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1. INTRODUCTION

1.1. Motivation

Imagine you are told that no doctor is available to attend your needs and analyse your
current state provoked by some kind of illness. However, a computer will diagnose you and
send you your treatment. How would you react? Would you trust in this kind of clinical
robot? Maybe you are shocked and disagree in first instance, but the truth is that we are
not far away from this situation nowadays.

We are living the Artificial Intelligence (AI) era. Whatever we want, we are surrounded
by technology, computers, intelligent devices and incredible machines able to perform
more and more complex activities from our daily routine. We have built, in a scarce
decade, a parallel universe fed by data, data and more data. In consequence, the quantity
of information stored in what we call now ‘the cloud’ really scares. We are not aware of
the power of these stored numbers. They, with the help of Machine Learning (ML) [1],
can be converted into weapons capable of destroying our human rights and integrity or, in
the contrary, save our lives or help us to survive in an easier and more comfortable way.

Think about your mobile phone telling you what is the best road to take to arrive faster
to your job, or the advertisement about that product your needed that suddenly appeared in
the perfect moment to buy it. What about the board predicting what your wanted to write
or the facial recognition to unlock your personal device? If you were asked again the same
question, would you trust in a robot to diagnose you? Analysing all that AI has achieved
until now, you may see it in a different way.

This thesis is delimited in the scope of ML, a multidisciplinary field of which unifying
thread is the transformation of sets of data into information. This is reached through
problems resolution such as feature extraction, classification, regression or, what constitutes
the task with more complexity, the determination of probability distributions. In this last
approach it is particularly interesting the denominated Bayesian or probabilistic modeling,
where this thesis will be based. It allows in a very intuitive and direct way the incorporation
of our previous knowledge, quantify the uncertainty and generate artificial examples with
the same properties as the input samples. This easy explainable characteristic will be one
of the keys to apply this kind of models to health, the main application of the present work.
However, before going into detail about the problem solving and the application of our
researching, let’s see a little bit more about the tools we are going to use.

Recently, probabilistic modeling has been included in architectures from deep learning
[2], [3], giving rise to methods as Generative Adversarial Networks (GANs) [4]–[6] or
Variational Auto-Encoders (VAEs) [7], with a great ability to carry out the estimation
of densities in high-dimensional spaces through the determination of a latent projection
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in the observations. However, the Bayesian approach goes beyond, modeling the uncer-
tainty in the determination of parameters from deep neural networks and providing a
regularization strategy which allows to fight the bad conditioning of this problem. It is
defined Bayesian deep learning [8] and corresponds an alternative methodology to non
probabilistic techniques in the regularized training of deep networks.

Inside DL world, we know as Transformers [9] those models applied to Natural
Language Processing (NLP), one of the objective scenarios to study in detail during this
thesis. In the most complex and unstructured data bases, NLP can serve as a starting point,
as for example in the Electronic Health Record (EHR) from a hospital patient, where any
kind of data is combined with a great proportion of fields in a free text form. Because of
the many applications we can find from the NLP community, studies in this technology are
growing with non-stop.

Our development of algorithms based on probabilistic models in combination with
Transformers will be focused in obtaining solutions for data exploration in health, an appli-
cation with a huge social relevance, and more precisely, we will face the characterization
of human behaviour in population with mental disorders. From all data resulting due to
digital interaction on the patient side, defined generically as digital phenotype [10], the
principal goal is to obtain useful, explainable and unbiased information for the medical
staff, carers and family of the patients. All of this has the aim of improving the care cycle of
patients from the psychiatry branch in medicine. This data is composed of heterogeneous
values such as questionnaires with medical validity, diagnoses, treatments, social situation,
age, the doctor evaluation, indicators collected by wearable devices about physical activity
or sleeping, or information from the personal mobile phone with a important component
about social activity. Even though we will not analyse the whole phenotype during this
thesis, we will make use of a great proportion and show the advantages and utilities we are
capable of developing from them.

1.2. Contributions

We present a heterogeneous thesis dealing with the regularization of deep learning models
and data exploration in health thanks to the incorporation of the Bayesian approach and
Language Models (LM). We contribute to the ML community in very different branches
but with a very define common thread. Throughout this work, we mainly address the
following two branches:

1. Regularization of deep learning models such as Convolutional Neural Networks
(CNNs) or Transformers.

2. Application of ML tools in the diagnosis of mental disorders.

Moreover, the contributions of the thesis are collected in a series of papers, mentioned at
the beginning of the document. We reference 3 clinical papers and one technical (accepted
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with minor corrections) published in journals. We do also have one preprint in arXiv and
two other papers in process of writing.

1.2.1. Regularization of CNNs through robust sampling

Regarding the regularization line of research, we show the results of a smart mechanism
for selecting the samples from the minibatch during the training of CNNs in an image
classification problem. We present the experiments in well studied networks, VGG [3]
and All-CNN-C [11], as a good comparison in the literature. We base our idea in a
theoretical work [12] about the variance reduction in the real risk and reproduce it through
the repetition of the worst classified samples. This work serve as a touchdown with deep
learning and regularization models we will face during the thesis.

1.2.2. Regularization of LMs by a probabilistic layer based in a VAE

This is the main work during the thesis. It is composed of a complete study of our
regularization technique based in probabilistic models throughout the main LMs from
NLP, from sequence to sequence architectures [13], [14] until Transformer-based models
such as BERT, RoBERTa and XLM-R [15]–[17]. To conclude, it is closed with an external
application for data augmentation to be applied in other NLP tasks.

The proposal idea is based in a structured noise injection to the embedding of the
training sentences at some point of the LM structure. This is achieved thanks to a Gaussian
Mixture Variational Auto-Encoder (GMVAE) [18], which reconstructs the embeddings
with a forward and backward step into the projection to a hidden space. This reconstruction
is responsible of some noise injection following the probability distributions defined in the
architecture, provoking a regularization effect in the networks where it is applied.

In seq-to-seq models, with and without attention, we reconstruct missing words in
some text corpora with a more diverse topic constitution. However, in Transformers,
we obtain this same result or not depending on the layer depth we regularize. That is,
we do only regularize one layer and present Deep and Top NoRBERT, when including
the GMVAE block in the deeper layers or precisely before the top classification layer
respectively. Top NoRBERT is also able to find a topic-diverse generation of text, improved
to longer sequences regarding seq-to-seq structures. On the contrary, Deep NoRBERT gets
better score when reconstructing a sentence to its original form but in any case, we get a
regularizer effect capable of delaying the overfitting point. We validate our experiments
with different Transformers models and datasets.

Finally, related to this work, we present Contextual NoRBERT, with a conditioned
GMVAE including information from neighbors words on each embedding reconstruction.
We present improvements in the classification score of different datasets in both vanilla
and contextual NoRBERT.
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1.2.3. Applying Transformers in mental health diagnosis.

Following the analysis of Transformers, we present PsyBERT based in BERT [15] ar-
chitecture and inspired by BEHRT [19]. It consists on a Transformer Encoder with a
modified construction of the input embedding adapted to work with sequential data from
the EHR as it was natural language. We create several dictionaries, one per each feature
to be included from the EHR and concatenate the embeddings. Moreover, we include an
additional embedding from a free text field combining information from all visits in a
patient. AS a result, we obtain a sequential model capable of deal with heterogeneous data
such as coded diagnoses, age, text or sex.

We apply this architecture in solving two different tasks. On the one hand, we impute
the missing diagnoses in the EHR from a psychiatric hospital in Madrid. We face with
very high missing rates, more that the half of data, comorbidity and a total number of 768
different diseases. We present the results validated by an expert in psychiatry sector. On
the other hand, we deal with the diagnosis of delusional patients, a very low prevalence
disorder and very difficult to be recognize in many situations. Again, we validate the
results with the doctors and compare different models in the analysis of the experiments.

1.2.4. Applying probabilistic methods in mental e-health questionnaires.

The last line of research from the mental health perspective consist in a feature extractor
model applied to different questionnaires in order to find different behaviour patterns in
the users. These users correspond to psychiatric patients, so we combine these results
with the EHRs in order to find common patterns among patients from the same group of
disorders. The before mentioned feature extractor is a probabilistic model based on the
Indian Buffet Process (IBP) [20], [21]. More exactly, it consists on a nonparametric latent
feature model that proposes a sparse decomposition of the variables and is called Sparse
Poisson Factorization Model (SPFM) [22].

We present three different works following this procedure. Firstly, we applied the
methodology in a general health questionnaire in order to find different profiles among the
patients. We related these profiles with the diagnoses of the patients and obtain different
conclusions about the mental health of the users regarding the punctuation on sets of
questions. Secondly, we enclosed the problem into the search of relation between sleep
alterations and suicidal thoughts. During this work with show the correlation between
these two variables and conclude the results within a time window procedure o incorporate
sequential information. Thirdly, we conclude this line of works with a last application
during covid-19 lockdown. We make use of the same questionnaire as in the previous
work and use also time information in order to analyse the suicidal risk in patients before a
during lockdown. We conclude a decrease in the suicide risk during the lockdown, all the
contrary of what we could have expected.

In all these studies, we validated and worked in collaboration with doctors from the
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psychiatry sector. We always used the data that they considered more valuable and we
served as a platform between the model output and the expert interpretation.

1.3. Organization and connections

The following points define very shortly the work collected on each of the main chapters in
this document. As it is a heterogeneous thesis, we present the results in the easiest readable
way, what does not have to coincide with the real chronological sequence of the studies
development but they are sorted by importance value:

1. Chapter 2: Enrich the generation of missing words in a text corpora with a novel
regularization technique via Variational Auto-Encoders combined with LMs.

2. Chapter 3: Study Transformers networks in the diagnosis of mental disorders with
heterogeneous data from the EHR.

3. Chapter 4: Relate mental disorders with human behaviour patterns according
to a probabilistic model based in matrix factorization for data exploration from
questionnaires.

4. Chapter 5: Regularize other deep network models by a smart batch selection based
in variance reduction.

While in Chapter 3 we will use the EHR (Electronic Health Record) in order to predict
undetected or missing diagnoses from patients with any mental disorder, in Chapter 4
we will study psychiatric patterns regarding e-health questionnaires information. All our
medical studies are placed in the field of psychiatry and we use different patient sources of
information which are used in the often practice by the expertise professional. Therefore,
our tools can serve as an additional resource they can exploit in prognosis. We focus
our work in the diagnosis-related problems. With both chapters studies, we will find
connections between behavioral disorders, detect patterns in patients’ profiles, correct
errors in the EHR, fill missing information or treat comorbidity.

Regarding Chapters 2 and 5, we study two different techniques of regularization. The
first one, also considered the most important contribution from this thesis, is applied to
language models and the second is used in computer vision.

Finally, Chapters 2 and 4 are joined by models with a Bayesian approach. In the former
the regularizer is based in a Variatonal Auto-Encoder while the latter consists in several
applications of a non-parametric probabilistic method.
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2. NOISY REGULARIZED LANGUAGE MODELS

2.1. Introduction

Language models (LM) have grown with non-stop in the last decade, from sequence-to-
sequence (seq2seq) architectures to attention-based Transformers. However, regularization
is not deeply studied in those structures. In this work, we use a Gaussian Mixture Varia-
tional Autoencoder (GMVAE) as a regularizer layer. We study its advantages regarding
the depth where it is placed and prove its effectiveness in several scenarios. Experimental
result demonstrates that the inclusion of deep generative models within Transformer-based
architectures such as BERT, RoBERTa or XLM-R can bring more versatile models, able to
generalize better and achieve improved imputation score in tasks such as SST-2 and TREC
or even impute missing/noisy words with richer text.

Deep Generative Models (DGMs) have become a cornerstone in modern machine
learning due to their ability to learn abstract features from high-dimensional spaces to
generate new data ([4], [23]). In the field of Natural Language Understanding (NLU),
state-of-the-art is dominated by attention-based probabilistic models, a class of explicit
DGMs that can be trained with Maximum Likelihood Estimation (MLE) approaches [24].

Regarding other well known DGMs such as Generative Adversarial Networks or GANs
[4], so far for NLU they have not shown the same outstanding results that they achieve
for image processing ([6], [25], [26], [27]), mostly due to the discrete nature of the
data, which leads to non-differentiable issues, mode collapse and optimization instability
([28], [24]). To tackle these and other issues, recent contributions propose the use of
Reinforcement Learning techniques to optimize the GAN loss function ([29], [30], [31],
[32]), continuous approximations to discrete sampling ([33], [34], [35]), learning a low-
dimensional representation through autoencoders ([36], [37], [38], [39], [40], [41], [42]),
use other approaches ([43], [44]) or even more recently combine them with transformers
[45]. Besides, explicit DGMs such as variational autoencoders (VAEs) have also been
proposed in several NLU approaches again with limited success ([46], [47], [48], [49],
[50], [51], [52]). Some of the pioneers in this field were [53], who proposes a RNN-based
VAE for text generation. Even in an extent, [54] combine a VAE with a discriminator to
build a hybrid model that solves the text generation problem. In all these works, both
GANs and VAEs are at the core of the NLU model, and hence are fully responsible to
capture the semantic structure and generate text. For this particular task, they are still not
competitive with attention-based probabilistic models [24].

In this work, we propose to exploit DGMs for NLU in a completely novel and different
way. Instead of training a DGM to solve a NLU task, we rely on a hybrid model in which
a transformer-based architecture like BERT [15] is combined with a VAE, which is placed
inside its structure as a stochastic layer that helps to learn a richer hidden space, enforcing
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a regularization effect. In particular, we use a hierarchical VAE that implements a mixture
of Gaussians in the latent space (GMVAE) [18], since it is able to capture more complex
data in an easier way than the traditional vanilla VAE. In a similar way, [55] and [56] built
fusion models taking advantage of a pre-training process as we explain later. Nevertheless,
they only focused on a basic seq2seq architecture.

Regularization in deep learning has risen up from the beginning of Neural Networks
(NN) with the extensively use of tools such as dropout [57], early stopping [58], data
augmentation [59], weight decay [60], or more recently transformer-based dropout, DropAt-
tention [61], which helps models to generalize. However, regularization in NLUs is a
much-less explored field and none of these tools experience the same versatility as our
proposal in this paper, in which the GMVAE performs a controlled and structured noise
injection within the NLU deep network. When combined with BERT, we name our model
as NoRBERT (Noisy Regularized BERT) and we conclude that the effect of the stochastic
layer is very different depending on the transformer layer where it is placed. If the layer is
placed at the bottom of the structure, it improves BLEU (Bilingual Evaluation Understudy)
score [62], what coincides with the goal of traditional regularization mechanisms and
GLUE (General Language Understanding Evaluation) benchmarks. On the contrary, when
placed at the top, it drives more versatile topics when imputing missing words.

Mainly, we illustrate our approach in word imputation problems (masking tokens in
the source text corpora) using a BERT transformer network or any of its variants. However,
we extend those results in other scenarios as a prove of our methodology effectiveness.
The contributions of our work, sorted by importance grade, are as follows:

• We demonstrate gains in a setup of pretraining masked language modeling (MLM)
by better BLUE score in a large set of examples through Deep NoRBERT.

• We also show the versatility of the method to impute missing words. We used Top
NoRBERT for this result.

• Then, we apply our model as a data augmentation tool to solve a classification task
with improvements over the baseline without any data augmentation at all.

• As the first step, we explore the GMVAE regularization effect in traditional seq2seq
models with and without attention mechanisms and expose its results as a positive
evidence to explore larger models.

• At the begining of the chapter, we include the explanation of the regularization
functionality in a simple well-known problem which is the classification of Fashion
MNIST images and compare it with dropout mechanism.

The code to generate our results in FMNIST is available in an open repository1 and the
code for NoRBERT model is in another one2.

1https://github.com/AuroraCoboAguilera/NoRClassifier
2https://github.com/AuroraCoboAguilera/NoRBERT
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This work is organized as follows. Firstly, in Section 2.2 we describe some related
work which is key to understand the paper: the VAE, and more precisely the GMVAE, as
the main structure of the regularizer and transformer networks with BERT as our main
model to be studied. In addition, throughout the paper we include some experiments with
RoBERTa and XLM-R as improved versions of BERT but with few differences in their
structures. Secondly, in Section 2.3 we explore a basic example of applying our idea in
the classification of the Fashion MNIST dataset. This is a useful prove of the stochastic
layer effect and its effectiveness in a completely different scenario, comparing it with
dropout. Thirdly, in Sections 2.4 and 2.5 we describe in detail our model. We start we
Noisy Regularized seq2seq and finish with NoRBERT and two variants of it, Top and Deep
NoRBERT, depending on the transformer layers where we apply the regularization. Then,
we present the results of these two options in Section 2.6. Finally, we study our model as a
data augmentation tool in a classification set-up in Section 2.3. As a conclusion, in Section
2.8 we resume our contributions and mention some future lines of research.

We wanted to focus the thesis in this main work, so this is our more extensive piece,
where we have given more effort during these 4 years of doctorate.

2.2. Related work

2.2.1. Variational Autoencoders with Gaussian mixture priors

A VAE [23] is a class of density estimator that consists on two networks, an encoder
and a decoder or generator, that builds a regular latent space with the help of probability
distributions. The properties of the organized latent space allow not only the reconstruction
of the input data but also the generation of new instances from a sampling procedure.
In a standard vanilla VAE, see Figure 2.1a, the low-dimensional latent space follows a
Gaussian prior distribution, i.e. its parameters, the mean and covariance matrix of p(x|z),
are parameterized through the decoder network with input z. Variational inference of the
model parameters is achieved by maximizing a lower bound on log p(x), which in turn
depends on a flexible NN parameterized distribution q(z|x) that approximates the true
posterior p(z|x):

LELBO (θ, ϕ, x) = Ez∼qϕ(z|x)
[︁
log pθ (x|z)

]︁
− KL

[︂
qϕ (z|x) ∥p (z)

]︂
, (2.1)

where KL(q|p) is the KL divergence between distributions q and p and acts as a regu-
larization in the evidence lower bound (ELBO) objective. The graphical model of the
variational approximation, q(z|x), is indicated in Figure 2.1a with dotted lines.

The flexibility of VAEs has encouraged the study of different priors and architectures to
obtain models capable of inferring more complex structured data. That is the case of using
a Mixture of Gaussians (MoG) as the prior distribution p(z) for the latent space because it
helps to capture the multimodal nature of some data [18], [63]. We refer to this method as
GMVAE, and its graphical model is shown in Figure 2.1b. The generative model of the

10



z

x

(a) VAE.

w y

z

x

(b) GMVAE.

Figure 2.1: The directed graphical models into consideration. Solid lines denote the
generative model and dashed lines the variational approximation. The shaded variables are
considered the observed inputs, the dark units are the networks parameters to be optimized
and the units that are left are the latent variables.

GMVAE proposed by [18] is characterized by the following distributions:

p(z) =
∫︂

p(z|w, y) · p(w) · p(y)dwdy (2.2a)

p(w) = N(0,I) (2.2b)

p(y) = Mult(π), πi =
1
K

(2.2c)

pβz (z|w, y) =
K∏︂

k=1

N(µβyk
(w),Σβyk

(w))yk==1 (2.2d)

pθ(x|z) = N(µθ(z), σI), (2.2e)

where µβyk
, Σβyk

and µθ are neural networks. µβyk
and Σβyk

indicate a different NN per
component in the MoG and K is the total number of components. The posterior distribution
of z,w and y given x is chosen according to the following factorization

qϕz(z|x) = N(µϕz(x),Σϕz(x)) (2.3a)

qϕw(w|x) = N(µϕw(x),Σϕw(x)) (2.3b)

qβy(y j == 1|w, z) =
p(y j == 1) · pβz(z|y j = 1,w)∑︁K

k=1 p(yk == 1) · pβz(z|yk = 1,w)
, (2.3c)

where again µϕz , Σϕz , µϕw , and Σϕw are dense neural networks, resulting in the following
ELBO:

LELBO (θ, ϕ, x) =

Ez∼qϕz

[︁
log pθ (x|z)

]︁
− Ew∼qϕw , y∼pβy

[︂
KL

[︂
qϕz (z|x) ∥pβz (z|w, y)

]︂]︂
−

Ez∼qϕz , w∼qϕw

[︂
KL

[︂
pβy (y|w, z) ∥p (y)

]︂]︂
− KL

[︂
qϕw (w|x) ∥p (w)

]︂ (2.4)
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The Conditional GMVAE

When we deal with conditional DGM, we mean that the entire generative process is condi-
tioned on some extra observed inputs. [64] presented Conditional Variational Autoencoder
(CVAE), where the observations modulate the Gaussian prior. In a similar way, we have
studied two architectures to condition our distributions on an input that we have defined h.
In this section, we expose the changes applied and describe the two versions of C-GMVAE
that we have explored, referred as models A and B.

w y

z

x

h

(a) C-GMVAE model A.

w y

z

x h

(b) C-GMVAE model B.

Figure 2.2: The directed graphical models considered for the C-GMVAE in the work. Solid
lines denote the generative model and dashed lines the variational approximation.

The first architecture (model A) that we tried is shown in Figure 2.2a. For its imple-
mentation we had to change the prior distribution of w as p(w|h) ∼ N(µ(h),Σ(h)), where
the mean and variance of the normal distribution are parameterized by dense nets, and
qϕw(w|x, h) = N(µϕw([x; h]),Σϕw([x; h])), where we only concatenate h to the original input
x. The main drawback of this model is that the reconstruction as we performed it (compute
z from x through the inference model and then reconstruct x from this z by the generative
model) does not use the observed h.

The graph in Figure 2.2b belongs to our second version (model B), the one we applied
to the presented results. In contrast, in the generative model, we now maintain the original
prior of w but condition the z distribution on h as Equation 2.5a. For the variational family,
we modify the encoding of z as Equation 2.5b.

pβz(z|w, y, h) =
K∏︂

k=1

N(µβz([w; h]),Σβz([w; h]))yk==1 (2.5a)

qϕz(z|x, h) =
K∏︂

k=1

N(µϕz([x; h]),Σϕz([x; h])) (2.5b)
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2.2.2. Language Models

In this section, we recap the language models that are regularized during the study. Then,
we start with basic sequence to sequence models to finish with Transformers.

Sequence to sequence

In the field of NLU, architectures based in an encoder-decoder framework have been
considered a milestone and were constantly studied in the literature until the appearance
of Transformer-based pre-trained models. That is the reason why we decided to start to
research in the idea of probabilistic regularization in them, as a baseline, and then, at the
same time I enriched my knowledge in the field, I could go into a more complex scenario
within Transformers.

A sequence to sequence (seq2seq) model is an architecture composed of an encoder
which maps the input sentence into a fixed-size vector and a decoder to map this vector
into a target sentence. This sequence to sequence, or sentence to sentence, transformation
was what made them successed as a machine translation tool [65].

Firstly, those that rely on RNNs generate a sequence of hidden states, each ht as a
function of the previous one, ht−1 [65]. However, they show limitations for long sentences
since they encode the semantic and syntactic information of a whole sentence in a single
vector. Then, LSTM-based units appeared to give better results [65]. Additionally, attention
mechanisms [13], [14] allow this kind of models to focus on the relevant parts of the source
sentence, acting as an alignment system between encoder and decoder and improving the
performance.

In this work, we will study both perspectives, with and without attention, and they will
serve as a precedent to the final NoRBERT construction.

Transformer networks

Over the last couple of years, Transformers [9] have become a revolution in the field of
NLU ([66], [67], [68], [69], [70]) due to their ability to capture longer-range linguistic
structure. Unlike previous works ([65], [13], [14]), they rely entirely on self-attention to
compute the latent representations of the sentences.

Transformer-based models are usually applied in a transfer learning perspective ([15],
[71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81] [82] [83]) that allows users to
train smaller datasets in a specific task quicker and more accurate than doing it from scratch.
Firstly, you need a pre-trained model that has learned contextualized text representations
in a general unsupervised scenario with a large text corpus. Afterwards, you can fine-
tune the model using a small database with the addition of few parameters or layers in a
downstream task. This is the case of BERT (Bidirectional Encoder Representations from
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Transformers) [15], providing a pre-trained Transformer text encoder as a general LM
for any downstream task. It generally learns bidirectional representations from unlabeled
text by the conditioning on right and left context information. Since its appearance,
several BERT-based models have emerged ([16], [84], [85]) and today they dominate
the leaderboard3 in GLUE benchmarks [86]. In this work, we will use different versions
of BERT. In general terms, RoBERTa [16] makes a different choice in the pretraining
hyperparameters and XLM-R [17] uses a dataset with samples in different languages. We
will see experiments for all three models in order to prove the effectiveness of our method
in a larger range of NLU problems.
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Figure 2.3: Diagram of BERT structure with two encoder layers and no task-specific layer.

Figure 2.3 shows a diagram with the structure of BERT for the first two layers. Basically,
it is composed of a first step with the computation of the input sentences embeddings, then
a pile of transformer encoder layers, and then, if it is necessary we can apply any task-
specific layer on top. Each of these encoder layers consists on two blocks, a multi-head
self-attention mechanism and a feed forward network, both with a normalization following
them.

Regarding the implicit regularization mechanisms within BERT, dropout and weight
decay are applied through all the structure: in the fully connected layers in the embeddings,

3https://gluebenchmark.com/leaderboard
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encoder, pooler and in the attention probabilities with rates of 0.1 and 0.01 respectively
(in the pretrained version we use, see Section 2.6.2). Furthermore, our BERT pretraining
follows the MLM, a strategy that may work as a regularizer at some extend since it hides
and corrupts some tokens from the original sentences.

BERT makes use of WordPiece embbedings [87] with a vocabulary size of 30000
tokens in the base models we use. They are pre-trained in the datasets of Book Corpus
[88] with 800M words and English Wikipedia with 2500M words.

2.3. GMVAE as a regularizer in deep neural networks

In this work, we put forward GMVAEs as a robust stochastic layer to enforce regularization
in a deep NN, with particular focus on NLU and Transformers. Before describing the
methodology in a complex LM, we want to illustrate our approach in a simpler setup, in
which we regularize a deep six-layer MLP over the Fashion MNIST (FMNIST) database4

[89].

The dataset is composed of 28x28 images in grayscale associated with a label from 10
classes. We divide the set in 12000 samples for training and 48000 for validation. The test
set has 10000 images. The only preprocessing step is the normalization to 0.5 mean and
variance.

The model used for these experiments consists on 9 linear layers with RELU as the
activation function. The size of the output features on each layer is, from bottom to top,
700, 600, 512, 256, 128, 64, 32, 16 and 10, which corresponds with the number of classes.
We employ a negative log-likelihood loss function and the SGD with a learning rate of
0.01 for the optimization.

0 25 50 75 100 125 150 175 200
Pre-training epochs

0.0

0.5

1.0

1.5

2.0

2.5

Train Loss
Valid Loss

Figure 2.4: Pre-training a six layer MLP for FMNIST.

