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Abstrat

This artile deals with some properties -whih are, to the best of our knowledge,

new- of the generalized Euler polynomials of level m. These properties inlude a

new reurrene relation satis�ed by these polynomials and quadrature formulae of

Euler-Malaurin type based on them. Numerial examples are also given.
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1 Introdution

There exist standard quadrature formulae for numerially integrating di�er-

ent lasses of real valued funtions. When we onsider the set Cs[a, b] of
all s-times ontinuously di�erentiable funtions de�ned on [a, b], then the

so-alled Euler-Malaurin summation formula (also known as the omposite
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trapezoidal rule) arises (f. [1�3℄, and [4, Chap. 2, Se. 3, p. 30℄). More

preisely, for a �xed n ∈ N and every s ≥ 1, let f ∈ Cs[0, n], then

∫ n

0

f(t) dt =
f(0) + f(n)

2
+

n−1
∑

k=1

f(k)

+

⌊s/2⌋
∑

r=1

(

f (2r−1)(0)− f (2r−1)(n)
) B2r

(2r)!
+Rs(f),

(1)

where the remainder term Rs(f) an be written as

Rs(f) =
(−1)s

s!

∫ n

0

f (s)(t)Bs(t− ⌊t⌋) dt,

with ⌊t⌋ the �oor funtion, Bs(t) and B2r the s-th Bernoulli polynomial and

the Bernoulli numbers for 1 ≤ r ≤ ⌊s/2⌋, respetively, [1, 3, 5℄.

Or more generally, let g ∈ Cs[a, b], for a �xed n ∈ N we set h = b−a
n
,

xi = a + ih, gi = g(xi), i = 0, . . . , n, and g
(r)
i = g(r)(xi), r = 1, . . . , s. Then

we have (f. [3, Theorem 1℄):

∫ b

a

g(t) dt =h

(

g(a)

2
+ g1 + · · ·+ gn−1 +

g(b)

2

)

+

⌊s/2⌋
∑

r=1

h2r
(

g
(2r−1)
0 − g(2r−1)

n

) B2r

(2r)!
+Rs(g),

(2)

where

Rs(g) =
(−h)s

s!

∫ b

a

g(s)(t)Bs

(

t− a

h
−

⌊

t− a

h

⌋)

dt.

Thus, (2) may be viewed as an extension of the trapezoid rule by the

inlusion of orretion terms gi, g
(2r−1)
0 and g

(2r−1)
n , i = 1, . . . , n − 1, r =

1, . . . , ⌊s/2⌋.

It is well-known that neither Euler nor Malaurin found the formulae

with remainder (1) and (2), the �rst to do this was Poisson, in 1823. Eleven

years later, Jaobi presented one of the earliest derivations of the Euler-

Malaurin summation formula [6℄. Sine then the formulae (1) and (2) have
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been derived in di�erent ways (see e.g., [3℄ and the referenes thereof). An

apart mention deserves the remarkable works of T.M. Apostol [1℄ and V.

Lampret [3℄, whih present nie and ompletely elementary derivations of

the lassial Euler-Malaurin formula, respetively.

The quadrature formula (1) may be regarded as an extension of the trape-

zoidal rule and it an be useful for numerially integrating of periodi fun-

tions (f., e.g., [2, Chap. 2, Se. 2.9, p. 134℄, or [7�9℄). The quadrature

formula (2) refers to a �xed interval, whih would be advantageous in ertain

situations: some types of integrals an be transformed to a form suitable

for the trapezoidal rule, suh transformations are known as exponential and

double exponential quadrature rules [10℄.

Also, it is well-known that the Euler-Malaurin summation formula is

implemented in the Wolfram Mathematia as the funtion NSum with op-

tion Method → Integrate [3, 11℄. The ommand NSum is used for Wolfram

Mathematia to obtain a numerial evaluation of sums, it inludes a ertain

number of terms expliitly, and then tries to estimate the ontribution of the

remaining ones. There are three approahes to estimating this ontribution,

one of suh approahes uses the Euler-Malaurin formula, and it is based on

approximating the sum by an integral (f. [11, pp. 269-270℄).

