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Abstract

Motivated by the need of mitigating the increase in the debris population that has been
accumulating in the Low Earth Orbit (LEO) in more than 60 years of intense human
activity in space, Electrodynamic Tethers (EDTs) have been proposed as efficient devices
to deorbit satellites at the end of life. Consisting in long conductors that are deployed from
the satellite at the end of its mission, EDTs exploit the interaction with the ionospheric
plasma to create a current that, flowing along the device, interacts with the geomagnetic
field giving rise to a magnetic drag that deorbits the satellite. Low Work-function tethers
(LWTs) are particularly attractive because no expellant is needed for their operations.
Once deployed, the LWT exchanges electrons with the ionospheric plasma, collecting
them at one segment and, upon being coated with a material of low-enough work function,
emitting them back at the complementary segment. Accurate models of the plasma-LWT
interaction are necessary to quantify the performances of the device with software for
mission analysis. Since the characteristic length of a space tether is several orders of
magnitude larger than the Debye length in LEO, the current distribution along the tether
can be computed from the current-voltage characteristic of a two-dimensional probe of
same cross-section.

This dissertation presents a numerical investigation of the interaction between two-
dimensional (electron-emitting) objects and Maxwellian plasmas representative of the
LEO environment. A kinetic approach is adopted to study the features of the plasma
sheath. In particular, a model based on the Orbital Motion Theory (OMT) is applied to
study geometries that, although favourable for LWTs applications, received little attention
in past works. To this extent, a novel stationary Eulerian Vlasov-Poisson solver based on a
backward Liouville method is presented in detail. After a thorough verification procedure
versus more mature numerical tools, a discussion of the physical and numerical limita-
tions of stationary Vlasov-Poisson solvers is presented. Its results are used to provide a
list of guidelines for their practical use in plasma-material interaction problems.

Using the same code, an analysis was carried out in order to characterise deeply the
sheath around electron-emitting objects with elliptic cross sections. By varying the size,
eccentricity and emission level of the probe, the study assessed the parameter domains
for which Orbital-Motion-Limited (OML) current collection and Space-Charge-Limited
(SCL) current emission hold. The local curvature of the probe revealed to have an im-
portant impact on its operational regime and, as compared with cylindrical ones, elliptic
bodies were found to be more likely to meet non-OML and SCL conditions. Electron
emission was also shown to be favourable for OML current collection. Regarding LWTs
applications, an interesting equivalence between the emitted current in SCL conditions by
ellipses and cylinders was found.



In the last part of the dissertation the hypothesis about the steady-state of the system is
relaxed and a novel semi-Lagrangian Vlasov-Poisson solver developed as an extension of
the stationary one is introduced. The impact of the population of trapped particles on the
macroscopic magnitudes of the sheath is discussed. The results of a comparison between
Eulerian solvers and a Particle-In-Cell (PIC) code for emissive probes are also presented
to investigate the importance of the numerical noise of the PIC code. Particle trapping is
shown to depend on both the history of the system and on the emission level. For high
electron-emission, the trapped population reduces SCL effects.



Resumen

Ante el reto de mitigar el aumento de la población de basura espacial que se ha ido
acumulando en la órbita terrestre baja (Low Earth Orbit - LEO) en los más de 60 años
de intensa actividad humana en el espacio, las amarras electrodinámicas (Electrodynamic
Tether - EDT) surgen como dispositivos eficientes para el desorbitado de satélites al final
de su vida útil. Los EDTs, largos cables conductores, aprovechan su interacción con el
plasma ionosférico para crear una corriente que, al fluir a los largo del cable, interactúa
con el campo geomagnético y generan una fuerza de frenado que desorbita el satélite. Las
llamadas amarras con baja función de trabajo (Low Work-function tethers - LWTs) son
especialmente atractivas porque no involucran ningún consumible ni elemento activo para
su funcionamiento. Una vez desplegado, el LWT intercambia electrones con el plasma
ionosférico de manera totalmente pasiva. Los electrones son recogidos en un segmento
llamado anódico y se emitien de vuelta al plasma en el segmento complementario catódico
gracias a los efectos termoiónico y fotoeléctrico que facilitan el recubrimiendo con baja
función de trabajo de la propia amarra. Para poder evaluar las prestaciones del dispositivo,
se necesitan modelos precisos de la interacción entre el plasma y el LWT. Dado que la
longitud de una amarra espacial es varios órdenes de magnitud mayor que la longitud de
Debye en LEO, los perfiles de corriente y voltaje se pueden calcular a partir de las curvas
caracterı́sticas de una sonda bi-dimensional con la misma sección transversal.

La tesis presenta un analı́sis numérico de la interacción entre objetos bidimensional que
emiten electrones y plasmas representativos del entorno espacial en LEO. Se adopta un
enfoque cinético para estudiar las caracterı́sticas de la vaina del plasma. En particular,
se aplica un modelo basado en la Orbital Motion Theory (OMT) para el estudio de ge-
ometrı́as que, pese a ser ventajosas para aplicaciones de LWTs, recibieron poca atención
en el pasado. Para ello se ha desarrollado un nuevo código Vlasov-Poisson euleriano
y estacionario basado en el metodo de backward Liouville. Tras un extenso proceso de
verificación frente a resultados obtenidos con código más maduros, se discuten las limita-
ciones de tipo fı́sico y numérico intrı́nsecas a los códigos Vlasov-Poisson estacionarios.
Los resultados se han utilizado para preparar una lista de recomendaciones prácticas sobre
el uso de estos códigos en problemas de interacción plasma-material.

El código se ha utilizado para caracterizar en profundidad las vainas que se forman
alrededor de objetos con sección transversal elı́ptica y que emiten electrones. En el
análisis se ha variado el tamaño, la eccentricidad y el nivel de emisión del objeto, lo
cual ha permitido determinar los dominios paramétricos en donde la captura de corriente
está dada por la llamada teorı́a Orbital Motion Limited (OML) y la emisión ocurre bajo
condiciones de Space Charge Limited (SCL). Se ha observado que la curvatura local de la



elipse juega un papel importante en determinar el regimen de operación y se encontró que
los cuerpos elı́pticos son más propensos a cumplir con las condiciones de no-OML y SCL
que los cilı́ndricos. También ha permitido concluir que la emisión de electrones favorece
la captura de corriente en condiciones OML. Con respecto a los LWTs, se ha encontrado
que existe un radio equivalente para calcular la corriente emitida por un cuerpo eliptico
bajo condiciones SCL a partir de los resultados de un cuerpo cilı́ndrico.

La última parte de la tesis estudia los transitorios que ocurren entre una condición ini-
ciales dada y el estado estacionario que se alcanza en el equilibrio. Para ello se ha desarrol-
lado un código semilagrangiano para resolver el sistema Vlasov-Poisson no estacionario,
el cual constituye una extensión del código estacionario usado en la primera parte de la
tesis. El nuevo código ha permitido discutir el impacto de la población de particulas atra-
padas en el transitorio sobre las magnitudes macroscopicas de la vaina del plasma en el
equilibrio. Se presentan tambien los resultados de una comparación entre el código eu-
leriano y un código Particle-In-Cell (PIC) para sondas emisivas con el fin de investigar
la importancia del ruido numérico del código PIC. Se demuestra que la cantidad de atra-
pados depende tanto de la historia del sistema como del nivel de emisión. Para una alta
emisión de electrones, la población de atrapados reduce los efectos SCL.
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Chapter 1

Introduction

1.1 Background: the space debris problem

Dating back to 1957, the launch of the Sputnik 1 marked the beginning of the Space
Age [1, 2]. Since then, human activities in space have constantly grown, driven by a
thirst for knowledge and the will to improve the quality of life on Earth. This effort
fostered progress in the understanding of the universe and enabled the development of
life-changing services, like the Global Positioning System. In order to achieve such ex-
traordinary outcomes, thousands of mission were designed and launched, leading to an
exponential increase, which persists to these days, of the number of man-made objects in
orbit. Figure 1.1, taken from the 2022 space environment report redacted by the European
Space Agency (ESA) [3], shows that an estimation of more than 30000 objects is cur-
rently in orbit around the earth, the majority of which resides in a relatively small portion
of the sky known as Low Earth Orbit (LEO), which extends approximately to an altitude
of 2000km. Most of these objects no longer serve any useful purpose and thus classifies
as space debris [4, 5]. Their presence poses a severe problem to space operations, for a
collision with an operative payload could result in serious damaging of the latter, poten-
tially leading to a mission failure. As a side effect, new debris might form as well, thus
polluting further the space environment and increasing the probability for more impacts
to occur.

In fact, the amount of debris in orbit already reached a point where collisional break-ups
could ignite a cascade of collisions provoked by their byproducts, resulting in an expo-
nential increase of the debris flux in the long-term period. Under such circumstances, it
appears clear how space operations could become highly risky, whether not totally un-
feasible. The catastrophic scenario just discussed is known as Kessler syndrome, and
was originally brought to attention in 1978 [6]. More recent studies based on numerical
simulations have highlighted how the LEO environment is already unstable, with the pop-
ulation of debris estimated to continue growing even in absence of new launches [3, 7]
(see Fig. 1.2). Obviously, this is not the case as the number of launches is increasing sta-
bly and will continue growing. For instance, the building of various mega-constellations

1
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FIGURE 1.1: Number of objects in orbit around the Earth, classified according to their
orbit [3]

in LEO is currently on-going, which will increase considerably the number of satellites in
orbit around the earth in the next future [8].

In view of this, concern about the space debris issue has grown considerably in the
recent past. In order to face the problem, space agencies worldwide have agreed upon
several guidelines that outline a more sustainable operative framework for space activities
[5]. Overall, their aim is to reduce the injection of new debris in orbit. To achieve this, new
missions should be properly designed for minimising the release of debris during normal
operations and being able to perform collision avoidance manoeuvres. In addition, proper
post-mission disposal of the spacecraft should also be implemented either by moving it
into a safe (graveyard) orbit or by deorbit. According the ESA report, the last years have
recorded a positive trend towards compliance with such objectives. However, the popu-
lation of debris is already so high that active debris removal is also deemed necessary as
a complementary measure. In view of all the reasons mentioned above, several deorbit-
ing technologies have been proposed, developed and/or are currently being investigated.
Recent reviews about devices for active space debris removal can be found at [9, 10].

1.2 Electrodynamic Tethers

Among de-orbiting technologies, Electrodynamic Tethers (EDTs) represent an attractive
alternative [11–17]. Their working principle is relatively simple: a long (∼ 102 −103 m),
narrow (∼ 10−2 m) and thin (∼ 10−6 m) conductor is deployed from a spacecraft at the
end of its mission. If a stable current flows across the cable, the Lorentz force resulting
from the interaction between the current and the magnetic field of the Earth acts as a
drag that opposes the motion of the spacecraft with respect to the ambient plasma, thus
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FIGURE 1.2: Forecast of the evolution of the number of objects in stable launch rate (red
curves) and no further launches starting from 2022 (blue curves) scenarios [3]

making it re-enter towards the atmosphere of the Earth, where it eventually burns (see Sec.
1.2.1 for more details). The history of the space tether concept goes long back [18] and
different designs were proposed during more than 50 years of research (see Sec. 1.2.2).
This section provides a detailed overview of the EDT technology, with particular focus on
the so-called Low Work-function electrodynamic Tethers (LWTs).

1.2.1 Working Principle

Consider the system depicted schematically in Fig. 1.3. A long conductor is attached to
a spacecraft orbiting at LEO altitude, where a plasma with a density of charged particles
of the order of ∼ 1011 m−3 is present. Being the plasma a conductor at equilibrium, the
electric field EEE ′′′ measured from the frame of reference F ′ linked to it is zero. However,
according to the transformations of Lorentz, at a frame of reference F moving jointly
with the conductor an electric field equal to

EEE ≈ vvvrel ×BBB (1.1)

appears, with vvvrel the relative velocity between the tether-S/C ensemble and the unper-
turbed plasma, and BBB the magnetic field of the Earth [19].
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FIGURE 1.3: Sketch of the EDT working principle [20].

