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Abstract: Curcumin is a polyphenol extracted from the rhizome of the turmeric plant. Beyond
its common use as a culinary spice in Eastern Asia, curcumin has been proposed as a therapeutic
compound due to its antioxidant, anti-inflammatory and neuroprotective properties. Thus, its efficacy
has been evaluated in various inflammatory-based psychiatric disorders, such as schizophrenia,
depression, or autism. Our aim is to review those preclinical and clinical studies carried out in
psychiatric disorders whose therapeutic approach has involved the use of curcumin and, therefore, to
discern the possible positive effect of curcumin in these disorders. Preclinical studies and completed
clinical trials of curcumin for psychiatric disorders published from January 2005 to October 2021
were identified through searching relevant databases until 31st October 2021. Sixty-five preclinical
studies and 15 clinical trials and open-label studies were selected. Results showed a bias toward
studies in depression and, to a lesser extent, schizophrenia. In all disorders, the results were positive
in reducing psychiatric deficits. Despite the considerable number of beneficial outcomes reported, the
small number of trials and the heterogeneity of protocols make it difficult to draw solid conclusions
about the real potency of curcumin in psychiatric disorders.

Keywords: curcumin; psychiatric disorders; inflammation; oxidative stress; schizophrenia; autism;
depression; Obsessive Compulsive Disorder

1. Introduction

Turmeric (Curcuma longa) is an herbaceous plant widely used in Asia as a dye, culinary
spice, and as a traditional natural therapeutic compound [1]. The rhizome of this plant,
also called turmeric, is enriched with yellow dyes, the curcuminoids [2]. Within this family
of compounds, curcumin is considered one of the most relevant. Curcumin, the active
compound of turmeric, is a polyphenol that has also been largely used as a remedy for
different pathologies in Asia for several decades due to its healthy and biopharmacological
properties, and its lack of adverse effects, even at high doses. Moreover, curcumin has been
reported to have anti-inflammatory, antioxidant, neuroprotective, and even anti-aging and
antineoplasic properties [3–7] (Figure 1). Curcumin may exert its anti-inflammatory and
antioxidant (anti-IOS) effects by influencing the synthesis of some IOS regulators, such as
heme-oxygenase-1 (HO1), glutathione (GSH), catalase (CAT), and superoxide dismutase
(SOD) [8]. These properties cause curcumin to have an impact on those diseases in which
IOS regulation does not work correctly and are related to the disease appearance. Thus,
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curcumin may exert a beneficial effect on the immune system, reducing B lymphocyte
proliferation by inhibiting B lymphocyte stimulator (BLYS).
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Figure 1. Summary of potential beneficial effects of curcumin on health, in neurological, cardiovas-
cular, intestinal, metabolic, and oncological disorders. Abbreviations: AChE: acetylcholinesterase; 
Bcl: B-cell lymphoma; BDNF: brain-derived neurotrophic factor; COX-2: cyclooxygenase 2; EGFR: 
epidermal growth factor receptor; ERK: extracellular-regulated kinase; 9 GDNF: glial cell line-de-

Figure 1. Summary of potential beneficial effects of curcumin on health, in neurological, cardiovas-
cular, intestinal, metabolic, and oncological disorders. Abbreviations: AChE: acetylcholinesterase;
Bcl: B-cell lymphoma; BDNF: brain-derived neurotrophic factor; COX-2: cyclooxygenase 2; EGFR:
epidermal growth factor receptor; ERK: extracellular-regulated kinase; 9 GDNF: glial cell line-derived
neurotrophic factor; GPx: glutathione peroxidase; GSH: glutathione; GST: glutathione S-transferase;
HbA1c: glycosylated hemoglobin A1c; HDL-C: high density lipoprotein cholesterol; HO-1: heme-
oxygenase-1; ICAM-1: intercellular adhesion molecule-1; IL: interleukin; iNOS: inducible nitric
oxide synthase; IL-10: Interleukin-10; LDL-C: low density lipoprotein cholesterol; LOX-1: lectin-like
oxidized low-density lipoprotein receptor-1; Lp(a): lipoprotein(a); LP: lipoxygenase; MAPK: mitogen-
activated protein kinase; MMP-9: matrix metalloproteinase 9; NF-κB: nuclear factor kappa-B; NGF:
Nerve growth factor; PLA2: phospholipase A2; P38: p38 MAKP; PGE-2: prostaglandin E2; PPARγ:
peroxisome proliferator-activated receptor gamma; sCAM-1: soluble cell adhesion molecule 1; TG:
triglycerides; TNF-α: tumor necrosis factor-α; TGF-β1: transforming growth factor; SOD: superoxide
dismutase; VCAM-1: vascular cell adhesion molecule-1; VEGF: vascular endothelial growth factor.
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Curcumin can also reduce the neutrophil recruitment to areas affected by inflamma-
tion [9], and can also increase the phagocytic activity of macrophages [10]. Furthermore,
curcumin has proven to be an effective modulator of the endocrine system, enhancing the
uptake or regulating some hormones, such as insulin [11]. All these properties have boosted
the interest of researchers in this compound in recent decades. Thus, several preclinical
studies and clinical trials have been conducted [12] with the aim of elucidating whether
or not curcumin was effective for many different diseases, such as skin [13], cancer, or
neurological pathologies [5].

Recently, curcumin has also been used in different psychiatric disorders due to the
likely involvement of IOS processes in their onset and evolution. In this sense, the above-
described role of curcumin as an anti-IOS drug made this compound a good candidate
to halt or palliate the course of these diseases. This is especially important, as current
therapeutic strategies for many psychiatric disorders have a relatively high failure rate.
Thus, the search for new approaches to help address this problem is ongoing.

So far, several clinical trials and studies with animal models, which we will detail
in depth in the following sections of this work, have reported the efficacy of curcumin
in some psychiatric disorders, such as depression, schizophrenia, or autism. However,
some studies have showed no positive effects of curcumin in neurological diseases. The
main and most recommended route of administration of curcumin is oral and, despite
considerable high absorption through lipid membranes caused by its lipophilic nature,
curcumin has a low bioavailability after being metabolized, accumulating in the spleen,
liver, and intestine, with a low uptake in the rest of the organs [8,14,15]. The low absorption
by the small intestine and the high metabolism in the liver weaken its oral bioavailabil-
ity [16], making it necessary to use high oral doses of curcumin to reach other target organs
such as the brain [16]. Moreover, its apparent ineffectiveness in interacting specifically
with a single pharmacological target has prompted the classification of curcumin as a pan
assay interference compound (PAINS) and an invalid metabolic panacea (IMPS) [17,18].
However, despite the poor pharmacokinetics of this compound, the existence of positive
results in several studies raises the question of how curcumin could cause a beneficial effect
at the brain level despite being barely able to reach this organ. A recent hypothesis explains
that curcumin could be acting on the gut microbiota [19] since the intestine and liver are
primary sites of metabolism for curcumin [16], reducing intestinal inflammation and, hence,
functioning as a neuroprotective agent due to the likely involvement of neuroinflammation
in many psychiatric disorders in which alterations of the gut-brain axis play an important
role [2,20]. Furthermore, in order to address the low bioavailability of the curcumin, new
formulations of this compound are being synthetized to improve its pharmacokinetics and
achieve stable curcumin that can reach the brain in a higher concentration. Some of them are
based on conjugating curcumin with lipids or co-treating it with piperine, a bio-enhancer
that improves the absorption of curcumin [8,21]. A recent emerging and promising strategy
to improve its bioavailability in the brain combines curcumin with drug delivery carriers
such as liposomes, exosomes, magnetic particles or ultrasound bubbles [22]. Moreover,
some of these exosomes have shown an anti-inflammatory capacity [23], which could
enhance the anti-inflammatory effect of curcumin in the brain and other organs of inter-
est. Of note, oral and intra-nasal administration of nanoparticles are also being explored,
which could increase drug absorption in the brain, representing a great advantage in brain
disorders [24,25].

