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Abstra
t

This arti
le deals with some properties -whi
h are, to the best of our knowledge,

new- of the generalized Euler polynomials of level m. These properties in
lude a

new re
urren
e relation satis�ed by these polynomials and quadrature formulae of

Euler-Ma
laurin type based on them. Numeri
al examples are also given.
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1 Introdu
tion

There exist standard quadrature formulae for numeri
ally integrating di�er-

ent 
lasses of real valued fun
tions. When we 
onsider the set Cs[a, b] of
all s-times 
ontinuously di�erentiable fun
tions de�ned on [a, b], then the

so-
alled Euler-Ma
laurin summation formula (also known as the 
omposite
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trapezoidal rule) arises (
f. [1�3℄, and [4, Chap. 2, Se
. 3, p. 30℄). More

pre
isely, for a �xed n ∈ N and every s ≥ 1, let f ∈ Cs[0, n], then

∫ n

0

f(t) dt =
f(0) + f(n)

2
+

n−1
∑

k=1

f(k)

+

⌊s/2⌋
∑

r=1

(

f (2r−1)(0)− f (2r−1)(n)
) B2r

(2r)!
+Rs(f),

(1)

where the remainder term Rs(f) 
an be written as

Rs(f) =
(−1)s

s!

∫ n

0

f (s)(t)Bs(t− ⌊t⌋) dt,

with ⌊t⌋ the �oor fun
tion, Bs(t) and B2r the s-th Bernoulli polynomial and

the Bernoulli numbers for 1 ≤ r ≤ ⌊s/2⌋, respe
tively, [1, 3, 5℄.

Or more generally, let g ∈ Cs[a, b], for a �xed n ∈ N we set h = b−a
n
,

xi = a + ih, gi = g(xi), i = 0, . . . , n, and g
(r)
i = g(r)(xi), r = 1, . . . , s. Then

we have (
f. [3, Theorem 1℄):

∫ b

a

g(t) dt =h

(

g(a)

2
+ g1 + · · ·+ gn−1 +

g(b)

2

)

+

⌊s/2⌋
∑

r=1

h2r
(

g
(2r−1)
0 − g(2r−1)

n

) B2r

(2r)!
+Rs(g),

(2)

where

Rs(g) =
(−h)s

s!

∫ b

a

g(s)(t)Bs

(

t− a

h
−

⌊

t− a

h

⌋)

dt.

Thus, (2) may be viewed as an extension of the trapezoid rule by the

in
lusion of 
orre
tion terms gi, g
(2r−1)
0 and g

(2r−1)
n , i = 1, . . . , n − 1, r =

1, . . . , ⌊s/2⌋.

It is well-known that neither Euler nor Ma
laurin found the formulae

with remainder (1) and (2), the �rst to do this was Poisson, in 1823. Eleven

years later, Ja
obi presented one of the earliest derivations of the Euler-

Ma
laurin summation formula [6℄. Sin
e then the formulae (1) and (2) have
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been derived in di�erent ways (see e.g., [3℄ and the referen
es thereof). An

apart mention deserves the remarkable works of T.M. Apostol [1℄ and V.

Lampret [3℄, whi
h present ni
e and 
ompletely elementary derivations of

the 
lassi
al Euler-Ma
laurin formula, respe
tively.

The quadrature formula (1) may be regarded as an extension of the trape-

zoidal rule and it 
an be useful for numeri
ally integrating of periodi
 fun
-

tions (
f., e.g., [2, Chap. 2, Se
. 2.9, p. 134℄, or [7�9℄). The quadrature

formula (2) refers to a �xed interval, whi
h would be advantageous in 
ertain

situations: some types of integrals 
an be transformed to a form suitable

for the trapezoidal rule, su
h transformations are known as exponential and

double exponential quadrature rules [10℄.

Also, it is well-known that the Euler-Ma
laurin summation formula is

implemented in the Wolfram Mathemati
a as the fun
tion NSum with op-

tion Method → Integrate [3, 11℄. The 
ommand NSum is used for Wolfram

Mathemati
a to obtain a numeri
al evaluation of sums, it in
ludes a 
ertain

number of terms expli
itly, and then tries to estimate the 
ontribution of the

remaining ones. There are three approa
hes to estimating this 
ontribution,

one of su
h approa
hes uses the Euler-Ma
laurin formula, and it is based on

approximating the sum by an integral (
f. [11, pp. 269-270℄).

