function
(.m) in Matlab according to the concepts explained in Agorithm
1. One advantage of the DE method is that it is very simple to
implement, just a few lines of code are needed (about 50).

2.1. Differential Evolution Algorithm
The performance of the DE algorithm implemented here is displayed in

Algorithm 1. A more detailed explanation can be found in our previous works
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Algorithm 1 DE-based Tuning of PIλDµ Controllers

1: for i = 1 : NP do
2: pop1

i ← init pop(pop limits) . First population generation
3: e0i ← fitness(plant,pop1

i ) . Cost function calculation
4: end for
5: for k = 1 : max do
6: for i = 1 : NP do
7: vki = popka + F (popkb − popkc ) . Mutation
8: for j = 1 : D do
9: uki,j = vki,j,∀pki,j < δ . Crossover

10: uki,j = popki,j,∀pki,j ≥ δ
11: end for
12: eki ← fitness(plant,popki ) . New cost function calculation
13: if eki < ek−1

i then . Selection
14: popk+1

i = uki
15: else
16: popk+1

i = popki
17: end if
18: end for
19: ind best← min(ek)
20: bestmem← popk(ind best)
21: if convergence = true then . Execution stops after convergence
22: exit(bestmem)
23: end if
24: end for . Return best estimation

[20, 28].
The population set is composed of NP candidates representing possible

solutions. The fractional controller has five parameters to be fixed:

popki = (kp, ki, kd, λ, µ), (3)

where popki represents element i at iteration k. The first three parameters are
the proportional, integral, and derivative gains of the controller, respectively.
The other two are the exponents that are introduced to give the controller its
fractional behavior. The initial population will be generated randomly in pre-
defined intervals (line 2 of Algorithm 1). These intervals are necessary to limit
the search space. A not-limited search space would imply the requirement of
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huge populations, which is not practical from a computational point of view.
The fitness value has to be evaluated for each possible controller (line 3).

The fitness function is a crucial aspect of the evolutionary technique because
it includes the specifications that will be optimized.

The optimization process begins in line 5 with a loop that ends when
the upper limit of iterations is reached or one of the convergence conditions
is met. An inner loop is executed (line 6) to generate the new population
for the next generation, evolving in time to the controller parameters that
minimize the fitness function.

The evolutionary mechanism is divided into three main steps: mutation,
crossover, and selection. First, each candidate of the current population is
perturbed (line 7) to generate a mutated vector:

vki = popka + F (popkb − popkc ), (4)

where popka, popkb and popkc are three randomly chosen elements at iteration
k and a, b and c are different from running index i. F is a real and constant
factor which controls the amplification of the differential variations. The
adequate value for this parameter is in the interval [0.4, 1], as demonstrated
in [19, 29].

After that, the crossover step (lines 8− 11) increases the diversity of the
new generation. A trial vector uki = (uki,1, u

k
i,2, . . . , u

k
i,D)T is created from vki

and popki depending on the crossover probability:

uki,j =

{
vki,j; if pki,j < δ,
popki,j; otherwise,

(5)

where pki,j is a randomly chosen value from the interval [0, 1] for each pa-
rameter j of the population member i at iteration k, and δ is the crossover
probability that constitutes the crossover control variable. D is usually re-
ferred to as the number of chromosomes. In this case, it is equal to five
because the controller has five parameters.

The population set of the next generation (k + 1) is determined by a
selection mechanism (lines 12− 17) that compares uki to popki . If the fitness
value of the proposal uki is better than the fitness value of the current member
popki , then popki is replaced by uki ; otherwise, the current member popki is
maintained for the next generation. The selection mechanism is described
by the next expression:

popk+1
i =

{
uki , if ekui

< ekpopi
,

popki , otherwise,
(6)
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where ekpopi
is the cost value of the current candidate and ekui

represents the
fitness value of the trial vector.

The previous process (mutation, crossover, and selection) is applied to
the whole population, obtaining the next generation population (k + 1).