Therefore, the aim of this work is to review the current literature on the effect of
curcumin and its derivatives in the field of psychiatric disorders, and to discern whether
the initial enthusiasm for this compound is well-founded [21,26].

2. Materials and Methods

A non-systematic literature review was performed in relevant databases until 31st
October 2021 (https://ncbi.nlm.nih.gov/pubmed/, https://clinicaltrials.gov/, accessed on
31 October 2021). The data search covered a range from January 2005 to October 2021 (no

https://ncbi.nlm.nih.gov/pubmed/
https://clinicaltrials.gov/
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studies prior 2005 were found). Published English-language studies investigating the effects
of curcumin on neuropsychiatric pathologies were included. The search terms used as
keywords are listed in the Appendix. All open-label clinical studies (OLS) and randomized
clinical trials (RCTs) (Table 1) and preclinical studies (Table 2) that met the search terms
were included. For contextualization purposes, one case report was mentioned to explain
the rationale for larger trials. Figure 2 shows a scheme with the number of studies for each
disorder included in this review. The most commonly used abbreviations can be found in
Abbreviation.
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Table 1. Clinical studies and trials in neuropsychiatric diseases.

Disease Authors Type Phase N Patients Type Patients Country Duration Dosage Other
Treatment

Biological
Effects Clinical Efficacy Safety and

Tolerability

Schizophrenia

NCT01875822 Open-label
study 1–2 17 Schizophrenia

patients Puerto Rico 16 weeks 1000 or 4000
mg CUR

5 mg Bioperine
+

Antipsychotic
- - -

Wynn and
Green, 2017

(NCT02104752)

Randomized,
double-blind,

placebo-
controlled

study

1–2 36 (17 CUR, 19
placebo)

Schizophrenia
patients and

inpatients
United States 8 weeks 360 mg/day of

Theracurcumin -

Increase in
plasma levels
of BDNF in

CUR patients

No effect on clinical
symptoms

No significant
adverse events

Kucukgoncu
et al., 2019

(NCT02476708)

Randomized,
double-blind,

placebo-
controlled,

add-on study

- 12 (6 CUR, 6
placebo)

Schizophrenia
outpatients United States 8 weeks 180 mg/day of

Theracurcumin

Usual
antipsychotic
medication

Reduction in
IL-6 in CUR
SCZ patients

Significant
improvement in

working memory.
No significant

improvement in
cognitive domains,
negative symptoms

and total PANSS

No significant
adverse events

Miodownik
et al., 2019

(NCT02298985)

Randomized,
double-blind,

placebo-
controlled,

add-on

4 38 (20 CUR, 18
placebo)

Schizophrenia
outpatients Israel 24 weeks 3000 mg/day

Usual
antipsychotic
medication

-

Improvement in
total PANSS and in

the negative
symptoms subscale.

No changes in
positive and

general PANSS
subscales nor the

CDSS

No significant
adverse events

Hosseininasab
et al., 2021

Randomized,
double-blind,

placebo-
controlled,

add-on trial

- 56 (28 CUR, 28
placebo)

Chronic and
stable

schizophrenia
inpatients

Iran 16 weeks 160 mg/day
Usual

antipsychotic
medication

-

Improvement in
total PANSS and in

the negative
symptoms subscale,

general
psychopathology
subscale, positive

subscale, total
PNSS, CGI-S, and
CGI-I. No changes
in Extrapiramidal
symptom rating
scales nor CDSS

No significant
adverse events
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Table 1. Cont.

Disease Authors Type Phase N Patients Type Patients Country Duration Dosage Other
Treatment

Biological
Effects

Clinical
Efficacy

Safety and
Tolerability

Depression

Sanmukhani
(2013)

NCT01022632

Randomized
control trial -

51 (17
fluoxentine, 16

CUR, 18
fluoxentine +

CUR)

MDD patients
(>18 years) India 6 weeks

1000 mg/day
of CUR; 20
mg/day of
Fluoxentine

Paracetamol
and diazepam Not described

No significant
effects

produced by
curcumin or its

combination
with

fluoxentine
(HDRS)

Curcumine
was well
tolerated

Bergman
(2013)

NCT01750359

Randomized,
double-blind,

placebo-
controlled,

pilot clinical
trial

4 39 (19 CUR, 20
plecebo)

MDD patients
(20–81 years) Israel 5 weeks 500 mg/day

Escitalopram
and

venlafaxine XR
Not described

No effects of
curcumin

(MADRS and
HDRS)

No adverse
effects during
the treatment

Lopresti (2014)

Randomized,
double-blind,

placebo-
controlled

trial

-
25 (curcumine
1000 mg/day),

27 (placebo)

MDD patients
(20–65 years) Australia 8 weeks 1000 mg/day SSRIs and

SNRIs Not described

Long-term
improvement
in IDS-SR30
total scores.
Long-term

improvement
in STAI anxiety

scores

Minor severity
side effects

Lopresti (2014)

Randomized,
double-blind,

placebo-
controlled

trial

-
25 (curcumine
1000 mg/day),

25 (placebo)

MDD patients
(20–65 years) Australia 8 weeks 1000 mg/day

Non-specified
antidepressant

medication

Increased
urinary

TBX-B2 and
SUB-P. Higher
plasma ET-1
and leptin

levels

Improvement
in IDS-SR30
total score

Minor severity
side effects

Panahi (2015) Open-label
study -

111 (61 CUR +
piperine, 50

placebo)

MDD patients
(18–65 years) Iran 6 weeks

1000 mg/day
of CUR + 10
mg/day of

piperine

TCAs, BZDs,
SSRIs and

SNRIs
Not described

Improvements
in HADS total

score.
Reductions in

BDI-II total
score

Not described

Yu (2015)

Randomized,
double-blind,

placebo-
controlled
pilot study

- 100 (50 CUR,
50 placebo)

MDD patients
(31–59 years) China 6 weeks

500 or 1000
mg/day of

CUR; 30
mg/day of

Saffron

Escitalopram

Decrease in
IL-1β, TNF-α

and salive
cortisol

concentrations.
Increase in NF

levels in
plasma

Improvement
in HDRS and
MADR total

scores

No adverse
effects
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Table 1. Cont.

Disease Authors Type Phase N Patients Type Patients Country Duration Dosage Other
Treatment

Biological
Effects

Clinical
Efficacy

Safety and
Tolerability

Lopresti and
Drummond

(2017)

Randomized,
double-blind,

placebo-
controlled

study

-

123 (28 CUR,
33 CURX2, 26
CUR +Saffron,

36 placebo)

MDD patients
(18–65) Australia 12 weeks 1000 mg/day

or 500 mg/day

Non-specified
antidepressant

medication
Not described

Improvements
in IDS-SR30

and STAI total
scores after the
combination of
treatments. No

differences
between

different doses
of curcumin

Minor severity
side effects

Kanchanatawan
(2018)

Randomized,
double-blind,

placebo-
controlled

study

- 61 (30 CUR, 31
placebo)

MDD patients
(18–63) Thailand 12 weeks

500 mg/day to
1500 mg/day

with an
increment of

250 mg/week

Fluoxentine,
SSRis,

mianserin,
trazodone,

sodium
valproate,

propanolol
and enalapril

No significant
effects on

blood
chemistry and

ECG
measurements

Improvement
in MADRS
total score.

No adverse
effects

NCT04744545
(2021)

Randomized,
placebo-

controlled
trial

- 60 (estimated) MDD patients
(>18 years) Canada 12 weeks 1500 mg/Kg

Integrative
treatment

program based
on several
evidence-

based practices
and overseen
by licensed

clinical
therapists that
is delivered via
a Smartphone

app

- - -

Obsessive
Compulsive

Disorder

Moore and Nat
(2018) Case report - 1 One case

report United States 3 weeks

90 mg/day og
CUR; 600–1800

mg/day of
NAC

Not specified Not described

Reduction in
CY-BOCS and
YGTSS total

scores

Not described
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Table 2. Preclinical studies in neuropsychiatric diseases.