There exists several earlier papers asso
iated with generalizations, modi�-


ations and appli
ations of the 
lassi
al quadrature formula of Euler-Ma
laurin

(see for instan
e, [12�19℄).

Re
ent and interesting works dealing with the Appell and Apostol type

polynomials, their properties and appli
ations in several areas as su
h as 
om-

binatori
s, number theory, numeri
al analysis and partial di�erential equa-

tions, 
an be found by reviewing the 
urrent literature on this subje
t. For a

broad information on new resear
h trends about these 
lasses of polynomials

we strongly re
ommend to the interested reader see [20�28℄.

This paper provides quadrature formulae of Euler-Ma
laurin type based

on generalized Euler polynomials of level m ∈ N. This 
lass of polynomi-

als 
an be seen as a generalization of the 
lassi
al Euler polynomials and it


onstitutes a parti
ular 
ase of the so-
alled generalized Apostol-Euler poly-

nomials and the extensions of generalized Apostol-type polynomials [29,30℄,

respe
tively. The interested reader may �nd re
ent literature whi
h 
ontains

a large number of new and interesting properties involving these polynomials

(see for instan
e, [29℄ and the referen
es thereof).
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The outline of the paper is as follows. In Se
tion 2 some relevant proper-

ties of the generalized Euler polynomials of level m are given. In parti
ular,

we show a new re
urren
e formula for these polynomials whi
h is 
ompared

with whose re
ently obtained in [31℄. Se
tion 3 
ontains the basi
 ideas in

order to obtain quadrature formulae of Euler-Ma
laurin type based on gener-

alized Euler polynomials of level m (see Theorems 2 and 3). Finally, Se
tion

4 is devoted to show some numeri
al examples. As usual, throughout this

paper the 
onvention 00 = 1 will be adopted and an empty sum will be

interpreted to be zero.

2 Some properties of the generalized Euler polynomials

For a �xed m ∈ N, the generalized Euler polynomials of level m are de�ned

by means of the following generating fun
tion [5℄.

2mexz

ez +
∑m−1

l=0
zl

l!

=

∞
∑

n=0

E[m−1]
n (x)

zn

n!
, |z| < π. (3)

And, the generalized Euler numbers of level m are de�ned by E
[m−1]
n :=

E
[m−1]
n (0), for all n ≥ 0. It is 
lear that if m = 1 in (3), then we obtain the


lassi
al Euler polynomials En(x), and 
lassi
al Euler numbers, respe
tively,

i.e., En(x) = E
[0]
n (x), and En = 2nE

[0]
n

(

1
2

)

= 2nEn

(

1
2

)

, respe
tively, for all

n ≥ 0.

The generalized Euler polynomials of level m and the generalized Euler

numbers of level m 
an be seen as the analogous of the generalized Bernoulli

polynomials of level m and the generalized Bernoulli numbers of level m,

respe
tively. These last polynomials and numbers were introdu
ed by Na-

talini and Bernardini in [32℄ as a generalization of the 
lassi
al Bernoulli

polynomials, and 
lassi
al Bernoulli numbers, respe
tively.

For example, the �rst six generalized Euler polynomials of level m = 3
are:
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E
[2]
0 (x) = 4,

E
[2]
1 (x) = 4(x− 1)

E
[2]
2 (x) = 4(x− 1)2,

E
[2]
3 (x) = 4x3 − 12x2 + 12x− 2,

E
[2]
4 (x) = 4x4 − 16x3 + 24x2 − 8x− 10,

E
[2]
5 (x) = 4x5 − 20x4 + 40x3 − 20x2 − 50x+ 58.

The following theorem summarizes some properties of the generalized

Euler polynomials of level m (
f. [29, 30℄).

Theorem 1. For a �xed m ∈ N, let

{

E
[m−1]
n (x)

}

n≥0
be the sequen
e of

generalized Euler polynomials of level m. Then the following statements hold.

