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Abstract

In this work we derive analytical expressions for the weights of
Gaussian RBF-FD and Gaussian RBF-HFD formulas for some di�er-
ential operators. These weights are used to derive analytical expres-
sions for the leading order approximations to the local truncation error
in powers of the inter-node distance h and the shape parameter ǫ.

We show that for each di�erential operator, there is a range of
values of the shape parameter for which RBF-FD formulas and RBF-
HFD formulas are signi�cantly more accurate than the corresponding
standard FD formulas. In fact, very often there is an optimal value
of the shape parameter ǫ

+ for which the local error is zero to leading
order. This value can be easily computed from the analytical expres-
sions for the leading order approximations to the local error. Contrary
to what is generally believed, this value is, to leading order, indepen-
dent of the internodal distance and only dependent on the value of the
function and its derivatives at the node.

1 Introduction

Radial basis functions (RBFs) were �rst used as an e�cient technique for in-
terpolation of multidimensional scattered data (see [8] and references therein).
Later, it became popular as a truly mesh-free method for the solution of par-
tial di�erential equations (PDEs) on irregular domains. This application of
RBFs was �rst proposed by Edward Kansa [13, 14] and it is based on collo-
cation in a set of scattered nodes. The main advantages of the method are
ease of programming and potential spectral accuracy, but its main drawback
is ill-conditioning of the resulting linear system.

To overcome this drawback a local RBF method was independently pro-
posed by several authors [17, 18, 20]. The method is based on approximating
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the solution as a linear combination of a set of identical RBFs translated to
a set of (scattered) RBF centers. However, the approximation is local, so it
is carried out within a small inuence domain instead of a global one. Thus,
the resulting linear system is sparse, overcoming the ill-conditioning of the
global method, at the cost of losing its spectral accuracy.

The local RBF method can also be considered as a generalization of the
classical FD method. In the FD method the weights are computed using
polynomial interpolation, while in the local RBF method they are computed
by �tting an RBF interpolant through a grid point and a small number of
its nearest neighbors. Since both, FD and local RBF formulas are identical
in form, we will refer to the local RBF method as the RBF �nite di�erence
(RBF-FD) method, as in [20].

In Hermite interpolation the objective is to �nd a polynomial that in-
terpolates both the value of the function at some neighboring nodes and the
value of some derivatives at the same or di�erent nodes. Taking the derivative
of these interpolation formulas one derives Hermite �nite di�erence formulas
(HFD). Analogously to what is done with RBF-FD, we can use RBF's in-
stead of polynomials for interpolation. We will refer to the resulting method
as the RBF Hermite �nite di�erence (RBF-HFD) method [20].

Many of the RBFs used in practical applications contain a shape param-
eter that has to be chosen a priori. It is well known that the accuracy of
the approximated solution strongly depends on its value. Thus, the prob-
lem of how to select appropriate values for the shape parameter has been
of primary concern both from the theoretical and the application points of
view. In a recent paper [1] we derived analytical approximations to the local
approximation error for 1D and 2D di�erential operators (for structured and
non-structured nodes) using multiquadrics as RBFs. These formulas were
then used to propose e�cient algorithms for the selection of either an optimal
(constant) value of the shape parameter that minimizes the approximation
error [2], or an optimal (node dependent) value of the shape parameter that
minimizes the local approximation error [3]. In this paper we carry out a
similar analysis to the one performed in [1] but using Gaussians instead of
multiquadrics as RBFs. The formulas for the local approximation error that
we derive below can then be used to compute the optimal value of the shape
parameter (both constant and variable) in a way similar to that used in [2, 3].

There are not too much work relating to the RBF-FD method using Gaus-
sians as RBFs. One should mention the work of Flyer and Wright [11] and
Davydov and Oanh [9, 10] from the application point of view, and the work
of Wright and Fornberg [20, 12] and Boyd and Wang [4] from the analytical
point of view. With respect to the value of the optimal shape parameter one
should mention the work of A.H.-D. Cheng [5] which used the error formulas
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derived by Madych [15] to �nd analytical expressions for the value of c which
minimizes the error for a given internodal distance h. However, these formu-
las are for the global RBF method, not for the local RBF-FD method, and
in that case, the optimal shape parameter is independent of the particular
function f whose derivatives are being approximated.

The paper is organized as follows: in Section 2 it is described the RBF-
FD and RBF-HFD formulation; in Section 3 it is shown the weights and
the local truncation errors, �rst for the RBF-FD method (subsections 3.1.1,
3.1.2, 3.1.3) and then for the RBF-HFD method (subsections 3.2.1, 3.2.2).
In Section 4 it is discussed the main conclusions of the work.

