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Abstract

Recent technological advances have led to an exponential growth in the volume of data
generated. The quest to make sense of these data, some of which are usually complex,
has led to recent interest in development of statistical methods for analysing data with
complex structures. One such field of interest is functional data analysis (FDA), which
deals with the analysis of data that can be considered as functions, curves, or surfaces
observed over a domain set. Outlier detection is a challenging but important part of
the exploratory analysis process in FDA because functional observations can exhibit
outlyingness in various ways compared to the bulk of the data. This thesis addresses
the problem of detecting and classifying outliers in functional data with three main
contributions.

First, the fdaoutlier R package is presented in Chapter 2. The package contains
implementations of some of the state-of-the-art functional outlier detection methods
in the literature. Some of the methods implemented include directional outlyingness,
magnitude-shape plot, sequential transformations, total variation depth, and modified
shape similarity index. Detailed illustrations of the functions of the package are pro-
vided, using various simulated and real functional datasets curated from the functional
outlier detection literature. Overviews of the functional outlier detection methods im-
plemented in the package are also presented in Chapter 2. This chapter therefore, serves
as a review of some of the current literature in outlier detection for functional data.

Next, two new methods, named ‘Semifast- MUOD’ and ‘Fast-MUOD’, are presented
in Chapter 3. These methods work by computing for each curve three indices (magni-
tude, amplitude and shape index) that measure the outlyingness of that curve in terms
of its magnitude, amplitude and shape. ‘Semifast- MUOD’ computes these indices with
respect to (w.r.t.) a random sample of the dataset, while ‘Fast-MUOD’ computes these
indices w.r.t. to the point-wise or L1 median. The classical boxplot is then used as a
cutoff on the three indices to identify curves that are outliers of different types. A by-
product of the methods is an unsupervised classification of the outliers into different
types, without the need for visualisation. Performance evaluation of the methods, us-
ing various real and simulated datasets, shows that Fast-MUOD is the better of the two
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new proposed methods for outlier detection, in addition to being very scalable. Com-
parisons with latest functional outlier detection methods in the literature also show
superior or comparable outlier detection performance.

In Chapter 4, some theoretical properties of the Fast-MUOD indices are presented.
These include some definitions of the indices, as well as convergence proofs of the sam-
ple approximations. Some properties of the indices under simple transformations are
also presented in this chapter. Finally, three techniques are presented in Chapter 5 for
extending the Fast-MUOD indices to outlier detection in multivariate functional data
observed on the same domain. These techniques include the use of random projections
and identifying outliers on the marginal components of the multivariate functional data.
The use of random projections showed the best result in performance evaluations with
various real and simulated datasets.

Chapter 6 contains some concluding remarks and possible future research work.



Resumen

Los recientes avances tecnológicos han provocado un crecimiento exponencial del vol-
umen de datos generados. La búsqueda de sentido a estos datos, algunos de los cuales
suelen ser complejos, ha provocado un reciente interés por el desarrollo de métodos
estadísticos para analizar datos con estructuras complejas. Uno de estos campos de
interés es el análisis de datos funcionales (FDA), que se ocupa del análisis de datos
que pueden considerarse como funciones, curvas o superficies observadas sobre un
conjunto de dominios. La detección de valores atípicos es una parte desafiante pero
importante del proceso de análisis exploratorio en el FDA, ya que las observaciones
funcionales pueden presentar valores atípicos de diversas maneras en comparación con
el grueso de los datos. Esta tesis aborda el problema de la detección y clasificación de
valores atípicos en datos funcionales con tres contribuciones principales.

En primer lugar, el paquete R fdaoutlier se presenta en el capítulo 2. El paquete
contiene implementaciones de algunos de los métodos de detección de valores atípicos
funcionales más avanzados de la literatura. Algunos de los métodos implementados
incluyen la perificidad direccional (‘directional outlyingness’), el gráfico de magnitud-
forma (‘magnitude-shape plot’), las transformaciones secuenciales (‘sequential trans-
formations’), la profundidad de la variación total (‘total variation depth’) y el índice
de similitud de forma modificado (‘modified shape similarity index’). Se proporcionan
ilustraciones detalladas de las funciones del paquete, utilizando varios conjuntos de
datos funcionales simulados y reales curados de la literatura de detección de valores
atípicos funcionales. En el capítulo 2 también se presenta un resumen de los métodos
de detección de valores atípicos funcionales implementados en el paquete. Por lo tanto,
este capítulo sirve como revisión de parte de la literatura actual sobre la detección de
valores atípicos para datos funcionales.

A continuación, dos nuevos métodos, denominados ‘Semifast- MUOD’ y ‘Fast-MUOD’,
se presentan en el capítulo 3. Estos métodos trabajan calculando para cada curva tres
índices (magnitud, amplitud e índice de forma) que miden la perificidad de esa curva
en términos de su magnitud, amplitud y forma. El método ‘Semifast- MUOD’ calcula
estos índices con respecto a una muestra aleatoria del conjunto de datos, mientras que
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‘Fast-MUOD’ calcula estos índices con respecto a la mediana puntual o L1. Se utiliza el
boxplot clásico como límite de los tres índices para identificar las curvas que son val-
ores atípicos de diferentes tipos. Un subproducto de los métodos es una clasificación no
supervisada de los valores atípicos en diferentes tipos, sin necesidad de visualizarlos.
La evaluación del rendimiento de los métodos, utilizando varios conjuntos de datos
reales y simulados, muestra que Fast-MUOD es el mejor para la detección de valores
atípicos de los dos nuevos métodos propuestos, además de ser muy escalable. Las com-
paraciones con los últimos métodos funcionales de detección de valores atípicos de la
literatura también muestran un rendimiento superior o comparable en la detección de
valores atípicos.

En el capítulo 4, se presentan algunas propiedades teóricas de los índices Fast-
MUOD. Éstas incluyen algunas definiciones de los índices, así como pruebas de con-
vergencia de las aproximaciones muestrales. También se presentan en este capítulo
algunas propiedades de los índices bajo transformaciones simples. Por último, en el
capítulo 5 se presentan tres técnicas para ampliar los índices Fast-MUOD a la detec-
ción de valores atípicos en datos funcionales multivariantes observados en el mismo
dominio. Estas técnicas incluyen el uso de proyecciones aleatorias y la identificación de
valores atípicos en los componentes marginales de los datos funcionales multivariantes.
El uso de proyecciones aleatorias mostró los mejores resultados en las evaluaciones de
rendimiento con varios conjuntos de datos reales y simulados.

El capítulo 6 contiene algunas observaciones finales y posibles trabajos de investi-
gación futuros.
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Chapter 1

Introduction: Outlier Detection for
Functional Data

1.1 Outlier detection

The problem of detecting and dealing with outliers is age old and common. Exper-
imental scientists have always had to deal with observations that appear to be arbi-
trarily “different” and “unrepresentative” of the bulk of the data obtained from their
experiments. Nevertheless, concretely defining what exactly is an outlier is challenging
and subjective. Various attempts have been made in the literature to define outliers.
For example, a common idea is that outliers are observations that either come from the
extremes of the data distribution or from another data distribution entirely (Hawkins,
1980). On the other hand, Barnett and Lewis (1994) described outlier(s) as “an observa-
tion (or subset of observations) which appears to be inconsistent with the remainder of that set
of data”. The phrase “appears to be inconsistent” echoes the subjective nature of declar-
ing an observation as an outlier. Identifying such “different” observations is however
crucial in exploratory analysis because outliers are known to bias the results of many
statistical analysis procedures. Moreover, identifying outliers may reveal previously
unknown behaviours about the data generating process. This has led to a recent inter-
est in robust statistics and outlier detection. Robust statistics deals with development
of statistical analysis methods that are resistant to outliers, while outlier detection deals
with statistical methods for identifying outliers in a data.

However, it is often the case that a robust statistical method may help to identify
outliers in a dataset. For example, when a random variableX generates independently
and identically distributed values xi ∈ Rd, i = 1, . . . n, for n, d ∈ N, it is common to use
a robust minimum covariance determinant (MCD) estimate of the mean and covariance

1
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matrix to find outliers. This is done by computing the robust Mahalanobis distance for
each observation xi and comparing this distance to the quantiles of the Chi-squared dis-
tribution. Standard (non-robust) estimates of the location and scatter are less effective
in the described outlier detection procedure because they are biased by outliers which
leads to a masking effect– the misidentification of outliers as non-outliers. In this exam-
ple, the MCD estimates of the location and scatter are robust to outliers, thereby pre-
venting the masking effect. Non-parametric robust statistical methods, usually based
on ranks and data depths, are also useful for finding outliers, especially in multivariate
observations. A statistical depth measure (Tukey, 1975) provides a centre-outward or-
dering of the multivariate observations. Observations with low depth values are then
further scrutinized and maybe declared as outliers. The “non-parametric” nature of
these methods is especially convenient as they do not require strict assumptions about
the distribution of the data.

This thesis focuses on the problem of detecting outliers in functional data. Func-
tional data are observations that are assumed to be realisations of a function or sto-
chastic process defined over a domain. We will consider as outliers both (functional)
observations that lie on the extreme of the distribution (of the data generating process)
and observations that come from another distribution (or data generating process). We
provide a brief overview of functional data analysis (FDA) in the next section.

1.2 Functional Data Analysis

Functional data analysis (Ramsay, 1982) deals with the analysis of observations that can
be considered as realizations of functions defined over some domain set I. In reality,
these observations are observed at a finite resolution (or discrete points) over the do-
main, but it is natural to assume that these discrete measurements are evaluations of an
underlying stochastic process X : I ↦→ R. The domain set I can be an interval [a, b] ⊂ R,
or more complex structures, e.g., a sphere. It is usual to assume that X is in the space of
square-integrable functions over I (L2(I)), with inner product defined as:

⟨f, g⟩ =
∫︂
I
f(t)g(t)dt, f, g ∈ L2(I).

The norm induced by this inner product is given by

∥f∥ =
√︁
⟨f, f⟩,

and the distance between any two functions f, g ∈ L2(I) is given by ∥f − g∥. Some-
times, a vector in Rd, d ∈ N, is observed at each point of the domain, i.e., we have that
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Figure 1.1: Daily average temperature in degree Celsius between 1980-2009 measured
at 73 weather stations in Spain. Left: the raw daily average temperature values. Right:
the smoothed daily average temperature values.

X : I ↦→ Rd, in which case we have a multivariate functional data. Conceptually, a
multivariate functional data can also be considered as a vector of stochastic processes
X = [X(1), X(2), . . . , X(p)]⊤ with each process having different domains and dimen-
sions: X(j) : Ij ↦→ Rdj , dj ∈ N, j = 1, . . . , p.

Figure 1.1 shows an example of a sample of functional observations. The left plot of
Figure 1.1 shows the average daily temperature (in degree Celsius) between 1980-2000,
observed at 73 weather stations in Spain (each observation or curve corresponds to a
weather station). This data on the left plot of Figure 1.1 can be represented as

xn(tj) ∈ R, tj ∈ [1, 365], n = 1, . . . , 73, j = 1, . . . , 365.

This means the 73 curves are measured only at finite specific points tj , and their values
at all points t ∈ [1, 365] are unknown. However, it is natural to assume that the values
of xn(tj) come from curves {xn(t)}73n=1, and that the values of these curves exist at any
point t ∈ [1, 365].

It is a usual first step in FDA to approximate the observed curves xn(tj) as a linear
combination of some standard basis functions:

xn(t) ≈
M∑︂

m=1

cnmϕm(t),

where ϕm(t) are some standard basis functions like splines and Fourier basis functions.
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Typically, the number of basis functions M is smaller than #tj , so the approximation
helps in dimension reduction by concisely representing each curve xn by a dimension
M vector of coefficients [cn1, cn2, . . . , cnM ]⊤. Because the common basis functions used
in FDA are smooth, the approximation also has a smoothing effect on the curves xn(t).
This smoothing effect can be seen in the right plot of Figure 1.1 in which the raw tem-
perature curves (xn(tj)) have been approximated with 11 B-Spline basis functions. A
general overview of FDA can be found in Ramsay and Silverman (2006) and Kokoszka
and Reimherr (2017), while Hsing and Eubank (2015) provides a review of the key the-
oretical foundations of functional data analysis.

In this thesis, we focus on outlier detection in functional data in which the domain
set I is an interval [a, b] ⊂ R. For multivariate functional data, we assume the compo-
nent processes have the same domain and dimension, i.e., Ij = I and dj = d ∈ N for
j = 1, . . . , p.

1.3 Outlier Detection in Functional Data Analysis

A sample of functional data comprises curves or functions evaluated at a finite grid.
Detecting outliers in such sample is challenging because functional observations can
exhibit different outlying behaviours. For example, a curve may display magnitude
outlyingness, in which case it is shifted above or below the bulk of the data. Also, a
curve may have a different shape compared to the bulk of the data, without standing
out at any point of the domain; such a curve is usually referred to as a shape outlier.
Moreover, a curve may either be outlying throughout the domain or in a small part of
the domain, with the former referred to as persistent outliers and the latter referred to
as isolated outliers (Hubert et al., 2015). Figure 1.2 shows examples of different types of
functional outliers.

Nevertheless, certain functional outlier detection methods in the literature are well
suited to identifying a specific type of outlier; e.g., outliergram (Arribas-Gil and Romo,
2014) and functional boxplot (Sun and Genton, 2011) are suited to detecting shape and
magnitude outliers, respectively. Consequently, it is of interest to develop a functional
outlier detection method that is capable of detecting different types of outliers. The
methods proposed in this thesis simultaneously target three different types of outliers
viz. magnitude, shape, and amplitude outliers. The methods proposed also work quite
well in identifying persistent and isolated outliers.

Apart from identifying an outlying curve, it is beneficial to know what type of out-
lier such a curve is. This helps to understand why such curve is flagged as an outlier,
and enables selective targeting of different outlier types (for instance, an analyst may
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Figure 1.2: Examples of the different types of functional outliers. Curves in orange are
outliers.

only be interested in magnitude outliers). While some current state-of-the-art outlier
detection methods provide clues as to the type of an outlier, visualisation of some met-
rics of the data are often needed to get this information; which may be difficult when
the data is large. Examples of these methods include the magnitude-shape plot (MS-plot)
and functional outlier map (FOM), in which magnitude and shape outliers appear on
the right (corner) and top (corner) of their plots, respectively (Dai and Genton, 2018;
Rousseeuw et al., 2018). In addition to targeting different types of outliers, the outlier
detection methods proposed in Chapters 3 and 5 also classify the identified outliers,
unsupervised, without the need for visualization, making them valuable when the data
is large.

Finally, the thesis addresses the problem of scalablity in functional outlier detection.
Although some current methods in the literature target and classify different types of
outliers unsupervised, e.g., Nagy et al. (2017), these methods are often computationally
intensive and not scalable. Fast-MUOD, proposed in Chapter 3 can process over 1 mil-
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lion observations in under 10 seconds, consequently lending itself to outlier detection
in “big” functional data.

Therefore, the objective of the thesis is to add a scalable outlier detection method
to the existing exploratory toolbox for functional data, that targets different types of
outliers, while also classifying those outliers, unsupervised.

1.4 Outline of Thesis

The rest of the thesis starts with Chapter 2 which provides a review of some of the latest
functional outlier detection methods in the literature and presents their implementation
in the fdaoutlier R package. Detailed examples and scenarios on the use of the package
are also presented in this chapter.

Chapter 3 presents the Semifast-MUOD and Fast-MUOD methods for detecting and
classifying outliers in big functional data. These methods identify functional outliers by
computing for each curve, a magnitude, an amplitude, and a shape index, that respec-
tively target magnitude, amplitude, and shape outliers. A comprehensive simulation
study was conducted to test the outlier detection performance and scalability of the
proposed methods compared to other state-of-the-art functional outlier detection meth-
ods. Then, Fast-MUOD is illustrated with three real datasets consisting of weather data
from Spain, population growth data, and a greyscale video data.

Chapter 4 explores some theoretical properties of the Fast-MUOD indices. The defi-
nitions of the indices, together with their corresponding sample and finite-dimensional
approximations are presented. The properties presented in this chapter describe the
behaviours of the Fast-MUOD indices under simple transformations and why these be-
haviours make the indices suitable for outlier detection in functional data.

Chapter 5 presents three techniques for using the Fast-MUOD indices for outlier de-
tection in multivariate functional data. The three techniques include detecting outliers
marginally, and the use of random projections. The techniques were tested on various
simulated multivariate functional data sets with random projections showing effective
outlier detection performance when compared with other multivariate functional out-
lier detection methods in the literature. Fast-MUOD with random projections is then
illustrated on example multivariate functional datasets consisting of characters hand-
writing data and a color video data.

Some concluding remarks and outlook for future research are presented in Chap-
ter 6. Apart from the results in the thesis, I worked on other topics during my PhD.
These include monitoring the COVID-19 prevalence using surveys, energy security, pre-
dictive modelling of solar irradiance, and location privacy in vehicular networks.



Chapter 2

Outlier Detection Methods for
Functional Data and R Package
fdaoutlier

This chapter is reprint of:

Ojo, O., Lillo, R. E., & Fernández Anta, A. (2021). “Outlier Detection for Functional Data
with R Package fdaoutlier”. arXiv:2105.05213

The article presents the following software package:

Ojo, O. T., Lillo, R. E., & Fernández Anta, A. (2021). fdaoutlier: Outlier Detection Tools
for Functional Data Analysis. R package version 0.2, 9000.

Abstract:

Outlier detection is one of the standard exploratory analysis tasks in functional data
analysis. We present the R package fdaoutlier which contains implementations of some
of the latest techniques for detecting functional outliers. The package makes it easy
to detect different types of outliers (magnitude, shape, and amplitude) in functional
data, and some of the implemented methods can be applied to both univariate and
multivariate functional data. We illustrate the main functionality of the R package with
common functional datasets in the literature.

7
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2.1 Introduction

Outlier detection is a common task when carrying out exploratory data analysis. Iden-
tifying possible outliers is essential during the exploratory analysis process, because
outliers can significantly bias statistical analyses. The process of dealing with identified
outliers may also provide new insights into the nature of the data generating process.
In functional data analysis (FDA), observations are treated as functions observed on a
domain. These functional observations can exhibit various outlyingness properties as
pointed out by Hubert et al. (2015). For instance, an observation can be shifted from
the mass of the data. Such outliers are referred to as magnitude outliers in the FDA
literature. On the other hand, an observation can be a shape outlier because it differs
in shape from the mass of the data (even if it lies completely inside the mass of the
data). For periodic functional observations, an observation may be outlying because
it has an amplitude different from the mass of the data. Finally, any of the aforemen-
tioned outlyingness properties can be exhibited by a functional observation in a subset
of the domain or all through the domain. Consequently, identifying outliers in FDA is
challenging as there are many possible ways a functional observation can exhibit outly-
ingness.

Much work has been done regarding identifying outliers in the FDA context, with
their corresponding software implementations made available in R (R Core Team, 2022).
A number of these methods have been obvious applications of a notion of functional
depths, which induces a centre outward ordering on a sample of curves. For instance,
the functional boxplot (Sun and Genton, 2011) uses the (modified) band depth to define
a 50% central region for the sample of curves with outliers identified as curves lying
outside 1.5 times the central region in any part of the domain. In R, the functional
boxplot is available in the fda package (Ramsay et al., 2022) with options to use the fast
exact (modified) band depth defined by bands of two functions, proposed in Sun et al.
(2012).

The fda.usc package (Febrero-Bande and de la Fuente, 2012) in R implements three
functional outlier detection methods. The first method, proposed in Febrero et al. (2007),
uses a likelihood ratio statistics to detect outlying curves (with cutoff determined by a
bootstrap procedure). The other two methods identify outliers by comparing the depth
values of the functions to a cutoff also obtained by a bootstrap procedure, based on
either trimming of suspicious curves or placing more weights on the deeper curves
(Febrero et al., 2008). These three methods are also implemented in the rainbow pack-
age (Han, 2011), together with the functional bagplot and the functional highest den-
sity region plot (Hyndman and Shang, 2010). The rainbow package also contains the
integrated square forecast errors method for detecting functional outliers proposed in
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Hyndman and Ullah (2007).

Nagy et al. (2017) proposed the jth order integrated and infimal depths for identi-
fying shape outliers, with implementations available in the ddalpha package (Pokotylo
et al., 2019). Rousseeuw et al. (2018) in their work proposed a directional outlyingness
(DO) measure, its functional extension (fDO), and the variability of directional outly-
ingness (vDO). Then, they used the functional outlier map, a scatter plot of the fDO
versus vDO, to identify outliers with cutoffs determined by the standardized logarithm
of the combined functional outlyingness(LCFO) measure. The functional outlier map
can also be used with the adjusted outlyingness (AO) measure proposed in Brys et al.
(2005) (see also Hubert and Van der Veeken, 2008, and Hubert et al. 2015), rather than
the DO measure. These methods are available in the mrfDepth package (Segaert et al.,
2020). Finally, the roahd package (Ieva et al., 2019) contains an implementation of the
outliergram method proposed in Arribas-Gil and Romo (2014), as well as its multivari-
ate generalisation proposed in Ieva and Paganoni (2020).

More recently proposed outlier detection methods include: the directional outlying-
ness for multivariate functional data proposed in Dai and Genton (2019) and further
elaborated into the magnitude-shape plot (MS-plot) in Dai and Genton (2018); the total
variation depth (TVD) and modified shape similarity index (MSS) proposed in Huang
and Sun (2019); and the CRO-FADALARA method, based on archetypoids proposed
in Vinue and Epifanio (2020b), and available in the adamethods package (Vinue and
Epifanio, 2020a). Dai et al. (2020) also proposed detecting and classifying outliers using
some sequence of transformations, e.g., shifting a curve to its centre and normalising it
using the L2 norm.

The objective of this paper is to describe the fdaoutlier package which aims to ex-
tend the available facility for outlier detection (in FDA context) for R, with implemen-
tations of some of the latest outlier detection methods. The fdaoutlier package’s main
contributions are:

- Implementations of the directional outlyingness and MS-plot outlier detection
methods proposed in Dai and Genton (2019) and Dai and Genton (2018).

- An implementation of the TVD and MSS proposed in Huang and Sun (2019). The
fdaoutlier implementation of TVD/MSS is written in C++ using R’s .Call in-
terface which leads to significant computational efficiency as TVD and MSS are
computationally intensive.

- An implementation of the sequential tranformation method described in Dai et al.
(2020).
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- An implementation of the massive unsupervised outlier detection (MUOD) me-
thod proposed in Azcorra et al. (2018).

- Various depth and ordering methods, including extremal depth, one and two-
sided extreme rank length depth, directional quantile, among others, useful for
ordering functional observations (e.g., in functional boxplots).

In the next section, we provide a brief overview of the implemented outlier detection
methods and demonstrate their implementations in fdaoutlier using simulated data. In
Section 2.3, we apply fdaoutlier on two common datasets in the FDA outlier detection
literature, replicating some of the analyses done in the literature. We then conclude in
Section 2.4 with some remarks and a future outlook of fdaoutlier.

2.2 Outlier detection methods

We provide a brief primer of the implemented methods in the fdaoutlier package, and
then describe their implementations. For illustrating the methods, we use the conve-
nience functions simulation_model1() - simulation_model9() implemented in
fdaoutlier to generate data with different types of outliers. These functions are useful
for the rapid development and testing of new outlier detection methods and were cu-
rated from the functional outlier detection literature. Figure 2.1 shows plots of sample
data generated by these nine models produced by calling simulation_model*(plot
= TRUE).

2.2.1 Directional outlyingness and MS-plot

The directional outlyingess for multivariate functional data proposed in Dai and Genton
(2019) provides a way to measure not only the point-wise outlyingness of a functional
observation but also the direction of outlyingness of that observation with respect to
(w.r.t.) the rest of the data. Formally, let Y : I → Rd be a stochastic process in the
space of real continuous functions C(I,Rd) defined on a compact interval I . Let the
probability distribution of Y be FY. At each evaluation point, t ∈ I , Y(t) is a d-variate
vector with probability distribution FY(t). The directional outlyingness for multivariate
data is defined as:

O(Y, FY) = o(Y, FY) · v,
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Figure 2.1: Simulation models: Plot of sample of data generated by each simulated
model in fdaoutlier. Curves in orange are outliers.

where o(Y, FY) is the outlyingness of Y w.r.t. to FY and v is the spatial depth defined at
point t by

v(t) =
|Y(t)− Z(t)|
∥Y(t)− Z(t)∥

,

with Z(t) being the unique median of Y(t) w.r.t. FY(t) (deepest point of FY(t)). v(t) is
a unit vector pointing from Z(t) to Y(t). Dai and Genton (2019) recommends using a
distance-based outlyingness measure, like the Stahel-Donoho outlyingness defined by:

SDO(Y(t), FY(t)) = sup
∥u∥=1

∥u⊤Y(t)− median(u⊤Y(t))∥
mad(u⊤Y(t))

.

Thus, the Stahel-Donoho type directional outlyingness is given by:

O(Y, FY) = SDO(Y, FY) · v.
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Then the functional directional outlyingness (FO) is defined, to capture the overall out-
lyingness for functional data, as:

FO(Y, FY) =

∫︂
I
∥O(Y(t), FY(t))∥2w(t)dt,

where w(t) is a weight function defined on I . The mean directional outlyingness (MO)
and variation of directional outlyingness (VO) were defined as :

MO(Y, FY) =

∫︂
I

O(Y(t), FY(t))w(t)dt,

and
VO(Y, FY) =

∫︂
I
∥O(Y(t), FY(t))− MO(Y, FY)∥2w(t)dt.

These quantities measure the magnitude outlyingness and shape outlyingness of a func-
tional observation, respectively. Dai and Genton (2019) further showed the relationship:

FO(Y, FY) = ∥MO(Y, FY)∥2 + VO(Y, FY),

which decomposes the total functional outlyingness into the magnitude outlyingness
and the shape outlyingness.

In practice, the functional observations are observed at a finite number of points,
say p, on I , i.e., at points t1, t2, . . . , tp ∈ I . The finite dimensional version of MO(Y, FY)

is defined as:

MOp(Y, FY) =
1

p

p∑︂
i=1

O(Y(ti), FY(ti))w(ti),

and the finite dimensional version of VO can be defined in a similar manner.

After obtaining the MO and VO for each curve, MS-plot is then a scatterplot of
the points (MO⊤,VO)⊤. To detect outliers, a multivariate data whose columns are the
MOs and VOs is formed, and a robust Mahalanobis distance is computed for each of the
(MO⊤,VO)⊤ pair in this data. The robust covariance matrix is estimated using the min-
imum covariate determinant (MCD) estimator (Rousseeuw and Driessen, 1999). The
distribution of these robust distances is approximated using the F distribution (Hardin
and Rocke, 2005). Any observation with a robust distance greater than the cutoff ob-
tained from the tails of the F distribution is flagged as an outlier.

The directional outlyingness and MS-plot methods procedures are implemented
mainly through the dir_out() and msplot() functions in fdaoutlier. These func-
tions accept a matrix or data frame of dimension n× p for a univariate functional data,
or an array of dimension n× p× d for multivariate functional data (where n is the num-
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ber of functions/curves, p is the number of evaluation points in the domain, and d is
the dimension of the functional data with, d ≥ 2 for multivariate functional data). The
dir_out() function computes the directional outlyingness matrix O(Y, FY), the mean
directional outlyingness MO(Y, FY) and the variation of directional VO(Y, FY), while
the msplot() function finds outliers using the mean and variation of outlyingness
with the F approximation.

We illustrate identifying outliers with msplot() using simulation_model5()

to generate data of 100 curves, out of which 10 are shape outliers with a different co-
variance structure. The generated curves are observed on 50 domain points over the
interval [0, 1]. A call to simulation_model5() returns a list containing the matrix of
generated data and a vector containing the indices of the true outliers.

R> simdata <- simulation_model5(n = 100, p = 50,

+ outlier_rate = 0.1, seed = 2)

R> dt <- simdata$data

R> dim(dt)

[1] 100 50

R> simdata$true_outliers

[1] 6 10 20 21 34 38 48 49 66 93

Next we pass the generated data to the msplot() function to detect the outliers in dt.
By default, msplot() also produces a plot of the VO against the MO (or ||MO|| in the
case of a multivariate functional data) and returns a list containing outliers which is
a vector of the indices of detected outliers. The plotting function can be turned off by
setting the parameter plot = FALSE.

R> ms <- msplot(dts = dt, return_mvdir = T, plot = FALSE)

R> ms$outliers

[1] 6 10 20 21 34 38 48 49 51 66 93 100

Setting the additional parameter return_mvdir = TRUE ensures that vectors of the
mean and variation of outlyingness (MO and VO) of each curve are returned by msplot()
(a matrix is returned for MO in the case of a multivariate functional data).

R> head(ms$mean_outlyingness)

[1] 0.04718408 -0.76134612 1.30502807 0.20414153 0.81537363

[6] 2.27956644
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Figure 2.2: MS-Plot: Plot of the VO against the MO.

R> head(ms$var_outlyingness)

[1] 0.2115806 0.1777422 0.2015300 0.3898691 0.1550651 2.2730378

The MS-plot produced by the msplot() function when the parameter plot = TRUE is
shown in Figure 2.2. Additional parameters plot_title, title_cex, show_legend,
ylabel and xlabel can be passed to msplot() to further customise the MS-plot gen-
erated. If the aim is to compute either the MO and VO or the directional outlyingness
matrix (or array for multivariate functional data), without the need for identifying out-
liers, then the dir_out() function, which is called by msplot() can be used directly.
This returns a list containing the mean and variance of outlyingness, and the directional
outlyingness matrix (if the parameter return_dir_matrix = TRUE).
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R> simdir <- dir_out(dts = dt, return_dir_matrix = T)

R> head(simdir$mean_outlyingness)

[1] 0.04718408 -0.76134612 1.30502807 0.20414153 0.81537363

[6] 2.27956644

R> head(simdir$var_outlyingness)

[1] 0.2115806 0.1777422 0.2015300 0.3898691 0.1550651 2.2730378

R> dim(simdir$dirout_matrix)

[1] 100 50

2.2.2 Total variation depth and modified shape similarity index

Suppose Y : I → R is a stochastic process defined on the interval I in R. Let the
distribution of Y be FY . For a function y, let Ry(t) be the indicator function:

Ry(t) = 1{Y (t) ≤ y(t)},

for t ∈ I . The functional total variation depth (Huang and Sun, 2019) of the function y

w.r.t. FY is then defined as:

TVD(y, FY ) =

∫︂
I
Dy(t)w(t)dt,

where w(t) is a weight function and Dy(t) is the pointwise total variation depth given
by:

Dy(t) = var{Ry(t)} = P{Y (t) ≤ y(t)}P{Y (t) > y(t)}.

The constant weight function w(t) = 1
|I| is suggested in (Huang and Sun, 2019) but

other weight functions (that place more emphasis on different regions of the interval)
can be used in the formulation of the functional total variation depth. The pointwise
total variation depth Dy(t) can be decomposed into a shape and magnitude component
by breaking up the variance var{Ry(t)} using the law of total variance:

Dy(t) = var{Ry(t)} = var[E{Ry(t)|Ry(s)}] + E[var{Ry(t)|Ry(s)}],

for s, t ∈ I and s = t−∆. The shape similarity index of the functional observation y in a
given time span ∆ is then the weighted ratio of the shape component var[E{Ry(t)|Ry(s)}]
to the total variation depth over the interval I :
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SS (y,∆) =

∫︂
I
Sy(t,∆)v(t,∆)dt,

where

Sy(t,∆) =

⎧⎨⎩var[E{Ry(t)|Ry(s)}]/Dy(t) Dy(t) ̸= 0

1 Dy(t) = 0,

and the weight function v(t,∆) is the normalised changes in y(t) over the interval I :

v(t,∆) =
|y(t)− y(t−∆)|∫︁
I |y(t)− y(t−∆)|

.

The shape similarity index is a measure of shape outlyingness with small indices as-
sociated with shape outliers. However, when Dy(t) is very small, the shape similarity
index may not be small enough, so Huang and Sun (2019) further defined the modified
shape similarity index (MSS) by shifting (y(t − ∆), y(t)) to the centre. The modified
shape similarity index is defined as:

MSS (y,∆) =

∫︂
I
Sỹ(t,∆)v(t,∆)dt,

where ˜︁y is given by:

˜︁y(s,∆) =

⎧⎨⎩median{Y (s)} s = t

f(s)− f(s+∆) + median[Y (s+∆)] s = t−∆,

and
Sỹ(t,∆) = var(E[Rỹ(t)|Rỹ(s)])/Dỹ(t)}.

Details of the empirical versions of the total variation depth, the shape similarity
index and its modified version are presented in the Appendix of Huang and Sun (2019).
The total variation depth and the modified similarity index are implemented in the
total_variation_depth() function of fdaoutlier using C++ through R’s .Call
interface for a fast and efficient computation. This function accepts only a matrix, calling
it suffices to compute both the total variation depth and the modified shape similarity
index, and it returns a list containing both the total variation depth and the modified
shape similarity index:

R> tvdepth <- total_variation_depth(dt)

R> head(tvdepth$mss)

[1] 0.6388217 0.6208659 0.6975233 0.6853633 0.6618313 0.2167154

R> head(tvdepth$tvd)
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[1] 0.224578 0.156484 0.114386 0.197932 0.178926 0.072398

In order to identify outliers, shape outliers are first identified and removed using a
classical boxplot on the modified shape similarity indices. A functional boxplot is then
used on the remaining curves (to identify magnitude outliers) using the total variation
depth to identify their 50% central region (relative to the original number of curves). The
tvdmss() function implements these steps to detect the magnitude and shape outliers.
It returns a list containing the indices of the magnitude outliers, shape outliers, and the
combined (shape and magnitude) outliers. This is illustrated using the generated data
dt from the previous section.

R> tvoutlier <- tvdmss(dts = dt)

R> tvoutlier$shape_outliers

[1] 6 10 20 21 34 38 48 49 66 93

R> tvoutlier$magnitude_outliers

NULL

R> tvoutlier$outliers

[1] 6 10 20 21 34 38 48 49 66 93

In this case the total variation depth identifies all the shape outliers correctly and does
not detect any magnitude outliers when compared to the index of the true outliers of
the generated data:

R> simdata$true_outliers

[1] 6 10 20 21 34 38 48 49 66 93

Additional arguments can be passed to the function parameters emp_factor_mss,
emp_factor_tvd, and central_region_tvd of tvdmss() to control the classical
boxplot of the modified shape similarity index and the functional boxplot of the total
variation depth.

2.2.3 Outlier detection using sequential transformations

Dai et al. (2020) proposed using some sequence of transformations to identify and clas-
sify functional outliers. By transforming the functional data, it is possible to turn shape
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outliers into magnitude outliers, consequently making it easier to identify shape out-
liers. More formally, let {Yi}ni=1 be a set of functional observations in the space of con-
tinous functions C(I) defined on an interval I ∈ R. Suppose that Yi ∼ FY , and let Γ be
a transformation that is also defined on C(I). Furthermore, let FΓ(Y ) be the distribution
of the transformed data {Γ(Yi)}ni=1. Dai et al. (2020) proposed the following algorithm
for functional outlier detection and taxonomy.

Algorithm 1: Functional outlier detection using sequential transformations.

1 Identify from {Yi}ni=1 the magnitude outliers using the functional boxplot, and
denote the set of identified outliers by S0. These are the Γ0−outliers
(magnitude outliers).

2 Apply transformation Γ1 on {Yi}ni=1 to get {Γ1(Yi)}ni=1.
3 Repeat step 1 on {Γ1(Yi)}ni=1 to obtain the set of detected outliers S1; S1 \ S0 are

the Γ1−shape outliers.
4 Apply transformation Γ2 on {Γ1(Yi)}ni=1 to get {Γ2 ◦ Γ1(Yi)}ni=1.
5 Repeat step 1 on {Γ2 ◦ Γ1(Yi)}ni=1 to obtain the set of detected outliers S2;

S2 \ S1 ∪ S0 are the Γ2 ◦ Γ1−shape outliers.
6 Repeat steps 4 and 5 if more transformations are considered.

Dai et al. (2020) proposed the following useful (sequence of) transformations to iden-
tify and classify outliers:

Shifting and normalization of Curves: T2 ◦ T1 ◦ T0(Yi)

This sequence involves first identifying the magnitude outliers using functional box-
plot. This is the T0 transformation and the identified outliers are the T0 outliers (magni-
tude outliers). The second transformation T1 involves shifting the raw curves Yi to their
centres:

T1(Y )(t) = Y (t)− λ(I)−1

∫︂
I
Y (t)dt,

where λ(I) is the Lebesgue measure of the interval I . The T1 outliers are then identified
using functional boxplot (step 3 of Algorithm 1). The third transformation T2 involves
normalizing the centered curves, i.e., {T1(Yi)}ni=1, with their L2 norms:

T2(Y )(t) =
T1(Y )(t)[︁∫︁

I{T1(Y )(t)}2dt
]︁1/2 .

Derivatives of curves: D2 ◦ D1 ◦ D0(Yi)

- The D0 transformation first involves identifying the magnitude outliers using a func-
tional boxplot without transforming the data (same as T0). These are the D0 outliers.
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The second transformation D1 involves finding the derivative of the curves, and the
third transformation D2 computes the derivative of D1(Yi) again. After each transfor-
mation, outliers are identified using functional boxplot as indicated in Algorithm 1. D1

and D2 transforms are implemented in fdaoutlier by differencing the observed points
of the functions on the domain.

Directional outlyingness: O(Y(t))

For multivariate functional data {Yi}ni=1 taking values in Rd, the directional outlying-
ness transformation O is especially useful. This transformation changes the multivari-
ate functional observation Yi to univariate functional data Yi by finding the pointwise
directional outlyingness described in Section 2.2.1 (Dai and Genton, 2019). The univari-
ate functional data (of the outlyingness values) can then be investigated for outliers,
e.g., using functional boxplot with a one-sided ordering like the (one-sided) extreme
rank length depth (see Myllymäki et al., 2017, and Dai et al. 2020).

Other transformations and sequences suggested in Dai et al. (2020) include elimina-
tion of phase variations using a warping function:

R(Y )(t) = Y (r(t)), (2.1)

where r(t) is a warping function on I . Eliminating phase variations using R(Y ) may
make it easier to detect shape outliers. Other possible sequences of transformations are:
D1 ◦ T1 ◦ T0(Y ) and D2 ◦ D1 ◦ T2 ◦ T1 ◦ T0(Y ).

