
This is a postprint version of the following published document:

Delgado Kloos, C., Ibañez, M. B., Alario-Hoyos, C.,
Munoz-Merino, P. J., Estevez Ayres, I., Fernández
Panadero, C. & Villena, J. (10-13 April 2016). From
software engineering to courseware engineering
[proceedings]. 2016 IEEE Global Engineering Education
Conference (EDUCON), Abu Dhabi, United Arab
Emirates.

DOI: 10.1109/educon.2016.7474695

 © 2016 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1109/educon.2016.7474695

From Software Engineering
to Courseware Engineering

Carlos Delgado Kloos, Mª Blanca Ibáñez, Carlos Alario-Hoyos,
Pedro J. Muñoz-Merino, Iria Estévez Ayres, Carmen Fernández Panadero, Julio Villena
Dep. Telematic Engineering, Universidad Carlos III de Madrid, 28911 Leganés (Madrid/Spain)

{cdk, mbibanez, calario, pedmume, ayres, mcfp, jvillena}@it.uc3m.es

Abstract—The appearance of MOOCs has boosted the use of
educational technology in all possible contexts. As a consequence,
many teachers are creating a lot of educational content
(courseware) to be offered in MOOCs. Although some best
practices exist, it is true that most of the content is being
developed without much thought about adequacy, reusability,
maintainability, composability, etc. The main thesis at this paper
is that we are facing a “courseware crisis” in the same way as
there was a “software crisis” 50 years ago, and that the way out is
to identify good engineering discipline to aid in the development
of courseware. We need Courseware Engineering in the same way
as at those times we needed Software Engineering. Therefore, the
challenge is now to define and develop fundamentals, tools, and
methods of Courseware Engineering, as an analogy to the
fundamentals, tools, and methods that were developed in
Software Engineering.

Keywords- MOOCs, SPOCs, courseware crisis, courseware
engineering

I. COURSEWARE CRISIS?
In the 1960s, software was created without much

discipline. The software created did often not satisfy the
specifications. It had errors and was slow; it was of bad
quality. Many projects didn’t finish on time and on budget.
Moreover, the development process often led to software that
was difficult to maintain and evolve. This led to coining the
term “software crisis”. Software development had to be taken
more seriously. A conference was called out in Garmisch-
Partenkirchen (Germany) in October 1968, organized by F.L.
Bauer from Technische Universität München, whose topic
was the then recently coined term “software engineering”.
Bauer said then: “The time has come to switch from home-
made software to manufactured software, from tinkering to
engineering –twelve years after a similar transition has taken
place in the computer hardware field. […] It is high time to
take this step. The use of computers has reached the stage that
software production […] has become a bottleneck for further
expansion” [1]. Software Engineering is now an established
discipline with well-defined fundamentals, numerous support
tools, and rich methods.

Fast forward to today. Some universities have embarked in
developing educational content (courseware) for MOOCs
(Massive Open Online Courses) and SPOCs (Small Private
Online Courses), their on-campus counterparts. Although

some best practices exist, we are still at the beginning of
perfectly understanding the power and the possibilities of
using video-based instruction, rich interactions, and social
components to its full potential. As we see, the MOOCs that
are being offered today, even the best and most successful
ones, they are still designed in a very much ad hoc way. How
much MOOC content has been designed for maintainability
and evolution? How well the diversity of learners worldwide
has been taken into account (apart from the multilingual
transcripts)? What fundamentals have been used to decide
which means to use to teach concrete concepts? Is content
related to assessment in an ad hoc way?

We believe that it is fair to say that now that the
technological affordances to educate have exploded, we find
ourselves in a “courseware crisis” in a similar way that we had
a “software crisis” 50 years ago. We are in need not only of a
good instructional design underpinning; we also need to take
care of the whole life cycle of educational material. We need
to think about courseware evolution. We need to have
instruments to make content more robust. We need to
understand how to make educational material adequate for
diverse learners. We need a strong “courseware engineering”
discipline, in the same way as “software engineering”
disciplines are well established.