2 RBF-FD formulation

2.1 RBF-FD method

In this section we describe how the RBF-FD formulas are derived and how
the weights can be exactly computed. Consider a di�erential operator L[·]
and a stencil consisting of n scattered nodes {x1,x2, . . . ,xn}. For a given
node x = xj (1 ≤ j ≤ n), the di�erential operator can be approximated by
the formula

L[u(xj)] ≈
nX

i=1

αiu(xi), (1)

where αi are the weighting coe�cients. In the standard FD formulation,
these coe�cients are computed using polynomial interpolation. In the RBF-
FD formulation, RBF interpolants are used instead. Thus,

u(x) =
nX

i=1

λiφ(||x− xi||), (2)

where ||.|| is the euclidean norm and φ(r) is some radial function. The
unknown weighting coe�cients αi can be determined by solving the system
of linear equations,

L[φ(||xk − xj ||)] =
nX

i=1

αiφ(||xk − xi||), k = 1, . . . , n, (3)

which is obtained doing some algebra after substituing (2) in (1). It is well
known [19] that the Gaussian function is a positive de�nite RBF and, there-
fore, the linear system resulting from interpolation is always invertible. For
conditionally positive de�nite RBFs (like generalized multiquadrics) a poly-
nomial term has to be added in order to guarantee invertibility of the resulting
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system (a constant for standard multiquadric). However, although it is not
needed for invertibility, adding a constant term β to the RBF interpolant (2)
guarantees that a constant function is interpolated exactly. In this case, the
unknown weighting coe�cients αi can be calculated by solving the system of
linear equations





L[φ(||xk − xj ||)] =

nX

i=1

αiφ(||xk − xi||) + µ, k = 1, . . . , n.

nX

i=1

αi = 0

(4)

where µ is a constant related to β.

2.2 RBF-HFD method

In the RBF-HFD method the accuracy of the approximation (1) is increased
without increasing the size stencil. In this case, given a stencil with n nodes
{x1,x2, . . . ,xn} and a subset σ ⊂ {x1,x2, . . . ,xj�1,xj+1, . . . ,xm} with m <
n nodes, the di�erential operator L[·] is approximated at x = xj by the
formula

L[u(xj)] ≈
nX

i=1

αiu(xi) +
mX

p=1

eασp
L[u(xp)], (5)

where αi and eαp are the weighting coe�cients. These coe�cients are com-
puted using Hermite RBF interpolants,

u(x) =
nX

i=1

λiφ(||x− xi||) +
mX

p=1

eλpL[φ(||x− xp||)], (6)

In this case, the unknown weighting coe�cients can be determined by solving
the system of linear equations (7) obtained after substituing (6) in (5) and
operating,





L[φ(||xk − xj ||)] =
nX

i=1

αiφ(||xk − xi||) +
mX

p=1

eασp
L[φ(||xk − xp||)]

LL [φ(||xs − xj ||)] =

nX

i=1

αiL[φ(||xs − xi||)] +

mX

p=1

eασp
LL[φ(||xs − xp||)]

(7)

where k = 1, . . . , n and s = 1, . . . , m. As in the previous section, a constant
term (β) should be added in the Hermitte RBF interpolant (6) to guarantee
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that these RBF-HFD formulas are exact for constants. In this case, the
system of equations to be solved are




L[φ(||xk − xj ||)] =

nX

i=1

αiφ(||xk − xi||) +

mX

p=1

eασp
L[φ(||xk − xp||)] + µ

LL [φ(||xs − xj ||)] =

nX

i=1

αiL[φ(||xs − xi||)] +

mX

p=1

eασp
LL[φ(||xs − xp||)]

nX

i=1

αi = 0

(8)

where k = 1, . . . , n, s = 1, . . . , m and µ is a constant related to β.

3 Weights and Truncation Error

In this section, we derive analytical expressions for the weights of RBF-FD
and RBF-HFD formulas using Gaussians as RBFs,

φ(||x − xj ||) = exp
�
ǫ2 ||x − xj||

2
�
, (9)

where ǫ is the shape parameter. We consider RBF-FD formulas for �rst and
second order derivatives in 1D, and for the Laplacian in 2D, using equispaced
nodes in all cases. Only �rst and second order derivatives formulas in 1D
are derived for the RBF-HFD method. The weights are functions of the
inter node distance h and the shape parameter ǫ. They are obtained using
Mathematica. Contrary to what happened with multiquadrics [1], in which
case the weights were written as Taylor series expansions in powers of h,
for Gaussians it is often possible to write them as short analytical formulas.
These coe�cients are then used to derive analytical expressions for the
leading term of the local truncation error in the limit ǫh ≪ 1, which is
de�ned as

τn(x0) =
nX

i=1

αiu(xi) − L[u(x0)]

for the RBF-FD method and

τn(x0) =
nX

i=1

αiu(xi) +
mX

p=1

eασp
L[u(xp)] − L[u(x0)]

for the RBF-HFD method. In the tables we use the notation O (hrPk(ǫ
2)) to

indicate that the terms that have been neglected are of order hr
Pk

i=0 ai ǫ
2 i,

where ai are constants.
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3.1 RBF-FDformulas

Tocheckthevalidityoftheformulasgiveninthissubsection,weuse

u(x) =sin||x||2 ,

astestfunction,where||x||istheeuclideannorm.Equations(3)and(4)are
usedtocomputethecoefficientsneededtoapproximatethecorresponding
operatorL[·]atx0=0.4andx0=(0.4,0.4)in1Dand2D,respectively.For
eachformulawecomputetheabsolutevalueoftheerrorasafunctionofthe
shapeparameterǫandthenodedistanceh,andcompareitwiththeleading
termofthelocaltruncationerrorthatwederiveinthelimitǫh≪ 1.