(a) Summation formulas (
f., e.g., [22℄). For every n ≥ 0,

E[m−1]
n (x+ y) =

n
∑

k=0

(

n

k

)

yk E
[m−1]
n−k (x) =

n
∑

k=0

(

n

k

)

E
[m−1]
k (y) xn−k.

In parti
ular,

E[m−1]
n (x) =

n
∑

k=0

(

n

k

)

E
[m−1]
k xn−k.

(b) Di�erential relations (Appell polynomial sequen
es, 
f.[33℄). For n, j ≥
0 with 0 ≤ j ≤ n, we have

[E[m−1]
n (x)](j) =

n!

(n− j)!
E

[m−1]
n−j (x). (4)

(
) Inversion formula. For every n ≥ 0,

2mxn =

n
∑

k=0

(

n

k

)

(1 + ak,m)E
[m−1]
n−k (x), (5)

where

ak,m =

{

1, 0 ≤ k < m,
0, k ≥ m.
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(d) Integral formulas.

∫ x1

x0

E[m−1]
n (x)dx =

1

n+ 1

[

E
[m−1]
n+1 (x1)−E

[m−1]
n+1 (x0)

]

=

n
∑

k=0

1

n− k + 1

(

n

k

)

E
[m−1]
k ((x1)

n−k+1 − (x0)
n−k+1).

E[m−1]
n (x) = n

∫ x

0

E
[m−1]
n−1 (t)dt+ E[m−1]

n . (6)

(e) Re
urren
e relation. For anym ≥ 2 and n ≥ 0, the following re
urren
e
relation for the generalized Euler polynomials of level m is satis�ed.

E
[m−1]
n+1 (x) =

(

2xE[m−2]
n −E[m−1]

n

)

+
1

2m−1

n
∑

k=1

[(

n

k

)

(

2xE
[m−2]
n−k −E

[m−1]
n−k

)

−2

(

n

k − 1

)

E
[m−2]
n−k+1

]

E
[m−1]
k (x).

(7)

(f) Di�erential equation. For anym ≥ 2, the generalized Euler polynomials

E
[m−1]
n (x) satisfy the di�erential equation:

0 =

[

2

n!

(

E[m−2]
n − 1

)

+
2xE

[m−2]
n−1 −E

[m−1]
n−1

(n− 1)!

]

y(n)

+

[

2

(n− 1)!

(

E
[m−2]
n−1 − 2

)

+
2xE

[m−2]
n−2 − E

[m−1]
n−2

(n− 2)!

]

y(n−1)

+ · · ·+
[

2m−1(1− x)− n + 1 + E
[m−2]
2

]

y′′

+
[

2m−1(x− 2)− 2n
]

y′ − n2m−1y.

(8)

Proof. Sin
e (a), (b) and (d) are straightforward 
onsequen
es of (3), and a

suitable use of the Fundamental Theorem of Cal
ulus, respe
tively, we shall

omit their proof. So, we fo
us our e�orts on the proof of (c), (e) and (f).
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By (3) and dire
t 
al
ulations, we have

2mexz =

[

ez +
m−1
∑

l=0

zl

l!

][

∞
∑

n=0

E[m−1]
n (x)

zn

n!

]

,

=

[

∞
∑

n=0

(1 + an,m)
zn

n!

][

∞
∑

n=0

E[m−1]
n (x)

zn

n!

]

,

where

an,m =

{

1, 0 ≤ n < m,
0, n ≥ m.

Or equivalently,

2m
∞
∑

n=0

xn z
n

n!
=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

(1 + ak,m)E
[m−1]
n−k (x)

)

zn

n!
. (9)

Comparing the 
oe�
ients of zn on both sides of (9), we get the desired result
of the part (c).

In order to prove (e), we pro
eed as in the proof of [32, Lemma 3.2℄,

making the 
orresponding modi�
ations. For m ≥ 2 and n ≥ 0, let us


onsider the generating fun
tion

E[m−1](x, z) =
2mexz

ez +
∑m−1

l=0
zl

l!

.