Of the several aspects that can be analyzed in courseware
engineering, this paper focuses primarily on three of them:
fundamentals (section II), tools (section III) and methods
(section IV). The next sections will therefore discuss the
existing challenges related to the definition and development
of fundamentals, tools and methods for courseware
engineering, making an analogy with those challenges that
were already tackled and that currently present mature
solutions in software engineering.

II. COURSEWARE ENGINEERING: FUNDAMENTALS

Let’s consider three important properties of computer
programs: correctness, efficiency, and usability. We want
programs to do the right thing (correctness), with as few
resources as possible (efficiency), and allowing end-users to
easily interact with them (usability).

These properties gave rise to important bodies of
knowledge (fundamentals), such as semantics, complexity
theory and human-computer interaction (HCI). We want to

1

know the mathematical function a program corresponds to.
Therefore, several semantic theories were developed
(denotational semantics, operational semantics, axiomatic
semantics, etc.). They allow mathematically checking a
program against a formal specification. Since we know that
this is often too complex, alternative procedures were
identified to increment the confidence of the correctness of
code. Testing methods were established for example to check
that the program does what it has to do, or to check how it
responds to possible unintended input. Another big field is
complexity theory, which introduces mathematical models to
quantify in an abstract way the amount of resources needed to
solve computing problems. The time to solve the problem, or
the storage needs are some of the metrics used for
quantification purposes. HCI focuses on the definition of
interfaces that facilitate the interactions between users and
computers, with the aim to improve the usability of computer
systems and programs.

What are the counterparts when we speak of courseware
instead of software? We want courseware to be: effective,
teaching the subject in the right way (as an analogy to
correctness); efficient, having a low production and
maintenance cost; and usable, being easy to use and learn.
Thus, when creating courseware, we want learners to
understand and assimilate the right thing in an easy way, no
matter whether they are more visual, verbal, logical, etc., and
we want to achieve this in an efficient way.

Courseware effectiveness implies the acquisition of
knowledge and skills by students through interaction with
educational resources (e.g., videos, exercises, and other
activities). The effectiveness can be measured globally (for the
whole course), or locally (for particular learning activities) [2].
Courseware effectiveness does not only relate to cognitive
aspects, but also involves meta-cognitive skills, behaviors and
emotions. In this direction, courseware can produce different
behaviors or emotions that may affect positively or negatively
the acquisition of knowledge.

Courseware efficiency is aimed at producing the same
outcome (acquisition of knowledge and skills by learners)
with the minimum number of resources. For example, two
different learning materials can produce the same effect on
students in terms of acquisition of critical thinking skills, but
one of these materials might be easier to create and maintain,
being this way more efficient than the other.

Courseware usability is aimed to facilitate the use of
educational content by end-users. This can include for instance
adding transcripts to videos to improve understanding and for
accessibility reasons, enabling the download of low-resolution
versions of videos for those learners with poor Internet
connections, or adapting contents to be used from both laptops
and mobile devices. But courseware usability can also be
understood as facilitating learning, using multimodal resources
(videos, texts, interactive activities, etc.) to reach students with
different intelligence modalities [3].

A. Mathematical representation of courseware
Although there are many initiatives to model and

standardize the educational process in general and courseware
in particular, there have been very few attempts to formalize
these processes mathematically. One of the few models that
defines this mathematical formalization is EPM (Educational
Practice Model) [4][5]. Objections to this model are due to the
use of quantitative measures, such as the effectiveness and
efficiency in a course, which conditioned by the number of
students who interact with it. The rapid expansion of MOOCs
in the last few years draws an excellent setting for new
applications of EPM.

In the same way a program can be represented by a
mathematical function, EPM allows representing courseware
as an operator in a Hilbert space. The number of dimensions
of the Hilbert space is defined by course objectives. The state
of the student can be seen as a point in an n-dimensional space
by considering her performance with respect to each objective.
Due to the uncertainty of the student state, the evaluation
process is seen as an estimation of its real position. The
effectiveness of the course will be represented by the
operator's ability to translate a number of points (representing
students) to the desired region of the Hilbert space. This
region will be delimited by the range of expected values of
performance in each course objective. Course efficiency is
related to the speed at which this transformation occurs. This
speed can be calculated taking into account the time of
application of the operator (course enactment) or can include
also the time spent on its construction (course design). All the
formalisms use the abstraction process followed by Physics to
unify the representation of the fundamental interactions using
Hilbert spaces.