After convergence or when a maximum number of iterations is reached,
the algorithm returns the best member of the population (lines 19 − 20).
This solution corresponds to the fractional order controller that minimizes
the fitness function.

To define a convergence criterion for the evolutionary algorithm
is not an easy task. In [20], it is possible to determine the form of
the probability distribution defined by the fitness function when
the optimum value is found. The stopping condition is established
depending on the expected value of the cost function. The same
ideas cannot be applied in this work. The cost value will be (ide-
ally) zero when the output exactly follows the reference (explained
below in Section 2.2.1) or the phase is exactly flat around the
crossover frequency (Section 2.2.2), but these cases are ideal situ-
ations that never happen in practical applications. In the current
method, the convergence criterion is based on the empirical con-
ditions that were also proposed in [20]. These requirements do
not ensure convergence but may lead to good results in less time.
If one of the following conditions is satisfied, the tuning process
finishes:

• Number of iterations without changes in the cost value of the
best estimate is bigger than a constant (C1).

• Number of iterations without changes in the cost value of the
worst estimate is bigger than a constant (C2).

• Number of iterations without changes in the difference be-
tween the cost value of the best estimate and the cost value
of the worst estimate is bigger than a constant (C3).

The fitness function has to be designed according to the requirements that
must be satisfied: the first one minimizes the error of the step response in the
time-domain; the second one allows the introduction of multiple specifications
in the frequency-domain.
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2.2. Fitness functions

The DE method is capable of obtaining an adequate solution for a given
problem if the fitness function is modeled in an adequate way. In this case,
the objective is to estimate the parameters of a fractional PID controller for
a given plant. This means that the process to be controlled needs to be ana-
lyzed. After that, a cost function has to be proposed to satisfy some design
specifications. The evolutionary algorithm introduces a great flexibility in
the tuning method, and multiple functions could be implemented. The re-
quirements are not restricted to a limited number like in classic approaches.
In this case, two different cost functions will be defined based on specifica-
tions in time and frequency, respectively. Each option has advantages and
disadvantages, as discussed later.

An important limitation that has to be taken into account in this opti-
mization problem is the control action that can be sent to the plant. When
controlling a real device, the input that it can receive according to its com-
ponents is usually limited to an interval. The control strategy will not be
adequate if the control action is outside the admissible limits. The limitation
of the control action has been included as an additional restriction in the cost
function for both approaches: time and frequency. The possible solution will
be discarded if the control action is not inside the desired interval. In the
experiments, the controller will be applied to a DC motor which admits an
input voltage in the interval [−5, 5].

2.2.1. Time-Domain Tuning

The time response is a simple and illustrative variable that can be con-
sidered when designing a controller. One possibility consists of measuring
the error between the output and the reference:

fitness(i) =

tf∑
t=ti

e2TD(t) =

tf∑
t=ti

[r(t)− y(t)]2, (7)

where eTD(t) is the signal error in the time domain. This error is computed
in a finite interval in discrete-time between an initial and a final time. r(t)
is the reference signal (ideal output that is desirable to obtain) and y(t) is
the output of the plant. The optimum case from a control point of view will
be a scenario where the output signal follows exactly the reference one.

The minimization of this fitness function implies that the time response
will be the closest possible to the ideal one (taking into account the limitation
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of the control action). Since the signal is controlled in the time-domain, if
the optimization method succeeds, it is expected that the most typical char-
acteristics of this control approach (peak time, stabilization time, overshoot)
will present good values.

Nevertheless, there are many other factors that are not included in this
type of control. For example, the robustness to variations in the gain of the
plant is ignored, condition that occurs in many occasions in real applica-
tions. This factor can be taken into account when designing in the frequency
domain, second type of cost function proposed here.

2.2.2. Frequency-Domain Tuning

There are many different conditions that can be met when designing in
the frequency domain. Since the fractional order PIλDµ controller has five
parameters to be tuned, the traditional approaches consider that five different
conditions could be satisfied [16]. As said before, an advantage of this tuning
method is that more than five specifications could be satisfied if they are
included in the fitness function.