3.1.1 Firstderivative
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Figure1:Localtruncationerrorτn fortheRBF-FDfirstderivativeasfunc-
tionofǫ(leftside)andh(rightside)usingstructuredstencilswith(a)n=3,
(b)n=5,(c)n=7,and(d)n=9nodes.Solidlines:localtruncationerror
computedsolvingnumerically(3). Dashedlines:leadingorderformulasof
theerrorsgiveninTable1.
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Table 1: RBF-FD �rst derivative.

Three nodes

α0 0

α�1 ±1
2
ǫ2h (csch (ǫ2h2) + sech (ǫ2h2))

τ3
h2

6

�
u

′′′

(x0) + 6ǫ2u
′

(x0)
�

+ O (h4P2(ǫ
2))

Five nodes

α0 0

α�1 ±ǫ2h
�
1 + e2ǫ2h2

�
csch (3ǫ2h2)

α�2 ∓ ǫ
2
he

4ǫ
2
h
2

sinh(2ǫ2h2)+sinh(4ǫ2h2)+sinh(6ǫ2h2)

τ5 −h4

30

�
u(V )(x0) + 20ǫ2u

′′′

(x0) + 60ǫ4u
′

(x0)
�

+ O (h6P3(ǫ
2))

Seven nodes

α0 0

α�1 ±ǫ2h
�
e3ǫ2h2

+ 2 cosh (ǫ2h2)
�

csch (4ǫ2h2)

α�2 ∓
ǫ
2
he

2ǫ
2
h
2
�
1+e

2ǫ
2
h
2

+e
4ǫ

2
h
2
�

sinh(2ǫ2h2)+sinh(4ǫ2h2)+sinh(6ǫ2h2)+sinh(8ǫ2h2)

α+3
ǫ
2
he

9ǫ
2
h
2

sinh(2ǫ2h2)+2 sinh(4ǫ2h2)+2 sinh(6ǫ2h2)+2 sinh(8ǫ2h2)+sinh(10ǫ2h2)+sinh(12ǫ2h2)

α�3 −
ǫ
2
he

9ǫ
2
h
2

csch(6ǫ
2
h

2)
2(1+2 cosh(2ǫ2h2)+cosh(4ǫ2h2)+cosh(6ǫ2h2))

τ7
h6

140

�
u(V II)(x0) + 42ǫ2u(V )(x0) + 420ǫ4u

′′′

(x0) + 840ǫ6u
′

(x0)
�

+ O (h8P4(ǫ
2))

Nine nodes

α0 0

α�1 ± 4
5h

± 4ǫ2h
5

∓ 14ǫ4h3

15
∓ 6ǫ6h5

5
± 191ǫ8h7

90
+ O (ǫ10h9)

α�2 ∓ 1
5h

∓ 4ǫ2h
5

∓ 4ǫ4h3

15
± 16ǫ6h5

5
± 104ǫ8h7

45
+ O (ǫ10h9)

α�3 ± 4
105h

± 12ǫ2h
35

± 34ǫ4h3

35
∓ 18ǫ6h5

35
∓ 531ǫ8h7

70
+ O (ǫ10h9)

α�4 ∓ 1
280h

∓ 2ǫ2h
35

∓ 38ǫ4h3

105
∓ 32ǫ6h5

35
± 316ǫ8h7

315
+ O (ǫ10h9)

τ9 �
h8

630

�

u(IX)(x0) + 72ǫ2u(V II)(x0) + 1512ǫ4u(V )(x0) + 10080ǫ6u
′′′

(x0) + 15120ǫ8u
′

(x0)
�

+ O
�

h10P5(ǫ2)
�
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Table 1 shows the weights and the corresponding local truncation errors
for RBF-FD formulas to approximate the �rst derivative in 1D. Exact ex-
pressions are given for 3, 5 and 7 equispaced nodes. For 9 equispaced nodes
the exact formulas are too long and therefore we only include their series ex-
pansions in the limit ǫh ≪ 1. The results for 3 and 5 nodes are in agreement
with those previously derived in Appendix A of reference [4].

Figure 1 shows the corresponding error (solid line) for n = 3, 5, 7 and 9
when the weights are computed by solving numerically the linear system (3).
This error is compared with the approximate error given by the formulas in
Table 1 (dashed line). Notice that the agreement is excellent up to the point
where the linear system to numerically compute the weights (3) becomes ill-
conditioned and round-o� errors deteriorate the accuracy of the numerical
solution. However, it should be emphasized that, in the case of Gaussians, it
is not necessary to numerically solve (3) in order to get the weights. Instead,
the analytic formulas given in Table 1 can be directly used. In that case the
actual local error is undistinguishable from the approximate error given by
the formulas in Table 1. The left part of Figure 1 shows the absolute value
of the error as a function of the shape parameter for h = 0.05. The accuracy
increases with decreasing ǫ. For small ǫ (at RBFs) it is well known that
RBF-FD formulas approach standard �nite di�erence formulas [7]. This fact
can be clearly observed in the �gure which shows how the error approaches
the standard �nite di�erence error when ǫ → 0.

Notice also that there is a range of values of the shape parameter, ǫ, for
which RBF-FD formulas are more accurate than standard �nite di�erences.
In particular, there is an optimal value, ǫ+, for which the local truncation
error is zero to leading order. Since the value of ǫ+ can be accurately esti-
mated from the formulas in Table 1, it is possible to use the RBF-FD method
to accurately solve PDE problems following the same approach described in
references [2, 3] for multiquadrics.