Equation (1.1) is valid upon assuming |vvvrel|<< c, with c the speed of light. As observed
by Drell et al. [18], such electromotive field causes the separation of charged particles in
the direction normal to the vvvrel-BBB plane. If a low enough impedance exists between the
plasma and the conductor (both anodic and cathodic), then a stable current III circulates
along it. In presence of a magnetic field, the charged particles moving along the tether
experience the action of the Lorentz force

FFFLLL =
∫︂ L

0
III(s)×BBBds, (1.2)

where L is the total length of the tether and s identifies the coordinate along the tether di-
rection. Acting as a magnetic drag, such a force can be exploited for deorbiting purposes.
In order to provide an estimation of its effectiveness, it is necessary to compute the current
per unit length along the tether, given by

dI
ds

= pt · J(φ). (1.3)
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where pt is the perimeter of the tether cross-section, φ is the bias of the tether relatively
to the faraway plasma and J(φ) identifies the current (per unit area) collected/emitted at
a certain point along the tether. Since the characteristic dimension(s) of the cross-section
for a cylindrical (tape) tether is (are) orders of magnitude lower than its length, and this
is much bigger than the typical Debye length in LEO, J(φ) is equivalent to the current
to a two-dimensional probe biased at potential φ with respect to the background plasma
(see Secs. 1.3 and Chapter 2 for more details). The variation of the electrostatic potential
profile φ along the tether reads

dφ

ds
=

I(s)
σtAt

−Em. (1.4)

In Eq. (1.4), the first term corresponds to the drop of potential associated with the ohmic
effects due to the presence of a flowing current and σt and At stand for the conductivity
and the cross-sectional area of the tether, respectively. The second term Em ≡ EEE · uuut is
the variation of the potential at the faraway plasma, with uuut the unit vector tangent to the
straight tether and along the direction of the electrical current. For a tether operating in
LEO in the so-called passive mode, one has EEEm · III > 0.

Solving the system of Eqs. (1.3)-(1.4) with appropriate boundary conditions, which
change accordingly to the type of tether, allows to describe the current and voltage profiles
along the tether. Once these are known, the deorbit force that the device can exert is
computed from Eq. (1.2). For the case of interest of a floating LWT (see Sec. 1.2.2.1
for details), one has I(0) = I(L) = 0. If a standard bare-EDT were to be considered, the
second boundary conditions would become V (L) =VC < 0, being VC the potential drop at
the active electron emitter.

While in a deorbit scenario the tether operates in passive mode, a second mode of
operation can be achieved if an adequate source of power is available. In this latter case,
the direction of the current (and therefore that of the force) can be inverted. In LEO, one
gets EEEm ·III < 0 and the tether generate thrust. Electrodynamics Tethers are thus completely
reversible devices that can be exploited not only as a deorbit technology, but also as a
propulsion system for re-boost manoeuvres and station-keeping purposes [21–26].

Regardless of the application, the performances of the tether clearly depend on the
amount of current that the device is able to sustain. Providing a good electrical contact
with the surrounding environment is thus of uttermost importance for an effective opera-
tive capability of the tether. In view of this, different architectures have been proposed and
investigated, some of which were (and currently are) being tested in several missions. An
historical overview of the development of space tether devices is given in the next section.

1.2.2 Historical overview

This section presents an overview of the main designs that have been proposed for EDT
systems. A summary of the main missions, along with their successes and failures, that
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were proposed and flown is also provided in order to furnish a thorough description of the
state-of-the-art of the electrodynamic tether technology.

1.2.2.1 Tether design: from the origin to the the Low Work-function Tether

In more than half a century of research and experimentation, the design of EDT-based
devices evolved dramatically in order to address critical technical aspects related to their
concrete application [27]. The very first proposal of a device based on EDT technology
dates back to 1965, when Drell et al. presented their Alfén waves propulsion engine [18].
In this first design, the electrical contact between the tether and the surrounding plasma
was achieved by two large and passive conductors placed at the ends of a long insulated
cable. Their corresponding impedance was computed by the authors based on Alfven
radiation. A sketch of the device proposed by Drell et al. is depicted in panel (a) of Fig.
1.4.

The idea was surely intriguing but, just one year later, Moore pointed out that their
computations were in fact too optimistic [28]. In order to overcome the difficulties related
to provide a good electrical contact between the device and the ambient plasma, Moore
proposed an alternative architecture featuring two active plasma contactors for electron
collection and emission at the ends of the tether. This very configuration was implemented
in the successful PMG mission, while the two TSS NASA missions in the first half of
the 1990s (see next section for more details) tested a setup closer to that of the modern
design of EDT devices. Such concept involved the use of a big collective sphere as the
anodic contact, while at the cathodic end an electron gun would take care of returning the
electrons back to the plasma [see panel (b) in Fig. 1.4].

In the early years, the main concern of the researchers working on EDT-based devices
was that of guaranteeing a good electrical contact with the rarefied ionospheric plasma.
In this regard, a revolutionary idea was brought about in 1993 by Sanmartin et al. [29].
In their influential work, the authors proposed to exploit the tether itself as an electron
collector. By leaving a portion of the tether un-insulated, bare according to the terminol-
ogy used in the paper, the device itself collects charged particles. Similarly to a (giant)
Langmuir probe, the portion positively polarised with respect to the plasma collects elec-
trons, while the portion of the tether negatively polarised receives the impact of positively
charged ions. The huge collective surface resulting from the great length of the tether
(∼ 102 − 103 m) provides an effective way of capturing charged particles that allows to
get rid of active devices to fulfil this purpose. At the other tether end, electrons can be
re-emitted into the ambient plasma by means of an active electron emitter (e.g., hollow
cathode, thermionic emitter, etc..). In order to test this revolutionary device, whose sketch
is presented in panel (c) of Fig. 1.4, a mission was proposed and developed but ultimately
had to be canceled due to the outcomes of the accident of shuttle Columbia (see Sec.
1.2.2.2 for more details).
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FIGURE 1.4: Sketch of different EDT-based devices: Alfén waves propulsion engine (a),
TSS missions (b), bare electrodynamic tether (c), and low work-funciton electrodynamic
tether (d) [27].
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Despite this significant obstruction, interest in tether technology remained alive and
further design innovations were introduced in the last 20 years. Regarding the electrody-
namic model, a second revolutionary step in EDT-based concept occurred in 2012, when
Williams and Sanmartin proposed to get rid of the active electron emitter by exploiting
thermionic emission from the tether itself. This can be achieved if (a portion of) the tether
is coated with a material of low-enough work-function [30]. According to the emissive
mechanism proposed, the authors referred to this device as thermionic EDT [31]. In this
newer version, the EDT is a completely passive device as no active element is needed,
at least in the so-called passive (generation) mode that is of interest in de-orbit scenarios
[32].

More recently, Sánchez-Arriaga and Chen pointed out how the photoelectric effect can
enhance electron-emission by the coated segment of the tether, thus improving its effec-
tiveness [33]. In view of the combined effects of thermo- and photo-emission, this latest
version of the device is commonly referred to as Low Work-function Tether (LWT). A
sketch of the latter is shown in panel (d) of Fig. 1.4, where the green portion of the tether
represent the low W coating. In principle, the coating can extend to the whole tether.
However, at the anodic end, the electrons emitted will be reflected and collected back by
the tether due to the attraction of the electric field.

Unlike electric and chemical propulsion devices, which need for propellant and expel-
lant in order to operate [17], LWTs could provide an affordable and convenient alternative
to get rid of space debris and represent a potentially disruptive technology towards the
achievement of a more sustainable use of the space environment. However, LWTs are
a relatively new technology and their readiness is yet to be achieved. Currently, an im-
portant effort is carried out within the framework of E.T.PACK, a project funded by the
European Commission that is aimed at pushing forward the LWT technology up to TRL
4 [27].

The analysis at the core of the present dissertation was carried out within the frame-
work of E.T.PACK and its main target is the modeling of the interaction between LWTs
and the ionospheric plasma (see Sec. 1.3), which is a key aspect for estimating the perfor-
mances of the device. A better understanding of the mechanisms of current collection and
emission is indispensable to improve the current models at the basis software for mission
analysis of tethers, or at least to identify better the range of validity of the simplified ones
that the latter implement [34].

For sake of completeness, it is worth mentioning that, as a side product of the inves-
tigation carried out in the E.T.PACK project, a novel architecture going by the name of
Bare-Photovoltaic Tether (BPT) was proposed. Said concept, which is not discussed in
the present dissertation, features a segment made of thin film solar cells to enhance the
performances of the tether by providing an additional source of power [35].
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1.2.2.2 Past and current tether missions

In order to provide an overview of the state-of-the art of space tethers, this section presents
a brief summary of the most relevant missions involving the use of such devices. Despite
the present dissertation focuses on the modeling of the LWT-plasma interaction, and its
interest is thus limited to EDTs only, several missions featuring the use of non-conducting
tethers are mentioned in order to present a thorough description of the maturity of the
technology. In fact, they provide key information about aspects that, though falling be-
yond the scope of the present work, are relevant for EDTs (e.g., deployment mechanism
and dynamics of the tether during the mission).

The first missions involving the use tethers in space date back to the early years of the
space era. In the mid 1960s, the latest two missions of the Gemini program by NASA
[36] were equipped with a non-conducting wire tether. Though several difficulties were
experienced by the members of the crews, the two missions demonstrated the possibility
of stabilizing a satellite with the use of a tether, either by exploiting the gravity-gradient
or by rotating the system of two coupled spacecraft connected by the cable. The latter
configuration proved also valuable for generating artificial gravity. During the 80s and
early 90s, a series of suborbital experiments (TPE, CHARGE, ECHO, OEDIPUS) allowed
to gather interesting information about the behaviour of the ionospheric plasma and its
interaction with electron beams and the mitigation of charging induced by the release of
gas. On top of that, these missions helped making progress towards the understanding
of how to correctly perform the deployment of long tethers in vacuum and micro-gravity
conditions [37, 38].

In the 1990s space tethers lived their so-to-speak golden era: interest in this technology
was arguably at its top and several missions were launched in order to test it. The biggest
two were undoubtedly TSS-1 and TSS-1R by NASA, which flew in 1992 and 1996, re-
spectively. They involved a quite complex system consisting of a satellite attached to a
shuttle by a 20km-long insulated wire tether. Their purpose was that of verifying the
performances of the electrodynamic tether technology, studying its interaction with the
ambient plasma and investigating the dynamics of the tethered system. After several prob-
lems experienced by TSS-1, during which the tether did not properly deploy, the system
was flown again 4 years later. During TSS-1R, 19.7km of the total 20km of the tether
were successfully and smoothly deployed, before the tether suddenly broke causing the
satellite-tether ensemble to be lost to space. Post-mission analysis revealed that severance
occurred in response to the formation of an electric arc that burned part of the tether, caus-
ing it to eventually break under the action of the tension. The arc resulted from a damage
of the insulation caused either by some imperfection in the manufacturing or handling of
the tether or by a debris [39].

Despite the mission could not be completed, the experiment is arguably far from being
a failure. In fact, although the tether broke before its full deployment, this proceeded
smoothly for several km. In addition, the duration of the mission allowed to collect nu-
merous data regarding the electrodynamic characteristics of the system that proved the
working principle of EDTs [40–45]. The experiment also helped improving considerably
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the understanding of tether dynamics and the unforeseen loss of the system provided fur-
ther evidence of the capability of the tether to stabilize itself along its local vertical, as
observations of the severed system from Earth later confirmed.