One of the most common specifications for the PID controllers is the
robustness to variations in the gain of the plant [30], which can be obtained
if the following condition is satisfied:

d(arg(F (s)))

dω

∣∣∣∣
ω=ωcg

= 0, (8)

where ωcg is the gain crossover frequency and F (s) = C(s)G(s) is the open-
loop transfer function. G(s) is the transfer function of the plant. It means
that the phase of the open-loop system will be flat at ωcg and almost constant
within an interval around ωcg. The system will be more robust to gain
changes and the overshoot of the response is almost constant within a gain
range (iso-damping property of the time response).

For each possible solution, the cost function is calculated according to
the slope of the phase of the open-loop response around the gain crossover
frequency:

fitness(i) =

ωf∑
ω=ωi

e2FD(ω) = (ϕ(ω)− (ϕm − π))2, (9)

where the error is calculated in a predefined interval between ωi and ωf
around the gain crossover frequency. ϕ(ω) is the phase of the system at a
frequency ω.
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An advantage of this technique is that the interval where the response is
robust to variations in the gain can be fixed. In our previous work [1, 16],
only the slope of the argument were forced to be zero, and it was not possible
to fix the interval of gains with a flat response.

More requirements have been included in this fitness function to satisfy
the same specifications described in [16] (the solution is discarded if the
following conditions are not met):

• Intervals for gain crossover frequency (ωcg) and phase margin (ϕm).
These variables have an important influence on the robustness of the
system. For example, the phase margin is related to the damping of
the system [31]. These parameters are computed via the following
equations:

|C(jωcg)G(jωcg)|dB = 0 dB, (10)

arg (C(jωcg)G(jωcg)) = −π + ϕm. (11)

An acceptance interval for ωcg and a minimum ϕm have been fixed.

• High frequency noise rejection: the objective is to attenuate the noise at
high frequencies. The complementary sensitivity function is computed
to satisfy this constraint:∣∣∣∣T (jω) =

C(jω)G(jω)

1 + C(jω)G(jω)

∣∣∣∣
dB

= A dB, (12)

∀ ω ≥ ωt rad/s⇒ |T (jωt)|dB ≤ A dB, (13)

The possible solution is discarded if Equation 13 is not satisfied. The
noise attenuation will be equal to A for frequencies ω ≥ ωt rad/s.

• To ensure a good output disturbance rejection: this requirement is
given by the sensitivity function:∣∣∣∣S(jω) =

1

1 + C(jω)G(jω)

∣∣∣∣
dB

= B dB, (14)

∀ ω ≤ ωs rad/s⇒ |S(jωs)|dB ≤ B dB, (15)

where B is the desired value of the sensitivity for low frequencies (ω ≤
ωs). Equation 15 is applied to meet this requirement.
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• Steady-state error cancellation: the fractional integrator 1/sλ is as effi-
cient as an integer order integrator [16], which means that this condition
is always fulfilled with this type of controller.

As can be observed, it is possible to include many additional conditions
if they can be incorporated into the fitness formula. The fitness value of the
frequency-domain approach is computed by Equation 9, but many different
specifications are included by restricting the fitness function to specified val-
ues that meet the requirements. If the controlled system does not meet one
of this requirements, the candidate solution is discarded.

In order to prevent the control system to reach the stability bor-
der, which may happen when using optimization algorithm-based
methods, the stability of the controlled system has to be checked
after the tuning process, and so we did for the two proposals pre-
sented in this work, even though stability requirements have been
also considered in the fitness formula for our approaches.

3. Experimental Results

The method performance will be studied in experiments in both simulated
and real environments. The objective will be to control the position of a DC
motor whose transfer function is known. It has to be said that this method
can also work when the transfer function of the plant is unknown if the
system output in closed-loop is available (black box).