The right part of Figure 1 shows the absolute value of the error as a
function of the inter node distance h for ǫ = 5. Notice that the error behaves
as O(hn�1) in agreement with the formulas in Table 1.

3.1.2 Second derivative

Table 2 shows the weights and the corresponding truncation errors for RBF-
FD formulas to approximate the second derivative in 1D using the standard
formulation which is not exact for constants (3). As in the previous case,
exact expressions are given for 3, 5 and 7 equispaced nodes. For 9 equispaced
nodes only their series expansions in the limit ǫh ≪ 1 are included.

Figure 2 shows the numerical error (solid line) in the approximation of
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Table 2: RBF-FD second derivative: non exact for constants

Three nodes

α0 −2
�
ǫ2 + ǫ4h2csch2 (ǫ2h2)

�

α�1 ǫ4h2 (1 + coth (ǫ2h2)) csch (ǫ2h2)

τ3
h2

12

�
u(IV )(x0) + 12ǫ2u

′′

(x0) + 12ǫ4u(x0)
�

+ O (h4P3(ǫ
2))

Five nodes

α0
1
2

�
ǫ4h2

�
sech2 (ǫ2h2) − 5csch2 (ǫ2h2)

�
− 4ǫ2

�

α�1

4ǫ
4
h

2 cosh(ǫ
2
h

2) coth(ǫ
2
h

2)(coth(ǫ
2
h

2)+1)
2 cosh(2ǫ2h2)+1

α�2 −
ǫ
4
h

2
e
4ǫ

2
h
2

csch2(2ǫ
2
h

2)
2 cosh(2ǫ2h2)+1

τ5 −h4

90

�
u(V I)(x0) + 30ǫ2u(IV )(x0) + 180ǫ4u

′′

(x0) + 120ǫ6u(x0)
�

+ O (h6P4(ǫ
2))

Seven nodes

α0
1
18

ǫ2

�
32ǫ2h2(cosh(2ǫ2h2)+2)

(2 cosh(2ǫ2h2)+1)2
− 49ǫ2h2csch2 (ǫ2h2) + 9ǫ2h2sech2 (ǫ2h2) − 36

�

α�1
1
2
ǫ4h2 (coth (ǫ2h2) + 1) csch (ǫ2h2) (sech (2ǫ2h2) + 2)

α�2 −
ǫ
4
h

2
e
2ǫ

2
h
2
�
e
2ǫ

2
h
2

+e
4ǫ

2
h
2

+1
�
csch2(2ǫ

2
h

2)
2 cosh(2ǫ2h2)+2 cosh(4ǫ2h2)+1

α�3

ǫ
4
h

2
e
9ǫ

2
h
2

csch2(3ǫ
2
h

2)
2(2 cosh(2ǫ2h2)+cosh(4ǫ2h2)+cosh(6ǫ2h2)+1)

τ7
h6

560

�

u(V III)(x0) + 56ǫ2u(V I)(x0) + 840ǫ4u(IV )(x0) + 3360ǫ6u
′′

(x0) + 1680ǫ8u(x0)
�

+ O
�

h8P5(ǫ2)
�

Nine nodes

α0 − 205
72h2 − 2ǫ2 + 8h2ǫ4

3
− 4h6ǫ8 + O (h10ǫ12)

α�1
8

5h2 + 8ǫ2

5
− 4h2ǫ4

3
− 28h4ǫ6

15
+ 269h6ǫ8

75
+ 191h8ǫ10

45
+ O (h10ǫ12)

α�2 − 1
5h2 −

4ǫ2

5
− 8h2ǫ4

15
+ 32h4ǫ6

15
+ 152h6ǫ8

75
− 352h8ǫ10

45
+ O (h10ǫ12)

α�2
8

315h2 + 8ǫ2

35
+ 76h2ǫ4

105
+ 12h4ǫ6

35
− 79h6ep8

25
− 153h8ǫ10

35
+ O (h10ǫ12)

α�4 − 1
560h2 − ǫ2

35
− 4h2ǫ4

21
− 64h4ǫ6

105
− 34h6ǫ8

75
+ 992h8ǫ10

315
+ O (h10ǫ12)

τ9 −
h
8

3150

�

u(X)(x0) + 90ǫ2u(V III)(x0) + 2520ǫ4u(V I)(x0) + 25200ǫ6u(IV )(x0) + 75600ǫ8u
′′

(x0) + 30240ǫ10u(x0)
�

+ O
�

h10P6(ǫ2)
�
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Figure2:SameasFigure1butfortheRBF-FDsecondderivative(nonexact
forconstants).

thesecondderivativewithn=3,5,7and9usingthestandardformulation
(3)whichisnotexactforconstants. Thenumericalresultsarecompared
withtheapproximateerrorgivenbytheformulasinTable2(dashedline).
TheleftpartofFigure2showstheabsolutevalueoftheerrorasafunction
oftheshapeparameterforh=0.05,andtherightpartshowstheabsolute
valueoftheerrorasafunctionoftheinternodedistancehforǫ=5.Inthe
firstcase,theaccuracyincreaseswithdecreasingǫandapproachesstandard
finitedifferencesforsmallǫ. Noticethatthereisanoptimalvalue,ǫ+,for
whichthelocaltruncationerroriszerotoleadingorder.Inthesecondcase,
theerrorbehavesasO(hn−1)inagreementwiththeformulasinTable2.

