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Abstract

This article deals with some properties -which are, to the best of our knowledge,
new- of the generalized Euler polynomials of level m. These properties include a
new recurrence relation satisfied by these polynomials and quadrature formulae of
Euler-Maclaurin type based on them. Numerical examples are also given.
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1 Introduction

There exist standard quadrature formulae for numerically integrating differ-
ent classes of real valued functions. When we consider the set C*[a,b] of
all s-times continuously differentiable functions defined on [a,b], then the
so-called Euler-Maclaurin summation formula (also known as the composite
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trapezoidal rule) arises (cf. [1-3], and |4, Chap. 2, Sec. 3, p. 30]). More
precisely, for a fixed n € N and every s > 1, let f € C*[0,n], then

/f P dt )+f()+" £(k)

ls/2]

+ Z f(2r 1) f(2r 1( )) By,

(2r)!

+ R(f),

where the remainder term R¢(f) can be written as

% /On FEO)By(t — [t]) dt,

with |¢] the floor function, B,(t) and By, the s-th Bernoulli polynomial and
the Bernoulli numbers for 1 <r < |s/2], respectively, [1,3,5].

Or more generally, let g € C®[a, ], for a fixed n € N we set h = 77

xr; = a+ih, g; = g(x;), 1 =0,...,n, and gi :g( )(x;), 7 =1,...,s. Then
we have (cf. |3, Theorem 1|):

/abg(t)dt:h(@+gl+...+gn_l+@)

Ls/2] . B,
+ Z h2r< (2r—1) n2r 1)) (2j)' +Rs(9),

Ru(g) = (—Sf!z)s /abg(s)(t)Bs (t;a - VZGD "

Thus, (2) may be viewed as an extension of the trapezoid rule by the

. . . 1) 2r-1) .
inclusion of correction terms g;, gé "Voand ¢V, i=1,...n—1,1r =

L...,[s/2].
It is well-known that neither Euler nor Maclaurin found the formulae
with remainder (1) and (2), the first to do this was Poisson, in 1823. Eleven

years later, Jacobi presented one of the earliest derivations of the Euler-
Maclaurin summation formula [6]. Since then the formulae (1) and (2) have

where
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been derived in different ways (see e.g., 3] and the references thereof). An
apart mention deserves the remarkable works of T.M. Apostol [1] and V.
Lampret [3], which present nice and completely elementary derivations of
the classical Euler-Maclaurin formula, respectively.

The quadrature formula (1) may be regarded as an extension of the trape-
zoidal rule and it can be useful for numerically integrating of periodic func-
tions (cf., e.g., [2, Chap. 2, Sec. 2.9, p. 134], or [7-9]). The quadrature
formula (2) refers to a fixed interval, which would be advantageous in certain
situations: some types of integrals can be transformed to a form suitable
for the trapezoidal rule, such transformations are known as exponential and
double exponential quadrature rules [10].

Also, it is well-known that the Euler-Maclaurin summation formula is
implemented in the Wolfram Mathematica as the function NSum with op-
tion Method — Integrate [3,11]. The command NSum is used for Wolfram
Mathematica to obtain a numerical evaluation of sums, it includes a certain
number of terms explicitly, and then tries to estimate the contribution of the
remaining ones. There are three approaches to estimating this contribution,
one of such approaches uses the Euler-Maclaurin formula, and it is based on
approximating the sum by an integral (cf. [11, pp. 269-270]).

There exists several earlier papers associated with generalizations, modifi-
cations and applications of the classical quadrature formula of Euler-Maclaurin
(see for instance, [12-19]).

Recent and interesting works dealing with the Appell and Apostol type
polynomials, their properties and applications in several areas as such as com-
binatorics, number theory, numerical analysis and partial differential equa-
tions, can be found by reviewing the current literature on this subject. For a
broad information on new research trends about these classes of polynomials
we strongly recommend to the interested reader see [20-28].