Pathology Reference N Animals Animal Model Treatment Biological Effects Behavioral Effects

Schizophrenia Naserzadeh et al., (2018) 24 (6/group) Ketamine-treated Wistar male
rats

CUR-loaded magnetic
nanoparticles (17 mg/300 ul

PBS), i.v.

Reduction in MMP, ATP and
mitochondrial complex II

activity in mitochondria of the
cerebellum

Reduction in the over-increased
locomotor activities

(side-to-side rocking and arcing
of neck) in the CUR-treated

ketamine rats, without reaching
the control values.

Moghaddam et al., (2021) 35 (7/group)
Ketamine-treated, during the

last 15 days of CUR
administration mice

Curcumin-loaded
nanophytosomes (20 mg/kg)

during 30 days

Reduction in biomarkers of
oxidative stress in cortical and

subcortical regions

Reduction in anxiety in
CUR-treated ketamine mice.
Reduction in depressive-like
behaviors in ketamine mice

treated with CUR

Xu et al., 2005 60 (6/group) Regular male ICR mice 1.25, 2.5, 5, or 10 mg/Kg 30 min
before tests, p.o.

Increment of 5-HT and DA in
the frontal cortex and striatum

at high doses. Inhibition of
monoamine oxidase activity

High doses improved the
forced swimming and tail

suspension tests. No effect on
locomotor activities

Xu et al., 2005 72–84 (6–7/group) OB male SP rats 1.25, 2.5, 5, or 10 mg/Kg, 14
days, p.o.

Reversion of the deficits of
5-HT and NA in hippocampus
and frontal cortex; 5-HIAA and
DOPAC in hippocampus and

DA in frontal cortex

Improvement in forced
swimming, open field, and

passive avoidance tests

Xu et al., 2006 36 (6/group) Chronically stressed male SP
rats

2.5, 5, or 10 mg/Kg, 21 days,
p.o.

Reversed the effects on adrenal
gland size and weight. Blocked
the stress-induced decreases in

BDNF and pCREB/CREB

High doses improved the
effects in shuttle-box test

Xu et al., 2007 30–35 (5–6/group) Chronically stressed male SP
rats

5, 10, or 20 mg/Kg, 21 days,
p.o.

Improved hippocampal
neurogenesis and blocked the

decrease in 5-HT1A mRNA and
BDNF protein levels in the

hippocampal subfields

-

Depression

Kulkarni et al., 2008 30 (6/group) Reserpine treated male Laca
rats

10–80 mg/Kg, 60 min before
tests, i.p.

Increment of 5-HT, DA levels,
MAO-A and MAO-B at higher

doses

Dose dependent improvement
in forced swimming test

Wang et al., 2008 40–48 (10–12/group) PCPA male ICR mice 2.5, 5, or 10 mg/Kg, 45 min
before tests, p.o.

Interaction with 5-HT1A/1B and
5-HT2C receptors

Improvement in forced
swimming test

Li et al., 2009 56 (7/group) CUMS male Wistar rats 15 or 30 mg/Kg, 4 weeks, i.g.

Reduced serum corticosterone
levels. Enhanced AC activity

and cAMP levels and
upregulated several AC

subtypes in the hippocampus,
cortex, and hypothalamus.

Increased 5-HT levels

Improvement in sucrose
preference test

Bhutani et al., 2009 36 (6/group) Chronically stressed female
Wistar rats 20 or 40 mg/Kg, 21 days, i.p.

Dose dependent reduction in
MAO-A and MAO-B. Reversed

the effects on NE, DA, and
5-HT levels

Dose dependent improvement
in forced swimming test
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Table 2. Cont.

Pathology Reference N Animals Animal Model Treatment Biological Effects Behavioral Effects

Depression

Arora et al., 2011 48 (8/group) Reserpine treated male Wistar
rats

100, 200, or 300 mg/Kg, 2 days,
i.p.

Dose dependent reversion of
NE, DA and 5-HT reduced
levels. Increment of SUB-P
concentration, nitrodative

stress, inflammatory cytokines,
NF-κβ and caspase-3 levels in

hippocampus and cortex

Reduced the deficits in Randall
Sellitto and von-Frey hair tests.

Improvement in forced
swimming test

Huang et al., 2011 18 (6/group) CORT-treated male SP rats 20 mg/Kg, 21 days, p.o.

Increment of BDNF levels
induced by CORT treatment in

hippocampus and frontal
cortex

Improvement in forced
swimming and sucrose

preference tests

Kulkarni et al., 2011 Not specified Regular male Laca mice 50–200 mg/Kg, 30 min before
tests, p.o.

Increment of 5-HT at low doses
and DA at high doses

Dose dependent improvement
in forced swimming test

Zhang et al., 2012 60–75 (10–12/group) SL327 male C57BL/6 mice 40 mg/Kg, 21 days, i.p.
Improvement of ERK

deregulation on BDNF
expression in the amygdala

Improvement in forced
swimming test

Borre et al., 2013 40–48 (10–12/group) OB or ZnSO4 anosmia-induced
male SP rats

20 g/day of 0.25 mg/Kg
curcumine diet, 42 days

Reduced hippocampal atrophy
and decreased the peripheral

immune activation

Attenuation of cognitive and
behavioral deficits in open field,

tail suspension, passive
avoidance, T-maze and

holeboard tests

Rinwa et al., 2013 50 (5/group) OB male Wistar rats 100, 200, or 400 mg/Kg, 2
weeks, p.o.

Dose dependent reversion of
TNF-α, caspase-3 and BDNF

levels

Dose dependent improvement
of forced swimming, sucrose

preference and open field tests

Lin et al., 2013 40 (6–14/group) CUS male SP rats 40 mg/Kg, 30 days, p.o.

Strong deactivation of the left
primary auditory cortex and

activation of the
amygdalohippocampal cortex

Improvement in sucrose
preference and open field tests

Hurley et al., 2013 32 (8/group) Male Wistar Kyoto rats 50, 100, or 200 mg/Kg, 10 days,
i.p.

Dose dependent increase in
hippocampal BDNF levels

Improvement in forced
swimming test but no effects on

open field test

Jiang et al., 2013 40 (10/group) CMS male Wistar rats 10 mg/Kg, 3 weeks, i.g.

Inhibited cytokine gene
expression at mRNA and

protein level and reduced the
activation of NF-κβ

Reduced sucrose preference
and decreased locomotor
activity in open field test

Zhang et al., 2013 40–48 (10–12/group) NMDA receptor antagonists
treated male Kun-Ming mice

10, 20, or 40 mg/Kg, 45 min
before tests, i.p.

Interaction with
glutamate-NMDA-receptors

Improvement in forced
swimming test

Zhao et al., 2013 24–36 (8–12/group) CCI in male ICR mice 5, 15, or 45 mg/Kg, 3 weeks,
p.o.

Interaction with 5-HT1A and
GABA receptors

Dose dependent improvement
in forced swimming and tail

suspension tests



Antioxidants 2022, 11, 353 10 of 27

Table 2. Cont.

Pathology Reference N Animals Animal Model Treatment Biological Effects Behavioral Effects

Wang et al., 2014 40(10/group) LPS treated male Kun-Ming
mice 50 mg/Kg, 7 days, i.p.

Attenuated LPS induced
microglial activation and over

production of
pro-inflammatory cytokines,

levels of inductible nitric oxide
synthase and cyclooxygenase-2

mRNA in the hippocampus
and prefrontal cortex

Improvement in forced
swimming, tail suspension, and

sucrose preference tests

Liu et al., 2014 40 (10/group) CUS male Wistar rats 10 mg/Kg, 5 weeks, i.g. Increased hippocampal BDNF
and ERK levels

Reduced sucrose preference
and impaired learning and

memory function in open field
and Morris water maze tests

Cui et al., 2014 48 (8/group) CUMS male SP rats 10, 40, or 80 mg/Kg, 30 min
before tests, i.g.

Improved the activity of
anti-oxidant enzymes and

energy metabolism enzymes

Improvement in open field and
sucrose preference tests

Zhang et al., 2014 64 (16/group) CUMS male Wistar rats 40 mg/Kg, 6 weeks, i.p.