In the intermediate steps of identifying outliers using functional boxplots, possible
depths and outlyingness measures that can be used to order the functions are: modi-
fied band depth (MBD) of López-Pintado and Romo (2009), jth order integrated depth
of Nagy et al. (2017) (FDj), the L∞ depth (Long and Huang, 2015), and extreme rank
length depth (ERLD) of (Myllymäki et al., 2017). Other methods include the robust
Mahalanobis distance (RMD) of the (MO⊤,VO)⊤ pair, obtained from the directional
outlyingness in Section 2.2.1, and directional quantile (DQ) (Myllymäki et al., 2017).
DQ, RMD, and L∞ are distance-based, while MBD, FDj , and ERLD are based on ranks.
Dai et al. (2020) suggested using the distance-based methods, especially when the num-
ber of evaluation points on the interval I is small, as rank-based methods might suffer
from a large number of ties. The distance-based methods also achieved the best results
for detecting shape outliers in the simulation tests consisting of various shape outliers
conducted in Dai et al. (2020). However, some transformations may require the use of
specific ordering methods, e.g., the one-sided ERLD is best used with the O transfor-
mation since it generates univariate functional data made up of point-wise directional
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outlyingness, and we want to consider only large values of these curves as extremes
(rather than use a typical functional depth like MBD which considers both small and
large values of curves as extremes). The fdaoutlier package implements all the trans-
formations mentioned in Dai et al. (2020) except for the R(Y )(t) transformation which
involves the use of a warping function. The ordering measures: band depth (BD) and
MBD, L∞, DQ, RMD, TVD, and ERLD (both one and two-sided) are available in fdaout-
lier for ordering the functions in the intermediate functional boxplots.

The seq_transform() function in fdaoutlier finds outliers using sequential trans-
formations. Like the other functions in fdaoutlier, seq_transform() accepts a matrix
or data frame (of size n observations by p evaluation points) for a univariate functional
data and an array (of size n observation by p evaluation points by d dimension). The
sequence of transformations to apply on the data is specified to the sequence param-
eter which accepts a character vector containing a combination of the following strings:
"T0", "D0", "T1", "T2", "D1", "D2", and "O". The strings "T0", "T1" and "T2" rep-
resent the tranformations T0, T1 and T2 respectively, while the strings "D0", "D1", and
"D2" represent D0, D1 and D2 respectively. The string "O" indicates the outlyingness
transformation O(Y)(t). Thus, to specify the sequence of tranformations: D1◦T1◦T0(Y ),
one should pass the argument c("T0", "T1", "D1") to the parameter sequence in
the call to seq_tranform(), i.e., set sequence = c("T0", "T1", "D1"). We pro-
vide some examples below on the use of the seq_transform() function for detecting
outliers using some suggested sequences in Dai et al. (2020). First we generate some
data with outliers from simulation_model4():

R> simdata4 <- simulation_model4(n = 100, p = 50,

+ outlier_rate = 0.05,

+ deterministic = T, seed = 50)

R> dt4 <- simdata4$data

Next, we call the seq_transform() function using the sequence T2 ◦ T1 ◦ T0(Y )(t)

while specifying MBD as the ordering function of choice for the intermediate functional
boxplots.

R> seq1 <- seq_transform(dts = dt4,

+ sequence = c("T0", "T1", "T2"),

+ depth_method = "mbd")

R> seq1$outliers

$T0

integer(0)
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$T1

[1] 43 53

$T2

[1] 43 53 96

seq_transform() returns a list of named lists, one of which is named outliers.
The outliers list contains named vectors of the indices of the outliers found at each
step of the sequence of transformations. The names of the vectors in outliers are
the different transformations conducted at each step. In this example, the sequence
T2◦T1◦T0(Y )(t) (with modified band depth) identifies only three of the five true outliers
contained in the simulated data:

R> unique(unlist(seq1$outliers))

[1] 43 53 96

R> simdata4$true_outliers

[1] 20 43 53 70 96

Next we try the sequence D1 ◦ T1 ◦ T0(Y )(t) but now with the total variation depth in
the intermediate functional boxplot:

R> seq2 <- seq_transform(dts = dt4,

+ sequence = c("T0", "T1", "D1"),

+ depth_method = "tvd")

R> seq2$outliers

$T0

integer(0)

$T1

[1] 43 53

$D1

integer(0)

The sequence D1 ◦ T1 ◦ T0(Y )(t) with total variation depth identifies only two of the five
true outliers as seen below:
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R> unique(unlist(seq2$outliers))

[1] 43 53

R> simdata4$true_outliers

[1] 20 43 53 70 96

Another suggested sequence is the sequence D2 ◦ D1 ◦ D0(Y )(t). We use this sequence
but now with the L∞ depth as the ordering function:

R> seq3 <- seq_transform(dts = dt4,

+ sequence = c("D0", "D1", "D2"),

+ depth_method = "linfinity")

R> seq3$outliers

$D0

integer(0)

$D1

integer(0)

$D2

integer(0)

This time, the sequence D2◦D1◦D0(Y )(t) does not identify any of the outliers. This is not
surprising as the sequence D2◦D1◦D0(Y )(t) is advisable for identifying pure magnitude
(captured by D0) and pure shape outliers (captured by D1 and D2) and this result is in
line with the results of the simulation tests conducted in Dai et al. (2020) where the
sequence D2 ◦ D1 ◦ T0(Y )(t) performed the worst on this simulation model (See Table
4 of Dai et al. (2020)). Note that the sequence D2 ◦ D1 ◦ D0(Y )(t) can also be specified
with the sequence argument c("D0", "D1", "D1") or c("D0", "D2", "D2")

or c("T0", "D1", "D2") since both "D1" and "D2" do the same thing, i.e., perform
a lag-1 differencing and "D0" and "T0" also do the same thing (identify magnitude
outliers in the raw untransformed data). When there are repeated transformations in the
argument passed to sequence (e.g., when sequence = c("D0", "D1", "D1") is
passed), a warning is shown and the labels of the output outliers list are changed, so that
outliers for the two D1 transformations are accessed with output$outliers$D1_1

and output$outliers$D1_2 respectively:
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R> seq4 <- seq_transform(dt = dt4,

+ sequence = c("D0", "D1", "D1"),

+ depth_method = "linfinity")

R> seq4$outliers

$D0

integer(0)

$D1_1

integer(0)

$D1_2

integer(0)

Sometimes, it may be necessay to inspect or save the intermediate transformed data
for further analysis. Each intermediate transformed data can be saved by setting the
parameter save_data = TRUE in the call to seq_tranform(). These data can then
be assessed with the form object_name$transformed_data$transform:

R> seq5 <- seq_transform(dt = dt4,

+ sequence = c("D0", "D1", "D1"),

+ depth_method = "mbd", save_data = T)

R> str(seq5$transformed_data$D1_1)

num [1:100, 1:49] 0.409 0.659 0.657 0.307 0.397 ...

- attr(*, "dimnames")=List of 2

..$ : NULL

..$ : chr [1:49] "2" "3" "4" "5" ...

As mentioned earlier, the O(Y)(t) transformation should be used with a one-sided
ERLD ordering (in the functional boxplot) so that only large values of the resulting
outlyingness data are considered as extremes:

R> seq6 <- seq_transform(dt = dt4,

+ sequence = "O",

+ depth_method = "erld",

+ erld_type = "one_sided_right")

R> seq6$outliers

$O

[1] 18 43 53 70
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The additional parameter erld_type specifies whether large values should be con-
sidered as extremes (erld_type = "one_sided_right"), or small values should
be considered as extremes (erld_type = "one_sided_left") or both small and
large values should be considered as extremes (erld_type = "two_sided"). The
two sided ordering is used by default if erld_type is not specified.

2.2.4 Massive unsupervised outlier detection

The massive unsupervised outlier detection (MUOD) detects and classifies outliers into
shape, magnitude, and amplitude outliers. It was proposed in Azcorra et al. (2018) as
a support method to identify influential users in social networks. MUOD works by
computing for each curve three indices which measure outlyingness in terms of shape,
magnitude, and amplitude. The shape index of Yi w.r.t. FY denoted by IS(Yi, FY ) is
defined as

IS(Yi, FY ) =

⃓⃓⃓⃓
⃓⃓ 1n

n∑︂
j=1

ρ̂(Yi, Yj)− 1

⃓⃓⃓⃓
⃓⃓ ,

where ρ̂(Yi, Yj) is the Pearson correlation coefficient between the observed points of
curves Yi and Yj , given by

ρ̂(Yi, Yj) =
cov(Yi, Yj)

sYisYj

, sYi , sYj ̸= 0.

The magnitude and amplitude indices of Yi w.r.t. FY are defined are:

IM (Yi, FY ) =

⃓⃓⃓⃓
⃓⃓ 1n

n∑︂
j=1

α̂j

⃓⃓⃓⃓
⃓⃓ ,

and

IA(Yi, FY ) =

⃓⃓⃓⃓
⃓⃓ 1n

n∑︂
j=1

β̂j − 1

⃓⃓⃓⃓
⃓⃓ ,

respectively, where

β̂j =
cov(Yi, Yj)

s2Yj

, s2Yj
̸= 0,

α̂j = x̄i − β̂j x̄j ,

and
x̄i =

∑︁
t∈I Yi(t)

p
.
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Generally, magnitude outliers will have larger magnitude indices, and the same ap-
plies to shape and amplitude outliers. To identify a cutoff for the indices, Azcorra et al.
(2018) proposed to use a “tangent” method, which searches for the line tangent to the
maximum index and uses as cutoff the point where this tangent line intercepts the x-
axis. This method is especially problematic and prone to false positives, as pointed out
by Vinue and Epifanio (2020b). A alternative is to use a classical boxplot on the indices
to identify extremely large indices.

MUOD is implemented in fdaoutlier and can be accessed through the muod() func-
tion. The tangent method or the classical boxplot can be specified for determining the
indices cutoffs. The function returns a list containing the outliers and the MUOD in-
dices. The outliers list contains vectors with names shape, amplitude and magnitude
all containing the indices of the detected shape, amplitude, and amplitude outliers, re-
spectively.

R> simdata1 <- simulation_model1(n = 100, p = 50,

+ outlier_rate = 0.1, seed = 2)

R> moutlier <- muod(dts = simdata1$data, cut_method = "tangent")

R> moutlier$outliers

$shape

[1] 100 58 35 79 21 40 50 14

$amplitude

[1] 51 100 58 14 94

$magnitude

[1] 20 21 66 48 38 34 10 49 6 93 67

R> moutlier2 <- muod(dts = simdata1$data, cut_method = "boxplot")

R> moutlier2$outliers

$shape

[1] 100 58 35 79 21 40

$amplitude

[1] 51 100 58

$magnitude

[1] 20 21 66 48 38 34 10 49 6 93
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Furthermore, the muod magnitude (IM ), amplitude (IA) and shape (IS) indices can be
accessed for further analysis:

R> str(moutlier$indices)

’data.frame’: 100 obs. of 3 variables:

$ shape : num 0.1007 0.092 0.0845 0.1153 0.0721 ...

$ magnitude: num 0.404 0.437 1.188 1.21 0.371 ...

$ amplitude: num 0.08081 0.26492 0.00309 0.51515 0.11212 ...

2.3 Usage examples

In this section, we demonstrate the use of the fdaoutlier package on some common real
datasets in FDA literature. In particular, we replicate some of the application examples
from Dai and Genton (2018) and Dai et al. (2020). First, we analyse the Spanish (’aemet’)
weather dataset, followed by the population growth dataset. These datasets have been
analysed extensively in the literature, and they provide meaningful applications for
outlier detection in functional data analysis.

The Spanish weather data contains the daily average temperature, log precipitation,
and wind speed of 73 Spanish weather stations measured between 1980-2009. This data
was analysed in Dai and Genton (2018), Dai and Genton (2019), and Dai et al. (2020)
where the directional outlyingness, MS-plot, and sequential transformation methods
were proposed. The data is originally available in the fda.usc package (with the name
aemet) but a stripped-down version is also made available in fdaoutlier (with the name
spanish_weather). In this analysis, we focus on the average temperature and log
precipitation, and the aim is to find outlying curves (weather stations with outlying
weather data). Following Dai and Genton (2019), we smooth the data with 11 B-spline
basis functions by obtaining a smoothing matrix (without roughness penalty) using the
fda.usc package.

R> library("fda.usc")

R> data("spanish_weather")

R> b_spline <- create.bspline.basis(c(0, 365), nbasis = 11)

R> smoothing_matrix <- S.basis(tt = 0.5:364.5, basis = b_spline)

R> temp <- spanish_weather$temperature %*% smoothing_matrix

R> logprecip <- spanish_weather$log_precipitation %*% smoothing_matrix

A plot of the original and smoothed versions of the temperature and log precipitation
data is shown in Figure 2.3. Next, we apply MS-plot on the individual smoothed tem-
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Figure 2.3: Plot of temperature and log precipitation and their smoothed (with 11 B-
spline basis) versions.

perature and log precipitation data using the msplot() function to detect the marginal
outliers.

R> temp_ms <- msplot(dts = temp, plot = F)

R> logprecip_ms <- msplot(dts = logprecip, plot = F)

Using the indices of the outliers returned, we can identify the weather stations detected
as marginal outliers using the station information data (station_info).

R> head(spanish_weather$station_info$name[temp_ms$outliers])

[1] "A CORUÑA"

[2] "A CORUÑA/ALVEDRO"

[3] "SANTIAGO DE COMPOSTELA/LABACOLLA"

[4] "ASTURIAS/AVILÉS"
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[5] "OVIEDO"

[6] "TARIFA"

R> head(spanish_weather$station_info$name[logprecip_ms$outliers])

[1] "LOGROÑO/AGONCILLO"

[2] "FUERTEVENTURA/AEROPUERTO"

[3] "LANZAROTE/AEROPUERTO"

[4] "LAS PALMAS DE GRAN CANARIA/GANDO"

[5] "COLMENAR VIEJO/FAMET"

[6] "MADRID/TORREJÓN"

Using the vectors of the mean and variation of directional outlyingness returned by
msplot(), we can make a plot of the outliers detected and the plots of VO against MO
as shown in Figure 2.4.

We can also apply msplot() on the multivariate functional data constructed by
combining both the smoothed temperature and log precipitation using an array in
order to detect and identify the joint temperature and log precipitation outliers:

R> joint_dt <- array(data = c(as.vector(temp),

+ as.vector(logprecip)),

+ dim = c(nrow(temp), ncol(temp), 2))

R> joint_ms <- msplot(joint_dt, plot = F)

R> joint_ms$outliers

[1] 1 2 3 9 20 21 31 33 34 35 36 39 44 52 55 56 57 58 59 60 66 70

R> head(spanish_weather$station_info$name[joint_ms$outliers])

[1] "A CORUÑA"

[2] "A CORUÑA/ALVEDRO"

[3] "SANTIAGO DE COMPOSTELA/LABACOLLA"

[4] "ASTURIAS/AVILÉS"

[5] "TARIFA"

[6] "SANTANDER/PARAYAS"

Figure 2.5 shows the plot of the variation of outlyingness VO against the norm of
the mean of outlyingness ∥MO∥ produced by fdaoutlier (by setting plot = TRUE in
the call to msplot()).

Another option to detect joint outliers is to use the directional outlyingness transfor-
mation O(Y)(t) (together with a one-sided ERLD in the functional boxplot) in Dai et al.
(2020). This can be achieved using the seq_transform() function in fdaoutlier.
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Figure 2.4: Plot of temperature and log precipitation and their MS-Plots. Lines and
points in color are outliers.

R> joint_seq <- seq_transform(dts = joint_dt, sequence = "O",

+ depth_method = "erld",

+ erld_type = "one_sided_right")

R> joint_seq$outliers

$O

[1] 33 34 35 36 39 44 45 55 56 57 58 60 66

As a second example, we consider the world population data analysis carried out
in Dai et al. (2020). The data consists of the population of 105 countries as of July 1
between the years 1950-2010. These 105 countries have their populations between 1
million and 15 million on July 1, 1980. The preprocessed data is available in fdaoutlier
under the name world_population. A plot of the data is shown in Figure 2.6. Using
the seq_transform() function, we try to reproduce the results of the analysis carried
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Figure 2.5: Plot of VO and ∥MO∥ for the joint multivariate functional data of tempera-
ture and log precipitation.

out in Dai et al. (2020) which identified different types of outliers in the data using the
transformation T2 ◦ T1 ◦ T0 (and the L∞ depth in the functional boxplots).

R> seq_pop <- seq_transform(dts = world_population,

+ sequence = c("T0", "T1", "T2"),

+ depth_method = "linfinity")

The magnitude outliers are then the T0 outliers which can be obtained with:

R> seq_pop$outliers$T0

[1] 5 9 18 25 40 41 44 49 55

R> (t0_outliers <- rownames(world_population)[seq_pop$outliers$T0])
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Figure 2.6: World population in thousands of 105 countries from 1950-2010.

[1] "Mozambique" "Uganda" "Sudan" "Ghana"

[5] "Afghanistan" "Nepal" "Malaysia" "Iraq"

[9] "Saudi Arabia"

and the T1 outliers:

R> seq_pop$outliers$T1

[1] 3 5 9 12 13 18 24 25 36 40 41 44 49 55 57 59

R> (t1_outliers <- rownames(world_population)[seq_pop$outliers$T1])

[1] "Madagascar" "Mozambique"

[3] "Uganda" "Angola"
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[5] "Cameroon" "Sudan"

[7] "Cote d’Ivoire" "Ghana"

[9] "Kazakhstan" "Afghanistan"

[11] "Nepal" "Malaysia"

[13] "Iraq" "Saudi Arabia"

[15] "Syrian Arab Republic" "Yemen"

In Dai et al. (2020), they considered the T1 outliers which are not T0 outliers as amplitude
outliers for classification purposes. These can be obtained with:

R> amp_ind <- seq_pop$outliers$T1[!(seq_pop$outliers$T1

+ %in% seq_pop$outliers$T0)]

R> rownames(world_population)[amp_ind]

[1] "Madagascar" "Angola"

[3] "Cameroon" "Cote d’Ivoire"

[5] "Kazakhstan" "Syrian Arab Republic"

[7] "Yemen"

Finally, the shape outliers are the T2 outliers that are neither T0 outliers nor T1 outliers.

R> shape_ind <- seq_pop$outliers$T2[!(seq_pop$outliers$T2

+ %in% seq_pop$outliers$T0)]

R> shape_ind <- shape_ind[!(shape_ind %in% seq_pop$outliers$T1)]

R> rownames(world_population)[shape_ind]

[1] "Rwanda" "Armenia"

[3] "Georgia" "Belarus"

[5] "Bulgaria" "Czech Republic"

[7] "Hungary" "Republic of Moldova"

[9] "Estonia" "Latvia"

[11] "Lithuania" "Bosnia and Herzegovina"

[13] "Croatia"

The T0 and T1 outliers are mostly countries in Africa and the Middle East while the
shape outliers (T2 outliers) are mostly Eastern and Central European countries. The
outliers detected are visualised in Figure 2.7, and these results are consistent with Dai
et al. (2020, Table 5). We can also use tvdmss() and muod() on the world population
data:
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Figure 2.7: Outliers detected in world population data using sequential transformation.
Curves in red are magnitude outliers, in blue are shape outliers, in green are amplitude
outliers and in grey are normal observations.

R> wptvdout <- tvdmss(dts = world_population)

R> wpmout <- muod(dts = world_population, cut_method = "boxplot")

TVD did not detect any magnitude outlier but MSS does find a couple of “shape”
outliers all of which are in Africa and the Middle East, and these countries are those
classified as T0 and T1 outliers by sequential transformations above:

R> wptvdout$magnitude_outliers

NULL

R> rownames(world_population)[wptvdout$shape_outliers]

[1] "Mozambique" "Uganda"

[3] "Sudan" "Cote d’Ivoire"
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[5] "Ghana" "Kazakhstan"

[7] "Afghanistan" "Nepal"

[9] "Malaysia" "Iraq"

[11] "Saudi Arabia" "Syrian Arab Republic"

[13] "United Arab Emirates" "Yemen"

The countries flagged as magnitude outliers by muod() are very similar to those flagged
by sequential transformations as T0 outliers:

R> rownames(world_population)[wpmout$outliers$magnitude]

[1] "Sudan" "Saudi Arabia" "Uganda" "Iraq"

[5] "Cote d’Ivoire" "Malaysia"

The amplitude outliers detected by muod() that are also not magnitude outliers are:

R> wpamp_ind <- wpmout$outliers$amplitude[!(wpmout$outliers$amplitude

+ %in% wpmout$outliers$magnitude)]

R> rownames(world_population)[wpamp_ind]

[1] "Nepal" "Ghana"

[3] "Syrian Arab Republic" "Yemen"

[5] "Afghanistan" "Mozambique"

[7] "Madagascar"

Finally, the shape outliers flagged by muod() that are neither amplitude nor magni-
tude outliers are mostly the Eastern and Central European countries flagged as T2 out-
liers by sequential tranformations:

R> wpshape_ind <- wpmout$outliers$shape[!(wpmout$outliers$shape

+ %in% wpmout$outliers$magnitude)]

R> wpshape_ind <- wpshape_ind[!(wpshape_ind %in% wpmout$outliers$amplitude)]

R> rownames(world_population)[wpshape_ind]

[1] "Bulgaria" "Hungary"

[3] "Latvia" "Georgia"

[5] "Estonia" "Bosnia and Herzegovina"

[7] "Lithuania" "Republic of Moldova"

[9] "Croatia" "Armenia"

[11] "Belarus" "United Arab Emirates"

[13] "Kazakhstan" "Czech Republic"



35

In conclusion, the outliers detected and the classification of such outliers may vary
across different outlier detection methods as shown by this world population data ex-
ample. While the results of the outlier detection and classification for MUOD and se-
quential transformations are quite similar, those of TVD and MSS are quite different and
in particular, countries identified as shape outliers by TVD and MSS are those flagged
as magnitude and amplitude outliers by MUOD and sequential tranformations.

2.4 Discussion

This chapter introduces the fdaoutlier package, which extends the available tools for
outlier detection in functional data analysis in R. fdaoutlier’s focus so far has been the
implementation of the latest state-of-the-art outlier detection methods in the FDA litera-
ture that are not yet implemented in R and that are especially useful for detecting shape
outliers. These include the directional outlyingness and MS-plot, the total variation
depth and modified shape similarity, and sequential transformations. These implemen-
tations will be especially useful to FDA researchers for testing and comparisons in the
development of new outlier detection and exploratory methods. Likewise, fdaoutlier
will be useful for practitioners in the exploratory analysis of their functional data.

We will continue adding more outlier detection methods for functional data to the
fdaoutlier package, especially (future) outlier detection methods not yet implemented
in R, and also those proposed in the subsequent chapters of this thesis. We will also con-
tinue adding useful tools for development and testing of new outlier detection methods
for functional data, e.g., additional simulation models and functions for comparing out-
lier detection methods, and these will be directed by the trends in the FDA literature.
Our long-term goal for the development of fdaoutlier is for it to be a helpful package for
practitioners and researchers alike for conducting robust analysis and outlier detection
for functional data.
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Abstract:

We propose two new outlier detection methods, for identifying and classifying differ-
ent types of outliers in (big) functional data sets. The proposed methods are based on
an existing method called Massive Unsupervised Outlier Detection (MUOD). MUOD
detects and classifies outliers by computing for each curve, three indices, all based on
the concept of linear regression and correlation, which measure outlyingness in terms
of shape, magnitude and amplitude, relative to the other curves in the data. ‘Semifast-
MUOD’, the first method, uses a sample of the observations in computing the indices,
while ‘Fast-MUOD’, the second method, uses the point-wise or L1 median in comput-
ing the indices. The classical boxplot is used to separate the indices of the outliers from
those of the typical observations. Performance evaluation of the proposed methods us-
ing simulated data show significant improvements compared to MUOD, both in outlier
detection and computational time. We show that Fast-MUOD is especially well suited
to handling big and dense functional datasets with very small computational time com-
pared to other methods. Further comparisons with some recent outlier detection meth-
ods for functional data also show superior or comparable outlier detection accuracy
of the proposed methods. We apply the proposed methods on weather, population
growth, and video data.
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3.1 Introduction

Technological advances in the latest decades have allowed the observation of data sam-
ples that can be considered as functions or curves over a domain. These include tem-
perature data over time, pixel values of images, frames of video, etc., and it is natural
to assume that these observations have been generated by a stochastic function over a
domain. Functional data analysis (FDA) deals with statistical analysis of these types of
data. We refer the reader to Ramsay and Silverman (2006) for an overview of statisti-
cal methods for analysing functional data. Non-parametric methods for FDA have also
been treated in Ferraty and Vieu (2006), while a survey of theory of statistics for FDA
can be found in Cuevas (2014).

It is common practise to identify outliers before conducting statistical analyses. Out-
liers are of interest because they could significantly bias the results of statistical infer-
ence. Furthermore, an outlier, rather than being due to a measurement error, could be
due to some interesting changes or behaviour in the data-generating process, and it is
often of interest to investigate such changes. This is even more important in the analysis
of weather, pollution, and geochemical data where identifying such changes is neces-
sary to make important environmental policy decisions (e.g., Filzmoser et al. (2005)). In
the context of FDA, identifying outliers becomes even more difficult because of the na-
ture of functional observations. Such observations are realizations of functions over an
interval and thus, outlying observations could have extreme values in a part of the inter-
val or in all the interval. These (outlying) functional observations could exhibit different
properties which make them anomalous. These include being significantly shifted from
the rest of the data or having a shape that on the average is different from the rest of the
data. Hubert et al. (2015) defined the former as magnitude outliers, the latter as shape
outliers, and in addition defined amplitude outliers as curves or functions which may
have the same shape as the mass of the data but with different amplitude.

Outliers in multivariate data are typically identified using notions of statistical depth,
which provide a centre-outward ordering for observations. Statistical depths were gen-
eralized to the functional domain starting with the work of Fraiman and Muniz (2001).
Since then, various depth notions for ordering functional data have been introduced,
including band depth and modified band depth (López-Pintado and Romo 2009), ex-
tremal depth (Narisetty and Nair 2016), half-region depth (López-Pintado and Romo
2011), and total variation depth (Huang and Sun 2019), among others (see Nieto-Reyes
and Battey (2016) for more details). A number of exploratory and outlier detection
methods for functional data are based on functional depth notions. For instance, Febrero
et al. (2008) proposed an outlier detection method using functional depths with cutoffs
determined through a bootstrap, while Sguera et al. (2015) proposed to use a kernel-
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ized functional spatial local depth (KFSD) for identifying outliers. The functional box-
plot (Sun and Genton 2011) also uses the modified band depth to define a 50% central
region on a functional data with curves outside 1.5 times the central region flagged
as outliers, analogous to the classical boxplot. Likewise Arribas-Gil and Romo (2014)
proposed the outliergram, which uses the quadratic relationship between the modified
band depth and the modified epigraph index (López-Pintado and Romo 2011) to iden-
tify shape outliers. Other methods, like the functional bagplot or the functional highest
density regions (Hyndman and Shang 2010), use the first two principal components of
the functional data to construct a bagplot or a highest density region plot, respectively,
to identify outliers. Hubert et al. (2015) also proposed using a bag distance and skew-
ness adjusted projection depth to identify outliers.

More recent literature include the work of Dai and Genton (2018), in which they con-
structed a magnitude-shape plot (MS-Plot) for visualizing the centrality of multivari-
ate functional observations and for identifying outliers, using a functional directional
outlyingness measure. This functional directional outlyingness measure for multivari-
ate functional data was further investigated in Dai and Genton (2019). Furthermore,
Rousseeuw et al. (2018) introduced another measure of functional directional outly-
ingness for multivariate functional data and used it to construct the functional outlier
map (FOM) for identifying outliers in multivariate functional data, while Huang and
Sun (2019) defined the shape similarity index and the modified shape similarity index
based on total variation depth to identify shape outliers. Dai et al. (2020) proposed to
use some predefined sequence of transformations to identify and classify shape and am-
plitude outliers after first removing the magnitude outliers using a functional boxplot.

It is desirable to be able to identify all the different types of outliers in functional
data. However, some outlier detection methods for functional data are specialized, in
the sense that they are well suited to identifying outliers of a certain type; e.g., outlier-
gram is well suited to identifying shape outliers, while functional boxplot is well suited
to identifying magnitude outliers. While some methods are sensitive to different types
of outliers, they do not automatically provide information on the type of outliers, unless
the data is visualized. Thus, it might be difficult to understand why a particular curve
is flagged as an outlier. This is especially important when the functional data is large
and not easy to visualize. Classifying the types of outliers also allows for selectively
targeting different types of outliers. For example, one might be interested only in shape
outliers or only in magnitude outliers. Furthermore, some methods do not scale up to
large functional datasets, which poses a challenge with the huge amounts of data that
is being generated nowadays.

In this chapter, we introduce two new outlier detection methods for univariate func-
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tional data: Fast-MUOD and Semifast-MUOD, which are based on the Massive Unsu-
pervised Outlier Detection (MUOD) method proposed in Azcorra et al. (2018). These
methods are capable of identifying and classifying magnitude, amplitude and shape
outliers without the need for visualization. The proposed methods are based on the
concepts of linear regression and correlation, making them quite intuitive and easy to
compute. We also show that one of the proposed methods, Fast-MUOD, scales quite
well and is thus suitable for detecting outliers in big functional data. We show that these
methods have good outlier detection performance on a range of outlier types using sim-
ulation experiments and we also compare positively, their outlier detection performance
and computation time to some existing outlier detection methods for functional data.
The main contributions of this work are:

- Proposal of two new methods capable of identifying and classifying outliers in
functional data.

- Simulation study comparing the proposed methods and some other recent outlier
detection methods.

- Time benchmark (comparing the proposed methods and other outlier detection
methods) showing the computational time of the proposed methods.

- Case studies showing how the proposed methods can be used in a real application
and comparisons with some existing work with similar case studies.

- An implementation of the proposed methods available on Github.

The rest of the article is organized as follows: Section 3.2 provides an overview of
MUOD. In Section 3.3, we present the proposed methods. These are followed by perfor-
mance evaluation with some simulation studies in Section 3.4. We illustrate in Section
3.5, the use of the proposed methods on a variety of real datasets and use cases, in-
cluding object detection in surveillance video, outlier detection in weather data, and
discovering growth trends in population data. We end this chapter with some discus-
sions and conclusions in Section 3.6.

3.2 The MUOD Method

In this section, we present a brief primer on MUOD as described in the supplementary
material of Azcorra et al. (2018). MUOD identifies outliers by computing for each obser-
vation or curve, three indices, namely shape, magnitude and amplitude indices. These
indices measure how outlying each observation is as regards its shape, magnitude and
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amplitude, compared to the other observations. The definition of these indices as de-
fined in Azcorra et al. (2018) is introduced in the following.

Consider a set of functional observations {Yi}ni=1 ∈ C(I), defined on d equidistant
points of an interval I ∈ R, where C(I) is the space of real continuous functions defined
on I. We assume that Yi follows a distribution FY also defined on C(I). We define the
MUOD shape index of Yi with respect to FY , denoted by IS(Yi, FY ), as

IS(Yi, FY ) =

⃓⃓⃓⃓
⃓⃓ 1n

n∑︂
j=1

ρ̂(Yi, Yj)− 1

⃓⃓⃓⃓
⃓⃓ , (3.1)

where ρ̂(Yi, Yj) is the estimated Pearson correlation coefficient between Yi and Yj , given
by

ρ̂(Yi, Yj) =
cov(Yi, Yj)

sYisYj

, sYi , sYj ̸= 0

The correlation coefficient is responsible for capturing the similarity between each
pair of curves (Yr, Ys) in terms of shape. The intuition behind the MUOD shape index
is as follows. Assume that the number of outlying curves no is much less than the num-
ber of non-outlying curves nn, i.e., (no << nn). Let Yi be a normal curve (in terms of
shape) with respect to (w.r.t.) FY and let Yk be a shape outlier w.r.t. FY . Also, denote
by {Yj}nn

j=1, the set of normal curves and by {Yl}no
l=1 the set of outlying curves. Since

Yi has a similar shape w.r.t. FY and Yk is a shape outlier, the correlations between the
pairs (Yi, Yj)

nn
j=1 will be close to 1 and greater than the correlations between the pairs

(Yk, Yj)
nn
j=1. Also, the correlations between the pairs (Yi, Yl)

no
l=1 and (Yk, Yl)

no
l=1 could be

any value between −1 and 1. However, no << nn ensures that the average of the corre-
lations over all possible pairs (Yi, Ym)nm=1 is greater than the average of the correlation
overall all possible pairs (Yk, Ym)nm=1. Consequently, subtracting these averages from
1 assigns Yi a lesser shape index compared to the shape index of Yk. We illustrate this
behaviour of the MUOD shape index below. We generate 99 non-outlying curves from
the model

Y (t) = a1 sin(t) + a2 cos(t), (3.2)

where t ∈ T , with T made up of d = 50 equidistant domain points between 0 and 2π,
and both a1 and a2 generated from independent uniform random variables between
0.75 and 1.25. Moreover, we generate a single shape outlier using the following different
model:

Y (t) = b1 sin(t) + b2 cos(t) + ϵ(t), (3.3)
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Figure 3.1: First Row Left: simulated data using Equation (3.2) (99 curves, 98 in gray, 1
in green) and Equation (3.3) (1 curve, in orange). First Row Right: estimated correlation
coefficient between the observed points of the orange curve and the green curve. Second
Row Left: same as First Row Left, highlighting two normal curves (green). Second
Row Right: estimated correlation coefficient between the green curves. Third Low Left:
Simulated data set using Equation (3.2) for normal curves (in gray) and Equation (3.3)
for outliers (orange). Third Row Right: associated sorted MUOD shape indices.
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where each ϵ(t) is drawn from a normal random variable with µ = 0 and σ2 = 1/4, and
both b1 and b2 are realizations of independent uniform random variables with param-
eters 0.75 and 1.75. In the first row of Figure 3.1, we highlight a typical observation in
green and the single shape outlier in orange (left) and show their estimated correlation
coefficient (right). In the second row of Figure 3.1, we show the estimated correlation
coefficient for two typical curves colored in green. We observe that the estimated corre-
lation coefficients of the two typical curves is greater than that of the “typical-outlier”
pair of curves. In the third row of Figure 3.1, we show the MUOD shape indices of
90 typical curves and 10 outliers generated from Equations (3.2) and (3.3) respectively.
Clearly, the indices of the shape outliers (in orange) are greater than the indices of the
typical observations (in grey). We note that the conditions sYi ̸= 0 and sYj ̸= 0 in Equa-
tion (3.1) can easily be broken if any of the curves Yi or Yj is a straight line. To avoid
this, we ignore any curve Yj in the data set with sYy = 0 when computing the indices.

The magnitude and amplitude indices of an observation Yi, denoted by IM (Yi, FY )

and IA(Yi, FY ) respectively, are based on the intercept and slope of a linear regression
between the observed points of all possible pairs (Yi, Yj)

n
j=1. Let α̂j and β̂j be the es-

timated coefficients (intercept and slope respectively) of the linear regression between
the pair (Yi, Yj) with the observed points of the function Yj being the independent vari-
able, and the observed points of the function Yi being the dependent variable. Then the
magnitude index IM (Yi, FY ) of Yi is defined as:

IM (Yi, FY ) =

⃓⃓⃓⃓
⃓⃓ 1n

n∑︂
j=1

α̂j

⃓⃓⃓⃓
⃓⃓ , (3.4)

and the amplitude index IA(Yi, FY ) of Yi is defined as:

IA(Yi, FY ) =

⃓⃓⃓⃓
⃓⃓ 1n

n∑︂
j=1

β̂j − 1

⃓⃓⃓⃓
⃓⃓ , (3.5)

with
β̂j =

cov(Yi, Yj)
s2Yj

, s2Yj
̸= 0,

and
α̂j = x̄i − β̂j x̄j ,

where
x̄i =

∑︁
t∈I Yi(t)

d
.

The intuition behind the magnitude index is similar to that of the shape index. We
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adapt the same notation used before for shape outliers to magnitude outliers. If Yk is
a magnitude outlier w.r.t. FY , and Yi is a typical curve (in terms of magnitude) w.r.t.
FY , then a linear regression between the d observed points of Yk on those of any Yj

(the typical curves) will produce a large estimated intercept coefficient α̂kj compared
to the esimated intercept α̂ij of the linear regression of Yi on Yj (since both Yi and Yj

are not magnitude outliers). Provided that no << nn, the average of the estimated
α̂km values over all possible pairs (Yk, Ym)nm=1 will be greater than the average of the
estimated α̂im values over all possible pairs (Yi, Ym)nm=1, which consequently assigns a
larger magnitude index to Yk, the magnitude outlier. To illustrate the magnitude index,
we generate 99 observations using Equation (3.2) and a single magnitude outlier from
the model below:

Y (t) = a1 sin(t) + a2 cos(t) + 1. (3.6)

In the first row of Figure 3.2, we show the simulated data set (left) and the estimated lin-
ear regression model between a randomly selected non-outlying curve and the unique
(magnitude) outlying function together with the value of their estimated intercept (right).
In the second row of Figure 3.2, we show the same simulated data set (left) and the es-
timated linear regression model between two randomly selected non-outlying curves
(right). A comparison of the estimated intercepts (of the former and the latter pairs
of functions) shows that the estimated intercept for “normal-outlier” pair of curves is
greater than that of the “normal-normal” pair of curves. Finally, in the third row of
Figure 3.2, we show another simulated data set (left) where normal observations are
generated using Equation (3.2), and 10 magnitude outliers are generated using Equa-
tion (3.7):

Y (t) = a1 sin(t) + a2 cos(t) + k, (3.7)

where k takes either −1 or 1 with equal probability, and it controls whether an outlier
is higher or lower in magnitude than the typical observations. On the right of the third
row of Figure 3.2, we show the sorted MUOD magnitude indices. All the low and high
magnitude outliers (in blue and orange respectively) have significantly larger indices
than the typical observations.

Unlike the magnitude index which uses the intercept term, the amplitude index uses
the slope term. The same intuition applies for the amplitude index because if both Yi

and Yj are similar curves (in amplitude), increasing and decreasing in amplitude at a
similar rate, then the linear regression between their d observed points will produce an
estimated slope coefficient β̂j close to 1. We illustrate the amplitude index in Figure 3.3.
This figure resembles Figure 3.2, but with amplitude outliers, which we generate using
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Figure 3.2: First Row Left: simulated data using Equation (3.2) (99 curves, 98 in gray,
1 in green) and Equation (3.7) (1 curve, in orange). First Row Right: estimated linear
regression model of the orange curve on the green curve. Second Row Left: same as
First Row Left, highlighting two normal curves (green). Second Row Right: estimated
linear regression model between the green curves. Third Low Left: Simulated data set
using Equation (3.2) for normal curves (in gray) and Equation (3.7) for outliers (in blue
and orange). Third Row Right: associated sorted MUOD magnitude indices.
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the model in Equation (3.8):

Y (t) = c1 sin(t) + c2 cos(t), (3.8)

where c1 and c2 are independent uniform random variables between 1.7 and 2.0 for
higher amplitude outliers; and between 0.2 and 0.4 for lower amplitude outliers. From
Figure 3.3, the estimated slope coefficient between the amplitude outlier (in orange)
and the typical observation (in green) is β̂j = 1.855 (top row), while the estimated slope
coefficient between the two typical observations is β̂j = 0.979 (second row). Moreover,
the sorted MUOD amplitude indices of the amplitude outliers are greater than those of
the typical observations (third row).