The open-loop transfer function of a DC motor with position output can
be deduced from the next equation:

G(s) =
θ(s)

V (s)
=

k1
1 + Ts

k2
s
, (16)

where k1, k2 and T are the motor gain, the encoder gain, and the motor
constant time, respectively. The identification of these parameters can be
done by analyzing the open-loop time response. θ(s) is the position output
and V (s) is the input voltage, which will be typically a unit step in these
experiments.

The resulting second order transfer function that has been experimentally
identified for the motor in Figure 2 is the following one:

G(s) =
3.666

s(0.2193s+ 1)
. (17)
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Figure 2: Real DC motor used in the experiments

In Section 2.2, two types of tuning methods were proposed. The first one
was based on a fitness function obtained from parameters in the time-domain.
The second one was designed in the frequency-domain. Both approaches will
be considered in these experiments.

An additional restriction to be taken into account is the limitation of
the control action that could be given to the real DC motor used for the
experiments. The device works with a control action in the interval [−5, 5]
volts. A saturation effect appears when the input to the motor is out of the
interval. This restriction has been included in all the experiments, causing a
limitation in the speed of the control system.

First, the performance of our tuning method has been tested in simu-
lation. However, the design of an optimum controller in a simulated envi-
ronment is not enough because real conditions usually deteriorate the actual
performance of the system. Therefore, the controllers have been tested later
in the real motor platform.

Since the current method permits to use the same concepts and equations
for different types of controllers, it has been applied to estimate the param-
eters of classical PID controllers for comparison. The only difference is that
each population member will be formed by three parameters:

popki = (kp, ki, kd), (18)

since the PID controller is given by the transfer function

C(s) = kp +
ki
s

+ kds. (19)
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The configuration parameters of the optimization filter are: upper limit
of iterations: 100; C1 = C2 = C3 = 20; population size: 100; initial interval
for the controller gains: [0, 5]; initial interval for the controller exponents:
[0, 1]; DE internal parameters: F = 0.7, δ = 0.5.

The Ninteger Matlab toolbox, developed by Valério and Sá da
Costa [32], has been applied to implement the fractional-order con-
troller. The approximation algorithm is the Crone method (with
N = 10) proposed by Oustaloup [33, 34], which uses a recursive
distribution of N poles and N zeros.

3.1. Time-Domain Results

When the fitness function is defined in the time-domain according to
Equation 7, the following fractional order controller is obtained:

Cft(s) = 0.375 +
1.119

s0.226
+ 0.202s0.669, (20)

where subindex f indicates fractional order (i for integer order) and t means
cost function in time-domain (ω for frequency-domain). This notation will
be used from now on.

Regarding the computational time, the time per iteration is 7.00
s and the number of iterations to converge is 23. The computational
time is basically dependent on the cost function (97.5% of the total
execution time), which calls the nipid function of the Ninteger
toolbox (80.8%) and Matlab native functions (feedback : 11.1%, step:
7.9%).

The same method has been applied to estimate the parameters of an
integer order PID controller for comparison. In this case and with the same
configuration parameters, the next PID controller has been computed:

Cit(s) = 0.891 +
0.001

s
+ 0.0402s. (21)

The step response of the system when these controllers are included can
be observed in Figure 3. For the fractional order controller, the overshoot is
approximately equal to 17% and the peak time is 0.74 s. The settling time
(with a 2% error band, value that will be taken from now on to compute
this parameter) is 1.36 s. For the traditional PID, the overshoot is equal to
6%, the peak time is 1.06 s, and the settling time is 1.51 s. The fractional
controller is a little bit faster but it presents a higher overshoot. However,
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Figure 3: Step response (closed-loop) when designing in the time-domain. Simulation.
Top left: fractional order PIλDµ step response. Top right: traditional PID step response.
Bottom left: fractional order PIλDµ control action. Bottom right: traditional PID control
action.

the differences are not important and both controllers present similar perfor-
mances. The steady-state error is zero in both cases, which is a logical result
because the plant transfer function presents a pole at the origin. The control
action is inside the tolerance interval in both cases.