Reverted the effects on the
expression of BDNF, PSD-95

and synaptophysin in the
lateral amygdala

Improvement in open field,
forced swimming and sucrose

preference tests

Haider et al., 2015 24 (6/group) Stressed male Wistar rats 200 mg/Kg, 1 week, p.o. Improved the levels of MDA,
CAT, GPx, SOD and AChE

Improvement in elevated plus
maze, open field and forced

swimming tests

He et al., 2016 Not specified CORT-treated female C57BL/6
mice 20 mg/Kg, 2 weeks, i.p.

Improvement of DA levels in
blood. Increase in

neurotransmitters in
hippocampus and striatum.

Increased expression of CBR1,
p-MEK1, and p-ERK1/2

Improvement in forced
swimming and rotarod tests

Chang et al., 2016 30 (6/group) OB male Wistar rats 10, 20, or 40 mg/Kg, 45 days,
p.o.

Reversed the effects on NA,
5-HT, 3, DOPAC acid and

5-HIAA in the hippocampus.
Normalized the levels of DA,

NA and
5-hydroxyindoleaceticacid in

the prefrontal cortex

Improvement in passive
avoidance and open field tests

Yusuf et al., 2016 42 (6/group) Stressed albino mice 2.5, 5, 10, or 20 mg/Kg, 60 min
before tests, i.p.

Increase in SOD catalase
activity

Improvement in force despair,
forced swimming and tail

suspension tests

Demir et al., 2016 34 (7–10/group) Cisplatin treated male Wistar
rats 300 mg/Kg, 5 weeks, p.o. -

Improvement in forced
swimming, open field and
elevated plus maze tests
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Table 2. Cont.

Pathology Reference N Animals Animal Model Treatment Biological Effects Behavioral Effects

Shen et al., 2017 48 (6/group) CMS male SP rats 15, 30, or 60 mg/Kg, 33 days,
p.o.

Upregulation of IRS-1, Akt in
the liver and reversed

metabolic abnormalities

Improvement in glucose
preference test

Yohn et al., 2017 45 (9/group) Tetrabenzamine treated male
SP rats

80–160 mg/Kg, p.o. or 2–8
ul/Kg infusions into ventricles -

Attenuated the effort-related
abnormalities in a choice

procedure test

He et al., 2017 Not specified CORT administration in
C57BL/6 mice 20 mg/Kg, 3 weeks

Increased DA/5-HT levels, CB1
mRNA levels and CB1,

p-MEK1, and p-ERK1/2
protein expression levels in the

hippocampus and striatum.
Increment on CBR1 expression
and proliferation of astrocytes

in the hippocampus and
striatum

Improvement in forced
swimming test

Choi et al., 2017 16 (4/group) Chronically stressed male SP
rats 50 or 100 mg/Kg, 18 days, p.o.

Rescued the attenuated BDNF
expression and inhibited the

enhancement of COX-2
expression

Improvement in forced
swimming test

Ceremuga et al., 2017 55 (11/group) Flumazenil treated male SP rats 20 mg/Kg, 10 min before tests,
i.p.

No interaction between
curcumin and benzodiazepine
site of the GABAs receptor was

observed

No effects on forced swimming,
open field and elevated plus

maze tests

Vasileva et al., 2018 48 (6–7/group) CMS-LPS treated male Wistar
rats 20 mg/Kg, 8 days, i.g. Reversion of the increase in

cytokine levels
Improvement in open field and

water maze tests

Lee and Lee, 2018 42–49 (6–7/group) SPS male SP rats 20, 50, or 100 mg/Kg, 14 days,
i.p.

Recover of neurochemical
abnormalities and decreases of

5-HT in the hippocampus,
amygdala, and striatum

Improvement in elevated pluz
maze, fear conditioning and

open field tests

Fan et al., 2018 24 (8/group) CUMS male Wistar rats 40 mg/Kg, 5 weeks, i.p.

Repression of the inflammatory
response and neuronal

structural abnormalities
produced by CUMS

Improvement in forced
swimming and sucrose

preference tests

Lian et al., 2018 36 (6/group) Regular male ICR mice 2, 5, or 10 mg/Kg, 1–24 hs
before tests, i.g.

Activation of 5-
HT1A/cAMP/PKA/CREB/BDNF-

signaling
pathway

Improvement in forced
swimming and tail suspension

tests. No alteration in open
field test

Fidelis et al., 2018 35–40 (7–8/group) β-amyloid treated Swiss male
mice 10 mg/mL, 12 days, i.g.

Reduced Aβ-oxidative stress
via SOD and CAT in the

prefrontal cortex

Improvement in forced
swimming and tail suspension
tests. No changes in open field

test
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Table 2. Cont.

Pathology Reference N Animals Animal Model Treatment Biological Effects Behavioral Effects

Abd-Rabo et al., 2019 70 (14/group) Ovariectomized female Wistar
rats 100 mg/Kg, 30 days, p.o.

Improvement of serotonin
content by upregulating

5-HT1A and down regulating
monoamine oxidase

Improvement of forced
swimming test

Fan et al., 2019 72 (18/group) CUMS male Wistar rats 40 mg/Kg, 5 weeks, i.p.

Reduced the expression of
IL-1β and inhibited neuronal

apoptosis within neurons of the
ventromedial prefrontal cortex

Improvement in forced
swimming and sucrose

preference tests

Mohammed et al., 2019 65 (11–15/group Reserpine treated male Wistar
rats 20 mg/Kg, 7 or 15 days, i.p.

Restored DA and 5-HT levels,
but not NE levels after 7 days
of treatment. Increase in alpha

and beta 2-waves, tetha and
beta 1, and decrease in delta

waves

Improvement in forced
swimming test

Madiha and Haider, 2019 30 (6/group) Rotenone treated Wistar rats 100 mg/Kg, 2 weeks, p.o., pre-
and post-Rotenone

Reverted DA and 5-HT levels
in striatum and hippocampus

Improvement in social
interaction and sucrose

preference test

Zhang et al., 2019 18–21 (6–7/group) CUMS male SP rats 100 mg/Kg, 4 weeks, i.g.

Reduced the expression of
IL-1β, IL-6, and TNF-α and

suppressed activation of
NF-κβ. Inhibited the P2 ×

7R/NLRP3 inflammasome axis
activation, and reduced the

synthesis of IL-1β.
Ammeliorated the activation of

IDO and increased
kynurenine/tryptophan ratio

Improvement in forced
swimming, elevated pluz maze

and sucrose preference tests

Liao et al., 2020 24 (8/group) CUMS male SP rats 100 mg/Kg, 4 weeks, i.g.

Decrease in protein expression
of stress markers and increase

in CAT. Reversed the inhibition
of Nrf2-ARE signaling pathway

and increased mRNA
expression of NQO-1 and HO-1.

Increased the ratio
ofpCREB/CREB and BDNF,
PSD-95 and synaptophysin

Improvement in forced
swimming, open field,

novelty-suppressed feeding,
and sucrose preference tests

Qi et al., 2020 35 (6/group) Reserpine treated male ICR
mice

5 mg/Kg, i.g. or 14.6, 29.2, 58.4
ug/Kg, nasal, 1 h before tests

Increase in NE, DA, 5-HT and
their metabolites in

hippocampus and striatum

Improvement in forced
swimming and tail suspension

tests

Wang et al., 2020 18 (6/group) MCAO and CMS male SP rats 100 mg/Kg, 4 weeks, i.g.
Blocked Ca+2 accumulation,
inhibited the activation Ca+2

channels

Improvement in forced
swimming and sucrose

preference tests

Li et al., 2020 50(10/group) Regular male ICR mice 1, 3, or 9 mg/Kg, 3 days, i.g.
Modulated 5-HT1A-dependent
cAMP/PKA/pCREB/BDNF

signaling pathway

Improvement in forced
swimming and tail suspension

tests in a dose dependent
manner
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Table 2. Cont.

Pathology Reference N Animals Animal Model Treatment Biological Effects Behavioral Effects

Abu-Taweel and Al-Fifi, 2020 60 (6/group) Mercury chloride treated male
Swiss mice 150 or 300 ppm, 36 days, p.o.