There exists several earlier papers assoiated with generalizations, modi�-

ations and appliations of the lassial quadrature formula of Euler-Malaurin

(see for instane, [12�19℄).

Reent and interesting works dealing with the Appell and Apostol type

polynomials, their properties and appliations in several areas as suh as om-

binatoris, number theory, numerial analysis and partial di�erential equa-

tions, an be found by reviewing the urrent literature on this subjet. For a

broad information on new researh trends about these lasses of polynomials

we strongly reommend to the interested reader see [20�28℄.

This paper provides quadrature formulae of Euler-Malaurin type based

on generalized Euler polynomials of level m ∈ N. This lass of polynomi-

als an be seen as a generalization of the lassial Euler polynomials and it

onstitutes a partiular ase of the so-alled generalized Apostol-Euler poly-

nomials and the extensions of generalized Apostol-type polynomials [29,30℄,

respetively. The interested reader may �nd reent literature whih ontains

a large number of new and interesting properties involving these polynomials

(see for instane, [29℄ and the referenes thereof).
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The outline of the paper is as follows. In Setion 2 some relevant proper-

ties of the generalized Euler polynomials of level m are given. In partiular,

we show a new reurrene formula for these polynomials whih is ompared

with whose reently obtained in [31℄. Setion 3 ontains the basi ideas in

order to obtain quadrature formulae of Euler-Malaurin type based on gener-

alized Euler polynomials of level m (see Theorems 2 and 3). Finally, Setion

4 is devoted to show some numerial examples. As usual, throughout this

paper the onvention 00 = 1 will be adopted and an empty sum will be

interpreted to be zero.

2 Some properties of the generalized Euler polynomials

For a �xed m ∈ N, the generalized Euler polynomials of level m are de�ned

by means of the following generating funtion [5℄.

2mexz

ez +
∑m−1

l=0
zl

l!

=

∞
∑

n=0

E[m−1]
n (x)

zn

n!
, |z| < π. (3)

And, the generalized Euler numbers of level m are de�ned by E
[m−1]
n :=

E
[m−1]
n (0), for all n ≥ 0. It is lear that if m = 1 in (3), then we obtain the

lassial Euler polynomials En(x), and lassial Euler numbers, respetively,

i.e., En(x) = E
[0]
n (x), and En = 2nE

[0]
n

(

1
2

)

= 2nEn

(

1
2

)

, respetively, for all

n ≥ 0.

The generalized Euler polynomials of level m and the generalized Euler

numbers of level m an be seen as the analogous of the generalized Bernoulli

polynomials of level m and the generalized Bernoulli numbers of level m,

respetively. These last polynomials and numbers were introdued by Na-

talini and Bernardini in [32℄ as a generalization of the lassial Bernoulli

polynomials, and lassial Bernoulli numbers, respetively.

For example, the �rst six generalized Euler polynomials of level m = 3
are:
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E
[2]
0 (x) = 4,

E
[2]
1 (x) = 4(x− 1)

E
[2]
2 (x) = 4(x− 1)2,

E
[2]
3 (x) = 4x3 − 12x2 + 12x− 2,

E
[2]
4 (x) = 4x4 − 16x3 + 24x2 − 8x− 10,

E
[2]
5 (x) = 4x5 − 20x4 + 40x3 − 20x2 − 50x+ 58.

The following theorem summarizes some properties of the generalized

Euler polynomials of level m (f. [29, 30℄).

Theorem 1. For a �xed m ∈ N, let

{

E
[m−1]
n (x)

}

n≥0
be the sequene of

generalized Euler polynomials of level m. Then the following statements hold.

(a) Summation formulas (f., e.g., [22℄). For every n ≥ 0,

E[m−1]
n (x+ y) =

n
∑

k=0

(

n

k

)

yk E
[m−1]
n−k (x) =

n
∑

k=0

(

n

k

)

E
[m−1]
k (y) xn−k.