Then, di�erentiation of E[m−1](x, z) with respe
t to z, yields

∂

∂z
E[m−1](x, z) =xE[m−1](x, z)−

E[m−1](0, z)E[m−1](x, z)

2

(

m−2
∑

l=0

zl

l!

)

(

x−
E[m−1](0, z)

2E[m−2](0, z)

)

E[m−1](x, z).

(10)

So, from di�erentiation with respe
t to z on the right hand side of (3)

and (10), we 
an dedu
e that

∞
∑

n=0

E
[m−1]
n+1 (x)

zn

n!
=

(

x−
E[m−1](0, z)

2E[m−2](0, z)

)

E[m−1](x, z). (11)
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Or equivalently,

2E[m−2](0, z)

∞
∑

n=0

E
[m−1]
n+1 (x)

zn

n!
=

(

2xE[m−2](0, z)− E[m−1](0, z)
)

E[m−1](x, z).

(12)

The left hand side of (12) 
oin
ides with the produ
t of the following two

series:

[

∞
∑

n=0

2E[m−2]
n

zn

n!

][

∞
∑

n=0

E
[m−1]
n+1 (x)

zn

n!

]

=
∞
∑

n=0

[

n
∑

k=0

2

(

n

k

)

E
[m−2]
n−k E

[m−1]
k+1 (x)

]

zn

n!
,

(13)

and the right hand side of (12) 
oin
ides with the produ
t of the following

two series:

[

∞
∑

n=0

(

2xE[m−2]
n − E[m−1]

n

) zn

n!

][

∞
∑

n=0

E[m−1]
n (x)

zn

n!

]

=

∞
∑

n=0

[

n
∑

k=0

(

n

k

)

(

2xE
[m−2]
n−k −E

[m−1]
n−k

)

E
[m−1]
k (x)

]

zn

n!
.

(14)

Comparing the equations (13) and (14) (on the right hand side of ea
h one),

we get

2

n
∑

k=0

(

n

k

)

E
[m−2]
n−k E

[m−1]
k+1 (x) =

n
∑

k=0

(

n

k

)

(

2xE
[m−2]
n−k − E

[m−1]
n−k

)

E
[m−1]
k (x).

(15)

Then (7) immediately follows by a suitable rearrangement of the terms

on both sides of (15).

Apart from minor 
hanges, the proof of (f) relies on similar arguments

to those from the proof of [32, Theorem 3.1℄. Using (4) we 
an rewrite (15)

as follows

2m−1E
[m−1]
n+1 (x) =

[

n
∑

k=0

(

2xE
[m−2]
n−k − E

[m−1]
n−k

(n− k)!
−

2k

(n− k + 1)!

)

Dn−k
x

]

E[m−1]
n (x),

where Dn−k
x := dn−k

dxn−k . So, the operator D
+
n,m given by

D+
n,m(f) :=

1

2m−1

n
∑

k=0

(

2xE
[m−2]
n−k −E

[m−1]
n−k

(n− k)!
−

2k

(n− k + 1)!

)

Dn−k
x (f),
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satis�es

D+
n,mE

[m−1]
n (x) = E

[m−1]
n+1 (x). (16)

Now, applying the operator ∆−
n+1 :=

1
n+1

Dx on both sides of (16), we have

(

∆−
n+1D

+
n,m

)

E[m−1]
n (x) = E[m−1]

n (x).

This last equation and the use of the inversion formula (5) lead to the

di�erential equation (8) with E
[m−1]
n (x) as a polynomial solution.

Remark 1. It is an easy 
onsequen
e of (5) that for a �xed m ≥ 2,

E
[m−1]
j (x) = 2m−1(x− 1)j, whenever 0 ≤ j ≤ m− 1.

The parti
ular 
ase m = 1 in (5) reads as

2xn =
n

∑

k=0

(

n

k

)

(1 + ak,1)En−k(x) =
n

∑

k=0

(

n

k

)

(1 + an−k,1)Ek(x)

n
∑

k=0

(

n

k

)

(1 + δn−k,0)Ek(x),

(17)

where δn−k,0 is the Krone
ker delta. So, the expression (17) is an equivalent

form of the familiar expansion (
f., e.g., [34, p. 30℄)

2xn = En(x) +
n

∑

k=0

(

n

k

)

Ek(x), n ≥ 0.