It has to be remarked that the limitation of the plant control action is
specially important in this case because faster systems imply more abrupt
control actions. Much better results could be obtained with the current
method for a different plant with a wider control action interval. However,
this limitation has been included to make this experiment more realistic.

The controllers presented in Equations 20 and 21 have been implemented
in the control loop of the real system. The step responses and the control
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Figure 4: Step response (closed-loop) of the real system when designing in the time-
domain. Top left: fractional order PIλDµ step response. Top right: traditional PID step
response. Bottom left: fractional order PIλDµ control action. Bottom right: traditional
PID control action.

actions are displayed in Figure 4. For the fractional order PIλDµ controller,
the overshoot is 11%, the peak time is 0.60 s and the settling time is 2.08 s.
For the traditional PID, the overshoot is 2.5%, the peak time is 0.63 s and
the settling time is 0.67 s. Only slightly better results are obtained for the
overshoot and the peak response when compared to the simulated ones.

The differences between the real and the simulated results are
sufficiently small, which implies that the linear motor model has
been estimated within a reasonable error and that the nonlinear
characteristics of the motor are not very significant. However,
the existing mismatches between the theoretical and real models
will be used later for the frequency-domain approach to test the
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robustness of the system to these uncertainties, reason why we are
not interested in a very accurate model identification.

To sum this section up, the DE-based method has estimated a controller
that meets the time-domain requirements. Therefore, it can be concluded
that it is an appropriate tuning method for this type of controller. No sig-
nificant differences were found between both control approaches (fractional
order and integer order), so it is not possible to conclude that one control
scheme was better than the other for this plant. Although the DE-based
algorithm estimates adequate controllers, the control action restriction due
to the real system saturation constraint limits the control performance.

3.2. Frequency-Domain Results

Interesting specifications such as robustness to changes in the gain plant
cannot be defined in the time-domain. This requirement must be specified
in the frequency-domain. Therefore, the second approach proposed in this
paper was to design a controller that follows specifications in the frequency-
domain. Several conditions can be satisfied if the controller is estimated
according to the fitness function presented in Equation 9 and the restrictions
described in Section 2.2.2. The following conditions have been included as
configuration parameters of the fitness function:

• Minimum phase margin ϕm equal to 15◦.

• Interval when the phase is intended to be flat (ωf − ωi) equal to 0.25
decades.

• Gain crossover frequency ωcg in the interval [1, 30] rad/s.

• High frequency noise rejection: ωt = 100 rad/s ⇒ |T (jωt)|dB ≤
−15 dB.

• Sensitivity: ωs = 0.01 rad/s⇒ |S(jωs)|dB ≤ −15 dB

An important property can be deduced when this control approach is
compared to the classical control methods. With the classical methods, the
fractional order PIλDµ controller with five different parameters can be tuned
to meet five different specifications. With the evolutionary-based technique,
the number of specifications that could be satisfied is not that restrictive.
More specifications could be met if they can be implemented in the cost
function. When an integer order PID controller is tuned with a classical
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method, three different requirements could be met. With the DE-based
tuning method, it will be possible to meet the previous five specifications
even with this integer order controller. Maybe the solution is worse or cannot
be found because the controller is not the most adequate one to satisfy the
conditions, but the tuning method will try to find the best solution.

The solution of the optimization filter for the fractional order controller
is now

Cfω(s) = 0.2725 +
0.0577

s0.8291
+ 0.0007s0.9499. (22)

Regarding the computational time, the time per iteration is
20.45 s and the number of iterations to converge is 43. The com-
putational time is basically dependent on the cost function (98.6%
of the total execution time), which calls the nipid function of the
Ninteger toolbox (37.5%) and Matlab native functions (bode: 27.7%,
margin : 19.6%, step: 6.0%, feedback : 3.9%). The difference with
respect to the time-domain approach is that Bode diagrams are
needed to compute the fitness value of each particle.