After obtaining the MUOD indices as defined above, the next step in outlier de-
tection is to differentiate the indices of the outliers from the indices of the typical ob-
servations. Azcorra et al. (2018) proposed two heuristic methods to perform this task.
The first involves approximating the sorted indices with a curve and searching for a
cutoff point on the curve where the first derivative of such point fulfills a certain condi-
tion (e.g., a point on the curve with first derivative greater than 2). The other method,
named ‘tangent method’, searches for the line tangent to the maximum index and then
uses as threshold the point at which the tangent intercepts the x-axis. These meth-
ods are particularly prone to detecting normal observations as outliers (Vinue and Epi-
fanio 2020b). Furthermore, there is no statistical motivation behind these two proposed
heuristic methods since they were mainly used as a quick support for identifying out-
liers in the real data application in Azcorra et al. (2018). As part of our proposed im-
provements, we use a classical boxplot for separating the indices of the outliers from
those of the typical curves.

3.3 Fast-MUOD and Semifast-MUOD

We discuss the proposed methods based on MUOD in this section. First we describe
how Semifast-MUOD and Fast-MUOD compute their outlier indices. Then we present
the use of the classical boxplot for identifying a cutoff for the indices. We also describe
their implementations.

3.3.1 Semifast-MUOD

Due to the way MUOD indices are defined, MUOD is computationally intensive and
by design the time complexity for MUOD to compute its three indices is in the order
of Θ(n2d). This is because the three indices of each of the n functional observations are



48 CHAPTER 3. DETECTING AND CLASSIFYING OUTLIERS IN BIG FD

−2

0

2

0.00 0.25 0.50 0.75 1.00
t

X
(t

)

●
●

●
●

●
●●●●●●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

(0,0)

yik = − 0.001 + 1.855yjk

βj = 1.855

−2

0

2

−1 0 1
Yj

Y
i

−2

0

2

0.00 0.25 0.50 0.75 1.00
t

X
(t

)

●
● ● ●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

(0,0)

yik = 0.002 + 0.979yjk

βj = 0.979

−2

0

2

−1 0 1
Yj

Y
i

−2

0

2

0.00 0.25 0.50 0.75 1.00
t

X
(t

)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●●

●
●●

●
●

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
n

S
or

te
d 

am
pl

itu
de

 in
de

x

Figure 3.3: First Row Left: simulated data using Equation (3.2) (99 curves, 98 in gray,
1 in green) and Equation (3.8) (1 curve, in orange). First Row Right: estimated linear
regression model of the orange curve on the green curve. Second Row Left: as First
Row Left, highlighting two normal curves in green. Second Row Right: estimated linear
regression model between the green curves. Third Row Left: Simulated data set using
Equation (3.2) for normal curves (in gray) and Equation (3.8) for outliers (in blue and
orange). Third Row Right: associated sorted MUOD amplitude indices.
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computed by using all the n observations in the data. To reduce computational time, we
propose to use a sample of the observations in the computation of the three indices. We
pick a random sample (without replacement) of size nX , from the set of observations
{Yi}ni=1 based on an appropriate sample proportion p ∈ (0, 1]. Denote this random
sample by {Xi}nX

i=1 and its empirical distribution by FX . Then, for each observation Yi,
the three indices for Yi are computed using the nX observations in {Xi}nX

i=1 rather than
the n observations of Y . Formally, we define the shape index of any Yi, now with respect
to FX , denoted by IS(Yi, FX) as

IS(Yi, FX) =

⃓⃓⃓⃓
⃓⃓ 1

nX

nX∑︂
j=1

ρ̂(Yi, Xj)− 1

⃓⃓⃓⃓
⃓⃓ , (3.9)

where ρ̂(Yi, Xj) still remains the estimated Pearson correlation coefficient between Yi

and Xj for i = 1. . . . , n and j = 1, . . . , nX . Likewise, we define the new magnitude and
amplitude indices, IM (Yi, FX) and IA(Yi, FX), computed w.r.t. FX as

IM (Yi, FX) =

⃓⃓⃓⃓
⃓⃓ 1

nX

nX∑︂
j=1

α̂j

⃓⃓⃓⃓
⃓⃓ , (3.10)

IA(Yi, FX) =

⃓⃓⃓⃓
⃓⃓ 1

nX

nX∑︂
j=1

β̂j − 1

⃓⃓⃓⃓
⃓⃓ , (3.11)

where
β̂j =

cov(Yi, Xj)

s2Xj

, s2Xj
̸= 0

and
α̂j = Ȳi − β̂jX̄j .

Semifast-MUOD has the advantage of reducing the computational time, since only
a subsample of the functional data is used in computing the indices. Obviously, the
gains in computational time is dependent on the sample size nX , which is in turn de-
pendent on the sample proportion p. Thus, the time complexity is reduced to an order
of Θ(pn2d).

3.3.2 Fast-MUOD

For Fast-MUOD, we propose to use only the point-wise median in the computation of
the indices. Let Ỹ be the point-wise median of the observations in {Y }ni=1. Then, we
compute the shape, magnitude and amplitude indices of any Yi w.r.t. to Ỹ , instead of
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FY or FX . We define the Fast-MUOD shape index of Yi as

IS(Yi, Ỹ ) =
⃓⃓⃓
ρ̂(Yi, Ỹ )− 1

⃓⃓⃓
. (3.12)

Likewise, the amplitude and magnitude indices of Yi are given by

IA(Yi, Ỹ ) =
⃓⃓⃓
β̂i − 1

⃓⃓⃓
(3.13)

IM (Yi, Ỹ ) = |α̂i| (3.14)

where

β̂i =
cov(Yi, Ỹ )

s2
Ỹ

s2
Ỹ
̸= 0,

and
α̂i = Ȳi − β̂j

¯̃Y

Fast-MUOD is highly scalable since the time complexity has been reduced to an order of
Θ(nd). These indices are more robust to outliers since they are computed with respect
to only the point-wise median which corresponds to the depth median of the integrated
Tukey halfspace depth (Nagy et al., 2016; Claeskens et al., 2014).

3.3.3 Alternative Medians and Correlation Coefficients

The point-wise median, in general, is not necessarily one of the observed curves, and its
use (in Fast-MUOD) is to create a reference “typical” observation used for computing
the indices, rather than identify a median observation of the functional data. Other
median observations can be identified (and used in the computation of Fast-MUOD
indices) using a functional depth measure. Although such a depth measure can also be
used in detecting outliers (e.g., using a functional boxplot), our methods still provide
the advantage of classifying the outliers. The point-wise median is desirable because it
is fast and easy to compute, even for dense functional data.

As an alternative, the multivariate L1 median can be used. However, we have found
that this is difficult to compute for dense functional data observed on lots of domain
points. Moreover, the use of the L1 median in computing the indices does not show
any significant gains in outliers detection performance in our simulation tests, despite
being more computationally expensive (see Section A.1 of the Supplementary Material
in Appendix A for comparison between Fast-MUOD using the L1 median and the point-
wise median). In general, we recommend the use of the point-wise median for dense
and big functional data. For an overview of the computation of the L1 median, we refer
the reader to Fritz et al. (2011).
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Likewise, other robust or non-parametric correlation coefficients like Kendall’s Tau
and Spearman’s rank correlation coefficients have been considered in the formulation
of the shape indices IS . Results of our tests show that the Pearson correlation coefficient
provides the best outlier detection performance. See Section A.4 of the Supplementary
Material in Appendix A for a comparison of the performance of IS for Fast-MUOD
computed using different correlation coefficients.

3.3.4 Fast-MUOD and Semifast-MUOD Indices Cutoff

After obtaining the indices (using Fast-MUOD, or Semifast-MUOD), the next step in
outlier detection is to determine a cutoff value for separating the outliers from the typi-
cal observations. The theoretical distributions of these indices are unknown, but simu-
lations show that the distributions of these indices are right skewed and that the indices
of the outliers appear on the right tail. Hence, a good cutoff method should be able
to find a reasonable threshold in the right tails. We propose to use a classical boxplot
on the indices. We declare Yi a shape outlier if IS(Yi, F ) ≥ Q3IS + 1.5 × IQRIS where
Q3IS and IQRIS are the third quartile and the inter-quartile range of IS respectively, for
F ∈ {FX , Ỹ }. We apply the same cutoff rule on the magnitude and amplitude indices
IM (Yi, F ) and IA(Yi, F ). The identified outliers of each type are then returned (together
with their type(s)), to give a clue why they are flagged as outliers.

We have also considered other cutting methods including the transformation of the
indices and the use of more specialized boxplots (e.g., the adjusted boxplot for skewed
distributions of Hubert and Vandervieren (2008) and the boxplot of Carling (2000)). We
find that the adjusted boxplot is not sensitive enough to detect outliers and transforma-
tions of the indices usually worsen the separation between the indices of the outliers and
typical observations. In our tests, the cutoff based on the classical boxplot performed
well consistently acrosss the different types of outliers. Consequently, the results of the
subsequent simulations and applications in this paper are obtained using this cutoff
method for Semifast-MUOD and Fast-MUOD.

3.3.5 Implementation

MUOD was implemented in R, (R Core Team, 2022) with some of the computational
intensive parts of the algorithm written in C++ using the Rcpp package (Eddelbuettel
and Francois 2011). Fast-MUOD and Semifast-MUOD follow the same implementation.
We provide an overview into the implementation of both methods in this section. For
Semifast-MUOD, IA(Y, FX), IS(Y, FX), and IM (Y, FX), are computed using Algorithm
2. The algorithm takes as input the row matrix MY = [Y1, . . . Yn] built from the obser-
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Algorithm 2: SemiFastMUOD(MY )

1 MX = sample(MY , p) : Rd×n → Rd×nX

2 means = colmean(MY ): Rd×n → Rn

3 sds = colsd(MY ): Rd×n → Rn

4 refmean = colmean(MX ): Rd×nX → RnX

5 refvar = colvar(MX ): Rd×nX → RnX

6 refsds = colsd(MX ): Rd×nX → RnX

7 cov = covariance(MX , MY ): Rd×nX × Rd×n → RnX×n

8 cor = cov/refsds/sds : RnX×n × RnX × Rn → RnX×n

9 IS(Y, FX) = |colmean(cor) − 1| : RnX×n → Rn

10 β = cov/refvar : RnX×n × RnX → RnX×n

11 IA(Y, FX) = |colmean(β)− 1| : RnX×n → Rn

12 βx = β × refmean: RnX×n × RnX → RnX×n

13 α = means − βx : RnX×n × Rn → RnX×n

14 IM (Y, FX) = |colmean(α)| : RnX×n → Rn

15 Return IA(Y, FX), IM (Y, FX), IS(Y, FX)

vations in {Yi}ni=1, with |Yi| = d. Next, we randomly sample from the columns of MY

to create the sample row matrix MX = [X1, . . . , XnX ], the random sample to use for
computing the indices. The rest of the computation follows as outlined in Algorithm 2.
It is noteworthy that the covariance matrix in Line 7 of Algorithm 2 can become quite
large easily. To manage memory, we implemented the computation of the values of this
matrix and the rest of the indices sequentially in C++, so that we do not have to store
the covariance matrix in memory. The implementation for Fast-MUOD is very similar
and is outlined in Algorithm 3. The algorithm takes as input MY and then computes the
point-wise median Ỹ ∈ Rd which is used in the computation of the indices. The oper-
ations “colmean(·)”, “colmedian(·)”, “colsd(·)”, and “colvar(·)” used in both algorithms
indicate column-wise mean, median, standard deviation, and variance operations re-
spectively.

3.4 Simulation Study

In this section, we evaluate the performance of the proposed methods using some sim-
ulation experiments.

3.4.1 Outlier Models

In our simulation study, we generate curves from different outlier models that have
been studied in Dai and Genton (2018), Arribas-Gil and Romo (2014), Febrero et al.
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Algorithm 3: FastMUOD(MY )

1 Ỹ = colmedian(MY ): Rd×n → Rd

2 means = colmean(MY ): Rd×n → Rn

3 sds = colsd(MY ): Rd×n → Rn

4 refmean = mean(Ỹ ): Rd → R
5 refvar = var(Ỹ ): Rd → R
6 refsds = sd(Ỹ ): Rd → R
7 cov = covariance(Ỹ , MY ): Rd × Rd×n → Rn

8 cor = cov/refsds/sds : Rn × R× Rn× → Rn

9 IS(Y, Ỹ ) = |cor − 1| : Rn → Rn

10 β = cov/refvar : Rn × R → Rn

11 IA(Y, Ỹ ) = |β − 1| : Rn → Rn

12 βx = β × refmean: Rn × R → Rn

13 α = means − β · x : Rn × Rn → Rn

14 IM (Y, Ỹ ) = |α| : Rn → Rn

15 Return IA(Y, Ỹ ), IM (Y, Ỹ ), IS(Y, Ỹ )

(2008) and Sun and Genton (2011). In total, we consider eight models where the first
model, Model 1, is a clean model with no outlier, while Models 2 – 8 contain outliers.
The base models and the corresponding contamination models are specified below.

• Model 1: Main model Xi(t) = 4t + ei(t) with no contamination, for i = 1, . . . , n.
ei(t) is a Gaussian process with zero mean and covariance function γ(s, t) =

exp{−|t− s|}, where s, t ∈ [0, 1].

• Model 2: Main model: same as Model 1; Contamination model: Xi(t) = 4t+8ki+

ei(t), for i = 1, . . . , n and ki ∈ {−1, 1} with equal probability. ei(t) remains as
defined above. This is a shifted model where the generated curves are magnitude
outliers shifted from the main model.

• Model 3: Main model: same as Model 1; Contamination model: Xi(t) = 4t +

8kiITi≤t≤Ti+0.05 + ei(t), for i = 1, . . . , n, Ti ∼ Unif(0.1, 0.9), and I an indicator
function. ki and ei(t) remain as defined above. The outlying curves from this
model are magnitude outliers for only a small portion of the domain, which pro-
duce spikes along the domain.

• Model 4: Main model: Xi(t) = 30t(1−t)3/2+ ēi(t); Contamination model: Xi(t) =

30t3/2(1 − t) + ēi(t), for i = 1, . . . , n; where ēi(t) is a Gaussian process with zero
mean and covariance function γ̄(s, t) = 0.3 exp{−|s − t|/0.3} with s, t ∈ [0, 1].
The outlying curves in this model produces outliers that are similar to typical
observations but slightly shifted horizontally and reversed.
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• Model 5: Main model: same as Model 1; Contamination model: Xi(t) = 4t+e2i(t),
for i = 1, . . . , n; where e2i(t) is a Gaussian process with zero mean and covariance
function γ2(s, t) = 5 exp{−2|t − s|0.5} with s, t ∈ [0, 1]. The outlying curves gen-
erated are shape outliers with a different covariance function even though they
follow the general trend of the normal observations.

• Model 6: Main model: Same as Model 1, Contamination model: Xi(t) = 4t +

2 sin(4(t+ θi)π)+ ei(t), for i = 1, . . . , n; where θi ∼ Unif(.25, .75). ei(t) remains as
defined above. Like Model 5 above, the generated outlying curves have the same
trend as the normal observations but they are periodic in nature.

• Model 7: Main model Xi(t) = ai sin θ + bi cos θ + ei(t); Contamination model:
Xi(t) = (9 sin θ + 9 cos θ) · (1 − ui) + (pi sin θ + qi cos θ)ui + ei(t), for i = 1, . . . , n;
where θ ∈ [0, 2π], ai, bi ∼ Unif(3, 8), pi, qi ∼ Unif(1.5, 25.) and ui ∈ {0, 1} with
equal probability. ei(t) remains as defined above. The contaminating curves are
amplitude outliers with a similar periodic shape as the normal observations but
with slightly increased or decreased amplitude.

• Model 8: Main model: same as Model 1; Contamination model: For each outlier
to be generated, a contamination model is sampled from any of the following
contamination models (with equal probability):

(i) Contamination model of Model 2

(ii) Contamination model of Model 3

(iii) Contamination model of Model 5

(iv) Contamination model of Model 6

Thus, Model 8 is a mixture model containing different types of outliers.

Simulated data from these eight models will be a mixture of observations from the main
model with outliers from the contamination model, where number of outliers is deter-
mined by the contamination rate alpha α. In the subsequent simulation results, we set
the contamination rate α = 0.1 for each Model 2 – 8, and we generate n = 300 curves on
d = 50 equidistant points on the interval [0, 1]. Figure 3.4 shows a sample of the eight
models with α = 0.1, n = 100 and d = 50.

3.4.2 Outlier Detection Methods

We focus on comparing the outlier detection performance of the proposed methods to
MUOD and to other recent outlier detection methods for functional data. Since the
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Figure 3.4: Sample data generated by the eight simulation models (α = 0.10, n = 100
and d = 50). Outliers are in color.
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proposed methods produce three types of outliers (magnitude, amplitude, and shape),
there are different ways to study the performance of the methods. For instance, a user
might decide to target only magnitude outliers and discard the other types of outliers
(produced by the methods) based on practical background and use case scenario. On
the other hand, one might decide to consider all the outliers provided by the proposed
methods. Consequently, we will consider the following different possible sets in our
comparison:

• FST: This is the union of the different types of outliers flagged by Fast-MUOD.
Thus, an observation is an outlier under this scheme if it is either a shape, mag-
nitude or amplitude outlier. In our simulation, we used the pointwise median for
Fast-MUOD but the results obtained with the L1 median are similar (see Section
A.1 of Appendix A).

• FSTMG: This considers only the magnitude outliers flagged by Fast-MUOD. Con-
sequently, an observation is an outlier only if it is flagged by Fast-MUOD as a
magnitude outlier.

• FSTSH: This considers only the shape outliers flagged by Fast-MUOD. Thus, an
observation is an outlier only if it is flagged by Fast-MUOD as a shape outlier.

• FSTAM: This is considers only the amplitude outliers flagged by Fast-MUOD. An
observation is an outlier only if it is flagged by Fast-MUOD as an amplitude out-
lier.

• SF: This is the union of the different types of outliers flagged by Semifast-MUOD
(using a random sample whose size is 50% of the size of the original data).

• SF25: This is the union of the different types of outliers flagged by Semifast-
MUOD but using a random sample whose size is 25% of the size of the original
data.

• MUOD: This is the union of the different types of outliers flagged by MUOD as
proposed in Azcorra et al. (2018) (using the “tangent method” to determine a cut-
off).

Considering the different types of outliers flagged by Fast-MUOD in our perfor-
mance evaluation gives a clear picture of how the different types of outliers contribute
to the overall performance of Fast-MUOD (FST). It is easy to do the same for SF and
SF25. However, we do not include these results here but rather their overall perfor-
mance since the results are quite similar to those of Fast-MUOD. We compare the meth-
ods above to the following outlier detection methods for functional data.
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• OGMBD: The outliergram method, proposed in Arribas-Gil and Romo (2014),
mainly targets shape outliers. It uses a scatter plot of the modified band depth
(MBD) and the modified epigraph index (MEI). Outliers are identified by using a
boxplot to find the most distant points that lie below the parabola generated by
the plot of (MEI, MBD). In addition, outliergram uses the functional boxplot to
detect magnitude outliers. Thus, in our evaluation, we consider outliers flagged
by both outliergram and functional boxplot.

• MSPLT: MS-plot is based on a directional outlyingness for multivariate functional
data proposed by Dai and Genton (2019) and it decomposes the “total directional
outlyingness” of sample curves into “magnitude outlyingness” (represented by
the “mean directional outlyingness”, MO) and “shape outlyingness” (represented
by the “variation of directional outlyingness”, VO). The MS-Plot is then the scat-
ter plot of (MO,VO)⊤. Outlying curves are identified by computing the squared
robust Mahalanobis distance of (MO,VO)⊤ (using the minimum covariance deter-
minant (MCD) algorithm of Rousseeuw and Driessen (1999)), and approximating
the distribution of these distances using an F distribution according to Hardin
and Rocke (2005). Curves with robust distance greater than a threshold obtained
from the tails of the F distribution are flagged as outliers.

• TVD: This method uses the total variation depth (TVD) proposed by Huang and
Sun (2019) to compute a “(modified) shape similarity” (MSS) index of the sample
functions. A classical boxplot, with the Fc × IQR cutoff rule (where Fc is the fac-
tor), is then applied on the MSS index to detect shape outliers. After removing the
shape outliers, a functional boxplot (using TVD to construct the central region) is
then applied on the remaining observation in order to detect magnitude outliers.
The magnitude outliers are functions outside of 1.5 times the 50% central region
with respect to the original sample before the shape outliers were removed. In our
simulation study, we used the default value of Fc = 3.

• FOM: The functional outlier map, proposed by Rousseeuw et al. (2018), uses a
“directional outlyingness” (DO) measure. This measure is then extended to func-
tional data to get the “functional directional outlyingnees” (fDO), computed at
the observed points of each function’s domain. The variability of the DO values
(vDO), is then defined, and the FOM is the scatterplot of (fDO, vDO). To flag ob-
servations as outliers, the “combined functional outlyingness” (CFO), based on
fDO and vDO, is computed, transformed to logarithm (LCFO), and standardized
in a robust way (SLCFO). Any observation with SLCFO > Φ−1(.995) is then
flagged as an outlier, where Φ(·) is the standard normal cumulative distribution.
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• FAO: The functional adjusted outlyingness is similar to FOM above, but uses the
“adjusted outlyingness” (AO) proposed by Brys et al. (2005) (see also Hubert and
Van der Veeken (2008) and Hubert et al. (2015)) instead of the DO proposed in
Rousseeuw et al. (2018). The AO can be extended to functional data to get a func-
tional Adjusted Outlyingness (fAO). The variability (vAO) of the fAO and fAO
itself can then be used in a scatterplot to build a functional outlier map as done in
FOM above.

• FOM2 and FAO2: Since the functional directional outlyingness and functional
adjusted outlyingness can be computed for multivariate functional data, we add
the first derivatives of the simulated data as a second dimension to the original
data and analyse the obtained bivariate functional data with functional outlier
maps of fDO (for FOM2) and fAO (for FAO2).

• ED: The extremal depth notion proposed by Narisetty and Nair (2016) orders func-
tions using a left-tail stochastic ordering of the depth distribution. This depth
notion focuses mainly on “extreme outlyingness” just as the name implies, and
thus tends to penalize functions with extreme values, even if these extreme val-
ues occur in small portions of the domain. In our simulation, we use the extremal
depth to construct a central region which is used in a functional boxplot to detect
outliers.

• SEQ1, SEQ2 and SEQ3: These methods detect outliers using some standard sets
of sequential transformations proposed in Dai et al. (2020). The functional data
are sequentially transformed and outliers are removed after each transformation
using a functional boxplot based on some depth measure. The first transforma-
tion proposed is {T0(Yi)}ni=1 and it indicates applying a functional boxplot to the
raw data {Yi}ni=1 (to get the T0−outliers). Other proposed transformation include
shifting the curves {Yi}ni=1 to their centers:

T1(Yi(t)) = Yi(t)− λ(I)−1

∫︂
I
Yi(t)dt,

where λ(I) is the Lebesgue measure of I; and normalising the curves {Yi}ni=1 with
their L2 norm:

T2(Yi(t)) = Yi(t)∥Yi(t)∥−1
2 ,

with ∥Yi(t)∥2 =
[︁∫︁

I{Yi(t)}
2dt
]︁1/2. Additional transformations involve taking the

first order derivatives of the raw curves (denoted by D1) and further differentiat-
ing the first order derivatives (denoted by D2).
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We consider the following sequence of transformations:

(i) SEQ1 = {D1 ◦ T1 ◦ T0(Yi)}ni=1,

(ii) SEQ2 = {T2 ◦ T1 ◦ T0(Yi)}ni=1,

(iii) SEQ3 = {D2 ◦ D1 ◦ T0(Yi)}ni=1.

We use the distance based L∞ functional depth (Long and Huang, 2015) for or-
dering the curves in the intermediate functional boxplots applied after each trans-
formation. We selected L∞ depth because it had one of the best performance in
the simulation study conducted in Dai et al. (2020).

3.4.3 Simulation Results

For each of the Models 2 – 8, we evaluate the true positive rate (TPR), the percentage
of correctly identified out of the true outliers, and the false positive positive rate (FPR),
the percentage of false positives out of the number of non-outliers. Since Model 1 is a
clean model, we present only the FPR under Model 1.

Table 3.1 shows the mean and standard deviation (in parenthesis) of the TPRs and
FPRs for all the methods over 500 repetitions. In Model 1, where we have a clean model,
MUOD has an exceptionally high FPR of 12.07% mainly because of the aggressive tan-
gent cutoff method which it uses for detecting outliers. FST, SF, and SF25 which use
the classical boxplot as a cutoff technique show better FPRs than MUOD. Compared to
other functional outlier detection methods, the proposed MUOD-based methods (FST,
SF and SF25) show higher FPRs. This is because FST, SF and SF25 are the unions of the
three types of outliers flagged by Fast-MUOD, Semifast-MUOD, and Semifast-MUOD
with 25% of the sample, respectively. For instance, FST is the union of FSTMG, FSTSH
and FSTAM, and consequently, it inherits the FPRs of these individual methods (same
applies for SF and SF25). However, considering the individual methods, FSTMG and
FSTAM, we see low FPRs. In fact, the overall FPRs of the MUOD-based methods are
mainly driven by the FPR of the shape outliers (as seen with FST and FSTSH). This is
because the MUOD based methods use a simple Pearson correlation as an index to iden-
tify shape outliers and this might be affected to some extent by random noise. However,
we find this not be too much of an issue in real life use cases, especially because it is typ-
ical for functions to be smoothed (or represented with some basis function with implicit
smoothing effect) during the exploratory analysis process (for example, see Section 3.5).

All the methods have very high accuracy for Model 2 where we have magnitude
outliers, except for FSTSH and FSTAM which target shape and amplitude outliers re-
spectively. FST, SF and SF25 have higher FPRs for the same reasons explained above
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Table 3.1: Mean and Standard Deviation (in parentheses) of the True Positive Rates
(TPR) and False Positive Rate (FPR) over eight simulation models with 500 repetitions
for each possible case. Each simulation is done with n = 300 and d = 50 and α = 0.1.
Comparatively high TPRs are in bold. Proposed methods in italics.

Method
Model 1 Model 2 Model 3 Model 4

TPR FPR TPR FPR TPR FPR TPR FPR

FST - 9.90(1.50) 100.00(0.00) 8.95(1.59) 99.81(0.89) 6.10(1.37) 100.00(0.00) 3.15(1.13)
FSTMG - 1.74(0.92) 99.99(0.15) 0.36(0.40) 4.13(3.70) 1.52(0.89) 41.25(9.71) 0.63(0.54)
FSTSH - 7.94(1.34) 7.79(4.86) 7.94(1.48) 98.97(2.03) 4.36(1.12) 100.00(0.00) 2.24(0.95)
FSTAM - 1.70(0.83) 1.66(2.43) 1.69(0.93) 6.41(4.62) 1.38(0.80) 54.56(11.76) 0.45(0.45)
SF - 9.58(1.54) 100.00(0.00) 8.66(1.53) 99.49(1.49) 5.60(1.32) 99.94(0.44) 2.65(1.02)
SF25 - 9.60(1.51) 99.99(0.21) 8.63(1.58) 99.53(1.29) 5.59(1.28) 99.87(0.67) 2.59(1.03)
MUOD - 12.07(4.41) 99.75(3.26) 8.40(3.78) 56.32(24.44) 10.67(4.95) 95.39(10.02) 3.95(2.83)
OGMBD - 4.77(1.25) 100.00(0.00) 4.65(1.35) 39.43(11.40) 3.45(1.16) 93.54(5.21) 1.22(0.72)
MSPLT - 3.72(1.41) 99.97(0.33) 2.90(1.24) 100.00(0.00) 2.95(1.34) 99.95(0.39) 1.36(0.84)
TVD - 0.00(0.03) 100.00(0.00) 0.00(0.03) 100.00(0.00) 0.00(0.00) 2.77(3.77) 0.00(0.00)
FOM - 0.53(0.52) 100.00(0.00) 0.07(0.17) 47.11(18.59) 0.09(0.19) 48.23(17.44) 0.06(0.15)
FAO - 0.21(0.34) 100.00(0.00) 0.02(0.08) 25.97(16.11) 0.02(0.09) 5.92(8.13) 0.02(0.09)
FOM2 - 3.96(1.13) 100.00(0.00) 1.26(0.73) 100.00(0.00) 2.02(0.95) 78.98(8.93) 0.78(0.58)
FAO2 - 3.39(1.17) 100.00(0.00) 1.41(0.83) 100.00(0.00) 1.59(0.89) 32.31(15.17) 0.80(0.62)
ED - 0.00(0.00) 99.99(0.15) 0.00(0.02) 99.09(1.73) 0.00(0.00) 0.12(0.62) 0.00(0.00)
SEQ1 - 0.00(0.01) 99.99(0.15) 0.00(0.00) 100.00(0.00) 0.00(0.00) 10.49(7.41) 0.00(0.00)
SEQ2 - 0.65(0.46) 99.99(0.15) 0.68(0.49) 100.00(0.00) 0.61(0.48) 29.56(13.57) 0.00(0.00)
SEQ3 - 0.00(0.00) 99.99(0.15) 0.00(0.00) 100.00(0.00) 0.00(0.00) 5.58(4.72) 0.00(0.00)

Method
Model 5 Model 6 Model 7 Model 8

TPR FPR TPR FPR TPR FPR TPR FPR

FST 95.97(4.27) 5.67(1.19) 93.05(6.42) 6.31(1.35) 79.73(14.95) 6.55(1.91) 98.63(2.45) 6.65(1.40)
FSTMG 15.94(6.70) 1.08(0.71) 0.83(1.70) 1.77(0.94) 1.65(2.36) 1.69(0.90) 30.65(8.10) 1.04(0.75)
FSTSH 86.35(6.74) 4.39(1.12) 91.01(6.75) 4.35(1.10) 4.21(3.68) 4.94(1.72) 71.77(7.58) 5.31(1.29)
FSTAM 22.99(7.93) 1.01(0.71) 3.54(3.78) 1.40(0.79) 79.10(15.42) 0.01(0.05) 10.74(5.69) 1.29(0.83)
SF 94.05(5.00) 5.27(1.22) 92.46(6.31) 5.87(1.32) 67.31(17.06) 6.54(1.86) 98.11(2.69) 6.19(1.35)
SF25 93.70(5.44) 5.26(1.25) 91.95(6.74) 5.84(1.25) 66.75(17.67) 6.63(1.92) 97.85(2.97) 6.15(1.33)
MUOD 50.16(14.96) 4.35(2.96) 48.60(23.31) 12.01(5.45) 98.22(5.95) 18.77(6.15) 64.23(16.18) 4.41(3.25)
OGMBD 95.99(4.02) 1.97(0.88) 99.89(0.60) 1.88(0.89) 15.40(14.65) 0.00(0.00) 82.99(7.39) 2.87(1.16)
MSPLT 99.99(0.15) 2.81(1.21) 100.00(0.00) 2.91(1.26) 66.39(16.04) 0.02(0.08) 99.98(0.26) 2.85(1.31)
TVD 100.00(0.00) 0.00(0.02) 84.25(12.13) 0.00(0.02) 40.88(12.82) 0.00(0.02) 99.42(1.51) 0.00(0.00)
FOM 10.84(7.76) 0.09(0.21) 0.02(0.26) 0.08(0.18) 0.64(1.72) 0.00(0.03) 40.85(10.30) 0.10(0.21)
FAO 7.11(6.55) 0.03(0.10) 0.02(0.26) 0.02(0.08) 0.57(1.67) 0.00(0.03) 33.20(9.53) 0.03(0.12)
FOM2 100.00(0.00) 2.06(0.94) 71.25(15.41) 1.90(0.86) 30.75(16.49) 0.17(0.25) 99.01(2.05) 1.92(0.89)
FAO2 100.00(0.00) 1.61(0.83) 54.90(17.75) 1.47(0.83) 12.88(11.47) 0.11(0.22) 97.06(3.47) 1.56(0.84)
ED 25.01(9.20) 0.00(0.00) 0.01(0.15) 0.00(0.00) 0.00(0.00) 0.00(0.00) 55.85(8.85) 0.00(0.00)
SEQ1 100.00(0.00) 0.00(0.00) 0.17(0.76) 0.00(0.00) 0.00(0.00) 0.00(0.00) 75.55(7.86) 0.00(0.02)
SEQ2 83.91(7.41) 0.57(0.46) 6.90(5.50) 0.60(0.46) 1.61(2.26) 0.00(0.03) 74.68(7.80) 0.60(0.45)
SEQ3 100.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 74.87(7.87) 0.00(0.02)
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for Model 1. However, FSTMG has a very low FPR of 0.36%, a value comparable to or
better than some other methods. For Models 3 - 8, which contain either shape, ampli-
tude or a mixture of outliers, the proposed MUOD-based methods (FST, SF and SF25)
show good outlier detection performance. Considering the individual outliers flagged
by FST across these models, the performance of FSTMG, FSTSH and FSTAM vary de-
pending on the type of outliers contained in the model, showing the effectiveness of
these individual methods in targeting their specific types of outliers. However, FOM
and FAO have very low TPRs for models with shape or amplitude outliers, indicating
that they are only well suited to identifying magnitude outliers. FOM2 and FAO2 have
high accuracy on Models 3 and 5 as they analyse a bivariate data which includes the
first derivative of the simulated data. They however struggle with Models 4, 6 and 7
which contain shape and amplitude outliers. In Model 3, FST shows a very good TPR
of 99.81%, mostly buoyed by the outliers detected by FSTSH with its TPR of 98.97%.
Furthermore, MSPLT and TVD performed excellently on Model 3. The same applies
to ED, with its emphasis on extreme outlyingness of functions, even if such outlying-
ness is within a small portion of the domain, a property that Model 3 clearly satisfies.
OGMBD and MUOD, on the other hand, have very low TPRs for Model 3. For Model 4
however, TVD and ED fail with very low TPRs while MSPLT and FST showed excellent
performance. The outliers detected by FSTSH (100.00% TPR) in this model contributed
to the overall performance of FST (the same applies for SF and SF25). OGMBD and
MUOD also show very good outlier detection performance on Model 4 with 93.54% and
95.39% TPRs respectively. In Model 6, TVD did not have quite as good TPR compared
to MSLPT, OGMB and the MUOD-based methods even though this model contains
pure shape outliers. The methods based on sequential transformations (SEQ1, SEQ2
and SEQ3) have good outlier detection performance on Models 2, 3 and 5 but they are
ineffective on Models 6 and 7 which contain pure shape and amplitude outliers, respec-
tively.

Only FST gives a satisfactory outlier detection performance for Model 7 with its TPR
of 79.73%. This model contains pure amplitude outliers and it is especially challeng-
ing because the outliers are quite similar in shape and magnitude to the non-outliers.
The amplitude outliers detected by FSTAM helped FST to have this satisfactory perfor-
mance. SF and SF25 on the other hand have low TPRs. Since these two methods use a
random sample of the data (50% and 25% of sample size for SF and SF25 respectively),
they are not as sensitive as FST which uses only the point-wise (or L1) median. This
proves to be an advantage in detecting outliers that are very similar in shape and mag-
nitude to non-outliers. MUOD, on the other hand has a high TPR but also a very high
FPR of 18.34% (caused by the tangent cutoff method) which makes the overall perfor-
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mance bad. Finally, the proposed MUOD-based methods show a good outlier detection
performance on Model 8 which contains a mixture of pure shape and magnitude out-
liers. Likewise MSPLT and TVD show good outlier detection TPRs on Model 8, while
MUOD and ED have very low TPRs. OGMB, on the other hand, did not have quite as
high TPR compared to MSPLT, TVD and the MUOD-based methods.

While we do not claim that the proposed methods are capable of identifying every
possible type of outlier, the results of the simulation study has shown that the proposed
MUOD-based methods (and especially Fast-MUOD) have a good and well-balanced
performance over a wide range of different outlier types, thanks to the fact that they
target three different types of outliers simultaneously. Since the outliers identified are
also classified into different types (magnitude, amplitude or shape), additional infor-
mation is provided to the user as to possible reasons why an outlier is indeed flagged
as such without the need for manual inspection or data visualization. This will prove
valuable when exploring large functional datasets (where visualization is difficult) and
also enables selective targeting of different outlier types based on practical background
and use case.

3.4.4 Computational Time

A major advantage of the proposed methods is their simplicity despite their effective-
ness. Since the indices for Fast-MUOD are very easy to compute, the computational
overhead of Fast-MUOD is quite low compared to other existing outlier detection meth-
ods. For functional datasets of typical size, this does not matter much. However, a fast
method is required in order to handle large (and dense) functional datasets and Fast-
MUOD excels in this regard (e.g., see Subsection 3.5.2). While Semifast-MUOD is not
as fast compared to Fast-MUOD, it is faster than the original MUOD as described in
Azcorra et al. (2018), while achieving better outlier detection performance.

In this section, we focus on comparing the running times of the proposed methods
to MUOD and to other existing outlier detection methods used in Subsection 3.4.1. We
generated data from Model 2 (in Subsection 3.4.1) with the number of observations
n ∈ {102, 3 × 102, 103, 3 × 103, 104, 3 × 104, 105}. To generate the data, we set d = 100

and contamination rate α = 0.05. We used the tictoc package in R (Izrailev 2021) to get
the running time of each method. For each n, we ran 20 iterations and took the median.
The experiment was run on a computer with a Core i9 8950HK processor (6 cores, 12
threads, up to 4.8GHz) with 32GB RAM.

Figure 3.5 shows the results of the running time of the different methods with log-
log axes. For small sample size, all the methods have relatively short running time.
However, for larger sample sizes, FSTP and FSTL1 (representing Fast-MUOD with the
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point-wise median and L1 median respectively) have the shortest running time taking
just about 0.8 and 2.9 seconds, respectively, to process 100,000 observations. ED, FOM,
FAO and MSPLOT also show reasonable running times for large number of observa-
tions. TVD and OGMBD however are quite slow, requiring over 5 and 8 hours, respec-
tively, to handle 100,000 observations. Consequently, these methods are only suitable
for relatively small data (see Subsection 3.5.2 for example). SF and SF25 are much faster
than MUOD taking about 7 and 3 minutes, respectively, for 100,000 observations (com-
pared to the 18 minutes required by MUOD). The methods based on sequential trans-
formation have similar running times and hence we show only the results for SEQ1
in Figure 3.5. These methods take about 6 minutes to process 30,000 observations (we
could not run the tests up to 100,000 observations on these methods due to memory
issues). Finally, FAO2 and FOM2 take about 36 minutes and 33 seconds, respectively, to
handle 100,000 observations.