This paper provides quadrature formulae of Euler-Maclaurin type based
on generalized Euler polynomials of level m € N. This class of polynomi-
als can be seen as a generalization of the classical Euler polynomials and it
constitutes a particular case of the so-called generalized Apostol-Euler poly-
nomials and the extensions of generalized Apostol-type polynomials [29, 30],
respectively. The interested reader may find recent literature which contains
a large number of new and interesting properties involving these polynomials
(see for instance, [29] and the references thereof).
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The outline of the paper is as follows. In Section 2 some relevant proper-
ties of the generalized Euler polynomials of level m are given. In particular,
we show a new recurrence formula for these polynomials which is compared
with whose recently obtained in [31]. Section 3 contains the basic ideas in
order to obtain quadrature formulae of Euler-Maclaurin type based on gener-
alized Euler polynomials of level m (see Theorems 2 and 3). Finally, Section
4 is devoted to show some numerical examples. As usual, throughout this
paper the convention 0° = 1 will be adopted and an empty sum will be
interpreted to be zero.

2 Some properties of the generalized Euler polynomials

For a fixed m € N, the generalized Euler polynomials of level m are defined
by means of the following generating function |5].

om etz > o
—_ = E Em=U) = |z <. (3)

m—1 2l n )

e+l T oo n!

And, the generalized Euler numbers of level m are defined by g =

Em (0), for all n > 0. It is clear that if m = 1 in (3), then we obtain the
classical Euler polynomials E,(z), and classical Euler numbers, respectively,
ie., E,(r) = EY\(2), and &, = 2"EN' (1) = 27E, (1), respectively, for all
n > 0.

The generalized Euler polynomials of level m and the generalized Euler
numbers of level m can be seen as the analogous of the generalized Bernoulli
polynomials of level m and the generalized Bernoulli numbers of level m,
respectively. These last polynomials and numbers were introduced by Na-
talini and Bernardini in [32] as a generalization of the classical Bernoulli
polynomials, and classical Bernoulli numbers, respectively.

For example, the first six generalized Euler polynomials of level m = 3
are:
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2]

[2]
5

Eg () = 4,

Ef(z) = 4(z—1)

EP) = A(@—1)

EP () 42° —124° + 122 — 2,

EP(x) 4z* — 162° + 242% — 8z — 10,
(

r) = 42° — 202" + 402° — 202 — 50z + 58.

S

The following theorem summarizes some properties of the generalized
Euler polynomials of level m (cf. [29,30]).

Theorem 1. For a fized m € N, let {E,[@m_l}(x)}

generalized Euler polynomials of level m. Then the following statements hold.

be the sequence of
0

(a) Summation formulas (cf., e.g., [22]). For every n >0,
Bt =3 () B w0 = 3 (1) B e
k=0 k=0

In particular,

Er[Lm—l] (z) = (Z) Ez[fm_l] e
k=0

(b) Differential relations (Appell polynomial sequences, cf.[33]). Forn,j >
0 with 0 < 7 < n, we have

B @)0) = M gl (1)

n—j
(¢) Inversion formula. For every n >0,

yrgn =3 (1) -+ e B0, (5

k=0

where
1, 0<k<m,

ak’m:{(), k> m.



Quadrature Formulae of Euler-Maclaurin Type 48

(d) Integral formulas.

" m— 1 m—1 m—1
[ B = — (B ) - B )
zo

- 1 n\ i . o
=S e () B = e,
k=0

Emlz) = n / EM Y #)dt + B, (6)
0

(e) Recurrence relation. For anym > 2 andn > 0, the following recurrence
relation for the generalized Euler polynomials of level m is satisfied.

