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Abstract: This article presents the first implementation and the experimental characterization 
of a thermal infrared wavelength modulation laser heterodyne radiometer (WM-LHR) based 
on an external cavity quantum cascade laser. This novel WM-LHR system has demonstrated 
calibration-free operation, a superior signal to noise ratio and, more importantly, has opened 
the door for cost-efficient wide spectral range laser heterodyne radiometry in the near future. 
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1. Introduction 

Optical spectroscopy is arguably the technique with the highest potential for atmospheric 
sounding: the Total Carbon Column Observing Network (TCCON) [1,2], the Thermal and 
Near infrared Sensor onboard the Greenhouse Gases Observing Satellite (GOSAT) [3] or the 
Orbiting Carbon Observatory 2 spectrometers [4,5] are indeed some of the most outstanding 
examples of the capabilities of the approach. The sophisticated spectral analyzers mentioned 
above, which provide reliable estimations of the concentrations of atmospheric constituents 
such as water vapor, carbon dioxide, methane, and nitrous oxide, have been implemented 
utilizing Fourier Transform (FTS) or grating spectrometers (as virtually any other, ground-
based or spaceborne, optical atmospheric sounding infrastructure nowadays). However, and 
strongly supported by the advent of high quality, robust and compact laser sources, many 
stunning instrument designs and experimental demonstrations are paving the way for Laser 
Heterodyne Radiometers (LHR) to become the terrestrial and planetary atmospheric optical 
sounding tool of the future [6–12]. 

LHR systems provide very high sensitivity, ultra-narrow optical resolution, very confined 
field-of-view, and, due to low component count, reduced cost, high reliability, and a huge 
potential for ruggedization and miniaturization [13,14]. The LHR method has, nevertheless, 
remained essentially unchanged from the very first demonstrations performed by Menzies and 
Shumate [15,16] in the early seventies and, up to this day, most developments have been 
focused on the adoption of higher-performing components. It was only very recently that a 
new LHR spectral interrogation procedure, Wavelength Modulation Laser Heterodyne 
Radiometry (WM-LHR) [17], was proposed as a noteworthy performance enhancement step. 
WM-LHR is based on the use of a wavelength-modulated local oscillator (LO) laser in a 
manner similar to the vastly used Wavelength Modulation Spectroscopy (WMS) technique 
[18]. A preliminary WM-LHR near-infrared system implementation [17], based on optical 
communication components, recently demonstrated a very promising boost in performance 
and consistency. This paper now presents the first implementation of a thermal infrared (TIR) 
WM-LHR based on an external cavity quantum cascade laser (EC-QCL) and provides a 
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thorough characterization of the system and a comprehensive comparison of performance 
with the traditional LHR method. This novel WM-LHR system has demonstrated calibration-
free operation, a superior signal to noise ratio and, more importantly, has opened the door for 
wide spectral range radiometric measurements in the near future. The results yield a very 
clear and conclusive representation of the new and unique capabilities of this novel spectral 
analysis approach. 

2. Wavelength modulation laser heterodyne radiometry

2.1 Fundamentals of the method

The block diagram of the WM-LHR architecture can be seen in Fig. 1. The incoming optical 
signal is combined with the LO on a beam splitter and focused into the detector. The RF chain 
maintains a classical design based on amplification, band-pass filtering, RF power detection 
and lock-in signal demodulation. A ramp modulation signal is applied to the laser for 
frequency sweeping in order to facilitate the spectral interrogation of the incoming signal. 
Contrary to traditional LHR [19], WM-LHR adds a sinusoidal frequency modulation to the 
ramp signal of the laser that completely redefines the functioning of the heterodyne 
radiometer. In this way, the traditional spectral intensity detection performed by LHR is now 
converted into optical intensity differentiation (the presence of an absorption line gives rise to 
harmonics of the modulation signal that can be utilized to infer the composition of the gas 
sample under analysis) providing several noteworthy advantages in the process. 

Fig. 1. Schematic of a WM-LHR system. 

2.2 Thermal infrared wavelength modulation laser heterodyne radiometry with an 
external cavity quantum cascade laser 

A photograph of the experimental TIR WM-LHR implementation based on an EC-QCL is 
shown in Fig. 2. A continuous wave mode-hop-free EC-QCL (41078-MHF, Daylight 
Solutions, Inc., USA) with a wavelength tuning range from 7.64 to 8.22 µm (1319 to 1217 
cm−1) and a maximum power output of 225 mW is employed. The laser frequency is slowly 
swept across the spectrum of interest using a ramp signal generator connected to the piezo 
element that controls the external cavity length. A much faster sinusoidal modulation of the 
laser is achieved by the direct modulation of the QCL current through the internal bias Tee 
circuit. 