An alternative way to evaluate computational time is to evaluate the maximum
number of observations a method can handle within a given set time. Using the same
setup as before (simulated data from Model 2, with d = 100 and contamination rate
α = 0.05), we evaluate the maximum number of observation that each method can
handle under 10 seconds. Starting from a sample size of 100 to 10,000, we increase the
number of observations in steps of 100, while from 20,000 up to 2 million, we increase
the sample size in steps of 10,000. Table 3.2 below shows the result. FSTP handles over
1 million observations in less than 10 seconds while FSTL1 handles 290,000 observa-
tions under 10 seconds. Given the significant difference in computational time between
FSTP and FSTL1 (due to the computation of the L1 median), we recommend to always
use FSTP for large data since the outlier detection performance for both methods are
quite similar as mentioned earlier. Compared to other methods, FOM can handle only
270,000 observations, while MSPLOT can handle only 50,000 observations under 10 sec-
onds. As expected, OGMBD and TVD, with their slow running times, can only handle
about 1,000 and 2,000 observations respectively under 10 seconds.

The codes for OGMBD and MSPLOT used in this experiment were obtained from
the supplementary materials of Arribas-Gil and Romo (2014) and Dai and Genton (2018),
respectively, while the implementation of TVD used is at github.com/hhuang90/TVD
as stated in Huang and Sun (2019). FOM, FAO, FOM2 and FAO2 were based on codes
obtained from wis.kuleuven.be/stat/robust/software while code for ED was obtained
from the authors of Narisetty and Nair (2016). SEQ1, SEQ2 and SEQ3 are based on their
respective implementations in the fdaoutlier R package (Ojo et al., 2021b). Worthy of
note is that the implementations of these methods used in this experiment might not be
the most optimal version available (or attainable) of the respective methods.

https://github.com/hhuang90/TVD
http://wis.kuleuven.be/stat/robust/software
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Table 3.2: Number of observations handled under 10 seconds. Simulated data from
Model 2, with d = 100 and contamination rate α = 0.05

Method Sample size Time (s)
FSTP 1,060,000 9.89
FSTL1 290,000 9.41
SF 10,000 7.36
SF25 20,000 9.25
MUOD 10,000 9.58
OGMBD 1,000 8.06
MSPLOT 50,000 9.37
TVD 2,000 9.97
FOM 270,000 9.99
FAO 90,000 9.86
FOM2 40000 9.32
FAO2 700 9.86
ED 40,000 9.45
SEQ1 5900 9.86
SEQ2 5900 9.79
SEQ3 5900 9.65

In conclusion, Fast-MUOD provides a huge time performance gain over the original
MUOD and Semifast-MUOD, despite its comparable or better outlier detection perfor-
mance. Semifast-MUOD also provides some gains in running time over the original
MUOD but not as much as Fast-MUOD, and its running time still increases with a fac-
tor dependent on n2. All variants of MUOD used in these experiments were run using
a single core. Since the MUOD methods have parallel implementations, more perfor-
mance gains can be obtained by running in parallel with more than one core, especially
for Semifast-MUOD.

3.4.5 Sensitivity Analysis

We evaluate the performance of all the methods with increased contamination rate of
α = 0.15 and α = 0.2. The results are presented in Tables A.2 and A.3 (in Section
A.2) of the Supplementary Material in Appendix A and they show the outlier detection
results on Models 2 - 8. When α = 0.15, the proposed methods maintain their good
performance on Models 2 and 4 with slight reductions in outlier detection accuracy on
Models 3, 5, 6, and 8. The most notable difference is the reduction in average TPRs of
the proposed methods on Model 7 (e.g., FST reduces from 79.73% to 41.90%) which is
challenging as mentioned earlier (because the outliers are quite similar in shape and
magnitude to the mass of the data). Other competing methods suffer some reduction
in performance also, including OGMBD on Models 3, 4, 5, and Model 8. The perfor-
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Figure 3.5: Plot of the median computational time of the different outlier detection
methods in log-log axes. Each simulation is done with d = 100 and α = 0.05 with
data generated from Model 2. Legend: FSTP: Fast-MUOD computed with point-wise
median, FSTL1: Fast-MUOD computed with the L1 median.

mance of TVD, FOM2 and FAO2 also reduces on Model 6 which contains pure shape
outliers. At α = 0.2, the proposed methods still maintain their performance on Models
2 and 4. There is a reduction in performance on Model 8 but the average TPRs of the
proposed methods are still quite high at around 90%. The reduction in performance
of the methods on Models 3, 5 and 6 (which all contain some form of shape outliers)
are more pronounced. The proposed methods break down on Model 7, although other
methods also break down on this model. OGMBD, TVD, FOM2 and FAO2 also reduce
in outlier detection performance especially on the models with shape outliers. Worthy
of mention is MSPLOT which maintains its outlier detection accuracy across the differ-
ent contamination rates, except on Model 7 on which it did not perform well, even at
α = 0.10.

In Section A.3 of Appendix A, we evaluate the performance of the proposed meth-
ods on lower sample size of n = 100 and evaluation points of d = 25. The results of
this experiment can be found in Table A.4. Except in Model 7, the performance of the
proposed models does not change much despite the reduction in sample size and num-
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ber of evaluation points. In Model 7, there is a reduction in the accuracy of Fast-MUOD
from an average TPR of 79.73% (when n = 300 and d = 50) to 73.42%. We also notice
an increase in the standard deviation of the TPR from 14.95% to 26.24%. This is an in-
dication that the amplitude indices IA might be less sensitive to outliers with reduced
sample size or evaluation points. It is also worthy of note that the TPR of other compet-
ing methods like MSPLOT and TVD decreased from 66.39% and 40.88%, respectively,
to 48.42% and 27.38%, respectively. The standard deviations of their TPR also increased
from 16.04% and 12.82%, respectively, to 27.14% and 24.90%, respectively, in this model.

Section A.5 of Appendix A shows the performance of the proposed methods when
the signal-to-noise ratio in the simulated data is increased or decreased. We do this
by increasing or decreasing the variance of the simulation models. Using Models 2,
3, 4, and 6, we change the covariance matrix in the base and contamination models to
γ(s, t) = ν · exp−|t− s|, where s, t ∈ [0, 1] and ν ∈ {0.25, 0.5, 1.5, 5}. At lower vari-
ance levels (ν ∈ {0.25, 0.5}), the TPRs of the proposed methods increased, especially on
Model 6, because of the reduced noise in the data. However, at higher variance levels
(ν ∈ 1.5, 5), the proposed methods starts to break down due to the increased noise. This
breakdown is also seen in other competing outlier detection methods. When ν = 1.5, all
the methods still perform well on Model 2 with magnitude outliers and our proposed
methods still maintain a good performance for Model 4. When ν = 5 though, all the
methods break down with low TPRs on all the models considered except for TVD on
Model 3, FOM2 and FAO2 on Models 2 and 3 and SEQ1 and SEQ3 on Model 3. We refer
the reader to Tables A.6 and A.7 of Appendix A for detailed results of the experiment.

3.5 Applications

In this section, we apply the Fast-MUOD method to three scenarios: outlier detection
in weather data, object recognition in surveillance video data, and population growth
patterns of countries.

3.5.1 Spanish Weather Data

The Spanish weather data collected by the “Agencia de Estatal de Meteorologia” (AEMET)
of Spain, contains daily average temperature, precipitation, and wind speed of 73 Span-
ish weather stations between the period 1980-2009. Geographical information about the
location of these stations are also recorded in the data. This dataset is available in the
fda.usc (Febrero-Bande and de la Fuente 2012) R package and it has been analysed in
FDA literature, e.g., Dai and Genton (2018). For this analysis, we use the temperature
and log precipitation data. As done in Dai and Genton (2018), we first smooth the data,
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Figure 3.6: Curves flagged as outliers by Fast-MUOD. First Column: smoothed Temper-
ature curves (top), and smoothed Log Precipitation curves (bottom). Second Column:
geolocations of weather stations. Legend: curves flagged as magnitude, amplitude and
shape outliers (all, in orange), curves flagged as magnitude outliers only (mag, in blue),
curves flagged as shape outliers only (sha, in green), curves flagged as amplitude out-
liers only (amp, in purple), non-outlying curves (normal, in gray).

we then run Fast-MUOD on the smoothed data and collate the different types of out-
liers flagged for both temperature and log precipitation. The first column of Figure 3.6
shows the different outliers flagged while the second column shows the geographical
locations of the flagged outliers.

For temperature, seven weather stations on the Canary Islands are flagged simulta-
neously as amplitude, shape and magnitude outliers because of the different prevailing
weather conditions on this archipelago compared to the other stations located in main-
land Spain. Furthermore, two pure shape outliers are flagged, one located on the Ca-
nary Islands and the other on the southern tip of Spain, close to the Strait of Gibraltar.
The temperature in these regions changes more gradually over the year than in main-
land Spain. Finally, a single magnitude outlier is flagged, albeit a lower magnitude one.
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This weather station records lower temperatures all through the year compared to the
other stations because it is located at a very high altitude in the “Puerto de Navacer-
rada” mountain pass in the north of Madrid. This station has the highest altitude of all
the weather stations in mainland Spain and is known to experience cold temperatures.

For log precipitation, two groups of magnitude outliers are identified, with the first
group (of four stations) recording higher precipitation on the average. The second
group of three stations are located on the Canary Islands where it is dryer on the av-
erage all through the year. A group of pure amplitude outliers, containing 3 stations,
is also flagged by Fast-MUOD. These stations experience a more abrupt decline in pre-
cipitation during the summer months compared to the more gradual decline in precip-
itation experienced in other stations located in Spain’s interior. These three stations are
located in the southern tip of Spain which is known to experience dry summer months.
Finally a cluster of pure shape outliers made up of two stations is flagged. The curves
of these two stations seem to vary more through the year. One of these station is located
in Barcelona, on the eastern coast of Spain which is known to be humid and rainy. The
other station is located in Zaragoza, with wet periods during the spring and autumn
months.

We compared the results of our analysis to those of MS-plot obtained by Dai and
Genton (2018). Even though MS-plot is for multivariate functional data visualization
and outlier detection, we chose it because it also handles univariate outlier detection
quite well as shown by the results of our simulation studies. In doing this comparison,
we combined all the outliers of different types flagged by Fast-MUOD and compared
them to those flagged by MS-plot. Figure 3.7 shows the results of both methods.

For temperature, Fast-MUOD and MS-plot both flag as outliers all the weather sta-
tions on the Canary Islands and the single station in the south tip of Spain by the Strait
of Gibraltar. However, only MS-plot flags the stations in the north of Spain as out-
liers, while only Fast-MUOD flags as outlier the single lone station in Madrid where
significantly lower temperatures are recorded all through the year. Likewise, for log
precipitation, both methods flag as outliers the four stations with significantly higher
precipitation than the remaining stations. MS-plot flags as outliers all the stations in
the southern Canary Islands, while Fast-MUOD flags only some of them, specifically
those with the lowest precipitation for most part of the year. Only Fast-MUOD flags as
outliers the three stations in the southern tip of Spain where there is a sharper decline
in precipitation during the summer months, because of its ability to detect amplitude
outliers. Furthermore, two additional stations in Barcelona and Zaragoza, flagged by
Fast-MUOD as shape outliers, were not flagged by MS-plot. Even though there is no
ground truth as to which stations are outliers or not in this dataset, both Fast-MUOD
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Figure 3.7: Curves flagged as outliers by Fast-MUOD and MS-plot. First column:
smoothed Temperature curves (top), and smoothed Log Precipitation curves (bottom).
Second column: Geolocations of weather stations. Color code: Curves flagged as out-
liers by Fast-MUOD and MS-plot (green), curves flagged as outliers by MS-plot only
(orange), curves flagged as outliers by Fast-MUOD only (blue).

and MS-plot flagged reasonable outliers and the classification of outliers into types by
Fast-MUOD could be an advantage since it is not necessary to visualize the data to
know why an observation is an outlier.

3.5.2 Surveillance Video

Next we apply Fast-MUOD on a surveillance video data named WalkByShop1front. This
video was filmed by a camera across the hallway in a shopping centre in Lisbon. The
video is made available online by the CAVIAR project at the link homepages.inf.ed.ac.uk
/rbf/CAVIARDATA1. The video shows the front of a clothing store with people walk-
ing through the corridor in front of the shop. The video is about 94 seconds long and
at different times in the course of the video, five people passed by the front of the shop,

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Figure 3.8: Distribution of the amplitude, shape and magnitude indices of the video
data.

Frame 837 Frame 1625 Frame 1900 Frame 2130

Figure 3.9: Some outliers detected by the Fast-MUOD from the video.

two of whom entered the store to check clothes in the store. The objective is to use Fast-
MUOD to identify points in the video when people passed by the front of the shop.

With each second of the video consisting of 25 frames, the video contains a total of
2359 frames. Each of the frame is made up of 384×288 = 110592 pixels. We first convert
the RGB values of the pixels of the each frame to gray scale. From the matrix of gray
intensity values of each frame, we form a row vector of length 110592 by ordering the
values of the matrix column-wise (we obtained the same result by arranging row-wise).
The constructed functional data is made up of 2359 curves observed at 110592 points.

We then apply Fast-MUOD on the constructed functional data using the point-wise
median to speed up computation. Figure 3.8 shows the histogram and the boxplot of
magnitude, amplitude and shape indices from this data. We obtained 216 shape out-
liers, 206 amplitude outliers and 194 magnitude outliers. The three types of outliers
flagged are not mutually exclusive as shape outliers for instance can also have partial
magnitude outlyingness. There are 125 outliers that are outliers of the three types, i.e.,
they are flagged simultaneously as magnitude, amplitude and shape outliers. There are
only 34 pure magnitude outliers, 15 pure amplitude outliers and 48 pure shape outliers.
In total, there are 294 unique frames flagged as outliers.
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All the 294 outlying frames correspond to time points in the video when people
passed by the front of the store, thus there are no false positives. For instance, frames 831
- 846 and 885 - 887 correspond to the period when the first person in the video passed by
the front of the store (see Figure 3.9, Frame 837). The same for frames 1614 - 1642 when
the second person passed by and entered the shop (Figure 3.9, Frame 1625). Frames 1852
- 1983 correspond to when two women passed by together in front of the shop (Figure
3.9, Frame 1900) and frames 2112 - 2169 and 2296 - 2336 which correspond to the period
when the last person passed by and entered the shop (Figure 3.9, Frame 2130). There
are small pockets of time periods (frames) in the video (which are in between the frames
flagged as outliers), that contain people but are not flagged as outliers. We notice that
these usually corresponds to time periods where there is not a enough contrast (from
the gray intensities) between the person in the video and the environment because we
converted the frames to gray scale before analysis. This is seen in Frame 2110 (Figure
3.10) for instance, when a man wearing a dark blue and red shirt with dark trousers was
standing entirely behind a dark pillar or in Frame 2295 (Figure 3.10) when the same man
was standing beside dark clothes in the store.

Examining the outliers of each type also provide some additional insight. The 34
pure magnitude outliers are frames which contain the man wearing a dark clothes as
he entered into the shop, e.g., Frame 2166 (Figure 3.10). The gray intensities (and hence
contrast with the environment) at this time is very high due to the dark nature of his
clothing and hence the reason why these frames are pure magnitude outliers. The 48
pure shape outliers correspond to frames that contain the two women passing by to-
gether in front of the shop, e.g., Frame 1914 in Figure 3.10. The 15 pure amplitude
outliers are frames where people just entered or are about to exit the field of view of the
camera (see Frames 887 and 2112). Thus, in addition to detecting outlying frames, the
classification of the different frames also give some insight which might prove valuable
in different use cases.

Huang and Sun (2019) and Rousseeuw et al. (2018) applied their methods on video
data. For comparison, we run their methods (TVD and FOM) and MSPLT on the con-
structed functional data obtained from the surveilance video. While MSPLT did not
produce any result due to some computational error, TVD flagged all the frames as
outliers after running for over 9 hours (compared to about 42 seconds of Fast-MUOD).
FOM however performed excellently, flagging only frames that include people passing
by the shop and producing the result in a reasonable time of 193 seconds.
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Frame 2110 Frame 2295 Frame 2166

Frame 1914 Frame 887 Frame 2112

Figure 3.10: Selected frames from the video in gray scale. Frames 2110 and 2295: frames
not detected as outliers. Frame 2166: sample pure magnitude outlier. Frame 1914:
sample pure shape outlier. Frame 887 and 2112: sample pure amplitude outliers.

3.5.3 Population Data

Finally, we analyse the world population data from the United Nations, also analysed
by Nagy et al. (2017) and Dai et al. (2020). This data contains the yearly total population
of 233 countries (and autonomous regions) recorded in the month of July, 1950 to 2015.
Following Nagy et al. (2017) and Dai et al. (2020), we select only countries with popula-
tion between one million and fifteen million in 1980 which leaves us with 105 countries
out of the total 233 countries. The constructed functional data is then made up of 105
curves observed at 65 points. We apply Fast-MUOD and the countries/regions detected
as outliers are shown in Table 3.3.

In total there are 33 unique countries detected as outliers; 3 of them magnitude out-
liers, 15 of them amplitude outliers and 18 of them shape outliers. Again, the types
of outliers are not mutually exclusive as all magnitude outliers are also amplitude out-
liers. Saudi Arabia, Sudan and Uganda are flagged as magnitude outliers because they
had highest population values toward the end of the period of the data (2015), as can
be seen in Figure 3.11. Sudan, despite having a population of about 5 million in 1950,
had the highest population value of 40 million 2015. The same trend is observed for
Uganda and Saudi Arabia, with population of 39 million and 31 million respectively
in 2015. The amplitude outliers are shown in the top-right panel of Figure 3.11. These
are countries with very high population growth rate in the period of the data. Among
these are Sudan, Uganda and Iraq, as they had an increase of 34 million, 33 million and
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Table 3.3: Countries detected as outliers by Fast-MUOD

Magnitude outliers Amplitude outliers Shape outliers
Saudi Arabia, Sudan,
Uganda

Sudan, Uganda, Saudi
Arabia, Iraq, Malaysia,
Yemen, Afghanistan,
Ghana, Nepal, Côte
d’Ivoire, Mozambique,
Madagascar, Angola,
Syrian Arab Republic,
Cameroon

Bulgaria, Latvia,
Hungary, Georgia,
Croatia, Estonia,
Lithuania, Bosnia and
Herzegovina, Belarus,
Armenia, Serbia,
Republic of Moldova,
Kazakhstan, Albania,
Czech Republic,
United Arab Emirates,
TFYR Macedonia,
Slovakia

30 million respectively between 1950 and 2015. Other countries include Saudi Arabia,
Afghanistan and Malaysia. All the countries flagged as amplitude outliers are either
located in the Middle East or Africa.

Finally, the shape outliers are shown in the bottom-left panel of Figure 3.11. The
curves of these countries show a different shape and trend compared to the other coun-
tries. One observation about these countries is their peculiar pattern of a slight increase
in population growth till 1980 followed by a plateau or slight decrease in the population
till the end of the study period. There are also few countries with a sharp increase or de-
crease in population. Furthermore, all these countries except for United Arab Emirates
(UAE) are located in Central and Eastern Europe with similar demographics, geograph-
ical, economic and political environment.

Compared to the results obtained in Nagy et al. (2017), our method identifies more
outliers. For instance, the first order outliers (which are equivalent to magnitude out-
liers) identified in Nagy et al. (2017) did not include Sudan which had the highest pop-
ulation by the end of the investigated period (2010). Though Sudan was flagged as
a second order outliers, a lot of countries in Eastern Europe flagged as shape outliers
were not flagged as outliers. Except for Netherlands, all the second and third order out-
liers flagged by Nagy et al. (2017) are also flagged as either shape outliers or amplitude
outliers by Fast-MUOD. Furthermore, our classification of the different outliers provide
additional information and consistent interpretation on why observations are flagged
as outliers.

Dai et al. (2020) also analysed this data and classified outliers found using sequen-
tial transformations. All the “pattern” outliers found are countries in Eastern Europe
except for Rwanda just like the shape outliers flagged by Fast-MUOD. In fact, our me-
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Figure 3.11: Outliers detected by Fast-MUOD from the population data. Top-left: Mag-
nitude outliers. Top-right: Amplitude outliers. Bottom-left: Shape outliers. Bottom-
right: All the outliers.

thod flagged all the pattern outliers found by Dai et al. (2020) as shape outliers ex-
cept for Rwanda. However, Fast-MUOD flags five additional shape outliers including
Macedonia, Serbia, Albania, and Slovakia, all located in Central and Eastern Europe.
The amplitude outliers flagged by Fast-MUOD also include all the amplitude outliers
flagged by the method described in Dai et al. (2020) and all these countries are located
in the Middle East and Africa too. While Fast-MUOD flagged only three magnitude
outliers compared to nine magnitude outliers flagged by Dai et al. (2020), the remaining
six magnitude outliers were flagged by Fast-MUOD as amplitude outliers. In fact, some
of these six magnitude outliers were flagged as both magnitude and amplitude outliers
by Dai et al. (2020), but they were grouped as magnitude outliers in order to maintain a
mutually exclusive classification of outliers (see Table 5 in Dai et al. (2020) for details).

Overall, our results are quite consistent with those obtained by Dai et al. (2020) even
though there are slight differences in classification of some outliers. Also worthy of note
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is the slight difference in investigated period (1950 - 2010) in the analysis by Dai et al.
(2020) and Nagy et al. (2017).

3.6 Discussion

In this chapter, we have proposed two methods based on the MUOD outlier detection
method. These methods use a sample of the data to compute the indices for Semifast-
MOUD, or a median (L1 or point-wise) in the case of Fast-MUOD and they improve
on the scalability and outlier detection performance of MUOD. In separating the outlier
indices from the indices of the typical observations, we use the classical boxplot. All
these put together make the proposed methods intuitive and based on simple statistical
concepts, consequently making them less computationally intensive. Different types of
outliers are identified and classified directly, giving an intuition as to why a curve is
flagged as an outlier without the need for visualization or manual inspection. This is
valuable in cases where manual inspection or visualizing the data is difficult.

Using both simulated and real data, we have shown the performance benefits of
these methods over MUOD. Further comparisons to existing univariate functional out-
lier detection tools shows comparable or superior results in correctly identifying po-
tential outliers of different types. Implementation is done in R and the code is made
available at https://github.com/otsegun/fastmuod.

Possible further improvement is extension of the methods to multivariate functional
data (see Chapter 5). The use of orthorgonal regression in the computation of the indices
is interesting to study. Exploring the theoretical properties of the MUOD indices is also
a possible next line of investigation (see Chapter 4).

https://github.com/otsegun/fastmuod
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Chapter 4

Properties of the Fast-MUOD
Indices

This chapter is based on:

Ojo, O. T., Fernández Anta, A., Genton, M. G., & Lillo, R. E. (2022). “Multivariate Func-
tional Outlier Detection using the FastMUOD Indices”. arXiv:2207.12803

4.1 Introduction

We consider the problem of detecting outliers in a collection of multivariate functional
observations. In particular, we consider observations of the form: {Yi(t), t ∈ I}ni=1,
wherein a vector Yi(t) ∈ Rd, d ∈ N, is observed at a domain point t in the interval I.
Such vector-valued functional observations are increasingly observed in real-life studies
and various physical and environmental applications. Thus, exploratory methods for
multivariate functional data have been recently garnering considerable interest.

Outlier detection (OD), a part of the exploratory data analysis process, involves
identifying observations that differ from the bulk of the data, either because they come
from a different distribution compared with the bulk or because they lie at the extremes
of the distribution of the data. However, identifying outliers is more complicated when
observations are functions observed on a domain, i.e., functional data. Functional ob-
servations demonstrate different outlying behaviours, e.g., a vertical shift, compared to
the bulk of the data (magnitude outliers) or a horizontal shift, in which case the outlying
function is not well aligned with the bulk of the data. Functional outliers can also have
different shapes or follow different paths compared to the bulk of the data. Hubert et al.
(2015) proposed a taxonomy for different types of functional outliers based on the dif-
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ferent outlying behaviours they exhibit, and whether such behaviours can be observed
in a small part of the domain or throughout the domain; (see also Dai et al., 2020).

To identify outliers among multivariate (non-functional) observations (i.e., vector
observations X ∈ Rd), it is typical to order the observations, from the center outward
using a notion of statistical depth. Then, the observations having the lowest depth values
can be closely examined for outlying behaviours. This procedure is convenient because
most depth notions are non-parametric and they do not require any assumption con-
cerning the underlying data distribution.

The approach mentioned above has also caught on in the analysis of functional ob-
servations, where several OD methods are based on notions of functional depths. For
example, the functional boxplot (Sun and Genton, 2011) uses the modified band depth
(López-Pintado and Romo, 2009) to order functional observations and define a 50%
central region. Then, the outliers are functions that lie outside of the central region
inflated by 1.5, similar to the classical boxplot. Other proposals around this theme in-
clude Sguera et al. (2015) and Febrero et al. (2008), where functional depth measures
were used for OD.

On the other hand, several functional OD methods are based on “custom-built”
outlyingness indices, metrics, or pseudo-depths directly targeted toward OD, instead
of ordering (as with functional depth notions). Examples along this line include the
magnitude-shape plot (MS-plot) (Dai and Genton, 2018), based on the directional outly-
ingness proposed by Dai and Genton (2019); the functional outlier map (FOM), based on
another (functional) directional outlyingness proposed by Rousseeuw et al. (2018); the
modified shape similarity index (MSS) proposed in Huang and Sun (2019); the (robusti-
fied) functional tangential angle (rFUNTA) proposed in Kuhnt and Rehage (2016), and an
earlier proposal of Hubert et al. (2015) in which the bag distance and skewness adjusted
projection depth were proposed for functional OD.

Finally, certain functional OD procedures are based on either a combination of depth
notions and outlyingness indices, or the use of more primitive methods (such as di-
mension reduction or transformation). Some of these include the outliergram, based on
the modified epigraph index (López-Pintado and Romo, 2011) and the modified band
depth; the functional bagplots, and the functional highest density regions (Hyndman and
Shang, 2010), both using the first two robust principal components of the functional
data to construct plots used for detecting functional outliers. Likewise, Dai et al. (2020)
proposed detecting functional outliers using a sequence of (functional) data transfor-
mations, each followed by a functional boxplot to detect different types of outliers. Re-
cently, Herrmann and Scheipl (2021) proposed using multidimensional scaling (Cox
and Cox, 2008) to reduce functional data to lower dimensional embeddings. Then, an
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OD method such as the local outlier factors (Breunig et al., 2000) was applied on the
embeddings to detect outlying curves.

Fast Massive Unsupervised Outlier Detection (Fast-MUOD), introduced by Ojo et al.
(2021a), belongs to the second group of functional OD methods (outlined above) be-
cause it uses three indices, each targeting different outlying behaviours that functional
outliers may exhibit. The Fast-MUOD indices are the magnitude index, which targets
magnitude outliers; the shape index, which targets shape outliers; and the amplitude
index, which targets amplitude outliers. Because these indices target different outlier
types, the outliers identified are also classified as per their types, unsupervised, with-
out the need for inspection or visualisation of the data. The method is fast and simple,
making it scalable to (and suitable for) “big” functional data analysis.

Nevertheless, despite its advantages, Fast-MUOD has its limitations. First, its in-
dices are designed for univariate functional data. Second, it is not exactly clear from
Ojo et al. (2021a) why the Fast-MUOD indices are suitable for OD from a theoretical
perspective, despite the good and scalable performance observed on simulated and real
datasets. In this chapter, we aim to we explore the properties of the Fast-MUOD indices
rigorously; and in Chapter 5, we extend the Fast-MUOD indices to outlier detection in
multivariate functional data.

4.2 Definitions and Properties of the Fast-MUOD Indices

We present the sample and population definitions of the Fast-MUOD indices and ex-
plore their properties. First, we describe the notations used in this article. We assume
that functions are defined on the unit interval [0, 1] and denote by L2([0, 1]), the space of
all square-integrable functions defined over [0, 1]. We denote by ⟨f, g⟩ (unless otherwise
specified), the inner product of two functions f, g ∈ L2([0, 1]). The norm of f ∈ L2([0, 1])

induced by this inner product is denoted by ∥f∥.

4.2.1 Definitions of the Univariate Fast-MUOD Indices

Definition 4.1 (Definitions of Fast-MUOD indices). Let X be a stochastic process in
L2([0, 1]) with distribution FX and µ(t) = E[X(t)] be its population mean function. We
define the shape index of a function y ∈ L2([0, 1]) (which may be a realization of X)
with respect to (w.r.t.) FX as

IS(y, FX) := 1−
∫︁
ỹ(t)µ̃(t)dt[︁∫︁

ỹ(t)2dt
]︁1/2 [︁∫︁

µ̃(t)2dt
]︁1/2 = 1− ⟨ỹ, µ̃⟩

∥ỹ∥ · ∥µ̃∥
,
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where ỹ(t) and µ̃(t) denote the centered curves given by: ỹ(t) := y(t) −
∫︁
y(r)dr, and

µ̃(t) := µ(t)−
∫︁
µ(r)dr, respectively. We define the amplitude index of y w.r.t. FX as

IA(y, FX) :=

∫︁
ỹ(t)µ̃(t)dt∫︁
µ̃(t)2dt

− 1 =
⟨ỹ, µ̃⟩
∥µ̃∥2

− 1.

Finally, we define the magnitude index of a function y w.r.t. FX as

IM (y, FX) :=

∫︂
y(t)dt− β(y)

∫︂
µ(t)dt,

where β(y) = IA(y, FX) + 1.

In practice, functions are usually observed on a finite number of points in the do-
main. In this case, an approximation to the Fast-MUOD indices can be obtained by re-
placing the integral with a summation, yielding the following trivial definitions, which
we include for completeness.

Definition 4.2 (Finite-dimensional approximation of Fast-MUOD indices). Suppose the
function y is observed on the finite points T = {t1 = 0, t2, . . . , tk = 1} ⊂ [0, 1] with
tj − tj−1 = ∆, a constant. Moreover, let µ(tj) = E[X(tj)] for all tj ∈ T . Then, we define
the finite-dimensional version of the shape index of y w.r.t FX as:

ISk
(y, FX) := 1−

∑︁k
j=1 ỹ(tj)µ̃(tj)[︂∑︁k

j=1 ỹ(tj)
2
]︂1/2 [︂∑︁k

j=1 µ̃(tj)
2
]︂1/2 ,

where ỹ(tj) and µ̃(tj) denote the centered functions: ỹ(tj) := y(tj) − 1
k

∑︁k
j=1 y(tj), and

µ̃(tj) := µ(tj) − 1
k

∑︁k
j=1 µ(tj), respectively. The finite-dimensional versions of the am-

plitude and magnitude indices are, respectively, defined as:

IAk
(y, FX) :=

∑︁k
j=1 ỹ(tj)µ̃(tj)∑︁k

j=1 µ̃(tj)
2

− 1,

and

IMk
(y, FX) :=

⎛⎝1

k

k∑︂
j=1

y(tj)

⎞⎠− βk(y)

⎛⎝1

k

k∑︂
j=1

µ(tj)

⎞⎠ ,

with βk(y) = IAk
(y, FX) + 1.

Proposition 4.1 (Convergence of the finite-dimensional approximation of Fast-MUOD
indices). For a stochastic process X(t) ∈ L2([0, 1]) and a function y observed on the finite
points T = {t1, t2, . . . , tk} ⊂ [0, 1] with tj − tj−1 = ∆, a constant, the indices ISk

(y, FX),
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IAk
(y, FX), and IMk

(y, FX) converge (in limit) to IS(y, FX), IA(y, FX), and IM (y, FX) re-
spectively, as k −→ ∞ (and ∆ −→ 0).

Proof. The proof follows from the definition of the Riemann integral.

Depending on whether the realizations of X are continuously or discretely sampled
in time, the sample versions of the indices can be defined by replacing the mean func-
tion, µ, of X with an appropriate empirical estimate. Suppose that X1(t), . . . , Xn(t)

are independent and identically distributed (iid) realizations from X(t), the (point-
wise) sample mean function, which we will denote by X̄(t), and given by X̄(t) =

n−1
∑︁n

i=1Xi(t), is an estimate of the mean function µ(t). This leads to a direct proposal
of the following definitions for the sample versions of the Fast-MUOD indices.

Definition 4.3 (Sample version of Fast-MUOD indices). Let X1(t), . . . , Xn(t) be iid re-
alizations of the stochastic process X ∈ L2([0, 1]), with empirical distribution FXn . We
define the sample shape index as:

ISn(y, FXn) := 1−
∫︁
ỹ(t) ˜̄X(t)dt[︁∫︁

ỹ(t)2dt
]︁1/2 [︂∫︁ ˜̄X(t)2dt

]︂1/2 = 1− ⟨ỹ, ˜̄X⟩
∥ỹ∥ · ∥ ˜̄X∥

,

where ˜̄X(t) denotes the centered sample mean function: ˜̄X(t) := X̄(t) −
∫︁
X̄(t)dt. The

sample amplitude and magnitude indices are then defined as:

IAn(y, FXn) :=

∫︁
ỹ(t) ˜̄X(t)dt∫︁ ˜̄X(t)2dt

− 1 =
⟨ỹ, ˜̄X⟩
∥ ˜̄X∥2

− 1,

and
IMn(y) :=

∫︂
y(t)dt− βn(y)

∫︂
X̄(t)dt,

with βn(y) = IAn(y, FXn) + 1.

Definition 4.4 (Finite sample version of Fast-MUOD indices). Let X1(t), . . . , Xn(t) be iid
realizations of X and let each Xi be observed on finite points T = {t1, t2, . . . , tk} ⊂ [0, 1]

where tj − tj−1 = ∆, a constant. For a function y observed on the same set of domain
points T , we define an approximation to the sample version of the shape index as:

ISn,k
(y, FXn,k

) := 1−

k∑︁
j=1

ỹ(tj)
˜̄X(tj)[︄

k∑︁
j=1

ỹ(tj)2

]︄1/2 [︄
k∑︁

j=1

˜̄X(tj)2

]︄1/2 = 1− ρ̂(y, X̄),
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where ρ̂(y, X̄) denotes the sample Pearson correlation coefficient between the observed
points of the sample mean function X̄ and y. Approximations of the sample amplitude
and magnitude indices are defined as:

IAn,k
(y, FXn,k

) :=

∑︁k
j=1 ỹ(tj)

˜̄X(tj)∑︁k
j=1

˜̄X(tj)2
− 1,

and

IMn,k
(y, FXn,k

) :=

⎛⎝1

k

k∑︂
j=1

y(tj)

⎞⎠− βn,k(y)

⎛⎝1

k

k∑︂
j=1

X̄(tj)

⎞⎠ ,

where βn,k(y) = IAn,k
(y, FXn,k

) + 1.

Proposition 4.2 (L2-consistency of the sample Fast-MUOD indices). Let X ∈ L2([0, 1])

be a stochastic process. Then for another function y ∈ L2([0, 1]), ISn(y, FXn), IAn(y, FXn),
and IMn(y, FXn), are L2-consistent estimators of IS(y, FX), IA(y, FX), and IM (y, FX), re-
spectively.

Proof. The pointwise sample mean function X̄(t) is an L2-consistent estimator of the
mean function µ = E[X(t)], i.e., ∥µ − X̄∥ P→ 0, where ∥X∥ =

(︁∫︁
X(t)2dt

)︁1/2 is the

L2-norm, and P→ indicates convergence in probability (Kokoszka and Reimherr, 2017).
Thus, X̄(t)

P→ µ(t), as n → ∞. By the continuous mapping theorem, then:∫︂ 1

0
X̄(t)dt

P→
∫︂ 1

0
µ(t)dt

and [︃
X̄(t)−

∫︂ 1

0
X̄(s)ds

]︃
P−→
[︃
µ(t)−

∫︂ 1

0
µ(s)ds

]︃
.

Now for a given y ∈ L2([0, 1]), which may or may not be a realization of X , define:

ỹ(t) := y(t)−
∫︂

y(s)ds.

By the continuous mapping theorem again,

ỹ(t)

[︃
X̄(t)−

∫︂ 1

0
X̄(s)ds

]︃
P−→ ỹ(t)

[︃
µ(t)−

∫︂ 1

0
µ(s)ds

]︃
,

∫︂
ỹ(t)

[︃
X̄(t)−

∫︂ 1

0
X̄(s)ds

]︃
dt

P−→
∫︂

ỹ(t)

[︃
µ(t)−

∫︂ 1

0
µ(s)ds

]︃
dt. (4.1)

Using similar arguments, since X̄(t)
P→ µ(t) as n → ∞,
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[︃
X̄(t)−

∫︂ 1

0
X̄(s)ds

]︃2
P−→
[︃
µ(t)−

∫︂ 1

0
µ(s)ds

]︃2
,

and thus,(︄∫︂ [︃
X̄(t)−

∫︂ 1

0
X̄(s)ds

]︃2
dt

)︄1/2
P−→

(︄∫︂ [︃
µ(t)−

∫︂ 1

0
µ(s)ds

]︃2
dt

)︄1/2

.

So, (︃∫︂
ỹ(t)2dt

)︃1/2(︃∫︂
˜̄X(t)2dt

)︃1/2
P−→
(︃∫︂

ỹ(t)2dt

)︃1/2(︃∫︂
µ̃(t)2dt

)︃1/2

, (4.2)

where:
˜̄X(t) = X̄(t)−

∫︂ 1

0
X̄(s)ds and µ̃(t) = µ(t)−

∫︂ 1

0
µ(s)ds.

If ỹ(t) ̸= 0 and µ̃(t) ̸= 0 almost surely, for all t ∈ [0, 1], then from Equation (4.1) and
(4.2):

ISn(y) = 1−
∫︁
ỹ(t) ˜̄X(t)dt(︁∫︁

ỹ(t)2dt
)︁1/2 (︂∫︁ ˜̄X(t)2dt

)︂1/2 P−→ 1−
∫︁
ỹ(t)µ̃(t)dt(︁∫︁

ỹ(t)2dt
)︁1/2 (︁∫︁

µ̃(t)2dt
)︁1/2 = IS(y)

Using similar arguments, we see that

IAn(y)
P−→ IA(y),

and
IMn(y)

P−→ IM (y).

4.2.2 Properties of the Univariate Fast-MUOD Indices

In this subsection, we present some results showing how the Fast-MUOD indices be-
have under certain simple transformations and why this behaviour makes them ideal
for detecting outliers.

Proposition 4.3 (Properties of Fast-MUOD indices). Let X be a stochastic process in L2([0, 1])

with distribution FX and mean function µ(t). Let y and z be other functions in L2([0, 1]) (which
may be realizations of X) and let a, b ∈ R. Then, the following statements hold.
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(i) For a new function y′(t) = ay(t) + b, we have

(a) IM (y′, FX) = aIM (y, FX) + b;

(b) IA(y
′, FX) = aIA(y, FX) + a− 1;

(c) and if a ̸= 0, then IS(y, FX) = IS(y
′, FX).