On a smaller scale, several tethered missions were flown as secondary payloads at-
tached to upper stages of launchers. Among these, both SEDS-1 and SEDS-2 were carried
out successfully, further demonstrating the feasibility of the deployment and the vertical
stabilization of the system through gravity-gradient. In 1993, the PMG mission involving
a 500m-long conducting tether was launched in order to prove that a current could be
generated and exploited to create an electromagnetic drag (thrust) exploitable as a way
of changing the orbit of a satellite without the use of propellant. During its 7 hours-
duration, the mission successfully demonstrated that in the passive mode the tether was
able to generate electrical power. Therefore, it proved that the total energy of the tether-
satellite ensemble can be turned into electrical energy, causing the whole system to move
to a lower orbit, which is the case of interest in a de-orbit scenario. On top of that, the
experiment proved that the current was completely reversible and, provided an adequate
amount of power is fed to the system, the tether can work in thrust mode [46–49]. A few
years later the TiPS experiment proved a case against concerns about the safety of tether
operations in space. Launched in 1997, the tethered device survived in orbit for more than
10 years without neither being severed nor posing a significant risk for other payloads.

Following the successful SEDS and PMG missions, the proSEDS experiment was de-
signed in order to test the performances of the revolutionary bare-EDT concept, but
the mission could not take place in view of the aftermath of the accident of the shuttle
Columbia in 2003 [50–52]. Despite the numerous difficulties faced during some of the
above-mentioned missions and the cancellation of proSEDS curbed the development of
the EDT-technology, the interest remained alive and several missions, albeit smaller, were
flown in the first decade of the 21st century. Other worth-mentioning missions include
the YES series of two experiments, the later of which holds the record for the longest
tether ever deployed in space (31.7km) and demonstrated the feasibility of de-orbiting
of a spacecraft by exploiting momentum-exchange only. In 2010, the JAXA-sponsored
mission T-REX performed the first deployment of bare tether with a tape cross-section and
tested successfully the fast ignition of a hollow cathode immersed in the space environ-
ment [53].

Overall, the tethered missions that flew in the past gathered mixed results, which, de-
spite all difficulties, proved that the working principle is solid and that the potential of
the device is promising. In the last decade, it seems that enthusiasm towards EDTs has
revived, also in view of new ideas that might bring significant improvements to the tech-
nology (e.g., the implementation of LWTs for a completely passive de-orbit system).
Projects like E.T.PACK [27, 54] and missions such as TEPCE , MiTEE, Prox-1, DE-
SCENT and Dragracer [55–66] provide a strong evidence of such renewed interest. The
positive results of these latest efforts seem to suggest that in the near future this promising
technology may finally see its full potential realized, thus providing a novel, sustainable
and competitive alternative to the (for the time-being) more mature chemical and electric
propulsion systems [17].
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1.3 LWT-Plasma interaction modeling

The perfomarnces of EDTs as de-orbit or propulsion systems highly depend on their abil-
ity to exchange charged particles, electrons mainly, with the ionospheric plasma in which
they are immersed. This interaction determines the amount of current that the device is
able to sustain, which then affects directly the magnitude of the drag (propulsive) force
according to Eq. (1.2). Reliable plasma-tether interaction models, which constitute a
challenging problem in plasma physics, are thus indispensable for predicting accurately
the behaviour of LWTs and carrying out an accurate design of missions through numerical
simulations [34, 67–69].

In presence of an external body, the charged particles of a plasma arrange so as to shield
such object-induced perturbation. The resulting plasma sheath, a region in which quasi-
neutrality does not hold, governs the dynamics of the particles in the area surrounding
the body and thus determines the amount of particles that are collected and/or emitted
by it. Plasma sheaths come in a wide variety of forms (find reviews at [70, 71]) and
the investigation of their features is a common problem in plasma physics that appear
in a broad range of applications. In fact, although the present research starts from an
interest in EDT devices [72–74], modelling of plasma-wall interaction has applications in
many other fields such as Langmuir Probes (LPs) and Emissive Probes (EPs) for plasma
diagnostics [75–81] and charging processes of dust grains [82–85] and spacecraft [86–89],
to mention a few significant examples.

Typically, an accurate characterization of the plasma sheath requires the implemen-
tation of a kinetic approach. In the most general case, this demands for solving self-
consistently the Boltzmann equation, which governs the evolution of the plasma species
distribution function, coupled with the electromagnetic field provided by the Maxwell
equations [90]. However, the plasma parameters characteristic of the ionospheric LEO
environment, which is the case of interest for LWTs applications, allows to make several
assumptions that ease the analysis. A common choice is that of disregarding the influence
of collisions and the magnetic field on the dynamics of the charged particles (see Chapter
2 for more details). Further simplifications apply when objects of simple geometries such
as planes, cylinders and spheres are considered.

Under such circumstances, the plasma-material interaction problem features symme-
tries that yield conservation laws (e.g., conservation of momentum or angular momentum
of the charged particles). In turn, these can be exploited in order to find relatively simple
models for the description of the sheath structure and the estimation of macroscopic mag-
nitudes such as collected and emitted currents, or the charge of the object [91–105]. In
addition, in the particular case of space tethers, their characteristic dimensions are such
that, at different locations along the tether, their interaction with the plasma reduces to
a two-dimensional problem. In other words, the current and voltage profiles along the
tether [see Eqs. (1.3)-(1.4)] are equivalent to the current-voltage characteristics of a two-
dimensional probe sharing the same cross-sectional shape of the tether and facing the
same environmental conditions (i.e., the same plasma).
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The previous discussion highlights how the electrodynamic performances of a LWT
depend significantly on the geometry of its cross-section, which has also a high impact on
the deployment and the storage of the tether [106]. Therefore, its selection constitutes a
key aspect that needs to be addressed during the design of a mission. The model imple-
mented to estimate the LWT-plasma interaction must thus follow from such a decision.
Early tether designs implemented long conducting wires (i.e., round cylinders), which
have been extensively investigated with the so-called Orbital Motion Theory (OMT). In
this regard, a powerful and interesting result for current collection by bare-EDTs is the
fact that the OMT retrieves the results of the simpler and very well-known Orbital Motion
Limited (OML) theory introduced at [107]. The latter rests on the hypothesis that there are
no potential barriers that would prevent some of the attracted particles from reaching the
probe [108], thus representing a condition of maximum for current collection in absence
of trapped particles. This is true at least when the radius of the tether is small enough with
respect to the plasma Debye length [94]. At larger radii, the current collection diminishes
and, when the bias of the probe is much bigger than that of the plasma, application of
analytical corrections helps quantifying said reduction [109].

Despite being useful for estimating the current and voltage profiles along standard bare
tethers, these results apply to non-emitting wires only, and are therefore not suitable for
addressing the plasma-tether interaction at the the cathodic (emissive) segment of a LWT.
Analysis of the latter requires taking into account emission of electrons at the plasma-
material interface. Analytical models for cylindrical emissive probes have been proposed
[100, 110, 111], (find a review in [112]). These analytical works help understanding the
peculiarities of sheaths around emissive wires, such as the formation of a virtual cathode
that gives rise to Space-Charge-Limited (SCL) emission, a condition in which part of the
emitted electrons are reflected back to the probe by the opposing electric field. The appli-
cation of analytical models is subject to the fulfillment of several hypotheses (e.g., cold
and radially-moving ions, emission in vacuum). Relaxation of (some of) these hypotheses
usually requires for the implementation of self-consistent numerical models. A recent one
based on the OMT can be found at [113].

Unlike cylindrical probes, configurations involving an object with tape or tape-like
cross-section immersed in a plasma have received little attention in past works. Arguably,
this is in part due to the fact that the analysis is complicated by the absence of conserved
quantities. For instance, moving from a cylindrical geometry to a tape one leads to the
breaking of the axial symmetry of the problem. As a consequence, the angular momen-
tum of the charged particles is no longer conserved along their collisionless orbits and
analytical models for computation of their macroscopic quantities are therefore difficult
to develop, unless special circumstances are considered.

However, as far as space tether applications in de-orbit or re-boost scenarios are con-
cerned, numerous studies have highlighted how a tape geometry is favourable over a cylin-
drical one from a three-fold point of view. First, being the current per unit length propor-
tional to the perimeter [see Eq. (1.3)], a tape shape guarantees higher performances as
it maximises the perimeter for a given cross-sectional area (i.e., for a given mass). Sec-
ond, a tape-like tether is more robust against impacts with small debris [114–116], thus
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improving significantly the reliability of tethered devices. Eventually, the higher number
of characteristic dimensions of a tape tether (length, width, thickness) versus a cylindrical
one (length, radius) ensures a better scalability of the design, which can adjust better to the
requirements of the mission [117]. Besides space tethers, interesting examples in which
investigation of the plasma sheath around two-dimensional object with non-cylindrical
cross-sections applies include charging of non-spherical dust grains [118] and applica-
tions related with plasma-sheath lenses [119–121].

Several works have dealt in the past with configurations involving objects with tape
or tape-like cross-sections, although in a number significantly smaller compared to those
addressing more regular geometries such as cylinders and spheres. For instance, a re-
markable work by Laframboise and Parker showed that the current collection falls in the
OML regime for sufficiently convex objects when a monotonic Laplacian potential is con-
sidered [108]. Further assessment of the validity of the OML theory in the limit of high
bias was carried later out by Sanmartin and Estes, who first considered a thin taped cross-
section [94], and then generalized their analysis to prisms of infinite length and arbitrary
cross-section [122]. Once again, these analytical and semi-analytical models prove surely
useful for understanding the current collection by LWT device, but their validity under-
goes compliance to various additional hypotheses (e.g., high bias).

A more general description of plasma sheaths requires the implementation of numerical
algorithms in order to relax some of the assumptions at the basis of analytical models. In
the regime of plasma parameters suitable for LWTs, current collection by a tape was
studied numerically with a direct Vlasov-Poisson (VP) solver in [123]. Particle-in-cell
(PIC) codes are also a popular choice when it comes to the numerical investigation of
plasma-material interaction, and have for instance been applied for studying the sheath
around elongated dust grains in flowing plasmas [124]. A particle-particle code was also
implemented for investigating the charging of non-spherical dust grains [125], and its
results benchmarked again the analytical ones of Ref. [126].

Numerical simulations seem also to be the most appropriate tool to investigate the fea-
tures of the sheath in presence of electron emission at the plasma-material interface. As
discussed for the cylindrical case, electron emission further complicates the analysis of the
sheath, since the additional population of electrons can significantly modify the electro-
static potential around the emitting body, thus altering the fluxes of charged particles. The
above-mentioned appearance of a potential dip (virtual cathode) as consequence of the
augmented population of electrons in the region surrounding a negatively biased object is
a relevant example. Resulting in SCL emission, such feature is detrimental for the elec-
trodynamic performances of a LWT. Since the low energetic electrons are reflected back
to the tether by the reversal of the electric field, the presence of a potential well limits
the amount of current that is effectively emitted by the cathodic segment. Longer tethers
would thus be necessary to meet mission requirements in terms of current magnitude.

Understanding which conditions trigger the SCL operational regime, and quantifying
how much this affects the overall performances of the LWT device is thus crucial for the
proper design of a mission. Nonetheless, under such circumstances, deriving analytical
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models is complicated. This is all the more true for a tape-like electron emitting body,
as one can no longer exploit the conservation laws provided by the axial symmetry of the
problem. If, for cylindrical emissive probes, a self-consistent numerical model based on
the OMT has already been developed [113] and used to investigate the kinetic features of
the sheath [127], there do not appear to be an equivalent analysis for the sheath around
two-dimensional electron-emitting bodies with tape-like cross-section yet. The work pre-
sented here fills such theoretical gap between OMT for (emissive) probes with cylindrical
[93, 113] and tape-like cross-sections [94, 123]. Its major objectives are summarized in
the next section.