B () = (20 Em2 — Elm-Y)

1 n (m—2] [m—l])
20K —F
2m—l ; |:<k) ( z n—k n—k (7)

n m—2 m—1
—2(, ") B e

+

(f) Differential equation. For anym > 2, the generalized Euler polynomials
g (x) satisfy the differential equation:

2 202 — g
0=|= E[m—2} . n—1 n—1 (n)
n! (& ) (n—1)! Y
m—2 _ plm—1]
2 [m—2] 2IEn—2 — En—2 (n—1)
LT (B —2) + (n—2)! y (8)

ot [2”‘1(1 —z)—n+1+ Egm—ﬂ] y"
+ [2" Nz —2) — 2n] ¥ — n2™ My
Proof. Since (a), (b) and (d) are straightforward consequences of (3), and a

suitable use of the Fundamental Theorem of Calculus, respectively, we shall
omit their proof. So, we focus our efforts on the proof of (¢), (e) and (f).
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By (3) and direct calculations, we have
i m—1 Zl oo o
m Tz __ z - [m—l] -
2Mme = e +Zu] ZEn (g;)n!],
L 1=0 =
= [+ ) ] ZEW U(x ]

L n=0

where

P 1, 0<n<m,
w10, n>m.
Or equivalently,

o ’I’L

Z f) (Z ( ) (Ut aen) B >) T (9)

=0

Comparing the coefficients of 2™ on both sides of (9), we get the desired result
of the part (c).

In order to prove (e), we proceed as in the proof of [32, Lemma 3.2,
making the corresponding modifications. For m > 2 and n > 0, let us
consider the generating function

oM T2
m—1 -~
E+2050 T

Then, differentiation of E™~(z, 2) with respect to z, yields

9 pim- (2, 2) =B (g, 5) — £ (0, ) E™ ™ (z, 2) 2
82’ 2
=0 (10)

Em=1(0, 2)
= =7 ) glm-1 )
(1’ 2Elm=21(0, Z)) (z,2)

Bz, 2) =

So, from differentiation with respect to z on the right hand side of (3)
and (10), we can deduce that

- m—1 2" E[m—l](o’z) m—
ZELH ](I)n, = <93— QE[’”——Q}(O,z) E! 1](9%2)- (11)

n=0
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Or equivalently,

o0

2B2(0,2) Y BV @) = (20B 70, 2) = EM0,2) BV (a,2).

!
e n!
(12)
The left hand side of (12) coincides with the product of the following two
series:

- m— 2" - m—1 2" - . n m—2 m—1 2"
S orpt ][5 et = 3 o)) st | 5
n=0 "1 Ln=0 ' n=0 k=0 '

(13)
and the right hand side of (12) coincides with the product of the following
two series:

N [m—2] _ [m 1] [m— 1]
> (22ED Z El
S - (14)
n m— m— m— <
- Z [Z <k) (2fo[z—k2] - Ef[z—kl]) E{" () o

n=0 Lk=0

Comparing the equations (13) and (14) (on the right hand side of each one),
we get

- n m—2 m—1 - n m—2 m—1 m—1
2> () Bt w0 = 3 (1) (2oBn? - ) B o),
k=0 k=0
(15)
Then (7) immediately follows by a suitable rearrangement of the terms
on both sides of (15).

Apart from minor changes, the proof of (f) relies on similar arguments
to those from the proof of [32, Theorem 3.1]. Using (4) we can rewrite (15)
as follows

n [m—2] [m—1]
2xF —FE 2k
gm-— 1E[m 1] n—k n—k pn—Fk E[m—l}
n+1 (l‘) kZ:O (Tl . k)' (Tl . k—i— 1)' x n (l‘),
where D" dd7; kk So, the operator D:;m given by

n [m—2] [m—1]
1 2zE ) 2k
D+ — z : n—~k n—k Dn—k

k=0
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satisfies
Dy B V(a) = B (). (16)

n,m—'n

Now, applying the operator A | := %HDI on both sides of (16), we have

(A D) B w) = B ().

This last equation and the use of the inversion formula (5) lead to the
differential equation (8) with E" U(z) as a polynomial solution. O

Remark 1. [t is an easy consequence of (5) that for a fired m > 2,
B (x) = 2" (x = 1)?, whenever 0 < j <m—1.