(ii) For a new function y′(t) = y(t) + z(t) we have

(a) IM (y′, FX) = IM (y, FX) + IM (z, FX);

(b) IA(y
′, FX) = IA(y, FX) ⇐⇒ ⟨z̃, µ̃⟩ = 0;

(c) and IS(y, FX) = IS(y
′, FX) ⇐⇒ ⟨ỹ,µ̃⟩

∥ỹ∥ = ⟨ỹ,µ̃⟩+⟨z̃,µ̃⟩
∥ỹ+z̃∥ .

(iii) For a new function y′(t) = z(t)y(t), we have

(a) IA(y, FX) = IA(y
′, FX) ⇐⇒ ⟨ỹ, µ̃⟩ = ⟨z̃y, µ̃⟩;

(b) and IS(y, FX) = IS(y
′, FX) ⇐⇒ ⟨ỹ,µ̃⟩

∥ỹ∥ = ⟨z̃y,µ̃⟩
∥z̃y∥ .

Proof. See Section B.1 of Appendix B.

Proposition 4.3 provides insights into how the different Fast-MUOD indices behave
under transformations and hence, why they are useful for targeting the corresponding
types of outliers. The first property demonstrates that IM is sensitive to the translation
and scaling of a function (by real numbers), which is a desirable property, because IM

is intended to be a measure of magnitude outlyingness; it should consequently capture
any magnitude shift to be such a worthy measure (of magnitude outlyingness). This
property is shown in the first row of Figure 4.1 where 100 realizations of the process
Xi(t) = 4t are obtained by adding some noise generated from a Gaussian process ei(t)

with zero mean and covariance function γ(s, t) = exp{−0.3|t − s|}, for s, t ∈ [0, 1] and
i = 1, . . . , 100. One of these realizations is then transformed by scaling (a = 2) and
shifting it (b = 3). The second plot on the first row of Figure 4.1 shows that the index of
the transformed function (IM (y′′, FX)) is equal to that of the original realization of X(t)

scaled and shifted with the same values (aIM (y, FX) + b).

The second property, illustrated in the second row of Figure 4.1, demonstrates that
the magnitude index preserves the functional addition operation, which is a desirable
property because functional addition causes a shift in magnitude; this shift is captured
by the magnitude index. Thus, for a new function y′(t) obtained by adding another
function z(t) to y(t), IM (y′) = IM (y) ⇐⇒ IM (z) = 0.

Unlike the magnitude index, the amplitude index is not sensitive to translation by a
scalar. Because shifting a (periodic) function in magnitude does not inherently change
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Figure 4.1: Illustration of the magnitude indices under scaling and translation. Func-
tions and their sorted magnitude indices are shown in the first and second columns,
respectively. Functions in grey are the bulk of the data. The function in black is y(t).
Functions in orange and green are transformed functions. The same colour code applies
to points representing the indices.

its amplitude, a good measure of amplitude outlyingness should ignore such a trans-
formation. However, the index IA is sensitive to scaling by a scalar because this trans-
formation changes the amplitude of a function. In fact, Proposition 3.1 indicates that
for a transformed function y′(t) = ay(t), a ∈ R, IA(y′) = IA(y) ⇐⇒ a = 1. This
property of the amplitude index is illustrated in the first and second rows of Figure 4.2.
Proposition 4.3 further shows that IS is neither sensitive to scaling nor translation by
scalar values (Figure 4.3). The remaining properties in Proposition 4.3 establish condi-
tions under which the amplitude and shape indices of a transformed function remain
the same.

The Fast-MUOD indices defined above slightly differ from those used in Ojo et al.
(2021a) (presented in Chapter 3, Equations (3.12) - (3.14)). The original amplitude and
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Figure 4.2: Illustration of the amplitude indices under simple transformation. Functions
and their sorted amplitude indices are shown in the first and second columns, respec-
tively. The functions in grey are the bulk of the data. The function in black is y(t). The
functions in orange and green are transformed functions. The same colour code applies
to the points representing the indices.

magnitude indices (which we will denote by IAv and IMv in this chapter) used by Ojo
et al. (2021a) had absolute values that guaranteed these indices were positive. These in-
dices also exhibit slightly different properties (because of the use of the absolute value
function). For completeness, we provide definitions and properties of the original in-
dices, IAv and IMv , used by Ojo et al. (2021a) in the next subsection.

4.2.3 Original Fast-MUOD Magnitude and Amplitude Indices

Definition 4.5 (Original Fast-MUOD indices). Let X be a stochastic process in L2([0, 1])

with distribution FX and let µ(t) = E(X(t)) be its population mean function. An alter-
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Figure 4.3: Illustration of the shape indices under simple transformation. Functions and
their sorted shape indices are shown in the first and second columns, respectively. The
functions in grey are the bulk of the data. The function in black is y(t). The function
in green is the transformed function (y′(t)). The same colour code applies to the points
representing the indices.

native definition of the amplitude index of a function y ∈ L2([0, 1]) w.r.t. FX is:

IAv(y, FX) :=

⃓⃓⃓⃓ ∫︁
ỹ(t)µ̃(t)dt∫︁
µ̃(t)2dt

− 1

⃓⃓⃓⃓
=

⃓⃓⃓⃓
⟨ỹ, µ̃⟩
∥µ̃∥2

− 1

⃓⃓⃓⃓
= |IA(y, FX)| . (4.3)

Furthermore, an alternative definition of the magnitude index of y w.r.t. FX is:

IMv(y, FX) :=

⃓⃓⃓⃓∫︂
y(t)dt− β(y)

∫︂
µ(t)dt

⃓⃓⃓⃓
= |IM (y, FX)| . (4.4)

The primary difference between IA(y, FX) and IAv(y, FX) is the use of the abso-
lute value function in the latter, guaranteeing that IAv(y, FX) is always positive (the
same applies to IM (y, FX) and IMv(y, FX)). However, this makes the distributions of
IAv(y, FX) and IMv(y, FX) right-skewed, compared to normal distribution for IA(y, FX)

and IM (y, FX) (Figure 4.4). Note that additional information about the nature of mag-
nitude and amplitude outliers is lost because IM (y, FX) (IA(y, FX)) assigns larger index
values to higher magnitude (amplitude) outliers and smaller index values to lower mag-
nitude (amplitude) outliers, which is not the case with IAv(y, FX) and IMv(y, FX). For
these reasons, we recommend to use IA(y, FX) and IM (y, FX) whenever possible.

It is straightforward to construct the respective sample and finite dimensional ver-
sions of IAv(y, FX) and IMv(y, FX) following the ideas in Subsection 4.2.1. However,
their properties slightly differ under simple transformations.

Proposition 4.4 (Properties of original Fast-MUOD indices). Suppose that X is a stochastic
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Figure 4.4: Fast-MUOD and alternative Fast-MUOD amplitude and magnitude indices.
The first row shows IM and IMv with an approximately normal and right-skewed dis-
tribution respectively. The second row shows the same for IA and IAv .

process in L2([0, 1]) with distribution FX and mean function µ(t). Let y and z other functions
in L2([0, 1]) (which may be realizations of X) and let a, b ∈ R. Then the following statements
hold.

(i) For a new function y′(t) = ay(t) + b: IMv(y
′, FX) = |aIM (y, FX) + b|.

(ii) For a new function y′(t) = y(t) + z(t): IMv(y
′, FX) = |IM (y, FX) + IM (z, FX)|.

(iii) For a new function y′(t) = ay(t) + b: IAv(y
′, FX) = |aIA(y, FX) + a− 1|.

(iv) For a new function y′(t) = y(t) + z(t): if ⟨z̃, µ̃⟩ = 0 then IAv(y
′, FX) = IAv(y, FX).

(v) For a new function y′(t) = z(t)y(t): if ⟨z̃y, µ̃⟩ = ⟨ỹ, µ̃⟩ then IAv(y
′, FX) = IAv(y, FX).

Proof. Proofs of the statements follows directly from the definition of IMv and IAv , and
application of Proposition 4.3.

The following corollary establishes conditions under which the original magnitude
and amplitude indices of a function remain the same after they have been scaled and/or
translated.
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Corollary 4.1. Suppose that X is a stochastic process in L2([0, 1]) with distribution FX and
mean function µ(t). Let y be another function in L2([0, 1]) and let a, b ∈ R. Then the following
statements hold,

(i) For a new function y′(t) = ay(t) + b: IMv(y
′, FX) = IMv(y, FX) iff b = (−a ±

1)IM (y, FX)

(ii) For a new function y′(t) = ay(t) + b: IAv(y
′, FX) = IAv(y, FX) iff a = 1 or a =

1−IA(y,FX)
1+IA(y,FX)

Proof. See Section B.2 of Appendix B

4.2.4 Implementation and Cutoffs for Fast-MUOD Indices

The sample versions of IA and IM were implemented in R (R Core Team, 2022) using
an algorithm similar to the one presented in Ojo et al. (2021a) (Chapter 3, Algorithm
3). Furthermore, the point-wise median is used in the implementation of IAn and IMn

instead of the point-wise sample mean as the former is much more robust to outliers.
In Ojo et al. (2021a), where the sample versions of IAv , IMv and IS were proposed, a
classical boxplot was proposed to determine a cutoff for IAv , IMv and IS by considering
only the upper whisker of the boxplot (the third quartile extended by 1.5 times the inter-
quartile range of IAv , IMv and IS) as a cutoff. This worked because IAv , IMv and IS are
always non-negative and their distributions are right-skewed. For the sample versions
of IA and IM , both the upper and lower whiskers of the boxplot have to be considered
for a cutoff because outliers have indices that occur on both tails of the distribution of
these indices. Thus we propose to consider as amplitude outliers observations with IAn

value greater than Q3IAn
+ 1.5 × IQRIAn

or less than Q1IAn
− 1.5 × IQRIAn

. We also
propose the same rule for flagging magnitude outliers with IMn .

4.3 Discussion

This chapter examined the theoretical properties of the Fast-MUOD indices. First, we
presented definitions and sample approximations of the indices. Then, we provided
provided a convergence proof and explored the behaviour of these indices under simple
transformations. The Fast-MUOD magnitude index of a curve, w.r.t. to the sample,
changes when the curve is scaled or shifted by a scalar value. In addition, the magnitude
index preserves the functional addition operation. On the other hand, the amplitude
index is sensitive to scaling by a scalar but not to a shift. The shape index is neither
sensitive to scaling or translation. These properties make the Fast-MUOD indices well
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suited to targeting and identifying different types of outliers. In the next chapter, we
present three techniques for detecting outliers in multivariate functional data using the
Fast-MUOD indices.



Chapter 5

Multivariate Functional Outlier
Detection with the Fast-MOUD
Indices

This chapter is based on:

Ojo, O. T., Fernández Anta, A., Genton, M. G., & Lillo, R. E. (2022). “Multivariate Func-
tional Outlier Detection using the FastMUOD Indices”. arXiv:2207.12803

5.1 Fast-MUOD Extensions to Multivariate Functional Data

Fast-MUOD was proposed for univariate functional data; however, many real func-
tional data are multivariate in nature. Consequently, we present some techniques for
detecting outliers in multivariate functional data using Fast-MUOD indices. The pro-
posed techniques all involve applying the univariate Fast-MUOD indices on univariate
functional datasets obtained from the multivariate functional data of interest; hence, for
our multivariate applications, the definitions and properties presented in Section 4.2 are
relevant.

5.1.1 Marginal Outlier Detection with Fast-MUOD Indices

Suppose {Y (t), t ∈ I} is a stochastic process defined on I = [0, 1] taking values in
Rd. Let the distribution of Y (t) be FY (t) and let FY j(t) be the distribution of the jth

marginal component of Y (t), with j = 1, . . . , d. Consider a set of n realizations of Y :
{Yi(t)}ni=1. To identify outliers in {Yi(t)}ni=1, a first option is to apply Fast-MUOD to
the d marginals of the observed curves, (i.e., Y j

i (t)) and identify Yi as an outlier if it
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is an outlier (of any type: shape, amplitude, or magnitude) in any of the d margins.
However, this technique has the obvious limitation of not detecting “joint-outliers”, i.e.,
observations that are not outliers in any of the marginal distributions but are outlying
compared to the joint distribution of the data. It is also quite prone to false positives
(FPs) because the final FPs of the procedure is the union of the FPs of the three indices
for each margin of the multivariate functional data to which Fast-MUOD is applied.

5.1.2 Stringing Marginal Functions into Univariate Functional Data

For a multivariate functional observation, Yi(t), we can concatenate or “string” its d uni-
variate dimensions (i.e., Y 1

i (t), Y
2
i (t), . . . , Y

d
i (t)) together into a single univariate func-

tion. Thus, we can obtain univariate functional curves Zi(t
′) defined on the interval

[0, d] from the original multivariate observations {Yi(t)}ni=1 given by Zi(t
′) := Y j

i (t
′ −

j + 1), whenever t′ ∈ (j − 1, j], for j = 1, . . . , d (set Zi(0) := Y 1
i (0)). Then, Fast-

MUOD can be applied on {Zi(t
′)}ni=1 by estimating for each Zi, the indices ISn(Zi, FZn),

IAn(Zi, FZn) and IMn(Zi, FZn) and applying the cutoffs described in Subsection 4.2.4.
There are two potential issues with this technique. First, the d univariate functions
(Y 1

i (t), Y
2
i (t), . . . , Y

d
i (t)) may have different ranges in which case it might be convenient

to scale the dimensions of Yi(t) into the same range (e.g., using a min-max scaling).
Furthermore, changing the order of stringing of the marginal functions into univariate
functions might have an effect on which observations are detected as outliers or not,
e.g., for a set of multivariate functional curves {R(t)}ni=1, the set of stringed functions
{Ai(t

′) = Rj
i (t

′− j+1)}ni=1 and {Bi(t
′) = Y d+1−j

i (t′− j+1)}ni=1 might produce different
outliers.

5.1.3 Random Projections

Owing to the potential limitations of the two techniques presented in Subsections 5.1.1
and 5.1.2, we introduce a new technique based on random projections. For a multivari-
ate functional dataset {Yi(t)}ni=1 taking values in Rd, we generate L random unit vectors
{âl ∈ Rd : l = 1, . . . , L}. Then, we compute the projection of Yi(t) in the direction of âl:

Yi,l(t) = â
⊤
l Yi(t) =

d∑︂
j=1

ajlY
j
i (t) ∈ R,

where Y j
i (t) is the jth component of Yi evaluated at t and ajl is the jth component of

âl. Then, Fast-MUOD can be applied on the univariate functional data {Yi,l(t)}ni=1 by
estimating for each Yi,l(t), the indices ISn(Yi,l, FYn,l

), IAn(Yi,l, FYn,l
), and IMn(Yi,l, FYn,l

),
where FYn,l

is the empirical distribution of {Yi(t)}ni=1 projected on âl. Applying the cut-
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off described in Subsection 4.2.4 on the sets {ISn(Yi,l, FYn,l
)}ni=1, {IAn(Yi,l, FYn,l

)}ni=1, and
{IMn(Yi,l, FYn,l

)}ni=1 reveals whether Yi(t) is a shape, amplitude, or magnitude outlier,
respectively, when projected in the direction of âl.

Threshold for the Random Projections

To combine all information from the L projections, we adopt a “voting system” in which
a multivariate function is flagged as an outlier of a specific type if it is an outlier of that
type in more than a fixed proportion of the projection directions. To this end, we define
the following indicator functions:

OS,l(Yi) := 1{if Yi,l(t) is a shape outlier},

OA,l(Yi) := 1{if Yi,l(t) is an amplitude outlier},

OM,l(Yi) := 1{if Yi,l(t) is a magnitude outlier}.

(5.1)

These indicator functions indicate whether Yi is a shape, amplitude, or magnitude
outlier when Yi(t) is projected in the direction of âl. Then, we fix the threshold triple
Q = (τS , τA, τM ), where τS , τA, τM ∈ [0, 1], and declare Yi(t) a “shape” outlier if the
El[OS,l(Yi)] ≥ τS . Similarly, we declare Yi(t) an “amplitude” outlier if El[OA,l(Yi)] ≥ τA

and a “magnitude” outlier if El[OM,l(Yi)] ≥ τM . Note that the classification of a mul-
tivariate functional outlier into a specific type (“amplitude”, “magnitude” or “shape”)
now indicates that the function is an outlier of that type in at least τ proportion of the
projections (for τ ∈ Q). This classification is also not necessarily disjoint since an ob-
servation can be flagged as an outlier of more than one type in each projection (for
examples, see Subsections 5.2.3 and 5.3.1).

The threshold triple Q helps to control the false positive rate (FPR) of the procedure.
The lower the value of τ ∈ Q, the more aggressive the procedure is in flagging an obser-
vation as an outlier (because flagging an outlier requires less number of “votes” from
the random projections). Higher values of τ , on the other hand, make the procedure
more conservative in detecting outliers. For the amplitude and magnitude indices, we
find (in our simulation tests) that limiting the value of both τA and τM to the interval
[0.3, 0.7] works well for most applications (see Section B.5 in the Supplementary Ma-
terial). In the case when there are magnitude (or amplitude) outliers in the projected
data, τM (or τA) should be close to the lower bound of 0.3, which is sufficiently low
to allow for flagging the outliers without introducing many FPs. When there are no
magnitude (amplitude) outliers, τM (or τA) should be close to 0.7, which is a sufficiently
high proportion to prevent FPs. When there are magnitude (or amplitude) outliers,
some random projections of the data will not detect all the true outliers, and therefore
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it is imperative not to set τM (or τA) to a high proportion in this case. However, set-
ting τM (or τA) to a very low proportion, even when there are magnitude (amplitude)
outliers, will yield many FPs because some non-outliers will be erroneously flagged as
outliers in some of the projections. For the shape index, we suggest limiting τS to the
interval [0.4, 0.7] because we know from previous studies that the shape index is more
prone to FPs than the magnitude and amplitude indices (partly because of its skewed
distribution and sometimes because of random noise in the data, see Ojo et al. (2021a)).

Selecting the Thresholds Q

It is possible to select the threshold values in Q (within the suggested intervals [0.3, 0.7]
for τA/τM and [0.4, 0.7] for τS) in a data-driven way if the distribution or model from
which the functional data come from is known. Consider, for example, the following
model for T ∈ {S,A,M} (where S, A, and T denote shape, amplitude, and magnitude,
respectively):

τT :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γT − ηT

∆PT
∆C

if ∆PT
∆C

∈ [0, 1],

γT − ηT if ∆PT
∆C

> 1,

γT otherwise,

(5.2)

where γT , ηT ∈ [0, 1]. The term ∆PT is an estimate of the proportion of outliers of
type T present in the data computed by subtracting the expected proportion of FP of
type T under the null model (a model where there are no outliers) from the average
proportions of outliers of type T found over all L projections:

∆PT =

L∑︁
l=1

n∑︁
i=1

ÔT,l(Yi)

n× L
− B̂T , (5.3)

where B̂T is an estimate of the “baseline” expected proportion of FP of type T under
the null model and ÔT,l is an estimate of the indicator functions in Equation (5.1). Like-
wise, ∆C is an estimate of the proportion of all unique outliers (regardless of their type)
present in the data computed by subtracting the expected proportion of total FPs under
the null model from the average proportions of total unique outliers found over all L
projections:

∆C =

L∑︁
l=1

n∑︁
i=1

Ôl(Yi)

n× L
− B̂C , (5.4)

where Ôl is an estimate of the indicator function Ol(Yi) := 1{if any OT,l(Yi) = 1 for T ∈
{S,A,M}} and B̂C is an estimate of the “baseline” expected proportion of total FPs (of
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any type) under the null model. To ensure that τT is within an interval [a, b] ⊂ [0, 1] of
interest in Equation (5.2), it suffices to set γT = b and ηT = b− a. For example, to ensure
that τS ∈ [0.4, 0.7], we can set γS = 0.7 and ηS = 0.3 in Equation (5.2). The intuition is
that if there are only shape outliers in the data, the proportion ∆PS

∆C
will be close to 1,

resulting in τS ≈ 0.4, which is the lower bound of the suggested interval [0.4, 0.7] for
shape outliers. On the other hand, if there are no shape outliers, ∆PS

∆C
will be close to 0

so that τS ≈ 0.7, which is the upper bound of the suggested interval [0.4, 0.7], thereby
controlling for FPs. However, to estimate the proportion ∆PS

∆C
, it is necessary to have an

estimate of the baseline values B̂S and B̂C in Equations (5.3) and (5.4), respectively. If
the model or distribution of the data is known, it is possible to estimate these baseline
values by simulating the null model (observation from the model without outliers) and
estimating the proportion of FP of type S (B̂S) and the proportion of all FPs (B̂C).

However, for real applications, the distribution or model which the data come from
is unknown, and therefore it is impossible to estimate the baselines BT and BC ; hence,
the model in Equation (5.2) cannot be used to fix the threshold values in Q. An obvious
option is to consider as an outlier of type T any observation that is flagged as an outlier
of type T in at least one projection, i.e., flag Yi(t) as an outlier of type T if El[OT,l(Yi)] >

0. This has the downside of being prone to FPs since it does not control for any FP
due to the projection directions and the Fast-MUOD indices. Another option, which we
recommend, is to use the threshold triple Q = (τS , τA, τM ) = (0.4, 0.3, 0.3) that we have
found to have a well-balanced performance across various scenarios in our simulation
studies (see Section B.5 of the Supplementary Material).

5.2 Simulation Study

We performed a simulation study to compare the various techniques discussed in Sec-
tion 5.1 with state-of-the-art methods.

5.2.1 Simulation Models

We simulated trivariate (d = 3) functional datasets from models based on the truncated
Karhunen–Loève expansion for multivariate functional data (Happ and Greven, 2018):

Yi(t) = µ(t) +

M∑︂
m=1

ρi,mψm(t) + ϵ(t), i = 1, . . . , n, M ∈ N,

where Yi(t) ∈ R3, µ(t) ∈ R3 is the multivariate mean function, and ψm(t) ∈ R3, for
m = 1, . . . ,M are multivariate eigenfunctions. The scores ρi,m

iid∼ N (0, νm) for eigen-
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values νm that are linearly decreasing (νm = M+1−m
M ). The errors ϵ(t) ∈ R3, and

ϵ(t)
iid∼ N3(0,Σ), with Σ = diag(σ1, σ2, σ3), where σi

iid∼ U [0.1, 0.3], for i = 1, 2, 3. The
eigenfunctions ψm(t) were constructed by splitting orthonormal Fourier functions into
d = 3 pieces and shifting them to the required domain (Happ-Kurz, 2020). We set M = 9

basis functions. The sample size for each dataset is n = 100 and we considered a con-
tamination rate of 10%. The simulated functions are evaluated at 50 equidistant points
in [0, 1]. For each simulation model considered, the non-outliers were generated from a
main model while the outliers were generated from a contaminated model, both listed
below:

(i) Simulation Model 0 (No outliers):

Main Model: Yi(t) = µ(t) +
M∑︁

m=1
ρi,mψm(t) + ϵ(t); where µ(t) = (4t, 30t(1 −

t)
3
2 , 5(t− 1)2)⊤.

(ii) Simulation Model 1 (Persistent magnitude outliers):

Main Model: The same as Model 0.

Contamination Model: Yi(t) = µ(t) + u(t) +
M∑︁

m=1
ρi,mψm(t) + ϵ(t); where µ(t) is

the same as in Model 0 and u(t) is given by: uji (t) = 8Wj for j = 1, 2, 3. Wj is
sampled from {−1, 1} with equal probability.

(iii) Simulation Model 2 (Non-persistent magnitude outliers):

Main Model: The same as Model 0 but with µ(t) = (5 sin(2πt), 5 cos(2πt), 5(t −
1)2)⊤.

Contamination Model: Yi(t) = µ(t) + u(t) +
M∑︁

m=1
ρi,mψm(t) + ϵ(t) where µ(t) is

the same as the Main Model above, and u(t) is given by:

uji (t) = 8Wj · 1{if t ∈ [Tq, Tq + 0.1]}.

Wj is the same as in Model 1 and Tq ∼ U [0, 0.9].

(iv) Simulation Model 3 (Shape outlier I):

Main Model: The same as Model 0 but with µ(t) = (5 sin(2πt), 5 cos(2πt), 5(t −
1)2)⊤.

Contamination Model: The same as Model 0 but with µ(t) changed to:

µ(t) = (5 sin(2π(t− 0.3)), 5 cos(2π(t− 0.2)), 5(0.1− t)2)⊤.
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(v) Simulation Model 4 (Shape outlier II):

Main Model: Yi(t) = µ(t)+u(t)+
M∑︁

m=1
ρi,mψm(t)+ ϵ(t); where µ(t) = (5 sin(2πt),

5 cos(2πt), 5(t− 1)2)⊤, and u(t) is given by uji (t) = ϱj , with ϱj
iid∼ U [−2.1, 2.1].

Contamination Model: Same as the Main Model above but with u(t) changed to:

u(t) = (2 sin(4πt), 2 cos(4πt), 2 cos(8πt))⊤.

(vi) Simulation Model 5 (Amplitude outliers):

Main Model: The same as Model 0 but with µ(t) = (5 sin(2πt), 5 cos(2πt), 5(t −
1)2)⊤.

Contamination Model: Yi(t) = µ(t) + u(t) +
M∑︁

m=1
ρi,mψm(t) + ϵ(t); where µ(t) is

the same as the Main Model above and u(t) is given by:

ui(t) = ((2 +R1
i )µ

1(t), (2 +R2
i )µ

2(t), (2 +R3
i )µ

3(t)− 6)⊤.

µj(t) are the components of µ(t) in the Main Model above and Rj
i

iid∼ Exp(2), for
j = 1, 2, 3.

(vii) Simulation Model 6 (Shape outlier III):

Main Model: Yi(t) = µ(t)+u(t)+
M∑︁

m=1
ρi,mψm(t)+ ϵ(t); where µ(t) = (5 sin(2πt),

5 cos(2πt), 5(t− 1)2)⊤, and u(t) = (8t sin(πt), t cos(πt), 6 sin(2πt)− 3)⊤.

Contamination Model: Same as the Main Model above but with u(t) changed to:

u(t) = (10t sin(πt), 11t cos(πt), 10 sin(2πt)− 6)⊤.

Some sample data from these models are shown in Figures 5.1 and 5.2.

5.2.2 Outlier Detection Methods

Data were simulated from the seven models presented in Subsection 5.2.1. For each
model, we compared the OD performance of the proposed extensions in Section 5.1.
We also compared our proposals to other multivariate OD methods such as MS-plot
(Dai and Genton, 2018), FOM, and functional adjusted outlyingness (FAO) (Rousseeuw
et al., 2018). Since our Fast-MUOD-based proposals use indices that target different
types of outliers, we can consider the OD performance of each index or consider a union
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Figure 5.1: Sample data generated by Models 0 – 3 with contamination rate α = 0.10,
sample size n = 100, and evaluation point d = 50. Each row corresponds to a simula-
tion model, and each column corresponds to a marginal component of the multivariate
functional data. Outliers are shown in colour.
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Figure 5.2: Sample data generated by Models 4 – 6 with contamination rate α = 0.10,
sample size n = 100, and evaluation point d = 50. Each row corresponds to a simula-
tion model and each column corresponds to a marginal component of the multivariate
functional data. Outliers are shown in colour.

of outliers flagged by the three indices. Thus, we considered the following methods in
our comparison.

- FST-MAR: This is the union of all outlier types detected by applying Fast-MUOD
to the marginal distributions of the multivariate functional data (described in Sub-
section 5.1.1). Consequently, an observation is an outlier if it is flagged as an out-
lier, of any type, in any of the three dimensions of the simulated multivariate
functional data.

- FST-STR: This is the union of all outlier types detected by applying Fast-MUOD to
the univariate functional data obtained by stringing marginal functions together
(described in Subsection 5.1.2).

- FST-PRJ: This is the union of all outlier types detected by applying Fast-MUOD us-
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ing random projections (described in Subsection 5.1.3). For our simulation tests, 60
random directions were used for projection. To generate each random direction,
the components of the vector were simulated from the standard normal distribu-
tion and the resulting vector was then normalised to have a unit norm. Generat-
ing the random directions in this manner is straightforward and fast with limited
computational burden.

We used Equation (5.2) to determine the threshold triple Q = (τS , τA, τM ). Be-
cause we knew the base model (Model 0) from which the simulated data were
generated, we could estimate the values of BT and BC used in Equations (5.3)
and (5.4), respectively. For this purpose, we simulated data from Model 0 (null
model without outliers) and computed the total FPR (of all outlier types) and the
FPR of each type of outliers (shape, magnitude, and amplitude). Then, we used
the computed FPR of all outliers as an estimate of BC and the computed FPRs
of outliers of each type as an estimate of BT , for T ∈ {S,A,M}. Our simulation
results yielded the following baseline values: BA = BM = 0.009, BS = 0.075, and
BC = 0.09, which we then used in the estimation of ∆PT

∆C
in Equation (5.2). Finally,

we set the parameters γT and ηT in Equation (5.2) to γT = 0.7 for T ∈ {S,A,M},
ηS = 0.3, and ηA, ηM = 0.4 so that τS ∈ [0.4, 0.7] and τA, τM ∈ [0.3, 0.7], as reported
in Subsection 5.1.3.

- FST-PRJ-MG: This is the set of ONLY the “magnitude” outliers detected using
FST-PRJ.

- FST-PRJ-AM: This is the set of ONLY the “amplitude” outliers detected using FST-
PRJ.

- FST-PRJ-SH: This is the set of ONLY the “shape” outliers detected using FST-PRJ.

- FST-PRJ1: This is similar to FST-PRJ, but uses the threshold triple Q = (τS , τA, τM ) =

(0.4, 0.3, 0.3), which we recommend in real application when it is impossible to use
Equation (5.2) to determine the values of Q.

- FST-PRJ1-MG: This is the set of ONLY the “magnitude” outliers detected using
FST-PRJ1.

- FST-PRJ1-AM: This is the set of ONLY the “amplitude” outliers detected using
FST-PRJ1.

- FST-PRJ1-SH: This is the set of ONLY the “shape” outliers detected using FST-
PRJ1.
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- FST-PRJ2: This is similar to FST-PRJ, but rather than using Equation (5.2) to select
the threshold Q, we consider an observation as an outlier of type T if it is flagged
as an outlier of that type in ANY projection, i.e., an observation is an outlier of
type T if El[OT,l(Yi)] > 0 for T ∈ {S,A,M}.

- FST-PRJ2-MG: This is the set of ONLY the “magnitude” outliers detected using
FST-PRJ2.

- FST-PRJ2-AM: This is the set of ONLY the “amplitude” outliers detected using
FST-PRJ2.

- FST-PRJ2-SH: This is the set of ONLY the “shape” outliers detected using FST-
PRJ2.

- MSPLOT: This is a multivariate functional outlier detection and visualisation me-
thod based on the directional outlyingness proposed in Dai and Genton (2018).

- FOM: The functional outlier map proposed in Rousseeuw et al. (2018) is similar
to MSPLOT in that it is based on another type of directional outlyingess (DO) for
multivariate data given by:

DO(Y (t), FY (t)) = sup
v

uDO(v⊤Y (t), Fv⊤Y (t)),

where v is a random direction and uDO is the univariate directional outlyingness
in Rousseeuw et al. (2018). The functional directional outylingess (fDO) is then
defined as the integral of the DO over the domain:

fDO(Y , FY ) =

∫︂
I
DO(Y (t), FY (t))w(t)dt,

where w(t) is a weight function. The variation of DO values is defined as:

vDO(Y , FY ) =
stdev(DO(Y (t), FY (t))

1 + fDO(Y , FY )
.

The functional outlier map is then a scatter plot of the points (fDO(Y , FY ),vDO(Y , FY )).

To flag functions as outliers, the combined functional outlyingness (CFO) is first
computed as:

CFO(Y , FY ) =

√︄(︃
fDO(Y , FY )

med(fDO(Y , FY )

)︃2

+

(︃
vDO(Y , FY )

med(vDO(Y , FY )

)︃2

.
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The log CFO is then computed and an observation is flagged as an outlier if
LCFO−med(LCFO)

MAD(LCFO) ≥ Φ(0.995), where Φ(·) is the standard normal cumulative dis-
tribution.

- FAO: The functional adjusted outlyingness uses the adjusted outlyingness (AO)
and its functional extension (fAO) proposed in Brys et al. (2005) and Hubert et al.
(2015) respectively (instead of the DO and fDO) in a functional outlier map. The
functional adjusted outlyingness of a function Y (t) w.r.t. FY (t) is the (weighted)
integral of its pointwise AO values over the domain:

fAO(Y , FY ) =

∫︂
I
AO(Y (t), FY (t))w(t)dt.

The fAO and its variation (vAO) can then be used in a functional outlier map as
in FOM above.

5.2.3 Simulation Results

For each of the models in Subsection 5.2.1, we tested the methods described Section
5.2.2. We set the contamination rate to 10% and performed 200 repetitions for each
possible model. Table 5.1 shows the performance of the proposed techniques on the
different simulation models. Because Model 0 is a null model without outliers, we only
show the FPRs of the techniques. For Models 1-6, we show the true positive rate (TPR)
and the FPR together with their respective standard deviations in parentheses.

The results of Model 0 show that FST-MAR and FST-PRJ2 both have very high FPRs.
For FST-MAR, Fast-MUOD was independently applied on each of the three dimensions
of the simulated trivariate functional data. For each dimension, the three Fast-MUOD
indices contributed some FPs and the union of all these FPs over the three dimensions
of the dataset yielded the overall FPR of about 26% for the null model in Model 0.
Moreover, the extremely high FPR of FST-PRJ2 justifies the need to impose the threshold
Q = (τS , τA, τM ) used for determining if an observation is an outlier. Simply flagging an
observation as an outlier if it is detected as an outlier in any random projection does not
work for the Fast-MUOD indices. First, because a non-outlier might sometimes appear
to be an outlier in the projected direction, and second because the Fast-MUOD indices
(especially the shape index) and the boxplot cutoff procedure described in Subsection
4.2.4 also produce some FPs. These high FPRs can be observed for both methods (FST-
MAR and FST-PRJ2) across all tested models.

For Model 1 where the outliers are clear magnitude outliers in all dimensions, all
methods performed well, except for FST-MAR and FST-PRJ2 because of their high FPRs.
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Table 5.1: Mean and Standard Deviation (in parentheses) of the true positive rate (TPR)
and the false positive rate (FPR) (in percentage) over 200 repetitions for each model.
Sample size n = 100, evaluation points tj = 50, and contamination rate is 10%. Com-
paratively high TPRs (≥ 95%) and low FPRs (≤ 1%) are marked in bold. The proposed
techniques are in italics.

Method
Model 0 Model 1 Model 2 Model 3

FPR TPR FPR TPR FPR TPR FPR

FST-MAR 26.2(4.2) 100.0(0.0) 25.2(4.8) 99.9(1.0) 13.9(3.2) 100.0(0.0) 13.4(3.3)
FST-STR 4.6(2.5) 100.0(0.0) 2.3(1.6) 90.4(10.9) 2.3(1.8) 100.0(0.0) 1.9(1.8)
FST-PRJ 1.7(2.6) 100.0(0.0) 0.2(0.5) 98.7(4.3) 0.7(0.9) 100.0(0.0) 0.8(1.0)
FST-PRJ-SH 1.7(2.6) 0.2(1.4) 0.2(0.5) 98.7(4.3) 0.7(0.9) 100.0(0.0) 0.8(1.0)
FST-PRJ-AM 0.0(0.3) 0.0(0.0) 0.0(0.0) 0.0(0.7) 0.0(0.0) 100.0(0.0) 0.0(0.2)
FST-PRJ-MG 0.0(0.2) 100.0(0.0) 0.0(0.1) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)
FST-PRJ1 3.7(1.9) 100.0(0.0) 3.4(1.9) 99.2(2.8) 1.1(1.2) 100.0(0.0) 1.0(1.1)
FST-PRJ1-SH 3.5(1.8) 4.2(6.5) 3.3(1.9) 98.9(3.6) 0.8(1.0) 100.0(0.0) 0.8(0.9)
FST-PRJ1-AM 0.2(0.4) 0.1(1.0) 0.2(0.5) 4.0(6.6) 0.1(0.4) 100.0(0.0) 0.0(0.2)
FST-PRJ1-MG 0.1(0.4) 100.0(0.0) 0.0(0.2) 2.9(5.3) 0.2(0.6) 2.1(4.7) 0.2(0.5)
FST-PRJ2 52.2(3.6) 100.0(0.0) 51.0(4.0) 100.0(0.0) 35.7(3.8) 100.0(0.0) 34.8(4.1)
FST-PRJ2-SH 47.0(3.3) 47.8(14.7) 47.1(4.0) 100.0(0.0) 28.2(3.0) 100.0(0.0) 27.4(3.3)
FST-PRJ2-AM 12.4(3.6) 12.6(10.5) 12.4(3.8) 64.3(14.6) 10.1(3.5) 100.0(0.0) 6.6(3.2)
FST-PRJ2-MG 14.0(4.1) 100.0(0.0) 7.2(3.1) 37.7(16.6) 8.9(3.6) 44.1(18.7) 9.0(3.6)
MSPLOT 1.6(1.7) 100.0(0.0) 0.5(0.8) 100.0(0.0) 0.9(1.2) 100.0(0.0) 1.1(1.4)
FOM 0.3(0.6) 100.0(0.0) 0.1(0.3) 96.9(7.5) 0.0(0.3) 70.4(29.0) 0.1(0.3)
FAO 0.3(0.6) 100.0(0.0) 0.0(0.2) 84.9(17.1) 0.1(0.3) 43.5(35.3) 0.1(0.3)

Method
Model 4 Model 5 Model 6

TPR FPR TPR FPR TPR FPR

FST-MAR 76.3(17.0) 15.7(3.6) 100.0(0.0) 25.4(4.0) 100.0(0.0) 14.0(3.5)
FST-STR 49.7(27.1) 2.4(1.5) 100.0(0.0) 4.7(2.4) 99.9(1.0) 2.3(1.6)
FST-PRJ 17.0(23.7) 0.3(0.8) 100.0(0.0) 0.2(0.4) 99.6(2.0) 0.6(0.8)
FST-PRJ-SH 15.4(22.8) 0.2(0.7) 0.0(0.0) 0.1(0.4) 93.1(13.2) 0.5(0.8)
FST-PRJ-AM 0.0(0.0) 0.0(0.2) 100.0(0.0) 0.0(0.2) 1.3(6.3) 0.0(0.1)
FST-PRJ-MG 2.1(6.7) 0.1(0.3) 45.5(30.3) 0.0(0.1) 90.1(15.8) 0.1(0.3)
FST-PRJ1 45.2(19.2) 1.2(1.2) 100.0(0.0) 3.9(1.9) 99.7(2.2) 0.9(0.9)
FST-PRJ1-SH 41.8(18.7) 1.0(1.1) 0.0(0.0) 3.8(1.9) 98.2(5.6) 0.8(0.9)
FST-PRJ1-AM 0.1(1.2) 0.2(0.5) 100.0(0.0) 0.0(0.1) 18.4(16.4) 0.1(0.3)
FST-PRJ1-MG 5.6(8.5) 0.1(0.4) 86.6(12.3) 0.1(0.4) 90.6(11.9) 0.0(0.2)
FST-PRJ2 96.9(6.7) 37.6(3.9) 100.0(0.0) 51.8(3.9) 100.0(0.0) 39.1(3.9)
FST-PRJ2-SH 94.1(8.2) 29.9(3.6) 0.7(2.5) 49.3(3.7) 100.0(0.0) 34.1(3.9)
FST-PRJ2-AM 16.8(12.4) 13.2(3.7) 100.0(0.0) 5.9(2.9) 95.4(7.6) 9.5(3.3)
FST-PRJ2-MG 41.6(22.3) 8.3(3.2) 99.4(2.5) 6.0(2.8) 99.8(1.9) 7.5(3.1)
MSPLOT 34.8(21.9) 1.1(1.4) 100.0(0.0) 0.9(1.1) 95.6(7.2) 1.0(1.2)
FOM 1.9(4.6) 0.1(0.3) 100.0(0.0) 0.1(0.3) 51.4(33.9) 0.1(0.3)
FAO 1.1(3.6) 0.1(0.3) 99.9(1.0) 0.1(0.3) 25.6(29.9) 0.0(0.1)
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The high TPRs of FST-PRJ1-MG and FST-PRJ-MG demonstrate that the magnitude in-
dices detect the magnitude outliers while the other indices (FST-PRJ-AM, FST-PRJ1-AM,
FST-PRJ-SH, and FST-PRJ1-SH) do not contribute significantly to the FPs, thus yielding
good overall results for FST-PRJ and FST-PRJ1. This also shows that the multivariate
magnitude outliers in Model 1 remained magnitude outliers after the projection proce-
dure since only the magnitude indices were activated. FST-STR, which used the string-
ing procedure described in Subsection 5.1.2, also showed a very high TPR with low
FPR on this magnitude model. In Model 2, which contained non-persistent magnitude
outliers, FST-PRJ and FST-PRJ1 show very good OD performance but this time pow-
ered by their shape indices (FST-PRJ-SH and FST-PRJ1-SH). FAO however struggled on
this model with less than 90% TPR and high standard deviation. Both FOM and FAO
did not perform well in Model 3, while FST-PRJ and FST-PRJ1 showed excellent OD
performance on this model, helped by their amplitude and shape indices (FST-PRJ-SH,
FST-PRJ-AM, FST-PRJ1-SH, and FST-PRJ1-AM). This reiterates that outlier classifica-
tion is not necessarily disjoint because on the average, all the outliers in Model 3 were
flagged as both amplitude and shape outliers. The “non-disjoint” classification of out-
liers can also be observed in the results of FST-PRJ and FST-PRJ1 on Models 5 and 6. All
the methods showed poor TPRs (and FPRs) in Model 4, because Model 4 contains pure
shape outliers that follow the overall trend of the data and are hidden within the bulk of
the data. Apart from Model 4, MSPLOT maintains an excellent OD performance across
all other models, except for Model 6 where it did not perform quite as well with a TPR
of 95% compared to 100% for FST-PRJ1 and FST-PRJ.