Table3showstheweightsandthecorrespondinglocaltruncationerrors
forRBF-FDformulastoapproximatethesecondderivativein1Dusingthe
standardformulationwhichisexactforconstants(4).Inthiscase,exact
expressionsareonlygivenfor3equispacednodes. For5,7and9equis-
pacednodes weonlyincludetheirseriesexpansionsinthelimitǫh≪ 1.
Figure3showsthecorrespondingerror(solidline)forn=3,5,7,9,and
comparesit withtheapproximateerrorgivenbytheformulasintable3
(dashedline). Bothresultscoincideuntilthesystemofequations(3)be-
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Table 3: RBF-FD second derivative: exact for constants

Three nodes

α0 −
4ǫ

2
e
3ǫ

2
h
2
�
2ǫ

2
h

2+e
ǫ
2
h
2

−1
�

−4e3ǫ2h2+3e4ǫ2h2+1

α�1

2ǫ
2
e
3ǫ

2
h
2
�
2ǫ

2
h

2+e
ǫ
2
h
2

−1
�

−4e3ǫ2h2+3e4ǫ2h2+1

τ3
h2

12

�
u(IV )(x0) + 10ǫ2u

′′

(x0)
�

+ O (h4P2(ǫ
2))

Five nodes

α0 − 5
2h2 −

28ǫ2

15
+ 83h2ǫ4

90
+ O (h4ǫ6)

α�1
4

3h2 + 56ǫ2

45
− 13h2ǫ4

135
+ O (h4ǫ6)

α�2 − 1
12h2 − 14ǫ2

45
− 197h2ǫ4

540
+ O (h4ǫ6)

τ5 −h4

90

�
u(V I)(x0) + 28ǫ2u(IV )(x0) + 140ǫ4u

′′

(x0)
�

+ O (h6P3(ǫ
2))

Seven nodes

α0 − 49
18h2 −

27ǫ2

14
+ 237h2ǫ4

140
+ 199h4ǫ6

300
+ O (h6ǫ8)

α�1
3

2h2 + 81ǫ2

56
− 333h2ǫ4

560
− 533h4ǫ6

400
+ O (h6ǫ8)

α�2 − 3
20h2 −

81ǫ2

140
− 801h2ǫ4

1400
+ 127h4ǫ6

200
+ O (h6ǫ8)

α�3
1

90h2 + 27ǫ2

280
+ 897h2ǫ4

2800
+ 439h4ǫ6

1200
+ O (h6ǫ8)

τ7
h6

560

�
u(V III)(x0) + 54ǫ2u(V I)(x0) + 756ǫ4u(IV )(x0) + 2520ǫ6u

′′

(x0)
�

+ O (h8P4(ǫ
2))

Nine nodes

α0 − 205
72h2 − 88ǫ2

45
+ 254h2ǫ4

105
+ 358h4ǫ6

525
− 173561h6ǫ8

33075
+ O (h8ǫ10)

α�1
8

5h2 + 352ǫ2

225
− 124h2ǫ4

105
− 1832h4ǫ6

875
+ 569729h6ǫ8

165375
+ O (h8ǫ10)

α�2 − 1
5h2 −

176ǫ2

225
− 284h2ǫ4

525
+ 1716h4ǫ6

875
+ 375542h6ǫ8

165375
+ O (h8ǫ10)

α�2
8

315h2 + 352ǫ2

1575
+ 52h2ǫ4

75
+ 6344h4ǫ6

18375
− 457057h6ǫ8

165375
+ O (h8ǫ10)

α�4 − 1
560h2 − 44ǫ2

1575
− 19h2ǫ4

105
− 3391h4ǫ6

6125
− 108623h6ǫ8

330750
+ O (h8ǫ10)

τ9 �
h8

3150

�

u(X)(x0) + 88ǫ2u(V III)(x0) + 2376ǫ4u(V I)(x0) + 22176ǫ6u(IV )(x0) + 55440ǫ8u
′′

(x0)
�

+ O
�

h10P5(ǫ2)
�
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Figure3:SameasFigure1butfortheRBF-FDsecondderivative(exactfor
constants).

comesill-conditioned. Asinthepreviouscases,theexistenceofanoptimal
shapeparameter,ǫ+ which makestheerrorzero toleadingorder,canbe
clearlyobserved.

Forh≪ 1theerrorresultingfromtheformulationwhichisexactforcon-
stants(4)andfromtheformulationthatisnotexact(3)coincide(seefigures
2and3andtables2and3). Noticehowever,thattheerrorcorresponding
totheformulationwhichisnonexactforconstants(table2)containssome
extraterms. Forinstance,inthecaseofthreenodes,theerrorforthenon
exactcaseincludesatermproportionaltoǫ4whiletheerrorcorresponding
totheexactcasedoesnot(table3). Thus,forvaluesofǫoforderunityor
larger,thetwoformulationsmaydiffersignificantly.

3.1.3 Laplacian

Tables4and5showtheweightsandthecorrespondinglocaltruncationerror
fortheRBF-FDlaplacianformulaswith5and9nodes(nonexactandexact
forconstants,respectively). Noticethatinthenonexactcase(Table4),the
expressionsfortheweightsandthelocalerrorareequivalentinbothcases.
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Figure4:LocaltruncationerrorτfortheRBF-FDlaplacian(nonexactfor
constants)asfunctionofǫ(leftside)andh(rightside)usingn=5structured
stencils.Solidline:Gaussians.Dashedline:multiquadrics.