The Bode diagrams of the system with this controller are drawn in Figure
5. It can be observed that the system follows the specifications, the phase is
the flattest possible around the gain crossover frequency. The phase margin
is ϕm = 65.71◦ and the crossover frequency is ωcg = 1.00 rad/s. The high
frequency noise rejection and the sensitivity conditions are also satisfied.

When an integer order PID controller is designed according to the frequency-
domain specifications, the following solution is obtained:

Ciω(s) = 0.3178 +
0.1131

s
+ 0.0001s. (23)

The Bode diagrams can be seen in Figure 6. The phase is the flattest
possible around the gain crossover frequency. The phase margin is ϕm =
58.70◦ and the crossover frequency is ωcg = 1.18 rad/s. The high frequency
noise rejection and the sensitivity conditions are also met.

The step responses of the system with both controllers are shown in Figure
7. For the fractional controller, the overshoot is 11.2%, the peak time is 3.34
s and the settling time is 12.32 s. For the traditional controller, the overshoot
is 20.4%, the peak time is 2.76 s and the settling time is 7.54 s. However, no
conclusions can be drawn from these data because the controllers have been
tuned to meet other specifications.
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Figure 5: Bode diagrams when designing a fractional order controller in the frequency-
domain. ϕm = 65.71◦, ωcg = 1.00 rad/s.

−100

−50

0

50

100

M
ag

ni
tu

de
 (d

B
)

10−2 10−1 100 101 102
−180

−150

−120

Ph
as

e 
(d

eg
)

Frequency  (rad/s)

Figure 6: Bode diagrams when designing an integer order controller in the frequency-
domain. ϕm = 58.70◦, ωcg = 1.18 rad/s.

Since the controllers have been designed to be robust under changes in the
plant gain, small changes in this parameter should not cause poorer perfor-
mances. This condition means that the overshoot should remain constant (or
within a narrow interval) when the gain is shifted. To check this property, the
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Figure 7: Step response (closed-loop) when designing in the frequency-domain. Top left:
fractional order PIλDµ step response. Top right: traditional PID step response. Bottom
left: fractional order PIλDµ control action. Bottom right: traditional PID control action.

step response is computed when the gain of the plant is changed and the con-
troller is not modified. The nominal gain of the plant is K = k1k2/T = 16.72.
The step response for this gain is represented in blue in Figure 8, together
with the responses for three more gain values: 1.5K (25.08, magenta), 1.2K
(20.06, red) and 0.8K (13.37, green).

As can be seen, the system is faster for higher gains and slower for lower
ones. If the overshoot is analyzed, it is in a narrow band for the interval of
gains studied in this experiment ([0.8K, 1.5K]). It varies within the interval
[10.6, 12.1]% for the fractional order controller and the interval [18.5, 22.3]%
for the traditional one. This is a promising result that leads us to conclude
that the system presents a good behavior in this aspect, which is one of
our main objectives when designing in the frequency-domain. Although the
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Figure 8: Step response for variable gains when designing in the frequency-domain. Sim-
ulation. Left: fractional order PIλDµ. Right: traditional PID.

results are better for the fractional order controller (the interval is narrower),
it is also possible to obtain an adequate performance with the integer order
one.

It can be concluded that both approaches (fractional and integer) can be
used to perform an adequate control for the plant described in this paper.
In a future work, it will be interesting to implement the current method
for the control of more complex processes, comparing the fractional and the
traditional approaches to highlight the advantages and disadvantages of both
types of controllers.

The step responses and the control actions when implementing these con-
trollers (Equations 22 and 23) in the real motor platform are shown in Figure
9.

For the fractional controller, the overshoot is 19.1%, the peak time is 0.72
s and the settling time is 6.11 s. For the traditional controller, the overshoot
is 25.9%, the peak time is 0.73 s and the settling time is 4.81 s.