In Figure 2.4 we show the train/validation cross entropy loss of the NN in a completely
unregularized training (no dropout or weight decay whatsoever). Validation error begins

4https://github.com/zalandoresearch/fashion-mnist
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to raise up from epoch 120. Now we perform the following experiment. We get the NN
parameters at epoch 119, at which overfitting was not yet noticeable (i.e. early stopping
procedure), and we introduce two types of regularization layers between the first two MLP
layers:

1. A standard dropout layer with erase probability p.

2. A GMVAE layer trained using the 700-dimensional internal representation of the
first MLP layer. For every output from the first MLP layer, the GMVAE layer
first computes a latent low-dimensional representation sampling from the GMVAE
posterior distribution in (2.3a)-(2.3c) to then provide at the output a reconstruction
sampled from the generative model in (2.2a)-(2.2e).

Note that the GMVAE layer, as dropout, is introducing a certain level of distortion
over the input vector but, unlike dropout, such distortion is not independent to the input
vector, as for some atypical vectors the reconstruction noise will be larger. This allows
the network to explore diverse regions at the input of the following layer. In Figure 2.5a
we show the train/validation cross entropy loss when the layer 1 parameters are frozen (so
the GMVAE input distribution is not changing) and we keep training MLP layers 2-6. In
Figure 2.5 we also show the performance when dropout with p = 0.1 (b) and p = 0.5 (c) is
used instead of the GMVAE layer.

On the one hand, observe the inability of dropout to compensate the overfitting of the
network. On the other hand, due to the controlled noise injection, the GMVAE avoids
overfitting even after an excess of additional epochs. With these figures we can state that
the training loss decays much more slowly in our model with a score of 0.3 after 700
epochs, while in the dropout case it drops off almost to zero after 150 epochs.
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(a) With GMVAE layer.
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(b) Dropout probability of 0.1.
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(c) Dropout probability of 0.5.

Figure 2.5: Fine-tuning a six layer MLP for FMNIST with the GMVAE regularization
layer placed after the first MLP layer (a) and with dropout in the first layer ((b) and (c)).

Finally, we have included a graph with the training of the NN when dropout (p = 0.1)
is applied to every layer, since it is the traditional way this regularization mechanism
usually works. As seen in figure 2.6, even with this approach, the overfitting behaviour is
still reached in more extend than with the GMVAE.
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Figure 2.6: Fine-tuning a six layer MLP for FMNIST with dropout in all layers.

With this example, we simply want to put forward the use of a DGM (a GMVAE in our
case) as a potential regularizer with additional flexibility, compared to simpler solutions
such as dropout. A detailed cross-validation analysis of what kind of regularization method
optimizes the classification performance in this particular setting is not relevant at this
point. In the following, we show how the use of GMVAE layers is able to enhance the
performance of complex LM such as seq2seq (Section 2.4) and pre-trained networks
such as BERT (Section 2.5), which of course have already been trained with its own
regularization methods (including dropout).

2.4. Improving seq2seq with GMVAE layers: NoR-seq2seq

The main idea of our work is the integration of a DGM in different language architectures.
The objective of this hybrid model is the addition of structured random noise to the suitable
hidden vectors of these architectures so we obtain more robust solutions. In this section
we define the way of regularizing the seq2seq model, that is, the place where we include
the GMVAE layer within the LM architecture and how we train it. Firstly, we describe the
regular version [13] and next the one with attention [14]. In the latest, we propose several
scenarios. For every case consider the regularizer as a black box (in figures is a box in
green color with the GMVAE name), where the input is a hidden vector from the LM, h,
and the output its reconstruction by the GMVAE, ĥ.

The training procedure is always the following:

1. Pre-train the LM model as the original version does.

2. Train the GMVAE with the corresponding hidden vectors regarding the place where
it is going to be applied and the training sentences from the dataset.

3. Incorporate the GMVAE layer within the LM structure.

4. Finetune the LM model with the GMVAE layer reconstruction, freezing the parame-
ters in the structure below the regularization.
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2.4.1. Sequence to sequence

In this architecture, we propose to train a GMVAE over the encoder output as shown in
Figure 2.7. In the fine-tuning step, the encoder is fixed and the decoder is re-trained taking
as inputs the GMVAE noisy reconstructed vectors.

Figure 2.7: Diagram of the regularized seq2seq model.

2.4.2. Sequence to sequence with attention

Now, as the decoder attends to the encoder hidden states at each time step, the previous
approach (in 2.4.1) results to be insufficient. In this section we present two kind of
methodologies: the option 1 regularizes the hidden states in the decoder LSTMs with a
Conditional GMVAE (C-GMVAE), and the option 2 the attention vectors with a GMVAE.

The option 1 aims to regularize the hidden states of the decoder at each time step
(h0, h1, ...hT ). To achieve this task, we train a C-GMVAE with pairs of consecutive hidden
states (hi, hi+1) from the training sentences, the first one acting as the conditioning input
and the second as the input to be reconstructed. See Section 2.2.1 for details on the
C-GMVAE. At each time step, the C-GMVAE receives the previous reconstructed state
and the current hidden state (ĥi−1, hi) to reconstruct the latter (ĥi). As an exception, the
first iteration reconstruction, h0̂, is conditioned to the encoder output. Figure 2.8a shows a
diagram with this approach. We highlight in blue the process concerning the step i = 1 as
an example, but it is repeated from the beginning until the moment the end-of-sentence
token is generated.

(a) Option 1.

DECODER

ENCODER

(b) Option 2.

Figure 2.8: Diagrams of the GMVAE regularized seq2seq model with attention.

Option 2 is structurally simpler. We incorporate the noise in a controlled way, avoiding
dependencies on previous states. For that, we propose to introduce the GMVAE layer
inside the attention mechanism itself. In particular, the GMVAE layer is trained over the
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context vectors (c0, c1, ...cT ). For more details in the attention structure see [13]. The model
is shown in Figure 2.8b, where we train the GMVAE with the context vectors of words
from the training sentences. We treat each token independently in the GMVAE, since the
context vectors usually attend to no more than one or two tokens, thus not requiring a
Conditional GMVAE.

Other models

In the autoregressive model of seq2seq with attention, we, firstly, tried training the C-
GMVAE from Figure 2.2a to generate each hidden state conditioned on the previous one.
These generated states were the inputs for the next LSTM unit. However, it did not work as
good as we expected. Consequently, we changed the process in a way that instead of using
the DGM to generate samples, we could take advantage of its latent space and reconstruct
the original hidden states from the LSTMs.

Inspired by the first model (Section 2.4.1), we also tried to follow the same idea that
is presented as option 1 in Section 2.4.2 but conditioning always in the encoder output
instead of the previous hidden state, but it did not improve neither the results that we are
presenting in this work.

Regarding the option 2, initially we used a simpler approach, regularizing the attention
output after concatenating it with the LSTM output and exactly before applying the
classification layer that matches the vocabulary size. Here, the training was not successful
and the imputed words did not follow grammatical rules as a LM is expected to do.
After this, we tried the integration of the GMVAE in a previous step, as it is successfully
explained in this work.

2.5. Improving BERT with GMVAE layers: NoRBERT

2.5.1. Overview

The main work of this chapter is the integration of the GMVAE in BERT through NoRBERT.
In this hybrid model, the GMVAE layer alters the BERT hidden embeddings in one
particular layer through a project-and-reconstruct operation, adding a structured noise to
them and hence enforcing a regularization mechanism, the same perspective we saw in
Section 2.4. In other words, we try to break the determinism in exchange of more robust
solutions. Unlike in other regularization techniques such as dropout, the reconstruction
error plus the observation noise (GMVAE noise for short) of the GMVAE will not be
uniform across embeddings, since atypical embeddings will suffer from larger GMVAE
noise variance. As a result, the network training will rely less on such noisy embeddings,
which we show in Section 2.6 is beneficial for the overall performance.

We want to stress the fact that we use BERT as an exemplary case of how a certain
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neural language model can be enhanced by the inclusion of GMVAE layers within. Fur-
thermore, in Section 2.4 we showed how to incorporate the same idea in seq2seq language
models with attention and later in Section 2.6.2 we will see the same approach applied to
RoBERTa and XLM-R, which both are based in BERT architecture and all this section
also applies to them. Moving back to BERT, NoRBERT builds upon a pre-trained BERT
model, allowing the integration of the GMVAE in an intermediate step. Comparably to
Section 2.4, we follow these four main steps:

1. Pre-train BERT with a masked text corpora, i.e. MLM over unlabeled samples.

2. Train a GMVAE over the space of hidden embeddings coming from input sentences
using one particular BERT layer.

3. Include the GMVAE layer inside the structure. The GMVAE will be responsible for
adding noise in the propagation of the information, as in the GMVAE layer every
input vector is projected into a low-dimensional space and reconstructed back by
sampling from the generative model.

4. Retrain the model by fine-tuning all layers above the GMVAE one. The layers below
the GMVAE one are not altered so we do not modify the embedding space in which
the GMVAE was trained on.

Regarding the base BERT model, for the implementation we use the one from [15]. In
the training we use the MLM approach as [16], since it is the straightforward strategy to
train transformers in word imputation [72].

2.5.2. Methods

In the same way we analysed several scenarios regularizing seq2seq models, in the study
of NoRBERT we explore placing the regularizer in different layers from BERT. Firstly,
we consider the consequences when the biggest part of BERT is retrained after placing
the GMVAE in one of the first and middle layers. This is referred to Deep NoRBERT.
Secondly, we look into the effect of the GMVAE on top of the transformer encoder, just
before the classification layer that computes the vocabulary logits. We refer to this case as
Top NoRBERT.

Deep NoRBERT consists on a new version of BERT, with a stochastic layer inside a
specific intermediate encoder layer, after the self-attention and before the feed-forward
block as shown in Figure 2.9(a). In the step 4, we fine-tune the parameters in the structure
above the regularizer, that is, the feed-forward block in the same encoder layer and the
whole layers that are on top of it. In our experimental results, we demonstrate gains w.r.t.
the base BERT model by including only one GMVAE layer. We tried using GMVAE layers
within the BERT structure but resulted in negligible goals.
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Figure 2.9: Deep NoRBERT (a) and Top NoRBERT (b).

In Top NoRBERT we include the GMVAE stochastic layer on the top of the transformer
encoder as represented in Figure 2.9(b). Therefore, the only difference from the original
model is that we use a GMVAE to reconstruct the last hidden states before the final token
decision. We previously train the GMVAE with the hidden states computed by base BERT
for the training sentences. Afterwards, we fine-tune the classification layer of BERT with
the stochastic reconstruction integrated.

The main difference in the implementation of both models relapses in the place of
the GMVAE within the transformer layer. While in Top NoRBERT we are looking for
modifying the upper embeddings in the whole structure, in Deep NoRBERT we are
interested in the lower ones. Therefore, we add noise in the output of the feed-forward NN
in Top NoRBERT cause it is the closest embedding to the classification layer. Regarding
Deep NoRBERT, we also studied to modify the output of the feed-forward but appeared to
work worse (in terms of accuracy and BLEU score) so that is why we apply the GMVAE
in the output of the self-attention layer.

2.6. Experiments

In first place (Section 2.6.1), we show how the imputation diversity of traditional seq2seq-
type models [13] can be enhanced by including a regularizer GMVAE layer inside their
structure. We start with a simple seq2seq model and then a seq2seq with attention [14].
Then, in Section 2.6.2, we show the results of regularizing Transformers with the same idea.
In this second LM we obtain two different results depending on the variety of NoRBERT
used: with Top-NoRBERT we found similar advantages as in seq2seq models but with
Deep-NoRBERT instead of augmenting the diversity in the imputation of missing words
we improved the BLEU score. We will see then two different advantages our proposal can
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achieve depending of the application form.

Data

In Section 2.6.1 we train the models with the Multi30k dataset [90]. Multi30k is composed
of a training set of 29000 sentences and a set of 1000 test sentences with a vocabulary
size of 10118 tokens. Although it belongs to a multilingual image description task with its
corresponding translations in German, we only focus on the English descriptions. It is not
a very large corpora, but we mask some tokens so the scenario gets more complicated to
be trained. We use different strategies in the masking process, with higher and lower rates.

In the first strategy (for NoR-seq2seq), we use a policy of masked tokens more
sophisticated that permits the masking of a less percentage of words but focusing on nouns,
verbs, adjectives. . . That is, ignoring stopwords. We use the English stopwords list from
the nltk5 library [91]. We mask the 80% of the sentences and generate two masks in a
sentence with a probability of 0.8. Among these, we also generate a third mask with
probability of 0.8.

In the second strategy (for NoR-seq2seq with attention), we increase the number of
masked tokens and do not exclude any grammatical class so any word can be deleted.
In this policy, we mask each token with a probability of 0.6. Therefore, we have more
[MASK] tokens than proper words.

Afterwards, also in Section 2.6.1 we employ a dataset with more complexity as it is
the Stanford Natural Language Inference (SNLI) corpus6 [92]. It has a vocabulary size
of 36711 different words. We use the entire preprocessed training data which contains
714667 sentences and a test set of 13350.

In the main experiments with BERT model (Section 2.6.2) we employ SNLI with
different strategies in the masking process of tokens. The GMVAE is trained for all the
tokens of a random set of 50000 training sentences. When saving the hidden states to train
the GMVAE a posteriori, we treat each token as an independent input to the GMVAE,
ignoring tokens that correspond to padding (they exist due to BERT format of the tokenizer,
WordPiece).

Later in Section 2.6.2, we deploy a set of experiments with Deep NoRBERT and the
three previously mentioned transformers models (BERT, RoBERTa and XLM-R) for which
we use three different datasets, Multi30k, SST-2 and TREC. Stanford Sentiment Treebank
(SST) is one of the most well-known datasets in sentiment analysis [93]. In this scenario
we use 6228 training and 692 validation samples about movie reviews from SST-2. Lastly,
the Text REtrieval Conference Question Classification dataset, or TREC for short [94],
contains 4906 labeled questions in the training set and another 546 for the validation one.
It has 6 labels and the average length of each sentence is 10 with a vocabulary size of

5https://www.nltk.org/
6https://nlp.stanford.edu/projects/snli/
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8700. In both datasets, SST-2 and TREC, we omit the classification purpose they originally
had. Moreover, in the three corpus we employ all training samples to obtain the token
embeddings in the GMVAE optimization since the set size is significantly smaller than in
SNLI.

To speed up the loading of data, we utilize the extension hdf5 for saving the hidden
vectors. Moreover, this way we avoid memory issues when loading the datasets in the set
ups since the files with the hidden states have significant sizes.

2.6.1. Noisy Regularized Sequence to Sequence

NoR-seq2seq

In this model, we follow the network structure from [14], omitting the attention mechanism
for now. Consequently, we will use a LSTM as the RNN unit, a bidirectional encoder, a
depth of two layers in the networks and a hidden size of 1024 for each of them.

The configuration of this scenario pursues a seq2seq pre-training of 120 epochs and a
fine-tuning of the regularized decoder for only 20 epochs after training the GMVAE. In the
GMVAE, after different experiments validating the hyperparameters, we finally chose 1500
for the hidden dimension, 100 for z, 20 for w and a K of 10 MoG in the prior. The depth in
the networks is 5 layers and the deviation, σ, of the posterior normal distribution in the
decoder 10−4. We saved the hidden states (encoder output) of all the training sentences,
and trained the GMVAE for 100 epochs.

One of the problems of this first model is caused by the limitations of our baseline.
Seq2seq is not suitable for dealing with complex and realistic datasets, that is, long
sentences and a wide dictionary, since they encode the semantic and syntactic information
of a whole sentence in a single vector, i.e. the encoder output. Notwithstanding, we present
in this section some examples where the effect of the regularization layer can be evaluated.

In Table 2.1 we show some test sentences reconstructed by our model compared with
the baseline, which is the pre-trained seq2seq model without any GMVAE stochastic layer.
In both cases, we reconstruct with the most likely word. By its own, a seq2seq model
fulfills its task if the dataset is not very complex, so we have restricted the results to that
premise (refer to Section 2.6 for dataset details). Our model achieves its goal when the
sentences are short enough, finding words that fit the holes, while the baseline fails more
often in the task, repeating the previous or following word into the masked place ([MASK]
token) when it seems not to predict anything better (examples 2, 3 and 5). In addition, our
method is able to change other words in the sentence, even if they were not masked, so the
overall construction has more sense (example 2). However, in complex scenarios (example
5), both tend to fail, above all our approach, with ungrammatical sentences.
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a woman standing in a dark doorway , waiting to be let into the building .
a woman standing in a dark small game waiting to be let into the building .
a woman standing in a dark blue jacket waiting to be let into the building .

a man in an orange hat starring at something .
a man in an hat hat starring at many .
a man in an orange shirt performs at night .

the red car is ahead of the two cars in the background .
the red car is is of the cars cars in the background .
the red car is is of the street cars in the background

five people wearing winter jackets and helmets stand in the snow , with snowmobiles in the background.
five girls , winter jackets and helmets stand in the snow , with flowers in the background .
five soccer , winter teenager and others stand in the snow with this river in the background .

a large bull targets a man , inches away , in a rodeo with his horns , while a rodeo clown runs . . .
a bull bull targets a man , petting away , in a bottle with his other , while a rodeo clown tries . . .
a young boy move a shoeshine opponent head , wearing a blue with the girl , with two boys . . .

Table 2.1: Examples of sentences reconstructed by the regularized seq2seq. The first
sentence is the original one, with the observed words underlined, i.e. no underlying
means a missing word. The second is the output of the baseline seq2seq pre-trained.
Finally, we show our method. The words in red correspond to mismatches with the original
sentence.

NoR-seq2seq with attention

In this scenario, we keep the same configuration from [14], but including the global
attention mechanism. Next, we show the results for both options describe in Section 2.4.2.

In the option 1, the C-GMVAE is trained with consecutive pairs of hidden states from
the whole training set during 100 epochs. We finally used a hidden dimension of 1500, 150
for the latent space of z and 50 for w. We configured K = 20 classes in the MoG and a σ of
10−2 for the decoder posterior. The number of layers on each of the modeled distributions
was 6. During the training we selected a learning rate of 10−5, a dropout of 0.3 and a batch
size of 64.

In the option 2, the GMVAE is trained for 150 epochs with the same configuration as
before. It only changes the graph as described in Section 2.2.1.

In both options, for the pre-training of the seq2seq, 30 epochs were enough since
the attention mechanism eases the convergence of the model. After the training of the
C-GMVAE and the GMVAE respectively, we fine-tuned the seq2seq decoder with the
inclusion of the suitable stochastic layer as mentioned in Section 2.4.2 during other 30
epochs.

Table 2.2 shows the results of the two configurations proposed. We use the same
dataset as previously but as the model is more powerful due to attention, we are able to
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increase the percentage of masked tokens to be inferred (see 2.6.1 for details of this second
strategy) without damaging the overall performance of the seq2seq. Moreover, later we
extend the results for a larger text corpora.

a man in an orange hat starring at something .
a man in a black hat starring at something .
a man in a hard hat starring at something .
a man in a black hat starring at something .

a boston terrier is running on lush green grass in front of a white fence .
a gray terrier dog running on the green grass in front of a blue shack .
a gray terrier dog running through tall green grass in front of a red ball
a black dog is running through the grass grass in front of a red flag .

a girl in karate uniform breaking a stick with a front kick .
a man in a uniform throws a stick to his his kick .
a boy in a uniform with a stick in a large kick .
a man in a uniform kicking a ball up to his opponent .

five people wearing winter jackets and helmets stand in the snow , with snowmobiles in the background .
two men in winter jackets and hats stand in a large space with structure in the background .
a group of winter day at a stand in a snowy area with trees in the background
two men wearing winter clothing and hats stand on the snow covered street with flags open .

a man in a vest is sitting in a chair and holding magazines .
a man in a vest is sitting on a rock and looking out .
a man in a vest is sitting on a sidewalk and playing music .
a man wearing a vest is sitting on a wall and smoking a cigarette .

a mother and her young son enjoying a beautiful day outside .
a mother and her daughter are enjoying a wedding day outside .
a mother and her child are enjoying a hot day outside .
a mother and her children are enjoying a hot day outside .

Table 2.2: Examples of sentences reconstructed by the regularized seq2seq with attention
following the same format as Table 2.1: original, baseline, options 1 and 2.

The results in Table 2.2 show how both designs fit our goal, generating new sentences
and computing substitutes to the masked tokens that fit the gaps. All of the sentences that
are exposed belong to the testing dataset and have been selected randomly. As opposite
as in the first scenario in Section 2.6.1 (NoR-seq2seq), the generation of sentences has
improved due to the attention mechanism, so both the baseline and our method perform
better the reconstruction of sentences as was expected. Moreover, the option 2, regularizing
the context vectors, not only imputes the masked tokens but also some other tokens in the
sentence so the complete structure makes sense. For example, in the second sentence the
word ‘terrier’ is removed and ‘dog’ is changed of position. More interesting is the third
one, where ‘kick’ and ‘stick’ are deleted but ‘kicking’ appears as a conjugation of ‘kick’.

To understand the diversity of solutions achieved with our model, we can examine not
only the most likely imputed word, but also the top five. We focus in option 2 for simplicity.
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For example, in the first sentence, the baseline best options for ‘orange’ correspond to
colours, however our method also infers the word ‘cowboy’ in the top 5. In the longest
sentence, the forth, we found that even if the final reconstruction was not completely
correct (neither in the baseline), our method achieves more varied candidates. In particular,
the word ‘snowmobiles’ has the more likely alternatives [‘structure’, ‘furniture’, ‘each’,
‘it’ and ‘reflections’] for the baseline while ours are [‘flags’, ‘trees’, ‘umbrellas’, ‘people’
and ‘something’], which is a more diverse set that absolutely fits the previous word ‘with’
in the sentence.

Our results demonstrate that our proposal performs at least as good as the baseline but
in many times is capable to improve generalization in the imputation of missing words.
Even more, it can be seen as a way of data augmentation in the sense that builds new
sentences, acceptable and different from the baseline choices. One of the advantages
that we will see in these models regarding Transformers is the flexibility of changing the
sentence length since they generate words sequentially and stop it with the End of Sentence
(EoS) token.

Next we show other results obtained as an extension.

Additional results

Table 2.3 presents additional results from the option 2 in the seq2seq with attention
model using the SNLI dataset. Once again, we prove the efficacy of our method, even if
the dataset gets more complicated. In this table we present different samples of sentences
reconstructed from the masked template, following the same philosophy of the results in
Table 2.2. The fifth example exposes an extreme case where it is only observed the first
word, ‘a’, and both the baseline and our method infer completely different sequences but
good alternatives at the same time.

2.6.2. NoRBERT

Due to the costly process of training from scratch a Transformer, to implement NoRBERT,
we make use of the pre-trained base model from BERT described by [15], using a MLM
objective. This version of BERT is composed of 12 layers, a hidden size of 768 and
12 heads and we keep the parameters eased by the Hugging face library7, which calls it
bert-base-uncased. We keep the original configuration following the paper [15] except
for the hyperparameters mentioned in the next sections. For RoBERTa and XLM-R
models, following the same approach, we use the pretrained models called roberta-base
and xlm-roberta-base respectively.

On each experiment, we train a GMVAE using the hidden vectors at some point of
BERT structure obtained from training samples with the previous base models. Once the
GMVAE has converged8, we build a new architecture based on BERT with the integration

7https://huggingface.co/
8We consider the GMVAE has converged when the ELBO stabilizes during the training.
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an old man with a package poses in front of an advertisement .
an old man is standing with arms in front of an audience .
an old man in a blue shirt in front of an audience .

a man playing an electric guitar on stage .
a man playing an electric guitar on stage .
a man plays an electric guitar and sings .

a blond-haired doctor and her african american assistant looking threw new medical manuals .
a man is standing in an american assistant , using a medical apparatus .
a man is looking at the american nurse to get a medical patient .

a young family enjoys feeling ocean waves lap at their feet .
a young boy is feeling ocean and is on the beach .
a young man in feeling ocean is surfing on a surfboard .

a man reads the paper in a bar with green lighting .
a man is standing in front of a crowd of people .
a man is sitting on a bench reading a book while sitting

three firefighter come out of subway station .
three people come down a street corner .
three people come out of a boat .

a person wearing a straw hat , standing outside working a steel apparatus with a pile of coconuts on the ground .
a man wearing a straw hat , standing outside of a steel structure with a blue umbrella laying on the ground .
a man wearing a straw hat , standing outside a large steel structure with a tree in front of the ground .

Table 2.3: Additional examples of sentences reconstructed by the regularized hidden states
in the seq2seq with attention. Sentences order: original, baseline and reconstruction from
our regularized option 2 of the GMVAE and the context vectors.

of a stochastic layer in the corresponding place of the hidden vectors. This new layer
consists on the reconstruction of the hidden vectors through the generative network of the
GMVAE. Finally, we fine-tune this new architecture, freezing all parameters below the
stochastic layer in the computational graph.

Deep NoRBERT

First, we present the results of Deep NoRBERT, in which the GMVAE stochastic layer
is placed in an intermediate BERT encoder layer, see Section 2.5.2 for more details. We
show the results obtained in terms of accuracy and BLEU score for different locations of
the GMVAE layer inside the BERT structure trained in the SNLI dataset.

The GMVAE layer is trained for 500 epochs with a learning rate of 5 · 10−5. The
GMVAE latent dimension z is set to 150, the w dimension to 50, and we consider a mixture
of 20 Gaussians, dropout probability 0.3 and networks with a depth of 6 layers. Then, Deep
NoRBERT is trained for 8 epochs freezing the parameters below the stochastic layer. The
baseline BERT is also fine-tuned in the same dataset for 8 epochs so we can make a fair
comparison in their performance in missing data imputation. We evaluate the percentage
of tokens that are exactly the same as the source sentence in a 1-by-1 comparison. We test
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two different scenarios, with masked tokens and with disrupted tokens, that is, instead of
using the [MASK] token which indicates ‘unknown’, we place random choices from the
vocabulary that damage the source sentence. We replicate the random words substituted
on each experiment maintaining the same seed in the training. Regarding the masks, 40%
of the sentences chosen at random have at least one [MASK] token, which always replaces
a meaningful word (we avoid masks over stopping words).

Table 2.4 shows the imputation accuracy for different configurations, in which l-Deep
NoRBERT means that we placed the GMVAE layer in the l-th transformer layer. For a
better visualization, we highlight in bold every case that outperforms the baseline. Observe
that the largest gains are obtained when the GMVAE layer is placed in the bottom of the
network, outperforming BERT after fine-tuning. We remark that BERT is a state-of-the-art
model for NLU that is pre-trained over a massive dataset and hence any improvement is
not negligible, particularly when is achieved by placing a single regularization layer within.
Despite some studies about BERT state that the last layers encode task-specific features
[95], our results demonstrate that fine-tuning with the regularization of deep layers may
improve the overall performance.