1.4 Research objectives

The present work aims at providing a solid description of the interaction between two-
dimensional (electron-emitting) objects and the plasma environment faced by LWTs in de-
orbiting scenarios. This is a relevant engineering problem that is motivated largely by the
impending need to develop reliable and cost-effective technologies designed to guarantee
a more sustainable use of the space environment. In view of the above considerations, the
scope of the present work can be summarised in the following points

• Application of the Orbital Motion Theory to geometrical configurations that, de-
spite having proven to be advantageous in LWTs application, and being of interest
for applications ranging from plasma diagnostics to charging of spacecraft or dust
particles, have received little attention in the past.

• Development and verification of a robust and versatile numerical tool to carry out
the numerical analysis of the features of the plasma sheath that forms around electron-
emitting objects with tape-like cross-sections are immersed in a LEO plasma.

• Analysis of different operational regimes through an extensive parametric analysis
varying both the geometry of the configuration and the macroscopic properties of
the background plasma. Particular attention is devoted to the investigation of the
transition between the OML and non-OML regime for current collection, and that
between non-SCL and SCL electron emission.

• Investigation of interesting physical features such as the appearance of chaotic dy-
namics and the subsequent filamentation of the distribution function, and their im-
pact on the numerical solutions.

• Comparison between Eulerian and PIC solvers in the context of plasma-material
interaction.

• Assessment of the role of trapped particles on the formation of the sheath in pres-
ence of electron emission at the plasma-material interface.
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1.5 Disseration overview

The followings sections of the present thesis are presented as:

Chapter 2 - Stationary Vlasov-Poisson solver: Model and Numerical Algorithm in-
troduces the mathematical model used to describe the stationary problem and justifies the
introduction of the simplifying hypotheses. After the presentation of the mathematical
equations that govern the problem and a discussion about the boundary conditions, the
main blocks and the features of the numerical algorithm are described in detail.

Chapter 3 - Results of the Stationary Vlasov-Poisson solver summarises the main
results of the investigation activity carried out with the stationary code. A first section
discusses the verification of the novel code against previous numerical and analytical re-
sults. In a second part, a thorough analysis of the numerical properties of the code is
presented. Both cylindrical and elliptical configurations are investigated in order to dis-
cuss some numerical and physical limitations that are inherent to the implementation of
stationary Vlasov-Poisson solvers. Particular attention is dedicated to the ability of the
code to recover conservation laws of the system, as well as to the rise of filamentation
of the distribution function when moving from an integrable to a non-integrable config-
uration. Outcomes of such analysis are used to identify a set of good practices that are
recommendable when developing a stationary direct Vlasov-Poisson solver. Eventually,
the main results of a comprehensive study regarding the characterization of the sheath
around (electron-emitting) elliptical bodies are presented, with particular focus on the
assessment of the transition between different operational regimes.

Chapter 4 - Non-stationary Vlasov-Poisson solver outlines the mathematical model
obtained by relaxing the stationary hypothesis previously taken into account. The main
differences in the system of the governing equations and their normalisation are high-
lighted. A thorough description of the novel modules that had to be implemented to
extend the stationary code is presented. Results of a first analysis assessing the impact of
particle trapping on the sheath are discussed.

Chapter 5 - Conclusions and Future work summarises the main contributions of the
thesis and provides a discussion of their relevance in the field of plasma physics and
aerospace engineering. A brief mention of the future activities planned for continuing the
research is also present.



Chapter 2

Stationary Vlasov-Poisson solver:
Model and Numerical Algorithm

This chapter introduces1 the mathematical model and the numerical algorithm developed
to compute the structure of the steady-state sheath around a two-dimensional (emissive)
object immersed at rest in a Maxwellian, unmagnetised, collisionless plasma. A kinetic
description of the plasma is sought for by solving self-consistently the Poisson and Vlasov
equations in order to obtain a discrete approximation of the continuous phase space dis-
tribution functions of the charged species. The latter are computed through a versatile
numerical algorithm that was developed from scratch. By combining different numerical
techniques, it can handle any kind of two-dimensional geometries, providing descriptions
of different accuracy based on the necessities of the user. Exploiting the properties of the
model, it reconstructs the discrete distribution functions onto an appropriately selected re-
gion of the phase space by applying the method of characteristics to the Vlasov equation.
In practice, this involves integrating backward in time the orbits of the charged particles
until they connect to a boundary of the computational domain where the distribution func-
tion is known (i.e., imposed as boundary condition). In previous works, such procedure
was referred to as inside-out [123], but here the term backward Liouville method [130] is
preferred as it highlights that it relies on the applicability of the Liouville theorem, which
undergoes compliance with a certain set of hypotheses. The next section introduces one
by one the assumptions of the kinetic model and derives the governing equations of the
problem of interest, along with the appropriate boundary conditions.

2.1 Kinetic model of two-dimensional emissive probes

A plasma consists of a gas in which a significant number of electrically charged particles
are present. If no external fields are taken into account, the charged particles interact

1The descriptions of the model and the numerical algorithm that follow are adapted from those provided
in Ref. [128, 129].
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among each others under the influence of the electromagnetic field consistent with their
distribution. Therefore, the most fundamental description of the system would require
solving Maxwell equations

∇ ·EEE =
ρ

ε0
, (2.1a)

∇ ·BBB = 0, (2.1b)

∇×EEE =−∂BBB
∂ t

, (2.1c)

∇×BBB = µ0

(︃
jjj+ ε0

∂EEE
∂ t

)︃
, (2.1d)

self-consistently with the dynamics of each of the Np charged particles

drrri
α

dt
= vvvi

α , mα

dvvvi
α

dt
= qα(EEE + vvvi

α ×BBB), i = 1,2, . . . ,Np (2.2)

In Eqs. (2.1)-(2.2), sub-index α identifies the species of the particle, EEE (BBB) is the electric
(magnetic) field, ε0 (µ0) the electric permittivity (magnetic permeability) of vacuum, ρ

( jjj) the charge (current) density, rrri
α (vvvi

α ) is the position (velocity) vector of the ith-particle
and mα (qα ) its mass (charge). Despite being achievable in principle, the number of
particles involved in most phenomena is so huge that a discrete description taking into
account the dynamics of each of the charges is not of practical interest, since it falls
beyond the capabilities of present computational resources. A convenient alternative is
implementing a statistical approach and representing the plasma species in terms of their
continuous distribution functions in the position-velocity phase space. The latter identifies
all the possible values of position and velocity of a particle, and the distribution function
fα(t,rrr,vvv) represents the density of the particles of type α that are contained at time t
in a certain region of the phase space. All the macroscopic quantities of interest that
characterise a certain species (e.g., number densities, currents, temperatures, etc..) can be
derived from their continuous distribution function. Adopting this kinetic description of
a plasma, the unknowns of the problem become the distribution functions of the species,
whose evolution is described, in the most generic case, by the Boltzmann equation

∂ fα

∂ t
+ vvvα ·∇ fα +

FFF tot

mα

·∇vα
fα =

(︃
∂ fα

∂ t

)︃
coll

, (2.3)

where FFF tot is the total force, while (∂ fα/∂ t)coll represents a source term that measures
the production/loss of charges due to collisions. Assuming external forces are absent (or
negligible), the total force term that drives the dynamics coincides with the Lorentz force
Ftot = qα(EEE + vvv×BBB), with EEE and BBB solutions of Eqs. (2.1).

Under appropriate circumstances, it is possible to apply some additional simplifications
that facilitate the description of the sheath-formation, mainly by disregarding effects that
are of little or no importance. Since it is the most interesting region for LWT applications,
the present work focuses on plasmas that are representative of the LEO environment.
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Table 2.1 summarises the values of the characteristic magnitudes of the plasma parameters
that have been taken as reference in the present work.

LEO Plasma
Magnitude Symbol Value

Background density n0 ∼ 1011 [m−3]

Particles temperatures Te,i ∼ 10−1 [eV]

Magnetic field B0 ∼ 10−1 [G]

TABLE 2.1: Typical values of plasma characteristic magnitudes in LEO [19, 90, 131–
133]

The resulting Debye length, which identifies the characteristic length over which the
shielding of the particles against perturbations of the equilibrium takes place, is approxi-
mately

λDe ≡

√︄
ε0kBTe

e2n0
∼ 10−2 [m], (2.4)

with kB the constant of Boltzmann and e the elementary charge. In a plasma, λDe provides
an indication of the extension of the non-neutral sheath and, in numerical analysis, it
is a key parameter that need to be taken into account for the definition of an adequate
computational domain, both in terms of extension and resolution. A second fundamental
figure for the description of the behaviour of the system is the so-called plasma parameter

g ≡ 3
4πn0λ 3

De
∼

n1/2
0

T 3/2
e

, (2.5)

which not only measures the number of particles contained in a Debye sphere (i.e., a
sphere of radius λDe), but also assesses the importance of collisional events inside the
sheath. In fact, an increase in the unperturbed density n0 implies a growth of the frequency
of binary collisions among particles, while the opposite holds true for the temperature
Te. Therefore, in the limit g → 0, collisions are rare enough to be neglected [19]. The
plasma parameter is typically small for space plasmas and, for the reference conditions
considered in the present work, one obtains g∼ 10−5. Accordingly, the plasma is assumed
to be collisionless. Dropping the term appearing at the right-hand-side of Eq. (2.3), the
evolution of the distribution function obeys the Vlasov equation

∂ fα

∂ t
+ vvvα ·∇ fα +

qα

mα

(EEE + vvv×BBB) ·∇vα
fα = 0. (2.6)

Appendix A in Ref. [93] discusses a limit condition for the validity of the approximation
above. Summarising, quantitative and qualitative arguments show that a description of the
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plasma based on the the Vlasov equation holds as long as

lp

λDe
≤ 9π

g ln(12π/g)
∼ 105, (2.7)

where lp identifies the characteristic length of an object immersed in the plasma. Since
the present analysis deals with configurations such that lp/λDe ≈ 1, one concludes that the
results here presented fall well within the range of validity of the collisionless hypothesis.

The problem further simplifies if the influence of the magnetic field on the dynamics of
the particles is negligible. In presence of a magnetic field, a charge moves along a helix
resulting from the combination between a longitudinal motion (along the field line) and
a circular motion (around the field line). The latter is characterised by the Larmor radius
(gyroradius), defined for a particle of type α as

rα
G =

mαv⊥
|qα |B

. (2.8)

In the equation above, v⊥ identifies the magnitude of the velocity in the plane perpendic-
ular to the magnetic field line. Taking |qα | = e, and assuming that v⊥ is of the order of
the thermal velocity of the α-species

vthα ≡

√︄
kBTα

mα

, (2.9)

one can compute the typical values of rα
G for the different species populating the iono-

sphere at LEO altitudes. After normalization against the Debye length, these are listed
in Table 2.2, where the non-dimensional parameter µα ≡ mα/me (i.e., the ion-to-electron
mass ratio) is introduced as well.

Species µα rG/λDe
e− 1 ∼ 101

H+ 1836 ∼ 102

O+ 29164 ∼ 102

TABLE 2.2: Typical values of the Larmor radius (normalised to the Debye length) for the
main components of a LEO plasma.