Figures4and5showthelocaltruncationerrorobtainedusingthecor-
respondinganalyticalweightsofTables4and5forn=5(solidline)and
compareitwiththelocaltruncationerrorsobtainednumericallywithmulti-
quadrics(dashedline).Asitisshowninthefigures,theratesofconvergence
areequivalentinbothcases. Thisisduetothefactthatthelocaltrunca-
tionerrorsarepolynomialsofthesamedegreenintheshapeparameterǫ
(seeTables4and5and[1]).Asǫ→ 0,thelocaltruncationerrorbecomes
equivalentsincetheybothapproachtostandardfinitedifferences.

Regardingaccuracy,therearenotadvantagesonusingeithermultiquadrics
orGaussians,ingeneral. However,foraspecificfunctiontheremightbe
significantdifferencesassociatedtothefactthatthelocationand/ortheex-
istenceoftheoptimalshapeparameterwillchangefromusingeitheroneor
theother.Inthisparticularexample,theerrorusingmultiquadricsisslightly
smallerthanwithGaussians. Notethatthelocationoftheoptimalshape
parameterisdifferent.
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Figure5:SameasFigure4butfortheRBF-FDlaplacian(exactforcon-
stants)
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Table 4: RBF-FD laplacian: non exact for constants. Notice that τ9 = τ5.

Five nodes

α0 −4
�
ǫ2 + ǫ4h2csch2 (ǫ2h2)

�

α1,2,3,4 ǫ4h2 (1 + coth (ǫ2h2)) csch (ǫ2h2)

τ5
h2

12

�
u(4,0)(x0) + u(0,4)(x0)

�
+ ǫ2h2

�
u(2,0)(x0) + u(0,2)(x0)

�
+ 2ǫ4h2u(x0) + O (h4P3(ǫ

2))

Nine nodes

α0 −4
�
ǫ2 + ǫ4h2csch2 (ǫ2h2)

�

α1,2,3,4 ǫ4h2 (1 + coth (ǫ2h2)) csch (ǫ2h2)

α5,6,7,8 0

τ9
h2

12

�
u(4,0)(x0) + u(0,4)(x0)

�
+ ǫ2h2

�
u(2,0)(x0) + u(0,2)(x0)

�
+ 2ǫ4h2u(x0) + O (h4P3(ǫ

2))
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Table 5: RBF-FD laplacian: exact for constants

Five nodes

α0 −
16ǫ

2
e
3ǫ

2
h
2
�
ǫ
2
h

2+e
ǫ
2
h
2

−1
�

2e2ǫ2h2−8e3ǫ2h2+5e4ǫ2h2+1

α1,2,3,4

4ǫ
2
e
3ǫ

2
h
2
�
ǫ
2
h

2+e
ǫ
2
h
2

−1
�

2e2ǫ2h2−8e3ǫ2h2+5e4ǫ2h2+1

τ5
h2

12

�
u(4,0)(x0) + u(0,4)(x0)

�
+ 3

4
ǫ2h2

�
u(2,0)(x0) + u(0,2)(x0)

�
+ O (h4P2(ǫ

2))

Nine nodes

α0
16ǫ

2
e
3ǫ

2
h
2

�

ǫ
2

h
2+e

ǫ
2

h
2

�

3ǫ
2

h
2+e

ǫ
2

h
2

�

2ǫ
2

h
2+e

ǫ
2

h
2

�

−2ǫ
2

h
2+e

ǫ
2

h
2

�

−7ǫ
2

h
2
−e

ǫ
2

h
2

�

ǫ
2

h
2+2e

ǫ
2

h
2
+1

�

+4

�

+3

�

−1

�

−2

�

−1

�

�

eǫ2h2
−1

�3�

3eǫ2h2
+5e2ǫ2h2

+3e3ǫ2h2
+1

�2

α1,2,3,4

4ǫ2e3ǫ2h2
�

�ǫ2h2+e5ǫ2h2
+eep2h2

(1�2ǫ2h2)+2e3ǫ2h2
(ǫ2h2

�1)+e4ǫ2h2
(5ǫ2h2

�1)+1
�

(eǫ2h2
�1)

3
(eǫ2h2+1)(2eǫ2h2+3e2ǫ2h2+1)

2

α5,6,7,8

4ǫ2e6ǫ2h2
�

e2ǫ2h2
(�4ǫ2h2+2 sinh(ǫ2h2)+1)�1

�

(eǫ2h2
�1)

3
(3eǫ2h2+5e2ǫ2h2+3e3ǫ2h2+1)

2

τ9
h2

36

�
3u(4,0)(x0) − 2u(2,2)(x0) + 3u(0,4)(x0)

�
+ 2

3
ǫ2h2

�
u(0,2)(x0) + u(2,0)(x0)

�
+ O (h4P2(ǫ

2))
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Table 6: RBF-HFD �rst derivative