A computer program once written produces the same result
on different computers, even with different architectures.
However, the same courseware could have different effects on
different people. The parallelism with Physics is useful also in
this case because it allows modeling this complexity,
introducing the concept of mass (resistance to being
accelerated). In our case, students, depending on their
characteristics, can present different inertia to change their
state of knowledge, i.e. to move from a point in the Hilbert
space (initial state of knowledge) to other (final state of
knowledge) by the action of an operator (courseware or any
other educational intervention).

III. COURSEWARE ENGINEERING: TOOLS
Computer-aided software engineering (CASE) tools

underpin the creation and management of computer programs,
supporting their design, development, testing, as well as the
management of the whole software life cycle. CASE tools are
useful for applying development processes and frameworks in
a methodical way. They allow working collaboratively (as
most of the software is currently done in teams). And they
support both classical (e.g., waterfall model) and agile
methodologies.

2

CASE tools aimed at facilitating the design of software
allow for instance the creation of drafts and detailed diagrams
on how the software must behave and is structured. Examples
of design tools are ArgoUML [6] or BOUML [7], which allow
creating both behavioral UML diagrams (e.g., use case and
sequence diagrams) and structural UML diagrams (e.g., class
and component diagrams). Balsamiq [8] is another example of
design tool for creating agile mockups of graphical user
interfaces for desktop, web and mobile applications. These
diagrams and mockups need to be later translated to different
programming languages; fortunately it is possible to generate
code automatically (or semi-automatically) for instance from
the diagrams and mockups created through the aforementioned
CASE tools, reducing this way the development time and
workload. Once the software is developed, we need to test that
it is correct, efficient and bug-free. For example, tools such as
Java Pathfinder [9] or FindBugs [10] will help us detect bugs
and deadlocks in programs written in the Java language.
Finally, it would be also convenient to use project
management tools to support communication, collaboration
and version control during the creation of the computer
program. Basecamp [11] or Trello [12] are project
management tools with features for message exchange, file
sharing, milestone management or time tracing. GIT [13] is an
example of version control system that acts as a shared
repository and solves the problems of concurrency and version
control when developing software in teams.

The same analogy can be applied to courseware, as there is
also a need for designing, developing and testing courseware
in an efficient way, and we face the same problems of
managing the courseware life cycle in MOOCs and SPOCs. It
is therefore necessary to find appropriate computer-aided
courseware engineering (CACE) tools to support faculty and
staff in the creation and management of courseware.

When designing courseware it is important to take into
consideration that most MOOCs and SPOCs are done by
groups of teachers and therefore we need to facilitate
collaboration and co-creation in the design of the courseware.
The MOOC Canvas [14] is a tool that allows sharing an
overview of the design of the MOOC or SPOC considering the
main available resources and the key high level design
decisions, including the overall structure of the course and the
assessment system, among others. Of course, we can also
design and refine the structure of the course directly on the
platform in which it is going to be deployed, following a more
agile approach known as “bricolage”. Studio [15], the
authoring system of edX and Open edX [16], allows a
bricolage-like design of MOOCs and SPOCs, assembling low-
level components (e.g., videos, exercises, etc.) in a four-level
courseware structure. The design of courseware also includes
the generation of the particular slides and scripts that will be
used in the creation of videos and exercises. Collaborative text
editors and presentations tools such as Google Documents and
Slides may be useful for this purpose. From a pedagogical
point of view, the course design also involves the
orchestration of the educational process. Orchestration entails

deciding at what point it is better to introduce different types
of activities (memorization, application, creation),
mechanisms of collaboration, or gamification elements
(points, badges, leaderboards, competition, etc.) with the aim
to enrich the educational process. For example, the PhyMEL
methodology (Physical Mental and Emotional Learning) [17]
uses the universal narrative pattern of the Hero Journey
described by Campbell [18] and Vogler [19] to help students
in each stage of their particular journey. Nevertheless, there
are still many research challenges in the design of courseware,
such as the development of context-driven editors for creating
scripts and slides; given a context, e.g., a course about
programming in Java, a context-driven editor should be able to
facilitate writing intertwined pieces of Java code and plain-
text explanations in the script or slides.