Since the Larmor radius is (at least) one order of magnitude bigger than λDe, which pro-
vides a rough estimation of the extension of the sheath, one concludes that the magnetic
field has little impact on the dynamics of the particles within the sheath. Table 2.2 fea-
tures only hydrogen and atomic oxygen ions. However, for heavier molecules that can be
found in the LEO ionosphere (e.g., NO+ and O+

2 ), the estimated larmor radius-to-Debye
length ratio is even bigger as rα

G/λDe ∼
√

µα . In addition, particles that accelerate in the
sheath can acquire velocities that are several times their thermal one, resulting in a further
increase of rα

G.
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Regarding the effect of the current-induced magnetic field on current collection, its
possible relevance for space tethers applications was discussed in Refs. [134, 135], but
was later shown to be negligible for most tether operational modes and designs in [136].
Therefore, it seems reasonable to consider the plasma as unmagnetised and to assume that
the charged particles accelerate under the sole influence of the electric field. Subsequently,
equation (2.6) becomes

∂ fα

∂ t
+ vvvα ·∇ fα − qα

mα

∇φ ·∇vα
fα = 0, (2.10)

where the electric field EEE was expressed in terms of the electrostatic potential φ as

EEE =−∇φ . (2.11)

Substituting the above equation in Eq. (2.1a), the electrostatic potential profile is deter-
mined upon solving the equation of Poisson

∆φ =− ρ

ε0
≡−∑qαnα

ε0
, (2.12)

where the densities appearing at the right hand side are found from the self-consistent
distribution functions through their integration in the velocity space

nα(rrr) =
∫︂ +∞

−∞

fα(rrr,vvv)dvvvα . (2.13)

In the kinetic model just introduced, the plasma sheath obeys the non-linear system of
partial differential equations given by Eqs. (2.10)-(2.11)-(2.12)-(2.13). Finding solutions
requires imposing appropriate boundary conditions (BCs) that depend on the problem at
hand. As anticipated in Chapter 1, the geometrical characteristics of a LWT allow to disre-
gard three-dimensional end effects as the typical length of a space tether (∼ 102−103 m) is
several orders of magnitude the Debye length in LEO (∼ 10−2 m). Therefore, the configu-
rations addressed in the present work feature a two-dimensional (emissive) object (probe,
body) of contour Γ immersed in an unmagnetised, collisionless plasma. The conductive
2-dimensional body is kept at a fixed bias φp relatively to the unperturbed plasma. Due
to its shielding effect, the plasma particles organize as to contain this body-induced per-
turbation and, beyond the limit of the sheath, the potential retrieves its unperturbed value.
Following the previous reasoning, one imposes the following boundary conditions for the
Poisson equation

φ(Γ) = φp, φ(|rrr| → ∞)→ 0, (2.14)

with rrr the position vector measured in a frame of reference centred inside Γ. Regarding
the background plasma, this is supposed to be populated by Maxwellian electrons and
singly-charged positive ions with temperatures Te and Ti and background densities ne0 =
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ni0 = n0. In presence of emission, half-Maxwellian electrons are emitted at the plasma-
body interface with temperature Tem and density nem0. Accordingly, at Γ one has

fe,i(Γ,vvv ·uuun > 0) = 0,

fem(Γ,vvv ·uuun > 0) = fHM ≡ nem0me

πkBTem
exp
[︃
− me

2kBTem
(vvv · vvv)

]︃
, (2.15)

with uuun the (outward) normal unit vector to Γ, while at an infinite distance from the probe
one sets

fe,i(|rrr| → ∞,vvv) = fM ≡
n0me,i

2πkBTe0,i0
exp

[︄
−

me,i

2kBTe0,i0
(vvv · vvv)

]︄
,

fem(|rrr| → ∞,vvv) = 0, (2.16)

Together with the geometry of the plasma-material interface, the above BCs identify a set
of governing parameters for the sheath described by the Vlasov-Poisson system. A sketch
of the model described above is shown in Fig. 2.1.
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FIGURE 2.1: Sketch of the model for an arbitrarily-shaped electron-emitting probe of
contour Γ immersed in a Maxwellian plasma

In a first approximation, the conductive object is assumed to be at rest with respect to
the background plasma. Perhaps, this is the strongest hypothesis of the model as one may
argue that neglecting relative motion is not a reliable representation for LWTs orbiting
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around the Earth. Nonetheless, it is convenient to recall that the main purpose of the in-
vestigation is to characterise the current collection and emission by objects with tape-like
cross-sections. The main novelty of the analysis resides in the geometry of the plasma-
material interface and the model is tailored for a more fundamental analysis aimed at
understanding the influence of the geometry on the mechanisms of current collection and
emission. This allows to extend previous theoretical works (e.g., [113]) to a broader set
of configurations, whose application is not restricted to LWTs. The presence of relative
motion between the plasma and the object, and its impact on the current collection and
emission, would not only bring further complications in the model, but also superimpose
the effect of the cross-sectional geometry, making its influence less obvious. For this rea-
son, it is neglected in the present analysis. However, it is clear that such investigation
represents the natural continuation of the present research, and will be addressed in the
next future. To this extent, Chapter 4 introduces the efforts that are currently being carried
out to develop an appropriate algorithm for such analysis.

2.2 Stationary Vlasov-Poisson solver

Provided that a steady-state exists, it is possible to seek directly for the solution of the
Vlasov-Poisson system disregarding the transient that leads to the equilibrium. In station-
ary conditions, the distribution functions fα(t,rrr,vvvα) = fα(rrr,vvvα) do not depend on time
and the Vlasov equation becomes

vvvα ·∇ fα − qα

mα

∇φ ·∇vα
fα = 0. (2.17)

For convenience, one introduces the following dimensionless quantities

rrr
λDe

→ rrr,
vvv√

2vthα

→ vvv,
ne,i

n0
→ ne,i,

nem

nem0
→ nem,

2kBTα fα

mαnα0
→ fα(rrr,vvv),

eφ

kBTe
→ φ(rrr), (2.18)

according to which the normalised Vlasov-Poisson system reads

vvvα ·∇ fα − qα

2δα

∇φ ·∇vvvα
fα = 0, (2.19a)

∆φ =−ρ ≡ ne +βnem − eini. (2.19b)

The equations above involve the dimensionless parameters

δα ≡ Tα

Te
, eα ≡ qα

e
, β ≡ nem0

n0
, (2.20)

which appear naturally upon introducing the normalization of Eq. (2.18). For a certain ge-
ometry of the plasma-material interface Γ and a given set of the parameters in Eq. (2.20),



Stationary Vlasov-Poisson solver: Model and Numerical Algorithm 23

a solution to the system of Eqs. (2.19a)-(2.19b) is defined by imposing the boundary
conditions previously discussed. In dimensionless form, they read

φ(Γ) = φP, φ(r → ∞)→ 0

fem(Γ,vvv ·uuun > 0) = fHM ≡ 2
π

exp{−(vvv · vvv)}, fem(r → ∞,vvv) = 0 (2.21)

fe,i(Γ,vvv ·uuun > 0) = 0, fe,i(r →∞,vvv)→ fM ≡ 1
π

exp{−(vvv · vvv)}.

In the stationary case, the structure of the sheath is therefore found by solving numeri-
cally the system of Eqs. (2.19a)-(2.19b) with the BCs of Eq. (2.21). To this purpose, the
present analysis exploits a novel stationary Eulerian Vlasov solver whose main blocks and
operations are summarised in the diagram of Fig. 2.2. The code, named Free-of-Noise
Kinetic Solver for Generic geometries (FONKS-G), is based on a backward Liouville
method [130]. It implements backtracking of the characteristic curves of the Vlasov equa-
tion, along which the distribution function is conserved in a collisionless plasma [137],
to infer the value of the distribution function onto a discrete representation of the phase
space (see Sec. 2.2.3 for more details).

FIGURE 2.2: Flow chart of FONKS-G

Unlike the more popular and widely used PIC codes [138–140], Eulerian solvers discre-
tise the distribution function directly in the phase-space domain and are thus free from the
macro-particle-induced statistical noise. Despite being computationally more expensive
than their particle-based counterpart, direct Vlasov solvers constitute a convenient choice
when seeking for a detailed description of the plasma sheath and the fine structures of
the distribution function [141–143], and have been used in a wide variety of applications
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[144–151]. The present numerical algorithm is written in Fortran [152] and, in addition
to routines written from scratch and some adapted from Numerical Recipes [153, 154],
it implements MPICH [155, 156] and HDF5 [157, 158] libraries to handle parallelised
tasks and input/output operations, respectively. The next sections describe in detail its
main features.

2.2.1 Computational domain

The code computes self-consistently the structure of the plasma sheath onto a computa-
tional domain bounded by the probe contour Γ (inner boundary) and the external (outer)
plasma boundary Γmax. In order to allow for quasi-neutrality to be recovered, the latter
must be located far enough away from the plasma-body interface so that the body-induced
perturbation becomes negligible and the plasma reaches its unperturbed equilibrium. The
results of the present work focus on the characterization of the sheaths around cylindrical
and elliptical probes immersed at rest in a Maxwellian plasma. Under these circum-
stances, the problem is symmetrical with respect to both Cartesian axes and, for a generic
magnitude of interest h(x,y), it holds that h(x,y) = h(−x,y) = h(−x,−y) = h(x,−y).
Therefore, the computational domain is restricted to the first quadrant only, which allows
a higher resolution for a given computational cost.

According to the geometry of the probe, the domain is discretised either with (i) an
unstructured mesh in Cartesian coordinates (x,y), or (ii) a structured mesh in appropriate
curvilinear coordinates (χ1,χ2). When using unstructured meshes, these are created prior
to the simulation with the open-source software GMSH [159]. Typically, the N nodes
located at the vertices of the first-order triangular elements are distributed non-uniformly
across the domain. Specifically, the density of the nodes is higher closer to the plasma-
probe interface, where bigger gradients occur, while the mesh gets coarser towards the
outer boundary. Together with freedom in distributing efficiently a higher amount of
nodes where necessary, another advantage of unstructured meshes is that they can adjust
easily to any kind of geometry, including the most complicated. For the rather simple
cylindrical and elliptical probes considered in the present analysis, the inner and outer
boundaries of the domain in Cartesian coordinates are defined as

Γ = {(x,y) | (1− e2
p)x

2 + y2 =b2
p, 0 ≤ arctan(y/x)≤ π/2}

Γmax = {(x,y) | r ≡
√︁

x2 + y2 =rmax, 0 ≤ arctan(y/x)≤ π/2}, (2.22)

where ep and bp are the eccentricity and the semi-minor axis (normalized with the Debye
length) of the ellipse describing the plasma-material interface, respectively. The top-left
panel in Fig. 2.3 shows an example of an un-structured mesh used to discretise the compu-
tational domain around an elliptical probe of ep = 0.95. Despite its versatility, discretisa-
tion through unstructured meshes implies a more expensive procedure for the integration
of particle orbits (see App. D.2) and has a negative impact on the capability of the code
to preserve conservation laws, as discussed in Sec. 3.2.



Stationary Vlasov-Poisson solver: Model and Numerical Algorithm 25

FIGURE 2.3: Examples of computational domains for ellitpic and cylindrical probes:
unstructured mesh in physical space (top-left), structured mesh in logical space (top-
right), elliptical structured mesh in physical space (bottom-left), cylindrical structured
mesh in physical space (bottom-right) [128].

Structured meshes represent a valuable alternative for obtaining simpler and more effi-
cient implementations, and are particularly attractive when the configurations of interest
feature a fairly regular geometry. If the latter is curved, an appropriate change of variables
is required in order to map the physical space (x,y) onto a Cartesian grid in the logical
space (χ1,χ2), which is discretized onto N = Nχ1 ×Nχ2 nodes (see top-right panel in Fig.
2.3). For the elliptic probes addressed in the present work, one introduces the elliptical
coordinates (χ1,χ2) = (ξ ,η), which provide the following map

x(ξ ,η) = cp coshξ cosη , y(ξ ,η) = cp sinhξ sinη . (2.23)

In Eq. (2.23), cp ≡ epbp/
√︂

1− e2
p is the linear eccentricity and the lines ξ = constant and

η = constant identify confocal ellipses and hyperbolae, respectively. The computational
domain is bounded by the region ξ ∈ [ξp,ξmax]×η ∈ [0,π/2] in the logical space, where
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ξp and ξmax represent the plasma-probe interface and the unperturbed plasma boundary

Γ = {(ξ ,η) | ξ = ξp, 0 ≤ η ≤ π/2},
Γmax = {(ξ ,η) | ξ = Lξ ×ξp = ξmax, 0 ≤ η ≤ π/2}, (2.24)

with the scalar Lξ selected high enough to guarantee that quasi-neutrality holds at Γmax.
The bottom-left panel of Fig. 2.3 shows how the structured mesh in the top-right panel of
the same figure looks in the physical (Cartesian) space after applying the elliptical map
of Eq. (2.23) to a configuration with ep = 0.95, bp = 1 and Lξ ≈ 7.25. For cylindrical
probes (i.e., ep = 0), the code uses polar coordinates (χ1,χ2) = (r,θ)

x(r,θ) = r cosθ , y(r,θ) = r sinθ . (2.25)

In this case, the computational box is delimited by r ∈ [bp,rmax]×θ ∈ [0,π/2], where bp
represents the normalized probe radius and the boundaries are defined as

Γ = {(r,θ) | r = bp, 0 ≤ θ ≤ π/2},
Γmax = {(r,θ) | r = rmax, 0 ≤ θ ≤ π/2}. (2.26)

The structured cylindrical domain corresponding to bp = 1 and rmax = 7.5 is shown in the
bottom-right panel of Fig. 2.3.