Most of the simulation models used in this study have outliers outlying in all three
dimensions (except for Model 6). In the Supplementary Material (Section B.3), we show
the performance of the presented methods with similar simulation models but with
the outliers only outlying in one or two of the three dimensions of the functional data.
In addition, more simulation results for different contamination rates are presented in
Section B.4 of the Supplementary Material.

To summarise, FST-PRJ and FST-PRJ1 showed the best performance across all tested
simulation models. We recommend FST-PRJ1 in most usual applications because the
underlying data distribution will be unknown, and it will consequently be impossible
to compute the threshold Q for FST-PRJ.

5.3 Data Examples

In this section, we apply the Fast-MUOD extension using random projections described
in Subsection 5.1.3 to detect outliers in two multivariate functional datasets: character
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and video datasets.

5.3.1 Characters Dataset

The character dataset comprises bivariate functional data of trajectories of a pen tip
along the x and y axes while a subject repeatedly writes various letters of the English
alphabet. The original data were provided as part of the Character Trajectories dataset
on the UCI machine learning repository (Williams et al., 2006). The versions of the
dataset used in this study are for the letters “i” (without the dot) and “a” provided in
the mrfDepth R package (Segaert et al., 2020). For the letter “i”, the dataset consists of
ni = 174 bivariate functions, observed at 100 times points, whereas for letter the “a”,
there are na = 171 bivariate functions observed at the same number of time points. The
bivariate functions in both datasets are the vertical and horizontal coordinates of the pen
tip while the subject wrote ni or na copies of each corresponding letter. The first row of
Figures 5.3 and 5.6 show the bivariate functions for letters “i” and “a”, respectively.

Plotting the vertical coordinates against the horizontal coordinates in both datasets
reveals the handwritten characters (Figures 5.3 and 5.6). The aim is to use the Fast-
MUOD via projections (FST-PRJ1) to detect outliers in both datasets. For each dataset,
we generated 60 random unit vectors in R2 (entries of the vectors follow the standard
normal distribution and each vector is normalised to have a unit norm) and projected
the data. Fast-MUOD was then applied on the projections and we used a threshold
triple of Q = (τS , τA, τM ) = (0.4, 0.3, 0.3) to determine which observations were flagged
as outliers of the various types.

The Letter “i”

For the letter “i”, curves 41 and 46 were flagged as magnitude outliers; curves 39, 46,
and 67 were flagged as amplitude outliers and curves 3, 5, 6, 9, 35, 39, 40, 41, 46, 64, 90,
and 102 were flagged as shape outliers. Thus, 13 unique outliers were flagged in total.
All magnitude outliers are also shape outliers, and curve 46 is an outlier of all types.
The “magnitude” and “amplitude” outliers are shown in the bottom left plot of Figure
5.3 (and Figure B.10 of the Supplementary Material shows plots of their horizontal and
vertical coordinates). Curve 41 deviates from the overall trend of the data while curve
46 does not have enough “follow through” compared to other curves. Some of the shape
outliers are shown on the bottom right plot of Figure 5.3. Like curve 41, curves 40 and 64
deviate from the overall trend of the data, while the curve 102 looks rather similar to a
“v” instead of an “i”. Although curve 9 seems to follow the overall trend of the data and
does not appear to be an outlier, a closer look at its horizontal and vertical coordinate
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Figure 5.3: First Row: Horizontal and vertical trajectories for letter “i” data. Second
Row: All magnitude outliers and some shape outliers detected in letter “i” data.

curves (see Figure B.11 of the Supplementary Material) reveals that the minimum points
of both curves are horizontally shifted (to the right) compared to other curves; hence,
it was flagged as a shape outlier. Curves 3, 5, 6, and 90 (shown in Figure B.11 of the
Supplementary Material) were also flagged as outliers for this same reason.

For comparison, we applied MSPLOT on the character dataset for letter “i”. MSPLOT
discovered a total of 18 unique outliers. The curves flagged by MSPLOT were: 3, 5, 6, 9,
11, 12, 14, 39, 40, 41, 67, 73, 90, 102, 109, 110, 111, and 141. Among the 13 unique outliers
flagged by Fast-MUOD, 10 were flagged by MSPLOT. The functions flagged as outliers
by only Fast-MUOD are curves: 35, 46, and 64; while those flagged by only MSPLOT
are curves: 11, 12, 14, 73, 109, 110, 111, and 141. These curves are shown in Figure 5.4.
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Figure 5.4: Outliers detected by only Fast-MUOD and only MSPLOT.
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Figure 5.5: Curve 41, the only outlier detected by FOM.

Considering the curves detected by only Fast-MUOD and MSPLOT reveals certain
interesting features in the data. Curves 35, 46 and 64, detected by only Fast-MUOD,
clearly show some deviation from the trend of the data, especially in their follow-
throughs. On the other hand, curve 111, flagged by only MSPLOT, seems to resemble a
slanted “v” rather than an “i”. To summarise, MSPLOT seems to be more aggressive in
declaring curves as outliers compared to Fast-MUOD.

Finally, we compared the results obtained to those of FOM, which only flagged curve
41 (shown in the bottom left plot of Figure 5.3) as an outlier, probably because FOM
is more suited to detecting magnitude outliers rather than shape outliers. Curve 41
demonstrates a clear magnitude deviation in its vertical axis (Figure 5.5).
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Figure 5.6: First Row: Horizontal and vertical trajectories for letter “a” data. Second
Row: Magnitude and amplitude outliers detected by Fast-MUOD (FST-PRJ1). Third
Row: Shape outliers with short (left) and long (right) “follow-throughs” respectively.
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Letter “a”

For the letter “a”, FST-PRJ1 flagged 17 curves as outliers. Curves: 49, 56, 88, 94, and
131 were flagged as magnitude outliers. Curves 1 and 166 were flagged as amplitude
outliers, while curves 21, 56, 58, 75, 100, 101, 102, 114, 117, 125, and 136 were flagged as
shape outliers. The curves flagged as magnitude and amplitude outliers (shown in the
middle row of Figure 5.6) show a shift, either in the vertical, horizontal, or both axes.

Some of the flagged shape outliers have their peaks (or turning point) shifted to the
right, particularly in the vertical axis, compared to the bulk of the data, resulting in
letter “a”s with very small follow-through (when both axes are plotted) compared to
the bulk of the data. Some of these functions are shown in the bottom row of Figure
5.6. On the other hand, some of the shape outliers have their peaks shifted to the left,
which results in letter “a”s with a long follow through compared to the bulk of the
data, thereby making the corresponding letters look like a “q” rather than an “a”. These
functions are also shown in Figure 5.6 (see Figures B.12 and B.13 of the Supplementary
Material for the plots of the horizontal and vertical coordinates of these curves).

We applied MSPLOT on the data for letter “a” and MSPLOT flagged 12 unique
outliers compared to the 17 outliers flagged by Fast-MUOD (FST-PRJ1). The outliers
flagged by MSPLOT are the curves: 1, 21, 23, 49, 56, 58, 75, 102, 114, 125, 131,and 158.
Among these 12 unique outliers, 10 were also flagged by FST-PRJ1, indicating a good
overlap between the outliers flagged by MSPLOT and Fast-MUOD. Curves 23 and 158
were flagged as outliers by MSPLOT but not by Fast-MUOD, while the curves 88, 94,
100, 101, 117, 136, and 166 were flagged by Fast-MUOD but not by MSPLOT. Some of
these curves are shown in Figure B.14 of the Supplementary Material. FOM detected
only 3 unique outliers. These are curves 23, 56, and 58, which can be seen in Figure 5.6
(and Figures B.12 and B.14 of the Supplementary Material).

5.3.2 Video Data

In the second application, we applied FST-PRJ1 on a surveillance video data named
“WalkByShop1front” (made available by the EC Funded CAVIAR project/IST 2001 37540
at: homepages.inf.ed.ac.uk/rbf/CAVIAR/). The video consists of a 94 seconds long
recording of a surveillance camera in front of a clothing shop in a shopping mall in Lis-
bon. At various time stamps in the course of the video clip, people passed by the front
of the shop; sometimes they entered the shop to explore the products too. The aim is
to identify time frames during which people passed by or entered the shop. This video
dataset was analysed in Ojo et al. (2021a); they converted the video to greyscale, and
used the original Fast-MUOD to analyse the resulting univariate functional data (with

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Figure 5.7: Some selected frames detected as outliers by FST-PRJ1. The bar charts below
each frame show the proportion of projections in which that corresponding frame was
flagged as an outlier of a particular type. The dotted lines indicate threshold values in
Q.

each frame represented as a function and each pixel being an evaluation point on the
curve). Because the original video is coloured, some information is lost in the conver-
sion to grayscale. We represent the coloured video as trivariate functional data with
each dimension being the RBG values of each pixel. We aim to apply FST-PRJ1 to the
trivariate functional data and compare the performance to the unviariate analysis of the
greyscale values done in Ojo et al. (2021a).

The video clip is provided at 25 frames/seconds and there are a total of 2,359 frames.
The resolution of the video is 384× 288, and therefore each frame contains 384× 288 =

110,592 pixels. For each frame, we arranged the RBG pixel values into an array of size
110,592 × 3. Thus, the trivariate functional dataset is of dimension 2,359 × 110,592 × 3

representing 2,359 functions (the frames) evaluated at 110,592 points (the pixels) where
the value of each point is a vector in R3 (the RGB pixels intensity). Then, we projected
the constructed trivariate functional data on 30 random unit vectors in R3 and applied
Fast-MUOD (FST-PRJ1) on the 30 univariate functional data of size 2,359× 110,592. We
then set the threshold triple to Q = (0.4, 0.3, 0.3).

In total, 356 unique frames were flagged as outliers with 213, 270, and 226 frames
flagged as shape, amplitude, and magnitude outliers, respectively (Figure 5.7). A total
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of 143 frames were flagged as outliers of all types. The 356 unique outliers flagged are an
improvement over the 294 unique frames detected as outliers in the previous analysis
of the greyscale pixel values performed by Ojo et al. (2021a). Similar to the analysis in
Ojo et al. (2021a), all the frames flagged as outliers correspond to frames during which
people pass by or enter the shop. This improvement underlines the advantage of using
the multivariate data of the video data compared to performing a univariate analysis of
the greyscale values as done in Ojo et al. (2021a).

To evaluate the performance of Fast-MUOD (with projections) in detecting the video
frames of interest, it is necessary to understand the distribution of the outlying video
frames. The video itself contains three major segments during which various people
passed by or entered the front of the shop. The first segment contains frames 804 – 908,
during which a woman passed by the front of the shop. The second segment contains
frames 1,588 – 2,000, when a man entered the shop (to check the products on sale) and
two other women passed by the shop. The third segment contains frames 2,073 – 2,359,
which show another man entering the shop. All frames detected as outliers are within
the frames of the three main segments, and so there are no FPs. However, similar to
the results obtained by Ojo et al. (2021a), there are pockets of timestamps in these seg-
ments not flagged as outliers. For instance, the first frames detected as outliers are in
the frames of the first segment (frames 803 – 908) with Fast-MUOD flagging frames 815,
830 – 851, 855 – 857, 864, and 881 – 903 as outliers while missing some frames at the
beginning (frames 804–814 and 816 - 830), middle (frames 858 – 863 and 865 – 880), and
end (frames 904 – 908) of this segment. We observed the same behaviour for the second
and third segments, with certain pockets of a few frames in the beginning, middle and
end of the segments not flagged as outliers. Usually, the pocket of frames not flagged as
outliers in the middle of the segments correspond to timestamps when someone enters
the shop and stands beside the products on display, yielding insufficient contrast in the
pixel values of the person and the products on display in the shop. This is shown in Fig-
ure 5.8, which shows some frames in the second segment of outlying frames that were
not flagged as outliers. The first frame, frame 1,597, shows when a man just entered the
camera view. The second frame, frame 1,700, shows the same man in the store checking
out the products. Figure 5.7, on the other hand, shows some selected frames in the sec-
ond segment that were flagged as outliers. In addition to frames shown in Figures 5.7
and 5.8, the proportion of directions in which the frames are detected as outliers of each
type are also shown.

Since the frames detected as outliers depend on the threshold triple Q, it is useful to
visualise the frames of the video together with an animation of the proportion of direc-
tions in which the frames are flagged as outliers of different types. Such an animation
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Figure 5.8: Some selected frames not detected as outliers by FST-PRJ1. The bar charts
below each frame show the proportion of projections in which that corresponding frame
was flagged as an outlier of a particular type. The dotted lines indicate threshold values
in Q.

can be seen by clicking on this [link] and it shows the variation in the proportion of
directions in which frames are outlying as people pass by or enter the shop.

For comparison, we applied MSPLOT on the same video data. MSPLOT flagged
1,001 frames (out of the 2,359 frames in the data) as outliers; although most frames in
the three segments of interest were flagged as outliers, about 200 additional frames that
are clearly out of the outlying segments were detected as outliers. However, FOM per-
formed very well on the data, flagging 774 outliers with all the flagged frames coming
from the three outlying segments in the video data. FOM excels in the analysis of image
and video data because it computes a directional outlyingness at each grid point of the
functional data, and image and video data usually consist of thousands of gridpoints
(or pixels) per observation (image or frame). Only a few frames from the beginning and
end of the outlying segments were not flagged by FOM.

To briefly examine the computational burden of the three methods, Table 5.2 shows
the computational time for each method to analyse the video data. FOM is the fastest re-
quiring about 47 minutes to complete the analysis. Fast-MUOD with 30 projections used
about 51 minutes, while MSPLOT required over 679 minutes (>11 hours) to complete
the analysis. Although FOM had the fastest running time, it also required the largest

https://drive.google.com/file/d/1kcXDT3Ms5myxYbCergyW3ly5AuSazcx5/view?usp=sharing
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amount of random access memory (RAM) for the analysis. MSPLOT and Fast-MUOD
ran in a computer with 64 GB memory, while FOM required ≥ 64 GB memory to com-
plete the analysis. The running time experiment was performed on an Ubuntu Server
containing an AMD Opteron CPU containing 64 Cores (each running at 2.3 GHz) with
512 GB of RAM. The codes used in this experiment are those provided with the pub-
lished papers on the methods or those provided on the website of the authors without
any prior optimization.

Table 5.2: Computational time in minutes for the video data

Method Times (Minutes)
FOM 47.4
Fast-MUOD 51.1
MSPLOT 679.7

5.4 Discussion

The Fast-MUOD indices, introduced by Ojo et al. (2021a) are useful and scalable tools
for OD for functional data. However, their use presented in Ojo et al. (2021a) was lim-
ited to univariate functional data. We sought to address that in this work by presenting
three techniques for using these indices for outlier detection in multivariate functional
data settings.

Among the various proposed techniques, using random projections showed the
most effective results. This involves projecting the multivariate functional data of in-
terest on different unit vectors and then applying Fast-MUOD indices on the resulting
projected univariate functional data. Then, an observation is flagged as an outlier if it is
detected as an outlier in at least a fixed proportion of the projection directions.

We demonstrated the proposed methods on various simulated and real datasets and
compared their performance to other multivariate functional OD methods. Our simula-
tion results show the need for adequate selection of a threshold triple Q = (τS , τA, τM )

of the proportion of projection directions used in determining whether an observation
is an outlier (of a particular type). Instead of declaring an observation as an outlier if
it is detected as an outlier in any direction (possibly resulting in a high FPR), carefully
selecting the threshold helps to control the FPR. A possible direction for improvement
is to develop a method to select these threshold values even when the distribution and
base model of the data are unknown. With the proposed techniques, the Fast-MUOD
indices add to the available options of OD tools for multivariate functional data.
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Chapter 6

Concluding Remarks and Future
Work

This thesis extends the outlier detection in functional data literature with three main
contributions. The second chapter of the thesis presents the fdaoutlier R package. The
package implements some of the state-of-the-art methods for outlier detection in func-
tional data like directional outlyingness and MS-Plot, total variation depth and modi-
fied shape similarity index (TVD and MSS), sequential transformations and the massive
unsupervised outlier detection (MUOD). A thorough review of various methods imple-
mented were presented coupled with clear usage examples and use cases.

The third chapter then builds on Chapter 2 by proposing Semifast-MUOD and Fast-
MUOD for outlier detection in univariate functional data. These methods detect outliers
by computing for each functional observation, a magnitude, amplitude, and shape in-
dex, which target the corresponding types of outliers. Functional observations with any
extremely high index are then identified using a boxplot cutoff method (applied on the
indices), such observation is classified as an outlier. Because the three indices are in-
dependently checked for outliers, identified functional observations are also classified,
unsupervised, as a by-product of the outlier detection process, without the need for vi-
sualization. This is useful when it is difficult to visualize the data. We then explored the
theoretical properties of the Fast-MUOD indices under simple transformations in Chap-
ter 4, and extended Fast-MUOD for outlier detection in multivariate functional data in
Chapter 5. The proposed methods were applied to simulated and real data examples
including video, handwriting, weather and population growth data.

Some interesting further research work arising from the contributions of this thesis
are:

• Further development of fdaoutlier to include more recent functional outlier detec-
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tion methods that are not yet implemented. For instance, we are already working
on including Fast-MUOD and Semifast-MUOD in fdaoutlier.

• In our work, we focused mainly on detecting outliers with the Fast-MUOD (and
Semifast-MUOD) indices. It will be interesting to use these indices for further
statistical analysis of functional data, e.g., hypothesis testing, classification, and
clustering. Initial findings on the use of the Fast-MUOD indices for classification
tasks in functional data show promising results

• Our current analysis has focused on univariate and multivariate functional data
defined on an interval [a, b] ⊂ R. It is of interest to explore generalization of the
indices to functional data defined over more complex structures (e.g., subsets of
Rp, p ∈ N, or manifolds).

• Delve into more theoretical properties of both the indices and the methods devel-
oped in the thesis.

• Explore more complex datasets that can be considered as functional data and
work on the interpretation of the outliers found.
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Appendix A

Supplementary Material: Detecting
and Classifying Outliers in Big
Functional Data

A.1 Comparison between L1 median and Point-wise median
for Fast-MUOD

In this section, we present simulation results showing that the performance of Fast-
MUOD using the point-wise median (FSTP) and the L1 median (FSTL1) are similar.
Note that FSTL1MAG considers magnitude outliers only, flagged by the magnitude
index of FSTL1. The same applies to FSTL1SHA and FSTL1AMP (considering shape
outliers and amplitude outliers only of FSTL1 respectively). Thus, FSTL1 is the union of
outliers flagged by FSTL1MAG, FSTL1SHA, and FSTL1AMP. The same notation system
is used for FSTP. The results can be found in Table A.1.

A.2 Contamination rate

Here, we present simulation results showing that the performance of the proposed
methods as the contamination rate is increased up to 20%, Results are presented in
Tables A.2 and A.3.
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Table A.1: Mean and Standard Deviation (in parentheses) of the True Positive Rate
(TPR) and the False Positive Rate (FPR) over eight simulation models comparing the
point-wise median and the L1 median for computing the Fast-MUOD Indices. Experi-
ment setup include 500 repetitions with n = 300, d = 50, and α = 0.1.

Method
Model1 Model 2 Model 3 Model 4

FPR TPR FPR TPR FPR TPR FPR
FSTL1 9.91(1.53) 100.00(0.00) 8.94(1.53) 99.79(0.98) 6.10(1.37) 100.00(0.00) 3.15(1.10)
FSTL1MAG 1.72(0.92) 99.99(0.15) 0.36(0.39) 4.23(3.66) 1.52(0.89) 41.99(9.76) 0.62(0.53)
FSTL1SHA 7.95(1.37) 7.74(4.85) 7.94(1.43) 98.98(2.01) 4.35(1.14) 100.00(0.00) 2.25(0.94)
FSTL1AMP 1.71(0.85) 1.67(2.39) 1.69(0.93) 6.39(4.70) 1.39(0.79) 55.74(11.72) 0.45(0.45)
FSTP 9.90(1.50) 100.00(0.00) 8.95(1.59) 99.81(0.89) 6.10(1.37) 100.00(0.00) 3.15(1.13)
FSTPMAG 1.74(0.92) 99.99(0.15) 0.36(0.40) 4.13(3.70) 1.52(0.89) 41.25(9.71) 0.63(0.54)
FSTPSHA 7.94(1.34) 7.79(4.86) 7.94(1.48) 98.97(2.03) 4.36(1.12) 100.00(0.00) 2.24(0.95)
FSTPAMP 1.70(0.83) 1.66(2.43) 1.69(0.93) 6.41(4.62) 1.38(0.80) 54.56(11.76) 0.45(0.45)

Method
Model 5 Model 6 Model 7 Model 8

TPR FPR TPR FPR TPR FPR TPR FPR
FSTL1 96.11(4.22) 5.67(1.18) 93.31(6.25) 6.33(1.37) 79.69(15.05) 6.56(1.89) 98.75(2.28) 6.64(1.41)
FSTL1MAG 16.02(6.73) 1.08(0.71) 0.81(1.65) 1.76(0.96) 1.64(2.34) 1.69(0.89) 30.65(8.12) 1.05(0.75)
FSTL1SHA 86.50(6.79) 4.40(1.11) 91.26(6.67) 4.37(1.13) 4.23(3.68) 4.95(1.69) 71.92(7.60) 5.31(1.29)
FSTL1AMP 23.10(7.96) 1.02(0.72) 3.53(3.60) 1.42(0.79) 79.03(15.59) 0.01(0.05) 10.71(5.72) 1.29(0.84)
FSTP 95.97(4.27) 5.67(1.19) 93.05(6.42) 6.31(1.35) 79.73(14.95) 6.55(1.91) 98.63(2.45) 6.65(1.40)
FSTPMAG 15.94(6.70) 1.08(0.71) 0.83(1.70) 1.77(0.94) 1.65(2.36) 1.69(0.90) 30.65(8.10) 1.04(0.75)
FSTPSHA 86.35(6.74) 4.39(1.12) 91.01(6.75) 4.35(1.10) 4.21(3.68) 4.94(1.72) 71.77(7.58) 5.31(1.29)
FSTPAMP 22.99(7.93) 1.01(0.71) 3.54(3.78) 1.40(0.79) 79.10(15.42) 0.01(0.05) 10.74(5.69) 1.29(0.83)
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Table A.2: Mean and Standard Deviation (in parentheses) of the True Positive Rates
(TPR) and False Positive Rate (FPR) over eight simulation models with 500 repetitions
for each possible case. Each simulation is done with n = 300 and d = 50 and α = 0.15.
Comparatively high TPRs are in bold. Proposed methods in italics.

Method
Model 2 Model 3 Model 4 Model 5

TPR FPR TPR FPR TPR FPR TPR FPR

FST 100.00(0.00) 8.89(1.58) 96.48(4.37) 4.31(1.14) 99.98(0.20) 1.38(0.77) 88.65(7.05) 3.82(1.13)
FSTMG 100.00(0.00) 0.09(0.20) 3.97(2.95) 1.40(0.84) 30.94(7.84) 0.34(0.40) 14.82(5.42) 0.91(0.66)
FSTSH 7.98(4.20) 8.02(1.55) 94.01(5.36) 2.65(0.87) 99.98(0.22) 0.94(0.63) 77.31(7.95) 2.78(0.95)
FSTAM 1.79(1.92) 1.69(0.97) 6.27(3.55) 1.22(0.76) 31.72(10.31) 0.14(0.24) 21.01(6.41) 0.72(0.60)
SF 99.99(0.17) 8.57(1.60) 95.25(4.98) 3.91(1.16) 98.91(1.85) 0.95(0.66) 84.76(7.43) 3.52(1.08)
SF25 99.96(0.42) 8.55(1.60) 95.14(4.97) 3.86(1.11) 98.26(3.19) 0.94(0.66) 84.57(7.52) 3.52(1.06)
MUOD 99.62(4.90) 8.18(3.92) 48.67(23.19) 9.87(4.57) 88.41(15.03) 3.77(3.50) 42.63(12.84) 3.52(2.70)
OGMBD 100.00(0.10) 4.72(1.46) 29.70(9.91) 2.97(1.06) 58.88(12.56) 0.50(0.45) 89.67(5.40) 0.94(0.66)
MSPLT 99.93(0.39) 2.39(1.21) 100.00(0.00) 2.47(1.16) 99.80(0.70) 1.15(0.77) 99.98(0.20) 2.39(1.17)
TVD 99.99(0.14) 0.00(0.02) 100.00(0.00) 0.00(0.00) 1.48(2.09) 0.00(0.00) 100.00(0.00) 0.00(0.02)
FOM 100.00(0.00) 0.01(0.07) 21.02(14.78) 0.02(0.09) 6.06(5.86) 0.01(0.05) 4.70(4.43) 0.01(0.07)
FAO 100.00(0.10) 0.00(0.03) 8.56(8.91) 0.00(0.04) 0.07(0.38) 0.00(0.04) 2.52(3.14) 0.00(0.03)
FOM2 100.00(0.00) 0.51(0.47) 100.00(0.00) 1.23(0.74) 34.47(10.73) 0.49(0.47) 100.00(0.00) 1.16(0.73)
FAO2 100.00(0.00) 0.70(0.56) 100.00(0.00) 0.89(0.67) 4.27(3.47) 1.39(0.87) 100.00(0.00) 0.89(0.67)
ED 99.97(0.24) 0.00(0.00) 98.71(1.80) 0.00(0.00) 0.00(0.00) 0.00(0.00) 21.52(7.10) 0.00(0.00)
SEQ1 99.98(0.22) 0.00(0.00) 100.00(0.00) 0.00(0.02) 6.35(4.97) 0.00(0.00) 100.00(0.00) 0.00(0.00)
SEQ2 99.98(0.22) 0.68(0.52) 100.00(0.00) 0.51(0.46) 24.55(11.66) 0.00(0.00) 81.52(6.46) 0.48(0.43)
SEQ3 99.98(0.22) 0.00(0.00) 100.00(0.00) 0.00(0.02) 3.46(3.21) 0.00(0.00) 100.00(0.00) 0.00(0.00)

Method
Model 6 Model 7 Model 8

TPR FPR TPR FPR TPR FPR

FST 79.53(9.87) 4.58(1.32) 41.90(20.48) 6.75(2.03) 96.45(3.47) 5.08(1.28)
FSTMG 0.98(1.50) 1.74(1.04) 1.67(1.97) 1.68(0.93) 30.07(6.58) 0.81(0.63)
FSTSH 77.73(9.75) 2.67(0.89) 4.06(3.04) 5.16(1.82) 68.58(6.13) 3.95(1.15)
FSTAM 2.98(2.84) 1.18(0.80) 39.66(21.37) 0.00(0.00) 9.31(4.30) 1.20(0.80)
SF 79.25(9.73) 4.24(1.21) 34.30(15.56) 6.77(2.09) 95.18(4.01) 4.65(1.18)
SF25 79.05(10.23) 4.20(1.24) 33.84(16.75) 6.83(2.04) 95.04(4.18) 4.63(1.23)
MUOD 39.41(20.18) 11.68(4.77) 92.22(12.04) 18.09(6.89) 56.48(15.12) 3.75(2.44)
OGMBD 98.72(2.08) 0.75(0.58) 3.33(5.64) 0.00(0.00) 80.19(6.37) 2.15(0.96)
MSPLT 100.00(0.00) 2.44(1.24) 52.31(17.11) 0.02(0.10) 100.00(0.10) 2.43(1.24)
TVD 55.78(19.38) 0.00(0.00) 20.12(12.48) 0.00(0.00) 98.59(2.12) 0.00(0.02)
FOM 0.00(0.10) 0.02(0.09) 0.01(0.17) 0.00(0.00) 33.43(8.57) 0.02(0.09)
FAO 0.00(0.00) 0.00(0.04) 0.03(0.30) 0.00(0.00) 28.36(7.21) 0.00(0.04)
FOM2 39.80(16.33) 1.09(0.66) 5.30(5.49) 0.06(0.15) 97.17(3.27) 1.12(0.70)
FAO2 28.24(15.09) 0.78(0.62) 1.53(3.10) 0.05(0.15) 92.58(4.88) 0.89(0.66)
ED 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 55.08(7.47) 0.00(0.00)
SEQ1 0.10(0.46) 0.00(0.00) 0.00(0.00) 0.00(0.00) 75.32(6.27) 0.00(0.00)
SEQ2 5.58(4.28) 0.48(0.43) 1.61(1.96) 0.01(0.05) 74.28(6.67) 0.55(0.48)
SEQ3 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 74.78(6.30) 0.00(0.00)
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Table A.3: Mean and Standard Deviation (in parentheses) of the True Positive Rates
(TPR) and False Positive Rate (FPR) over eight simulation models with 500 repetitions
for each possible case. Each simulation is done with n = 300 and d = 50 and α = 0.2.
Comparatively high TPRs are in bold. Proposed methods in italics.

Method
Model 2 Model 3 Model 4 Model 5

TPR FPR TPR FPR TPR FPR TPR FPR

FST 99.96(0.26) 8.84(1.65) 73.15(13.34) 2.91(1.14) 99.69(0.74) 0.44(0.46) 75.13(8.18) 2.35(0.91)
FSTMG 99.92(0.36) 0.00(0.03) 3.72(2.59) 1.40(0.86) 22.86(6.32) 0.21(0.31) 13.92(4.77) 0.68(0.58)
FSTSH 7.89(3.46) 7.98(1.59) 69.49(13.42) 1.16(0.63) 99.67(0.76) 0.19(0.30) 62.95(7.98) 1.54(0.71)
FSTAM 1.62(1.70) 1.70(0.94) 5.41(3.05) 1.14(0.79) 13.12(6.18) 0.06(0.15) 19.26(5.40) 0.52(0.52)
SF 99.74(1.14) 8.56(1.60) 71.60(13.23) 2.55(1.07) 86.94(8.61) 0.20(0.29) 69.35(8.24) 2.15(0.88)
SF25 99.46(1.95) 8.54(1.67) 71.24(12.98) 2.54(1.10) 84.93(13.91) 0.20(0.31) 69.18(8.11) 2.14(0.88)
MUOD 100.00(0.00) 8.31(3.92) 40.59(21.34) 10.16(4.67) 74.23(18.99) 3.42(4.24) 37.97(11.39) 3.24(2.43)
OGMBD 99.95(0.33) 4.52(1.48) 22.58(8.24) 2.62(1.08) 7.21(5.31) 0.07(0.19) 75.17(8.95) 0.30(0.36)
MSPLT 99.90(0.44) 2.01(1.16) 100.00(0.00) 2.06(1.16) 99.34(1.12) 0.97(0.73) 99.98(0.17) 2.05(1.04)
TVD 99.95(0.33) 0.00(0.03) 100.00(0.00) 0.00(0.00) 0.75(1.26) 0.00(0.00) 100.00(0.00) 0.00(0.00)
FOM 99.99(0.13) 0.00(0.00) 4.63(7.73) 0.00(0.04) 0.51(1.06) 0.00(0.03) 1.39(1.87) 0.00(0.02)
FAO 99.88(0.67) 0.00(0.00) 1.30(3.08) 0.00(0.00) 0.05(0.28) 0.05(0.16) 0.55(1.17) 0.00(0.00)
FOM2 100.00(0.00) 0.14(0.26) 100.00(0.00) 0.72(0.60) 12.28(4.90) 0.50(0.51) 100.00(0.00) 0.53(0.51)
FAO2 100.00(0.00) 0.26(0.35) 100.00(0.00) 0.44(0.46) 1.39(1.72) 2.25(1.20) 100.00(0.00) 0.39(0.46)
ED 99.93(0.53) 0.00(0.00) 97.60(2.48) 0.00(0.00) 0.00(0.00) 0.00(0.00) 17.78(6.05) 0.00(0.00)
SEQ1 99.96(0.27) 0.00(0.00) 100.00(0.00) 0.00(0.00) 4.12(3.56) 0.00(0.00) 100.00(0.00) 0.00(0.00)
SEQ2 99.96(0.27) 0.67(0.52) 100.00(0.00) 0.44(0.41) 16.55(9.34) 0.00(0.00) 78.28(6.15) 0.46(0.41)
SEQ3 99.96(0.27) 0.00(0.00) 100.00(0.00) 0.00(0.00) 2.40(2.58) 0.00(0.00) 100.00(0.00) 0.00(0.00)

Method
Model 6 Model 7 Model 8

TPR FPR TPR FPR TPR FPR
FST 55.81(9.97) 3.30(1.12) 9.32(6.13) 7.18(2.03) 91.60(5.80) 3.66(1.13)
FSTMG 0.91(1.21) 1.79(0.91) 1.76(1.75) 1.70(0.92) 28.88(5.48) 0.62(0.55)
FSTSH 54.20(9.69) 1.29(0.70) 4.32(2.62) 5.55(1.84) 63.16(6.13) 2.70(1.01)
FSTAM 2.62(2.30) 1.05(0.74) 4.20(6.36) 0.00(0.00) 9.20(3.87) 0.96(0.70)
SF 54.30(10.28) 3.07(1.08) 7.99(5.07) 7.16(2.03) 89.58(6.17) 3.21(1.09)
SF25 54.55(10.22) 3.05(1.06) 9.08(6.27) 7.20(2.09) 89.59(6.21) 3.23(1.08)
MUOD 33.77(19.12) 12.08(5.16) 85.97(14.26) 16.82(7.26) 51.12(13.75) 3.53(2.97)
OGMBD 84.93(14.27) 0.13(0.23) 0.13(0.65) 0.00(0.00) 76.86(6.27) 1.51(0.88)
MSPLT 100.00(0.00) 1.96(1.16) 38.82(16.58) 0.02(0.10) 99.96(0.24) 2.03(1.08)
TVD 12.77(12.73) 0.00(0.00) 2.89(5.08) 0.00(0.00) 95.57(4.18) 0.00(0.02)
FOM 0.00(0.00) 0.01(0.06) 0.00(0.00) 0.00(0.00) 27.57(6.55) 0.00(0.00)
FAO 0.00(0.00) 0.00(0.03) 0.00(0.00) 0.00(0.00) 25.33(5.84) 0.00(0.00)
FOM2 13.39(9.51) 0.50(0.48) 0.33(0.80) 0.01(0.08) 92.76(5.06) 0.56(0.53)
FAO2 8.26(6.89) 0.33(0.40) 0.14(0.85) 0.03(0.13) 86.48(5.47) 0.43(0.47)
ED 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 53.28(6.71) 0.00(0.00)
SEQ1 0.10(0.48) 0.00(0.00) 0.00(0.00) 0.00(0.00) 75.53(5.80) 0.00(0.00)
SEQ2 4.49(3.51) 0.45(0.41) 1.65(1.61) 0.00(0.03) 73.00(6.24) 0.46(0.42)
SEQ3 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 75.14(5.80) 0.00(0.00)
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A.3 Sample Size and Evaluation Points

Here, we present simulation results showing that the performance of the proposed
methods, Semifast-MUOD and Fast-MUOD, remain mostly similar, except for Model
7, even with lower sample size and evaluation points of n = 100 and d = 25 respec-
tively. See Subsection 3.4.2 of the main manuscript for a description of the methods
compared. Results are presented in Table A.4.

A.4 Correlation coefficients

We compare the effectiveness of different correlation coefficients that can be used in
computing the shape index IS(Yi, Ỹ ) for Fast-MUOD. We considered Pearson, Spear-
man’s rank, and Kendall’s Tau correlation coefficients, in addition to the Cosine simi-
larity index. We used Models 3, 4, and 6 all which have some form of shape outliers.
We then recorded the True Positive Rate (TPR) and the False Positive Rate (FPR) (to-
gether with their standard deviations) of the outliers flagged by only the shape indices.
Specifically, the methods considered are:

• FSTSH_PEARSON: An observation is an outlier only if it is flagged by Fast-MUOD
as a shape outlier using IS(Yi, Ỹ ) computed with the Pearson’s correlation coeffi-
cient.