The particular case m =1 in (5) reads as

e ki:o (Z) (L + ak1) En-i(z) = ki:o (Z) (1 + an_r1) Ei(x)
i (Z) (1 4 6pro)Er(z), (17)

k=0

where 0,1 is the Kronecker delta. So, the expression (17) is an equivalent
form of the familiar expansion (cf., e.g., [34, p. 30])

22" = B, (z) + ; (Z) Eu(z), n>0.

Remark 2. The following inversion formula was deduced in [31]

" = Z (Z) (kfi'm)'E,[Z;l}(x), n > 0. (18)

k=0

We would like to note that (18) is wrong. In order to check that the general-
ized Euler polynomials of level m do not satisfy (18), it suffices to consider
m = 1. Since 2™ ' = m! only when m = 1, then it is easy to check that the
expression (18) is correct for n = 0,1. However, when n = 2, the situation
changes. Using (18) we obtain

9 1

Ey(z) ==z —:B+6. (19)
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But, taking into account (5) or (17) we have
Ey(z) = 2* —

this last polynomual is the classical Euler polynomial of degree 2. Also, it is
possible to check that the polynomial in (19) does not satisfy the well-known
relation (see, for instance [35, p. 804)):

E.(x+1)+ E,(z)=22", n=0,1,... (20)
Remark 3. It is worthwhile to mention that (8) represents the analogue of
[32, Eq. (3.1)] in the setting of the generalized Euler polynomials of level
m > 2. As it was pointed out in the aforementioned paper, the Appell-type
polynomials, satisfying a differential operator of finite order, can be consid-
ered as an exceptional case (cf. [36] for additional details about this asser-
tion,).

3 The quadrature formulae of Euler-Maclaurin type

The integration by parts formula asserts that the following result holds.

Lemma 1. Let s > 1 and f € C*[0,1]. For a fited m € N, we have

! 1
| e =5

where

S Ay 4 CU° / O <t>dt] @)
k=1 0

s!

A = LD (e - 0B ) k=1 s

Proof. Since the integral on the left-hand side of (21) can be expressed as
follows,

1 1 1 ]
| s = 5 [ soEr o

it suffices to apply repeated integration by parts on the right-hand side of
above equation, using a suitable form of (4) in each step. a
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Making the substitution f(t) = Eﬁ"j;” () into (21) and taking into ac-
count (4), (6) and some straightforward calculations, we can show that

1 m—1 s
_ i 2m=t(—=1)*slr! 1 1
4111WW£”@ﬁ=——————(@HAm B )

(s+7r+1)!
slr! 1 (22)
s+r+1'ZA , s,r>1,
where
m— s s+r+1 m m— m
AL”zvm*( . )@@%Hmﬂ;%n—iwbﬂ[”y
fork=1,....s

The relation (22) is of independent interest. For instance, its combination
with (5) allows us to connect with operational matrix methods based on gen-
eralized Euler polynomials of level m. Recently, in [23] the authors introduce
an operational matrix method based on generalized Bernoulli polynomials of
level m and analyze it in order to obtain numerical solutions of initial value
problems. Their computational results demonstrate that such operational
matrix method can lead to very ill-conditioned matrix equations.

Remark 4. When m = 1, from the equation (20) and the symmetric relation
for classical Euler polynomials E,(1 — x) = (=1)"E,(x), it is possible to

deduce that ’
0, f n is even,
En(1) = { —E,, if n is odd. (23)

This last relation yields the following particular forms of (21):

1 [s/2]
/0 f(t)dt — M _ Z (f(2k)(1) 4 f(2k)(0)) % _ RE(f),
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being s an even number. In both cases, the term Rg(f) is given by

1 1
== / FO ) Ey(t)dt
st Jo

Notice that (24) is a particular case of [15, Eq. (3.3)].

Remark 5. For s > 1 and f € C*®[0,n] we can give the analogous of (1)
depending on the parity of s as follows:
If s 1s odd, we have

IRCLE JOI) L5 i)

n—1|s/2]

2 (2 E
> 2 (FERG+ 1) + FOR( ))ﬁ—RE(ﬁs),

.