Model Masked Disrupted
BERT 97.13% 96.98%

1-Deep NoRBERT 97.32% 97.11%
2-Deep NoRBERT 97.20% 97.07%
3-Deep NoRBERT 97.18% 97.1%
9-Deep NoRBERT 96.87% 96.25%

11-Deep NoRBERT 96.05% 95.34%
12-Deep NoRBERT 95.89% 93.89%

Table 2.4: Accuracy of different models comparing the unmasked source sentence with the
reconstruction. We evaluate a version that keeps the [MASK] tokens and other (disrupted)
that substitutes them by random tokens from the vocabulary. In l-Deep NoRBERT, l refers
to the transformer BERT layer in which the GMVAE is placed. The lower the deeper and

the higher the closer to the classification top layer.

Table 2.5 presents the BLEU score obtained by Deep NoRBERT with different layer
configurations. We explore different policies of generating missing tokens. ‘Low’ refers
to the same mechanism as in Table 2.4 experiments. In the policies called ‘Medium’
and ‘High’ we do not exclude any token by its grammatical meaning (as it is done with
stopwords before) and mask every word independently with probabilities of 0.4 and 0.6
respectively. Table 2.6 results, called Masked BLEU, differ from the previous ones in the
n-grams taken for the metric computation. That is, we only consider n-grams that include
a masked token. From both tables we draw similar conclusions: the best performance is
obtained when the GMVAE layer is placed at the bottom of the network, right after the
first transformer layer.
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Model/Missing rate Low Medium High
BERT 86.07 49.43 25.14

1-Deep NoRBERT 86.90 49.91 25.53
2-Deep NoRBERT 86.65 49.75 25.26
3-Deep NoRBERT 86.53 49.33 25.45
9-Deep NoRBERT 85.52 46.04 21.47

11-Deep NoRBERT 83.89 43.34 19.28
12-Deep NoRBERT 80.77 40.83 17.16

Table 2.5: BLEU score of different models comparing different missing rates.

Model/Missing rate Low Medium High
BERT 3.73 21.3 15.34

1-Deep NoRBERT 3.88 22.7 16.44
2-Deep NoRBERT 3.88 22.50 16.22
3-Deep NoRBERT 3.90 22.28 16.56
9-Deep NoRBERT 3.87 19.78 13.34

11-Deep NoRBERT 3.65 18.21 11.64
12-Deep NoRBERT 3.01 16.31 9.61

Table 2.6: Masked BLEU score of different models comparing different missing rates.

Deep NoRBERT for other NLU tasks

In this section, we include an exhaustive study of 1-Deep NoRBERT as a solution to
improve the BLEU score across different NLU tasks. In all cases, we check the validation
score at several epochs during training. More precisely, in Table 2.7 we show results
from bert-base-uncased (the baseline model used in previous experiments), roberta-base
and xlm-roberta-base, which correspond to BERT, RoBERTa and XLM-R respectively as
mentioned at the beginning of this section.

The way of completing the experiments is the following. First, we pretrained the
baseline for 10 epochs. Second, we train the GMVAE with the embeddings from layer 1
(after the pretraining) in the suitable transformer model. Finally, we finetune NoRBERT
for the number of epochs indicated minus 10. For example, in the first column of results,
40 epochs correspond to 10 epochs of pretraining plus 30 epochs of finetuning. In the
baseline rows, the epochs are continuous without this partition. With this procedure, we
make sure we compare the validation score at the same point in the timeline of training. It
is important to mention that as we are interested in validation BLEU score and non the
training one, as in other regularization mechanisms we deactivate the NoRBERT layer
during evaluation.

With regards to the configuration of the GMVAE, we used similar hyperparameters as
in previous sections. We validated the variance in a set from 10−5 to 1 in steps of one order
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of magnitude. We kept the best configuration which is a deviation of 10−4. We used a z
dimension of 150, w dimension to 50, a mixture of K = 20, hidden dimension of 1500, 6
layers and 0.3 of dropout probability as we used in previous sections. The learning rate
was set to 5 · 10−5 and the number of epochs was set to 2000, 4000 and 5000 for datasets
Multi30k, SST-2 and TREC respectively. As the size of the dataset decreases, the training of
the GMVAE becomes longer as we may sense since we treat each token as a independent
input.

All improvements over the baseline are highlighted with bold writing in Table 2.7. In
every case, our model overpasses the baseline, except for three cases with the xlm-roberta-
base model. Therefore, it can be noticed that our model is more resilient to overfitting and
this table, then, demonstrates the regularization properties of NoRBERT GMVAE layer.
In both scenarios the validation score decreases with the number of epochs, but from the
beginning our regularization improves the BLEU score in almost all situations.

Dataset Base Model Epochs
40 60 85

Multi30k

bert-base-uncased
Baseline 0.834 0.841 0.831

NoRBERT 0.855 0.851 0.847

roberta-base
Baseline 0.865 0.859 0.855

NoRBERT 0.877 0.874 0.869

xlm-roberta-base
Baseline 0.893 0.885 0.886

NoRBERT 0.892 0.888 0.878

SST2

bert-base-uncased
Baseline 0.834 0.82 0.804

NoRBERT 0.846 0.836 0.828

roberta-base
Baseline 0.857 0.85 0.83

NoRBERT 0.869 0.865 0.858

xlm-roberta-base
Baseline 0.874 0.871 0.867

NoRBERT 0.884 0.867 0.878

TREC

bert-base-uncased
Baseline 0.854 0.828 0.815

NoRBERT 0.882 0.877 0.864

roberta-base
Baseline 0.883 0.871 0.845

NoRBERT 0.903 0.896 0.893

xlm-roberta-base
Baseline 0.881 0.849 0.836

NoRBERT 0.887 0.87 0.871

Table 2.7: BLEU score in the validation set of several datasets and models comparing
baseline with 1-Deep NoRBERT and varying the epochs during training.

Table 2.8 shows similar results, with the difference that we vary the rate of generating
missing tokens during the MLM. Regarding the number of epochs, it has been fixed to 40.
In this scenario the results are not so successful. Again, improvements over the baseline
are in bold. However, we can conclude from this table that 1-Deep NoRBERT is not the
best tool to deal with corpus that include a high rate of missing tokens. In other words,
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Dataset Base Model Missing rate
0.2 0.3 0.4 0.5 0.6

Multi30k

bert-base-uncased
Baseline 0.803 0.724 0.626 0.538 0.441

NoRBERT 0.811 0.725 0.625 0.534 0.436

roberta-base
Baseline 0.828 0.746 0.654 0.552 0.451

NoRBERT 0.831 0.747 0.651 0.552 0.447

xlm-roberta-base
Baseline 0, 854 0.778 0.694 0.594 0.497

NoRBERT 0.859 0.784 0.699 0.596 0.497

SST2

bert-base-uncased
Baseline 0.788 0.697 0.589 0.487 0.393

NoRBERT 0.8 0.705 0.596 0.49 0.392

roberta-base
Baseline 0.817 0.728 0.627 0.519 0.418

NoRBERT 0.827 0.736 0.638 0.526 0.418

xlm-roberta-base
Baseline 0, 838 0.75 0.655 0.564 0.464

NoRBERT 0.841 0.749 0.655 0.559 0.457

TREC

bert-base-uncased
Baseline 0.81 0.737 0.667 0.575 0.487

NoRBERT 0.845 0.764 0.685 0.59 0.493

roberta-base
Baseline 0.86 0.782 0.692 0.602 0.498

NoRBERT 0.87 0.788 0.696 0.593 0.502

xlm-roberta-base
Baseline 0.837 0.767 0.689 0.595 0.512

NoRBERT 0.854 0.779 0.694 0.598 0.51

Table 2.8: BLEU score in the validation set of several datasets and models comparing
baseline with 1-Deep NoRBERT and varying the missing tokens rate.

as we increase this rate, the BLEU score decreases and the differences between baseline
and NoRBERT diminish, with a trend from the baseline to be better in high missing rates.
In conclusion, for this scenario we encourage the use of Top NoRBERT instead of Deep
NoRBERT as we show it to be more versatile after in this paper.

GMVAE validation

In this section, with 1-Deep NoRBERT, we validate in the TREC dataset two of the most
important hyperparameters from the GMVAE, the variance of the posterior, σ2, through
the standard deviation, σ, and the number of components in the mixture of Gaussians, K.

On the one hand, in Figure 2.10a we appreciate the values of the BLEU score in the
validation set for different number of epochs during training, as we did previously in this
section. We compare each scenario with the baseline which is bert-base-uncased with no
regularization layer included. As we excepted due to previous results, the score decreases
as the number of epochs increases provoked by the overfitting. However, the variation of
K does not affect to the results despite the fact that augmenting the number of components
is related to more complexity in the model. We used 20 components in the experiments
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because it is a value which maintains a trade-off between complexity and score.
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Figure 2.10: Validation of some hyperparameters in the GMVAE compared to the corre-
sponding baseline scores (in dash linestyles).

On the other hand, in Figure 2.10b we show the effect of varying the deviation in the
model. This hyperparameter has a more important role since it is related directly with
the variance of the reconstructed embedding vectors. Therefore, the higher the deviation,
σ, the higher the quantity of ‘noise’ that we inject in that input. If the variance is too
small, the effect of the regularization layer is none. Nevertheless, if it is too big, we deviate
the vectors too much from their hidden space, imputing tokens far away from what is
expected in the sentences generation and therefore damaging the BLEU score. During our
experiments, we chose a deviation of 10−4, corresponding to a maximum in Figure 2.10b.

Top NoRBERT

The above results demonstrate that retraining BERT or any variant when we include a
GMVAE layer within may bring imputation improvement when the layer is placed deep
inside the BERT network. From this perspective, placing the GMVAE layer in the top of
the network, as we do in Top NoRBERT, lacks a priori of any interest. Actually, when we
freeze all the parameters from the encoder layers and fine-tune only the classification layer
we achieve an imputation accuracy of 77.14% (Masked) and 75.53% (Disrupted) in the
SNLI dataset, far below the Deep NoRBERT performance in Table 2.4. A closer look to
the actual imputed words by Top NoRBERT in different sentences led us to conclude that
the final GMVAE layer placed right below the classifier promotes topic diversity in the
imputation task, which would explain the severe drop in accuracy w.r.t. Deep NoRBERT.
This result may be consequence of the fact that upper layers in BERT learn specific
features that affect the token choice while the deeper layers pick up general characteristics
of language.

Therefore, in order to visualize the effect of the GMVAE at the top layer, Table 2.9
includes some test sentences reconstructed by Top NoRBERT in comparison with the
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baseline BERT. Later we have included more examples with longer sentences (Table 2.10)
as an extension. For the generation of the results we use again the SNLI dataset with the
masking policy defined as ‘Low’. The baseline corresponds to BERT model fine-tuned
for half an epoch and a learning rate of 5 · 10−5. The training of Top NoRBERT was
fine-tuned with the same configuration. Regarding the GMVAE, we maintained all the
previous parameters, except that we increased the learning rate to 10−4 and trained 200
epochs.

Source: This church choir sings to the masses as they sing joyous songs from the book at a church .
BERT: this large choir looks to the camera as they sing joy about songs from the book at a church.
Top-NoRBERT: a dancing band performs to the friends as they perform funcy bands from the book at a museum.

Source: A man reads the paper in a bar with green lighting .
BERT: a man in the drink in a bar with green lighting.
Top-NoRBERT: a man on the bike in a bar with green lights.

Source: During calf roping a cowboy calls off his horse .
BERT: a the race a cowboy call off his back.
Top-NoRBERT: during horse jumping a cowboy tries off his dog.

Source: A man in a black shirt is looking at a bike in a workshop .
BERT: a man in a black shirt is looking at a woman in a conference.
Top-NoRBERT: a man in a black shirt is looking at a sign in a shop.

Source: The man in the black wetsuit is walking out of the water .
BERT: the man in the black wetsuit is coming out of the water.
Top-NoRBERT: the man in the black swimsuit is jumping into of the water

Source: Five girls and two guys are crossing a overpass .
BERT: Five girls and two guys are crossing a overpass .
Top-NoRBERT: three girls and two guys are down a intersection side walk.

Table 2.9: Examples of sentences reconstructed by Top NoRBERT. The first sentence is
the original one, with the observed words underlined, i.e. no underlying means a missing
word. The second is the output of the baseline, BERT fine-tuned. Finally, we show our
reconstruction. The words in red correspond to mismatches with the original sentence.

As it is shown in Table 2.9, the GMVAE stochastic layer at the top of BERT helps
it to reconstruct sentences from a robust space, inducing the generation of more diverse
sequences than the baseline. It is interesting how it changes some words maintaining
the original structure as in the first example in Table 2.9. Moreover, these alterations
maintain grammatical rules (‘performs’ and ‘perform’ are used according to the subject)
and sometimes correspond to synonymous or analogous words (in this same example,
the verb ‘sing’ is replaced by ‘perform’, the noun ‘choir’ by ‘band’, the object ‘masses’
by ‘friends’ and the place ‘choir’ by ‘museum’). This diversity skill is not obtained by
the baseline, so it is a characteristic uniquely from our methodology. In other cases, we
get changes in words that are not masked so the overall sentence makes sense. The fifth
example changes ‘out’ by ‘into’ as a consequence of infering ‘jumping’ from the masked
word ‘walking’. In the last example, NoRBERT changes ‘crossing a overpass’ by ‘down a
intersection sidewalk’ as a semantically related structure that also corresponds the verb ‘to
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be’.

Enhancing diversity in text generation is a little explored area, as we do not even
dispose of clear metrics to measure such an ability, in opposition to for instance image
generation, in which researches typically rely on feature space metrics such as the FID to
evaluate generation diversity [96]. We believe that the Top NoRBERT strategy to achieve
such diversity may open future research lines on this topic.

Table 2.10 is an extension of Table 2.9 with results also from Top NoRBERT.

A man looking over a bicycle ’s rear wheel in the maintenance garage with various tools visible in the background .
a man looking over a bicycle’s back wheel in the maintenance garage with his tools visible in the background.
a man looking over a bicycle’s rear wheel in a construction garage with wooden equipment is in the background.

A person dressed in a dress with flowers and a stuffed bee attached to it , is pushing a baby stroller down the street .
a person dressed in a suit with flowers and a stuffed animal attached to it, is pushing a baby stroller down the street.
a person dressed in a shirt with flowers and pink stuffed toy over to it, is riding a baby stroller down the street.

A blond-haired doctor and her African american assistant looking threw new medical manuals .
a blond - haired doctor and her african american doctor looking at new medical scrubs.
a blond - haired nurse and her african asian owner looking around new medical equipments.

3 young man in hoods standing in the middle of a quiet street facing the camera .
3 young man in hoods standing in the middle of a busy street facing the camera.
a young man in sunglassess standing in the front of a busy street holding the camera.

Table 2.10: Additional examples of sentences reconstructed by Top NoRBERT. The first
sentence is the original one, with the observed words underlined. The second is the output
of the baseline BERT fine-tuned. Finally, we show the reconstruction. The words in red
correspond to mismatches with the original sentence.

2.7. Applications: Data augmentation

During this section, we want to emphasize a possible application of NoRBERT as a data
augmentation tool. That is, due to the ability of our model to generate new sentences, we
might focus in a NLP task and try to improve its performance with an augmented dataset.
For this purpose, we have studied a classification problem in different datasets and we have
compared a baseline model by Transformers, BERT with the original dataset and another
one with augmented samples by our model.

The goal of NoRBERT in this task is the generation of new comments or sentences
with some similarities to the base ones. As we are in a classification task, we do not want to
change the label of the original sentences since it could damage the overall performance of
the model but we want the new sentences to be different enough to add some information.
We follow different steps for the training of our model:

• We train NoRBERT in a suitable dataset following steps in Section 2.5 (pretrain
BERT - train GMVAE - finetune NoRBERT).
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• We generate new sentences with NoRBERT, a desired masking rate and the dataset
from the classification task, which can be the same or different from the previous
step.

• We incorporate the new generated samples to the original dataset and train and
evaluate the classification model.

• We compare the classification score with the same model trained in the original
classification dataset without augmentation.

Regarding the baseline in the classification task, we will use bert-base-uncased from
Hugging face, as we have done before in this chapter from pretraining NoRBERT. It is also
the same model we use with the augmented samples. We will train it for an enough number
of epochs and save the best model that is considered to be the one with the higher F1 score
in the validation set. The training of NoRBERT constitutes the series of steps described
in Section 2.5 and during these experiments we will vary the variance in the posterior
distribution of the GMVAE, the number of epochs in the pretraining and finetuning, the
datasets used on each stage and we will play with the quantity of samples used from the
original dataset and with deep or top NoRBERT. The rest of hyper parameters stay as we
studied and decided in previous experiments.

The F1 score is a measure related to the classification accuracy and combines the
precision and recall values. Precision answers the question ‘how many selected items are
relevant’ so it is the total quantity of true positive results divided by the quantity of all
positive classified results. Recall, on the other side, answers ‘How many relevant items
are selected?’ and consists on the number of true positive results divided by all the results
with positive true label, correctly or not classified samples. The next equation exposes its
formula.

F1 =
2

recall−1 + precision−1 (2.6)

In multi-class scenarios, we have used the extended version of F1 score with the micro
averaging strategy, that is, biased by the class frequency.

2.7.1. Model

As a variant, we introduce Contextual NoRBERT with the goal of incorporating more
information in the generation of samples. As we presented previously, only Top NoRBERT
was able to impute sentences from a more diversed topic space. However, with contextual
information, Deep NoRBERT makes the work too. We will prove that both Contexual
1-Deep NoRBERT and vanilla Top NoRBERT are able to generate new samples that
improve the classification accuracy on a secondary task. For convenience, we will use
Deep NoRBERT when referring to 1-Deep NoRBERT in the rest of section.
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Contextual NoRBERT differs from vanilla NoRBERT in the input and segment re-
construction but the architecture is the same. We select a contextual length and use the
embedding of the words before and after the current word throughout that length. So, we
concatenate the embedding of the contextual words of the current one as the input of the
GMVAE but we do only focus in the reconstruction of the current word embedding. For
example, when we use a length of 5 (contextual 5), we concatenate the 5 embeddings
before and the 5 after to the current token and use all for the reconstruction of the segment
in the input belonging to only the embedding of the current token.

2.7.2. Results

For this section, we have performed many experiments validating all parameters but we
only show here the best cases and the configurations that worked. All results are computed
from 3 to 5 times depending on the experiment. We use different seeds and present the
average mean and standard deviation. Moreover, we always study the effects on the
masking rate, since the more the masked tokens the more different the output sentence will
be from the original one, but we take the risk that it has more grammatical errors or less
sense. Furthermore, target information (the information that decides the sentence label)
may be collected in one token and this token can completely change in the augmentation
reconstruction. Therefore, some false positive/negatives could be created by mistake and
damage the model in the training. The masking probability is then, undoubtedly, the most
important parameter in this task.

Contextual Deep NoRBERT augmentation in SST-2

We first expose the results using Contextual Deep NoRBERT and SST-2 dataset on its
binary classification task, where its goal is to classify movie reviews as positive or negative
comments. SST-2 is composed of 6228 training samples, 1821 validation samples and 692
test samples. We pretrain and finetune NoRBERT during 30 epochs in 50000 sentences
from OSCAR dataset because of its large size and complex sentences so our model can
benefit from language structures learnt from other databases. Regarding the configuration
of the GMVAE, we set the same as in previous sections with a variance in the posterior of
10−4. The generation of sentences is performed in separated runs per class, that is, we take
the samples with positive labels and generate new positive ones, and the same with the
negative sentences.

With results from Table 2.11 we can see that the data augmentation by our model is
a better tool in scenarios where the number of samples is reduced since the F1 score is
improved in all cases when using 1% of the samples and contextual 5, and almost all of
them in contextual 10. However, the deviation of these results is too high if we compare
it with the 100% samples scenario where the score is more stabilized. In that case, the
improvements in F1 score are no so good although it is possible to obtain better score
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in some configurations. Anyways, we can not confirm any statement about the masking
probability from that table.

Contextual 5 Contextual 10
mean deviation mean deviation

test val test val test val test val

1%

Baseline 0.6595 0.6798 0.0261 0.0294
0 0.6641 0.6886 0.0344 0.029 0.6379 0.6634 0.1037 0.1004
0.2 0.6683 0.6921 0.0608 0.0557 0.662 0.6848 0.009 0.0113
0.4 0.6615 0.6874 0.0205 0.0207 0.6821 0.7046 0.0392 0.0313
0.6 0.6692 0.6865 0.0213 0.0091 0.6556 0.6629 0.0641 0.0808
0.8 0.6646 0.6834 0.0661 0.0695 0.6611 0.676 0.0486 0.0616
1 0.6691 0.6851 0.0292 0.0216 0.6746 0.6848 0,0058 0.0191

test val test val test val test val

100%

Baseline 0.9161 0.918 0.0056 0.0085
0 0.9116 0.9216 0.0028 0.0076 0.9081 0.9198 0.0082 0.0021
0.2 0.9213 0.9175 0.0026 0.0069 0.9161 0.9142 0.0079 0.0038
0.4 0.9149 0.9133 0.0039 0.007 0.9177 0.9162 0.003 0.0032
0.6 0.9121 0.9167 0.0072 0.0034 0.9190 0.92 0.0054 0.005
0.8 0.9113 0.9186 0.0031 0.0038 0.9182 0.919 0.0058 0.0013
1 0.9186 0.919 0.0066 0.0047 0.9154 0.9168 0.0053 0.0056

Table 2.11: F1 score using 1% and 100% of samples in the classification of SST-2 data. It
is used Contextual Deep NoRBERT with size 5 and 10 in the embeddings window. We
show the mean and the deviation of 3 different runs for each experiment. Moreover, we
vary the masking rate from 0 to 1 in steps of 0.2.

Then, we try to improve the training a little bit by doing a second finetuning in
NoRBERT with the samples from the classification task, in this case, SST-2, during other
30 epochs. So, if we are using only 1% of the total samples, we will use also that same
set in this second finetuning so we do not fool the model. These results are presented in
Figure 2.11 and they show a better prove of the variation in the masking rate. With that
figure information we can state that larger masking rate degrade the system due to the
augmentation with bad samples, that is, sentences without grammatical structure or very
different from the original ones. If we use a masking probability of 1, we are masking all
words in the source, so NoRBERT has no information to generate a new sentence and the
output tends to appear as a sequence of random tokens. On the other extreme, if we mask
no words, masking probability of 0, even though NoRBERT is able to change some tokens
due to the GMVAE layer, it is less likely and the generated sentence might be equal to the
input. Finally, we can confirm that rates around 0.2 seem to be the perfect trade-off since it
is low enough to maintain original sentence meaning but high enough to support different
connotations.

Due to the problematic with possible label changes in the data augmentation, we
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Figure 2.11: Averaged F1 score versus masking rate with 1% of samples and data augmen-
tation by Contextual 5 Deep NoRBERT compared with baseline (no data augmentation at
all). Dashed lines means baseline.

made a quick experiment finetuning NoRBERT with SST-2 comments with their label
concatenated. With this procedure, we let the model change the label token as well as the
rest of words in the review. In Table 2.12 we expose several comments in the original form
and the reconstruction from Deep NoRBERT. As we train the regularized transformer with
the label information concatenated as the first token, it learns to generate a new label in that
position with the two possible values (positive or negative). We see from the examples in
that table that when the label changes, some tokens in the comment also change to follow
the connotation transformation. However, there are some cases where the label generated
is not correct (not any of the two choices) so we have to discard the sentence. That may be
the reason of the final scores, that do not improve the ones showed in Table 2.11 so we do
not present them. Then, we keep for future research an improvement of data augmentation
task with the choice of change label with a deeper study.
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Label Comment (original - reconstruction)

negative hard as this may be to believe, here on earth, a surprisingly similar teen drama, was a better film.
positive you of this may hard to believe, here on earth, a surprisingly good teen drama, is a great film.

negative both deserve better.
positive it even better.

positive elling builds gradually until you feel fully embraced by this gentle comedy.
negative elling builds suspense until you feel like it a a romantic comedy.

positive it’s definitely an improvement on the first blade, since it doesn’t take itself so deadly seriously.
negative it’s be an improvement on the first try, since it doesn’t take itself so deadly seriously.

Table 2.12: Examples of label change in the reconstruction by Deep NoRBERT.

Comparing Top and Deep NoRBERT augmentation in SST-2

In the study with SST-2 dataset we also include a set of experiments where we compare Top
and Contextual 5 Deep NoRBERT data augmentation in a scenario with different number of
samples. The only difference regarding the previous configuration of the hyperparameters
is the posterior variance of 10−2 of Top NoRBERT regarding 10−4 of Deep NoRBERT and
4000 training epochs instead of 2000 to ensure the GMVAE convergence. In this setup we
consider a class-balanced problem with few samples per class. In Figure 2.12 we present
the F1 values when the number of samples per class goes from 30 to 90, or what is the
same, from 60 to 190 samples in total. We do not show cases with less samples cause
the results appear with very high variance and no conclusions are obtained. That is due
to the lack of advantages in finetuning such a big model with so few samples and also in
the randomness included by the GMVAE when generating new samples. Anyways, we
may state a higher variance in Top NoRBERT results because of the more varied sentences
generated. In both models from Figures 2.12a and 2.12b we see the tendency of decreased
score with higher masking rate, what we stated in the experiments before. Moreover, we
can also say that results with Contextual Deep NoRBERT are better in terms of consistency
and classification score. Nevertheless, the choice of the model depends on the scenario,
the kind of dataset set and the number of samples we are dealing with. When we have a
bunch of samples, finetuning all layers above GMVAE regularization in Deep NoRBERT
might be problematic and far from adding the generalization and diverse space we want to
achieve.

Augmentation in other datasets

In this section we include as a final result the study of the augmentation in the classification
of a different dataset with different number of classes. For this scenario we take all samples
from dataset AG news. It is a collection of more than one million of news articles from
more than 2,000 sources9, labeled with four different classes regarding the category of

9http://groups.di.unipi.it/∼gulli/AG_corpus_of_news_articles.html
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the document (world, sports, business and Sci/tech). It is composed of 7,600 samples for
test and 120,000 for training, that we split in 96,000 and 24,000 samples for train and
validation respectively.

In Table 2.13, we present the values for the F1 score in the same models as before with
Top and Deep NoRBERT. We keep the same configuration. We only evaluate the results
for the masking rate that we have analysed that works the best, from 0.2 to 0.4. As we
see in the table, in all scenarios, we overpass the baseline score, with the best policy the
masking rate of 0.3. We achieve an improvement in the test set of 0.42 points and 3.29
points in validation. We run again three times the experiments and average them.

test val
Baseline 0.9425 0.9454

Top NoRBERT
0.2 0.9428 0.9883
0.3 0.9454 0.9735
0.4 0.945 0.9669

Contextual Deep NoRBERT
0.2 0.9466 0.9783
0.3 0.9467 0.9732
0.4 0.945 0.9688

Table 2.13: F1 score in AG’s news dataset by Top and Deep NoRBERT. We have marked
in bold the best cases in both models, Top and Deep NoRBERT.