Three nodes

α0 0

α�1 ±
2ǫ

2
he

3ǫ
2
h
2
�
−4ǫ

2
h

2+e
4ǫ

2
h
2

−1
�

−8ǫ2h2e4ǫ2h2+e8ǫ2h2−1

eα�1

e
ǫ
2
h
2

(2ǫ
2
h

2 cosh(2ǫ
2
h

2)−sinh(2ǫ
2
h

2))
4ǫ2h2−sinh(4ǫ2h2)

τ3 − 1
120

h4u(V )(x0) −
1
6
ǫ2h4u(III)(x0) −

1
2
ǫ4h4u

′

(x0) + O (h6P3(ǫ
2))

3.2 RBF-HFD formulas

To check the validity of the formulas given in this subsection, we use again

u(x) = sin
�
x2

�

as test function, and use equations (7) and (8) to numerically compute the
coe�cients needed to approximate the �rst and second derivatives at x0 = 1
using the 1D stencil of Figure (6), where the double circle represents the
subset σ for these equations.

x
−1

x
+1x

0

Figure 6: RBF-HFD stencil

For each formula we compute the absolute value of the error as a function
of the shape parameter ǫ and the node distance h, and compare it with the
leading term of the local truncation error in the limit ǫh ≪ 1.

3.2.1 First derivative

Table 6 shows the exact values of the weights and the corresponding local
truncation errors for RBF-HFD formulas to approximate the �rst derivative
in 1D using the three node stencil shown in �gure 6.

Figure 7 shows the corresponding numerical error (solid line) and com-
pares it with the approximate error given by the formula in Table 6 (dashed
line). Notice that the agreement is excellent up to the point where the linear
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Figure7:LocaltruncationerrorτfortheRBF-HFDfirstderivativeasfunc-
tionofǫ(leftside)andh(rightside)usingthestencilsofFigure6. Solid
line:localtruncationerrorcomputedsolvingnumerically(7). Dashedline:
leadingorderformulaoftheerrorgiveninTable6.

systemtonumericallycomputetheweights(7)becomesill-conditionedand
round-offerrorsdeterioratetheaccuracyofthenumericalsolution. Theleft
partofFigure7showstheabsolutevalueoftheerrorasafunctionofthe
shapeparameterforh=0.05.Theaccuracyincreaseswithdecreasingǫ.

IthasbeenshownthatRBF-FDformulasapproachstandardfinitedif-
ferenceformulasinthelimitǫ→ 0[7]. WrightandFornberg[21]studied
RBF-HFDformulasandconcludedthatalthoughtherearenotsimilarrigor-
ousresultsforRBF-HFDformulasinthelimitǫ→ 0,theyexpectedsimilar
resultstohold.Infact,takingthelimitǫ→ 0intheweightsgivenintable
6resultsinα±1=±3/4,α±1=−1/4,whichagreeswiththeresultsinTable
3,page538of[6].

Itcanbeclearlyobservedthattherearetwodistinctvaluesofǫforwhich
theerroriszerotoleadingorder. Oneofthemoccursbeforetheappearanceof
ill-conditioningandisaccuratelypredictedbytheapproximateerrorformula.
Theotheroccursintheregionofill-conditioningand,therefore,cannotbe
seenwiththenumericalresults.

TherightpartofFigure7showstheabsolutevalueoftheerrorasa

18



functionoftheinternodedistancehforǫ= 5. Noticethattheerrorbe-
havesasO(h4)inagreementwiththeformulainTable6.Noticethatthe
RBF-HFDformulawiththreenodescontainsfiveweights(threeofthemin-
dependent). Thus,itshouldbecomparedtotheRBF-FDformulaforfive
nodes,whichalsocontainsfiveweights(threeofthemindependent). Both
havethesameerrordependencewithhandwithǫ,althoughtheRBF-HFD
threenodesformulaappearstobeslightly moreaccuratethanthe RBF-
FDfivenodesformula.Infact,asǫ→ 0theRBF-HFDlocaltruncation
errorapproaches−(1/120)h4u(5)whilethecorrespondingRBF-FDformula
approaches−(1/30)h4u(5).

3.2.2 Secondderivative
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(a)

Figure8: SameasFigure7butforthe RBF-HFDsecondderivative:(a)
formulation(7)nonexactforconstants,and(b)formulation(8)exactfor
constants.

Table7showstheweightsandthecorrespondinglocaltruncationerrorsto
approximatethesecondderivativein1Dusingthethreenodestencilshown
infigure6.Resultsareshownbothfortheformulationwhichisnotexactfor
constants(7)andfortheformulationwhichisexactforconstants(8).Inthis
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Table 7: RBF-HFD second derivative