The development of courseware, especially the one that
includes audiovisual content, can be a burdensome task. There
is a need for low-cost and efficient video production tools that
allow creating ready-to-go videos from raw footage in a very
short time after the teacher records a lecture in the studio. The
Polimedia tool [20], developed by Universitat Politècnica de
València (UPV), is a successful technology for the efficient
creation of multimedia contents that does not require teachers
to have much technical or audiovisual background. The
production of transcripts in different languages for videos
typically demands also a high workload, but these are a must
in MOOCs due to the wide audience and for accessibility
reasons; Translectures [21], also by UPV, is a tool for the
automatic transcription and translation of educational videos
that highly reduces the time to generate transcripts. Once
videos and exercises are developed, they need to be deployed
in the platform or platforms where they are going to be
consumed by learners; GE-L+ [22] is a Content Management
System by Universidad Carlos III de Madrid (UC3M) that
allows structuring courseware and afterwards automatically
deploy it in edX and in Open edX local instances. There are
however many research challenges in the development of
courseware, such as the generation of high-quality low-cost
videos that include animations and built-in interactive
activities by teachers without much technical background.

The testing of courseware affects error detection prior to
course delivery, but also the correction of errors during and
after course delivery and the improvement of courseware for
subsequent editions of the MOOC or SPOC. Nowadays there
are powerful learning analytics tools that e.g., allow detecting
questions that are not correct or that may be confusing, and
videos that students need to watch several times, as the
concepts are not clearly enough explained on them. Insights
by edX or ANALYSE and ALAS-KA by UC3M [23][24] are
example tools that provide detailed visualizations aimed at
helping teachers improve their MOOCs and SPOCs in edX
and Open edX. For example, questions that are not solved
correctly by any of the students, or that have a low success
rate, can be detected and further analyzed. Parts of videos that
students watch several times may be analyzed with the aim to
infer if these parts should be improved; or parts of videos that

3

students do not watch may be analyzed to infer if there is
some reason that makes them demotivating for students. In
addition, the testing of courseware may involve general
indicators, such as learning gains using a pre-test and post-test,
or surveys to measure students’ satisfaction and motivation
with the course in general, or with specific learning resources
and activities in particular. There are still research challenges
in the testing of courseware, such as tools for the generation of
overall reports for teachers indicating the high level topics that
are not sufficiently covered in the course and the concepts
that, although essential to follow the course from scratch, are
missing and need to be introduced somewhere in the course. In
addition, although there are tools to analyze students’
behaviors, emotions and meta-cognitive skills in general, there
is a need of tools that provide a detailed analysis of the
differences of educational resources regarding what they
produce in terms of behaviors, emotions or meta-cognitive
skills.

The management of the courseware life cycle shares with
the management of the software life cycle the same problems
of supporting communication between the teaching staff,
version control of educational resources, milestone
management, etc. Project management tools, such as
Basecamp or Trello may be useful to follow the development
process of the courseware in an efficient way, allowing the
communication between teachers, and the follow-up by a
project manager. Nevertheless, there are still open challenges
regarding version control of audiovisual resources and
concurrency (e.g., editing several parts of the same course at
the same time in authoring tools such as Studio, in edX).

All in all, CASE and CACE tools share common purposes:
helping professionals in the design, development, testing, and
management of products (either software or courseware).
Ultimately CASE and CACE tools are intended to foster
efficiency not only in the final product, but also in the creation
and management processes.

IV. COURSEWARE ENGINEERING: METHODS
There are many software development paradigms and

methods. Let’s simplify them by just concentrating in two
families: waterfall and agile.

 The waterfall model for software development proposes a
sequential design process, in which a phase is not initiated
until the previous is not finished (see Figure 1). So, for
instance the design phase does not start until the requirements
phase is completed. Reverting back to an earlier phase is
always very costly. If when verifying the designed software,
you decide to change some requirements, this will cost you a
lot in terms of effort.