The step response of the real system has been measured when the gain
of the plant (K) is changed (Figure 10). In order to do that, the gain of the
plant has been multiplied by different values: nominal gain (K, blue), 1.5K
(magenta), 1.2K (red) and 0.8K (green).

It can be seen that the speed of the output with both controllers slightly
varies for this interval of gains. Observing the enlarged images, the overshoot
varies within similar intervals for both controllers.
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Figure 9: Step response (closed-loop) of the real system when designing in the frequency-
domain. Top left: fractional order PIλDµ step response. Top right: traditional PID step
response. Bottom left: fractional order PIλDµ control action. Bottom right: traditional
PID control action.

Beyond the slight differences between the simulated and ex-
perimental results, our interest lays on the robustness of the ex-
perimental system to gain variations, which is the main design
constraint to achieve with the tuning method proposed for the fre-
quency domain. In fact, the mismatches between the theoretical
and real models are needed to test how robust the control sys-
tem performs to those model uncertainties, this way validating our
control approach.

If the frequency-domain approach is compared to the time-domain one,
the overshoots are similar for both cases but the settling times have increased
for the frequency-based controllers, which is a logical result because temporal
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Figure 10: Step response for variable gains when designing in the frequency-domain. Real
motor. Left: fractional order PIλDµ. Right: traditional PID. Bottom: zoom around the
peak value.

constraints have not been included in the frequency-based fitness function.
These increments have to be taken into account in the control process (for
example, if the system is fed by a square signal, the frequency of the input
must be restricted by the settling time). An interesting development to
accomplish in a future work could be to combine both time and frequency
fitness functions to obtain a controller that inherits the advantages of both
approaches.

4. Conclusions

A new method based on evolutionary computation concepts is proposed
in this work to estimate the parameters of fractional order PIλDµ controllers
and traditional PID ones. This new tuning method has multiple advantages:
it allows more flexibility in the design process because different control spec-
ifications can be chosen by simply changing the cost function; less knowledge
about the plant is needed and successful results can be obtained without
knowing the plant transfer function (if the output is available); if an ade-
quate controller is in the space of parameters where the algorithm searches,
the optimization method will success.

The algorithm capabilities have been examined when controlling the po-
sition output of a DC motor in both simulated and real environments. Two
different strategies have been followed to design the controllers: the first one
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optimizes the step response and the second one relies on some properties in
the frequency-domain. To the best of our knowledge, there are no other pre-
vious research works dealing with the design of fractional order controllers
with evolutionary techniques in the frequency-domain. In all cases, an addi-
tional restriction is included to limit the maximum control action that could
be sent to the plant (according to the real system saturation limits).

The proposed method has computed two controllers (fractional and in-
teger ones) that meet the time-domain requirements in a satisfactory way,
both in simulation and experimental environments. No significant differences
were found between both controlled systems for the real plant studied here
when the time-domain is analyzed.

When designing in the frequency-domain, the variation of the overshoot
of the response is the smallest possible when the gain of the plant is varied
within an interval. This is an interesting feature because it makes the system
more robust to changes in the gain of the plant. Slightly better results are
obtained for the fractional order controller than for the integer order one,
but both approaches fulfill the frequency specifications both in simulation
and real environments.

A challenging work to do is to apply the current method for the control
of more complex systems (higher order or nonlinear ones) to take the most of
this technique and compare fractional and integer order performances under
more restrictive situations.

Another interesting expansion of this work could be to combine both
time and frequency fitness functions to tune a controller that inherits the
advantages of both approaches.

Besides, other objectives could be pursued in the optimization process.
For example, the goal of the control strategy could be to minimize the energy
or the control action. A deeper analysis of the evolutionary method (con-
vergence conditions, initialization parameters) when it is applied for these
purposes would also be helpful to improve this technique. Other tuning
methods based on different evolutionary strategies, such as PSO,
are being developed in order to make comparisons with the current
method.
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