Remark 2. The following inversion formula was dedu
ed in [31℄

xn =
n

∑

k=0

(

n

k

)

k!

(k +m)!
E

[m−1]
n−k (x), n ≥ 0. (18)

We would like to note that (18) is wrong. In order to 
he
k that the general-

ized Euler polynomials of level m do not satisfy (18), it su�
es to 
onsider

m = 1. Sin
e 2m−1 = m! only when m = 1, then it is easy to 
he
k that the

expression (18) is 
orre
t for n = 0, 1. However, when n = 2, the situation


hanges. Using (18) we obtain

E2(x) = x2 − x+
1

6
. (19)
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But, taking into a

ount (5) or (17) we have

E2(x) = x2 − x,

this last polynomial is the 
lassi
al Euler polynomial of degree 2. Also, it is

possible to 
he
k that the polynomial in (19) does not satisfy the well-known

relation (see, for instan
e [35, p. 804℄):

En(x+ 1) + En(x) = 2xn, n = 0, 1, . . . (20)

Remark 3. It is worthwhile to mention that (8) represents the analogue of

[32, Eq. (3.1)℄ in the setting of the generalized Euler polynomials of level

m ≥ 2. As it was pointed out in the aforementioned paper, the Appell-type

polynomials, satisfying a di�erential operator of �nite order, 
an be 
onsid-

ered as an ex
eptional 
ase (
f. [36℄ for additional details about this asser-

tion).

3 The quadrature formulae of Euler-Ma
laurin type

The integration by parts formula asserts that the following result holds.

Lemma 1. Let s ≥ 1 and f ∈ Cs[0, 1]. For a �xed m ∈ N, we have

∫ 1

0

f(t)dt =
1

2m−1

[

s
∑

k=1

A
[m−1]
k (f) +

(−1)s

s!

∫ 1

0

f (s)(t)E[m−1]
s (t)dt

]

, (21)

where

A
[m−1]
k (f) =

(−1)k−1

k!

(

f (k−1)(1)E
[m−1]
k (1)− f (k−1)(0)E

[m−1]
k

)

, k = 1, . . . , s.

Proof. Sin
e the integral on the left-hand side of (21) 
an be expressed as

follows,

∫ 1

0

f(t)dt =
1

2m−1

∫ 1

0

f(t)E
[m−1]
0 (t)dt,

it su�
es to apply repeated integration by parts on the right-hand side of

above equation, using a suitable form of (4) in ea
h step.
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Making the substitution f(t) = E
[m−1]
s+r (t) into (21) and taking into a
-


ount (4), (6) and some straightforward 
al
ulations, we 
an show that

∫ 1

0

E[m−1]
s (t)E[m−1]

r (t)dt =
2m−1(−1)ss!r!

(s+ r + 1)!

(

E
[m−1]
s+r+1(1)−E

[m−1]
s+r+1

)

+
s!r!

(s+ r + 1)!

s
∑

k=1

A
[m−1]
k , s, r ≥ 1,

(22)

where

A
[m−1]
k = (−1)k+s

(

s+ r + 1

k

)

(

E
[m−1]
s+r−k+1(1)E

[m−1]
k (1)− E

[m−1]
s+r−k+1E

[m−1]
k

)

,

for k = 1, . . . , s.

The relation (22) is of independent interest. For instan
e, its 
ombination

with (5) allows us to 
onne
t with operational matrix methods based on gen-

eralized Euler polynomials of level m. Re
ently, in [23℄ the authors introdu
e

an operational matrix method based on generalized Bernoulli polynomials of

level m and analyze it in order to obtain numeri
al solutions of initial value

problems. Their 
omputational results demonstrate that su
h operational

matrix method 
an lead to very ill-
onditioned matrix equations.

Remark 4. When m = 1, from the equation (20) and the symmetri
 relation

for 
lassi
al Euler polynomials En(1 − x) = (−1)nEn(x), it is possible to

dedu
e that

En(1) =

{

0, if n is even,
−En, if n is odd.