• FSTSH_KENDALL: An observation is an outlier only if it is flagged by Fast-MUOD
as a shape outlier using IS(Yi, Ỹ ) computed with the Kendall’s Tau correlation co-
efficient.

• FSTSH_SPEARMAN: An observation is an outlier only if it is flagged by Fast-
MUOD as a shape outlier using IS(Yi, Ỹ ) computed with Spearman’s rank corre-
lation coefficient.

• FSTSH_COSINE: An observation is an outlier only if it is flagged by Fast-MUOD
as a shape outlier using IS(Yi, Ỹ ) computed with the Cosine similarity index.

Table A.5 shows the results of our simulation. The shape index IS(Yi, Ỹ ) computed
using the Pearson correlation coefficient identifies more shape outliers, especially in
Model 3 and Model 6.

A.5 Signal to Noise Ratio

Here we study the changes in the True Positive Rate (TPR) and the False Positive Rate
(FPR) while considering different level of noise in the simulated data. To do this, we
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Table A.4: Mean and Standard Deviation (in parentheses) of the True Positive Rate
(TPR) and the False Positive Rate (FPR) over eight simulation models with 500 repe-
titions for each possible case with sample size n = 100, evaluation points d = 25, and
contamination rate α = 0.1. Comparatively high TPRs are marked in bold.

Method
Model1 Model 2 Model 3 Model 4

FPR TPR FPR TPR FPR TPR FPR

FST 10.07(2.87) 100.00(0.00) 8.99(2.81) 99.04(3.51) 6.16(2.37) 99.98(0.45) 3.15(1.85)
FSTMG 1.94(1.62) 100.00(0.00) 0.45(0.78) 4.66(6.59) 1.64(1.49) 39.70(16.82) 0.69(0.93)
FSTSH 7.93(2.48) 7.70(8.73) 7.86(2.63) 98.08(4.85) 4.34(1.95) 99.98(0.45) 2.17(1.51)
FSTAM 1.97(1.73) 2.04(4.63) 1.83(1.62) 6.70(8.33) 1.43(1.43) 50.26(19.82) 0.50(0.76)
SF 9.76(2.83) 99.96(0.63) 8.62(2.81) 98.50(4.43) 5.77(2.24) 99.90(1.00) 2.68(1.69)
SF25 9.72(2.76) 99.58(3.85) 8.77(2.87) 98.30(4.92) 5.62(2.22) 99.34(3.37) 2.66(1.72)
MUOD 29.10(12.38) 99.64(3.89) 18.92(10.08) 85.70(19.89) 25.50(14.10) 99.00(4.36) 11.16(6.35)
OGMBD 5.25(2.31) 100.00(0.00) 4.66(2.35) 51.96(17.84) 3.85(2.13) 94.68(7.89) 1.33(1.18)
MSPLOT 2.97(2.37) 99.28(2.88) 2.12(1.86) 100.00(0.00) 2.11(1.98) 99.82(1.33) 0.90(1.16)
TVD 0.04(0.22) 100.00(0.00) 0.02(0.16) 100.00(0.00) 0.02(0.16) 15.66(14.62) 0.00(0.00)
FOM 0.69(1.01) 100.00(0.00) 0.09(0.39) 40.30(26.34) 0.14(0.46) 49.16(26.10) 0.12(0.43)
FAO 0.32(0.68) 100.00(0.00) 0.06(0.32) 22.58(20.10) 0.04(0.22) 12.20(19.55) 0.03(0.20)
FOM2 2.06(1.62) 100.00(0.00) 0.45(0.76) 100.00(0.00) 0.92(1.10) 66.64(20.43) 0.36(0.71)
FAO2 1.68(1.59) 100.00(0.00) 0.64(0.99) 100.00(0.00) 0.66(0.99) 27.54(24.54) 0.29(0.63)
ED 0.01(0.11) 100.00(0.00) 0.01(0.12) 99.26(3.04) 0.02(0.13) 5.22(8.74) 0.00(0.00)
SEQ1 0.03(0.19) 100.00(0.00) 0.02(0.16) 100.00(0.00) 0.03(0.17) 38.96(20.61) 0.00(0.00)
SEQ2 1.27(1.17) 100.00(0.00) 1.24(1.18) 100.00(0.00) 1.08(1.09) 69.76(18.96) 0.00(0.00)
SEQ3 0.03(0.18) 100.00(0.00) 0.02(0.15) 100.00(0.00) 0.02(0.16) 18.76(14.49) 0.00(0.00)

Method
Model 5 Model 6 Model 7 Model 8

TPR FPR TPR FPR TPR FPR TPR FPR

FST 94.18(8.37) 5.93(2.26) 91.92(11.89) 6.37(2.32) 73.42(26.24) 6.96(3.17) 97.56(5.52) 6.80(2.38)
FSTMG 17.14(12.05) 1.30(1.31) 0.88(2.91) 1.77(1.63) 1.62(4.10) 1.83(1.67) 30.86(14.54) 1.18(1.30)
FSTSH 83.54(13.01) 4.47(1.90) 90.12(12.44) 4.38(1.82) 4.48(6.63) 5.20(2.87) 70.62(14.58) 5.24(2.14)
FSTAM 23.28(13.22) 1.12(1.23) 3.96(6.39) 1.50(1.38) 72.56(26.80) 0.03(0.21) 9.70(9.31) 1.42(1.38)
SF 91.94(9.73) 5.43(2.13) 92.14(11.36) 5.91(2.21) 62.74(26.88) 7.00(3.00) 97.30(5.81) 6.30(2.25)
SF25 91.80(9.93) 5.38(2.08) 90.46(12.44) 5.87(2.28) 60.36(27.69) 6.97(3.01) 96.86(6.39) 6.24(2.35)
MUOD 80.92(17.19) 16.44(10.97) 80.26(21.09) 26.72(12.57) 98.32(6.76) 33.58(12.18) 88.32(14.55) 15.26(11.95)
OGMBD 96.68(5.89) 2.18(1.62) 99.88(1.09) 2.05(1.57) 22.72(25.78) 0.00(0.07) 86.22(11.18) 2.85(1.86)
MSPLT 99.42(2.42) 2.04(1.75) 100.00(0.00) 2.16(1.95) 48.42(27.14) 0.03(0.20) 99.72(1.65) 2.09(1.86)
TVD 100.00(0.00) 0.03(0.17) 86.00(20.49) 0.02(0.15) 27.38(24.90) 0.00(0.05) 97.98(5.23) 0.02(0.16)
FOM 13.12(14.69) 0.12(0.39) 0.16(1.26) 0.16(0.45) 2.78(8.55) 0.01(0.09) 39.06(17.63) 0.15(0.47)
FAO 8.04(11.38) 0.06(0.27) 0.14(1.34) 0.06(0.24) 2.58(7.30) 0.01(0.11) 33.42(16.24) 0.06(0.27)
FOM2 100.00(0.00) 0.94(1.07) 89.54(16.99) 0.88(1.06) 17.40(19.86) 0.16(0.44) 99.46(2.51) 0.80(0.98)
FAO2 100.00(0.00) 0.63(0.93) 70.16(27.97) 0.65(0.92) 12.90(17.81) 0.15(0.47) 95.94(7.20) 0.62(0.91)
ED 31.16(16.07) 0.00(0.05) 0.14(1.34) 0.02(0.16) 0.00(0.00) 0.00(0.00) 57.62(15.55) 0.01(0.09)
SEQ1 99.86(1.18) 0.01(0.10) 7.00(9.80) 0.02(0.16) 0.04(0.63) 0.00(0.00) 79.36(12.13) 0.01(0.11)
SEQ2 87.98(10.79) 1.05(1.05) 28.34(17.62) 1.14(1.10) 3.24(5.51) 0.06(0.26) 82.66(11.76) 1.07(1.10)
SEQ3 99.94(0.77) 0.01(0.09) 0.20(1.40) 0.02(0.16) 0.04(0.63) 0.00(0.00) 74.98(13.09) 0.01(0.11)
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Table A.5: Mean and Standard Deviation (in parentheses) of the TPR and FPR over
three models with 500 repetitions for each possible case with n = 300, d = 50, α = 0.1.
Comparatively high TPRs are marked in bold.

Method
Model 3 Model 4 Model 6

TPR FPR TPR FPR TPR FPR

FSTSH_PEARSON 99.03(2.17) 4.36(1.16) 99.99(0.15) 2.12(0.89) 89.80(6.86) 4.38(1.12)
FSTSH_KENDALL 8.73(5.36) 4.48(1.26) 99.89(0.59) 0.64(0.52) 76.59(11.80) 2.66(0.97)
FSTSH_SPEARMAN 29.67(9.97) 6.67(1.41) 99.97(0.33) 1.79(0.82) 87.25(8.73) 4.87(1.23)
FSTSH_COSINE 71.09(11.17) 6.58(1.17) 99.95(0.42) 2.30(0.97) 54.07(11.80) 6.78(1.27)

change the covariance matrix in the base and contamination models for Models 2, 3, 4,
and 6 to γ(s, t) = ν · exp{−|t − s|}, where s, t ∈ [0, 1] and ν ∈ {0.25, 0.5, 1.5, 5}. These
results can be seen in Tables A.6 and A.7.
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Table A.6: Mean and Standard Deviation (in parentheses) of the TPR and FPR over four
models with 500 repetitions for each possible case with n = 300, d = 50, α = 0.1 and
ν ∈ {0.25, 0.5}. Comparatively high TPRs are marked in bold.

Method
Model 2 Model 3 Model 4 Model 6

TPR FPR TPR FPR TPR FPR TPR FPR

ν = 0.25

FST 100.00(0.00) 6.92(1.59) 100.00(0.00) 4.29(1.21) 100.00(0.00) 3.48(1.16) 100.00(0.00) 4.01(1.21)
FSTMG 100.00(0.00) 0.39(0.41) 12.06(6.40) 1.22(0.75) 38.07(10.76) 0.53(0.46) 11.65(6.27) 1.09(0.73)
FSTSH 5.88(4.44) 5.49(1.45) 100.00(0.00) 2.63(0.97) 100.00(0.00) 2.68(1.01) 100.00(0.00) 2.58(0.96)
FSTAM 1.70(2.44) 1.71(0.97) 21.58(7.67) 0.99(0.70) 95.71(3.99) 0.38(0.39) 30.75(8.73) 0.73(0.58)
SF 100.00(0.00) 6.92(1.58) 100.00(0.00) 4.08(1.17) 100.00(0.00) 2.73(1.09) 100.00(0.00) 3.85(1.18)
SF25 100.00(0.00) 6.93(1.65) 100.00(0.00) 4.10(1.21) 100.00(0.00) 2.65(1.07) 100.00(0.00) 3.81(1.17)
MUOD 100.00(0.00) 10.11(4.09) 99.11(6.77) 6.68(3.35) 99.98(0.45) 5.52(2.93) 94.50(14.33) 6.76(3.55)
OGMBD 100.00(0.00) 4.76(1.42) 38.89(11.78) 3.54(1.23) 100.00(0.00) 2.08(0.87) 100.00(0.00) 1.71(0.86)
MSPLT 100.00(0.00) 2.95(1.32) 100.00(0.00) 2.99(1.31) 100.00(0.00) 2.91(1.38) 100.00(0.00) 2.81(1.33)
TVD 100.00(0.00) 0.00(0.02) 100.00(0.00) 0.00(0.00) 99.26(1.89) 0.00(0.00) 100.00(0.00) 0.00(0.03)
FOM 100.00(0.00) 0.06(0.16) 99.97(0.33) 0.11(0.22) 7.19(10.03) 0.05(0.15) 44.57(31.21) 0.08(0.20)
FAO 100.00(0.00) 0.02(0.09) 99.55(1.45) 0.03(0.10) 0.07(0.51) 0.00(0.04) 19.87(19.94) 0.03(0.12)
FOM2 100.00(0.00) 1.26(0.71) 100.00(0.00) 2.06(0.99) 99.49(1.32) 1.75(0.86) 100.00(0.00) 1.87(0.86)
FAO2 100.00(0.00) 1.41(0.79) 100.00(0.00) 1.61(0.91) 39.20(23.27) 1.26(0.81) 100.00(0.00) 1.53(0.81)
ED 100.00(0.00) 0.00(0.00) 100.00(0.00) 0.00(0.00) 11.15(9.54) 0.00(0.00) 26.19(11.04) 0.00(0.02)
SEQ1 100.00(0.00) 0.00(0.00) 100.00(0.00) 0.00(0.00) 98.80(2.17) 0.00(0.00) 99.99(0.15) 0.00(0.02)
SEQ2 100.00(0.00) 0.00(0.02) 100.00(0.00) 0.01(0.04) 99.95(0.39) 0.00(0.02) 100.00(0.00) 0.01(0.04)
SEQ3 100.00(0.00) 0.00(0.00) 100.00(0.00) 0.00(0.00) 31.67(13.54) 0.00(0.00) 26.29(11.12) 0.00(0.02)

ν = 0.5

FST 100.00(0.00) 7.62(1.54) 100.00(0.00) 5.03(1.27) 99.99(0.21) 3.64(1.17) 100.00(0.00) 4.82(1.23)
FSTMG 100.00(0.00) 0.38(0.38) 6.62(4.57) 1.40(0.82) 17.77(8.22) 0.82(0.58) 6.08(4.48) 1.31(0.81)
FSTSH 6.54(4.52) 6.44(1.41) 100.00(0.00) 3.26(1.01) 99.99(0.21) 2.58(1.01) 100.00(0.00) 3.23(0.97)
FSTAM 1.63(2.38) 1.73(0.97) 11.67(6.13) 1.20(0.82) 60.70(11.91) 0.36(0.38) 15.65(6.69) 1.01(0.70)
SF 100.00(0.00) 7.58(1.60) 100.00(0.00) 4.73(1.24) 99.96(0.36) 3.11(1.11) 100.00(0.00) 4.58(1.19)
SF25 100.00(0.00) 7.55(1.54) 100.00(0.00) 4.71(1.19) 99.94(0.44) 3.15(1.14) 100.00(0.00) 4.59(1.21)
MUOD 100.00(0.00) 9.50(3.90) 87.49(20.59) 9.51(4.31) 96.41(8.80) 6.15(3.63) 69.81(22.80) 8.45(4.16)
OGMBD 100.00(0.00) 4.84(1.45) 38.75(11.62) 3.48(1.21) 98.57(2.28) 2.02(0.88) 100.00(0.00) 1.78(0.82)
MSPLT 100.00(0.00) 2.97(1.39) 100.00(0.00) 2.87(1.35) 99.97(0.30) 2.83(1.32) 100.00(0.00) 2.94(1.33)
TVD 100.00(0.00) 0.00(0.02) 100.00(0.00) 0.00(0.00) 38.87(18.45) 0.00(0.00) 100.00(0.00) 0.00(0.02)
FOM 100.00(0.00) 0.07(0.17) 93.29(6.72) 0.09(0.19) 0.65(1.69) 0.06(0.15) 2.85(4.28) 0.06(0.17)
FAO 100.00(0.00) 0.02(0.11) 82.73(12.58) 0.03(0.10) 0.11(0.64) 0.00(0.04) 2.01(3.48) 0.01(0.09)
FOM2 100.00(0.00) 1.30(0.72) 100.00(0.00) 1.95(0.88) 66.22(13.00) 1.80(0.87) 100.00(0.00) 1.89(0.87)
FAO2 100.00(0.00) 1.42(0.82) 100.00(0.00) 1.49(0.74) 17.43(13.20) 1.50(0.85) 100.00(0.00) 1.53(0.84)
ED 100.00(0.00) 0.00(0.00) 100.00(0.00) 0.00(0.00) 0.79(1.77) 0.00(0.00) 2.22(2.82) 0.00(0.00)
SEQ1 100.00(0.00) 0.00(0.00) 100.00(0.00) 0.00(0.00) 41.70(14.60) 0.00(0.00) 49.93(13.31) 0.00(0.00)
SEQ2 100.00(0.00) 0.09(0.18) 100.00(0.00) 0.07(0.17) 80.37(10.31) 0.00(0.03) 72.23(10.45) 0.07(0.16)
SEQ3 100.00(0.00) 0.00(0.00) 100.00(0.00) 0.00(0.00) 2.81(3.44) 0.00(0.00) 2.39(2.93) 0.00(0.00)
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Table A.7: Mean and Standard Deviation (in parentheses) of the TPR and FPR over four
models with 500 repetitions for each possible case with n = 300, d = 50, α = 0.1 and
ν ∈ {1.5, 5}. Comparatively high TPRs are marked in bold.

Method
Model 2 Model 3 Model 4 Model 6

TPR FPR TPR FPR TPR FPR TPR FPR

ν = 1.5

FST 99.93(0.49) 10.06(1.55) 80.99(9.75) 6.86(1.35) 90.73(6.01) 4.43(1.39) 65.28(11.38) 7.10(1.37)
FSTMG 99.89(0.60) 0.35(0.38) 3.23(3.33) 1.53(0.86) 5.97(4.60) 1.38(0.87) 3.09(3.16) 1.59(0.85)
FSTSH 8.93(5.00) 9.03(1.45) 78.13(9.77) 5.13(1.21) 90.65(6.08) 2.52(0.97) 61.44(10.96) 5.32(1.18)
FSTAM 1.71(2.38) 1.69(0.91) 4.77(3.94) 1.43(0.84) 18.06(8.08) 0.81(0.61) 5.66(4.45) 1.37(0.79)
SF 99.94(0.44) 9.46(1.51) 79.93(9.68) 6.30(1.31) 87.32(6.69) 3.64(1.19) 63.53(11.06) 6.47(1.28)
SF25 99.91(0.57) 9.49(1.49) 79.45(9.82) 6.28(1.38) 87.04(8.02) 3.72(1.24) 63.49(10.80) 6.48(1.26)
MUOD 97.78(8.96) 8.65(4.38) 34.67(17.21) 11.26(4.68) 68.05(15.45) 8.30(4.04) 31.61(14.09) 11.05(4.57)
OGMBD 98.25(2.51) 4.72(1.39) 32.25(10.39) 3.42(1.13) 67.01(9.08) 2.24(0.95) 88.95(7.15) 1.93(0.85)
MSPLT 94.21(5.34) 2.92(1.34) 100.00(0.00) 2.87(1.34) 80.71(8.70) 2.92(1.34) 99.12(2.00) 2.79(1.27)
TVD 98.24(2.56) 0.00(0.02) 100.00(0.00) 0.00(0.00) 0.44(1.26) 0.00(0.02) 54.42(15.48) 0.00(0.00)
FOM 99.99(0.15) 0.06(0.16) 13.05(12.26) 0.11(0.23) 0.58(1.52) 0.17(0.26) 0.43(1.22) 0.12(0.22)
FAO 99.93(0.49) 0.02(0.09) 5.25(7.10) 0.03(0.10) 0.19(0.80) 0.06(0.16) 0.19(0.81) 0.03(0.11)
FOM2 100.00(0.00) 1.23(0.74) 100.00(0.00) 2.02(0.94) 19.60(8.27) 2.32(0.92) 59.50(14.36) 2.02(0.92)
FAO2 100.00(0.00) 1.45(0.86) 100.00(0.00) 1.56(0.87) 12.49(7.43) 2.05(0.97) 48.37(15.46) 1.58(0.86)
ED 98.43(2.45) 0.00(0.00) 83.27(7.70) 0.00(0.00) 0.03(0.33) 0.00(0.00) 0.07(0.47) 0.00(0.00)
SEQ1 98.29(2.45) 0.00(0.00) 100.00(0.00) 0.00(0.00) 0.55(1.47) 0.00(0.00) 0.38(1.08) 0.00(0.00)
SEQ2 98.29(2.45) 1.40(0.70) 100.00(0.00) 1.13(0.67) 6.78(6.46) 0.01(0.05) 5.39(4.65) 1.10(0.68)
SEQ3 98.29(2.45) 0.00(0.00) 100.00(0.00) 0.00(0.00) 0.06(0.44) 0.00(0.00) 0.07(0.47) 0.00(0.00)

ν = 5

FST 70.97(10.80) 11.17(1.68) 11.85(6.49) 9.80(1.62) 42.21(9.51) 5.77(1.48) 14.59(6.90) 10.49(1.69)
FSTMG 66.31(11.31) 0.41(0.42) 1.88(2.54) 1.69(0.89) 2.86(3.14) 1.59(0.92) 2.13(2.79) 1.76(0.89)
FSTSHA 10.29(5.33) 10.15(1.68) 9.61(6.09) 7.97(1.51) 41.25(9.54) 3.55(1.10) 12.10(6.53) 8.64(1.61)
FSTAM 1.72(2.31) 1.66(0.88) 2.47(2.77) 1.64(0.91) 5.55(4.64) 1.31(0.78) 2.91(3.18) 1.65(0.92)
SF 76.50(9.30) 10.47(1.67) 10.51(6.24) 9.05(1.67) 38.99(9.89) 4.62(1.30) 13.43(6.69) 9.74(1.70)
SF25 75.65(9.56) 10.41(1.64) 10.39(6.13) 8.99(1.70) 38.69(10.57) 4.65(1.34) 13.51(6.89) 9.76(1.72)
MUOD 74.78(18.66) 14.67(7.06) 26.25(14.44) 18.46(10.50) 44.07(12.90) 12.76(4.74) 24.81(12.34) 17.97(7.90)
OGMBD 18.68(9.64) 4.72(1.40) 11.17(6.43) 3.50(1.15) 26.32(8.14) 3.35(1.17) 19.69(8.67) 2.83(1.12)
MSPLT 9.15(6.47) 2.77(1.27) 48.01(14.93) 2.89(1.27) 27.09(9.30) 2.80(1.31) 21.75(10.97) 2.65(1.25)
TVD 18.51(9.74) 0.00(0.02) 100.00(0.00) 0.00(0.02) 0.03(0.30) 0.00(0.02) 0.33(1.09) 0.00(0.02)
FOM 71.67(12.59) 0.07(0.17) 0.30(1.00) 0.15(0.26) 0.67(1.59) 0.41(0.43) 0.56(1.46) 0.43(0.48)
FAO 49.99(16.10) 0.03(0.10) 0.15(0.76) 0.07(0.16) 0.28(1.02) 0.17(0.26) 0.28(0.97) 0.17(0.29)
FOM2 93.87(4.73) 1.25(0.70) 100.00(0.00) 2.14(0.93) 8.59(5.64) 3.14(1.18) 10.33(6.27) 2.56(1.02)
FAO2 93.01(5.61) 1.51(0.83) 100.00(0.00) 1.70(0.91) 7.07(5.10) 2.74(1.14) 8.21(5.57) 2.09(0.98)
ED 16.40(8.54) 0.00(0.02) 3.55(3.47) 0.00(0.02) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
SEQ1 15.25(8.06) 0.00(0.02) 100.00(0.00) 0.00(0.02) 0.01(0.15) 0.00(0.00) 0.00(0.00) 0.00(0.02)
SEQ2 15.68(8.17) 0.47(0.52) 60.53(10.52) 0.22(0.36) 0.14(0.67) 0.04(0.12) 0.13(0.76) 0.28(0.37)
SEQ3 15.25(8.06) 0.00(0.02) 100.00(0.00) 0.00(0.02) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.02)
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Appendix B

Supplementary Material:
Multivariate Functional Outlier
Detection with the Fast-MOUD
Indices

B.1 Proof of Proposition 4.3

(i) (a) By definition,

IM (y′, FX) =

∫︂
y′(t)dt− β(y′)

∫︂
µ(r)dr (B.1)

=

∫︂
(ay(t) + b)dt− β(ay(t) + b)

∫︂
µ(r)dr.

But,

β(ay(t) + b) =

∫︁ [︁
ay(t) + b−

∫︁
(ay(r) + b)dr

]︁
µ̃(t)dt∫︁

µ̃(t)2dt

=

∫︁ [︁
ay(t)−

∫︁
ay(r)dr

]︁
µ̃(t)dt∫︁

µ̃(t)2dt

=
a
∫︁
ỹ(t)µ̃(t)dt∫︁
µ̃(t)2dt

= aβ(y).
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So Equation (B.1) becomes

IM (y′, FX) = b+ a

∫︂
y(t)dt− aβ(y)

∫︂
µ(r)dr

= aIM (y, FX) + b.

(b) For the amplitude index, by definition, we have that

IA(y
′, FX) =

∫︁ [︁
ay(t) + b−

∫︁
(ay(r) + b)dr

]︁ [︁
µ(t)−

∫︁
µ(r)dr

]︁
dt∫︁ [︁

µ(t)−
∫︁
µ(r)dr

]︁2
dt

− 1

=
a
∫︁ [︁

y(t)−
∫︁
y(r)dr

]︁ [︁
µ(t)−

∫︁
µ(r)dr

]︁
dt∫︁ [︁

µ(t)−
∫︁
µ(r)dr

]︁2
dt

− 1

=
a
∫︁
ỹ(t)µ̃(t)dt∫︁
µ̃(t)2dt

− 1

= a(IA(y, FX) + 1)− 1

= aIA(y, FX) + a− 1.

(c) For the shape index, since a ̸= 0, we have by definition:

IS(y
′, FX) = 1−

∫︁ [︁
ay(t) + b−

∫︁
(ay(r) + b)dr

]︁ [︁
µ(t)−

∫︁
µ(r)dr

]︁
dt(︂∫︁ [︁

ay(t) + b−
∫︁
(ay(r) + b)dr

]︁2
dt
)︂1/2 (︂∫︁ [︁

µ(t)−
∫︁
µ(r)dr

]︁2
dt
)︂1/2

= 1−
a
∫︁ [︁

y(t)−
∫︁
y(r)dr

]︁ [︁
µ(t)−

∫︁
µ(r)dr

]︁
dt

a
(︂∫︁ [︁

y(t)−
∫︁
y(r)dr

]︁2
dt
)︂1/2 (︂∫︁ [︁

µ(t)−
∫︁
µ(r)dr

]︁2
dt
)︂1/2

= 1−
∫︁
ỹ(t)µ̃(t)dt(︁∫︁

ỹ(t)2dt
)︁1/2 (︁∫︁

µ̃(t)2dt
)︁1/2 = IS(y, FX).

Thus, for any a, b ∈ R, a ̸= 0, we have that IS(y, FX) = IS(y
′, FX).

(ii) (a) Since

β(y′) = β(y(t) + z(t))

=

∫︁ [︁
y(t) + z(t)−

∫︁
(y(r) + z(r))dr

]︁
µ̃(t)dt∫︁

µ̃(t)2dt

=

∫︁ [︁
y(t)−

∫︁
y(r)dr + z(t)−

∫︁
z(r)dr

]︁
µ̃(t)dt∫︁

µ̃(t)2dt

=

∫︁
[ỹ(t) + z̃(t)] µ̃(t)dt∫︁

µ̃(t)2dt

= β(y) + β(z),
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we have (by definition) that

IM (y′, FX) =

∫︂
y′(t)dt− β(y′)

∫︂
µ(r)dr

=

∫︂
(y(t) + z(t))dt− [β(y) + β(z)]

∫︂
µ(r)dr

=

∫︂
(y(t) + z(t))dt− β(y)

∫︂
µ(r)dr − β(z)

∫︂
µ(r)dr

= IM (y, FX) + IM (z, FX).

(b) For the amplitude index, assume that for some z ∈ L2([0, 1]), ⟨z̃, µ̃⟩ = 0, we
have that

IA(y
′, FX) =

∫︁
ỹ′(t)µ̃(t)∫︁
µ̃(t)2dt

− 1

=

∫︁ [︁
y(t) + z(t)−

∫︁
(y(r) + z(r))dr

]︁
µ̃(t)dt∫︁

µ̃(t)2dt
− 1

=

∫︁ [︁
y(t)−

∫︁
y(r)dr + z(t)−

∫︁
z(r)dr

]︁
µ̃(t)dt∫︁

µ̃(t)2dt
− 1

=

∫︁
[ỹ(t) + z̃(t)] µ̃(t)dt∫︁

µ̃(t)2dt
− 1

=

∫︁
ỹ(t)µ̃(t)dt∫︁
µ̃(t)2dt

+

∫︁
z̃(t)µ̃(t)dt∫︁
µ̃(t)2dt

− 1

=
⟨ỹ, µ̃⟩
∥µ̃∥2

+
⟨z̃, µ̃⟩
∥µ̃∥2

− 1

=
⟨ỹ, µ̃⟩
∥µ̃∥2

− 1

= IA(y, FX).

Now, assume that IA(y, FX) = IA(y
′, FX), we have (by definition of IA) that∫︂

ỹ(t)µ̃(t)dt =

∫︂
ỹ′(t)µ̃(t)dt

=

∫︂ [︃
y(t) + z(t)−

∫︂
(y(r) + z(r))dr

]︃
µ̃(t)dt

=

∫︂ [︃
y(t)−

∫︂
y(r)dr + z(t)−

∫︂
z(r)dr

]︃
µ̃(t)dt

=

∫︂
[ỹ(t) + z̃(t)] µ̃(t)dt

=

∫︂
ỹ(t)µ̃(t)dt+

∫︂
z̃(t)µ̃(t)dt,
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which implies that: ∫︂
z̃(t)µ̃(t)dt = ⟨z̃, µ̃⟩ = 0.

(c) For the shape index, assume that IS(y, FX) = IS(y
′, FX). By definition,

IS(y, FX) = IS(y
′, FX) implies that∫︁

ỹ(t)µ̃(t)dt

[
∫︁
ỹ(t)2dt]1/2

=

∫︁
ỹ′(t)µ̃(t)dt

[
∫︁
ỹ′(t)2dt]1/2

=

∫︁
ỹ(t)µ̃(t)dt+

∫︁
z̃(t)µ̃(t)dt

[
∫︁
(ỹ(t) + z̃(t))2dt]1/2

=
⟨ỹ, µ̃⟩+ ⟨b̃, µ̃⟩

∥ỹ + z̃∥
.

Now suppose that
⟨ỹ, µ̃⟩
∥ỹ∥

=
⟨ỹ, µ̃⟩+ ⟨z̃, µ̃⟩

∥ỹ + z̃∥
,

then

IS(y
′, FX) = 1− ⟨ỹ′, µ̃⟩

∥ỹ′∥ · ∥µ̃∥

= 1− ⟨ỹ, µ̃⟩+ ⟨z̃, µ̃⟩
∥ỹ + z̃∥ · ∥µ̃∥

= 1− ⟨ỹ, µ̃⟩
∥ỹ∥ · ∥µ̃∥

= IS(y, FX).

(iii) The proofs follow from the definitions of IA(y, FX), IA(y
′, FX), IS(y, FX) and

IS(y
′, FX).

B.2 Proof of Corollary 4.1

Proof. The proofs of the statements follow from the definition.

(i) Suppose that IMv(y
′, FX) = IMv(y, FX), then by definition (of IMv ) and Proposi-

tion 4.3 we have that:

|aIM (y, FX) + b| = |IM (y, FX)|.
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If both aIM (y, FX) + b and IM (y, FX) have the same sign, then

aIM (y, FX) + b = IM (y, FX),

which implies that b = (−a + 1)IM (y, FX). However, if aIM (y, FX) + b and
IM (y, FX) have different signs,

aIM (y, FX) + b = −IM (y, FX),

which implies that b = (−a− 1)IM (y, FX).

To prove the reverse direction, we have to show that whenever b = (−a±1)IM (y, FX),
IMv(y

′, FX) = IMv(y, FX). For the first case, we assume that b = (−a+1)IM (y, FX),
then

IMv(y
′, FX) = |IM (y′, FX)|

= |aIM (y, FX) + b|

= |aIM (y, FX) + (1− a)IM (y, FX)|

= |IM (y, FX)|

= IMv(y, FX).

For the second case, suppose that b = (−a− 1)IM (y, FX), then

IMv(y
′, FX) = |IM (y′, FX)|

= |aIM (y, FX) + b|

= |aIM (y, FX) + (−a− 1)IM (y, FX)|

= | − IM (y, FX)|

= |IM (y, FX)|

= IMv(y, FX).

So in both cases, we have that IMv(y
′, FX) = IMv(y, FX), which completes the

proof.

(ii) Suppose that IAv(y
′, FX) = IAv(y, FX), by definition (of IAv ) and Proposition 4.3

we have
|aIA(y, FX) + a− 1| = |IA(y, FX)|.
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If both aIA(y, FX) + a− 1 and IA(y, FX) have the same sign,

aIA(y, FX) + a− 1 = IA(y, FX),

which indicates that
a =

IA(y, FX) + 1

IA(y, FX) + 1
= 1.

Nevertheless, if aIA(y, FX) + a− 1 and IA(y, FX) have different signs,

aIA(y, FX) + a− 1 = −IA(y, FX),

which indicates that
a =

1− IA(y, FX)

1 + IA(y, FX)
.

To prove the reverse case, we have to show that whenever a = 1 or a = 1−IA(y,FX)
1+IA(y,FX) ,

IAv(y
′, FX) = IAv(y, FX). For the first case, assume that a = 1, then:

IAv(y
′, FX) = |IA(y′, FX)|

= |aIA(y, FX) + a− 1|

= |IA(y, FX)|

= IAv(y, FX).

For the second case, assume that a = 1−IA(y,FX)
1+IA(y,FX) , then:

IAv(y
′, FX) = |IA(y′, FX)|

= |aIA(y, FX) + a− 1|

=

⃓⃓⃓⃓
(1 + IA(y, FX)(1− IA(y, FX))

1 + IA(y, FX)
− 1

⃓⃓⃓⃓
= | − IA(y, FX)|

= |IA(y, FX)|

= IAv(y, FX).

Thus, in both cases, IAv(y
′, FX) = IAv(y, FX), which completes the proof.
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B.3 Additional Simulation Results on Multivariate Functional
Data

In this section we show the results of the methods outlined in Subsection 5.2.2 (of the
thesis) on more simulation models. The models considered are variants of the simula-
tion models in Subsection 5.2.1. The outliers are outlying only in one or two dimensions
of the trivariate functional dataset. Figures B.1 and B.2 show the simulation models, and
the results are shown in Table B.1 - B.4 with different contamination rates.
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Figure B.1: Sample data generated by variants of Models 1 and 2 with contamination
rate α = 0.10, sample size n = 100, and evaluation point d = 50. Each row corresponds
to a simulation model and each column corresponds to the margins of the multivariate
functional data. Outliers are shown in colour.
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Figure B.2: Sample data generated by variants of Models 3 and 5 with contamination
rate α = 0.10, sample size n = 100, and evaluation point d = 50. Each row corresponds
to a simulation model and each column corresponds to the margins of the multivariate
functional data. Outliers are shown in colour.
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Table B.1: Mean and Standard Deviation (in parentheses) of the TPR and FPR (in per-
centage) over 200 repetitions for each model. Sample size n = 100, evaluation points
tj = 50, and contamination rate is 5%. The proposed methods are in italics.

Method
Model 1.2 Model 2.2 Model 2.3

TPR FPR TPR FPR TPR FPR

FST-MAR 100.0(0.0) 26.5(4.1) 99.0(4.8) 22.2(3.7) 100.0(0.0) 21.1(3.9)
FST-STR 92.9(12.2) 3.2(2.0) 34.2(22.8) 3.6(2.1) 76.3(21.1) 3.6(2.2)
FST-PRJ 99.2(3.9) 0.5(0.8) 36.6(36.9) 1.2(1.5) 95.1(14.1) 1.7(1.3)
FST-PRJ-SH 0.5(3.1) 0.4(0.8) 36.3(36.9) 1.1(1.6) 94.4(15.4) 1.6(1.4)
FST-PRJ-AM 0.0(0.0) 0.0(0.0) 0.2(2.0) 0.0(0.1) 0.8(3.9) 0.0(0.2)
FST-PRJ-MG 99.2(3.9) 0.1(0.3) 0.2(2.0) 0.1(0.3) 0.0(0.0) 0.0(0.2)
FST-PRJ1 99.8(2.0) 4.1(1.9) 63.5(25.3) 2.5(1.4) 98.9(4.6) 2.3(1.6)
FST-PRJ1-SH 4.1(8.8) 3.9(1.9) 63.0(25.2) 2.1(1.3) 98.0(6.0) 2.0(1.5)
FST-PRJ1-AM 0.5(3.1) 0.2(0.5) 0.6(3.4) 0.1(0.4) 2.6(6.7) 0.1(0.3)
FST-PRJ1-MG 99.8(2.0) 0.1(0.4) 1.0(4.4) 0.3(0.6) 2.6(7.3) 0.3(0.6)
FST-PRJ2 100.0(0.0) 51.9(3.7) 100.0(0.0) 47.3(3.7) 100.0(0.0) 45.4(3.7)
FST-PRJ2-SH 43.6(22.2) 47.0(3.8) 99.8(2.0) 40.9(3.6) 100.0(0.0) 38.8(3.3)
FST-PRJ2-AM 12.9(15.3) 13.3(3.6) 33.4(22.7) 12.8(4.1) 49.6(24.0) 12.1(3.6)
FST-PRJ2-MG 100.0(0.0) 11.2(3.4) 18.5(16.5) 10.0(3.4) 27.0(19.8) 10.1(3.3)
MSPLOT 100.0(0.0) 0.9(1.1) 80.8(21.1) 1.5(1.5) 99.8(2.0) 1.4(1.5)
FOM 99.2(3.9) 0.1(0.4) 66.9(26.0) 0.2(0.5) 93.1(13.7) 0.2(0.4)
FAO 99.2(4.4) 0.1(0.4) 41.8(27.2) 0.1(0.3) 78.9(24.2) 0.1(0.4)

Method
Model 3.2 Model 3.3 Model 5.2

TPR FPR TPR FPR TPR FPR

FST-MAR 100.0(0.0) 22.6(4.2) 99.3(4.2) 22.5(4.1) 100.0(0.0) 24.5(4.4)
FST-STR 99.6(2.8) 3.2(1.9) 61.0(22.3) 3.8(2.2) 100.0(0.0) 3.5(1.9)
FST-PRJ 90.4(24.6) 1.8(1.4) 35.1(34.9) 1.5(1.6) 99.1(8.3) 0.3(0.7)
FST-PRJ-SH 88.8(26.9) 1.7(1.4) 34.4(35.3) 1.3(1.7) 4.1(12.9) 0.2(0.6)
FST-PRJ-AM 43.5(36.3) 0.1(0.4) 1.9(7.4) 0.1(0.3) 99.1(8.3) 0.1(0.3)
FST-PRJ-MG 0.0(0.0) 0.0(0.2) 0.1(1.4) 0.1(0.4) 0.9(4.6) 0.0(0.2)
FST-PRJ1 99.5(3.1) 2.2(1.6) 60.5(25.7) 2.6(1.5) 100.0(0.0) 2.6(1.5)
FST-PRJ1-SH 99.4(3.4) 1.9(1.4) 60.4(25.9) 2.3(1.5) 45.8(26.6) 2.3(1.4)
FST-PRJ1-AM 61.7(30.4) 0.1(0.3) 5.8(11.6) 0.1(0.3) 100.0(0.0) 0.1(0.3)
FST-PRJ1-MG 0.2(2.0) 0.3(0.6) 0.4(2.8) 0.3(0.5) 4.9(9.3) 0.3(0.5)
FST-PRJ2 100.0(0.0) 46.3(4.1) 100.0(0.0) 47.9(3.8) 100.0(0.0) 47.9(3.5)
FST-PRJ2-SH 100.0(0.0) 39.9(3.6) 99.9(1.4) 41.2(3.4) 99.9(1.4) 42.2(3.3)
FST-PRJ2-AM 99.8(2.0) 11.5(3.6) 89.2(15.5) 12.3(3.6) 100.0(0.0) 10.4(3.5)
FST-PRJ2-MG 23.4(19.3) 10.1(3.5) 36.9(25.0) 10.3(3.6) 75.8(22.0) 10.0(3.5)
MSPLOT 99.0(4.4) 1.3(1.5) 56.4(22.0) 1.2(1.3) 100.0(0.0) 1.0(1.1)
FOM 27.0(28.3) 0.1(0.4) 6.7(12.6) 0.3(0.5) 99.9(1.4) 0.1(0.5)
FAO 19.2(24.6) 0.1(0.4) 4.0(9.2) 0.1(0.5) 97.9(9.9) 0.1(0.4)
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Table B.2: Mean and Standard Deviation (in parentheses) of the TPR and FPR (in per-
centage) over 200 repetitions for each model. Sample size n = 100, evaluation points
tj = 50, and contamination rate is 10%. The proposed methods are in italics.