2.8. Conclusions and future work

In this chapter we have proved the successful effect of adding a stochastic GMVAE layer
in LMs through NoR-seq2seq and NoRBERT. On the one hand, despite its limitations
with long sentences, regularized seq2seq is able to predict assorted structures upon an
extend. Then, we enforced the same idea applying attention and exploring other scenarios
that incorporate the regularization at different points of the baseline. In this work, we
successfully reconstruct a varied set of topics from the masked source sentences and
demonstrate the efficacy of the stochastic layer in finding synonymous or analogous
fragments that fit in the gaps. On the other hand, in NoRBERT, we study the different
advantages regarding the layer where it is applied. While Top NoRBERT also successes
with an increment of diversity as well as an easier way of adaptability to new contexts,
Deep NoRBERT responds better in terms of accuracy and BLEU score. In the former
case, we propose a novel methodology to generate new structures of text with diverse
topics that fit the gaps thanks to the inclusion of controlled noise through a DGM. As an
extension, we prove Deep NoRBERT to improve the BLEU score in additional datasets
and three different Transformer models. As a way of reinforcing our idea, we prove the
GMVAE effect regularizing a well-studied scenario with FMNIST images. Finally, we
include a secondary application based on the reconstruction of sentences to use them in
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data augmentation. We explore the advantages of this mechanism in a classification task,
obtaining better F1 score when using NoRBERT augmented samples regarding not using
augmentation at all. We show improvements in two datasets with different number of
classes and percentage of samples. This application is also used as a measure to prove the
effectiveness of our model.

For now, there is no metric to evaluate robust and varied solutions in word imputation
problems (as NoRseq2seq or Top-NoRBERT achieve), since traditional evaluations as
BLEU [62] or ROUGE [97] are based in the reconstruction of the original sentence. There
is no perfect evaluation metrics testing the text generation because it is difficult to resume
all the semantic and syntactic properties that language needs to fulfil [98]. Therefore, we let
for future work the exploration of metrics or lost functions that allows the LM to generate
sentence embeddings with more diversity based on the context. Furthermore, as another
tool of evaluation, we also consider a future line of research the effects of NoRBERT in
specific tasks as sentiment analysis or machine translation in addition to the classification
task presented at the end of the chapter.
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Figure 2.12: Averaged F1 score versus masking probability and different number of
samples per class (from 30 to 90) of augmented model compared with baseline (no data
augmentation at all). Dashed lines means baseline results (not affected by the masking
rate).
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3. PSYBERT, A TRANSFORMER APPLIED IN PSYCHIATRY

This chapter comprises the junction of bidirectional encoder representations from
Transformers (BERT) within the NLP sector (studied in Chapter 2) and the line of health-
related applications that we highlight through our work. Therefore, it will constitute
the first medical objective we present but not the only one we analyse during the thesis.
More precisely, in this chapter, we will use the EHR (Electronic Health Record) in order
to predict undetected or missing diagnoses from patients with any mental disorder.
For those tasks we will face the detection of errors in a labeled database, the filling of
lost information or even scenarios with comorbidity (the presence of several diagnoses
simultaneously). Then, we need a robust model, capable of dealing with all these factors
in a heterogeneous data space.

In this context, we propose PsyBERT, a transformer-based architecture that combines
embeddings from different heterogeneous EHR fields to study the diagnosis of mental
disorders. We are inspired by BEHRT [19] with the novelty of dealing with heterogeneous
data, including continuous and categorical data and most important, medical natural
language.

We divide the chapter in four sections. First, we make an introduction about health-
related models and the problematic in the field of psychiatry and diagnosis. Then, we
detail the data we are working with and the preprocessing we apply to it. Following, we
present our model, PsyBERT, and its novelties beyond BEHRT. Finally, we address two
relevant problems where PsyBERT has demonstrated clinically relevant results, missing
diagnosis imputation (Section 3.4) and delusional case detection (Section 3.5).

3.1. Introduction

In the last decades, artificial intelligence has been used in psychiatry for several purposes
such as detecting patients at risk of suicide [99], [100], predicting psychotic disorders
[101] or psychotic relapse [102]. In particular, NLP is showing promising results in the
sector [103] but some limitations such as the difficulty to obtain high-quality annotated
databases or lack of studies in non-English scenarios still need to be solved. We propose
in this work the analysis of EHRs for the diagnosis of mental health patients. However,
we are limited by the data quality in these databases [104], [105] with usual incorrect
diagnosis codification and the huge quantity of missing information [106], [107]. Hence
the medical sector is the perfect candidate to exploit NLP tools thanks to the huge quantity
of unstructured text is produced daily in hospitals without being explored yet [108].

Some of the most relevant works in the literature about NLP in psychiatry and neuro-
science comprises open source tools for information extraction [109]–[111] or pipelines
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for classification from clinicians’ notes [112]–[114] or text produced by patients [115]–
[117]. In other scenarios, the resulting knowledge can be harnessed to address multiple
long-standing problems in psychiatry such as diagnostic instability [118], [119].

Among these models, Deep learning usually has the problematic of needing also big
annotated datasets. Nevertheless, with Transformers, this double issue is solved since
their pre-training stage allows an unlabeled general dataset as medical records and the
finetuning can be focused in a specific task with fewer samples. Due to the similarities
between text and EHRs regarding the sequential nature of data and the large size of
the vocabularies, more and more models which combine EHRs and Transformers are
appearing in the literature. Med-BERT [120] is a transformer-based model pre-trained
over 20 billion of patient’s EHR in order to predict both heart failure in diabetes patients
and pancreatic cancer. It modifies the embedding construction of BERT combining code,
visit and serialized embeddings and removing special tokens such as the classification one,
[CLS]. Then it summarizes the outputs with a feed-forward layer (FFL) before applying
the specific-task one. G-BERT [121] combines BERT with Graph Neural Networks (GNN).
They integrate a GNN representation of the diagnoses codes into BERT and pre-train
using patients with a single visit data. Later, they finetune in longer sequential registers to
solve the medication recommendation task. Finally, SARD (Self Attention with Reverse
Distillation) [122], applied to different clinical prediction problems, is inspired by BEHRT
with the novelty of reverse distillation as the pre-training procedure.

BEHRT [19] was first introduced in 2020 by Yikuan Li et al. as a disease predictor
through a modified BERT model and the sequential diagnoses and age data from the EHR.
Then, other variants have been developed as Hi-BEHRT [123] which appeared as an im-
provement with the inclusion of more clinical information (medications, measurements. . . )
and a hierarchical structure capable of dealing longer sequences, or Targeted-BEHRT [124]
with the combination of static and dynamic EHR data among others contributions.

In this chapter we have also designed a model based on BEHRT that we have called
PsyBERT and, when applied to electronic health records from psychiatric consults, enables
the identification of patients with any general mental pathology or, more specifically, a
delusional disorder. Take into account the importance of delusional case detection due
to the misdiagnosed patients in the data. As we will see in the following sections, these
tasks are achieved on the one hand with a MLM policy pre-training and, in the other,
through a classification layer on top of the model that predicts the likelihood of having
simultaneously each diagnosis in the last visit of the patient.

Currently, we are writing into two different papers both works presented in this chapter.

3.2. Data description

The samples we will study during this chapter come from the whole EHR (with 50 fields
of information) of mental disorder patients from the Hospital Fundación Jímenez Díaz
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in Madrid. This database is made up of 315,608 full registers and 420,232 registers with
missing diagnoses, all from 46,238 unique patients. Each patient has a mean of 6.82
registers, and each register a mean of 1.24 diagnoses. With these numbers we would like
to emphasize the proportion of patients with missing diagnoses regarding the total which
is 57.1%, showing the problematic in the lost of information in today’s EHRs. That is
the main reason why we want to focus this chapter in solving this issue with different
perspectives.

As a representative example of the dataset distribution, in Figure 3.1 we show the most
common diagnoses found in the EHR from the patients. Appendix A includes more details
about the International Statistical Classification of Diseases and Related Health Problems,
ICD-10 codification [125]. The more frequent cases belong to dysthymia and personality
disorder.

F34.1 F60.9 F43.2 F20.0 F43.23 F60.3 F41 F32.9 F90.9 F32.1 F32.0 F22 F60.4 F33.9 F41.2 F31 F60.5 F43.21 F42 F41.1
Diagnoses
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Obsessive-compulsive

Number of samples

Figure 3.1: Most common diagnoses in the database regarding ICD-10 codification. The
predominant ones, F34.1 and F60.9, belongs to persistent depressive disorder (dysthymia)
and personality disorder respectively.

We consider each data point a sequence belonging to a patient, meaning that it is
composed of several registers where each register may have one or more than one diagnosis.
Hence, we face with two common situations in this kind of data, temporal sequences and
comorbidity. More precisely, we will use the following fields from each register on each
patient:

• Date of the register. It is used for sorting the database (sequence of visits) chrono-
logically.

• Patient’s age: We compute this feature subtracting the birth date from the register
date. It is an integer indicating the age in a quantity of total months.

• Sex. Coded by a integer meaning ‘male’ (1), ‘female’ (2), ‘transsexual’ (3), ‘trans-
sexual male to female’ (4), ‘transsexual female to male’ (5) and ‘not sure’ (6)

• Diagnoses: It is a list with a maximum of 8 diagnoses coded regarding the ICD-10
codification.
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• Discharge treatment: It is a free text field. It refers to the treatment with which the
patient discharges from the hospital after an admission.

• Psychiatric history: It is also a free text field. It collects the previous contact with
Mental Health that the patient has had, previous diagnosis he or she has received
and date, treatments taken in the past,... It usually has information about history
with toxic consumption (if there is) and data related to social situation of the patient
(marital status, people he or she lives with, job,...)

Field description Percentage of samples
Reason for consultation 62.26%

Birth date 100%
Sex 100%

Register date 100%
Psychiatric history 88.69%

General history 3.36%
Degree 43.12%

Recent suicide planning 59.02%
Number of previous suicide attempts 59.8%

Degree of medical harm as a result of the current attempt 5.55%
Recent suicidal ideation 58.89%

Family history of suicide attempts 55.9%
ICD-10 coded diagnosis from axe I 14.42%

Diagnosis from axe I 77.68%
ICD-10 coded diagnosis from axe II 1.72%

Diagnosis from axe II 7.64%
ICD-10 coded diagnosis from axe III 0.84%

Diagnosis from axe III 6.26%
Diagnosis from axe IV 1.44%

Discharge treatment 88.48%
Psychopathological exploration 16.77%

Table 3.1: Percentage of samples and most relevant fields in the EHR. In this table there
are mixed heterogeneous data such as categorical values (sex or coded diagnoses) and text
(psychiatric history).

In Table 3.1 we show the most relevant fields in the EHR with the percentage of
samples stored. It is an example of the problematic in today’s EHR, since the missing data
rate is significantly high in a great proportion of the fields. The most important issue is
regarding the coded diagnoses. More specifically, diagnoses from axe I, the most important
and representative one in the mental disorders we are studying, only have a 14.42% of
coded diagnoses and a total of 77.68% diagnoses described by a free text field. The main
issue of this scenario is the uncommon nomenclature to define a specific disease, finding
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several definitions to name it. One of the goals in this work is to unify all these definitions
and complete the missing diagnoses presented in the data base.

In relation to the definition of the different axes, the number I encompasses clinical
psychiatric syndromes (e.g. schizophrenia, bipolar disorder, delusional disorder. . . ). Axis
II refers to developmental and personality disorders. Axis III encompasses physical
illnesses. Axis IV is related to psychosocial and environmental problems. Finally, axis V,
not shown in the table, is a scale that grades the functioning and activity of the person. Axes
I, II and III include coded diagnoses, axis IV is a drop-down menu with a list of problems
that can be selected (e.g housing problems, problems related to the environment. . . ) and
axis V is a scale that grades the patient’s functioning and activity from 0 to 100 in 10-point
intervals (e.g. 91-100 Satisfactory activity in a wide range of activities, valued by others
because of its many positive qualities. No symptoms).

We also appreciate in Table 3.1 the main reason to select the free text fields from
treatments and psychiatric history since they have the highest rates of present information
with 88.48% and 88.69% respectively.

3.2.1. Preprocessing and dictionaries construction

Each sample in the dataset construction represents a patient and the information within
each patient is sorted in a chronologically way. The different values we can find within
the data points refers to age, sex, diagnoses, treatments and psychiatric history from the
different visits along their clinical records. We add more or less features regarding the
model we use, as we describe in Section 3.3.

The problem solving from the model we will use, PsyBERT, consists on two stages as
we usually see in Transformers models and we dealed in Chapter 2. In the first stage we
apply a MLM training for the whole dataset, all patients with their visits. In the second
one, we finetune the model for a specific task, which, in this scenario, is the prediction of
the diagnoses from the last register. Then we create these two dataframes, one with the
whole sequence of registers per patient and the other one with all registers except the last
one, separated as the label to be predicted from a supervised perspective.

In PsyBERT, the model we use and that is described in Section 3.3, each feature is
added through an embedding layer so we create dictionaries for sex, ages and diagnoses.
We only get two different sex values in the samples from this study, male and female,
coded with 0 or 1. The maximum age we consider is 110 years in steps of one month. So,
we convert date-type values in floats measuring the quantity of months, and then pass them
to integers inside a categorical interval. Finally, the diagnoses are coded regarding the
ICD-10 notation (See Appendix A) with a total of 768 different items. Note that from a
supervised nomenclature, we will solve a classification problem with 768 different classes.

Regarding the text fields, discharge treatment and psychiatric history, we apply a
standard preprocessing from language models that consists on the following steps with the
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training of a tokenizer:

1. Lower case.

2. Remove punctuation.

3. Remove accents.

4. Remove stopwords.

5. Separate digits individually.

6. Apply a word piece tokenizer with a vocabulary size of 50,000 tokens.

The creation of the text dictionary is performed through the last step. We train a word
piece tokenizer after the preprocessing and then save it so we can load it to code the input
data in our PsyBERT. All these steps, with the inclusion of an explicit example, are shown
in Figure 3.2.

Lower case Remove punctuation

Separate digits individually Remove stopwords

Remove accents

- Seguimiento en Psicoloǵıa desde hace muchos años.- En seguimiento psiquiátrico desde 2006...

[’seguimiento’, ’psicologia’, ’hace’, ’anos’, ’seguimiento’, ’psiquiatrico’, ’2’, ’0’, ’0’, ’6’, . . . ]

Tokenization

Figure 3.2: Text preprocessing steps for discharge treatment and psychiatric history fields
in the EHR. We include an example from psychiatric history text.

The train-test split proportion we apply is a ratio of 80-20%, with 36,990 and 9,248
patients respectively.

3.3. Model description

3.3.1. BEHRT and its modifications

BEHRT[19] is an architecture based on BERT [15] adapted to work with the EHR. As we
described slightly BERT model in Chapter 2, we will focus on the main differences with
respect to it and, of course, in our contributions.

BEHRT was developed to predict the probability of 301 different conditions in future
patients’ visits. Its best characteristic is the ability to modify its structure to combine
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heterogeneous concepts and the chance to provide an easy explainable output so important
in health. The original model is built in a way that uses information from diagnosis and
age to make the forecast. As an improvement, we integrate three additional heterogeneous
features, including information in text format, and perform a prediction over more than the
double of disorders from the original work.

Despite the fact that BEHRT’s original goal is the prediction of diagnoses over three
different time scenarios, the next visit, the next 6 months and the next 12 months, we
completely change these tasks. We only take advantage of the pre-training step and then we
make the prediction of the last visit to solve the problems we discuss in detail in Sections
3.4 (missing diagnoses) and 3.5 (detecting delusional patients).

The principal variation with regards to BERT structure falls on the embedding vector
construction before applying the bidirectional encoder. However, the layers distribution
works the same way with the multi-head attention (remember Figure 2.3) and the specific-
task block. The latter is followed by a softmax function that gives the model the multi-
label classification property and the ability to compute the likelihood of every disorder
simultaneously. This may be the most important block in the structure since it gives the
model the comorbidity properties as well as an output in terms of probability.

Even though Transformers appeared in the first instance as language models, many
authors had already turned around this idea (see Section 3.1) and treated the EHR as a
document, where each diagnosis is a word, each visit or register is a sentence, and the
entire medical history of a patient is a document. The point of this process is the direct
application of the MLM policy to the diagnosis in a pre-training stage and the consequently
chance to perform a finetune with a specific-task layer on the top of the architecture as
BERT or any other Transformer does.

3.3.2. PsyBERT and its embedding layer

The embedding layer is the principal block in PsyBERT architecture and it is also the
one that we have modified the most with respect to BEHRT. It originally consists on
a combination of four embeddings that we extend until six and has the ability to learn
the whole evolution of a patient in a single embedding through a summation. The fixed
embedding that we maintain are the disease, age, position and visit segment, which are
the first, third, fourth and fifth embeddings in Figure 3.3. The other three are PsyBERT
contributions and, more specifically, the procedure to integrate the text embedding is
completely novel.

Diseases codes (DIAGS in Figure 3.3) are the main information in the model as they
will also define the possible values in the output of the network (expect special tokens
which are removed from the classification layer dictionary). Age represents a key concept
since encodes two kinds of information, not only the epidemiological notion of when the
event occurred but also the time between events as a sequential indicator. For example, in
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Figure 3.3: Diagram of PsyBERT embeddings. The final output is the summation of all the
embeddings and it is the input to the bidirectional encoder. The dots in the right side of the
image refer to the possible additional visits that the patient may have. Take into account
that the length of the text sequence can be higher that the rest of visit-related features. In
any case, padding tokens [PAD] are added until the block size previously defined in the
hyperparameters configuration.

Figure 3.3 we have 492 and 494 months in the respective age values in visits 1 and 2, what
defines an age of 41 years old in the patient and a distance of two months between visits.
Position encoding (POS in Figure 3.3) has the objective of numerating the registers/visits
in the EHR evolution of a patient and follows a sinusoinal function similarly to BERT.
Finally, the visit segment can have two different values and mark the change of a visit
to the next one alternating its value. In PsyBERT, we include the embeddings from the
sex, where we find the possible choices ‘male’ or ‘female’. Then, the only embedding that
differs its value intra-visit is the diagnosis one, since all the others maintain it. That is, if
we come back to the language analogy and take a visit as a sentence, it may be composed
by several diagnoses due to comorbidity and each one will be consider a different word or
token with a different embedding vector. However, the embeddings of the other fields will
maintain their values per all corresponding diagnosis tokens in the visit. See for example
visit 1 in Figure 3.3, with repetitions of ‘M’, ‘492’, ‘P(0)’ and ‘A’ for sex, age, position
and segment respectively. However, the diagnoses follow the regular concatenation rule in
NLP with ‘CLS’ and ‘SEP’ tokens. In addition to this, we include a free text field that can
be either ‘discharge treatment’ or ‘psychiatric history’ (see Table 3.1) as extra information
for the model. We do not add both text embeddings in the same model but only one of
them. This field is coded after concatenating the text sequences from all the visits in the
clinical history of a patient. The tokenization is done through a pre-trained tokenizer in the
preprocessed source of text as explain in Section 3.2.1. Hence the coded text (T1, T2, T3,
T4. . . in Figure 3.3) is not associated to a unique visit but to the whole patient sample. Due
to this long field, block size in our model must be increased to at least 512 to be considered
a good parameter capable of collecting longer sequences of text.
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3.3.3. Training methodology and configuration

PsyBERT as a Transformer model is divided into two training stages. The first one is the
MLM that we will use as a tool to predict the missing diagnoses in the database in Section
3.4. This procedure makes PsyBERT learn the contextual representation of each diagnosis
so we can then use it as a disease predictor when this field is missing. The second one is
the specific-task step, where we include a multi-label classification layer to the previous
pre-trained model to finetune it and predict the diagnoses of the last visit.

Regarding the parameters configuration we use during this work, they consist on a
learning rate of 3 · 10−5, a warm-up proportion of 0.1, a weight decay of 0.01 and a dropout
rate of 0.1. As in the original work, we use a combination of 6 multi-head attention layers
and 12 attention heads, what seems to work fine. In addition, the size of the intermediate
layer in the encoder is 512 and the non-linear activation function in the encoder and the
pooler is gels.

The most important parameters are the hidden size that we set to 768, a maximum
sequence length of 512 (previously validated) so it is able to fit longer medical histories
and then a batch size of 16 (adapted to the block size; the bigger the block size, the smaller
the batch must be to fit the memory from the available resources). We train for a total
number of 500 epochs and use only one of the text fields mentioned before, treatments or
psychiatric history, but never both simultaneously. There is also a minimum number of
visits allowed in the samples during training (removed in validation), which is set to 5, so
the total quantity of patients in the training set decreases from 36, 990 to 16, 972 and from
9, 248 to 4, 236 in the validation set.

3.4. PsyBERT Imputing Missing Diagnoses

3.4.1. Context

The missing data scenario is an issue more and more frequent in data modeling nowadays.
With so high quantities of data samples, it is very common losing information or, as
in medical environments, directly not having some patient information due to lack of
awareness. After analysing our dataset from psychiatry patients, we realized of this
problematic with a missing rate of more than the half of the diagnoses in the EHR.

During Chapter 2 we also treated this task. More specifically, we tried to impute
missing words or, more correctly, masked words with the help of a regularized Transformer,
NoRBERT. Then, we proved that Transformers-based models are a good tool to explore
in these scenarios. Now, in this chapter, we do also want to solve the missing values task.
Nevertheless, instead of words, we impute diagnoses, following the same analogy we used
to describe PyBERT with BERT.
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3.4.2. Models

Training PsyBERT for imputing missing diagnoses means we stay in the first stage in the
procedure (no finetuning is still applied), using a MLM policy and a mask rate of 0.15
as the original work of BERT with the main difference of masking diagnoses instead of
words. Figure 3.4 shows a diagram of the Sex-treatments PsyBERT structure used to solve
this task. Take into account that position and segment embeddings from Figure 3.3 are not
included cause they are created by the model in the embeddings layer.

DIAGS

DIAGS
AGE
SEX

TREATMENTS

MLM HEAD / CLASSIFIER

BERT ENCODER

EMBEDDINGS

TOKENIZER

MASK GENERATOR (DIAGS)

P
sy
B
E
R
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Figure 3.4: Diagram for the MLM pre-training in PsyBERT structure. Orange color means
BERT blocks and brown color refers to modified and adaptations in the model. This is
an example of the structure in Sex-treatments PsyBERT, so inputs in the model belong
to diagnoses, age, sex and text about treatments from the patient visits’ to the hospital.
The output corresponds to the reconstruction of uniquely the diagnosis sequence after the
masking process. Then, the mask generator is only applied to this sequence in the input.

During this section we perform firstly a training step trying different models and
configurations (See Table 3.2) and measuring the APS in the validation set. Secondly,
we apply a test step using the samples from the EHR which had missing values (that we
removed in the dataset creation) to predict their diagnoses and next use the professional
help of a psychiatrist to validate the model output.

Following the architecture and configuration described in the previous section, we train
PsyBERT with the MLM policy and the complete samples (with no real missing data)
from our database. We study 4 variations of the same model, regarding the embedding
fields that we combine in the first layer of the architecture. See Table 3.2 for a comparative
of all variations. The first model is the original vanilla BEHRT work, only with age and
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diagnoses information. Then, in the second model we include the sex embedding from
PsyBERT. Finally, in third and fourth models we integrate treatments and history fields
respectively to the sex one.

As the baseline we wanted to compare our model with a well-known Transformer
dealing only with text data and with no sequential information and no combination of
simultaneous fields from the EHR. In other words, we use a dataset built with one of the
two free text fields as input and the label with the diagnoses as the output as a traditional
classification task in NLP. In table 3.2, we also include these baselines. For this, we also
use a pre-trained model from the Transformers library, roberta-base-biomedical-clinical-es,
that is the RoBERTa model pre-trained in a biomedical dataset in Spanish, so it can take
advantage of additional information, making the baseline a higher spot to overcome. We
do not use any pre-trained model in PsyBERT.

We train this baseline with a set of 252,486 and 63,122 samples for training and test
respectively (note these samples refer to visits and not to patients). That is a quantity much
bigger than the one in our sequential scenario since we have divided here each patient
in several input samples, one per register. We train during 200 epochs and keep the best
parameters regarding the APS. We use a maximum length in the text field of 200 tokens, a
batch size of 32 and a learning rate of 10−5.

BEHRT base Sex Treatments (text) History (text) Sequential data
Baseline Treatments No No Yes No No

Baseline History No No No Yes No
Vanilla BEHRT Yes No No No Yes
Sex PsyBERT Yes Yes No No Yes

Sex-treatments PsyBERT Yes Yes Yes No Yes
Sex-history PsyBERT Yes Yes No Yes Yes

Table 3.2: Comparative of the baselines, BEHRT and PsyBERT variations with the
embeddings included in the first layer. ‘Sequential data’ means we differentiate samples
per patient (concatenating visits) or not, and we do it per register.

3.4.3. Results

We train the models for an enough quantity of epochs and then save the best one in a
validation set on each scenario. We measure the performance with the value of the Average
Precision Score (APS) in the validation set.

In Table 3.3 we present the results of the baseline and obtain the best model with a
0.8613 value in the APS. We need to claim that the best performance of the model is
achieved using the history data instead of treatments, a difference regarding the results with
PsyBERT. We think that this field has more useful general information when predicting
only with one feature. Nevertheless, when using more features, the treatments field may
give more extra information that serves as a complement as we will see later.
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Model Epochs Accuracy F1 (micro) F1 (macro) APS
Treatments 188 0.7205 0.8137 0.5341 0.8248
History 135 0.7526 0.8480 0.5935 0.8613

Table 3.3: Baseline results in a non-sequential set-up with a pretrained RoBERTa model in
medical data.

Table 3.4 shows the training results for all model variations. From that table we can
claim that including sex embedding does not improve the vanilla BEHRT on its own but
if we also add the free text with the treatments, we are able to improve the APS over one
point. These conclusions make sense since ‘psychiatry history’ field does contain general
information about the patient situation but ‘treatments’ informs about the drugs and doses,
what is directly related to the mental disorder in particular. In addition, the APS of 0.87483
is even higher than the baseline in the simpler (non-sequential) scenario from Table 3.3.
With Table 3.4 information, we select the third model as the best one for the second stage
in the validation.

Model Epochs Training loss Test loss Test APS
Vanilla BEHRT 320 0.01322 0.02709 0.86159
Sex PsyBERT 450 0.01252 0.02760 0.8613
Sex-treatments PsyBERT 157 0.009806 0.027328 0.87483
Sex-history PsyBERT 91 0.01543 0.03240 0.82764

Table 3.4: Train and test values for the best model on each scenario during the training of
BEHRT and PsyBERT with a MLM policy.