In partiular,

E[m−1]
n (x) =

n
∑

k=0

(

n

k

)

E
[m−1]
k xn−k.

(b) Di�erential relations (Appell polynomial sequenes, f.[33℄). For n, j ≥
0 with 0 ≤ j ≤ n, we have

[E[m−1]
n (x)](j) =

n!

(n− j)!
E

[m−1]
n−j (x). (4)

() Inversion formula. For every n ≥ 0,

2mxn =

n
∑

k=0

(

n

k

)

(1 + ak,m)E
[m−1]
n−k (x), (5)

where

ak,m =

{

1, 0 ≤ k < m,
0, k ≥ m.
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(d) Integral formulas.

∫ x1

x0

E[m−1]
n (x)dx =

1

n+ 1

[

E
[m−1]
n+1 (x1)−E

[m−1]
n+1 (x0)

]

=

n
∑

k=0

1

n− k + 1

(

n

k

)

E
[m−1]
k ((x1)

n−k+1 − (x0)
n−k+1).

E[m−1]
n (x) = n

∫ x

0

E
[m−1]
n−1 (t)dt+ E[m−1]

n . (6)

(e) Reurrene relation. For anym ≥ 2 and n ≥ 0, the following reurrene
relation for the generalized Euler polynomials of level m is satis�ed.

E
[m−1]
n+1 (x) =

(

2xE[m−2]
n −E[m−1]

n

)

+
1

2m−1

n
∑

k=1

[(

n

k

)

(

2xE
[m−2]
n−k −E

[m−1]
n−k

)

−2

(

n

k − 1

)

E
[m−2]
n−k+1

]

E
[m−1]
k (x).

(7)

(f) Di�erential equation. For anym ≥ 2, the generalized Euler polynomials

E
[m−1]
n (x) satisfy the di�erential equation:

0 =

[

2

n!

(

E[m−2]
n − 1

)

+
2xE

[m−2]
n−1 −E

[m−1]
n−1

(n− 1)!

]

y(n)

+

[

2

(n− 1)!

(

E
[m−2]
n−1 − 2

)

+
2xE

[m−2]
n−2 − E

[m−1]
n−2

(n− 2)!

]

y(n−1)

+ · · ·+
[

2m−1(1− x)− n + 1 + E
[m−2]
2

]

y′′

+
[

2m−1(x− 2)− 2n
]

y′ − n2m−1y.

(8)

Proof. Sine (a), (b) and (d) are straightforward onsequenes of (3), and a

suitable use of the Fundamental Theorem of Calulus, respetively, we shall

omit their proof. So, we fous our e�orts on the proof of (c), (e) and (f).
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By (3) and diret alulations, we have

2mexz =

[

ez +
m−1
∑

l=0

zl

l!

][

∞
∑

n=0

E[m−1]
n (x)

zn

n!

]

,

=

[

∞
∑

n=0

(1 + an,m)
zn

n!

][

∞
∑

n=0

E[m−1]
n (x)

zn

n!

]

,

where

an,m =

{

1, 0 ≤ n < m,
0, n ≥ m.

Or equivalently,

2m
∞
∑

n=0

xn z
n

n!
=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

(1 + ak,m)E
[m−1]
n−k (x)

)

zn

n!
. (9)

Comparing the oe�ients of zn on both sides of (9), we get the desired result
of the part (c).

In order to prove (e), we proeed as in the proof of [32, Lemma 3.2℄,

making the orresponding modi�ations. For m ≥ 2 and n ≥ 0, let us

onsider the generating funtion

E[m−1](x, z) =
2mexz

ez +
∑m−1

l=0
zl

l!

.

Then, di�erentiation of E[m−1](x, z) with respet to z, yields

∂

∂z
E[m−1](x, z) =xE[m−1](x, z)−

E[m−1](0, z)E[m−1](x, z)

2

(

m−2
∑

l=0

zl

l!