(23)

This last relation yields the following parti
ular forms of (21):

∫ 1

0

f(t)dt =
f(0) + f(1)

2
−

⌊s/2⌋
∑

k=1

(

f (2k)(1) + f (2k)(0)
) E2k+1

(2k + 1)!
− RE(f),

being s an odd number.

∫ 1

0

f(t)dt =
f(0) + f(1)

2
−

⌊s/2⌋−1
∑

k=1

(

f (2k)(1) + f (2k)(0)
) E2k+1

(2k + 1)!
+RE(f),

(24)
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being s an even number. In both 
ases, the term RE(f) is given by

RE(f) =
1

s!

∫ 1

0

f (s)(t)Es(t)dt.

Noti
e that (24) is a parti
ular 
ase of [15, Eq. (3.3)℄.

Remark 5. For s ≥ 1 and f ∈ Cs[0, n] we 
an give the analogous of (1)

depending on the parity of s as follows:

If s is odd, we have

∫ n

0

f(t) dt =
f(0) + f(n)

2
+

n−1
∑

j=1

f(j)

−
n−1
∑

j=0

⌊s/2⌋
∑

k=1

(

f (2k)(j + 1) + f (2k)(j)
) E2k+1

(2k + 1)!
− RE(f, s).

And if s is even, we have

∫ n

0

f(t) dt =
f(0) + f(n)

2
+

n−1
∑

j=1

f(j)

−
n−1
∑

j=0

⌊s/2⌋−1
∑

k=1

(

f (2k)(j + 1) + f (2k)(j)
) E2k+1

(2k + 1)!
+RE(f, s).

In both 
ases the term RE(f, s) 
an be written as

RE(f, s) =
1

s!

∫ n

0

f (s)(t)Es(t− ⌊t⌋) dt.

With these ideas in mind, we 
an 
onne
t Riemann sums and integrals

and obtain the following result.

Theorem 2. Let s ≥ 1 and f ∈ Cs[a, b]. For a �xed n ∈ N let xj =

a + jh, j = 0, 1, . . . , n, where h = b−a
n
, and fj = f(xj), f

(k)
j = f (k)(xj),

k = 1, 2, . . . , s. Then, the following 
omposite trapezoidal rules hold.

If s is odd:

∫ b

a

f(t) dt =h

(

f(a)

2
+ f1 + · · ·+ fn−1 +

f(b)

2

)

−
n−1
∑

j=0

⌊s/2⌋
∑

k=1

h2k+1
(

f
(2k)
j + f

(2k)
j+1

) E2k+1

(2k + 1)!
− ρE [f ].

(25)
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If s is even:

∫ b

a

f(t) dt =h

(

f(a)

2
+ f1 + · · ·+ fn−1 +

f(b)

2

)

−

n−1
∑

j=0

⌊s/2⌋−1
∑

k=1

h2k+1
(

f
(2k)
j + f

(2k)
j+1

) E2k+1

(2k + 1)!
+ ρE [f ].

(26)

In both 
ases the 
orre
tion terms are expressed by means of the deriva-

tives of f at the extrema, and term ρE [f ] is given by

ρE [f ] =
hs

s!

n−1
∑

j=0

∫ xj+1

xj

f (s)(t)Es

(

t− xj

h

)

dt

=
hs

s!

∫ b

a

f (s)(t)Es

(

t− a

h
−

⌊

t− a

h

⌋)

dt.

(27)

Proof. In order to prove (26), we pro
eed as in the proof of [15, Theorem

3.1℄, making the 
orresponding modi�
ations. Put f(t) = f(a+ ux) = g(x),
where u = b− a, x = t−a

u
, and using (24) we obtain

∫ b

a

f(t) dt =u

∫ 1

0

g(x) dx = u

(

f(a) + f(b)

2

)

−

⌊s/2⌋−1
∑

k=1

u2k+1
(

f (2k)(b) + f (2k)(a)
) E2k+1

(2k + 1)!

+
us

s!

∫ b

a

f (s)(t)Es

(

t− a

u

)

dt.