If you look at MOOC development methods around the
world, they normally follow a waterfall model, as it is the
case, for instance, in The University of Queensland [25] or in
The University of British Columbia [26], among many others.
In the waterfall model, the verification of courseware is
usually done at a late stage, usually when there is little time
left before releasing the MOOC or SPOC. In addition, content
is normally not produced thinking of facilitating corrections or
modifications (e.g., videos are costly to modify once they are
produced). Therefore, if errors are identified at this very late
stage, one has to repeat many steps, and even in some cases to
put off the start of the course.

To solve some of the problems of the waterfall model in
software development, agile software development methods
have been introduced. Agile software development promotes
that requirements and solutions evolve together through
collaboration; and design and testing occur in rapidly
alternating steps (see Figure 2). Agile software development
dates back to February 2001, when 17 people from various
software companies acknowledging human fallibilities in
software development and declared the 4 values and 12
principles that came to be known as “Agile.” The four values
were called The Agile Manifesto [27]: 1) individuals and

Figure 1: Waterfall model for the creation of software, which has also been adopted for the creation of courseware.

4

interactions over processes and tools; 2) working software
over comprehensive documentation; 3) customer collaboration
over contract negotiation; and 4) responding to change over
following a plan.

In addition to the philosophical values of the manifesto,
12 principles underlying it were articulated: 1) customer
satisfaction by early and continuous delivery of useful
software; 2) welcome changing requirements, even in late
development; 3) working software is delivered frequently
(weeks rather than months); 4) close, daily cooperation
between business people and developers; 5) projects are built
around motivated individuals, who should be trusted; 6) face-
to-face conversation is the best form of communication (co-
location); 7) working software is the principal measure of
progress; 8) sustainable development, able to maintain a
constant pace; 9) continuous attention to technical excellence
and good design; 10) simplicity —the art of maximizing the
amount of work not done— is essential; 11) self-organizing
teams; and 12) regular adaptation to changing circumstance.

How might this manifesto, written for the context of
software development, be rewritten for the context of a
courseware development? Is it possible to draw an analogy, or
at least a preliminary set of good practices? In this regard,
some reflections might be proposed:

R1. What should be produced as output?
R2. What would be measured, assuming that it is possible

or feasible?
R3. Who are the “customers”? And who are the

stakeholders?

A MOOC can be seen as a web-class environment aimed
at a large-scale global participation and open access via the
Web. MOOCs tend to couple courseware in multiple formats:
text, video, assignments, exams, etc. The learning content is
accessible through a cloud-based computing system around
which communities of learners and content publishers
assemble and interact. MOOCs are generally offered as
standalone courses but can be integrated into an organized
curriculum as SPOCs. Quality of MOOCs should be measured
mainly by the quality of its courseware in terms of educational
value. In this regard, Conole [29] states that good learning:
encourages reflection, enables dialogue, fosters collaboration,
applies theory learnt to practice, creates a community of peers,
enables creativity, and motivates learners.

MOOCs’ stakeholders include: content publishers and
curators, professors, and students. Among the most important
MOOC publishers and curators are edX [16], Coursera [30],
and Udacity [31]. They perceive that MOOCs can help
universities to reduce operating costs, students by making
education more affordable, better, and accessible and future
employers, by providing data on students’ performance and
credentials in designated areas of study [32]. Faculty can
benefit by folding MOOC courseware into their regular
courses, and professors who produce and deliver MOOCs
might receive acclaim, visibility and eventually ways to
monetize their fame. Students are both consumers of the
MOOC content and potential labor for peer assessment and
content reviewers.

Like a software project, courseware can be difficult to
develop, the process can be inefficient, as can the learning that
they intended to achieve, and they can be error prone in failing
to achieve the desired outcomes. Courseware developers are
face to the challenge of producing engaging materials aimed at
improving students’ knowledge and skills. If we focus in the
student as customer, the first principle could be rewritten as:

“Learning satisfaction through early and continuous
delivery of valuable learning experiences”

MOOCs, as any course, have difficulties to measure and
transmit students their actual progress in their learning
process. Fortunately, learning analytics is making progresses
to contribute in this regard, enriching this way learners’
experience [2].