)

(

x−
E[m−1](0, z)

2E[m−2](0, z)

)

E[m−1](x, z).

(10)

So, from di�erentiation with respet to z on the right hand side of (3)

and (10), we an dedue that

∞
∑

n=0

E
[m−1]
n+1 (x)

zn

n!
=

(

x−
E[m−1](0, z)

2E[m−2](0, z)

)

E[m−1](x, z). (11)
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Or equivalently,

2E[m−2](0, z)

∞
∑

n=0

E
[m−1]
n+1 (x)

zn

n!
=

(

2xE[m−2](0, z)− E[m−1](0, z)
)

E[m−1](x, z).

(12)

The left hand side of (12) oinides with the produt of the following two

series:

[

∞
∑

n=0

2E[m−2]
n

zn

n!

][

∞
∑

n=0

E
[m−1]
n+1 (x)

zn

n!

]

=
∞
∑

n=0

[

n
∑

k=0

2

(

n

k

)

E
[m−2]
n−k E

[m−1]
k+1 (x)

]

zn

n!
,

(13)

and the right hand side of (12) oinides with the produt of the following

two series:

[

∞
∑

n=0

(

2xE[m−2]
n − E[m−1]

n

) zn

n!

][

∞
∑

n=0

E[m−1]
n (x)

zn

n!

]

=

∞
∑

n=0

[

n
∑

k=0

(

n

k

)

(

2xE
[m−2]
n−k −E

[m−1]
n−k

)

E
[m−1]
k (x)

]

zn

n!
.

(14)

Comparing the equations (13) and (14) (on the right hand side of eah one),

we get

2

n
∑

k=0

(

n

k

)

E
[m−2]
n−k E

[m−1]
k+1 (x) =

n
∑

k=0

(

n

k

)

(

2xE
[m−2]
n−k − E

[m−1]
n−k

)

E
[m−1]
k (x).

(15)

Then (7) immediately follows by a suitable rearrangement of the terms

on both sides of (15).

Apart from minor hanges, the proof of (f) relies on similar arguments

to those from the proof of [32, Theorem 3.1℄. Using (4) we an rewrite (15)

as follows

2m−1E
[m−1]
n+1 (x) =

[

n
∑

k=0

(

2xE
[m−2]
n−k − E

[m−1]
n−k

(n− k)!
−

2k

(n− k + 1)!

)

Dn−k
x

]

E[m−1]
n (x),

where Dn−k
x := dn−k

dxn−k . So, the operator D
+
n,m given by

D+
n,m(f) :=

1

2m−1

n
∑

k=0

(

2xE
[m−2]
n−k −E

[m−1]
n−k

(n− k)!
−

2k

(n− k + 1)!

)

Dn−k
x (f),
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satis�es

D+
n,mE

[m−1]
n (x) = E

[m−1]
n+1 (x). (16)

Now, applying the operator ∆−
n+1 :=

1
n+1

Dx on both sides of (16), we have

(

∆−
n+1D

+
n,m

)

E[m−1]
n (x) = E[m−1]

n (x).

This last equation and the use of the inversion formula (5) lead to the

di�erential equation (8) with E
[m−1]
n (x) as a polynomial solution.

Remark 1. It is an easy onsequene of (5) that for a �xed m ≥ 2,

E
[m−1]
j (x) = 2m−1(x− 1)j, whenever 0 ≤ j ≤ m− 1.

The partiular ase m = 1 in (5) reads as

2xn =
n

∑

k=0

(

n

k

)

(1 + ak,1)En−k(x) =
n

∑

k=0

(

n

k

)

(1 + an−k,1)Ek(x)

n
∑

k=0

(

n

k

)

(1 + δn−k,0)Ek(x),

(17)

where δn−k,0 is the Kroneker delta. So, the expression (17) is an equivalent

form of the familiar expansion (f., e.g., [34, p. 30℄)

2xn = En(x) +
n

∑

k=0

(

n

k

)

Ek(x), n ≥ 0.