And if s is even, we have

| i JOXI0 5 45)

j=1
SEa) (2k (2k) Eopia
; ;; (G + 1)+ 1) G + RS 9)

In both cases the term Rg(f,s) can be written as

/ FOWEL( - |t]) dt

With these ideas in mind, we can connect Riemann sums and integrals
and obtain the following result.

Theorem 2. Let s > 1 and f € C*[a,b]. For a fived n € N let v; =
a+ jh, 7 = 0,1,...,n, where h = Ta, and f; = f(z;), f;k) = f®(z;),
k=1,2,...,s. Then, the following composite trapezoidal rules hold.

If s is odd:

/abf(t)dt:h(@+fl+...+fn_l+@)

-1 /2] (25)
2k+1 E2k+1

7=0 k=1



25 Quintana, Urieles

If s is even:
b
rwar=n (L v g )
a n—1 |s/2]—1 (26)
2k-+1 Eojin
=0 k=1 " ( +f]+1>m+f’fs[f]-

In both cases the correction terms are expressed by means of the deriva-
tives of f at the extrema, and term pg|f] is given by

szl opxin — .
ol =5 X [ e (1) @

S/f B (505

Proof. In order to prove (26), we proceed as in the proof of |15, Theorem
3.1], making the corresponding modifications. Put f(t) = f(a + uzx) = g(z),

(27)

where u = b — a, z = =2, and using (24) we obtain
b
/ f(t)dt =u /1 g(x)dr =u <7f(a) ; f(b))
Ls/2]

Z 2k+1 f(2k )+f(2k)(a))m (28)

£ 2k +1)!
ol [ s (45 ) ao

Consider now the partition of the interval [a,b] into n subintervals by

means of the equidistant nodes z; = a + jh, j = 0,1,...,n, where h = I’_T“,
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and f; = f(z;), f;k) = f®)(z;), k=1,2,...,s. By (28) we have

j=0 "%
b
h(%?+ﬁ+~~+h4+fy>
n—1[s/2)-1 (29)
E.
B Z 2kl f(il?ij'(%) 2k+1
515 (4 )
hs A [T t—x;
— ©) (1) E, 2 ) dt.
+d;Ljf()< )

Note that last summand on the right-hand side of (29) is equal to pg[f].

In order to simplify the last summand on the right-hand side of (29), we only
need to recall that

/:Ej+1 f(S)(t>Es <t —hIJ) di — /wj+1 f(s)(t)Es (t ;J a j) di

J Ty

:/:m FO0)E, (t;a B V;aD it

J

Consequently,

polf] :ng”l O E, (t;a - V;aD dt
T j=0 Y%

e b (5) t—a t—a
e L e

Finally, substituting (30) into (29) we get (26). The proof of (25) is
similar. O

(30)

Remark 6. Notice that the relation (23) and the integration by parts do not
allow the sum

n—1

2k 2k
5 (4 )
7=0

satisfies the summation telescoping property. So, the second summand on the
right-hand side of (26) cannot be simplified as the classical Euler-Maclaurin
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formula (2). Consequently, the expression (26) is the correct form for [15,
Equation (3.1)].

Now, using (21) and proceeding as in the proof of Theorem 2, we obtain
the following quadrature formulae of Euler-Maclaurin type based on gener-
alized Euler polynomials of level m € N\ {1}.

Theorem 3. Let s > 1, f € C*%[a,b] and m € N\ {1}. For a fized n € N let

z;=a+jh, j=0,1,....n, where h="2 and f; = f(z;), f](k) = f®)(x;),

k=1,2,...,s. Then, the following composite trapezoidal rules hold.

b 1 n—1 s _1)k-1 i
/af(t)dtzzm_lzz( /2! h

j=0 k=1 (31)
k—1 m—1 k—1 m—1 m—1
(A" = VB + ol

where the remainder term p?_l} [f] can be written as

s Mol pmig —
o =gy X [ e (1) ar

2m—1g! = Ja,
_(=h) /b ) m-1) (t—a t—a
“nigl ], () EL r h dt.