The second principle might be stated as:
“Welcome changing learning needs, even close to the end

of the course”
This principle is hardly acceptable in a formal educational

process and even in MOOC courses where an initial planning
is done according to the learning outcomes desired. However,
MOOCs have the advantage over traditional courses of having
the freedom of being delivered using smaller chunks of
information. This has an obvious similarity with agile software
development techniques where there are a concern to build
functional limited but still useful artifacts in short periods of
time. Therefore, MOOCs courseware development might also

Figure 2: Agile model for the creation of software (Extreme
Programming), which can also be adopted for the creation of

courseware. Figure taken from [28].

5

fit the third agile principle. The fourth principle is difficult to
satisfy in MOOCs but students’ feedback can be very helpful
to adjust parts of the courseware according to new customer
requirements. The atomicity of units of information and
assessment is key to guarantee the agile principles (7) - (9) and
(12). Finally, the rest of principles have to do with the
courseware developing team and they are not the object of this
study.

The debate on the use of agile methods in the field of
education is open, and does not only affect the production of
courseware. The NMC Horizon Report already highlights the
need for incorporating agile approaches to change in education
in the 2014 Higher Education Edition [33], and suggests that
Higher Education Institutions need to adopt startup models for
a more efficient implementation of new practices and
pedagogies. We believe that the methods used so far for the
production of courseware are very much waterfall oriented,
and that faculty should adopt agile methods as a way to
accelerate and improve MOOC production.

V. CONCLUSIONS
The parallel between courseware and software gives useful

hints in what is needed to develop courseware to its full
potential in the current rapidly changing educational landscape
where MOOCs and SPOCs threaten to shake the foundations
of traditional educational systems. Fundamentals, tools and
methods from the scope of software engineering may have a
correspondence in the scope of courseware engineering. But
there are many other similarities that can be found. For
example, MOOCs are normally announced a long time before
they start. This allows the registrations to grow. But often the
course is not finished at the time of announcement and
therefore there are very tight development timelines; as it
happens in most software projects were work is done under
time pressure.

Nevertheless, the parallel between software engineering
and courseware engineering should not be taken too far. A
computer program once written should run well on different
computers, even with different architectures. However, the
same courseware could have different effects on different
people. Therefore in education, the context acquires a higher
importance, because it cannot be factored out so easily. There
is even discussion whether learning styles really exist. So, the
field is much more complex here. However to have more rigor
and assistance for the creation of courseware should be of
great help.

ACKNOWLEDGMENT

The eMadrid Excellence Network is being funded by the
Madrid Regional Government (Comunidad de Madrid) with
grant No. S2013/ICE-2715. This work also received partial
support from the Spanish Ministry of Economy and
Competitiveness Project RESET (TIN2014-53199-C3-1-R)
and from the European Erasmus+ projects MOOC Maker

(561533-EPP-1-2015-1-ES-EPPKA2-CBHE-JP) and SHEILA
(562080-EPP-1-2015-BE-EPPKA3-PI-FORWARD).

REFERENCES
[1] D. MacKenzie, Mechanizing Proof: Computing, Risk and Trust,

Cambridge, MA: MIT Press, 2001.
[2] P. J. Muñoz-Merino, J. A. Ruipérez-Valiente, C. Alario-Hoyos, M.

Pérez-Sanagustín, C. Delgado Kloos, “Precise Effectiveness Strategy for
analyzing the effectiveness of students with educational resources and
activities in MOOCs,” Computers in Human Behavior, vol. 47, pp. 108-
118, 2015.

[3] H. Gardner, Multiple Intelligences: New Horizons in Theory and
Practice, Basic Books, 2006.

[4] C. Fernández-Panadero, A. Pardo, J. Fernández-Panadero, A. Marín
López, “A mathematical model for reusing student learning skills across
didactical units,” Proc. 2002 Frontiers in Education, FIE 2002, pp.
F1A-1-F1A-6, 2002.

[5] C. Fernández-Panadero, “EPM A Mathematical Model for
Characterization and Diagnosis of Educational Processes,” Ph.D.
dissertation. Universidad Carlos III de Madrid, 2004. Note: In Spanish.