2.2.2 Poisson Solver P

Being one of the main two blocks of the numerical algorithm, the Poisson solver P
represents the set of operations that are carried out in order to solve numerically Eq.
(2.19b). Provided as input the charge density vector ρρρ ∈ RN , the Poisson solver returns
the corresponding electrostatic potential profile at the N nodes of the mesh. In matrix
form it reads

φφφ = P(ρρρ) = AAĀρρρ +φφφ BC, (2.27)

with matrix AAĀ ∈ RN×N and vector φφφ BC ∈ RN depending on the properties of the mesh
and the boundary conditions. Regarding the latter, condition φ(r → ∞) → 0 must be
replaced properly in order to keep the computational domain finite and, possibly, at a
reasonable size. In this regard, two alternative solutions are implemented in the code. The
first one consists simply in displacing the zero of the electrostatic potential to a location
which is deemed far enough away from the plasma-probe interface such that the value
of the potential relative to the unperturbed plasma be negligible there [i.e., φ(Γmax) ≈
0]. Despite being straightforward to implement, this rather simple choice can require
considering relatively a big region in order to minimise the error at the outer boundary,
with a subsequent reduction in the resolution of the mesh for a given computational cost
of the simulation.

An alternative and more convenient approach is that discussed in detail by Choinière
in Ref. [123] and references therein. Summarising, one can argue that in view of the
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shielding properties of the plasma, the electrostatic potential beyond the sheath decays
faster than it would do in free space. In the latter case, the potential is found by solving
Laplace equation obtained by setting to zero the right-hand-side of Eq. (2.19b). After
imposing that the solution must vanish at r → ∞, one obtains that the potential can be
expressed in circular harmonics consistent with an electric field decaying as 1/rn+1, with
n = 0, 1, 2, . . . the mode of the nth-circular harmonic. Generalizing the asymptotic results
of the analysis in Ref. [92], one can assume that, in presence of a plasma, the electric
field decays at ∼ 1/rn+2. Following the previous reasoning, one obtains that at the outer
boundary of the computational domain the potential decays as

φ(Γmax)∼ A0
rmax

r
+

Nmodes

∑
n=1

(︃
rmax

r

)︃n+1

(An cosθ +Bn sinθ), (2.28)

where rmax measures the distance from the origin of the nodes lying on Γmax, while Nmodes
is a high enough integer. Regarding coefficients A0, An and Bn, these are given explicitly
in Eq. (B.1). In order to exploit the double-symmetry of the problem, at the nodes lying
on the two Cartesian axes in the physical space one must also impose that ∂xφ |x=0 =
∂yφ |y=0 = 0 or, equivalently, ∂ηφ |η=0 = ∂ηφ |η=π/2 = 0 and ∂θ φ |θ=0 = ∂θ φ |θ=π/2 = 0
for structured meshes defined in elliptic and cylindrical logical spaces, respectively.

The numerical algorithm developed in the framework of this thesis implements two
different Poisson solvers according to the type of discretisation adopted for the computa-
tional domain: (i) a finite element-based solver for unstructured meshes, and (ii) a finite
difference-based solver to be used with structured meshes. The next two sections are
dedicated to the description of such solvers.

2.2.2.1 Finite Element

Upon discretising the computational domain with an unstructured mesh made up of first-
order triangular elements [159], Poisson’s equation is solved numerically with a Finite
Element Method (FEM)-based Poisson solver analogous to that presented in Ref. [123].
Within each triangular element, the electrostatic potential and the space charge density
are approximated by

φ
elm(x,y)≈

3

∑
k=1

φ
elm
k gk(x,y), (2.29a)

ρ
elm(x,y)≈

3

∑
k=1

ρ
elm
k gk(x,y). (2.29b)

In Eqs. (2.29b), the super-script elm identifies the element of the domain, while sub-
index k represents the kth-vertex of the triangle, numbered in counter-clockwise order.
Using constant strain triangular elements, gk(x,y) is a bi-linear function of the spatial
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coordinates that reads
gk(x,y) =

ai +bi · x+ ci · y
2∆elm . (2.30)

The constant coefficients ai, bi and ci and the area ∆elm depend solely on the geometrical
properties of the element, and are defined as

ai ≡ x j · yk − xk · y j, bi ≡ y j − yk, ci ≡ xk − y j,

∆
elm ≡ 1

2

⃓⃓⃓⃓
⃓⃓ 3

∑
i, j=1

(xi · y j − x j · yi)

⃓⃓⃓⃓
⃓⃓, (2.31)

i = 1,2,3, j = mod(i,3)+1, k = mod( j,3)+1,

where the sub-indexes represent the vertices of the triangular element and mod() stands
for the built-in Fortran function that returns the remainder of the division between its
first and second arguments. Following Eqs. (2.29b), the procedure to derive explicitly
matrix AAĀ and vector φφφ BC in Eq. (2.27) for the FEM-based solver is described in a high
degree of detail in the work by Choinière [123], and it is not repeated here. Since their
value depend only on the spatial discretisation and the boundary conditions of Poisson
equation, which remain constant for a given simulation, such computation is done only
once during the pre-processing phase. Therefore, solving Poisson equation reduces to the
mere multiplication of a matrix by a vector and does not constitute an onerous procedure
in the economy of the numerical simulation.

2.2.2.2 Finite Differences

For solving Poisson equation onto structured meshes, the software implements a Finite
Difference Method (FDM). For curvilinear meshes, Poisson equation is solved in the log-
ical space (χ1,χ2), and must thus be derived in the new set of coordinates. If elliptic and
cylindrical configurations are considered, applying the change of coordinates defined in
Eqs. (2.23)-(2.25) gives

1

c2
p

(︂
sinh2

ξ + sin2
η

)︂ (︄∂ 2φ

∂ξ 2 +
∂ 2φ

∂η2

)︄
=ne +βnem − eini (2.32)

∂ 2φ

∂ r2 +
1
r

∂φ

∂ r
+

1
r2

∂ 2φ

∂θ 2 =ne +βnem − eini. (2.33)
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The first and second spatial derivative terms in the equations above are discretized through
a centred finite difference scheme, which provides the following approximations

∂φ

∂ r

⃓⃓⃓⃓
i, j

≈ 1
D

[︄
1
Q

φi+1, j +

(︃
Q− 1

Q

)︃
φi, j −Qφi−1, j

]︄
, (2.34a)

∂ 2φ

∂ r2

⃓⃓⃓⃓
⃓
i, j

≈ 2
D̃

[︁
φi+1, j − (Q+1)φi, j +Qφi−1, j

]︁
, (2.34b)

where sub-indexes (i, j) identify that the variable is being evaluated at node (χ1
i ,χ

2
j ),

while coefficients Q, D and D̃ are defined as

Q ≡ ∆ri+1

∆ri
, D ≡ ∆ri+1 +∆ri, D̃ ≡ ∆ri+1 ·D, (2.35)

with ∆ri ≡ ri − ri−1 being the distance between two subsequent nodes in the direction of
interest (r in the example here considered). Equations (2.34a)-(2.34b) are valid for any
distribution of nodes. For the special case of uniform meshes (i.e., ∆ri = ∆r = constant),
one obtains Q= 1, D= 2∆r and D̃= 2∆r2, and the approximation of the spatial derivatives
terms are

∂φ

∂ r

⃓⃓⃓⃓
i, j

≈
φi+1, j −φi−1, j

2∆r
, (2.36)

∂ 2φ

∂ r2

⃓⃓⃓⃓
⃓
i, j

≈
φi+1, j −2φi, j +φi−1, j

∆r2 . (2.37)

The second derivatives ∂ 2φ/∂θ 2, ∂ 2φ/∂ξ 2, and ∂ 2φ/∂η2 appearing in Eqs. (2.32)-
(2.33) are found by using analogous formulae to the ones in Eq. (2.34b) for non-uniform
meshes and Eq. (2.37) for uniform ones, respectively. The centred finite difference
scheme is applied at the internal nodes of the computational domain, while at its bound-
aries the elements of AAĀ are computed in agreement with the boundary conditions selected.
In the χ1-dimension, one has φ(1, :) = φp and that the potential decays as shown in Eq.
(2.28) at Γmax.

2.2.3 Vlasov Solver V

In the numerical algorithm here presented, the term Vlasov solver V identifies the set
of operations that are carried out in order to compute the values of the densities of the
species at the nodes of the computational domain. Being complementary to the Poisson
solver P presented in Sec. 2.2.2, it receives from the latter the electrostatic potential
profile as input, and it returns the consistent space charge vector ρρρ ≡−(einnni−nnne−βnnnem).
In turn, this requires the reconstruction of the discrete phase space distribution function
fα(rrr,vvv) of all the charged species, obtained by solving Eq. (2.19a) numerically. Taking
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advantage of the collisionless character of the plasma, the code implements a backward
Liouville method, which is a test-particle method typically used to estimate a posteriori
the trajectories of the charged particles moving in a steady-state electromagnetic field
obtained with different numerical algorithms (see Ref. [130] for an overview). Differently
to its most common application, such method is applied here to compute self-consistently
the structure of the sheath.

The procedure works as follows. Equation (2.19a) is equivalent to d fα(rrr,vvv)/dτ = 0.
According to Liouville theorem [137], in a collisionless plasma the phase-space distribu-
tion function fα is conserved along the characteristic equations

drrr
dτ

=vvv (2.38a)

dvvv
dτ

=− eα

2δα

∇φ , (2.38b)

with τ parametrising the integral curves. These equations are equivalent to the equations
of motion of the charged particles moving within the sheath of the probe, and τ can be
interpreted as a dimensionless time. At each node xxxs0 ≡ (rrr0,vvv0) of the four-dimensional
discrete phase-space, the value of the distribution function is computed by integrating
Eqs. (2.38a)-(2.38b) backward in time with initial conditions xxxs0. According to the
configuration and the type of discretisation adopted, the present code can select among
three different algorithms to carry out such integration: a Runge-Kutta scheme (RK), a
Leapfrog (symplectic) scheme (LF), and an hybrid energy-conserving Crank-Nicolson
scheme (CN) [160]. In order to avoid making the already complex and detailed presenta-
tion of the Vlasov solver too cumbersome, the descriptions of the orbital propagators and
the different methods for reconstructing the electric field from the electrostatic potential
at the nodes of the mesh are presented in Appendix C and Appendix D, respectively.