Three nodes: non exact for constants

α0 −

2ǫ
2

�

−16ǫ
2

h
2+e

8ǫ
2

h
2
+2e

4ǫ
2

h
2 �

1−4ǫ
2

h
2

�2
+e

6ǫ
2

h
2 �

8ǫ
6

h
6
−20ǫ

4
h
4+8ǫ

2
h
2
−2

�

+e
2ǫ

2
h
2 �

72ǫ
6

h
6
−52ǫ

4
h
4+24ǫ

2
h
2
−2

�

+1

�

−16ǫ2h2+e8ǫ2h2
+2e4ǫ2h2

�

1−4ǫ2h2
�2

+e2ǫ2h2
�

−36ǫ4h4+32ǫ2h2
−2

�

−2e6ǫ2h2
�

2ǫ4h4+1
�

+1

α�1

2ǫ2e3ǫ2h2
�

48ǫ6h6�6ǫ4h4�10ǫ2h2+e4ǫ2h2
(2ǫ4h4�2ǫ2h2+1)�2e2ǫ2h2

(8ǫ4h4�6ǫ2h2+1)+1
�

�16ǫ2h2+e8ǫ2h2+2e4ǫ2h2 (1�4ǫ2h2)2+e2ǫ2h2 (�36ǫ4h4+32ǫ2h2�2)�2e6ǫ2h2 (2ǫ4h4+1)+1

eα�1

e3ǫ2h2
�

�6ǫ4h4�4ǫ2h2+e2ǫ2h2
(8ǫ2h2�2)+e4ǫ2h2

(2ǫ4h4�4ǫ2h2+1)+1
�

�16ǫ2h2+e8ǫ2h2+2e4ǫ2h2 (1�4ǫ2h2)2+e2ǫ2h2 (�36ǫ4h4+32ǫ2h2�2)�2e6ǫ2h2 (2ǫ4h4+1)+1

τ3 − 1
200

h4u(V I)(x0) −
3
20

ǫ2h4u(IV )(x0) −
9
10

ǫ4h4u
′′

(x0) −
3
5
ǫ6h4u(x0) + O (h6P4(ǫ

2))

Three nodes: exact for constants

α0 − 12
5h2 −

84ǫ2

125
+ 3021h2ǫ4

3125
+ O (h4ǫ6)

α�1
6

5h2 + 42ǫ2

125
− 3021h2ǫ4

6250
+ O (h4ǫ6)

eα�1 − 1
10

− 21h2ǫ2

125
− 677h4ǫ4

6250
+ O (h4ǫ6)

τ3 − 1
200

h4u(V I)(x0) −
7
50

ǫ2h4u(IV )(x0) −
7
10

ǫ4h4u
′′

(x0) + O (h6P3(ǫ
2))
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last case, only the series expansions of the coe�cients in the limit ǫh ≪ 1
are included. It should be pointed out, that in the limit ǫ → 0 the weights
given in table 7; α0 = −12/(5 h2), α�1 = 6/(5 h2), eα�1 = −1/10, coincide
with the results obtained with standard �nite di�erence formulas (see Table
3, page 538 of [6]).

Figure 8 shows the numerical error (solid line) in the approximation of the
second derivative with three equispaced nodes, using both the formulation
which is non exact for constants (7) and the formulation which is exact for
constants (8). The numerical results are compared with the approximate
error given by the formulas in Table 7 (dashed line). There is an excellent
agreement between the two results.

The left part of Figure 8 shows the absolute value of the error as a function
of the shape parameter for h = 0.05, and the right part shows the absolute
value of the error as a function of the inter node distance h for ǫ = 5. Notice,
that in the case of the formulation which is not exact for constants, there are
two values of ǫ for which the error is zero to leading order; ǫ+ ≈ 2.2674 and
ǫ+ ≈ 0.8922. For the formulation which is exact for constants there is only
one value, ǫ+ ≈ 0.9129, for which the error is zero to leading order. Similarly
to what happened with the �rst derivative, the error dependence on h and ǫ
of these RBF-HFD formulas using three nodes (three independent weights),
equals the corresponding error dependence of RBF-FD formulas using �ve
nodes (three independent weights). However, in the limit ǫ → 0 the accuracy
of the RBF-HFD (τ ≈ −(1/200)h4u(6))appears to be slightly better than
RBF-FD (τ ≈ −(1/90)h4u(6)).

4 Conclusions

In this work we derive analytical expressions for the weights of RBF-FD
and RBF-HFD formulas for �rst and second derivatives in 1D, and for the
Laplacian in 2D using Gaussians as RBFs. Results are presented for 3, 5, 7
and 9 nodes in the case of RBF-FD formulas in 1D, and for 5 and 9 nodes
in the case of RBF-FD formulas in 2D. For the case of RBF-HFD formulas
we compute the weights for �rst and second order derivatives, using three
equispaced nodes only. These weights are then used to derive analytical
expressions for the leading order approximations to the local error in powers
of the inter-node distance h. We show that the agreement of these formulas
with the actual numerical error is very good.

We also show that for each di�erential operator, there is a range of values
of the shape parameter for which RBF-FD formulas and RBF-HFD formulas
are signi�cantly more accurate than the corresponding conventional �nite
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di�erence formulas. In fact, very often there is an optimal value of the
shape parameter ǫ+ for which the error is zero to leading order. This value
can be easily computed from the analytical expressions for the leading order
approximations to the local error. Contrary to what is generally believed,
this value is, to leading order, independent of the internodal distance and
only dependent on the value of the function and its derivatives at the node.

The results presented in this paper can be used to e�ciently solve PDE
problems using RBF-FD or RBF-HFD formulas, by selecting a constant op-
timal value of the shape parameter (as was done in [2] for multiquadrics) or
by selecting a node-dependent optimal shape parameter (as was done in [3]
for multiquadrics).

It should be also emphasized that, contrary to what happened with mul-
tiquadrics [1], for Gaussians it is often possible to write the weights as exact
analytical formulas. Thus, it is not necessary to numerically solve the lin-
ear system de�ning the weights and, thereby, the problem of ill-conditioning
which appears often when using these techniques, can be completely avoided.
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