Dose dependent improvements
of corticosterol and cortisone

levels in plasma

Dose dependent improvements
in forced swimming, tail

suspension, open field and plus
maze tests

He et al., 2020 24 (3/group) CORT treated CBR1+/+ and
CBR1-/- mice 20 mg/Kg, 2 weeks, i.p.

Increased mRNA and protein
expression levels of neuronal

markers, MEK and Tuj1.
Increase in released DA and NE

and the mRNA expression of
CBR1 and the downstream of

genes Rasgef1c and Egr1

Improvement in forced
swimming test

Zhang et al., 2020 24–27 (8–9/group) TN male SD rats 45 mg/Kg, 27 alternative days,
i.g.

Altered ether lipid metabolism
and glycerophospholipid

metabolism

Improvement in forced
swimming and sucrose

preference tests

Da Silva-Marques et al., 2020 40–52 (10–13/group) CUMS male Swiss mice 50 mg/Kg, 28 days, p.o.
Increase in CAT levels in the
brain. No potential renal and

hepatic damage

Improvement in forced
swimming and elevated plus

maze tests

Saied et al., 2021 50 (7–10/group) OVX female albino rats 100 mg/Kg, 30 days, p.o.

Modulated DA and NE levels,
downregulated MAO-B and

upregulated tyrosine
hydroxylase and DA receptors
in the limbic region. Reduced

the production of
corticosterone, IL-1β, IL-6, and

nitric oxide. Normalized the
levels of MDA

Improvement in the open field
test

Afzal et al., 2021 24 (8/group) CRS male Wistar rats 200 mg/Kg, 1 week
Reverted the effects on

hippocampal BDNF, 5-HT, DA,
and Ach levels

Improvement in Morris water
maze and pattern separation

tests

Rubab et al., 2021 40 (5/group) LPS administration in male SP
rats 40 mg/Kg, 8 days, i.p.

Suppressed the expression of
BDNF, TNF-α, p-NF-κβ, and

COX-2

Improvement in forced
swimming, tail suspension,

elevated plus maze, and
light-dark box tests

Pan et al., 2021 45 (9/group) Regular ICR male mice 10 mg/Kg, 3 days, p.o.

Increased levels of 5-HT and
NA in the hippocampus and
frontal cortex. Inhibition of

MAO-A activity

Improvement in forced
swimming, tail suspension
tests. No effects on sucrose

preference and novelty
suppressed feeding tests

Khadrawy et al., 2021 21 (7/group) Reserpine treated male Wistar
rats 5 mg/Kg, 14 days, i.p. Reversion of the levels of MAO,

AchE, Na+, K+, and ATPase
Improvement in forced

swimming test
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Autism

Bhandari and Kuhad, 2015 40 (5/group) Intracerebroventricular
injection of PPA in male SP rats

50, 100, or 200 mg/kg/day,
during 4 weeks, p.o.

Reduction in the (TBARS) in
CUR animals. Increase in
glutathione, superoxide

dismutase and catalase levels
in CUR rats’ brains. Restoration

of mitochondrial enzyme
complex I activities in CUR rats.

Dose-dependent reduction in
MMP-9 in PPA rats treated

with CUR

Dose-dependent improvements
of social skills in CUR-treated
PPA animal. Improvement in

locomotor activity, rotarod,
elevated plus maze and open

field tests, especially at 200
mg/kg/day.

Al-Askar et al., 2017 40(10/group) Fetal exposition (GD12.5) to
VPA in Wistar rats 1 mL, oral, for 7 days after birth

Increase in brain and body
weight in CUR-treated VPA

animals. Depletion of IFN-γ in
VPA rats with curcumin

treatment. Partial restoration of
IL-6 and glutamate normal

levels in VPA rats with CUR

-

Zhong et al., 2020 48 (12/group) BTBRT+ltpr3tf/J mice 20 mg/kg, from PND 6 to PND
8, i.p.

Enhancement of neural stem
cell proliferation in BTBRT

mice treated with CUR

Improvement in 3-chambered
social approach and novel
object recognition tests. No

effect of CUR in male–female
reciprocal social interaction. No

changes in anxiety nor
locomotor activity caused by

CUR

Jayaprakash et al., 2021 54 (7/group) BTBRT+ltpr3tf/J mice 25, 50, or 100 mg/kg, 1 week
before tests, i.p.

Restoration of catalase and
superoxide dismutase in

hippocampus and cerebellum
of CUR-treated BTBRT mice

Dose-dependent increase in
sociability in CUR-treated mice

Obsessive Compulsive
Disorder

Jithendra and Murthy, 2010 30 (6/group) Quinpirol treated Wistar rats 5 or 10 mg/Kg, 35 days, p.o. Increased 5-HT and DA levels Improvement in open field and
water maze tests

Mishra et al., 2021 42 (6/group) Male Swiss mice 10, 15, 25, or 40 mg/Kg, i.p. -
Dose dependent improvement

in marble-burying behavior.
No effects in motor activity
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3. Results
3.1. Schizophrenia

Current therapies for schizophrenia mostly focus on treatment with antipsychotics,
the prolonged use of which is prone to cause severe extrapyramidal side effects, such as
parkinsonism or tardive dyskinesia [27]. In addition, long-term administration of typical
antipsychotics decreases antioxidant enzyme levels, thus perhaps participating in the
exacerbation of oxidative events [28]. Therefore, the search for new approaches is of great
importance. In this regard, the likely involvement of oxidative stress and inflammation
in the pathophysiology of schizophrenia has supported the use of curcumin in various
preclinical and clinical studies.

On the preclinical side, we only found two studies. In the first one, curcumin-loaded
nanoparticles (30 mg/kg, i.p.) were administered to ketamine-treated rats, achieving a
reduction in metalloproteases (MMP), adenosine triphosphate (ATP), and mitochondrial
enzyme complex II activity in cerebellar mitochondria, along with a reduction in the over-
increased locomotor activities in the side-to-side rocking and neck arcing tests [29]. In
the second one, published in 2021, the administration of curcumin (30 mg/kg, i.p.) to
ketamine-treated mice induced a reduction in oxidative stress biomarkers in the brain, and
a reduction in anxiety and depression-like behaviors [30].

On the clinical arena, five studies and trials have been conducted. The first one is an
OLS (NCT01875822) in which 17 schizophrenic patients received 1 or 4 g of curcumin or
placebo for 16 weeks. However, to our knowledge, there are no published results to date.
In 2017, the first randomized, double-blind, placebo-controlled study reporting the effects
of curcumin on brain-derived neurotrophic factor (BDNF), a neurotrophin involved in
neuroprotection, neuroregeneration and cell survival among other functions, and cognition
in 36 patients with schizophrenia and inpatients was published [31]. Patients receiving
curcumin (360 mg/day for 8 weeks) showed an increased in BDNF levels relative to baseline
and compared to placebo. However, the study failed to find any effect on cognition or
other clinical symptoms. In contrast, the three most recent studies showed more promising
results as an add-on to antipsychotics in the treatment of negative symptoms (NCT02298985,
NCT02476708) or both positive and negative symptoms [32]. The first study, an 8-week
randomized, double-blind, placebo-controlled, parallel, fixed-dose pilot clinical trial in
12 patients with schizophrenia, showed that 300 mg of curcumin add-on to conventional
medication significantly improved working memory and reduced interleukin-6 (IL-6)
levels [33]. The second study, also a randomized, double-blind, placebo-controlled, add-
on clinical trial reported an improvement in negative symptoms in 20 patients receiving
curcumin (3 g/day, for 24 weeks) compared to 18 patients receiving placebo [34]. Finally,
in the third randomized, double-blind, placebo-controlled clinical trial, curcumin (160
mg/day, for 16 weeks) plus usual antipsychotic medication was administered to 28 patients
with chronic schizophrenia (28 additional patients received a placebo). Curcumin-treated
patients showed an improvement on the negative and positive subscales, the general
psychopathology subscale, total Positive and Negative Syndrome Scale (PANSS), Clinical
Global Impressions-Severity (CGI-S), and Clinical Global Impressions (CGI-I) scores in
comparison with the control group [32].