4  Numerical examples

In this section, four numerical examples are examined to illustrate the effi-
ciency of the composite trapezoidal rules presented in Section 3. All of the
numerical experiments are performed using MAPLE 15 and the approxima-
tions of definite integrals are given up to 30 decimal places. Also, we would
like to point out that some examples of this section have been considered in
[15, Section 4].

Example 1. Consider the elementary integral

1
1
I = / n dxr =1n(2) ~ 0.693147180559945309417232121458 . . .
0
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For s =12 and n = 90 the formula (26) yields the following numerical
approximation of Iy:

I, = 0.693147180559945309417232121456 . . .

Notice that an absolute error for this approzimation is less than 1072°, and
a relative error is less than 3 x 10730,

Also, for s =12 the formula (24) yields the following numerical approxi-
mation of I:

I, = 0.6931471805599453094172321215 . . .

So, an absolute error for this approzimation is less than 10728, and a relative
error is less than 7 x 107%.

We strongly recommend that the reader compare these numerical evidences
with the numerical approximation for Iy presented in [15, Section 4.

By using (31) with m = 2, s = 12 and n = 90, we find the following
numerical approzimation for I:

I, = 0.693147180559945309417232121463 . ..

Hence, an absolute error for this approzimation is less than 107%, and a
relative error is less than 8 x 10730,

Finally, when we consider the formula (21) with m = 2 and s = 12, the
corresponding numerical approximation for Iy is

I = 0.69314718055994530941723 . . .,

and an absolute error for this approzimation is less than 10723, and a relative
error is less than 4 x 10724,

MAPLE uses a sophisticated numerical integration routine with auto-
matic error control to evaluate definite integrals that it cannot do analyti-
cally, for instance, definite integrals whose integrand does not have elemen-
tary anti-derivatives. The most common command of MAPLE for numerical
integration is evalf(Int(f,z = a..b)) where the integration command is ex-
pressed in inert form to avoid first invoking the symbolic integration routines
[37,38].

The examples below, show approximations via quadrature formulae of
Euler-Maclaurin type for definite integrals whose integrand does not have
elementary anti-derivatives.
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Example 2.

2 x

Iy = € dz ~ 3.05911653964595340791298419590 . . (32)
1T

For s = 14 and n = 90, the formula (26) yields the following numerical
approximation of Io:

I, ~ 3.05911653964595340791298419590 . . .

In this case, our approzimation coincides exactly with (32). If we take
n =4, then (26) yields the following approzimation:

Iy =~ 3.05911653964595340791298419589 . ..

An absolute error for this last approzimation is less than 10728,

Notice that the authors of [15, Section 4] found an absolute error for their
numerical approzimation of I which is less than 1075,

Example 3. Let us consider the following integral.

1
I3 = / e~ dx ~ 1.49364826562485405079893487226 . . . (33)
-1

Table 1 shows some absolute errors for numerical approzimations of (33)
using (21), when different values of m and s are considered.

Tab. 1: Absolute errors for approximations of I.

Level: m Der. order: s Polynomial degree: n Abs. error
1 6 90 2 x 1072
2 6 90 2 x 1072
3 8 90 1072

4 6 90 1072

5 5 90 1072

Example 4. Let us consider the following integral.

1
I = / cos(z*)dx =~ 0.931704440591544226076926390685 . . .
0
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Applying the quadrature formula (25) with s =5 and n = 90, we get
I, = 0.930016201613048171856211810179. ..

And an absolute error for this approzimation is less than 2 x 1073.

While, by using (31) with m =5, s = 3 and n = 90, we find the following
numerical approzimation for I,:

I, =~ 0.931704440591544226076926390684 . . .

Hence, an absolute error for this approzimation is less than 10729,

5 Conclusion

A composite trapezoidal rule based on generalized Euler polynomials of level
m € N has been presented in order to obtain numerical approximations of
definite integrals. Such definite integrals possess an integrand regular enough.
The comparative numerical evidence suggests that the Euler-Maclaurin type
quadrature formula (31) produces smaller absolute errors than standard for-
mulae (25) and (26).
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