Remark 2. The following inversion formula was dedued in [31℄

xn =
n

∑

k=0

(

n

k

)

k!

(k +m)!
E

[m−1]
n−k (x), n ≥ 0. (18)

We would like to note that (18) is wrong. In order to hek that the general-

ized Euler polynomials of level m do not satisfy (18), it su�es to onsider

m = 1. Sine 2m−1 = m! only when m = 1, then it is easy to hek that the

expression (18) is orret for n = 0, 1. However, when n = 2, the situation

hanges. Using (18) we obtain

E2(x) = x2 − x+
1

6
. (19)
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But, taking into aount (5) or (17) we have

E2(x) = x2 − x,

this last polynomial is the lassial Euler polynomial of degree 2. Also, it is

possible to hek that the polynomial in (19) does not satisfy the well-known

relation (see, for instane [35, p. 804℄):

En(x+ 1) + En(x) = 2xn, n = 0, 1, . . . (20)

Remark 3. It is worthwhile to mention that (8) represents the analogue of

[32, Eq. (3.1)℄ in the setting of the generalized Euler polynomials of level

m ≥ 2. As it was pointed out in the aforementioned paper, the Appell-type

polynomials, satisfying a di�erential operator of �nite order, an be onsid-

ered as an exeptional ase (f. [36℄ for additional details about this asser-

tion).

3 The quadrature formulae of Euler-Malaurin type

The integration by parts formula asserts that the following result holds.

Lemma 1. Let s ≥ 1 and f ∈ Cs[0, 1]. For a �xed m ∈ N, we have

∫ 1

0

f(t)dt =
1

2m−1

[

s
∑

k=1

A
[m−1]
k (f) +

(−1)s

s!

∫ 1

0

f (s)(t)E[m−1]
s (t)dt

]

, (21)

where

A
[m−1]
k (f) =

(−1)k−1

k!

(

f (k−1)(1)E
[m−1]
k (1)− f (k−1)(0)E

[m−1]
k

)

, k = 1, . . . , s.

Proof. Sine the integral on the left-hand side of (21) an be expressed as

follows,

∫ 1

0

f(t)dt =
1

2m−1

∫ 1

0

f(t)E
[m−1]
0 (t)dt,

it su�es to apply repeated integration by parts on the right-hand side of

above equation, using a suitable form of (4) in eah step.
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Making the substitution f(t) = E
[m−1]
s+r (t) into (21) and taking into a-

ount (4), (6) and some straightforward alulations, we an show that

∫ 1

0

E[m−1]
s (t)E[m−1]

r (t)dt =
2m−1(−1)ss!r!

(s+ r + 1)!

(

E
[m−1]
s+r+1(1)−E

[m−1]
s+r+1

)

+
s!r!

(s+ r + 1)!

s
∑

k=1

A
[m−1]
k , s, r ≥ 1,

(22)

where

A
[m−1]
k = (−1)k+s

(

s+ r + 1

k

)

(

E
[m−1]
s+r−k+1(1)E

[m−1]
k (1)− E

[m−1]
s+r−k+1E

[m−1]
k

)

,

for k = 1, . . . , s.

The relation (22) is of independent interest. For instane, its ombination

with (5) allows us to onnet with operational matrix methods based on gen-

eralized Euler polynomials of level m. Reently, in [23℄ the authors introdue

an operational matrix method based on generalized Bernoulli polynomials of

level m and analyze it in order to obtain numerial solutions of initial value

problems. Their omputational results demonstrate that suh operational

matrix method an lead to very ill-onditioned matrix equations.

Remark 4. When m = 1, from the equation (20) and the symmetri relation

for lassial Euler polynomials En(1 − x) = (−1)nEn(x), it is possible to

dedue that

En(1) =

{

0, if n is even,
−En, if n is odd.