Therefore, the schizophrenia picture shows an unbalanced proportion of preclinical
and clinical studies, biased towards the clinical ones. In all cases, curcumin was well-
tolerated and, overall, an improvement of clinical symptoms was observed, especially in
negative symptomatology. However, the heterogeneity of doses and curcumin formulations
used precludes drawing more robust conclusions.

3.2. Depression

Pathophysiology and aetiology of major depression disorder (MDD) are heteroge-
neous, and traditional antidepressant treatments have some limitations in terms of efficacy,
symptom improvement, and side effects. Although the pathological mechanisms are not
fully understood, oxidative stress and inflammation seem to play an important role in
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the pathogenesis of depression, probably through increased inflammatory factors in the
central nervous system. In this regard, curcumin has been used and demonstrated to be an
effective adjuvant treatment for MDD in several studies.

On the preclinical side, we found a total of 57 studies, 19 of which were performed
in mice and 38 in rats. The dose of curcumin ranged from 1 to 300 mg/Kg. The duration
of treatment varied from a single intake to a 5-week treatment with curcumin. Regarding
the route of administration, 36 used oral administration (23 in the drinking water or food
and 13 by gavage), 19 used intraperitoneal administration, and two of them reported no
information on the route of administration. In addition, several models of MDD were
used, most of them (21) based on a stress-induced model, such as Chronic Unpredictable
Mild Stress (CUMS), Single Prolonged Stress (SPS), Chronic Unpredictable Stress (CUS),
or Chronic Mild Stress (CMS), while eight of them were induced by surgery (olfactory
bulbectomy, ovarectomy, chronic constriction injury or middle cerebral artery occlusion),
nine were induced by the administration of reserpine or corticosterone (CORT), and the
remaining 19 were induced by other models of MDD.

The antidepressant efficacy of curcumin in modulating depressive behavior in different
animal models has been shown in a large number of behavioral studies. Most of the studies
reported improved performance in the forced swimming test [35–48], increased locomotor activ-
ity in the open field test [49–64], decreased anxiety in the elevated plus maze test [57,59,64–66],
improved anhedonia in the sucrose preference test [51,52,54,56,58,62,67–76], improved short
and long-term memory in the passive avoidance test [49,50,55] and water maze test [54,60,77],
reduced escape response in the shuttle-box test [78], attenuated the effort-related abnormalities
in a choice procedure test [79], and reduced stress in the tail suspension test [50,64,66,69,80–88].
Only one study found no improvements in anxiety, as measured by the open field and ele-
vated plus maze tests, nor in “depressive-like” states, as measured by the forced swimming
test [89]. Another study found no improvements in anhedonia, as measured by the sucrose
preference test [86].

The administration of curcumin has been shown to regulate serotonin (5-HT),
dopamine (DA), and noradrenaline (NA) levels. Twenty studies reported an increment of
5-HT levels in the hippocampus, striatum or frontal cortex, which may be due to the inter-
action found between curcumin and 5-HT/cAMP/PKA/CREB/BDNF-signaling pathway
or 5-HT1A/1B and 5-HT2C receptors [35,40,80,83,85,90]. Besides, fifteen studies reported an
increased level of DA [38,41,42,44–46,48,49,55,72,77,81,87,91]. NA was also incremented
in five studies [46,49,55,63,86]. In addition, curcumin has been claimed to present bene-
ficial effects on reducing inflammatory cytokines (IL-1β, IL-6) [60,63,69–71,76,77,91], re-
ducing the NF-κB-iNOS-COX-2-TNF-α inflammatory signaling pathway [39,51,52], and
modulating the levels of antioxidant markers, such as monoamine oxidase (MAO), mal-
ondialdehyde (MDA), CAT, or SOD [43,56,57,62,65,66,82,84,88]. Furthermore, the BDNF
is incremented by curcumin treatment [36,39,47,51,54,58,66,67,77,78,90]. Other effects of
curcumin have been described in different animal models of depression, such as an in-
teraction with glutamate N-Methyl-D-Aspartate (NMDA) receptors [37], an inhibition of
Ca+2 channels [74], an increased level of corticosterol and cortisone in plasma [64], or an
altered lipid metabolism [75], or an upregulation of the insulin receptor IRS-1 and protein
kinase-B (PKB) in the liver [73]. In contrast, only one study reported no effects of cur-
cumin, regarding its interaction with the benzodiazepine site on gamma-aminobutyric acid
(GABA) receptor [89].

Only two neuroimaging studies have evaluated the effect of curcumin on brain
morphometry and glucose metabolism in an animal model of depression, showing im-
provements such as a reduction in hippocampal atrophy [50] and an activation of the
metabolism of the amygdala in a positron emission tomography (PET) imaging study after
curcumin treatment [53].

In the clinical setting, one OLS and eight clinical trials were performed. In 2013, two tri-
als were conducted, one in India (NCT01022632) [92] and one in Israel (NCT01750359) [93].
In the first one, a randomized, active controlled, parallel group trial, curcumin (1000
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mg/day) or fluoxetine (20 mg/day) were administered to patients with MDD for 6 weeks
(17 patients on fluoxetine alone, 16 patients on curcumin, and 18 patients on fluoxe-
tine/curcumin), which showed no biological effects on depressive symptoms, as measured
by the Hamilton Depression Rating Scale (HDRS). In the second study, a randomized,
double-blind, placebo-controlled, pilot clinical trial, curcumin (1000 mg/day, for 8 weeks)
was administered to 19 patients (27 patients on placebo), showing no improvement in the
MDD symptoms measured by the HDRS and the Montgomery–Asberg Depression Rating
(MADRS) scales.

In contrast, the remaining trials conducted from 2014 until now showed better re-
sults. In 2014, two randomized, double-blind, placebo-controlled trials were conducted
in Australia in 25 patients with MDD receiving curcumin (1000 mg/day, for 8 weeks) and
25–27 patients receiving placebo [94,95]. Both studies showed an improvement in MDD
symptomatology (IDS-SR30 total score), and the second one also found an increase in some
depression-related biomarkers, such as urinary Thromboxane B2 (TBX-B2) and substance-P
(SUB-P), and plasma endothelin-1 (ET-1) and leptin levels. Thus, higher levels of these
biomarkers were associated with greater reductions in IDS-S30 total scores.

In 2015, one OLS in Iran [96] and a randomized, double-blind, placebo-controlled trial
in China were conducted [97]. In the first study, curcumin (1000 mg/day, for 6 weeks)
was administered to 61 patients with MDD (50 patients on placebo), showing a decrease
in anxiety levels as measured by the Hospital Anxiety and Depression Scale (HADS) and
reductions in MDD symptomatology as measured by the Beck Depression Inventory II
(BDI-II) scale [96]. Of note, piperine (10 mg/day) was used to increase the bioavailability
of curcumin. In the second trial, curcumin (1000 mg/day, for 6 weeks) was administered to
50 patients with MDD (50 patients on placebo), showing an improvement in the HDRS and
MADRS scales [97].

In 2017, another randomized, double-blind, placebo-controlled clinical trial was con-
ducted in Australia [98]. The effects of two different doses of curcumin (500 mg/day or
1000 mg/day, for 12 weeks) was evaluated in 28 and 33 patients with MDD, respectively.
Both doses induced improvements in symptomatology and anxiety measured by IDS-SR30
and State-Trait Anxiety Inventory (STAI) scales, with no difference between the doses used.
In 2018, a randomized, double-blind, placebo controlled trial was performed in 30 patients
with MDD treated with an increasing dose of curcumin (500 mg/day to 1500 mg/day
with increments of 250 mg/week, for 12 weeks) and 31 on placebo [99]. This escalating
medication dosage induced an improvement in the severity of depression on the MADRS
scale. Despite this behavioral improvement, no significant effects were found in blood
chemistry and electrocardiogram measurements.