(28)

Consider now the partition of the interval [a, b] into n subintervals by

means of the equidistant nodes xj = a + jh, j = 0, 1, . . . , n, where h = b−a
n
,
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and fj = f(xj), f
(k)
j = f (k)(xj), k = 1, 2, . . . , s. By (28) we have

∫ b

a

f(t) dt =

n−1
∑

j=0

∫ xj+1

xj

f(t) dt

h

(

f(a)

2
+ f1 + · · ·+ fn−1 +

f(b)

2

)

−

n−1
∑

j=0

⌊s/2⌋−1
∑

k=1

h2k+1
(

f
(2k)
j+1 + f

(2k)
j

) E2k+1

(2k + 1)!

+
hs

s!

n−1
∑

j=0

∫ xj+1

xj

f (s)(t)Es

(

t− xj

h

)

dt.

(29)

Note that last summand on the right-hand side of (29) is equal to ρE [f ].
In order to simplify the last summand on the right-hand side of (29), we only

need to re
all that

∫ xj+1

xj

f (s)(t)Es

(

t− xj

h

)

dt =

∫ xj+1

xj

f (s)(t)Es

(

t− a

h
− j

)

dt

=

∫ xj+1

xj

f (s)(t)Es

(

t− a

h
−

⌊

t− a

h

⌋)

dt.

Consequently,

ρE [f ] =
hs

s!

n−1
∑

j=0

∫ xj+1

xj

f (s)(t)Es

(

t− a

h
−

⌊

t− a

h

⌋)

dt

=
hs

s!

∫ b

a

f (s)(t)Es

(

t− a

h
−

⌊

t− a

h

⌋)

dt.

(30)

Finally, substituting (30) into (29) we get (26). The proof of (25) is

similar.

Remark 6. Noti
e that the relation (23) and the integration by parts do not

allow the sum

n−1
∑

j=0

(

f
(2k)
j+1 + f

(2k)
j

)

satis�es the summation teles
oping property. So, the se
ond summand on the

right-hand side of (26) 
annot be simpli�ed as the 
lassi
al Euler-Ma
laurin
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formula (2). Consequently, the expression (26) is the 
orre
t form for [15,

Equation (3.1)℄.

Now, using (21) and pro
eeding as in the proof of Theorem 2, we obtain

the following quadrature formulae of Euler-Ma
laurin type based on gener-

alized Euler polynomials of level m ∈ N \ {1}.

Theorem 3. Let s ≥ 1, f ∈ Cs[a, b] and m ∈ N \ {1}. For a �xed n ∈ N let

xj = a+ jh, j = 0, 1, . . . , n, where h = b−a
n
, and fj = f(xj), f

(k)
j = f (k)(xj),

k = 1, 2, . . . , s. Then, the following 
omposite trapezoidal rules hold.

∫ b

a

f(t) dt =
1

2m−1

n−1
∑

j=0

s
∑

k=1

(−1)k−1

k!
hk

(

f
(k−1)
j+1 E

[m−1]
k (1)− f

(k−1)
j E

[m−1]
k

)

+ ρ
[m−1]
E [f ],

(31)

where the remainder term ρ
[m−1]
E [f ] 
an be written as

ρ
[m−1]
E [f ] =

(−h)s

2m−1s!

n−1
∑

j=0

∫ xj+1

xj

f (s)(t)E[m−1]
s

(

t− xj

h

)

dt

=
(−h)s

2m−1s!

∫ b

a

f (s)(t)E[m−1]
s

(

t− a

h
−

⌊

t− a

h

⌋)

dt.

4 Numeri
al examples

In this se
tion, four numeri
al examples are examined to illustrate the e�-


ien
y of the 
omposite trapezoidal rules presented in Se
tion 3. All of the

numeri
al experiments are performed using MAPLE 15 and the approxima-

tions of de�nite integrals are given up to 30 de
imal pla
es. Also, we would

like to point out that some examples of this se
tion have been 
onsidered in

[15, Se
tion 4℄.

Example 1. Consider the elementary integral

I1 :=

∫ 1

0

1

1 + x
dx = ln(2) ≈ 0.693147180559945309417232121458 . . .
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For s = 12 and n = 90 the formula (26) yields the following numeri
al

approximation of I1:

I1 ≈ 0.693147180559945309417232121456 . . .