(23)

This last relation yields the following partiular forms of (21):

∫ 1

0

f(t)dt =
f(0) + f(1)

2
−

⌊s/2⌋
∑

k=1

(

f (2k)(1) + f (2k)(0)
) E2k+1

(2k + 1)!
− RE(f),

being s an odd number.

∫ 1

0

f(t)dt =
f(0) + f(1)

2
−

⌊s/2⌋−1
∑

k=1

(

f (2k)(1) + f (2k)(0)
) E2k+1

(2k + 1)!
+RE(f),

(24)
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being s an even number. In both ases, the term RE(f) is given by

RE(f) =
1

s!

∫ 1

0

f (s)(t)Es(t)dt.

Notie that (24) is a partiular ase of [15, Eq. (3.3)℄.

Remark 5. For s ≥ 1 and f ∈ Cs[0, n] we an give the analogous of (1)

depending on the parity of s as follows:

If s is odd, we have

∫ n

0

f(t) dt =
f(0) + f(n)

2
+

n−1
∑

j=1

f(j)

−
n−1
∑

j=0

⌊s/2⌋
∑

k=1

(

f (2k)(j + 1) + f (2k)(j)
) E2k+1

(2k + 1)!
− RE(f, s).

And if s is even, we have

∫ n

0

f(t) dt =
f(0) + f(n)

2
+

n−1
∑

j=1

f(j)

−
n−1
∑

j=0

⌊s/2⌋−1
∑

k=1

(

f (2k)(j + 1) + f (2k)(j)
) E2k+1

(2k + 1)!
+RE(f, s).

In both ases the term RE(f, s) an be written as

RE(f, s) =
1

s!

∫ n

0

f (s)(t)Es(t− ⌊t⌋) dt.

With these ideas in mind, we an onnet Riemann sums and integrals

and obtain the following result.

Theorem 2. Let s ≥ 1 and f ∈ Cs[a, b]. For a �xed n ∈ N let xj =

a + jh, j = 0, 1, . . . , n, where h = b−a
n
, and fj = f(xj), f

(k)
j = f (k)(xj),

k = 1, 2, . . . , s. Then, the following omposite trapezoidal rules hold.

If s is odd:

∫ b

a

f(t) dt =h

(

f(a)

2
+ f1 + · · ·+ fn−1 +

f(b)

2

)

−
n−1
∑

j=0

⌊s/2⌋
∑

k=1

h2k+1
(

f
(2k)
j + f

(2k)
j+1

) E2k+1

(2k + 1)!
− ρE [f ].

(25)
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If s is even:

∫ b

a

f(t) dt =h

(

f(a)

2
+ f1 + · · ·+ fn−1 +

f(b)

2

)

−

n−1
∑

j=0

⌊s/2⌋−1
∑

k=1

h2k+1
(

f
(2k)
j + f

(2k)
j+1

) E2k+1

(2k + 1)!
+ ρE [f ].

(26)

In both ases the orretion terms are expressed by means of the deriva-

tives of f at the extrema, and term ρE [f ] is given by

ρE [f ] =
hs

s!

n−1
∑

j=0

∫ xj+1

xj

f (s)(t)Es

(

t− xj

h

)

dt

=
hs

s!

∫ b

a

f (s)(t)Es

(

t− a

h
−

⌊

t− a

h

⌋)

dt.

(27)

Proof. In order to prove (26), we proeed as in the proof of [15, Theorem

3.1℄, making the orresponding modi�ations. Put f(t) = f(a+ ux) = g(x),
where u = b− a, x = t−a

u
, and using (24) we obtain

∫ b

a

f(t) dt =u

∫ 1

0

g(x) dx = u

(

f(a) + f(b)

2

)

−

⌊s/2⌋−1
∑

k=1

u2k+1
(

f (2k)(b) + f (2k)(a)
) E2k+1

(2k + 1)!

+
us

s!

∫ b

a

f (s)(t)Es

(

t− a

u

)

dt.