Finally, a randomized, placebo-controlled trial is currently in the recruiting phase
(NCT04744545 2021). The study estimates to recruit 60 patients with MDD, with curcumin
(1500 mg/day) as an adjuvant treatment for MDD.

3.3. Autism Spectrum Disorder (ASD)

Although the etiology of this disorder is largely unknown, oxidative stress and in-
flammation have been hypothesized to be key factors in its occurrence, especially through
an exacerbated increase in pro-inflammatory metalloproteases. In this sense, the anti-
inflammatory and antioxidant potential of curcumin could be effective in alleviating
this disorder.

So far, no clinical trials have been conducted in patients with ASD. On the preclinical
field, only four studies have been performed in animal models, two in rats and two
in mice. The first study used a model based on the intracerebroventricular injection of
propanoic acid (PPA) in Sprague-Dawley rats. After the PPA injection, curcumin was orally
administered for 4 weeks at different doses (50/100/200 mg/kg). The treatment restored
many behavioral defects in PPA rats, such as social interaction, anxiety, depression, and
repetitive behaviors. In addition, curcumin reduced the levels of MMP-9 and Thiobarbituric
Acid Reactive Substances (TBARs), increased the activity of GSH, CAT, and SOD, and
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restored normal function of mitochondrial enzyme complex 1 [100]. In 2017, another
study, based on prenatal valproic acid (VPA) exposure to fetal Wistar rats, proposed early
postnatal administration of curcumin (first seven days after birth). This approach was
reported to restore oxidative stress deficits and the abnormal body and brain weight
values [101]. Two subsequent studies were performed in the BTBRT+ltpr3tf/J (BTBRT)
mouse model. The first one, in which curcumin (20 mg/kg) was administered from PND 6
to 8, reported enhanced neural stem cell proliferation, along with increased sociability and
improved short-term memory [102]. The second study evaluated three different doses of
curcumin (25/50/100 mg/kg), showing restoration of different oxidative stress markers in
the hippocampus and cerebellum, along with a dose-dependent increase in sociability in
curcumin-treated mice [103].

Taken together, these results suggest that curcumin could be effective in preventing
some autistic behavioral and biochemical traits, but the lack of clinical trials do not allow
for drawing solid conclusions.

3.4. Obsessive Compulsive Disorder (OCD)

The etiology of OCD is not fully understood either, but it has been hypothesized that
it is a result of the existence of a deficit of monoamines in specific brain regions such as
the orbitofrontal cortex and the anterior cingulate gyrus. In this regard, the potential of
curcumin as an inhibitor of MAO-A and MAO-B, both of which are involved in monoamines
degradation [97], led researchers to test its efficacy as an adjuvant treatment in this disorder.

Only two preclinical studies have been conducted to date. The first, carried out in
2010 by Jithendra and Murthy, evaluated the potential of orally administered curcumin
(5 or 10 mg/kg) as a therapeutic approach to reduce obsessive-compulsive signs in the
quinpirole-induced OCD rat model. Following treatment with both doses, a reduction in
brain DA levels, together with an increase in serotonin levels, was observed in curcumin-
treated pathological rats. In addition, an improvement in obsessive-compulsive symptoms
together with a protective effect on the water maze memory task at both doses was re-
ported [97]. The second study was recently conducted, in 2021, by Mishra et al. In this work,
they intraperitoneally administered ethanolic extract of curcumin (10, 15, 25, or 40 mg/kg)
to Swiss albino mice that had poor performance in the marble-burying behavior (MBB) and
motor activity (MA) tests. The treatment at the dose of 40 mg/kg resulted in improved
performance in the MBB test, but not in the MA [98].

From a clinical point of view, no OLS or trials have been conducted to date. However, a
case report was announced in 2018. In this case, a 3-year-old child with a diagnosis of OCD
and tics was treated with a combination of N-acetylcysteine (dose increase from 600 to 1800
mg/day) and curcumin (90 mg/day). After 7 days, a complete remission of tics and OCD
symptoms was observed. Finally, after 3 weeks, symptoms remitted completely, together
with a drastic reduction in Children’s Yale–Brown Obsessive Compulsive (CY-BOCS) and
Yale Global Tic Severity (YGTSS) total scores [99].

Taken together, these data do not shed enough light to conclude whether curcumin is
an effective compound for the treatment of OCD, especially in the case report, in which the
observed positive effect could also be attributed to the administration of NAC.

4. Discussion

Anti-inflammatory, antioxidant, and neuroprotective properties of curcumin, along
with many multi-target beneficial effects, such as the modulation of monoamine synthesis,
have exponentially promoted the investigation of its properties during this last decade.
Two-hundred and ninty-six articles containing research on curcumin were published in the
PubMed database in 2005. In 2010, this number increased to 714 and, in 2020, to 2130. The
field of psychiatry has not been immune to this boost. The likely involvement of oxidative
stress, inflammation, and monoamine deficits in the pathophysiology of many psychiatric
disorders, together with the poor response to current therapies in a significant proportion
of these patients, have pushed researchers to investigate new therapeutic compounds that
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could improve current treatments. In this work, we reviewed the literature on the effects
and efficacy of curcumin and its derivatives in four psychiatric disorders: schizophrenia,
depression, autism, and obsessive-compulsive disorder (OCD). A total of 65 preclinical
studies and 14 clinical trials were reported. Most of these studies were conducted on
depression, approximately 88% were preclinical studies and 64% were clinical studies. In
all disorders, curcumin was well tolerated, with no harmful side effects. This was not
surprising, as curcumin has been used for the last centuries as an additive spice in East
Asian cuisine. Moreover, curcumin was shown to be beneficial in palliating or reversing
symptoms associated with psychiatry in all the studies analyzed and completed, with
the exception of one preclinical and two clinical studies in depression, which reported no
improvement [89,92].

As mentioned above, the percentage of studies on depression, as compared to autism
and OCD, is highly unbalanced. This fact (no clinical trial on the effect of curcumin on either
autism or OCD has been conducted so far) prevents us from drawing solid conclusions on
the possible effectiveness of curcumin in these disorders. This large bias towards studies
on depression could be explained by a likely predisposition of patients with depression to
use new therapies compared to psychotic or autistic patients. Nevertheless, we believe that
the efforts directed to the synthesis of new formulations of this compound, together with
an improvement of its pharmacokinetic properties, will increase the interest in curcumin
and decrease the reluctance to use it in more psychiatric disorders, such as OCD or autism.

In the case of schizophrenia, the reported outcomes showed a beneficial effect of
curcumin in both preclinical and clinical studies. In clinical trials, curcumin proved to
be effective in alleviating both positive and negative symptoms of schizophrenia when
administered together with regular antipsychotic medication. The clinical relevance of
these results could be of great importance, due to the adverse events that can be caused
by the extensive and chronic use of antipsychotics. Besides, its excessive use can lead to a
paradoxical increase in oxidative stress and inflammation. In addition, some widely used
antipsychotics, such as clozapine, are able to activate hepatic sterol regulatory element-
binding proteins (SREBPs) and enhance downstream lipogenesis, leading to an increase in
lipid peroxides and brain phospholipase A2 (PLA2), which can lead to cell death [104]. In
this sense, curcumin could exert its beneficial effect in schizophrenia through an inhibition
of PLA2 enzyme [105]. Nevertheless, the heterogeneity of the protocols used in these
studies, in terms of curcumin doses and stage of the disorder, makes it difficult to make
comparisons between trials and draw a solid conclusion.

In depression, we found the vast majority of studies, in both preclinical and clinical
domains, showed some beneficial effect of curcumin in reducing symptoms associated with
depression. In addition to the recognized role of curcumin as an anti-inflammatory and
antioxidant agent, positive improvement of depressive deficits could be exerted through
modulation of the indolamine 2,3-dioxygenase (IDO) enzyme, involved in the kynurenine
pathways and, thus, in the inhibition of serotonin synthesis. Curcumin treatment was
shown to be able to counteract the action of this enzyme [76,106]. Therefore, the overall
effect of curcumin in this disorder seems to be mainly positive.