Figure 3.5 indicates the validation APS for different masking rates on both models with
a free text field (Sex-treatments and Sex-history PsyBERT) so we can intuit how it would
behave in a real scenario regarding the complexity of missing data. The APS is lower than
in the previous table because in validation we remove the filter of a minimum of 5 visits so
the number of samples increase as well as the difficulty in their prediction since they can
have shorter sequences.

Finally, we present the results in a real scenario with missing samples. This test consists
on filling the original EHR database with missing diagnoses and validate the results with
the help of an expert. For this validation we use data from 7,555 patients. Remember from
Section 3.2 that it represents the 57.1% from the original database. Following Figure 3.5,
a missing rate of 0.57 would give an APS of 0.65 approximately, so this is a reasonable
value that we expect to obtain in a real scenario with such a high rate of missing values.

In Table 3.5 we present the validated results. After the model prediction, all outputs
were analysed by a psychiatrist to label them in a scale with 5 possible values. ‘Error’ and
‘No clinical information’ correspond to cases without enough information to get into a
conclusion. ‘No clinical sense’ are misdiagnosed patients according to expert judgement.
Both ‘With clinical sense’ and ‘complete agreement’ are good results (encompasses as
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Figure 3.5: APS in the validation stage of the models with any text field and with different
masking rates.

‘Agreement’ in Table 3.5). The former relates to cases where partial quantity of diagnoses
were classified as positive, additional diagnoses from the expected ones were obtained or
different choices from the ones the psychiatrist would have labeled are presented. However,
all situations makes sense according to the expert. The latter refers to perfect diagnoses
coincidence. Regarding this validation procedure, 67.42% of samples were correctly
classified and 26.95% were wrong.

Frequency Percent
Error 20 0.26%
No clinical information 405 5.36%
No clinical sense 2036 26.95%
With clinical sense 1566 20.73%
Complete agreement 3528 46.7%
Agreement 5094 67.42%
No agreement 2036 26.95%

Table 3.5: Clinical validation in the prediction of missing diagnoses with a missing rate of
57.1% and a total of 768 different disorders.

3.4.4. Discussion

During this section we deal with a classification problem in a very complex scenario. The
main difficulties we found are:

• The missing rate in the data is 57.1%.
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• We try to classify 768 different disorders with only 16,972 patients in the training
set.

• Comorbidity states are very often in psychiatry with up to seven disorders present
simultaneously in a clinical episode.

• Misdiagnosed patients are also very frequent in this field of medicine.

Then, we have to point out that if we simplified the scenario, for example, by joining
diagnoses from the same group and decreasing the number of classes, we could achieve
much better results. However, we wanted to study the more complex option since the
next section tries to specialize in a very concrete disorder among the whole set of classes,
delusional disorder.

In addition, inside medicine, psychiatry is a branch very complex to be predicted in
many cases. Its diagnosis sometimes requires long times of observation and the prevalence
of a specific disorder may change very frequently, evolve to several diseases or turn out
with another one constantly.

Taking into account all of these considerations and with the expertise opinion ahead,
we can state that out results are very favorable. Therefore, we let a new field of study
and open a research line to be improved by the inclusion of other fields in the EHR or
through some architecture modifications. In any case, our results can help to clinicians as
an external diagnosis advisor, or, as in the present work, as a tool to fill the missing data in
the EHR.

3.5. PsyBERT detecting delusional patients

3.5.1. Context

Delusional disorder, also known as paranoia [126], constitutes one of the severe mental
disorders. It is a psychiatric pathology whose main characteristic is the presence of well-
systematized delusional ideas, without hallucinations or alterations of language or thought,
which do not involve personality and cognitive impairment.

According to the DSM-V, delusional disorder has a lifetime prevalence of 0.02% [127].
However, prevalence for delusional disorder is much lower than other conditions like
schizophrenia (1%) or mood disorders (5%); this may be in part due to underreporting of
delusional disorder as those with delusional disorder may not seek mental health attention
unless forced by family or friends.

Delusional disorder can have a major impact on an individual’s ability to function, with
difficulties in social and occupational functioning due to the well-systematized delusional
ideas, and can even be difficult for family members to bear. Therefore, case identification
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and early diagnosis is essential to establish an adequate treatment and try to avoid loss of
patient functionality.

In other branches of medicine, diagnoses are usually based on the identification of
underlying biological processes, whereas, in psychiatry, diagnoses are mainly based
on the identification of symptoms throughout clinical evaluations in a cross-sectional
and longitudinal manner. Delusional disorder is usually characterized by lack of illness
awareness [128], which hinders outpatient follow-up and sometimes results in treatment
drop-out. Thus, longitudinal assessment may be complex in patients suffering of delusional
disorders which makes diagnosis even more complex. In addition to this, we must take
into account that diagnostic stability in psychotic disorders, including delusional disorders,
is generally low since diagnoses are difficult to establish and accordingly diagnostic error
is high [129], [130].

Due to this problematic context, the task of predicting delusional patients get much
more complex than any other disease. We must take into account that:

• The rate of positive labeled data is very low (around 2% as we present later).

• The are many misdiagnosed patients and missing information.

• The diagnosis usually lasts forever during patient’s life.

With the model we describe in this section, we try to facilitate diagnosis in delusional
disorders and promote early treatment, making the patient monitoring an easier process.

3.5.2. Models

To train our PsyBERT to detect delusional patients, we perform the same pre-training step
with the MLM as in Section 3.4 with the model from Figure 3.4 and a posterior finetuning
focused in our specific task (Figure 3.6). This task consists on a multi-label classification
layer that learns to predict the diagnosis of the patient in the last visit to the clinician.
Paranoid or delusional status is a disorder that once it is diagnosed, it stays forever in the
patient’s history. However, this is a behaviour that it is not well represented in the EHR
data (its diagnosis is not maintained in the patient’s registers) and therefore, it is difficult
to be learnt by a machine learning model. Then, when the probability of developing this
mental disorder is high enough, we consider the patient as a potential case that can be
revised by a clinician.

With this scenario, we are interested in solving the problem of detecting false positive
samples in the last visit. They are patients that are not diagnosed with any paranoid-related
diagnosis, but might be suffering one of them. We finetune the model in a way that we
obtain a probability output per diagnosis. Therefore, we need to set a threshold, ϵ, so we
consider that a patient with a probability in paranoia higher than ϵ is not diagnosed. In
resume, we train PsyBERT to predict the patient’s diagnosis in the last visit and we only
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keep the probability of the paranoid-related ones. Then we set a threshold and focus our
results in the false positive samples, that will be the potential cases for delusional diagnosis
that we have detected.

We keep the same train-validation split as before and find a rate of 2.29% and 2.37%
of delusional patients in both sets respectively. It is a very low percentage of patients
regarding what experts feel it should be. In terms of ICD-10 codification and with the
help of a psychiatrist, we will consider during this work that diagnosis F60.0 and any F22
variant will be considered delusional. In our database, we find 5 different paranoid-related
diagnosis, F60.0, F22, F22.0, F22.1 and F22.9, so we will treat the probability higher than
the threshold in any of them as a potential delusional candidate.

3.5.3. Results

In the first place, we are describing a baseline we tried before studying more deeply the
model described in Section 3.5.2. In this example, we use all diagnosis information from
the EHR as input and train it in order to predict a binary classification label. This label
is set to 1 in patients with any delusional diagnosis and 0 in the rest. After training this
model we found what was expected in a so incorrectly labeled and very unbalanced dataset.
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Figure 3.6: Diagram for the last visit classification fine-tuning in PsyBERT structure.
Orange color means BERT blocks and brown color refers to modified and adaptations in
the model. This is an example of the structure in Sex-treatments PsyBERT, so inputs in the
model belong to diagnoses, age, sex and text about treatments from the patient visits’ to
the hospital. Label refers to the classification task, that is the diagnoses in the last visit, not
shown in the other input sequences. The output corresponds to the probabilities for each
diagnosis in last visit.
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We obtain an APS of 0.99976 and a ROC of 0.99972, what means that this model works
too well fitting the labels and it is no able to search non diagnosed delusional patients.
One might think that this ROC reflects the perfect result. However, we need to remember
that we are facing a problem with wrong or incomplete labels. Hence we do not find
the highest precision and recall values. In this baseline, the probability histograms in
delusional diagnoses show that the output result is very sure positive or very sure negative,
but we do not obtain any patient with a doubtful probability where we could apply any
threshold.

Due to the inability of the traditional approaches to deal with our classification problem
as shown in the previous baseline, we present now the definite architecture results we
obtain in solving this problem. The output obtained from the model after the finetuning of
the classification layer consist on a probability value for each of the diagnosis in the last
visit of the patient. As we are interested in delusional disorder, we only take this value and
apply a threshold ϵ of 0.1 or 0.01 as the probability to consider the candidate as potential
delusional.

Before setting this hyperparameter to any value, we printed and studied the histograms
of the probability values in these diagnosis. By this procedure, we found out that we needed
a very low threshold if we wanted to detect a significant quantity of delusional patients.
We study these conclusions in Figure 3.7 for an example with the training samples and the
F60 diagnosis. Firstly, Figure 3.7a shows the whole histogram where we can confirm that
the vast majority of patients are given a probability of 0 in F60. If we zoom this histogram
by cutting probabilities below 0.1 (Figure 3.7b), we see a peak in probability 1 and close to
it, but we also appreciate some samples spread out all the axe. Finally, in Figure 3.7c we
repeat the same graph but showing only non diagnosed samples. In that scenario is where
we appreciate some possible candidates to be delusional, all of the with low probability.
These figures reflect the results of the first case, using vanilla BEHRT but give us an idea
of what can be obtained.
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Figure 3.7: Histogram of probabilities in F60 diagnosis from training samples (a) in
general, (b) with a zoom in values higher than 0.1 and (c) with the same zoom but only
non diagnosed patients.

As in Section 3.4, we try four different models, BEHRT as the vanilla original work,
and three more adding the embbedings mentioned before: vanilla, PsyBERT with sex
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embedding, PsyBERT with sex embedding and treatments embedding and, PsyBERT with
sex embedding and psychiatric history embedding. We pre-train the models during 300
epochs and finetune in the classification task for 400 epochs. The scores obtained in all
cases are presented in Table 3.6. We can only compare them in pairs since the two first
ones have a block length of 64 and the others 256.

Model APS ROC Loss
Vanilla BEHRT 0.9365 0.9918 0.0405
Sex PsyBERT 0.9325 0.9905 0.0433
Sex-treatments PsyBERT* 0.9484 0.9895 0.2193
Sex-history PsyBERT* 0.9479 0.9903 0.1999

Table 3.6: APS, ROC and loss after finetuning the 4 variants of the model. *256 block
length versus 64 the other 2 variants.

Following the procedure described before, the number of false positive samples ob-
tained by the models is presented in Table 3.7. While in vanilla and sex-case it is fine to
use ϵ = 0.1, it is not suitable in the variants with free text since it is not able to detect any
possible delusional. For those variants we apply ϵ = 0.01 and obtain a understandable
quantity of false positives. However, that threshold in the other models shoot up the
candidates to around 500, what is too high. The bold numbers in the table correspond with
the potential cases of delusional patients that we select. Due to the low prevalence of this
disorders, they seem reasonable numbers before doing any validation.

Model ϵ = 0.1 ϵ = 0.01
Vanilla BEHRT 13 565
Sex PsyBERT 26 498
Sex-treatments PsyBERT 0 2
Sex-history PsyBERT 0 22

Table 3.7: False positives in all models. Bold values correspond to the potential patients
with delusional disorder or paranoia.

Next, we include in Table 3.8 some measures of diagnostic accuracy regarding sensitiv-
ity and specificity values10. In next table and equations, FP refers to false positive, TP true
positive, FN false negative and TN true negative samples. The sensitivity is defined as the
probability of a positive test result given disease (Equation 3.1a) and the specificity is the
probability of a negative test result given non-disease (Equation 3.1b). We also include the
values for the probability of disease given positive test result (PPV) detailed in Equation
3.1c and the probability of non-disease given negative test result (NPV) in Equation 3.1d.

10https://www.acomed-statistik.de/
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Sensitivity =
TP

TP + FN
(3.1a)

Specificity =
TN

TN + FP
(3.1b)

PPV =
TP

TP + FP
(3.1c)

NPV =
TN

TN + FN
(3.1d)

Results in Table 3.8 complete the study about the accuracy of our model and its
variations so interpretation is remained. All percentages in the measures are above 85%,
what indicates a good performance in the model.

Vanilla BEHRT Sex PsyBERT Sex-treatments PsyBERT Sex-history PsyBERT
FP 13 26 2 22
TP 782 788 777 773
FN 114 108 119 123
TN 31663 31650 31674 31654

Sensitivity 87.28% (84.92-89.39%) 87.95% (85.63-90.01%) 86.72% (84.32-88.87%) 86.27% (83.84-88.46%)
Specificity 99.96% (99.93-99.98%) 99.92% (99.88-99.95%) 99.99% (99.98-100%)) 99.93% (99.89-99.96%)
PPV 98.36% (97.22-99.13%) 96.81% (95.35-97.9%) 99.74% (99.08-99.97%) 97.23% (95.84-98.26%)
NPV 99.64% (99.57-99.7%) 99.66% (99.59-99.72%) 99.63% (99.55-99.69%) 99.61% (99.54-99.68%)

Table 3.8: Sensitivity an specificity table. Parenthesis values correspond to confidence
intervals regarding a width of 95%. The disease prevalence is 2.8%, correctly reflected by
the study.

In order to check the reliability of our model, we pursue a final step of interpretation
with the validation of some clinicians. According to the potential cases in Table 3.7, we
perform the following analysis: we take the clinic history of these patients and analyse the
usual disorders that these individuals are diagnosed. These results are presented in Table
3.9. After this detailed study, we concluded that the potential positive samples belong to
mainly patients with disorders due to use of alcohol, tobacco or cannabinoids, unstable
or unspecified personality disorders, paranoid schizophrenia, psychosis and adjustment
disorders. Regarding ICD-10 specifications11, all these disorders are related to emotional
or perceptual disturbances that interferes social functioning, delusions, hallucinations,
paranoia, delirium, manic episodes or impulsive acts among other symptoms. All of them
are directly related to delusional disorder, so we can claim the effective results obtained by
our model.

3.5.4. Discussion

During this section we present a diagnostic tool with many advantages in today’s treatment
of mental health. We use a Transformer-based architecture to predict the probability

11https://icd.who.int/browse10/2019/en
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Model Diagnoses

Vanilla BEHRT

Disorders due to use of alcohol, disorders due to use of tobacco, emotionally
unstable personality disorder, mental disorders due to brain damage and dysfunction,

emotionally unstable personality disorder, adjustment disorders, unspecified
personality disorder, schizophrenia, anxiety, hyperkinetic disorders, psychosis

Sex PsyBERT

Disorders due to use of alcohol, disorders due to the use of cannabinoids,
unspecified personality disorder, psychosis, anxiety, paranoid schizophrenia,

dysthymia, schizotypal disorder, bipolar affective disorders,
agoraphobia, mental disorders due to brain damage and dysfunction

Sex-treatments PsyBERT Bipolar affective disorder, mania, psychosis

Sex-history PsyBERT

Disorders due to use of alcohol, disorders due to the use of cannabinoids,
paranoid schizophrenia, adjustment disorders, unspecified personality
disorder, delirium, dysthymia, emotionally unstable personality disorder,
hyperkinetic disorders, bipolar affective disorder, anankastic personality

disorder, acute and transient psychotic disorders, schizotypal disorder

Table 3.9: Diagnoses from potential cases of delusional disorder. Common states are
highlighted in bold.

of delusional disorder in patients from mental disorders and we take this output to find
potential candidates of suffering the pathology. We analyse the results and agree in other
related disorders that prevalence in these potential cases such as paranoid schizophrenia,
psychosis or the consume of alcohol.

As a conclusion, we enumerate some of the advantages that these model has:

1. It allows the evidence of a diagnosis or the detection of an error in the diagnoses
established by the clinician.

2. It imputes the codification of diagnoses in data bases without this information in
order to unify the nomenclature.

3. It helps to set a diagnosis in a more reliable way when the patient has provisional
diagnoses, especially in first episodes.

4. It could shorten or eliminate completely the timing to decide a diagnosis since many
diagnoses need a temporal criterion to express the symptoms (e.g. at least six months
in schizophrenia patients).
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4. PROBABILISTIC METHODS IN MENTAL E-HEALTH
QUESTIONNAIRES

Introduction

The development of new technologies shows promise for causing a revolution in the way
chronic diseases are followed and treated [131]. In the past few decades, we have seen the
following two major technological changes directly connected to the availability of medical
information: (1) introduction of electronic health records in most health care facilities,
and (2) accessibility to portable devices capable of acquiring information about their users.
Both systems are already being used to enhance communication between health providers
and final users and to improve the overall performance of health care. Indeed, public
and private entities are massively investing in the development of web-based platforms or
smartphone apps through which patients can organize their medical agenda, have access to
all or part of their medical records, provide their input, and join their medical referents
[132].

It seems reasonable to believe that the follow-up of persons with mental illness will be
improved if eHealth systems lead to an increased interaction with health care providers.
Our group and others have shown that electronic assessment is feasible with proper
adaptation [133]. Efficient monitoring may prompt health responses in cases of emergency
[134], inform accurately about real-life behaviors between medical appointments, reduce
unnecessary visits, and sustain therapeutic decisions [135]. Other parameters, such as
biomarkers and input from close relatives, can be added to the monitoring system. This
kind of ecosystem already exists [136], and a growing body of evidence has shown that
eHealth tools improve treatment outcomes in terms of engagement, symptom improvement,
well-being, and self-care [137]–[143]. Their combination with machine learning techniques
has also shown positive impacts on the diagnosis, prediction, and prevention of several
diseases, such as cancer [144]–[146].

Despite these advances, the majority of potential users, such as elderly persons with
low educational levels [147], seem to be unenthusiastic about e-mental health tools [148].
Utilization rates have been associated with the characteristics of health professionals [149],
but there is little knowledge about the kinds of patients who use e-mental health, how
they become users, and what are their patterns of use. Young age, high education, and
dissatisfaction with the health care system might be common features among eHealth
users [150]. We do not know if this profile also applies to patients with mental disorders,
but their digital phenotype [151] is likely to contain valuable information for clinicians
and providers alike [152], [153]. Alterations in the patterns of use could help clinicians
to detect pathological or risky behaviors and individual needs, and increase treatment
efficiency.
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Smartphones are especially apt for monitoring symptoms, given their increasing ubiq-
uity, their versatility, and the users’ widespread habit of carrying them at all times [154],
[155]. Smartphone monitoring is being increasingly used in biomedical research. There
are two modalities of smartphone monitoring: passive —by using the smartphone’s native
sensors—, and active —by asking questions to participants via the device, resulting in a
real-time and takes place in the participant’s usual environment. Smartphone monitoring
reduces recall bias, respect ecological validity, and facilitate the simultaneous collection of
data [156], [157].

In these works, a nonparametric latent feature model based on the Indian Buffet
Process (IBP) explores the response patterns of psychiatric outpatients to different web-
based questionnaires. These questionnaires are asked via the smartphone in different ways.
In the first model (Section 4.1), we take one sample per patient, which belongs to the
first time the patient or user answered the questionnaire. So, all questions were asked at
the same instant. For the other two works (Sections 4.2 and 4.3), this mechanism was
improved and only sets of few questions are asked in different instants during the day.
So, the frequency of the questions was particular regarding the importance of each item.
Furthermore, this algorithm deals the behaviour that the user may get bored of answering
every day the same and all of the questions. Finally, another difference in the second and
third works is the inclusion of the time evolution, that will help us apply the model for
different application as the suicide study before and during COVID quarantine in Section
4.3. Contrary to the first work where each patient correspond to a determined profile, in
these cases, each patient may belong to different profiles along the time evolution.

Following, in this chapter we develop the three works in different sections and we going
towards less detail in the model description but more complex and precise application.

4.1. Psychiatric Profiles of eHealth Users

4.1.1. Objectives

In this first work, I look for a general study without focusing in patients with specific
features but defining the different profiles according to response patterns in a health
questionnaire. Then, I link the profiles with psychiatric disorders regarding the EHR of
each individual. The study thus specifically describes patients with psychiatric diagnoses
who have used an eHealth application at least one, what ends with a total of 2254 patients.
The goal of using a probabilistic technique such as IBP is to associate information from
different questionnaires and assessments in a plausible model that could serve ultimately
to plan health care delivery.
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4.1.2. Data

Participants were recruited from psychiatric outpatient facilities in the catchment area
of Fundación Jiménez Díaz, a University Hospital in Madrid, Spain. This hospital is
part of the National Health Service and provides medical coverage to about 850,000
people. From May 2014 onwards, all clinicians working at the six mental health centers of
the catchment area received specific training and were encouraged to use the MEmind
Wellness Tracker systematically in their clinical activity. The MEmind application is apt
for both Android and iOS operating systems and is freely downloadable and available in
App Store and Google Play. However, for its activation it is necessary to have a username
and password, which are provided by the researcher at the baseline visit. A detailed
description of the MEmind app has been published elsewhere [136], [158]. A total of
2254 patients signed up on the MEmind platform and completed the assessment, and
they were subsequently included in the study. The assessment comprised the collection
of information about sociodemographic features and diagnoses. Participants also filled
up a short questionnaire. For this study, we used broad inclusion criteria. Every patient
attending psychiatric consultations independent of diagnosis was considered. Thus, all
clinicians in the catchment area were instructed to propose the use of the web application
to every outpatient they saw with no restriction whatsoever regarding their diagnoses or
their clinical statuses. The total number of outpatients who consulted during the study
period was 30808.

The application also has a free text field in which the patient can write comments about
their state. All answers were stored in the device and when the mobile phone connected to
a WIFI network, they were uploaded to a secure web server accessible by clinicians and
researchers (see data protection section below).

For the purpose of this work, we included only participants who voluntarily accessed
the application and responded to the open-text field. We made this choice to select proactive
participants who completed most of the questions at the user end. We noted a missing
data rate of 12%, which resulted from the sum of clinical missing data and a lack of
completeness of the questionnaires at the user end of the application.

This study was performed in agreement with the ethic requirements of the Declaration
of Helsinki (World Medical Association, 2013) and was approved by the Institutional
Review Board of the University Hospital Fundación Jiménez Díaz (Madrid, Spain). All
participants provided written informed consent to participate in the study.

Questionnaires

The data set consists of 23 questions from the following three different questionnaires: (1)
a brief day assessment related to sleep quality, appetite, medication intake, aggressiveness,
and suicidal behavior (six items); (2) the Who-5 Well-Being Index [159] (five items);
and (3) the ninth version of the General Health Questionnaire [160] (12 items). All these
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questionnaires are short self-reported measures of current mental well-being. All items are
yes-or-no questions, followed by the degree of agreement reported on a Likert scale (0 to
100 points). Although participants could repeat the assessment, only data from the first
report was included in the model.

Clinical Diagnoses

Diagnostic coding was based on the ICD. Thus, diagnoses of mental disorders were
classified into 10 groups (F0 to F9) according to ICD-10 (See Appendix A for codification
description of the diagnoses). The corresponding physician coded the diagnosis for each
patient and completed the Clinical Global Impression (CGI) scale [161], which reflects
the global functioning of a patient according to the view of the clinician on a scale (0
to 7 points). The CGI scale provides a summary measure accounting for patient history,
psychosocial factors, behavior, and the impact of symptoms on the patient’s ability to
function (See Appendix B).

Data protection

Data were stored in a secure external server created for research purposes. Only the
principal investigator in the psychiatric side (Enrique Baca García) had an access code to
the server. MEmind used AES-256 algorithms and 256-bit keys to encrypt data. Keys were
protected by a professional key management infrastructure, which implemented strong
logical and physical security controls to prevent unauthorized access. An external auditor
guaranteed that security measures met the Organic Law for Data Protection standards at a
high protection level.

4.1.3. Methods

Data processing

First, the scores for the items with a positive valence in the questionnaire data set (items 1
to 15) were inversed. In this way, a higher score for any item of the questionnaire indicated
poorer mental health. Second, we dichotomized every item score using a specific threshold
in order to code the top 10% scores with the value “1” and the remaining 90% with the
value “0” as a model criterion justified in the model section below (See Table 4.1 for
threshold details).

The use of a centesimal scale increases the sensibility of the questionnaire. Responders
tend to avoid extreme values unless they identify completely with them [162], but extreme
responders do not seem to be affected by the length of the response scale [163]. By using
the highest scores, we made sure that only the extreme responders were separated. The
histograms of scores before being dichotomized are shown in Figure 4.1.
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Item Percentage of ‘1’ values Threshold
1 9.94 0.62
2 9.75 0.74
3 9.67 0.78
4 11.22 0.9
5 23.51 0.9
6 46.49 0.9
7 9.93 0.83
8 9.76 0.87
9 10.16 0.9
10 15.31 0.9
11 9.71 0.88
12 9.89 0.72
13 13.43 0.9
14 9.85 0.9
15 9.63 0.84
16 9.98 0.85
17 9.94 0.9
18 9.72 0.89
19 9.4 0.87
20 11.49 0.9
21 15.7 0.9
22 29.06 0.9
23 9.58 0.9

Table 4.1: Dichotomy process of data from the questionnaire scores

The clinical records of the participants provided a second source of data. These records
included sex, age, clinical diagnoses, and CGI values. CGI values presented missing data,
so subsequent analyses including this variable were carried out with a total sample of
2000 participants. For analyses involving clinical diagnoses, the total sample was 1787
participants. All patients with missing data were excluded from this part of the data
modeling. Comorbid diagnoses were also examined when present.

Model

We applied the Sparse Poisson Factorization Model (SPFM) to fit the data. The SPFM
[22] is based on the IBP [20], [21], a non-parametric probabilistic method that proposes a
sparse decomposition of the variables. Non-parametric Bayesian techniques are frequently
employed in machine learning in order to discover the internal structure of a dataset
by modelling the underlying correlations among the given variables. In the SPFM, the
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Figure 4.1: Histograms of scores provided by eHealth users to each of the 23 questions
of the mental well-being questionnaire. Scores range from 0 to 100. The last histogram
presents the average score for all questions.

dimension in the latent structure of the data, K, is unknown and learnt during the training.
The word ‘sparsity’ describes a way of considering only a little subset of the model
coefficients different to zero. As a condition, the input data must be binary or categorical
and for a better convergence the number of non-zero elements must be minimum.

The SPFM decomposes the input matrix into the following two non-negative and
disperse matrixes, Z and B, what makes the latent features easy to calculate and interpret.
The factorization is detailed in the set of equations 4.1, with the definition of the priors and
data distributions.