The first optical component of the set-up is an uncoated 4 mm thick calcium fluoride 
window acting as a beam splitter that sends roughly the 95% of the power emitted by the laser 
to a beam block. The remaining light is redirected to the next stages of the heterodyne 
radiometer (a second beam-stopper eliminates the reflection on the backside of the beam-
splitter). This approach is preferred over the traditional laser intensity control based on 
polarizers, as it provides an improved performance with respect to interference fringes. 
Subsequently, beam expansion, required for an adequate spatial overlapping with the optical 
signal, is realized by means of two 90 degrees gold-coated off-axis parabolic mirrors with 
focal lengths of 1 and 6 inches. The total diameter of the laser beam is, in this manner, 
expanded up to 12 mm. A second calcium fluoride window combines the LO light with the 
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signal (5:95) and redirects the resulting beam to a parabolic mirror that focus the light into the 
thermal detector. A thermoelectrically cooled photovoltaic detector (PVI-4TE-10.6-1x1, Vigo 
Systems S. A., Poland) with a high speed (450 MHz) transimpedance preamplifier has been 
employed in the experimental demonstrations presented in this paper. The use of a 
thermoelectrically cooled detector instead of the conventional liquid nitrogen unit is utterly 
important to facilitate the eventual field deployment of the radiometer. No modifications were 
made to the detector to reduce the noise level. To ensure maximum consistency in the 
experimental results, a regular optical signal is replicated with a 12 V silicon carbide IR 
source (an area of roughly 70 × 10−9 m2 of the source is imaged into the detector) and an off-
axis parabolic mirror that collimates part of the emitted radiation through a 30 mm gas cell 
with calcium fluoride windows. A band-pass optical filter (7.5 to 8.5 µm) finally restricts the 
optical bandwidth of the incoming signal before combination with the LO for spectral 
interrogation. Different gas concentrations were pumped into the cell for the characterization 
of the performance of the system. An optical chopper, which is disabled during WM 
operation, is also included to benchmark the performance of WM-LHR with the traditional 
LHR method. The RF processing chain is comprised of a low-noise 24 dB amplifier (ZFL-
500LN, Mini-Circuits Inc., USA), a 50 MHz to 100 MHz band-pass filter and a Schottky 
detector (EZR0120A3, Eclipse Microwave Inc., U.S.A.). The dual-sideband optical resolution 
of the spectrometer is, therefore, 100 MHz or 0.003 cm−1. 

 

Fig. 2. Photograph of the WM-LHR implemented in the laboratory. The red and blue lines 
represent the optical path of the local oscillator laser and the thermal signal respectively. 

The EC-QCL was tuned to 7.87 µm (1270.8 cm−1) to target methane inside the cell. The 
laser was operated at a forward current of 375 mA to ensure a LO power reaching the detector 
of 150 µW; this intensity level was found to be the optimum operation point of our detector 
(the power passing through the cell in these conditions is approximately 5 mW). The 
sinusoidal modulation of the current of the EC-QCL was performed at 185 Hz and 1 Vp (for a 
total frequency deviation of 0.0002 pm or 0.033 cm−1) in order to achieve a fast wavelength 
modulation of the LO with an optimum modulation index of about 2.2 times the linewidth of 
the molecular transition [17]. Besides this, a sawtooth signal, amplified by a piezo driver up 
to 20 V peak to peak, was utilized for fine spectral interrogation. The power dissipated by the 
infrared source and the gas concentration in the cell were widely tuned during several tests to 
accurately characterize the effectiveness of the WM-LHR method. 
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Fig. 6. Signal to noise ratio with respect to the integration time of the lock-in amplifier. 

As shown in Fig. 6, the SNR of the thermal infrared radiometer provided by 1f and 2f 
WM-LHR noticeably exceeds that of the conventional LHR method. This is expected, as in 
WM-LHR the modulation is performed directly by an electronic reference signal, while a 
mechanical system with far greater phase jitter and frequency drifts is utilized by LHR. 
Interference fringes in the cavity of the particular laser employed are the main SNR restricting 
factor in the implemented WM-LHR system. The differences in SNR could be even more 
apparent when laser diodes (with much lower RAM) are employed in systems in which a 
great level of amplification is required [17]. 

4.3 Out-of-band signal rejection 

Even though the use of LHR has routinely been restricted to very narrow (single absorption 
line) spectral ranges, the surge of robust widely tunable laser technology promises to permit 
the development of a new generation of wide span heterodyne radiometers. In the traditional 
LHR approximation highly selective optical filters are employed to narrow down the spectral 
span of the signal to be analyzed because of the reasons presented in Section 4.1. Set-ups with 
a wide spectral coverage require a method with a superior out-of-band intensity rejection such 
as WM-LHR. In this section, the ability of the traditional and the WM-LHR approaches to 
operate without optical filters are analyzed. A series of measurements were carried out in 
which the optical filter that restricts the wavelength range of the incoming signal is placed in 
the system and subsequently removed. A gas sample with 10% methane diluted in nitrogen at 
60 mbar was pumped into the cell, the integration time of the lock in amplifier was adjusted 
to 100 ms and the period of the ramp signal to 20 s. A traditional LHR measurement in which 
four line sweeps are performed, two with optical filter and two without the optical filter, is 
shown in Fig. 7(a). Even though the optical power density of the signal in the spectral range 
interrogated by the laser rises only by roughly 40% (due to the absence of the optical losses of 
the filter), the baseline is increased by more than an order of magnitude due to optical power 
reaching the detector at wavelengths that are far from the region of interest. As previously 
presented, the pronounced step changes in the intensity of the incoming power (that result 
from the need of chopping the input signal) generate a substantial gain modulation due to the 
non-linearities of regular detectors and amplifiers. This issue is strongly noticed if out-of-
band radiation is allowed into the detector, as is this case. On the contrary, both the baseline 
and the WM-LHR signal, shown in Fig. 7(b), are incremented by a factor that is equal to the 
inverse of the transmittance of the optical filter, not being influenced by out-of-band optical 
radiation. The reason being that, whereas signal chopping in LHR generates high amplitude 
optical pulses, in WM-LHR the only intensity fluctuations are those from the RAM of the 
laser that are miniscule compared to the DC intensity level. Therefore, WM-LHR 
measurements are consistently taken at a constant gain value (and with no distortion of the 
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sensitivity. These characteristics promise to enable a new palette of applications that would 
range from atmospheric multiple analyte detection to deep space exploration. 
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