Even though the results we have found and show here are overwhelmingly posi-
tive, there is a significant amount of literature warning about this compound, especially
concerned about its poor pharmacokinetics and chemical instability, and its non-specific
multi-target effects [17,18]. Although the results presented in this review pointed in a
different direction, we considered it relevant to mention, at least, these discordant voices
which claim that curcumin is an unstable compound with barely therapeutic efficacy.

Finally, even though this review provides a thorough review of the current literature,
there are several limitations. First and foremost, the great heterogeneity of methodologies
used in all the studies has hindered the possibility of making comparisons between studies.
This has been especially relevant in the case of the different formulations of curcumin and
the doses used. Secondly, the small number of trials and clinical studies carried out in
some of the pathologies mentioned, together with the small number of participants in
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some of them, prevents us from drawing solid conclusions. Thirdly, the small number of
trials in some cases forced us to compare trials of the same disease but focused on different
stages of the disease or on adjuvant treatments. Although this work was conducted after an
exhaustive search in well-known databases, there is always an intrinsic limitation derived
from the non-systematic nature of this review. One final remark derives from the well-
known problem of publication bias towards positive results, which may prevent some
negative-result studies from being reported in high impact journals, or even published at all.

5. Conclusions

Overall, curcumin, due to its anti-inflammatory and antioxidant properties, has been
shown to be effective in the vast majority of the studies presented. However, the lack
of homogeneity of the protocols used and the scarce number of trials prevents us from
concluding whether curcumin is really a useful therapeutic tool in the psychiatric field.

Author Contributions: N.L.-R. and D.R.-M. contributed equally to this work. N.L.-R.: Conceptual-
ization, methodology, writing—original draft preparation, writing—review and editing. D.R.-M.:
Conceptualization, methodology, writing—original draft preparation, writing—review and editing.
M.D.: review and editing, funding acquisition. M.L.S.-M.: conceptualization, methodology, writing—
original draft preparation, writing—review and editing, project administration, funding acquisition.
All authors have read and agreed to the published version of the manuscript.

Funding: M.L.S.-M. was supported by the Ministerio de Ciencia, Innovación y Universidades,
Instituto de Salud Carlos III (project number PI17/01766, and grant number BA21/00030), co-financed
by the European Regional Development Fund (ERDF), “A way to make Europe”, CIBER de Salud
Mental (project number CB07/09/0031), Delegación del Gobierno para el Plan Nacional sobre Drogas
(project number 2017/085); and Fundación Alicia Koplowitz (FAK16/01). D.R.-M. was supported by
Consejería de Educación e investigación, Comunidad de Madrid, co-funded by the European Social
Fund “Investing in your future” (grant, PEJD-2018-PRE/BMD-7899). N.L.-R. was supported by the
Instituto de investigación Sanitaria Gregorio Marañón, “Programa Intramural de Impulso a la I+D+I
2019”. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia
e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence
(SEV-2015-0505).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AchE Acetylcholinesterase
ATP Adenosine triphosphate
ASD Autism spectrum disorders
Bcl B-cell lympho MAO
BDI-II Beck Depression Inventory II
BDNF Brain-derived neurotrophic factor
BLYS B lymphocyte stimulator
BZDs Benzodiazepines
Ca+2 Calcium
cAMP cyclic adenosine monophosphate
CAT Catalase
CBR Cannabinoid receptor
CCI Chronic constriction injury
CDSS Clinical depression screening scale
CGI-I Clinical global impressions-improvement
CGI-S Clinical global impressions-severity
CMS Chronic mild stress
COX-2 Cyclooxygenase-2
CUMS Chronic unpredictable mild stress
CORT Corticosterone
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CREB cAMP response element-binding protein
CUS Chronic unpredictable stress
CUR Curcumin
CY-BOCS Children’s Yale–Brown Obsessive Compulsive Scale
DA Dopamine
DOPAC 4-dihydroxyphenylacetic acid
ECG Electrocardiogram
EGFR Epidermal growth factor receptor
ERK Extracellular signal-regulated kinase
ET-1 Endothelin 1
GABA Gamma-aminobutyric acid
GD Gestational day
GDNF Glial cell line-derived neurotrophic factor
GPx Glutathione peroxidase
GSH Glutathione
GST Glutathione S-transferase
HADS Hospital Anxiety and Depression Scale
HbA1c Glycosylated hemoglobin A1c
HDL-C High density lipoprotein cholesterol
HDRS Hamilton Depression Rating Scale
HO-1 Heme oxygenase-1
ICAM-1 Intercellular adhesion molecule-1
IDO Indolamine-2, 3-Dioxygenase
IDS-SR30 Inventory of depressive symptomatology
IFN-γ Interferon
IL-1β Interleukine-1β
IL-6 Interleukin-6
IL-10 Interleukin-10;
IMPS Invalid metabolic panaceas
iNOS Inducible nitric oxide synthase
IOS Inflammation and oxidative stress
IRS-1 Insulin receptor substrate 1
LDL-C Low density lipoprotein cholesterol
LOX-1 Lectin-like oxidized low-density lipoprotein receptor
Lp(a) Lipoprotein(a)
LP Lipooxigenase
LPS Lipopolysaccharide
MADRS Montgomery–Asberg Depression Rating Scale
MA Motor activity test
MAO Monoamine oxidase
MAPK Mitogen-activated protein kinase
MBB Marble-burying behavior test
MCAO Middle cerebral artery occlusion
MDA Malondialdehyde
MDD Major depressive disorder
MEK Methyl ethyl ketone
MMP Mitochondrial membrane potential
MMP-9 Matrix metalloproteinase 9
mRNA Messenger ribonucleic acid
NA Noradrenaline
NAC N-Acetylcysteine
NE Norepinephrine
NF-κβ Nuclear factor κβ
NGF Nerve growth factor
NMDA N-Methyl-D-Aspartate
NQO-1 Quinine oxidoreductase-1
OB Olfactory bulbectomy
OCD Obsessive compulsive disorder
OLS Open label clinical studies
OVX Ovarectomy/Ovarectomized
P38 P38 MAPK
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PAINS Pan assay interference compound
PANSS Positive and negative syndrome scale
PGE-2 Prostaglandin E2
PET Positron emission tomography
PKA Protein kinase A
PKB Protein kinase B
PLA2 Phospholipase A2
PPA Propanoic acid
PPARγ Peroxisome proliferator-activated receptor gamma
PSD-95 Postsynaptic density protein-95
RCT Randomized clinical trial
sCAM-1 Soluble cell adhesion molecule 1
SCZ Schizophrenia
SD Sprague-Dawley
SL327 ERK inhibitor
SNRIs Serotonin–norepinephrine reuptake inhibitors
SOD Superoxide dismutase
SREBPs Hepatic sterol regulatory element-binding proteins
SPS Single prolonged stress
SSRIs Selective serotonin reuptake inhibitors
STAI State-Trait Anxiety Inventory
SUB-P Substance P
TBARs Thiobarbituric acid reactive substances
TBX-B2 Thromboxane B2
TCAs Tricyclic antidepressants
TG Triglycerides
TGF-β1 Transforming growth factor
TN Trigeminal neuralgia
TNF-α Tumor necrosis factor
Tuj1 Neuron-specific class III β-tubulin
VCAM-1 Vascular cell adhesion molecule-1
VEGF Vascular endothelial growth factor
VPA Valproic acid
YGTSS Yale global tic severity scale
5-HIAA High 5-hydroxyindoleacetic acid
5-HT Serotonin

Appendix A

Search terms used in this non-systematic review were: “curcumin and psychiatry”,
“curcumin and neurology”, “curcumin and brain”, “curcumin and inflammation”, “cur-
cumin and oxidative stress”, “curcumin and schizophrenia”, “turmeric and schizophrenia”,
“curcumin and psychosis”, “curcumin and depression”, “curcumin and major depressive
disorder”, “curcumin and MDD” “turmeric and depression”, “curcumin and autism”,
“turmeric and autism”, “curcumin and obsessive-compulsive disorder”, “turmeric and
obsessive-compulsive disorder”, “curcumin and OCD”.
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