Xnd ∼ Poisson (Zn · Bd)

Z ∼ IBP (α)

Bkd ∼ Gamma
(︄
αB,
µB

αB

)︄ (4.1)

In the previous equations, n index indicates the sample and d the feature of the data,
that is, each of the questions in our scenario. The binary Z matrix represents the number
of active features for each patient as shown in Figure 4.2. The B prior follows a Gamma
distribution with αB controlling the scale and µB the mean. As a result, it weights the
contribution of each feature to each item of the questionnaire. Each feature is characterized
by precise values on the 23 questions. A higher weight (B) of a feature for an item is
associated with a greater probability to find a high score in that item when that particular
feature is active. The SPFM also estimates a bias term, a feature that is presented in all
the patients of the sample. The bias term is the “default” situation of an eHealth user and
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represents a profile shared by all patients that is independent of any additional feature. In
that sense, the bias term allows the algorithm to be shifted to better fit the data.
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Figure 4.2: The binary Z matrix, presenting the number of active features for each patient.
Each line corresponds to a single patient. All patients present the bias term or feature 0.

After applying the SPFM, we use a basic clustering method, K-means [164], to obtain
different profiles. The procedure classifies a given data set through a certain number of
clusters fixed in advance. This method, applied on the Z matrix, associates data with
similar characteristics into different clusters by using centroids. Thus, it allows clustering
patients who show similar activation of their features. For example, in our study we obtain
3 features as shown in figure 4.2, omitting the bias always active, a patient could have only
feature 1, only feature 2, both features activated or none of them in his or her answers to
the questionnaire. This turns out in 4 different profiles as we will discuss in Section 4.1.4.

4.1.4. Results

The sample involved 2254 patients, including 1184 (52.53%) women, 795 (35.27%) men,
and 275 (12.20%) patients with missing data on sex. The mean age was 52.0 years (SD
15.1). Medical reports about the patients showed a CGI mean score of 2.95 (SD 1.95) with
a high percentage of participants scoring 3 (mildly ill; 844/2000, 42.20%) or 4 (moderately
ill; 632/2000, 31.60%) and only a few scoring 6 or 7 (severely ill or extremely ill; 10/2000,
0.50%). The CGI distribution in the sample is presented in Figure 4.3a. According to
the ICD-10 criteria and Figure 4.3b, participants with mood disorders (F3; 347/1787,
19.43%), stress-related, neurotic and somatoform disorders (F4; 962/1787, 53.82%), and
adult personality disorders (F6; 178/1787, 9.96%) represented most of the sample. F0-F9
codes represent main ICD-10 diagnostic categories for psychiatric disorders.
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Figure 4.3

Model output

The SPFM latent model analysis found the following three components in the assessment:
one bias term and two features, as exposed in Figure 4.2. Both the bias term and features
involved groups of items of the questionnaire that are particularly informative. The bias
term is present for all patients and reflects a common behavioral pattern. On the other
hand, features 1 and 2 are based on subsets of answers with high informational value to
discriminate patients. Features 1 and 2 can be present or absent for a particular patient.
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Figure 4.4: Average scores for each item of the self-reported questionnaire of current
mental well-being according to the B matrix.
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They are present if the corresponding subset of responses has a high score and are absent
if the corresponding subset of responses has a low score. In other words, a higher weight
in B of a feature for an item is associated with a greater probability to find a high score in
that item when that particular feature is active. This correspondence between features and
questions is exposed in Figure 4.4.

Questions Profile 0 Profile 1 Profile 2 Profile 3
Bias term (0) Feature 0+1 Feature 0+2 Feature 0+1+2

1. How many hours did you sleep today? (from 0 to 12)12 0.0689 0.2215 0.0731 0.2256
2. Quality of sleep12 0.0390 0.2480 0.0430 0.2520
3. Do you have appetite?12 0.0446 0.2426 0.0455 0.2436
4. Do you take your medication?12 0.0795 0.1361 0.1020 0.1587
5. I felt joyful and with good mood12 0.0133 0.3362 0.0140 0.3369
6. I felt peaceful and relaxed12 0.0223 0.3404 0.0235 0.3416
7. I felt active and robust12 0.0130 0.3941 0.0234 0.4045
8. I felt awake, fresh, and rested12 0.0496 0.4391 0.0538 0.4433
9. My daily life has many interesting things12 0.0199 0.4435 0.0199 0.4435
10. Have you been able to keep focus on the tasks you did?12 0.0276 0.3743 0.0289 0.3757
11. Have you felt that you have a useful role in life?12 0.0187 0.3944 0.0206 0.3962
12. Have you felt able to make decisions?12 0.0173 0.3702 0.0175 0.3705
13. Have you enjoyed regular activities from daily life?12 0.0100 0.3839 0.0116 0.3856
14. Have you felt able to cope with your issues?12 0.0149 0.3824 0.0166 0.3840
15. Do you feel reasonably happy taking into account the circumstances?12 0.0174 0.3765 0.0205 0.3796
16. Do you feel aggressiveness? 0.1745 0.1798 0.4107 0.4160
17. Do you have suicidal thoughts? 0.3177 0.3189 0.7750 0.7762
18. Have you had worries interfering with your sleep? 0.0422 0.0633 0.3354 0.3565
19. Have you felt constantly overwhelmed or tense? 0.0109 0.0116 0.3217 0.3224
20. Have you felt unable to overcome your troubles? 0.0060 0.0076 0.3066 0.3081
21. Have you felt unhappy or depressed? 0.0001 0.0037 0.4215 0.4253
22. Have you lost self-confidence? 0.0083 0.0154 0.4867 0.4939
23. Have you felt worthlessness? 0.1097 0.1107 0.7296 0.7306

Table 4.2: This table shows the average score for each item in the self-reported question-
naire of current mental well-being according to B. A question score on each profile is the
sum of its B values from the corresponding features (suitable columns in the matrix).

The K-means algorithm applied on the Z matrix established four different patient
profiles according to the presence of none, one, or both features. Profile 0 presents only
the bias term, profile 1 presents the bias term plus feature 1, profile 2 presents the bias
term plus feature 2, and profile 3 presents the bias term and each feature. The number of
patients in each profile is shown in Table 4.3. In Figure 4.4 as well as in Table 4.2, we can
appreciate how each profile responds differently to the questionnaire. Due to the negative
connotation in the items from the questionnaire, the highest the values in that figure means
the worse is the mental state on the patient, being the profile 3 with all features active,
the most critical case in the scenario. Moreover, in Table 4.2, it is detailed the numbers
obtained by the model and the literal description of each question.

12The scores from these items were reversed during data processing.
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Profile Number of patients Feature

0 1113 Bias term (0)
1 480 0+1
2 616 0+2
3 45 0+1+2

Table 4.3: Number of patients and feature distribution for each profile.

Analysis

In this section, we are interpreting the model output with expertise help from the medical
sector. The bias term was associated with high scores in suicide thoughts and aggressive-
ness (items 16 and 17), as well as feelings of worthlessness (item 23). All patients in
our sample shared the bias term, but about half of them (n=1141) also presented one or
two different features. Those presenting feature 1 were included in profile 1, which was
characterized by the absence of positive mood, low sleep quality, low energy, and feelings
of loss of control (items 1-3 and 5-15). Patients presenting feature 2 were included in
profile 2, which was characterized by intense suicidal thoughts, aggressiveness, intense
feelings of depression and worthlessness, low self-confidence, and worries interfering
with sleep (items 16-23). All these characteristics were simultaneously active in patients
from profile 3, who presented simultaneously both features. No statistical differences were
found between the profiles regarding the distribution of age or sex (F3 = 1.391, P = 0.24
and χ2

3 = 0.56, P = 0.90).

Figure 4.5: CGI for patients on each profile

After modeling the data, we compared CGI scores and clinical diagnoses between
profiles. The results showed that the CGI scores were higher than the mean in profile 1 (3.2,
SD 1.27), with the largest percentage of participants evaluated with a score of 4 (192/453,
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42.4%). For profile 2, the CGI scores were lower than the mean (2.78, SD 1.28), with a
high percentage of participants evaluated with a score of 3 (256/557, 45.9%). Results in
profile 3 were not compared given the low number of patients. Figure 4.5 collects this
information.

Most diagnoses fell within the F4, F3, and F6 categories in each profile and in the
total sample, corresponding with affective disorders, neurotic and stress-related disorders,
and disorders of adult personality and behavior. The distribution of participants with
profile 1 was similar for all the types of diagnoses. However, profile 2 seemed to be more
frequent among patients with diagnoses of schizophrenia and psychological, behavioral,
and emotional disorders with onset in childhood/adolescence (F2: 43/90, 48%; F8: 3/5,
60%; and F9: 14/38, 37%; see Figure 4.6 and Table 4.4 for more details).
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Figure 4.6: Distribution of profiles for patients from each disorder regarding the ICD-10
categories.

Category Profile, n(%)
0 1 2 3

F0 7 (50.0) 3 (21.4) 2 (14.3) 2 (14.3)
F1 26 (45.6) 13 (22.8) 18 (31.6) 0 (0.0)
F2 37 (41.1) 10 (11.1) 43 (47.8) 0 (0.0)
F3 215 (49.6) 104 (24.0) 104 (24.0) 10 (2.3)
F4 614 (51.2) 269 (22.4) 290 (24.2) 26 (2.2)
F5 51 (48.1) 25 (23.6) 29 (27.4) 1 (0.9)
F6 109 (49.1) 58 (26.1) 51 (23.0) 4 (1.8)
F7 6 (66.6) 1 (11.1) 2 (22.2) 0 (0.0)
F8 2 (40.0) 0 (0.0) 3 (60.0) 0 (0.0)
F9 20 (52.6) 3 (7.9) 14 (36.8) 1 (2.6)

Table 4.4: This table shows the distribution of patient profiles according to the main
ICD-10 diagnostic categories for psychiatric disorders (F0-F9).
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4.1.5. Discussion

The data modeling approach we applied was able to discriminate four different profiles
of patients based on the answers to a brief electronic questionnaire. All profiles shared a
component associated with feelings of aggressiveness, worthlessness, and suicidal thoughts
(bias term or profile 0), which seemed to be common among patients who used e-mental
health tools [158], such as the MEmind Wellness Tracker.

Sex and age distributions showed very little variability across the profiles, facilitating
comparisons between them. In addition to profile 0 (bias term, default pattern), three
profiles were found based on the scores of different sets of questions. It is important to bear
in mind that a feature was classified as active only when the scores were in the top 10% of
the corresponding items. For example, even if the item of low sleep quality is absent from
profile 2, a patient with that profile could still have high scores in that item compared with
the general population and thus have relatively low sleep quality.

Patients in profile 1 reported a lack of positive mood, low quality of sleep, low energy,
feelings of loss of control, and difficulties to face problems. These symptoms could be
reactive to life difficulties and partly due to a lack of coping skills. Patients in profile 2
presented high scores in depressive feelings, worries interfering with their sleep, feelings of
being overwhelmed and unable to overcome troubles, low self-confidence, and feelings of
worthlessness. This pattern seems to be related with a greater inward focus and depressive-
like symptomatology. Interestingly, patients in profile 2 also reported the highest scores
for suicidal thoughts and feelings of aggressiveness. Indeed, patients in profile 2 reported
five of the 10 ICD-10 diagnostic criteria for a depressive episode, including disturbed
sleep, depressive feelings, reduced self-confidence, ideas of worthlessness, and ideas of
suicide [125]. Surprisingly, those in profile 2 were evaluated by their physicians as having
a higher level of functionality (CGI) than those in profile 1, despite higher levels of suicidal
thoughts, aggressiveness, and depression in profile 2. This points to discordances between
the medical assessment and the self-reported momentary assessment. Finally, profile 3
involved a small group of patients with high scores in all the items of the questionnaire.
They shared the features of profile 1 and profile 2, and reported the most severely affected
psychological state in our sample (the highest levels of distress).

Our study suggests that the analysis of data from electronic self-assessments can
discriminate profiles or clusters of patients sharing similar clinical characteristics. These
features do not seem to overlap with usual clinical diagnoses, since no differences were
found in the prevalence of previous psychiatric diagnoses between profiles. Most patients
in each profile received diagnoses in F4 (anxiety disorders) and F3 (mood disorders)
ICD-10 categories, which were numerically the most common diagnoses in the sample.
However, diagnoses of disorders with an onset during childhood and adolescence (eg, F8
and F9) and schizophrenia (F2) were overrepresented in profile 2. Profile 3 was particularly
overrepresented among the small group of patients with organic mental disorders (F0)
in the sample, which could implicate a more complex disease course. Interestingly, in a
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previous paper, our medical team found that the assessments made by clinicians did not
correlate well with patients’ self-reports within 24 hours of a clinical evaluation [165].

The presence of sporadic suicide thoughts can be relatively frequent in psychiatric
patients, but eHealth apps could help to identify profiles with higher suicide risk, such as
profile 2. Previous literature has suggested improvements in mood, well-being, anxiety,
and self-awareness, as well as a higher adherence to treatments among users of eHealth
apps [135], [166]–[168]. Electronic assessment tools, such as the one used in our study,
may support physicians to discriminate patients with high suicide risk in order to adjust
their interventions.

Among the limitations of our study, we note the use of only baseline assessments
and incomplete clinical information. The described profiles might not be reflective of
eHealth users who continue to use the app regularly. Besides, our intention was not to
map the participants onto Diagnostic and Statistical Manual of Mental Disorders (DSM)
or ICD categories but rather to identify symptomatic profiles that are not necessarily
reflected in psychiatric diagnoses. This study was designed to explore the utility of a new
method to classify e-mental health users, and it needs to be completed with follow-up data.
Nonetheless, once the SPFM is trained, it will be possible to analyze changes in patient
profiles during continuous assessment with several time points. It will also be possible to
link the electronic assessment with medical records. Our results could help to select the
most performing questions according to mental disorders or patient profiles, which, in turn,
could be used to create shorter and more efficient questionnaires. We can see in our study
that the question about medication intake had very low informative value.

There are still many concerns regarding e-mental health that need to be addressed. One
of the main concerns reported by both professionals and users is related to the privacy,
ownership, and responsible use of medical information [169], [170]. This is one of the
major challenges that eHealth needs to address by means of privacy-preserving technologies
[171]. Accessibility and difficulties to find reliable sources of medical information are
also important concerns in the population, especially among older adults [172]. Medical
professionals also have doubts about the capacity of online information to improve the
knowledge of patients and have reported concerns regarding the capacity of telemedicine
to enhance physician-patient bond [170]. All these concerns must be addressed in order to
improve the acceptability and use of eHealth tools. A recent study suggested that there
is still a low preference for the use of eHealth tools among the adult general population
[147]. However, those who have already used eHealth apps usually feel confident to
continue using them. Some studies have reported a sense of security and the existence of a
relational bond between eHealth apps and patients with psychiatric diseases [173], [174].
Our analyses show that machine learning can help to classify e-mental health users and
provide clues for their diagnoses and, importantly, their needs in terms of treatment. If
machine learning helps physicians to take clinical treatment decisions based on data, the
social perception about available eHealth tools will certainly improve.
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4.2. Disturbed Sleep as a Clinical Marker of wish to Die

4.2.1. Introduction

Suicidal behaviour is a major public health problem. Over 800,000 people take their own
lives every year worldwide, and approximately 20 times more people attempt suicide [175].
Suicide risk assessment and monitoring are crucial for the prevention of suicidal behaviour
[176]. However, a direct assessment of suicide risk can be difficult in contexts where a
specialized clinical support cannot be guaranteed, such as in primary care settings, or
when using self-report questionnaires [177], [178]. Clinical proxies of suicidal behaviour
can facilitate assessment and be less overwhelming for patients. Wish to die —or passive
suicidal ideation— has been shown to increase the risk for suicide attempts and death by
suicide, even in the absence of active suicidal ideation [179]–[182]. A recent systematic
review and meta-analysis deeply characterized passive suicide ideation, concluding that it
was highly similar to active suicide ideation in terms of psychological correlates, and that
it was strongly associated with suicide attempts [182].

There are some previous smartphone monitoring studies in suicide research, which have
looked into different aspects such as fluctuation of suicide ideation over time or feasibility
and acceptability of monitoring systems [183]–[191]. However, most of these previous
studies have follow-up periods of less than a month and sample sizes of less than a hundred
participants [184]–[189]. Another limitation is the use of economic incentives to increase
engagement, a practice that limits the applicability of results [192], [193]. However,
smartphone monitoring can be feasible in real-world conditions, as shown by a feasibility
study by our research group: we tested the MEmind application in 457 participants and
obtained a retention rate of 66.6% and an overall 68.0% compliance with questions over
two months of observation, without using economic incentives [191].

Sleep is recently emerging as a promising clinical marker. Several forms of dis-
turbed sleep —including insomnia, nightmares, poor sleep quality and reduced sleep
quantity— have been associated with several forms of suicidal thoughts and behaviours
(STB)—including wish to die, suicidal ideation, suicide attempts and death by suicide
[194]–[198]. This association has been confirmed in a number of systematic reviews and
meta-analyses, which have found a significant and independent association between sleep
disturbances and STB [199]–[202].

The association between sleep problems and STB seems relevant in both the long
term and the short term. For example, a 13-year retrospective study of 479,967 patients
showed that insomnia tripled the risk of suicide attempt [203]. Looking at the short-term
relationship, a prospective study with a 21-day follow-up showed that actigraphy-measured
sleep variability was a significant predictor of suicidal ideation [196]. Another study, where
participants completed a sleep diary over the course of 1 week showed that short sleep
duration and poor sleep quality increased the severity of next day suicide ideation [198].
Thus, sleep may increase the risk of suicide both over several years and over the course of
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just a few hours. The long-term association may be mediated by increased risk for other
mental disorders, such as depressive disorders, among other factors, while the short-term
association may result from emotional dysregulation and impulsivity [201].

Negative feelings and appetite alterations have also been associated with STB in
previous studies. Negative feelings have been explored in some previous smartphone
monitoring studies [184], [186]–[188], [204]–[206]. For instance, in the study by [187],
hopelessness and perceived burdensomeness were prospectively associated with suicide
ideation. However, this is not the case for appetite, which has been explored with more
traditional methodologies —for instance, [207] found that adolescents with appetite loss
had a five-fold risk for suicidal ideation compared to those with normal appetite— but has
not yet been measured through smartphone monitoring.

Smartphone monitoring may be particularly suitable for measuring the relationship
between sleep and suicide, given the huge variability of suicidal ideation over short periods
of time and the probable role of sleep as a short-term marker of STB.

As shown in the meta-analysis by [208], there has been little progress in the search for
valid risk factors for suicidal behavior in the last decades. The authors of this meta-analysis
highlight the potentials of machine learning to advance in the field of suicidology [208].

4.2.2. Objectives

In this study, we use the same model as in the previous section but another smartphone
questionnaire to explore the associations between wish to die, disturbed sleep, negative
feelings and altered appetite, in non-incentivized psychiatric patients over three months of
observation. Our hypotheses are:

1. That we will be able to detect relevant latent features across the dataset as we did
before

2. That these latent features will show a prominent association between sleep problems
and STB (i.e. these variables will be present in a short time window).

4.2.3. Data& settings

This is a prospective cohort study of psychiatric patients receiving mental health care at the
Hospital Universitario Fundación Jiménez Díaz as in the previous work (Section 4.1). This
study comprises a sub-set of the cross-national multicentre study SmartCrisis. SmartCrisis’
study protocol has been published elsewhere [136].

The study was approved by Ethics Committee of the Jiménez Díaz Foundation Univer-
sity Hospital and was conducted according to the principles set forth in the Declaration of
Helsinki [209]. All patients gave written informed consent to participate.

77



Sample

Participants were outpatients with any psychiatric diagnosis who were approached during
regular appointments with their psychiatrist or psychologist and invited to participate. Inclu-
sion criteria were being aged 18 year or older, having a history of suicide behaviour and/or
suicidal ideation measured with the Columbia Suicide Severity Rating Scale (CSSRS)
[210], being able to understand and sign the informed consent form, owning a smartphone
with internet access.

Again, the questionnaire was administered through a smartphone application: the
MEmind Wellness Tracker (See Section 4.1.2 for details)). This time, the questionnaire
is called Ecological Momentary Assessment (EMA) and has 32 items, which were asked
with different frequencies and in different order. Suicide-related variables were ‘Wish to
die’, and ‘No wish to live’. Including more direct questions about suicide intentionality
was considered during the design of the study, but this option was rejected by the Ethics
Committee. Three other areas were explored: negative feelings (13 questions), sleep
quality and quantity (10 questions), and appetite (7 questions). Questions about wish to
die, wish to live and negative feelings were based on the Salzburg Suicide Questionnaire
[211]. Questions about sleep were extracted from the Insomnia Severity Index (ISI)
[212], and questions about appetite were extracted from the Council on Nutrition Appetite
Questionnaire (CNAQ) [213]. In order to increase engagement without using incentives,
we did not ask the same questions every day. Instead, we rotated questions, making them
different from day to day. The questions were randomized, with the guarantee that all
were asked throughout the follow-up a certain number of times (this frequency changes
according to the questions, as shown in Figure 4.7), but the order in which they will be
asked varies from patient to patient. We did this to lessen the burden for the patient and
thus allow for a longer follow-up period. During the first month, the evaluation included 4
questions. Afterwards, evaluation included 2 questions. Every day at 10 am there was a
question about sleep regarding the previous night. The rest of the questions were asked at
random times from 10 am to 10 pm. They all appeared as a notification on the users’ screen.
Reducing the burden of questions is a fundamental aspect in a smartphone monitoring study
with a longer than usual follow-up period. The pre-processing and algorithm employed
allowed us to compensate for missing data resulting from this approach.

Questions about sleep and wish to die/live were over-represented according to our
hypotheses. The variables explored and the frequency of administration of questions are
shown in Figure 4.7. The complete questionnaire is shown in Appendix C.

Other measures

During the baseline interview, a trained psychologist assessed suicidality, sleep distur-
bances, mood and anxiety symptoms using the following standardized questionnaires:
CSSRS [210], suicidality module of the Mini International Neuropsychiatric Interview
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Figure 4.7: Variables assessed through smartphone monitoring and assessment frequency.

7.0.0 [214], Pittsburgh Sleep Quality Index (ICSP) [215], ISI [212], Inventory of De-
pressive Symptomatology (IDS) [216], Young Mania Rating Scale [217], and State-Trait
Anxiety Inventory (STAI) [218].

Sociodemographic variables, including age, sex, marital status and employment status,
were also collected. Diagnosis was established clinically, based on information collected in
the electronic medical record, which in turn was based on the tenth edition of the ICD-10
criteria. The diagnoses were catalogued into ten diagnostic groups as per the ICD-10.

Procedure

Recruitment took place from February 2018 to January 2019. Data collection was per-
formed by a team of research psychiatrists and psychologists different from the clinicians
that cared for the patients. During the baseline visit, participants had the application
installed in their mobile phones and were taught how to use it. Patients were followed for
a median of 89.8 days, resulting in 9, 878 person-days.

4.2.4. Methods

We applied the non-parametric Bayesian method, SPFM, that we used in Section 4.1 to
analyse the data. In this scenario, this algorithm detects sets of variables that tend to adopt
certain altered values in the same time frame (in this case, after testing the model, the most
appropriate time frame was established at 96 hours). Again, here, we call these sets of
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variables “latent features”. Thus, features are supravariables formed by the grouping of
variables. For instance, if two or more given variables are frequently present at the same
time, the method would label them as a relevant latent feature. Based on the presence or
absence of these latent features over time, the system takes the next step of clustering,
describing “profiles”, which are the sum of latent features.

One way to understand this concept is to compare it with the Myers- Briggs Type
Indicator (MBTI) personality test. The MBTI is composed of 64 questions (whereas our
questionnaire is composed of 32 questions) and depending on the answers, 8 personality
‘traits’ are described (Introverted/Extroverted, Sensitive/Intuitive, etc.). These ‘traits’
would be the equivalent to our ‘features’. From the combination of ‘traits’, 16 personality
‘types’ emerge (ISTJ, ISFJ, etc.). These personality ‘types’ would be the equivalent to our
‘profiles’.

As in the MBTI, features and profiles are individual. The difference is that in our case
the features and profiles are not predetermined theoretically, but rather are empirically
determined through the model after observing the dataset. The number of features to be
detected is also not predetermined: the algorithm detects them for each data set. Another
difference is that, while personality is (relatively) stable, both features and profiles are
dynamic: each person can have different features and profiles depending on the socio-
familial and intrapsychic context they are going through at any given time (and the
mechanisms that trigger a change in profile may be different for each person), although
profiles are more stable than features.

As we know, the SPFM discovers these latent features through a sparse analysis. That is,
only a small subset of data will offer discriminant information. Using this method we can
surpass the limitations caused by the turn-over system of the questions, including missing
data, sparsity of valuable information, and chronological irregularity of the assessment.

Data processing

Since the SPFM method uses dichotomous variables, once again, all questions were
transformed. In addition, in this work we had different kind of questions from differ-
ent questionnaires, so the format of the answers could be from continuous values until
categorical ones.

First, the value of some questions were reversed so the highest punctuation means the
worst state of the user who answers. These modified questions are marked in Appendix C.

Second, we have dealt with the temporal component by grouping data from questions
performed during some consecutive days. For that, we have tried windows from two to four
days, so the model will consider that everything answered in that period of time belongs to
the same sample. For the results presented in this work, the window was set to four days.

Third, all questions have been normalized to continuous values between 0 and 1 and
then transformed them to binary values. In this work, we established a threshold of 0.5, so
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that users with a score equal to or greater than 0.5 would obtain a value of 1, equivalent to
showing the worst possible status for the particular question. The rest were set to 0.

To address the issue of multiple testing, we estimated the False Discovery Rate using the
Benjamini and Hochberg procedure [219]. To correct the overrepresentation of some of the
questions, adjustments were made by histogram equalization and subsequent remodeling.

4.2.5. Results

Characteristics of the sample

Of the 189 patients approached, 165 (87.3%) agreed to participate in the study. The mobile
application could not be installed in 26 (13.8%) participants due to technical issues. 139
(73.5%) had the application installed. Participants who answered for less than five days
were excluded, resulting in 110 participants included in the final analysis. There were
no significant differences regarding age, sex, or history of STB between compliant and
non-compliant participants. Total number of responses across the 110 participants was
13,959. Number of responses ranged between 6 and 657. Mean number of responses was
126.9 (standard error = 11.44). Estimated response rate was 52.88%.

The mean age of the participants was 45 years. Gender distribution was 65.6% female
and 34.4% male. The most frequent diagnoses were anxiety disorders (64.8%), mood
disorders (51.2%), and personality disorders (51.2%). 92% of patients reported previous
suicide attempts —54.4% had attempted suicide one or two times, and 36.8% three or
more times—, while 8.0% had only suicidal ideation and no previous attempts. Table 4.5
shows the full description of the sample.

After the preprocessing of the data, with the windowing, we kept 2428 observations
belonging to all patients.