[6] ArgoUML, argouml.tigris.org
[7] BOUML, bouml.fr
[8] Balsamiq, balsamiq.com
[9] Java PathFinder, javapathfinder.sourceforge.net
[10] FindBugs, findbugs.sourceforge.net
[11] Basecamp, basecamp.com
[12] Trello, trello.com
[13] Git, git-scm.com
[14] C. Alario-Hoyos, M. Pérez-Sanagustín, D. Cormier, C. Delgado-Kloos,

“Proposal for a conceptual framework for educators to describe and
design MOOCs,” Journal of Universal Computer Science, vol. 20, no. 1,
pp. 6-23, 2014.

[15] edX Studio, studio.edx.org
[16] edX, edx.org
[17] C. Fernández-Panadero, C. Delgado Kloos, “PhyMEL. A Framework to

Integrate Physical, Mental and Emotional Learning in Meaningfull
Experiences and Multidimensional Reports,” Proc. 3rd European
Immersive Education Summit, pp. 203-208, 2013.

[18] J. Campbell, The hero with a thousand faces. Pantheon Books, 3rd ed.,
2008.

[19] C. Vogler, The Writer's journey. 3rd Revised edition ed. Michael Wiese
Productions, 1998.

[20] C. Turró, M. Ferrando, J. Busquets, A. Cañero, “Polimedia: a system for
successful video e-learning,” Proc. Eunis 2009 International
Conference, 2009.

[21] M. A. del Agua, A. Giménez, N. Serrano, J. A. Ferrer, J. Civera, A.
Sanchis, A. Juan, “The translectures-UPV toolkit,” Advances in Speech
and Language Technologies for Iberian Languages, pp. 269-278, 2014.

[22] C. Delgado-Kloos, P. J. Muñoz-Merino, M. Muñoz-Organero, C. Alario-
Hoyos, M. Pérez-Sanagustín, H. A. Parada G., J. A. Ruiperez, J. L.
Sanz, “Experiences of Running MOOCs and SPOCs at UC3M,” Proc.
2014 IEEE Global Engineering Education Conference, EDUCON 2014,
pp. 884-891, 2014.

[23] P. J. Muñoz-Merino, J. A. Ruipérez-Valiente, C. Delgado Kloos,
“ANALYSE: A learning analytics extension for Open edX,” Open edX
Conference, 2015.

[24] J. A. Ruipérez-Valiente, P. J. Muñoz-Merino, D. Leony, C. Delgado
Kloos, ALAS-KA: “A learning analytics extension for better
understanding the learning process in the Khan Academy platform,”
Computers in Human Behavior, vol. 47, pp. 139-148, 2015.

[25] UQx Design Methodology for Course Development, Technical Report,
The University of Queensland, Australia, 2015.
http://uqx.uq.edu.au/filething/get/533/UQx%20Methodology%2020%20
May%202015.pdf

6

[26] Design Quality Online Course, Technical Report, The University of
British Columbia, Canada, 2015.
http://wiki.ubc.ca/Design_Quality_OnlineCourse

[27] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
et al. Manifesto for Agile Software Development, agilemanifesto.org

[28] J. Carroll, Agile Project Management in easy steps, In Easy Steps
Limited, Warwickshire, UK, 2012.

[29] G. Conole, “MOOCs as disruptive technologies: strategies for enhancing
the learner experience and quality of MOOCs,” RED, Revista de
Educación a Distancia, vol. 39 pp. 1-17, 2013.

[30] Coursera, coursera.com
[31] Udacity, udacity.com
[32] B. Dasarathy, K. Sullivan, D. C. Schmidt, D. Fisher, A. Porter, “The

past, present, and future of MOOCs and their relevance to software
engineering,” Proc. Future of Software Engineering, ACM, pp. 212-224,
2014.

[33] NMC Horizon Report: 2014 Higher Education Edition, Technical
Report, New Media Consortium and EDUCAUSE Learning Initiative,
2014. nmc.org/pdf/2014-nmc-horizon-report-he-EN.pdf

7