(28)

Consider now the partition of the interval [a, b] into n subintervals by

means of the equidistant nodes xj = a + jh, j = 0, 1, . . . , n, where h = b−a
n
,
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and fj = f(xj), f
(k)
j = f (k)(xj), k = 1, 2, . . . , s. By (28) we have

∫ b

a

f(t) dt =

n−1
∑

j=0

∫ xj+1

xj

f(t) dt

h

(

f(a)

2
+ f1 + · · ·+ fn−1 +

f(b)

2

)

−

n−1
∑

j=0

⌊s/2⌋−1
∑

k=1

h2k+1
(

f
(2k)
j+1 + f

(2k)
j

) E2k+1

(2k + 1)!

+
hs

s!

n−1
∑

j=0

∫ xj+1

xj

f (s)(t)Es

(

t− xj

h

)

dt.

(29)

Note that last summand on the right-hand side of (29) is equal to ρE [f ].
In order to simplify the last summand on the right-hand side of (29), we only

need to reall that

∫ xj+1

xj

f (s)(t)Es

(

t− xj

h

)

dt =

∫ xj+1

xj

f (s)(t)Es

(

t− a

h
− j

)

dt

=

∫ xj+1

xj

f (s)(t)Es

(

t− a

h
−

⌊

t− a

h

⌋)

dt.

Consequently,

ρE [f ] =
hs

s!

n−1
∑

j=0

∫ xj+1

xj

f (s)(t)Es

(

t− a

h
−

⌊

t− a

h

⌋)

dt

=
hs

s!

∫ b

a

f (s)(t)Es

(

t− a

h
−

⌊

t− a

h

⌋)

dt.

(30)

Finally, substituting (30) into (29) we get (26). The proof of (25) is

similar.

Remark 6. Notie that the relation (23) and the integration by parts do not

allow the sum

n−1
∑

j=0

(

f
(2k)
j+1 + f

(2k)
j

)

satis�es the summation telesoping property. So, the seond summand on the

right-hand side of (26) annot be simpli�ed as the lassial Euler-Malaurin
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formula (2). Consequently, the expression (26) is the orret form for [15,

Equation (3.1)℄.

Now, using (21) and proeeding as in the proof of Theorem 2, we obtain

the following quadrature formulae of Euler-Malaurin type based on gener-

alized Euler polynomials of level m ∈ N \ {1}.

Theorem 3. Let s ≥ 1, f ∈ Cs[a, b] and m ∈ N \ {1}. For a �xed n ∈ N let

xj = a+ jh, j = 0, 1, . . . , n, where h = b−a
n
, and fj = f(xj), f

(k)
j = f (k)(xj),

k = 1, 2, . . . , s. Then, the following omposite trapezoidal rules hold.

∫ b

a

f(t) dt =
1

2m−1

n−1
∑

j=0

s
∑

k=1

(−1)k−1

k!
hk

(

f
(k−1)
j+1 E

[m−1]
k (1)− f

(k−1)
j E

[m−1]
k

)

+ ρ
[m−1]
E [f ],

(31)

where the remainder term ρ
[m−1]
E [f ] an be written as

ρ
[m−1]
E [f ] =

(−h)s

2m−1s!

n−1
∑

j=0

∫ xj+1

xj

f (s)(t)E[m−1]
s

(

t− xj

h

)

dt

=
(−h)s

2m−1s!

∫ b

a

f (s)(t)E[m−1]
s

(

t− a

h
−

⌊

t− a

h

⌋)

dt.

4 Numerial examples

In this setion, four numerial examples are examined to illustrate the e�-

ieny of the omposite trapezoidal rules presented in Setion 3. All of the

numerial experiments are performed using MAPLE 15 and the approxima-

tions of de�nite integrals are given up to 30 deimal plaes. Also, we would

like to point out that some examples of this setion have been onsidered in

[15, Setion 4℄.