81



n (total=165) % Mean (SD)

Gender
Male 57 34.4
Female 108 65.6

Age (years) 44.3 (15.22)
Marital status

Married/Coupled 65 39.2
Single 68 41.5
Separated/Divorced 30 18.1
Widowed 2 1.2

Employment status
Employed/Student 72 43.7
Unemployed 37 22.2
Retired 13 7.8
Temporal leave 28 17.3
Permanent leave 15 9.0

ICD-10 Psychiatric diagnosis
Mental disorders due to drug use 21 13.0
Psychotic disorders 1 0.6
Mood disorders 83 51.2
Anxiety disorders 105 64.8
Personality disorders 83 51.2
Other 29 18.0

Number of previous suicide attempts
None (only previous suicide ideation) 10 8.0
1-2 68 54.4
3 or more 46 36.8

CSSRS (SI subscale) lifetime 4.33 (0.92)
CSSRS (SI subscale) last month 2.63 (1.96)
IDS 23.82 (11.96)
ISI 13.13 (6.65)

Table 4.5: Baseline characteristics of the sample.

Latent features analysis

We identified four relevant latent features in the dataset—i.e.: groups of variables with high
probability of scoring positive within the same time window (96 hours)—. Following the
simile proposed in the methodology, these would be the “personality trait” found. Figure
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4.8 shows the four latent features and the high-scoring variables that characterize them.
As we know from the previous work, each feature is made up of a score on each of the
variables. This score is the result of dichotomizing the variables and it is related with the
probability of scoring more than 0.5 on the continuous variables. Each of these features is
explained in detail below:

Figure 4.8: Latent features (0, 1, 2 and 3), characterized by different scores on each of the
variables.

• Feature 0 represents the basal or resting state. This is a state common for all the
dataset (i.e., these are the fixed scores of adopting each of the variables throughout
the follow-up) and as in the previous work, it is called bias. Then for this feature
0, we observed low scores in all the variables. The highest scoring variables were
‘Decreased appetite’ (26), ‘Tastelessness of food’ (29) and ‘Interference of sleep
problems with daytime functioning’ (24).

• Feature 1 is characterized by high probability of scoring positive in the variables ‘No
wish to live’ (7) and ‘Wish to die’ (8), along with moderately increased probability
scores in all sleep-related variables. ‘Decreased appetite’ (26) and ‘Tastelessness of
food’ (29) also presented an increased probability score.

• Feature 2 is characterized by moderately increased scores in most variables, indi-
cating worse general state. ‘No wish to live’ (7) had a 27% probability of scoring
positive. ‘Wish to die’ (8) also presented an increased probability score, as did
sleep-related variables such as ‘Difficulties falling asleep’ (16) or ‘Difficulties stay-
ing asleep’ (17), negative feelings such as ‘Hopelessness’ (4), and appetite-related
variables such as ‘Decreased appetite’ (26).

83



• Feature 3 shows high probability scores in most variables to a greater extent than
feature 2. The highest scoring variables were ‘Overall sleep dissatisfaction’ (22)
(100% probability of scoring positive), ‘Restlessness’ (3) and ‘Distortion of food
taste’ (30).

Based on these relevant latent features, we observe that in those features where ‘Wish
to die’ is increased, sleep problems are also increased. That is, ‘Wish to die’ and sleep
problems have an increased probability of adopting positive values in a time window of 96
hours. As mentioned in the Section 4.2.4, the next step is to determine the most relevant
profiles based on the sum of the different features throughout the monitoring period. Thus,
the profiles are the combinations of features —equivalent to the sum of the scores of each
of the features— that are more usual over the follow-up period. The clustering method
over the SPFM result revealed five relevant profiles. The profiles are described in Table
4.6. The feature 0 is present in all profiles, as this is the basal state of the sample. Profile 1
involves only feature 0, and it was the most frequent one throughout the follow-up. The
profile 2 is characterized by presenting Feature 0 plus Feature 1. It was the second in
frequency. Profile 3 (third in frequency) is characterized by the presence of Feature 0 plus
Feature 2. Profile 4 (4th in frequency) comprises three latent features (0+1+2), and profile
5 (the rarest) comprises the sum of all four latent features at the same time.

Profile Number of observations Feature 0 Feature 1 Feature 2 Feature 3
1 1452 Yes No No No
2 738 Yes Yes No No
3 142 Yes No Yes No
4 93 Yes Yes Yes No
5 3 Yes Yes Yes Yes

Table 4.6: Profiles identified in the sample and features present in each profile.

Although profiles are more stable than features, each participant can evolve from one
profile to another throughout the follow-up. Figure 4.9 shows this variability. Thus, each
of our 110 patients is represented on the x-axis; the y-axis represents the profiles and the
color indicates the probability of adopting each of these profiles throughout the follow-up.

Figure 4.9: Heat map of the evolution of profiles. For each patient (horizontal axis) the
figure shows the probability (colour legend) of presenting each of the five profiles (vertical
axis) throughout the follow-up period.
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4.2.6. Discussion

Comparison with previous findings

In our study, we found that ‘wish to die’ and sleep problems tend to be present at the same
time window of 96 hours. Our results add to the evidence about the association between
sleep disturbances and different forms of suicidal behavior [199]–[201]. Particularly, our
study adds to the evidence that sleep problems are associated with STB in the short term
[196], [198]. Although in this work we have not studied the directionality of the association,
we have observed that both variables tend to occur together within 96 hours. In a sleep
diary study performed by [198] in 51 patients, authors found an unidirectional association
between short sleep duration and suicidal ideation within 24 hours. In contrast, suicidal
ideation did not predict sleep problems [198].

Lack of sleep leads to emotional dysregulation [220], [221], which may partially explain
its association with passive suicide ideation Additionally, insufficient sleep increases
impulsivity [222], [223]. If we consider the integrated motivational-volitional of suicidal
behavior [224], we see how impulsivity is one of the main precipitating factors of suicidal
behavior. Sleep problems, via increased impulsivity, may act as precipitating factors for
suicidal behavior. Therefore, the joint presence of suicidal ideation and sleep problems,
with the impulsivity that they entail, could be indicating a risk of progressing from the
motivational phase to the volitional phase. One line of research that we intend to address in
future studies is to explore whether data recorded through smartphone monitoring correlate
with clinical events, such as suicide attempts. In this way we aim to further characterize
sleep problems as a risk marker for suicidal behavior.

Other factors associated with wish to die

Low appetite was also associated with high wish to die and low wish to live, specifically
the components of “No appetite” and “Bad food taste”. Previous studies have found an
association between alterations in appetite and suicidal behavior [207]. As for the questions
about negative feelings, they scored high in profiles where the remaining symptoms
–including wish to die– were also present, suggesting a non-specific pattern of clinical
severity. Negative feelings have been associated with suicidality before, especially those
related to perceived burdensomeness, hopelessness, and thwarted belongingness, both in
the short-term [204] and in the mid-term [225]. Thus, in smartphone monitoring studies
with short follow-up periods (1–2 weeks), negative feelings appeared concurrently and/or
prospectively associated with suicidal ideation [204], [206], while in the study by [225]
perception of entrapment predicted suicide ideation in the course of 7 weeks. While the
evidence from this and other studies suggests the potential of sleep problems as short-term
predictors of suicidal behavior, negative feelings may be related to suicide more broadly
along the suicidal trajectory. In the integrated motivational-volitional model of suicidal
behaviour [224], negative feelings, such as entrapment, burdensomeness or thwarted
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belonginess, act in the intermediate, motivational, phase. Sleep problems and negative
feelings could also interact with each other. For instance, a recent study showed that
healthy sleep decreased the impact of psychological distress on suicide risk [226].

The advantages and disadvantages of smartphone monitoring

Despite its numerous advantages, smartphone active monitoring also presents with limita-
tions. An intrinsic weakness of this methodology is participant fatigue [227]. Submitting
them to the same questions every day causes patients to abandon the use of the application.
In the contrary of the previous work where all questions were answered each time, in
this study, we asked a set of questions on each shot. Furthermore, we tackled the issue
by incorporating a turnover system to avoid repetition of questions and thus improve
engagement. To be able to analyze the data obtained in this way and compensate for the
resulting missing data, we used a IBP based model which has been scarcely used before.
The specific variation we introduced —Sparse Poisson Factorization Model— is novel in
psychiatric research and this is our second work where we apply it.

Another way to decrease fatigue is to resort to smartphone passive monitoring, using the
smartphones’ native sensors, without the active collaboration of the user. This methodology
has been explored before in suicide research [183], [191], as well as in other mental health
areas [228], [229]. However, there are still issues to resolve, such as the validation of
the sensors for measuring variables such as mobility or sleep, and the usefulness of these
variables as clinical proxies of STB. In addition to its usefulness in research, smartphone
monitoring technology could be harnessed for clinical practice through the development of
a clinical monitor that alerts clinicians of imminent risk. However, there is still a long way
to go before they can be fully implemented in clinical practice.

Strenghts

To our knowledge, this is the first smartphone monitoring study exploring the association
between passive suicide ideation and sleep problems —two previous smartphone-based
studies included sleep related questions in their protocols [188], [191], but both of them
were feasibility studies and did not offer results regarding the association—. This study
is also innovative because it incorporates a rotation system in the questions that reduces
repetition. Other studies also rotate their questions; for example, [230] conducted 3
assessments per day, each of them including 3 randomly chosen questions from the Patient
Health Questionnaire-9. However, in their case, each day they ended up asking the full nine
questions of the questionnaire. In our case, the patients were only asked 2 to 4 questions at
random from a pool of 32 questions. This considerably reduces the burden at the cost of
generating missing data. These missing data can be compensated for by using the suitable
model as our case. Our study has been performed in real-world settings, with larger sample
sizes and longer follow-up periods than previous studies.
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Limitations

Our findings must be considered in light of some limitations. Sleep assessment was based
on participants’ perception and thus subjective. We did not ask about suicidal ideation
directly, but instead used the proxy “wish to die”, following the recommendation of
the Ethics Committee. This was deemed as less overwhelming for patients, taking into
account that ours was a continuous, digitally delivered assessment, without direct clinical
supervision. Another limitation is that the SPFM compensates for the missing data at the
cost of converting continuous variables in dichotomous variables, thus losing variance.
Also, the associations were not explored longitudinally, but cross-sectionally within a
short reference period (variables that appeared together within the same 96 hours). Thus,
we cannot establish directionality of the association. Finally, the study was conducted
in patients at high risk by virtue of prior suicide attempts or suicidal ideation. Studies
including larger samples from more general psychiatric or other populations would be
instructive.

4.2.7. Conclusions

Using smartphone monitoring and machine learning techniques we found that disturbed
sleep was associated with wish to die among psychiatric patients in the short-term (within
96 hours). Our findings stress the importance of evaluating sleep as part of the screening for
suicidal behavior. In the presence of other factors, such as high-risk psychiatric diagnoses
or a history of previous attempts, it is relevant to ask about the quality and quantity of
sleep, as it can be a precipitating factor. This is relevant not only for mental healthcare, but
also for primary-care settings considering that nearly half of patients who attempt suicide
visit their general practitioner in the previous month [231]. In contrast, attempters rarely
make a specific comment about their suicidal thoughts during these visits [232]. Questions
about sleep may be less threatening to the patient and easier for non-specialized physicians
to address.

The refinement of statistical methods and the advancement of technology can in-
crease the potentials of smartphone monitoring, including the future development of
smartphone-delivered clinical interventions. Statisticians are increasingly calling for a
research landscape beyond the p value [233]. Machine learning techniques represent an
advance from traditional statistical methods.

This line of research can result in innovative preventive and therapeutic tools that make
use of new technologies for the detection and prevention of suicide. However, we must
acknowledge the need for more work before these tools can be applied in everyday clinical
practice. One of the main challenges is the integration of these alternatives within broader
treatment plans, taking into account factors such as digital literacy or the time of the clinical
course to select which patients that can be benefit the most from these technologies.
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4.3. Suicidal High Risk Patients State during COVID-19

4.3.1. Introduction

This chapter corresponds to the last work in my line of studies of applying a probabilistic
method to smartphone-based health questionnaires to psychiatric patients. It emerged
during the COVID-19 quarantine and consisted in applying the same method as the previous
two chapters, the SPFM, to find the profiles distribution of patients before and during the
lockdown.

Psychiatric patients are particularly vulnerable to the psychological impact of the
coronavirus disease 2019 (COVID-19) outbreak. Social distancing and lockdown measures
result in multiple stressors known to increase risk for suicide, including social isolation,
financial stress, decreased access to mental healthcare and medical comorbidities[234].
Research on the mental health consequences of this crisis is considered a priority[235].
However, quarantine has interfered with face-to-face research. Mobile technology applied
to health – known as mobile health or m-Health – can overcome these barriers. In this study
we use smartphone-based EMA to explore the impact of COVID- 19 social distancing and
lockdown measures on suicide risk, in a sample of psychiatric patients at high risk for
suicide.

4.3.2. Method

The authors assert that all procedures contributing to this work comply with the ethical
standards of the relevant national and institutional committees on human experimentation
and with the Helsinki Declaration of 1975, as revised in 2008. All procedures involving
human patients were approved by the Ethics Committee of the University Hospital Fun-
dación Jiménez Díaz. All participants provided written informed consent to participate in
the study.

Participants and procedures

Using EMA, we prospectively assessed 36 adult patients, who were being treated at
our suicide prevention out-patient clinic because of a high risk of suicide. EMA was
delivered using the MEmind smartphone app, which is available for both Android and
iOS operating systems. As in the previous work, EMA questions were announced as
push notifications on users’ screens. A detailed description of the MEmind app has been
published elsewhere[136], [158]. Participants were recruited from an ongoing multisite
study examining longitudinal risk factors for suicide (SmartCrisis[136]).

Patients were included in the study if they had a history of at least one suicide attempt
or an emergency department visit because of suicidal ideation. Written informed consent
was obtained from all patients. Pseudonymization of the participants’ personal data was
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employed, by using a unique identification code for each participant. The follow-up period
was divided into: (a) pre-lockdown: 1st October 2019 to 13 March 2020 (before the
implementation of Covid-19 lockdown measures); and (b) lockdown: 14th March to 14th
April 2020.

At baseline and at follow-up, patients were administered the CSSRS[210]. To safeguard
the well-being of our patients, upon detecting an alarming level of suicidal ideation
(threshold was established at CSSRS suicidal ideation subscale score ≥ 4), their attending
psychiatrist was informed, and it was suggested to patients that they attend the emergency
department.

The EMA questionnaire

During this work we use the same questionnaire as in the previous part so refer to Section
4.2.3 for more details. Appendix C shows all the questions and their scoring. The MEmind
EMA questionnaire has shown good acceptability in preliminary studies[191], [236].
As constant repetition of questions can place a significant burden on the user, we have
incorporated the same turn-over system for questions as we used in previous work. Out of
the pool of 32 questions participants were asked two to four random questions every day,
at random times from 10.00 to 22.00 h. Figure 4.10 shows the variables explored in the
EMA questionnaire and the frequency with which the questions were asked.

Figure 4.10: (a) Suicide risk features identified using the SPFM. Vertical axis: variables.
Horizontal axis: probability of scoring positive each of the variables. (b) Distribution of
features before and during lockdown.
Assessment frequency: a at least once every two weeks during the first month and at least once
every six weeks afterwards; b at least twice per week during the first month and at least once per

week afterwards
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Statistical analysis

We used the same SPFM that we did in Sections 4.1 and 4.2. As before, the features
revealed by the SPFM are supravariables formed by the grouping of variables, that is:
sets of variables that tend to adopt certain abnormal values in the same time frame. They
are dynamic, and the same person may have different features over time. So, one of the
main differences regarding previous works is the time treatment of the samples. In this
work, we separate patients data in two sets, before and during the lockdown, and compare
the profiles found in both periods. More precisely, we compared individual suicide risk
features before and during the lockdown.

The values of each of the 32 questions were standardised so that all were again
expressed as 0 or 1 and the highest value would always express a worse state of mental
health. The negative connotation of the profiles is present in the three works from this line.

4.3.3. Results

Sample

Mean age of the participants was 41.7 years (s.e. = 16.3). The majority of the participants
were women (n = 31; 86.1%). The most common psychiatric diagnosis was mood disorders
(n = 21; 58.3%). The mean number of previous suicide attempts was 1.1 (s.e. = 0.2)

Profiles

After applying the SPFM we obtained 4 different features, the bias and three more. At the
contrary that in the two previous works, after doing the clustering, we got a quantity of 8
profiles with different combination of features active. However, we identified four profiles
that accounted for more than 99.5% of the participants’ responses (see Figure 4.10(a)), so
we focused our results in those. All of them have the bias active, profile 2 also has feature
1, profile 3 has feature 2 and profile 4 has both features 1 and 2 active. The forth feature is
only present in profiles 5-8 so it lacks of interest for us.

Regarding the profiles definition, we found that profile 1 is characterised by low values
(i.e. low probability of scoring positive) across all 32 suicide risk factors. Profiles 2 and 4
are characterised by a high desire for death, lack of wish to live, decreased appetite and
tastelessness of food, and sleep problems; Profile 4 also shows high values for negative
emotions. Profile 3 is characterised by lower desire for death, and lower appetite and sleep
symptoms, with high values of negative emotions.

Before quarantine, the most prevalent profile was the number 1, with 43.0%. That is,
of the 960 responses before quarantine, 43.0% were grouped in profile 1. The second most
prevalent was profile 3 (26.7%), followed by profile 2 (17.8%). Profile 4 accounted for
11.8% of the responses and the remaining profiles (5 to 8) accounted for 0.7% (95% CI
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0.3–1.5%) of the responses.

During the quarantine, the dominant profile continued to be the 1 (52.8%). That is, of
the 214 responses, 52.8% were grouped around profile 1. This represents a 22.8% increase.
The second most common profile was still profile 3, with 34.6%. This represents a 29.6%
increase. Profile 2 fell to 10.3%, a 42.1% decrease, and profile 4 fell to 2.3%, an 80.1%
decrease. The remaining profiles (5–8) were not represented during the quarantine.

Results of the χ2-test show there are statistically significant differences before ν. during
lockdown (Profile 1: χ2 = 6.38, P = 0.012; Profile 2: χ2 = 6.69, P = 0.010; Profile 3: χ2 =

5.04, P = 0.025; Profile 4: χ2 = 16.20, P < 0.001).

4.3.4. Discussion

Contrary to our expectations, we observed that self-reported suicide risk appeared to
decrease during a COVID-19-related lockdown period, in a prospective cohort monitored
using smartphone-delivered EMA. Specifically, we found a decrease in the wish to die,
and in the rates of appetite and sleep symptoms.

Strengths and limitations

Strengths of our study include the prospective design and real-time monitoring of dynamic
suicide risk using EMA. Our results should be interpreted with caution given the modest
sample size. This modest sample size may be the reason why we have found an uneven
gender distribution, with over 85% of patients being women. However, in a prior EMA
study by our research group they also found a predominance of women in the sample[191].
Another potential limitation, in the same way that in the work from Section 4.2, is that
we did not ask directly about suicide intent but employed the indirect measure ‘wish to
die’. However, a recent systematic review and meta-analysis exploring passive suicide
ideation found that it was highly similar to active suicide ideation and that it was strongly
associated with suicide attempts[182]. Also, the observation period before lockdown was
longer than during lockdown. Finally, the length of the follow-up period was not uniform
across the sample.

Comparison with findings from other studies

Other studies have also found a decrease in suicidal ideation as a result of COVID-19-
related measures. For instance, a recent study showed that internet search queries related
to suicide decreased after the USA issued stay-at home-orders[237]. Although it may seem
surprising that suicidal ideation decreases, it is actually consistent with some previous
studies showing a drop in suicide rates during periods of social emergency, such as wartime
or terrorist attacks[238], [239]. However, there is also evidence indicating that this decrease
may be just temporary: the study by [240] shows that, although there is a decrease in
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suicidal behaviour during wartime, just after wars end, suicidal behaviour increases to
levels higher than those observed before the war. Thus, during the post-war period, the
harmful effects of conflict on an individual’s mental health become apparent. In the same
way, the possibility exists that there will be an increase in suicidal ideation and behaviour
above the expected level once the acute COVID-19 crisis ceases. We must be prepared for
this contingency.

Implications

Continuity of care has been affected by the COVID-19 crisis. In order to minimise
the risk of contagion, non-urgent face-to-face consultations have been discontinued in
many countries, including Spain. Telemedicine allows us to continue to provide mental
healthcare services to our patients. New technologies are already being used to preserve
people’s mental healthcare during the COVID-19 crisis, for example in the form of online
services[241].

Ensuring access to adequate mental healthcare for vulnerable populations, such as
psychiatric patients at high risk for suicide, should remain a priority during times of social
emergencies. Smartphone-based monitoring can be used to monitor high-risk populations
during social distancing and lockdown periods.
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5. ROBUST SAMPLING

5.1. Introduction

Deep learning requires regularization mechanisms to reduce overfitting and improve gener-
alization. We address this problem by a new regularization method based on distributional
robust optimization. The key idea is to modify the contribution from each sample for
tightening the empirical risk bound. During the stochastic training, the selection of samples
is done according to their accuracy in such a way that the worst performed samples are the
ones that contribute the most in the optimization. We study different scenarios and show
how it can make the convergence faster or increase the accuracy.

Machine learning algorithms assumed that the samples are coming iid (independent
and identically distributed) from p(x, y) and hence they use the samples equally during
training. For example, in deep learning all the samples enter with the same probability
in each of the mini-batches [2]. But not all samples are equally relevant when learning
classifiers and regressors because some of them might be hard or easy to classify or they
might be under-sampled or over-sampled in the training set without our knowledge. There
are many ways in which non-uniform sampling can be used to improve convergence speed
or quality by relying on non-uniform sample. The first example that comes to mind is
AdaBoost [242], which uses different weights for each training example to build a robust
classifier.

More recently there has been proposals to use importance sampling for training classi-
fiers and regressors to reduce the variance of their estimates. In a nutshell, the objective is
to increase the number of times a hard-to-learn sample appears in the mini-batch so the
learning algorithm can converge faster and then weight their error by the number of times
it has been used. For example in [243], the authors developed a non-uniform importance
sampling technique to solve an online optimization problem with bandit feedback. In [12]
the authors used the data structure to adapt the gradients of each observation. And [244]
try to sample the datapoints from a non-uniform distribution according to a multiarmed
bandit framework.

In the recent award-winning [245], the authors proposed bounds to reduce the variance
of classifiers by relying on non-uniform sampling of the training set, but they did not
compensate for the over-sampling (or under-sampling) of the training set in their bound.
The non-uniform sampling is a feature that should make the learned classifier more robust
and reduce the variance of its prediction. The results in [245] are mainly theoretical and
they illustrate their algorithm in an example with very few training samples, large input
dimension and using a logistic-regression classifier.

In this work, we embark on an implementation of this algorithm for training deep
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learning models to understand if this theoretical result shows significant improvement
for standard deep learning classifiers. We first propose two different alternatives on how
to incorporate the non-uniform sampling within the mini-batches used in deep learning,
leading to different ways in which hard-to-classify examples are repeated in the mini-
batches. We then compare these algorithms with a standard optimization of neural networks.
We have relied on well-known architectures and datasets not to biased our results with
new neural networks or data. We found that there are some minor improvements in the
convergence speed and reduction of error. However, this improvements seem to be more
relevant in scenarios where the number of training samples is low. On the other hand, there
is not a consistent setting for the hyper-parameters in our algorithms, what make it costly
sometimes to find the best configuration. The proposed algorithms do not seem to hurt
either the baseline performance and their computational complexity is negligible compared
to the training of the neural network.

Also, we have noticed that if we do not use dropout [57], the improvement from
using non-uniform sampling is significant. The improvements gains provided by dropout
are equivalent to those of using our proposed implementation for [245]. Even though,
both methods are thought for reducing the variance of the learnt models, they achieve
comparable results by the completely different means.

[246] proposed a similar application, unifying importance sampling and minibatching
algorithms so to assign some probability distributions to the samples of a set of minibatches
and sample them. They propose a sampling scheme to improve the converge rates but,
unlike us, they use probabilities to sample more relevant examples.

In a Bayesian setting, non-uniform sampling has been proposed in [247]. In it, the
authors took a probabilistic approach in order to make inference by raising the likelihood
of each data point to a weight. But in this paper the authors assume that the hard-to-learn
samples are outliers that would contaminate the solution of the classifier and the algorithm
actually under-samples them. The goal of sampling in this case is to reduce the outliers
and not to make the classifier more robust to hard-to-classify examples that are still valid
samples.

The rest of the work is outlined as follows. We review the main results in [245] in
Section 5.2 and the proposed algorithms are detailed in Section 5.3. We then present
extensive empirical results in Section 5.4. We conclude the paper in Section 5.5.

5.2. Motivation

5.2.1. Variance-based robust regularization

[245] proposed an alternative to empirical risk minimization that provides a robust and
computationally efficient solution for small data sets. Particularly, it is based on tightening
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the empirical risk bound by adding a variance term in the form

1
n

n∑︂
i=1

l(θ, xi) +C
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2ρ
n

VarP̂n
(l (θ, X)

where l is loss function, C is a parameter that depends on l and the desired confidence
guarantee, and VarP̂n

the empirical variance.

5.2.2. The empirical risk extension

Instead minimizing this regularized risk functional, generally not-convex, the authors
define a robust regularized risk

Rn (θ,Pn) = sup
P∈Pn

{︃
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n

}︃
where Dϕ is the ϕ-divergence with ϕ(t) = 1/2(t − 1)2. The robust regularized risk is shown
to be equivalent to

Rn (θ,Pn) = EP̂n
[l (θ, X)] +

√︃
2ρ
n

VarP̂n
(l (θ, X)) + εn (θ) (5.1)

5.2.3. A more intuitive formulation

As the authors describe in their work, we can consider the Equation (5.1) as a min-max
problem, that is, an optimization with two steps.

• First, the minimization of the weighted risk, min
θ

1
n

∑︁n
i=1 pili(θ, xi), where θ are the

parameters to be computed, x is a set of n samples and pi is the weight associated
to each sample, so the samples with higher contribution to the loss function are the
more valuable in the model.

• Second, the maximization of the robust objective, max
p

∑︁n
i=1 pili.

As a constraint, they propose the Equation (5.2), where ρ is a parameter to select the
confidence level. In the case that pi is equal to 1/n for every sample, the model would
correspond to the empirical risk minimization, that is, all the samples have the same weight
and indeed, the same contribution.

p ∈ Pn =

{︄
p ∈ Rn

+ :
1
2
∥np − 1∥22 ≤ ρ, ⟨1, p⟩ = 1

}︄
(5.2)

They give a number of theoretical guarantees and empirical evidences in order to show
the optimal performance of the estimator with faster rates of converge and the improvement
of out-of-sample test performance in different classification problems.
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5.2.4. Application on Deep Learning

Nowadays, deep learning is known as a powerful framework for supervised learning [2]. It
allows the implementation of neural networks with as many layers and units as it is desired,
providing a more or less sophisticated function to fit a specific dataset. The description
of such algorithms is followed by the specification of a cost function, an optimization
procedure and a model, what makes the robust objective proposed a direct application in
the step of the risk minimization of this kind of tools.