Regardless of the numerical algorithm used, the integration of the trajectory stops at
τ = τ f . That is, the moment at which the orbit either (i) hits the outer boundary of the
domain Γmax, (ii) reaches the probe contour Γ, or (iii) completes Ntr turns around the
probe without crossing any of the boundaries of the computational domain (see Sec. C.1).
Since fα is conserved along the orbits (Liouville theorem), one has that fα(xxxs0)= fα(xxxs f ),
where xxxs f ≡ (rrr f ,vvv f ) denotes the origin (root) of the characteristics. According to the BCs
in Eqs. (2.21), the code sets fe,i(xxxs0) = fM and fem(xxxs0) = 0 if rrr f lies on Γmax [case (i)],
while fe,i(xxxs0) = 0 and fem(xxxs0) = fHM when rrr f pertains to Γ [case (ii)]. For convenience,
the corresponding orbits are classified as Γmax-originated and Γ-originated, respectively.
In the event that rrr f is within the computational domain [case (iii)], the particle is labelled
as trapped and the algorithm assigns fα(xxxs0) = 0 regardless of its species.

This last result is a direct consequence of some of the hypotheses adopted in the model
and deserves a further comment. During the formation of a sheath, particle trapping
may result either as consequence of the loss of kinetic energy by particles following a
collision with another particle or from the transient when the system evolves in response
to some perturbation. However, the present model does not take into account collisions
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and, in stationary conditions, it is not possible to identify the origin of a charge that is
trapped inside the sheath during the transient phase, since the latter is absent. Under these
circumstances, the typical choice is neglecting the contribution of the trapped population
to the distribution functions [93, 108, 113, 123, 161]. Together with the set of hypotheses
introduced at the beginning of the chapter, this poses the basis of the Orbital Motion
theory (OMT) ordinarily employed in numerous plasma physics applications. Table 2.3
summarises the main features of the different types of orbits, which are shown in Figure
2.4.

Types of orbits
Origin (root) Label Distribution function

rrr f ∈ Γ Γ-originated fe,i(xxxs0) = 0
fem(xxxs0) = fHM

rrr f ∈ Γmax Γmax-originated fe,i(xxxs0) = fM
fem(xxxs0) = 0

rrr f /∈ Γ,Γmax and Trapped fe,i(xxxs0) = 0
Ntr turns around Γ fem(xxxs0) = 0

TABLE 2.3: Classification of orbits (stationary case)

In stationary conditions, the energy is conserved along the trajectories of the charged
particles [see Eqs. (2.38)]. Subsequently, a convenient choice is to apply the change of
variables (vvv)→ (εα ,ζ ), with

εα ≡vvv · vvv+ eα

δα

[︁
φ(rrr)−Hαφp

]︁
, (He,i = 0,Hem = 1) (2.39)

ζ ≡ tan−1
(︃

vvv · ttt
vvv ·nnn

)︃
, (2.40)

the total (dimensionless) energy and an angle in velocity space. For an elliptical (cylin-
drical) probe, ttt and nnn are the tangential and normal (outward) unit vectors to the ellipse
(circumference) confocal (concentric) with Γ passing through rrr. For each point of the
computational domain, the code discretises the region of the phase space

(εα ,ζ ) ∈ [εmin
α , ε

max
α ]× [0, 2π], (2.41)

ε
min
α ≡ max

{︃
0,

eα

δα

[︁
φ(x,y)−Hαφp

]︁}︃
(2.42)

onto a grid of Nε ×Nζ nodes. In the energy-direction, εmin
α is selected in order to comply

with the condition of non-negative energy, while εmax
α is a numerical parameter whose

magnitude must ensure that a sufficient portion of the velocity space is taken into account.
According to Eqs. (2.39)-(2.40), the nodes of the phase-space are identified as xxxs0 → zzzs0 =
[rrri,εk

α ,ζ
l], with i = 1, . . . ,N, k = 1, . . . ,Nε and l = 1, . . . ,Nζ . Upon applying the change
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FIGURE 2.4: Example of Γmax-originated (A), Γ-originated (B), and trapped (C) orbits
[128].

of variables just discussed, the boundaries conditions of Eqs. (2.21) can be re-written as

fe,i(Γ,εe,i,−
π

2
< ζ <

π

2
) = 0, fem(Γ,εem,−

π

2
< ζ <

π

2
) =

2exp(−εem)

π
(2.43a)

fe,i(Γmax,εe,i,ζ ) =
exp(−εe,i)

π
, fem(Γmax,εem,ζ ) = 0. (2.43b)

For a probe biased at a negative potential with respect to the plasma (i.e., φp < 0), Fig.
2.5 shows examples of the resulting diagrams in the velocity space obtained for the three
species considered in the present model. The upper panels show the maps obtained by
assigning different colours to regions of the velocity space yielding trapped (blue), Γmax-
originated (yellow) and Γ-originated particles (orange), while the bottom panels show the
value of the distribution functions normalized with their maximum. For convenience, the
distribution function is represented in the εn − εt plane [123, 127], with

εn ≡εα · cosζ (2.44a)
εt ≡εα · sinζ . (2.44b)

For the attracted species (ions), panel (a) shows that there can exist two types of empty
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regions in the velocity space. The first one corresponds to outgoing (i.e., εn > 0) Γ-
originated orbits (B-type orbits in Fig. 2.4), while the two-lobed empty regions close
to (εn,εt) = (0,0) shown in the inset identify initial conditions yielding trapped orbits
of the kind labeled with C in Fig. 2.4. In both cases, the algorithm assigns zero to the
distribution function and the corresponding areas in panel (d) and its inset are left empty.
In view of this, it is worth highlighting that the presence and extension of the trapped
region are affected by the value of Ntr, whose importance as a numerical parameter is
discussed more in detail in Sec. 3.2.1.2.

Panels (b) and (c) contain analogous information about the dynamics of the repelled
species (plasma electrons) and the emitted electrons, respectively. In the former case, in
addition to the orange region corresponding to trajectories whose root lies on the plasma-
material interface, one observes a circular empty region centered at the origin of the εn −
εt diagram. The latter identifies particles whose kinetic energy is not high enough to
overcome the potential barrier at that point of the computational domain.

Regarding the emitted species, one must notice that the meaning of the diagram is
switched with respect to the plasma species, and the filled area in panel (e) represents
the portion of the phase space populated by Γ-originated orbits. From Eqs. (2.43a)-
(2.43b) and the bottom diagrams in Fig. 2.5, it is observed that the distribution function
decays exponentially with the total energy εα . Therefore, it is convenient to distribute
the Nε nodes in the εα -mesh with a higher density close to εmin

α in order to have a higher
resolution in that region of the phase-space. With respect to the discretisation along ζ ,
the right panels of Fig. 2.5 shows that for the emitted species the distribution function
becomes narrow as one moves away from Γ. In view of this, the algorithm implements
a higher resolution in the area around ζ = 0, since during the development of the code it
was observed that a uniform distribution could prevent from recovering quasi-neutrality
at Γmax.

Once the structure of the plasma sheath is obtained, the macroscopic quantities of inter-
est can be derived from the moments of the distribution functions fα [127]. After adopting
the change of variables introduced in Eqs. (2.39)-(2.40), the densities at the nodes of the
computational domain are obtained from

nα(rrr)≈
1
2

∫︂
εmax

α

εmin
α

∫︂ 2π

0
fα(rrr,εα ,ζ )dεαdζ , (2.45)

with 1/2 the Jacobian of the (vvv) → (εα ,ζ ) transformation. The double integral of Eq.
(2.45) is computed numerically using the trapezoidal rule

nα(rrri)≈
1
2

Nζ

∑
l=2

Sint
α (rrri,ζl)+Sint

α (rrri,ζl−1)

2
(ζl −ζl−1), (2.46a)

Sint
α (rrri,ζl)≈

Nε

∑
k=2

fα(rrri,εα,k,ζl)+ fα(rrri,εα,k−1,ζl)

2
(εα,k − εα,k−1), (2.46b)
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(a) Map of the εn − εt highlighting area in the velocity space corresponding to trapped (blue), Γmax-originated (yellow) and Γ-
originated (orange) orbits for plasma ions [panel (a)], plasma electrons [panel (b)] and emitted electrons [panel (c)]. Inset in panel
(a) show a detail of the region around (εn,εt) = (0,0).

(b) Diagrams of fα (normalized to its maximum) in the εn − εt for plasma ions [panel (d)], plasma electrons [panel (e)] and emitted
electrons [panel (f)]. Inset in panel (d) show a detail of the region around (εn,εt) = (0,0).

FIGURE 2.5: Example of distribution function diagrams in the εn − εt plane for plasma
ions [panels (a) and (d)], plasma electrons [panels (b) and (e)], and emitted electrons
[panels (c) and (f)] in the sheath around a negatively biased probe (φp < 0).
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and the space charge vector is eventually obtained from ρρρ = einnni−nnne−βnnnem. In addition
to the densities of the particles, an interesting figure of merit for analyses related with
LWTs applications is the current per unit length collected (emitted) at the interface Γ,
which reads

Iα = en0

√︃
kBTe

2πme
× pΓ × jα . (2.47)

In the equation above, the first term represents the random thermal motion of the plasma
electrons, pΓ is the perimeter of the probe and jα the dimensionless function

jα ≡eα

√︄
δα

µα

√
π

pΓ

∫︂ pΓ

0
js(s)ds (2.48)

with

js(s)≡
∫︂ +∞

−∞

(vvv ·uuun) fα(Γ,vvv)dvvv, (2.49)

the local normalized current per unit area. In Eq. (2.49), the coordinate s measures the arc-
length along Γ defined in Eq. (A.2) in Appendix A. During the post-processing, analogous
formulae to those of Eq. (2.46a)-(2.46b) are used to compute the discrete values of the
current at Γ. It is interesting to notice that, in the stationary scenario depicted above,
the dynamics of the different species can be treated separately as µα does not enter in
the governing equations of the system. Therefore, the solutions found with the present
algorithm are valid for different types of positive ions, whose mass should be specified
only when the value of the current is needed.

2.2.4 Iterative Procedure

Similarly to other Eulerian Vlasov solvers previously presented in the literature [123], the
solvers of Secs. 2.2.2-2.2.3 are embedded into an iterative procedure that seeks for the
values of the charge density vector ρρρ ∈ RN at the N nodes of the computational domain
satisfying the set of nonlinear algebraic equations

GGG(ρρρ)≡ ρρρ −V [P(ρρρ)] = 0. (2.50)

In the present work, an acceptable numerical approximation for the solution to Eq. (2.50)
is one that complies with

∥GGG(ρρρ)∥2 ≡
√︂

G2
1 +G2

2 + . . .+G2
n < tol, (2.51)

with tol a small enough scalar selected by the user. The iterative process works as follow.
Starting from an initial guess ρρρ0, usually taken from the numerical solution of a similar
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configuration, the code first updates its value following the fixed point-like strategy

ρρρn+1 = ρρρn +www ·GGG(ρρρn), n = 0,1, ... (2.52)

where www identifies a vector of weights whose components decrease with the distance from
the plasma-body interface, since the probe-induced perturbation is expected to be low as
one approaches the outer plasma boundary, where quasi-neutrality is retrieved. The value
of the charge density vector is updated according to Eq. (2.52) as long as the Euclidean
norm ∥GGG∥2 decreases. Unless the solution already complies with the required tolerance,
when the code detects that no further improvement is achieved the updating strategy is
switched to a Newton-Raphson map [153]

ρρρn+1 = ρρρn − JJJ−1|ρρρn
GGG(ρρρn), n = 0,1, ... (2.53)

with JJJ|ρρρn
the Jacobian matrix of GGG evaluated at ρρρn with a central finite difference scheme.

Although typically not sufficient to reach the selected accuracy, the fixed-point-like itera-
tion method of Eq. (2.52) is useful in order to get close enough to the final solution and to
reduce significantly the number of estimations of JJJ|ρρρn

, whose evaluation is by far the most
expensive task from a computational standpoint. For this reason, the algorithm performs
a new estimation of the Jacobian matrix only when the correction obtained with the pre-
vious one no longer improves the result. Although this choice may slow down the speed
of convergence, the efficiency of the algorithm is enhanced overall. Since the Jacobian
matrix is, in general, ill-conditioned, the code provides the possibility of implementing
a Tikhonov regularization procedure analogous to that described in Ref. [123]. Its main
steps are summarised in Appendix E.