Noti
e that an absolute error for this approximation is less than 10−29
, and

a relative error is less than 3× 10−30
.

Also, for s = 12 the formula (24) yields the following numeri
al approxi-

mation of I1:

I1 ≈ 0.6931471805599453094172321215 . . .

So, an absolute error for this approximation is less than 10−28
, and a relative

error is less than 7× 10−29
.

We strongly re
ommend that the reader 
ompare these numeri
al eviden
es

with the numeri
al approximation for I1 presented in [15, Se
tion 4℄.

By using (31) with m = 2, s = 12 and n = 90, we �nd the following

numeri
al approximation for I1:

I1 ≈ 0.693147180559945309417232121463 . . .

Hen
e, an absolute error for this approximation is less than 10−29
, and a

relative error is less than 8× 10−30
.

Finally, when we 
onsider the formula (21) with m = 2 and s = 12, the

orresponding numeri
al approximation for I1 is

I1 ≈ 0.69314718055994530941723 . . . ,

and an absolute error for this approximation is less than 10−23
, and a relative

error is less than 4× 10−24
.

MAPLE uses a sophisti
ated numeri
al integration routine with auto-

mati
 error 
ontrol to evaluate de�nite integrals that it 
annot do analyti-


ally, for instan
e, de�nite integrals whose integrand does not have elemen-

tary anti-derivatives. The most 
ommon 
ommand of MAPLE for numeri
al

integration is evalf(Int(f, x = a..b)) where the integration 
ommand is ex-

pressed in inert form to avoid �rst invoking the symboli
 integration routines

[37, 38℄.

The examples below, show approximations via quadrature formulae of

Euler-Ma
laurin type for de�nite integrals whose integrand does not have

elementary anti-derivatives.
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Example 2.

I2 :=

∫ 2

1

ex

x
dx ≈ 3.05911653964595340791298419590 . . . (32)

For s = 14 and n = 90, the formula (26) yields the following numeri
al

approximation of I2:

I2 ≈ 3.05911653964595340791298419590 . . .

In this 
ase, our approximation 
oin
ides exa
tly with (32). If we take

n = 4, then (26) yields the following approximation:

I2 ≈ 3.05911653964595340791298419589 . . .

An absolute error for this last approximation is less than 10−28
.

Noti
e that the authors of [15, Se
tion 4℄ found an absolute error for their

numeri
al approximation of I2 whi
h is less than 10−5
.

Example 3. Let us 
onsider the following integral.

I3 :=

∫ 1

−1

e−x2

dx ≈ 1.49364826562485405079893487226 . . . (33)

Table 1 shows some absolute errors for numeri
al approximations of (33)

using (21), when di�erent values of m and s are 
onsidered.

Tab. 1: Absolute errors for approximations of I3.
Level: m Der. order: s Polynomial degree: n Abs. error

1 6 90 2× 10−29

2 6 90 2× 10−29

3 8 90 10−29

4 6 90 10−29

5 5 90 10−29

Example 4. Let us 
onsider the following integral.

I4 :=

∫ 1

0

cos(x3)dx ≈ 0.931704440591544226076926390685 . . .
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Applying the quadrature formula (25) with s = 5 and n = 90, we get

I4 ≈ 0.930016201613048171856211810179 . . .

And an absolute error for this approximation is less than 2× 10−3
.

While, by using (31) with m = 5, s = 3 and n = 90, we �nd the following

numeri
al approximation for I4:

I4 ≈ 0.931704440591544226076926390684 . . .

Hen
e, an absolute error for this approximation is less than 10−29
.

5 Con
lusion

A 
omposite trapezoidal rule based on generalized Euler polynomials of level

m ∈ N has been presented in order to obtain numeri
al approximations of

de�nite integrals. Su
h de�nite integrals possess an integrand regular enough.

The 
omparative numeri
al eviden
e suggests that the Euler-Ma
laurin type

quadrature formula (31) produ
es smaller absolute errors than standard for-

mulae (25) and (26).
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