Moreover, neural networks sometimes require long training times when the graph
architecture is some how complex. These methods require the use of all the data before
updating the predictor. As a consequence, a small improvement at each iteration in the
optimization could make huge differences in the performance at the end.

In spite of the high capacity for the adaptation to complex models that deep neural net-
works have, they involve an excessive computational complexity that makes impossible to
apply directly the two-step algorithm from [245] summarized in Section 5.2.1. Evaluating
gradients twice would imply go over the entire dataset twice per epoch. We have modified
the algorithm in [245] so its computational complexity when training neural networks is
negligible compared to uniform sampling.

We would like to express the contribution of the variance to the upper bound of the
empirical risk as a way of selecting more frequently the samples with more variance in the
mini-batches of the neural networks. This is equivalent to, in the step of computing the
gradients, use the worse performed samples more times. With that choice we would like to
sacrifice the common classes at better performance on the rare ones.

5.3. Model description

This section describes the methods to select the samples of the mini-batch in a deep
learning problem based on the idea described before. We propose four different algorithms.

In the first algorithm, we train the neural network in such a way that, at each iteration,
we repeat a percentage of the worst performed samples from the previous mini-batch. This
percentage will be a hyper-parameter and has a similar role as the parameter ρ in Equation
(5.2), since it lets more samples to have more contribution. We refer to this model as
Variance Reducer per Mini-batch (VR-M) and it is described in Algorithm 1.

In the second algorithm, we modify the original training set for each epoch so that we
repeat a percentage of worst performed samples from the training of the whole previous
epoch. This method is detailed in Algorithm 2 and we defined it as Variance Reducer per
Epoch (VR-E). In this context, we must differ the connotation in the definition of iteration,
what we mean as the step from a mini-batch to the next one, with respect to a step between
two epochs, which includes many iterations.
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Algorithm 1 Variance Reducer per Mini-batch (VR-M)
Require: DatasetsDtrain andDtest.
Ensure: Test accuracy η.

1: Initialize parameters θ, number of epochs E and repetition rate ϵ;
2: for e = 1 . . . E do
3: Divide datasetDtrain in M mini-batches;
4: for m = 1 . . .M do
5: {xm, ym} ← Obtain next mini-batch m;
6: ℓm ← Evaluate cross-entropy in mini-batch m;
7: θ ← Update parameters with Stochastic Gradient Descent (SGD);
8: {xm+1, ym+1} ← Substitute ϵ · M samples with the {xm, ym} of highest ℓm;

9: ηe ← Compute test accuracy onDtest;
10: ShuffleDtrain;

While with the VR-M we can repeat a sample almost every iteration, with the VR-E we
restrict the number of times that a sample is repeated in the overall training because we
have much fewer epochs than iterations.

We modify these two algorithms by not including all the samples but only a subset
of them. We apply a sampling step with a 50% of random data points belonging to the
selection of the top-ranking worst performed ones. This approach helps the method not to
insist always on the same samples (which could degrade the quality of the system) and
makes the model more robust. That is, if there is a sample that is misleading the method, we
could avoid its permanent contribution to the gradients with this solution. In order to make
reference to both scenarios it is used Probabilistic Variance Reducer per Mini-batch
(PVR-M) and Probabilistic Variance Reducer per Epoch (PVR-E) respectively for the
first and the second model.

Making more clear the differences between this last approach and the basic one, we are
exposing an example. Therefore, if in the first algorithm it is repeated at each mini-batch
the 40 samples with higher value in the lost function, with the probabilistic approach it
would be repeated 20 random samples from these 40 ones.

The Figure 5.1 shows an histogram with the number of times that a sample is used in
the optimization. We compare the baseline, that is the original model without repeating any
sample, with the two models and their probabilistic approaches. In order to have similar
scenarios, we use a repetition of 20% of the samples in the basic versions and 40% with the
probabilistic approaches. That is because the latter is resampled half its size so we retain
just a quantity of 20% of repeated samples at the end. Indeed, this idea is appreciated
better in the VR-E, with almost the same distribution of repeated samples, green and red
color bars in the graph. Moreover, we can observe the idea mentioned before, that is, with
the probabilistic approach we do not let the model to repeat a sample too many times, as
it could happen with the model in yellow with a contribution of almost 3500 times from
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Algorithm 2 Variance Reducer per Epoch (VR-E)
Require: DatasetsDtrain andDtest.
Ensure: Test accuracy η.

1: Initialize parameters θ, number of epochs E and repetition rate ϵ;
2: InitializeD(1)

train = Dtrain;
3: for e = 1 . . . E do
4: Divide datasetD(e)

train in M mini-batches;
5: for m = 1 . . .M do
6: {xm, ym} ← Obtain next mini-batch m;
7: ℓ(e)

m ← Evaluate cross-entropy in mini-batch m;
8: θ ← Update parameters with Stochastic Gradient Descent (SGD);

9: ηe ← Compute test accuracy onDtest;
10: ShuffleDtrain;
11: D

(e+1)
train ← Dtrain;

12: D
(e+1)
train ← Substitute ϵ · E samples with {xi, yi} ∈ D

(e)
train of highest ℓ(e);

a set of samples. The baseline defines the number of iterations of the model, 500, that is
the number of epochs, since a sample contributes one time per epoch in a original deep
learning algorithm.
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Figure 5.1: Histogram with the number of repetitions of the samples in the CIFAR-10
dataset with the all-CNN architecture. It is used a mini-batch of 128 samples and a dropout
of 0.5. It is compared the percentages of 20 and 40 for both the model and the probabilistic
approach.
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5.4. Experiments

5.4.1. Model

We trained our method in a images classification problem through several scenarios in order
to generalize its properties. In consequence, we studied different datasets and networks
from the literature.

Datasets

Between all the available datasets, it has been chosen the benchmarks MNIST, SVHN and
CIFAR-10 due to their multiple appearances in state-of-the-art works. They allow an easier
and faster training of the experiments in comparison with larger bases as the ImageNet
[248]. For this reason, the extension of this work in more complex domains will remain as
a future task.

The MNIST is composed of 60000 training samples and 10000 test samples of hand-
written digits [249]. The images are of size 28x28 pixels in gray scale. It is the simpler
dataset used in this work.

The SVHN consists on 32-by-32 RGB images of house numbers from Google Street
View [250]. It has 73257 digits for training and 26032 digits for testing.

Finally, the CIFAR-10 collects labeled images of 10 classes [251]. They are 32x32
color pixels and a total of 50000 samples for training and 10000 for test.

Architectures

As it was mentioned in the section 5.2.4, we are proving the behavior of our method in
CNNs. For this purpose, we are studying two different architectures of networks from the
literature adapted to the datasets mentioned in the previous section.

The first one is based on the VGG implemented by [252]. The motivation of this
choice is the validation of the method in a complex enough neural network where the
improvements are considerably more cost efficient. The original architecture has been
modified according to the size of our data, resulting in a neural network of 11 layers. It has
three levels, the first one with two convolutional layers of output 16, the second with other
two of output 32 and the third with four layers of output 64. All levels are ended with a
max-pooling and finally it is applied three fully connected layers of size 1024, except the
last one, with size the number of classes. This scheme is resumed in Table 5.1a.

The second one is the network All-CNN-C from [11]. This particular architecture
replaces the max-pooling choice by convolutional layers with increased stride as shown in
Table 5.1b. In the training of this scheme, it has been used an adaptive learning rate as in
the original work.
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Input image

Conv 3x3-16 (with ReLu)
Conv 3x3-16 (with ReLu)
Max-pooling 2x2

Conv 3x3-32 (with ReLu)
Conv 3x3-32 (with ReLu)
Max-pooling 2x2

Conv 3x3-64 (with ReLu)
Conv 3x3-64 (with ReLu)
Conv 3x3-64 (with ReLu)
Conv 3x3-64 (with ReLu)
Max-pooling 2x2

Fully-Connected 1024 (with ReLu)
Dropout 0.5
Fully-Connected 1024 (with ReLu)
Dropout 0.5
Fully-Connected #classes

Soft-max

(a) VGG11b based on the VGG of 11 layers [252].

Input image

Dropout 0.8
Conv 3x3-96 (with ReLu)
Conv 3x3-96 (with ReLu)
Conv 3x3-96 (with ReLu) stride r=2

Dropout 0.5
Conv 3x3-192 (with ReLu)
Conv 3x3-192 (with ReLu)
Conv 3x3-192 (with ReLu) stride r=2

Dropout 0.5
Conv 3x3-192 (with ReLu)
Conv 1x1-192 (with ReLu)
Conv 1x1-#classes (with ReLu)
Global averaging over 6x6 spatial dimensions

Soft-max

(b) All-CNN-C [11].

All the experiments have been trained with tensorflow.

5.4.2. Results

The results shown in this section are trained through 200 or 500 epochs with different
distributions of the train and test sets, so we can notice one of the advantages of our work in
a scenario with less training images. In the cases where we reduce the number of training
samples, those ones that are removed are included in the validation set, so it will not be
convenient to compare scores with different number of training images. In Tables 5.2, 5.3
and 5.4 we resume the validation accuracy of different configurations and we remark in
bold the scores that overcome the baseline and in red the best choice among all.

In the case of the MNIST dataset, we used the VGG with 11 layers as described in
Table 5.1a. The mini-batch size was set to 64, the learning rate 0.001 and the initialization
of the parameters was 0.1 for the standard deviation of the weights and 0 for the biases. 200
epochs were enough for all the scenarios to converge except for the one with 1000 training
samples that we used 500 epochs. Table 5.2 resumes the validation accuracy for different
number of training samples, from the original configuration, 60000 training images, until
1000. In addition, we wanted to check the behavior of our method without dropout, what
we have called ‘30000 DP1’ in the table, since we used 30000 training samples and set
dropout probability to 1, that is the same as removing it from the architecture.

We can confirm from Table 5.2 that our model overcomes the baseline when the number
of samples is reduced in any quantity, even when we do not use another regularization
mechanism as it is dropout. In addition, we can state through not shown tests that we also
obtain the same improvements in accuracy in other scenarios without dropout. Regarding
this dataset, the best model is the VR-M, although the advantages are obtained with both
approaches.
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Table 5.2: Validation accuracy on MNIST with the VGG11 based network.

Models
# training samples

60000 50000 40000 30000 20000 10000 1000 30000 DP1

Baseline 99.760% 99.199% 99.046% 98.921% 98.626% 98.319% 93.934% 98.128%

VR-M-5 99.599% 99.432% 99.018% 99.044% 98.802% 98.181% 95.086% 97.899%
VR-M-10 99.619% 99.312% 99.099% 99.064% 98.722% 98.259% 93.727% 98.134%
VR-M-15 99.659% 99.299% 99.207% 99.030% 98.844% 98.416% 94.420% 98.217%
VR-M-20 99.659% 99.406% 99.123% 99.061% 98.940% 98.414% 93.411% 98.154%

PVR-M-10 99.579% 99.346% 99.203% 98.953% 98.809% 98.254% 94.638% 98.355%
PVR-M-20 99.619% 99.332% 99.139% 99.036% 98.722% 98.245% 94.258% 98.177%
PVR-M-30 99.700% 99.272% 99.163% 99.116% 98.829% 98.463% 93.616% 98.114%
PVR-M-40 99.599% 99.306% 99.187% 98.998% 98.800% 98.443% 94.272% 98.060%

VR-E-10 99.599% 99.232% 99.123% 98.855% 98.691% 98.248% 94.752% 98.140%
VR-E-20 99.679% 99.359% 99.111% 98.978% 98.637% 98.142% 94.291% 98.211%

PVR-E-20 99.639% 99.319% 99.099% 98.998% 98.729% 98.250% 92.989% 97.897%
PVR-E-40 99.679% 99.272% 99.091% 98.884% 98.717% 98.172% 93.905% 98.292%

Figure 5.2a exposes another interest of our method besides the improvement in the
accuracy. That is the faster convergence. In the figure we can differentiate in blue the
baseline that goes below the rest of the curves (a set of configurations from our method
in the scenario with 60000 training samples) during the first epochs, until the number 55
approximately. After that, the convergence of the baseline follows a better score that the
other ones. Then, we could take advantage of this result to apply our method just in the
first stage of the training in a particular problem so we can speed up the convergence.

Figure 5.2b shows the accuracy evolution with 50000 training samples, where our
method works quite well, maintaining the baseline curve with the worst score during
almost the complete training of the algorithm, what was expected from results in Table 5.2.

Figure 5.3 shows the results for the experiments without dropout. In this case it is more
visible the differences between the convergence of the baseline and our proposal methods.
Precisely, the variance that each curve presents during the training is lower, what allows us
to see them quite clear and distanced.

In the same way, we have trained the SVHN dataset with the same network and
configuration than the MNIST, but with a batch size of 128 and a fix number of 500 epochs.
The results are collected in Table 5.3.

The accuracy improvements for the classification of the images in the SVHN dataset
are not so successful as with MNIST but even though we can appreciate some advantages.
That is the case of the scenario with the less training samples, 10000, where we overcome
until almost 5% the baseline score.

Finally, the training of the CIFAR-10 dataset is studied with the all-CNN from Table
5.1b. We employed a batch size of 128 samples and the adaptive learning rate with the
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(a) 60000 training images.
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(b) 50000 training images.

Figure 5.2: Validation accuracy per epoch in the MNIST dataset with the VGG11b
architecture. It is used a mini-batch of 64 samples and a dropout of 0.5. It is compared the
percentages of samples repetition as detailed in Table 5.2.
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Figure 5.3: Validation accuracy per epoch in the MNIST dataset with the VGG11b
architecture. It is used a mini-batch of 64 samples and a dropout of 1. It is compared the
percentages of samples repetition as detailed in Table 5.2.

initial value of 0.01. The initialization of the parameters has been set to a standard deviation
of 0.05 for the weights and 0 for the biases. In order to increase the baseline accuracy,
we have applied a preprocessing step to the images that consists on a global contrast
normalization and a ZCA whitening following [253]. The accuracies are exposed in Table
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Table 5.3: Validation accuracy on SVHN with the VGG11 based network.

Models
# training samples

73257 60000 30000 20000 10000

Baseline 92.064% 91.753% 90.069% 88.787% 80.938%

VR-M-5 91.649% 91.501% 89.130% 86.933% 84.141%
VR-M-10 90.602% 91.044% 88.258% 87.196% 80.813%
VR-M-15 91.364% 90.597% 88.254% 85.713% 81.606%
VR-M-20 90.144% 90.403% 87.701% 86.561% 83.300%

PVR-M-10 92.372% 91.557% 89.474% 87.528% 83.941%
PVR-M-20 91.918% 92.034% 89.542% 88.185% 85.252%
PVR-M-30 92.438% 91.621% 89.497% 88.526% 83.444%
PVR-M-40 93.003% 91.577% 89.688% 88.060% 85.246%

VR-E-10 92.153% 91.590% 89.760% 88.559% 84.522%
VR-E-20 92.330% 92.136% 90.098% 87.901% 81.424%

PVR-E-20 91.687% 92.175% 89.613% 88.501% 85.311%
PVR-E-40 92.403% 91.804% 89.200% 88.559% 84.168%

5.4.

With the study of this network, we can discover another possible advantage of our
work in the configurations with less training samples. In Table 5.4, when we decrease the
number of training samples, our method works better and more cases that overcome the
baseline appear. Moreover, the differences in the score between the baseline and the others
are higher, so it has more sense the use of our approach with important improvement on
the accuracy. That is something that happened in the SVHN dataset with 10000 images,
but this time in higher proportion with more than a 6% of increase in the accuracy with
5000 training images. Therefore, our method could be very useful when the number of
samples is not high enough.

Regarding the choice of the percentage of repetition in the samples, we do not expose
any evidence of trend that it may follow according to the number of training samples or the
complexity of the network. Consequently, we should try different alternatives to find the
best hyper-parameter. We just advise not to use very high percentages that would remove
the sense of the method. Nevertheless, we found that the VR-M works better in datasets as
MNIST and CIFAR-10, while in the case of SVHN, with the worse contribution of our
method, VR-E appears to works better than the VR-M.

The code to launch the simulations from this section is released on GitHub13 For its
13github.com/AuroraCoboAguilera/RobustSampling
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Table 5.4: Validation accuracy on CIFAR-10 with the all-CNN.

Models
# training samples

50000 40000 30000 20000 10000 5000

Baseline 88.131% 87.720% 85.457% 82.545% 76.328% 69.360%

VR-M-5 87.981% 87.380% 85.763% 83.246% 76.232% 69.262%
VR-M-10 88.041% 87.685% 85.266% 83.777% 77.434% 69.549%
VR-M-15 87.871% 87.565% 85.403% 82.562% 76.899% 76.520%
VR-M-20 88.061% 87.009% 85.677% 82.537% 76.825% 68.160%

PVR-M-10 88.331% 87.309% 85.991% 82.559% 76.400% 69.675%
PVR-M-20 88.131% 87.319% 85.153% 83.188% 77.742% 70.161%
PVR-M-30 87.971% 87.354% 84.372% 83.213% 77.220% 69.537%
PVR-M-40 88.021% 87.650% 84.696% 82.762% 77.003% 69.639%

VR-E-10 88.021% 87.019% 85.410% 82.933% 76.117% 69.318%
VR-E-20 87.720% 87.405% 85.577% 82.802% 76.446% 69.169%

PVR-E-20 87.971% 86.899% 85.557% 83.108% 75.663% 69.668%
PVR-E-40 87.821% 86.859% 85.123% 82.379% 76.512% 69.974%

implementation we used the library of tensorflow14.

5.5. Conclusions

In this work we have presented a novel idea for the selection of samples in the training
of a deep learning model, based in the variance reduction of the real risk. It consists on
the simple idea of repeating the samples with higher variance that are the ones with worse
score in the cost function.

We propose several models and study their performance in different architectures and
datasets. We discuss the advantages according to the studied problem. Between them, we
show the improvement of the accuracy in the classification when the number of training
samples is low and the faster rates of convergence. However, we do not expose any
evidence for the choice of the value of the percentage hyper-parameter, what has to be
tested in the problem to solve. Finally, we highlight the use of our work without dropout,
with greater differences in the convergence accuracy and a more statistical relevant increase
of the score.

14tensorflow.org
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6. CONCLUSIONS

The preceding chapters comprise the 4 areas of study during the current doctoral thesis.
In this last chapter, we present a summary collecting the principal results and contributions
on each area as well as the future lines of research that these studies let open.

6.1. Summary and contributions

The treatment of mental disorders nowadays entails a wide variety of still non-solved
tasks such as misdiagnosis or delayed diagnosis. During this doctoral thesis we study and
develop different models that can serve as potential tools for the clinician labor. Among
our proposals, we outline two main lines of research, Natural Language Processing and
probabilistic methods.

In Chapter 2, we start our thesis with a regularization mechanism used in language
models and specially effective in Transformer-based architectures, where we call it NoR-
BERT, from Noisy Regularized Bidirectional Representations from Transformers [9], [15].
According to the literature, we found out that regularization in NLP is a low explored
field limited to the use of general mechanisms such as dropout [57] or early stopping
[58]. In this landscape, we propose a novel approach to combine any LM with Variational
Auto-Encoders [23]. VAEs belong to deep generative models, with the construction of
a regular latent space that permits the reconstruction of the input samples throughout an
encoder and decoder networks. Our VAE is based in a prior distribution of a mixture
of Gaussians (GMVAE), what gives the model the chance to capture some multimodal
information. Combining both, Transformers and GMVAEs we build an architecture ca-
pable of imputing missing words from a text corpora in a diverse topic space as well as
improve BLEU score in the reconstruction of the data base. Both results depend on the
depth of the regularized layer from the Transformer Encoder. The regularization in essence
is formed by the GMVAE reconstruction of the Transformer embeddings at some point in
the architecture, adding structure noise that helps the model a better generalization. We
show improvements in BERT[15], RoBERTa [16] and XLM-R [17] models, verified in
different datasets and we also provide explicit examples of sentences reconstructed by
Top NoRBERT. In addition, we validate the abilities of our model in data augmentation,
improving classification accuracy and F1 score in various datasets and scenarios thanks
to augmented samples generated by NoRBERT. We study some variations in the model,
Top, Deep and contextual NoRBERT, the latter based in the use of contextual words to
reconstruct the embeddings in the corresponding Transformer layer.

We continue with the Transformers line of research in Chapter 3, proposing PsyBERT.
PsyBERT, as the own name refers, is a BERT-based [15] architecture suitably modified
to work in Electronic Health Records from psychiatry patients. It is inspired by BEHRT
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[19], also devoted to EHRs in general health. We distinguish our model from the training
methodology and the embedding layer. In a similar way that with NoRBERT, we find
the utility of using a Masked Language Modeling (MLM) policy without no finetuning or
specific-task layer at all. On the one hand, we used MLM in NoRBERT to solve the task
of imputing missing words, finishing the aim of the model in generating new sentences by
inputs with missing information. On the other hand, we firstly propose the use of PsyBERT
such as tool to fill the missing diagnoses in the EHR as well as correct misdiagnosed
cases. After this task, we also apply PsyBERT in delusional disorder detection. On the
contrary, in this scenario we apply a multi-label classification layer, that aims to compute
the probability of the different diagnoses in the last visit of the patient to the hospital.
From these probabilities, we analyse delusional cases and propose a tool to detect potential
candidates of this mental disorder. In both tasks, we make use of several fields obtained
from the patient EHR, such as age, sex, diagnoses, treatments of psychiatric history and
propose a method capable of combining heterogeneous data to help the diagnosis in mental
health. During these works, we point out the problematic in the quality of the data from
the EHRs [104], [105] and the great advantage that medical assistance tools like our
model can provide. We do not only solve a classification problem with more than 700
different illnesses, but we bring a model to help doctors in the diagnosis of very complex
scenarios, with comorbidity, long periods of patient exploration by traditional methodology
or low prevalence cases. We present a powerful method treating a problematic with great
necessity.

Following the health line of research and psychiatry application, we analyse in Chapter
4 a probabilistic method to search for behavioral pattern in patients also with mental
disorders. In this case it is not the method the contribution of the work but the application
and results in collaboration with the clinician interpretation. The model is called SPFM
(Sparse Poisson Factorization Model) [22] and consist on a non-parametric probabilistic
model based on the Indian Buffet Process (IBP) [20], [21]. It is a exploratory method
capable of decomposing the input data in sparse matrixes. For that, it imposes the Poisson
distribution to the product of two matrixes, Z and B, both obtained respectively by the IBP
and a Gamma distribution. Hence Z corresponds to a binary matrix representing active
latent features in a patient data and B weights the contribution of the data characteristics to
the latent features. The data we use in the three works described during the chapter refers
to different questions from e-health questionnaries. Then, the data characteristics refer to
the answer or punctuation on each question and the latent features from different behavioral
patterns in a patient regarding the selection of features active in their questionnaires. For
example, patient X can present feature 1 and 2 and patient Y may presence feature 1
and 3, giving as a result two different profiles of behavioral. With these procedure we
study three scenarios. In the first problematic, we relate the profiles with the diagnoses,
finding common patterns among the patients and connections between diseases. We also
analyse the grade of critical state and contrast the clinician judgment via the Clinical
Global Impression (CGI). In the second scenario, we pursue a similar study and find
out connections between disturbed sleeping patterns and clinical markers of wish to die.
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We focus this analysis in patients with suicidal thoughts due to the problematic that
those individuals suppose as a major public health issue [175]. In this case we vary
the questionnarie and the data sample, obtaining different profiles also with important
information to interpret by the psychiatrist. The main contribution of this work is the
proportion of a mechanism capable of helping with detection and prevention of suicide.
Finally, the third work comprehend a behavioral pattern study in mental health patient
before and during covid-19 lockdown. We did not want to lose the chance to contribute
during coronavirus disease outbreak and presented a study about the changes in psychiatric
patients during the alarm state. We analyse again the profiles with the previous e-health
questionnaire and discover that the self-reported suicide risk decreased during the lockdown.
These results contrast with others studies [237] and suppose signs for an increase in suicidal
ideation once the crisis ceases.

Finally, Chapter 5 propose a regularization mechanism based in a theoretical idea from
[245] to obtain a variance reduction in the real risk. We interpret the robust regularized
risk that those authors propose in a two-step mechanism formed by the minimization of the
weighted risk and the maximization of a robust objective and suggest an idea to apply this
methodology in a way to select the samples from the mini-batch in a deep learning set up.
We study different variations of repeating the worst performed samples from the previous
mini-bath during the training procedure and show proves of improvements in the accuracy
and faster convergence rates of a image classification problem with different architectures
and datasets.

6.2. Future lines of research

We would like to emphasize two difficulties found during the doctoral thesis and some
lines of research according to them.

On the one hand, we focus in NLP models. Nowadays, there is no robust metric to
evaluate the performance of a language generative model as the one we propose. Usually,
we validate the results in other tasks, such as the data augmentation for other task solution
or the GLUE [86] proposition in the literature. We consider that there is an open line
of research in terms of evaluation metrics capable of collecting semantic and syntactic
properties to test text generation models.

On the other hand, we discover with the help of clinicians, an difficult problem to solve
with today’s EHRs due to the great quantities of missing information, the non encoded
sources, and the incorrect values [104], [106], [108]. Even though we propose an useful
tool to combine with expertise opinion in the decision making, we find it a very general
issue translated to other diseases to be explored and not only psychiatry. In medicine,
some illnesses diagnosis may require long periods of observation maybe resulting in a
late diagnosis. With ML we can help the doctors detect determined behavioral patterns or
indicators that detect a suspicious disease and avoid a critical end. We keep an open line to
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be research with the improvement of the present models or the development of new ones
with the advance of technologies.

Finally, we would like to mention the combination of results from chapters 2 and 3,
with a regularized version of PsyBERT. We consider that this could be an interesting work
to do in the future and a continuation of the presented doctoral thesis. With this idea we
could take advantage of the power from probabilistic models, the scope from Transformers
and the information source from heterogeneous data that could result in a practical method.
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APPENDIX A. ICD-10

ICD-10 code Definition
F0 Organic, including symptomatic, mental disorders
F1 Mental and behavioral disorders due to psychoactive substance use
F2 Schizophrenia, schizotypal and delusional disorders
F3 Mood affective disorders
F4 Neurotic, stress-related and somatoform disorders
F5 Behavioral syndromes associated with physiological disturbances and physical factors
F6 Disorders of adult personality and behavior
F7 Mental retardation
F8 Disorders of psychological development
F9 Behavioral and emotional disorders with onset usually occurring in childhood and adolescence



APPENDIX B. CGI SCORES: SEVERITY OF ILLNESS

Considering your total clinical experience with this particular population, how mentally
ill is the patient at this time?

0 = Not assessed

1 = Normal, not at all ill

2 = Borderline mentally ill

3 =Mildly ill

4 =Moderately ill

5 =Markedly ill

6 = Severely ill

7 = Among the most extremely ill patients



APPENDIX C. COMPLETE EMA QUESTIONNAIRE AND
SCORING
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