Method
Model 1.2 Model 2.2 Model 2.3

TPR FPR TPR FPR TPR FPR

FST-MAR 100.0(0.0) 26.3(4.0) 95.5(8.1) 21.1(4.0) 99.8(1.4) 17.6(3.6)
FST-STR 87.5(12.2) 2.1(1.6) 26.9(14.7) 2.9(2.0) 66.5(19.4) 2.6(2.0)
FST-PRJ 98.2(6.6) 0.3(0.7) 34.2(27.9) 0.9(1.1) 90.7(14.9) 0.8(1.0)
FST-PRJ-SH 0.3(1.7) 0.3(0.7) 34.1(28.0) 0.8(1.0) 90.6(15.0) 0.8(1.0)
FST-PRJ-AM 0.0(0.7) 0.0(0.0) 0.1(1.0) 0.0(0.1) 0.0(0.7) 0.0(0.0)
FST-PRJ-MG 98.2(6.6) 0.0(0.2) 0.2(1.2) 0.1(0.3) 0.0(0.0) 0.0(0.2)
FST-PRJ1 99.4(2.8) 3.7(2.2) 50.1(19.9) 1.8(1.4) 93.8(8.1) 1.3(1.2)
FST-PRJ1-SH 4.5(6.1) 3.6(2.2) 49.2(20.0) 1.4(1.2) 92.7(8.6) 0.9(1.0)
FST-PRJ1-AM 0.4(1.8) 0.2(0.4) 0.8(3.0) 0.1(0.4) 3.0(5.4) 0.1(0.3)
FST-PRJ1-MG 99.2(3.0) 0.0(0.2) 1.0(2.9) 0.4(0.7) 2.1(4.3) 0.3(0.6)
FST-PRJ2 100.0(0.0) 51.3(4.3) 99.7(2.3) 44.6(4.1) 100.0(0.0) 38.9(4.1)
FST-PRJ2-SH 47.9(14.9) 47.1(4.2) 99.2(3.4) 37.3(3.7) 100.0(0.0) 31.7(3.6)
FST-PRJ2-AM 13.6(10.9) 12.3(3.7) 28.1(14.8) 11.9(4.1) 46.7(17.5) 10.5(3.2)
FST-PRJ2-MG 100.0(0.0) 9.0(3.5) 16.1(11.4) 10.7(3.6) 24.3(13.7) 9.7(3.7)
MSPLOT 99.9(1.0) 0.5(0.8) 75.9(18.8) 1.1(1.3) 99.5(2.5) 1.0(1.2)
FOM 87.5(17.8) 0.1(0.3) 57.6(21.4) 0.0(0.2) 89.3(12.9) 0.1(0.4)
FAO 91.5(16.1) 0.0(0.2) 31.2(20.2) 0.0(0.2) 65.8(23.5) 0.0(0.1)

Method
Model 3.2 Model 3.3 Model 5.2

TPR FPR TPR FPR TPR FPR

FST-MAR 100.0(0.0) 21.4(3.9) 98.7(3.6) 20.3(3.9) 100.0(0.0) 24.3(4.3)
FST-STR 97.9(4.8) 2.6(1.8) 45.1(19.1) 2.5(1.9) 100.0(0.0) 2.1(1.6)
FST-PRJ 94.1(10.9) 1.1(1.2) 33.8(26.6) 1.2(1.2) 100.0(0.0) 0.1(0.4)
FST-PRJ-SH 94.0(11.1) 1.1(1.2) 33.7(26.7) 1.1(1.2) 0.2(1.4) 0.1(0.3)
FST-PRJ-AM 25.8(27.1) 0.0(0.2) 1.6(4.4) 0.0(0.2) 100.0(0.0) 0.1(0.2)
FST-PRJ-MG 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.1(0.3) 0.0(0.0) 0.0(0.0)
FST-PRJ1 96.4(7.2) 1.5(1.3) 45.4(20.2) 1.8(1.3) 100.0(0.0) 1.8(1.3)
FST-PRJ1-SH 96.2(7.5) 1.2(1.1) 45.2(20.2) 1.5(1.2) 22.9(18.5) 1.6(1.2)
FST-PRJ1-AM 41.3(25.3) 0.0(0.2) 4.0(6.5) 0.1(0.3) 100.0(0.0) 0.0(0.3)
FST-PRJ1-MG 0.4(1.8) 0.3(0.6) 0.3(1.7) 0.3(0.6) 4.2(6.7) 0.2(0.5)
FST-PRJ2 100.0(0.0) 43.4(4.3) 99.8(1.4) 44.5(4.0) 100.0(0.0) 45.7(3.6)
FST-PRJ2-SH 100.0(0.0) 36.2(3.7) 99.8(1.6) 37.4(3.4) 98.8(3.7) 40.8(3.7)
FST-PRJ2-AM 99.4(2.5) 10.4(3.5) 83.3(14.0) 10.4(3.4) 100.0(0.0) 8.3(3.0)
FST-PRJ2-MG 20.4(13.8) 10.5(3.6) 28.6(16.6) 10.0(3.5) 65.7(20.8) 8.9(3.5)
MSPLOT 94.1(8.3) 1.1(1.2) 39.8(17.4) 1.0(1.3) 100.0(0.0) 0.9(1.1)
FOM 2.6(6.8) 0.1(0.4) 1.2(3.8) 0.2(0.5) 95.0(11.6) 0.1(0.3)
FAO 1.9(6.3) 0.1(0.2) 0.6(2.6) 0.1(0.4) 80.3(24.0) 0.0(0.2)
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Table B.3: Mean and Standard Deviation (in parentheses) of the TPR and FPR (in per-
centage) over 200 repetitions for each model. Sample size n = 100, evaluation points
tj = 50, and contamination rate is 15%. The proposed methods are in italics.

Method
Model 1.2 Model 2.2 Model 2.3

TPR FPR TPR FPR TPR FPR

FST-MAR 100.0(0.0) 26.7(4.2) 86.2(13.0) 19.0(3.8) 98.1(4.0) 14.4(3.4)
FST-STR 85.1(13.7) 1.5(1.5) 18.9(11.9) 2.3(1.7) 50.9(18.6) 1.8(1.6)
FST-PRJ 97.7(6.1) 0.2(0.5) 19.5(20.6) 0.5(0.9) 75.7(16.9) 0.4(0.7)
FST-PRJ-SH 0.2(1.1) 0.2(0.5) 19.3(20.5) 0.4(0.9) 75.7(16.9) 0.4(0.6)
FST-PRJ-AM 0.0(0.0) 0.0(0.0) 0.2(1.4) 0.0(0.2) 0.1(0.8) 0.0(0.0)
FST-PRJ-MG 97.7(6.1) 0.0(0.2) 0.1(0.9) 0.0(0.3) 0.0(0.0) 0.0(0.2)
FST-PRJ1 98.9(3.8) 3.6(2.1) 33.5(14.7) 1.2(1.2) 78.6(13.5) 0.6(0.9)
FST-PRJ1-SH 3.1(4.7) 3.5(2.1) 32.8(14.9) 0.9(1.0) 77.3(13.7) 0.4(0.7)
FST-PRJ1-AM 0.2(1.1) 0.2(0.5) 0.6(2.1) 0.1(0.3) 2.2(4.1) 0.1(0.3)
FST-PRJ1-MG 98.7(4.0) 0.0(0.1) 0.8(2.6) 0.2(0.5) 1.3(3.3) 0.2(0.5)
FST-PRJ2 100.0(0.0) 51.0(3.9) 97.0(5.8) 40.6(4.0) 99.9(0.8) 32.7(4.1)
FST-PRJ2-SH 46.8(11.5) 47.5(3.8) 95.1(6.9) 33.3(3.7) 99.5(1.9) 24.8(3.2)
FST-PRJ2-AM 12.5(9.0) 12.5(4.1) 27.1(12.4) 10.9(3.3) 43.0(15.0) 9.8(3.5)
FST-PRJ2-MG 100.0(0.0) 7.0(3.3) 15.6(9.9) 10.0(3.3) 24.1(11.6) 8.4(3.3)
MSPLOT 99.2(3.0) 0.4(0.7) 70.6(19.8) 1.1(1.3) 99.0(2.4) 0.8(1.0)
FOM 45.7(28.5) 0.0(0.1) 42.5(22.7) 0.0(0.2) 78.0(17.7) 0.0(0.1)
FAO 70.2(28.7) 0.0(0.0) 20.1(16.7) 0.0(0.1) 45.7(25.9) 0.0(0.1)

Method
Model 3.2 Model 3.3 Model 5.2

TPR FPR TPR FPR TPR FPR

FST-MAR 100.0(0.0) 19.6(4.1) 97.8(3.8) 18.7(4.2) 100.0(0.0) 24.6(4.5)
FST-STR 93.5(7.9) 1.6(1.5) 37.0(14.5) 2.3(1.7) 100.0(0.0) 1.3(1.3)
FST-PRJ 85.7(15.7) 0.6(0.9) 25.7(19.6) 0.9(1.1) 100.0(0.5) 0.0(0.3)
FST-PRJ-SH 85.6(15.9) 0.6(0.9) 25.6(19.7) 0.8(1.1) 0.0(0.0) 0.0(0.2)
FST-PRJ-AM 11.7(19.0) 0.0(0.0) 0.7(2.5) 0.0(0.2) 100.0(0.5) 0.0(0.2)
FST-PRJ-MG 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.1) 0.0(0.0) 0.0(0.0)
FST-PRJ1 88.9(13.3) 1.0(1.1) 32.2(17.2) 1.3(1.2) 100.0(0.0) 1.3(1.2)
FST-PRJ1-SH 88.8(13.5) 0.6(0.9) 31.7(17.4) 1.1(1.1) 10.6(10.2) 1.2(1.1)
FST-PRJ1-AM 19.5(19.2) 0.0(0.2) 1.8(3.7) 0.1(0.3) 100.0(0.0) 0.0(0.2)
FST-PRJ1-MG 0.3(1.4) 0.3(0.6) 0.5(1.8) 0.2(0.5) 2.3(4.1) 0.1(0.4)
FST-PRJ2 100.0(0.0) 39.8(4.4) 99.0(2.6) 42.5(4.5) 100.0(0.0) 46.2(4.3)
FST-PRJ2-SH 100.0(0.0) 32.4(4.1) 98.8(2.8) 35.3(4.1) 91.6(9.3) 41.8(4.2)
FST-PRJ2-AM 97.5(5.2) 9.1(3.0) 70.3(18.3) 9.9(3.5) 100.0(0.0) 6.6(3.2)
FST-PRJ2-MG 17.5(9.9) 10.1(3.7) 23.8(13.5) 9.5(3.6) 51.2(18.5) 8.7(3.4)
MSPLOT 78.4(12.3) 0.9(1.2) 26.8(13.0) 0.8(1.0) 99.8(1.0) 1.0(1.3)
FOM 0.1(0.8) 0.1(0.3) 0.5(1.9) 0.2(0.6) 43.0(25.5) 0.0(0.2)
FAO 0.2(1.2) 0.1(0.4) 0.5(2.4) 0.2(0.6) 35.1(26.5) 0.0(0.1)
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Table B.4: Mean and Standard Deviation (in parentheses) of the TPR and FPR (in per-
centage) over 200 repetitions for each model. Sample size n = 100, evaluation points
tj = 50, and contamination rate is 20%. The proposed methods are in italics.

Method
Model 1.2 Model 2.2 Model 2.3

TPR FPR TPR FPR TPR FPR

FST-MAR 100.0(0.5) 26.3(4.5) 68.0(14.7) 18.4(4.1) 89.1(9.8) 12.6(3.8)
FST-STR 79.2(14.3) 1.2(1.4) 15.0(9.4) 1.9(1.7) 32.5(15.4) 1.3(1.4)
FST-PRJ 95.6(7.2) 0.2(0.5) 7.0(12.7) 0.1(0.5) 45.5(21.4) 0.1(0.4)
FST-PRJ-SH 0.2(1.0) 0.2(0.5) 6.9(12.7) 0.1(0.3) 45.2(21.7) 0.1(0.3)
FST-PRJ-AM 0.0(0.0) 0.0(0.0) 0.1(0.7) 0.0(0.0) 0.3(1.2) 0.0(0.0)
FST-PRJ-MG 95.6(7.2) 0.0(0.0) 0.2(0.9) 0.1(0.4) 0.1(0.6) 0.0(0.2)
FST-PRJ1 96.0(8.4) 3.7(2.4) 22.1(10.2) 0.8(1.0) 55.9(13.4) 0.4(0.7)
FST-PRJ1-SH 3.8(4.6) 3.6(2.3) 21.1(10.0) 0.6(0.8) 54.3(13.2) 0.1(0.4)
FST-PRJ1-AM 0.2(1.0) 0.2(0.6) 0.5(1.5) 0.1(0.3) 2.0(3.1) 0.0(0.2)
FST-PRJ1-MG 95.8(8.6) 0.0(0.0) 0.9(2.1) 0.2(0.6) 1.4(3.0) 0.2(0.5)
FST-PRJ2 100.0(0.0) 50.6(4.7) 88.7(8.0) 38.2(4.6) 98.6(3.2) 27.8(4.9)
FST-PRJ2-SH 46.9(10.7) 47.1(4.5) 83.9(9.8) 30.8(4.2) 96.0(4.9) 19.5(3.8)
FST-PRJ2-AM 12.4(7.8) 12.8(4.2) 27.2(10.9) 10.5(4.0) 40.3(11.8) 9.2(3.6)
FST-PRJ2-MG 100.0(0.0) 6.4(3.1) 14.8(8.1) 9.5(3.2) 22.7(9.5) 8.2(3.5)
MSPLOT 98.2(3.3) 0.2(0.6) 65.2(20.6) 0.7(1.1) 97.9(3.6) 0.8(1.1)
FOM 7.4(12.2) 0.0(0.1) 24.8(18.0) 0.0(0.0) 56.3(24.4) 0.0(0.0)
FAO 33.7(26.0) 0.0(0.0) 9.9(12.0) 0.0(0.0) 23.8(21.9) 0.0(0.0)

Method
Model 3.2 Model 3.3 Model 5.2

TPR FPR TPR FPR TPR FPR

FST-MAR 99.9(0.7) 18.1(4.2) 92.0(11.3) 16.8(4.0) 100.0(0.0) 25.8(4.6)
FST-STR 69.5(17.7) 1.1(1.2) 23.5(10.9) 1.9(1.5) 99.9(0.7) 1.2(1.4)
FST-PRJ 66.9(18.2) 0.3(0.7) 16.3(13.0) 0.7(0.9) 99.8(2.3) 0.0(0.1)
FST-PRJ-SH 66.9(18.2) 0.3(0.7) 16.3(13.0) 0.7(0.9) 0.0(0.0) 0.0(0.1)
FST-PRJ-AM 2.1(6.6) 0.0(0.1) 0.2(0.9) 0.0(0.2) 99.8(2.3) 0.0(0.1)
FST-PRJ-MG 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.2) 0.0(0.0) 0.0(0.0)
FST-PRJ1 67.2(17.5) 0.5(0.8) 21.1(12.2) 1.1(1.1) 99.9(1.5) 1.1(1.1)
FST-PRJ1-SH 67.2(17.5) 0.3(0.6) 20.7(12.3) 0.9(1.0) 3.2(4.5) 0.9(1.0)
FST-PRJ1-AM 7.2(9.3) 0.0(0.2) 0.7(1.9) 0.0(0.2) 99.9(1.5) 0.0(0.1)
FST-PRJ1-MG 0.1(0.6) 0.2(0.5) 0.5(1.7) 0.2(0.5) 1.2(2.5) 0.2(0.6)
FST-PRJ2 100.0(0.0) 37.8(4.8) 97.6(3.6) 40.6(4.3) 100.0(0.0) 47.6(4.4)
FST-PRJ2-SH 100.0(0.0) 30.2(4.2) 97.1(4.0) 32.9(3.9) 71.7(11.7) 43.5(4.4)
FST-PRJ2-AM 89.1(10.2) 8.9(3.7) 49.1(20.2) 9.6(3.7) 100.0(0.0) 5.4(2.9)
FST-PRJ2-MG 14.8(8.4) 9.9(3.8) 19.4(10.1) 9.8(3.6) 32.7(13.8) 8.6(3.4)
MSPLOT 51.3(16.9) 0.7(1.1) 16.4(10.6) 0.6(1.0) 92.8(7.2) 0.9(1.2)
FOM 0.2(0.9) 0.2(0.6) 0.4(1.4) 0.2(0.6) 3.4(5.3) 0.0(0.2)
FAO 0.2(0.9) 0.3(0.8) 0.4(1.4) 0.2(0.6) 2.2(6.2) 0.2(0.6)
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B.4 Additional Simulation Results on Contamination Rates

Tables B.5 - B.7 show the results of the methods outlined in Subsection 5.2.2 on the
simulation models in Subsection 5.2.1, for contamination rates 5%, 15%, and 20%.

Table B.5: Mean and Standard Deviation (in parentheses) of the true positive rate (TPR)
and the false positive rate (FPR) (in percentage) over 200 repetitions for each model.
Sample size n = 100, evaluation points tj = 50, and contamination rate is 5%.

Method
Model 0 Model 1 Model 2 Model 3

FPR TPR FPR TPR FPR TPR FPR

FST-MAR 26.2(4.2) 100.0(0.0) 25.5(3.9) 100.0(0.0) 19.0(3.8) 100.0(0.0) 18.4(4.4)
FST-STR 4.6(2.5) 100.0(0.0) 3.4(2.0) 95.5(9.5) 3.6(1.9) 100.0(0.0) 3.3(2.1)
FST-PRJ 1.7(2.6) 100.0(0.0) 0.4(0.8) 99.7(2.4) 1.5(1.3) 100.0(0.0) 1.5(1.2)
FST-PRJ-SH 1.7(2.6) 0.4(2.8) 0.4(0.8) 99.7(2.4) 1.5(1.3) 100.0(0.0) 1.4(1.2)
FST-PRJ-AM 0.0(0.3) 0.0(0.0) 0.0(0.0) 0.9(5.0) 0.0(0.1) 100.0(0.0) 0.1(0.2)
FST-PRJ-MG 0.0(0.2) 100.0(0.0) 0.1(0.2) 0.2(2.8) 0.0(0.2) 0.2(2.0) 0.0(0.0)
FST-PRJ1 3.7(1.9) 100.0(0.0) 4.1(2.2) 100.0(0.0) 2.0(1.4) 100.0(0.0) 2.0(1.4)
FST-PRJ1-SH 3.5(1.8) 3.1(7.3) 3.9(2.1) 100.0(0.0) 1.6(1.3) 100.0(0.0) 1.7(1.3)
FST-PRJ1-AM 0.2(0.4) 0.1(1.4) 0.2(0.6) 5.6(10.4) 0.1(0.4) 100.0(0.0) 0.1(0.2)
FST-PRJ1-MG 0.1(0.4) 100.0(0.0) 0.1(0.3) 2.8(8.0) 0.3(0.6) 3.4(8.0) 0.2(0.5)
FST-PRJ2 52.2(3.6) 100.0(0.0) 52.1(3.6) 100.0(0.0) 44.5(4.2) 100.0(0.0) 43.8(3.8)
FST-PRJ2-SH 47.0(3.3) 45.4(22.7) 47.4(3.7) 100.0(0.0) 37.6(3.6) 100.0(0.0) 37.4(3.5)
FST-PRJ2-AM 12.4(3.6) 11.8(13.2) 12.7(3.9) 70.3(21.4) 11.9(3.6) 100.0(0.0) 9.5(3.2)
FST-PRJ2-MG 14.0(4.1) 100.0(0.0) 10.8(3.4) 37.3(22.3) 9.9(3.0) 56.2(23.8) 9.6(3.5)
MSPLOT 1.6(1.7) 100.0(0.0) 0.8(1.1) 100.0(0.0) 1.3(1.3) 100.0(0.0) 1.1(1.3)
FOM 0.3(0.6) 100.0(0.0) 0.2(0.5) 99.1(5.0) 0.1(0.4) 99.2(4.4) 0.2(0.5)
FAO 0.3(0.6) 100.0(0.0) 0.1(0.3) 93.2(14.2) 0.1(0.3) 96.1(12.3) 0.2(0.5)

Method
Model 4 Model 5 Model 6

TPR FPR TPR FPR TPR FPR

FST-MAR 92.1(13.4) 19.9(3.9) 100.0(0.0) 24.4(4.1) 100.0(0.0) 17.9(4.0)
FST-STR 63.4(29.4) 3.5(1.9) 100.0(0.0) 4.6(2.3) 100.0(0.0) 3.4(1.8)
FST-PRJ 51.0(37.7) 0.8(1.3) 100.0(0.0) 0.2(0.5) 98.4(9.7) 1.2(1.1)
FST-PRJ-SH 49.2(37.2) 0.8(1.3) 0.0(0.0) 0.1(0.4) 93.5(17.8) 1.0(1.1)
FST-PRJ-AM 0.1(1.4) 0.0(0.1) 100.0(0.0) 0.1(0.3) 15.7(24.5) 0.1(0.3)
FST-PRJ-MG 3.9(12.5) 0.1(0.3) 71.1(29.0) 0.0(0.1) 94.3(18.0) 0.1(0.3)
FST-PRJ1 77.1(20.9) 2.0(1.3) 100.0(0.0) 3.5(1.8) 100.0(0.0) 1.8(1.3)
FST-PRJ1-SH 74.8(21.9) 1.7(1.3) 0.0(0.0) 3.3(1.7) 99.7(2.4) 1.6(1.2)
FST-PRJ1-AM 0.3(2.4) 0.1(0.4) 100.0(0.0) 0.1(0.3) 27.7(24.9) 0.1(0.4)
FST-PRJ1-MG 9.4(13.6) 0.2(0.4) 95.4(9.8) 0.2(0.5) 97.1(7.6) 0.1(0.4)
FST-PRJ2 99.7(2.4) 44.4(3.8) 100.0(0.0) 51.7(3.8) 100.0(0.0) 45.5(3.9)
FST-PRJ2-SH 99.1(4.2) 37.7(3.5) 0.9(4.2) 47.9(3.7) 100.0(0.0) 40.3(3.5)
FST-PRJ2-AM 14.4(15.0) 13.1(4.1) 100.0(0.0) 9.2(3.5) 98.2(6.1) 11.7(3.8)
FST-PRJ2-MG 50.6(27.2) 9.5(3.5) 100.0(0.0) 7.9(3.1) 100.0(0.0) 9.2(3.4)
MSPLOT 53.0(26.7) 1.3(1.5) 100.0(0.0) 1.1(1.3) 99.1(4.2) 1.0(1.2)
FOM 7.3(13.3) 0.2(0.5) 100.0(0.0) 0.2(0.4) 94.7(13.1) 0.2(0.6)
FAO 6.8(14.5) 0.1(0.4) 100.0(0.0) 0.1(0.4) 84.6(26.0) 0.2(0.5)
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Table B.6: Mean and Standard Deviation (in parentheses) of the true positive rate (TPR)
and the false positive rate (FPR) (in percentage) over 200 repetitions for each model.
Sample size n = 100, evaluation points tj = 50, and contamination rate is 15%.

Method
Model 0 Model 1 Model 2 Model 3

FPR TPR FPR TPR FPR TPR FPR

FST-MAR 26.2(4.2) 100.0(0.0) 25.0(4.4) 99.1(2.6) 9.3(3.1) 100.0(0.0) 8.3(3.0)
FST-STR 4.6(2.5) 99.6(1.7) 1.5(1.5) 79.4(15.4) 1.7(1.7) 100.0(0.0) 1.3(1.3)
FST-PRJ 1.7(2.6) 100.0(0.0) 0.1(0.3) 92.7(7.6) 0.2(0.5) 100.0(0.0) 0.2(0.6)
FST-PRJ-SH 1.7(2.6) 0.2(1.0) 0.1(0.3) 92.7(7.6) 0.2(0.5) 100.0(0.0) 0.2(0.6)
FST-PRJ-AM 0.0(0.3) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 99.9(0.9) 0.0(0.0)
FST-PRJ-MG 0.0(0.2) 100.0(0.0) 0.0(0.0) 0.0(0.5) 0.0(0.0) 0.0(0.0) 0.0(0.0)
FST-PRJ1 3.7(1.9) 100.0(0.0) 3.7(2.2) 94.3(7.2) 0.5(0.7) 100.0(0.0) 0.5(0.8)
FST-PRJ1-SH 3.5(1.8) 4.1(5.2) 3.7(2.2) 93.2(7.3) 0.3(0.6) 100.0(0.0) 0.3(0.5)
FST-PRJ1-AM 0.2(0.4) 0.2(1.4) 0.1(0.4) 4.0(5.0) 0.1(0.3) 99.8(1.2) 0.0(0.0)
FST-PRJ1-MG 0.1(0.4) 100.0(0.0) 0.0(0.0) 2.6(3.9) 0.2(0.4) 1.2(2.8) 0.2(0.6)
FST-PRJ2 52.2(3.6) 100.0(0.0) 50.8(4.3) 100.0(0.0) 27.3(4.1) 100.0(0.0) 25.0(3.6)
FST-PRJ2-SH 47.0(3.3) 48.2(13.0) 47.3(4.3) 99.9(0.7) 19.1(3.3) 100.0(0.0) 16.9(2.8)
FST-PRJ2-AM 12.4(3.6) 12.0(7.5) 13.0(4.2) 61.8(13.5) 9.0(3.3) 100.0(0.0) 3.6(2.2)
FST-PRJ2-MG 14.0(4.1) 100.0(0.0) 5.1(2.6) 35.7(12.6) 7.8(3.4) 37.0(15.3) 9.1(3.3)
MSPLOT 1.6(1.7) 100.0(0.0) 0.2(0.5) 100.0(0.0) 0.8(1.2) 100.0(0.0) 1.0(1.3)
FOM 0.3(0.6) 100.0(0.0) 0.0(0.1) 90.8(14.5) 0.0(0.1) 6.6(14.0) 0.0(0.1)
FAO 0.3(0.6) 100.0(0.0) 0.0(0.1) 70.3(24.0) 0.0(0.1) 2.2(8.4) 0.0(0.2)

Method
Model 4 Model 5 Model 6

TPR FPR TPR FPR TPR FPR

FST-MAR 54.0(16.6) 12.9(3.5) 100.0(0.0) 27.2(4.2) 100.0(0.0) 11.3(3.2)
FST-STR 33.6(23.3) 1.9(1.9) 100.0(0.0) 4.2(2.6) 98.6(3.9) 1.3(1.5)
FST-PRJ 1.7(4.0) 0.0(0.2) 100.0(0.0) 0.2(0.5) 94.7(8.0) 0.2(0.5)
FST-PRJ-SH 1.7(4.0) 0.0(0.1) 0.0(0.0) 0.2(0.5) 79.7(20.9) 0.2(0.5)
FST-PRJ-AM 0.0(0.0) 0.0(0.2) 100.0(0.0) 0.0(0.1) 0.1(0.7) 0.0(0.0)
FST-PRJ-MG 0.0(0.5) 0.0(0.0) 18.0(20.4) 0.0(0.0) 69.5(28.4) 0.0(0.2)
FST-PRJ1 18.9(12.0) 0.7(1.0) 100.0(0.0) 4.3(2.2) 98.0(4.5) 0.4(0.7)
FST-PRJ1-SH 15.5(10.8) 0.5(0.8) 0.0(0.0) 4.3(2.2) 93.8(8.1) 0.4(0.6)
FST-PRJ1-AM 0.2(1.0) 0.1(0.3) 100.0(0.0) 0.0(0.1) 8.3(10.0) 0.0(0.3)
FST-PRJ1-MG 3.6(6.3) 0.1(0.4) 73.5(15.0) 0.1(0.2) 76.6(18.3) 0.0(0.3)
FST-PRJ2 86.2(10.8) 32.3(4.3) 100.0(0.0) 53.9(3.8) 100.0(0.0) 32.9(4.1)
FST-PRJ2-SH 78.3(12.7) 24.0(3.7) 0.9(2.4) 52.1(3.7) 99.9(0.7) 27.8(3.8)
FST-PRJ2-AM 13.9(9.2) 13.0(4.2) 100.0(0.0) 3.1(2.2) 88.6(10.7) 8.7(3.5)
FST-PRJ2-MG 34.9(18.5) 7.9(3.6) 98.1(4.0) 5.0(2.4) 98.6(3.3) 5.8(2.9)
MSPLOT 13.9(13.7) 0.6(1.0) 100.0(0.0) 0.9(1.2) 77.6(14.2) 0.8(1.3)
FOM 0.3(1.5) 0.1(0.4) 95.1(12.1) 0.0(0.1) 2.6(7.0) 0.0(0.1)
FAO 0.6(2.4) 0.2(0.6) 84.5(24.4) 0.0(0.0) 2.1(7.7) 0.0(0.1)
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Table B.7: Mean and Standard Deviation (in parentheses) of the true positive rate (TPR)
and the false positive rate (FPR) (in percentage) over 200 repetitions for each model.
Sample size n = 100, evaluation points tj = 50, and contamination rate is 20%.

Method
Model 0 Model 1 Model 2 Model 3

FPR TPR FPR TPR FPR TPR FPR

FST-MAR 26.2(4.2) 100.0(0.0) 24.9(4.3) 91.0(8.4) 6.0(2.6) 100.0(0.0) 3.9(2.4)
FST-STR 4.6(2.5) 97.5(5.3) 0.8(1.2) 52.5(17.9) 1.1(1.2) 100.0(0.0) 0.9(1.3)
FST-PRJ 1.7(2.6) 100.0(0.0) 0.1(0.4) 66.3(16.7) 0.0(0.2) 100.0(0.0) 0.0(0.2)
FST-PRJ-SH 1.7(2.6) 0.2(1.1) 0.1(0.4) 66.3(16.8) 0.0(0.2) 100.0(0.0) 0.0(0.2)
FST-PRJ-AM 0.0(0.3) 0.0(0.0) 0.0(0.0) 0.2(0.9) 0.0(0.0) 89.8(15.9) 0.0(0.0)
FST-PRJ-MG 0.0(0.2) 100.0(0.0) 0.0(0.1) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)
FST-PRJ1 3.7(1.9) 100.0(0.0) 3.9(2.3) 73.4(13.5) 0.2(0.5) 100.0(0.0) 0.2(0.5)
FST-PRJ1-SH 3.5(1.8) 3.7(4.6) 3.8(2.3) 71.8(13.4) 0.0(0.2) 100.0(0.0) 0.0(0.2)
FST-PRJ1-AM 0.2(0.4) 0.2(1.0) 0.1(0.4) 2.8(3.8) 0.1(0.3) 95.4(6.9) 0.0(0.0)
FST-PRJ1-MG 0.1(0.4) 100.0(0.0) 0.0(0.0) 1.9(3.3) 0.1(0.4) 0.8(2.0) 0.2(0.5)
FST-PRJ2 52.2(3.6) 100.0(0.0) 49.3(4.3) 99.7(1.2) 19.9(4.0) 100.0(0.0) 15.4(3.9)
FST-PRJ2-SH 47.0(3.3) 49.6(11.2) 46.3(4.6) 98.8(2.6) 10.8(2.6) 100.0(0.0) 6.5(2.0)
FST-PRJ2-AM 12.4(3.6) 12.8(8.3) 12.4(4.1) 60.9(12.8) 7.9(3.4) 100.0(0.0) 2.5(2.1)
FST-PRJ2-MG 14.0(4.1) 100.0(0.0) 3.5(2.3) 33.4(11.3) 7.2(3.0) 24.7(12.1) 8.6(3.6)
MSPLOT 1.6(1.7) 100.0(0.0) 0.1(0.4) 100.0(0.0) 0.7(1.0) 98.7(2.8) 0.9(1.4)
FOM 0.3(0.6) 99.9(1.1) 0.0(0.0) 76.2(24.1) 0.0(0.0) 0.0(0.0) 0.0(0.2)
FAO 0.3(0.6) 99.8(1.4) 0.0(0.1) 41.7(27.7) 0.0(0.0) 0.0(0.0) 0.5(1.0)

Method
Model 4 Model 5 Model 6

TPR FPR TPR FPR TPR FPR

FST-MAR 38.5(12.2) 12.0(3.5) 100.0(0.0) 28.4(4.7) 99.6(1.7) 9.5(3.4)
FST-STR 20.3(15.0) 1.7(1.6) 100.0(0.0) 4.4(2.5) 85.8(14.2) 0.8(1.1)
FST-PRJ 0.3(1.2) 0.0(0.1) 100.0(0.0) 0.2(0.5) 69.1(18.6) 0.0(0.2)
FST-PRJ-SH 0.3(1.2) 0.0(0.1) 0.0(0.0) 0.2(0.5) 57.0(21.4) 0.0(0.2)
FST-PRJ-AM 0.0(0.0) 0.0(0.0) 100.0(0.0) 0.0(0.0) 0.0(0.4) 0.0(0.0)
FST-PRJ-MG 0.0(0.0) 0.0(0.0) 3.4(6.4) 0.0(0.0) 24.8(25.1) 0.0(0.0)
FST-PRJ1 8.6(6.6) 0.6(0.9) 100.0(0.0) 4.9(2.5) 87.9(10.7) 0.1(0.4)
FST-PRJ1-SH 7.1(6.1) 0.4(0.7) 0.0(0.0) 4.8(2.4) 77.8(13.4) 0.1(0.3)
FST-PRJ1-AM 0.2(1.0) 0.1(0.4) 100.0(0.0) 0.0(0.0) 2.6(3.9) 0.0(0.2)
FST-PRJ1-MG 1.5(3.0) 0.1(0.4) 43.5(16.9) 0.0(0.2) 43.6(21.4) 0.0(0.1)
FST-PRJ2 72.3(10.9) 30.0(4.8) 100.0(0.0) 56.3(4.1) 100.0(0.0) 28.7(4.6)
FST-PRJ2-SH 60.5(10.9) 21.8(3.8) 0.9(1.9) 54.9(4.0) 99.8(1.2) 23.4(4.1)
FST-PRJ2-AM 14.2(8.1) 12.4(4.3) 100.0(0.0) 1.1(1.2) 67.5(16.2) 8.6(3.9)
FST-PRJ2-MG 23.7(12.1) 7.1(3.3) 90.5(8.9) 4.3(2.4) 94.0(8.4) 4.7(2.6)
MSPLOT 7.2(8.5) 0.6(1.0) 99.8(1.1) 0.9(1.3) 55.5(17.8) 0.8(1.1)
FOM 0.3(1.2) 0.1(0.4) 26.8(21.2) 0.0(0.0) 0.0(0.4) 0.0(0.3)
FAO 0.5(1.7) 0.2(0.6) 29.0(33.1) 0.0(0.0) 0.0(0.4) 0.3(0.7)
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B.5 Comparison of Various Thresholds Q

Now, we show the distribution of the F1 scores when Fast-MUOD with projections (FST-
PRJ1) is used on the models presented in Subsection 5.2.1 with different threshold val-
ues of Q = (τS , τA, τM ) ranging from Q = (0.2, 0.2, 0.2) to Q = (0.7, 0.7, 0.7). For Model
0 with no outliers, we show only the FPRs.
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Figure B.3: The FPRs of Fast-MUOD with projections (FST-PRJ1) using different thresh-
old values Q = (τS , τA, τM ) on Model 0.
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Figure B.4: F1 scores of Fast-MUOD with projections (FST-PRJ1) using different thresh-
old values Q = (τS , τA, τM ) on Model 1. The horizontal facets indicate the different
contamination rates considered (0.05, 0.1, 0.15, 0.2).
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Figure B.5: F1 scores of Fast-MUOD with projections (FST-PRJ1) using different thresh-
old values Q = (τS , τA, τM ) on Model 2. The horizontal facets indicate the different
contamination rates considered (0.05, 0.1, 0.15, 0.2).
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Figure B.6: F1 scores of Fast-MUOD with projections (FST-PRJ1) using different thresh-
old values Q = (τS , τA, τM ) on Model 3. The horizontal facets indicate the different
contamination rates considered (0.05, 0.1, 0.15, 0.2).
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Figure B.7: F1 scores of Fast-MUOD with projections (FST-PRJ1) using different thresh-
old values Q = (τS , τA, τM ) on Model 4. The horizontal facets indicate the different
contamination rates considered (0.05, 0.1, 0.15, 0.2).
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Figure B.8: F1 scores of Fast-MUOD with projections (FST-PRJ1) using different thresh-
old values Q = (τS , τA, τM ) on Model 5. The horizontal facets indicate the different
contamination rates considered (0.05, 0.1, 0.15, 0.2).
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Figure B.9: F1 scores of Fast-MUOD with projections (FST-PRJ1) using different thresh-
old values Q = (τS , τA, τM ) on Model 6. The horizontal facets indicate the different
contamination rates considered (0.05, 0.1, 0.15, 0.2).
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B.6 Character Data: Letter “i"
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Figure B.10: The horizontal and vertical coordinates of the magnitude and amplitude
outliers.
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Figure B.11: Some shape outliers: curves 3, 5, 6, 9 and 90 with horizontal shift.
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B.7 Character Data: Letter “a"
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Figure B.12: Some shape outliers detected by Fast-MUOD with a shift to the right in
peaks resulting in “short follow-throughs". See Figure 5.6 of the thesis.
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Figure B.13: Some shape outliers detected by Fast-MUOD with a shift to the left in peaks
resulting in “long follow-throughs". See Figure 5.6 of the thesis.
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Figure B.14: Outliers detected by only Fast-MUOD and only MSPLOT.
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