Example 1. Consider the elementary integral

I1 :=

∫ 1

0

1

1 + x
dx = ln(2) ≈ 0.693147180559945309417232121458 . . .
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For s = 12 and n = 90 the formula (26) yields the following numerial

approximation of I1:

I1 ≈ 0.693147180559945309417232121456 . . .

Notie that an absolute error for this approximation is less than 10−29
, and

a relative error is less than 3× 10−30
.

Also, for s = 12 the formula (24) yields the following numerial approxi-

mation of I1:

I1 ≈ 0.6931471805599453094172321215 . . .

So, an absolute error for this approximation is less than 10−28
, and a relative

error is less than 7× 10−29
.

We strongly reommend that the reader ompare these numerial evidenes

with the numerial approximation for I1 presented in [15, Setion 4℄.

By using (31) with m = 2, s = 12 and n = 90, we �nd the following

numerial approximation for I1:

I1 ≈ 0.693147180559945309417232121463 . . .

Hene, an absolute error for this approximation is less than 10−29
, and a

relative error is less than 8× 10−30
.

Finally, when we onsider the formula (21) with m = 2 and s = 12, the
orresponding numerial approximation for I1 is

I1 ≈ 0.69314718055994530941723 . . . ,

and an absolute error for this approximation is less than 10−23
, and a relative

error is less than 4× 10−24
.

MAPLE uses a sophistiated numerial integration routine with auto-

mati error ontrol to evaluate de�nite integrals that it annot do analyti-

ally, for instane, de�nite integrals whose integrand does not have elemen-

tary anti-derivatives. The most ommon ommand of MAPLE for numerial

integration is evalf(Int(f, x = a..b)) where the integration ommand is ex-

pressed in inert form to avoid �rst invoking the symboli integration routines

[37, 38℄.

The examples below, show approximations via quadrature formulae of

Euler-Malaurin type for de�nite integrals whose integrand does not have

elementary anti-derivatives.
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Example 2.

I2 :=

∫ 2

1

ex

x
dx ≈ 3.05911653964595340791298419590 . . . (32)

For s = 14 and n = 90, the formula (26) yields the following numerial

approximation of I2:

I2 ≈ 3.05911653964595340791298419590 . . .

In this ase, our approximation oinides exatly with (32). If we take

n = 4, then (26) yields the following approximation:

I2 ≈ 3.05911653964595340791298419589 . . .

An absolute error for this last approximation is less than 10−28
.

Notie that the authors of [15, Setion 4℄ found an absolute error for their

numerial approximation of I2 whih is less than 10−5
.

Example 3. Let us onsider the following integral.

I3 :=

∫ 1

−1

e−x2

dx ≈ 1.49364826562485405079893487226 . . . (33)

Table 1 shows some absolute errors for numerial approximations of (33)

using (21), when di�erent values of m and s are onsidered.

Tab. 1: Absolute errors for approximations of I3.
Level: m Der. order: s Polynomial degree: n Abs. error

1 6 90 2× 10−29

2 6 90 2× 10−29

3 8 90 10−29

4 6 90 10−29

5 5 90 10−29

Example 4. Let us onsider the following integral.

I4 :=

∫ 1

0

cos(x3)dx ≈ 0.931704440591544226076926390685 . . .
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Applying the quadrature formula (25) with s = 5 and n = 90, we get

I4 ≈ 0.930016201613048171856211810179 . . .

And an absolute error for this approximation is less than 2× 10−3
.

While, by using (31) with m = 5, s = 3 and n = 90, we �nd the following

numerial approximation for I4:

I4 ≈ 0.931704440591544226076926390684 . . .

Hene, an absolute error for this approximation is less than 10−29
.

5 Conlusion

A omposite trapezoidal rule based on generalized Euler polynomials of level

m ∈ N has been presented in order to obtain numerial approximations of

de�nite integrals. Suh de�nite integrals possess an integrand regular enough.

The omparative numerial evidene suggests that the Euler-Malaurin type

quadrature formula (31) produes smaller absolute errors than standard for-

mulae (25) and (26).
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