Table 2.4 summarizes the characteristics of the different Vlasov-Poisson solvers that
were implemented in the analysis presented in this work. They are named after the differ-
ent combinations of meshes, Poisson solvers and numerical integrators.

Name Mesh Poisson solver Integrator
FEM-RK Unstructured FEM [123] Runge-Kutta [153]
FDM-RK Structured FDM Runge-Kutta [153]
FEM-LF Unstructured FEM [123] Leapfrog [153]
FDM-LF Structured FDM Leapfrog [153]
FDM-CN Structured FDM Crank-Nicolson [160]

TABLE 2.4: Summary of the different numerical algorithms implemented in the present
analysis [128].



Chapter 3

Results of the stationary Vlasov-Poisson
solver

This chapter presents the main results obtained with FONKS-G (i.e., the stationary Eule-
rian Vlasov-Poisson solver introduced in Chapter 2). After an extensive comparison with
previous numerical results for verification purposes, novel results concerning the proper-
ties of the various numerical algorithms are presented and used to draw some generic con-
clusions about numerical and physical limitations affecting to stationary Vlasov-Poisson
solvers. Eventually, a comprehensive parametric investigation of various configurations
involving electron-emitting elliptical objects is presented in the last section of the chapter.
Its outcomes allow to identify the main features of plasma sheaths that develops in pres-
ence of elliptical missive probes. The main core of the results presented in the following
sections were published into two recent works [128, 129].

3.1 Verification of the numerical algorithm

In order to verify the correct implementation of the various solvers of Table 2.4, the results
of FONKS-G were compared with previous analytical and numerical results obtained with
more mature numerical tools for the investigation of plasma sheaths.

3.1.1 Versus FONKS-C

A first benchmark was carried out against a code for cylindrical emissive probes presented
originally in Ref. [113] and recently upgraded (see Ref. [162]). Registered with the name
Free-of-Noise Kinetic Solver for Cylindrical geometries (FONKS-C), the code is based on
a kinetic model analogous to that presented in Chapter 2. However, it is restricted to the
investigation of cylindrical probes, for which radial symmetry holds. Taking advantage
of such feature, and of the subsequent conservation of the angular momentum along the
collisionless orbits of the charged particles, the algorithm defines an effective potential

37
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that allows to express the densities of each species as a functional of the electrostatic po-
tential without the need for explicit numerical integration of the particles trajectories. Ac-
cordingly, the Vlasov-Poisson system of equations becomes a single integro-differential
equation that is solved with a Newton method map similar to that of Eq. (2.53).

To compare the results of FONKS-G with those of FONKS-C, the following approach
was adopted. First, FONKS-C computes self-consistenly the structure of the plasma
sheath for a configuration with ep = 0, and a certain set of dimensionless parameters
[see Eq.(2.20)]. The radial space charge density profile thus obtained is then interpolated
linearly at the nodes of the two-dimensional domain defined in FONKS-G, and serves as
input for the novel Poisson solver P . The resulting electrostatic potential is then passed
to the novel Vlasov solver, which provides the consistent space charge density vector. At
this point, the sheath structures obtained with the two codes are compared among each
other, along with the fluxes of the species at the plasma-material interface Γ. In the fol-
lowing, a selection of the results from this benchmark is presented in order to provide
evidence for the reliability of the novel results presented in the rest of the chapter.

Figure 3.1 contrasts the solution obtained with FONKS-C (round markers) against the
one computed with FONKS-G (cross markers) for the following set of dimensionless
parameters

ep = 0, bp = 1, φp =−4, δi = 1, δem = 0.32, β = 1.72. (3.1)

Being the first one to be developed among the different solvers of the list in Table 2.4, the
results for this first phase of the verification procedure were computed with the FEM-RK
solver, using the piecewise-constant electric field reconstruction (see Appendix D.2) and
the numerical parameters

N = 539, rmax = 7.5, Nε = 150, Nζ = 360, Ntr = 100,εmax
α = ε

min
α +6. (3.2)

The top-left panel shows the electrostatic potential profiles normalised with the probe
bias. Following Ref. [94], the results are plotted against b2

p/r2. This is a convenient
choice since, for ep = 0 (i.e., cylindrical probes), the value of the current collected is the
one predicted by the OML theory if the profile does not cross the diagonal. The same
representation will be adopted in the remaining part of the dissertation, unless specified
otherwise. Substantial overlapping of the two curves indicates that the Poisson solver is
well implemented. Despite a slight, but acceptable, discrepancy is present at the external
boundary Γmax, the charge density profiles in the top-right panel are in good agreement as
well.

In order to make sure that this is not given by a compensation of different errors com-
mitted during the computation of the charge density of the different species, one provides
in the bottom panel such profiles separately. All three pairs of curves overlap and fol-
low the expected behaviour. The (normalised) densities of the plasma species approach
to one as the distance from the plasma-material interface increases, though the compu-
tational domain was cut before since quasi-neutrality is already satisfied as one observes
from the top-right panel. At Γ (i.e., r = bp = 1), the density of the repelled species is
reasonably very low (ne ≈ 0), since the probe bias represents a potential energy barrier
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FIGURE 3.1: Verification of the code for the set of parameters in Eq. (3.2). Top panels:
electrostatic potential profile (left) and charge density (right). Bottom panel: density of
plasma ions (magenta, red), plasma electrons (cyan, blue) and emitted electrons (light and
dark green). Crosses and circle show the results obtained with FONKS-G and FONKS-C,
respectively.

and only the most energetic particles can arrive there. For the attracted species, the charge
density gives ni ≈ 0.5, which is the expected value when OML condition holds for a two-
dimensional problem (see Ref. [108]). This is consistent with the electrostatic potential
profile not crossing the diagonal in the top-left panel. Regarding the emitted electrons,
their density is unitary at the emitting surface, which implies that all electrons emitted
at Γ are driven away by the electric field. This is expected as the electrostatic potential
profile shown in the top-left panel is monotonic. As r increases, the density of the emitted
species decreases with a steep trend and approaches zero asymptotically.

Overall, the profiles shown in Fig. 3.1 prove that the numerical algorithm is well-
implemented and that the results obtained with FONKS-G are consistent with those of
FONKS-C. The little discrepancy in the charge density profiles at the plasma boundary is
due to the fact that the grid used to dicretise the velocity space (i.e., the εα − ζ domain)
is coarser in the case of FONKS-G, which has to comply with much more stringent con-
straints from the point of view of the computational cost due to the necessity of explicit
integration of particle trajectories.
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Taking as baseline the set of parameters of Eq. (3.2), further proof of the well imple-
mentation of the algorithm was obtained through parametric analyses modifying one at
a time some of the governing parameters. Figure 3.2 shows the results corresponding
to different values of the probe bias φp, which spans over two orders of magnitude. As
in the reference case discussed previously, the FEM-RK solver in combination with the
piecewise-constant electric field reconstruction was used, using the numerical parameters

N ∼ 102−3, rmax ∼ 101, Nε = 150, Nζ = 360, Ntr ∼ 100−1,εmax
α = ε

min
α +6. (3.3)

In the top panels, the electrostatic potential profiles obtained with the two codes are shown

FIGURE 3.2: Verification of the code for the set of parameters given in Eq. (3.2) and
several values of φp identified by different colours (see legend). Electrostatic potential
profiles for −5 ≤ φp ≤ −1 [panel (a)] and −50 ≤ φp ≤ −10 [panel (b)]. Total charge
density vectors [panel (c)]. Results obtained with FONKS-C and FONKS-G are identified
with round markers and crosses, respectively.

for the intervals −5 ≤ φp ≤ −1 [panel (a)] and −50 ≤ φp ≤ −10 [panel (b)]. Similarly
to the previous case, round markers (FONKS-C results) and crosses (FONKS-G results)
practically overlap, meaning that the two codes provide analogous results. The inset of
panel (b) highlights the electrostatic potential faraway from the plasma-body interface.
For the highest value of φp considered, one observes that the curves cross the diagonal,
meaning that positive ions collection falls beyond the OML regime in this case. This is



Results of the Stationary Vlasov-Poisson solver 41

consistent with other results obtained for similar plasma parameters (see for instance Fig.6
in Ref. [162]).

Panel (c) shows the comparison for the space charge density. Intuitively, the size of
the sheath, and therefore the computational domain, increases with φp. Due to limitations
with the computational resources, the resolution was decreased for such bigger compu-
tational box. Despite some discrepancies are detected, the profiles of the two codes still
agree to a more than acceptable extent. In addition, one of the main purposes of the
present analysis is that of investigating the emission in SCL conditions, which occur for
negatively-biased objects with small |φp|, for which the agreement between the two codes
is total because a good resolution can be used for FONKS-G.

Figure 3.3 shows a third comparison addressing the variation of the size of the object-
to-Debye length ratio bp. Only the charge density profiles are shown and plotted against

FIGURE 3.3: Charge density vector for 1≤ bp ≤ 2 (see legend for colour scheme) and the
rest of the parameters given in Eq. (3.2). Results obtained with FONKS-C and FONKS-G
are identified with round markers and crosses, respectively.

the normalised radial coordinate r/bp. The results from the two codes match well, as
highlighted in the detailed view of the sheath region where the charge density peaks (see
inset). Overall, one observes that the size of the sheath relative to the characteristic length
of Γ diminishes for increasing rp, though in absolute terms the contrary holds. Concerning
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the operational regime, the value of the density at the plasma-material interface suggests
that the current collection and emission occur in the OML and non-SCL regimes, respec-
tively. The former result is consistent with previous analytical works stating that OML
current collection holds for cylinders with characteristic dimensions of the order of the
Debye length [94, 162].

In addition to the structure of the sheath, it is interesting to compare the values of
the currents collected or emitted at the plasma-body interface, which is one of the most
significant figures of merit in LWT applications. Figures 3.4 shows the relative difference
100× |( jCα − jG

α )/ jCα | between the fluxes of the α-species obtained from the novel code
(super-index G) and that of Ref. [113] (super-index C). Recalling that the basic set of

FIGURE 3.4: Relative error 100×|( jCα − jG
α )/ jCα | for plasma electrons (left panels), ions

(middle panels) and (right panels) for different values of φp (top panels) and rp, δi, δp, β

(bottom panels). Different combinations of markers and colours identify the parameter
being changed with respect to the list given in Eq. (3.2).

parameters is that of Eq. (3.2), different combinations of markers and colours identify
which of the parameter is being changed. For the sake of clarity, the results corresponding
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to the variation of φp are gathered in the top panels, while the remaining cases are shown in
the bottom panels. Left, middle and right panels correspond to plasma electrons, plasma
ions and emitted electrons, respectively. For almost all the cases considered the error is
below 1%, with only the configuration with φp = −50 showing an error of around 2%,
arguably because of the lower resolution achieved in view of the larger computational
domain. Overall, the agreement between FONKS-G and FONKS-C is very good and one
can conclude that the novel code is well-implemented.

3.1.2 Versus CPIC

A second verification campaign provides further evidence of the reliability of FONKS-
G by checking its results with those obtained with CPIC: a well-tested PIC code for
curvilinear geometries introduced in Ref. [163], which the author had the opportunity
to exploit as a user during a collaboration with Dr. Delzanno and his group at Los Alamos
National Laboratory (LANL). Contrary to FONKS-C, CPIC can address plasma-material
interfaces of any (three-dimensional) curvilinear geometry. In order to reproduce the
elliptical configurations that were the main focus of this second benchmark investigation,
several quasi-2D simulations were run with CPIC imposing reflective boundary conditions
at the top and bottom faces located at z =±λDe/2, respectively.

Figure 3.5 shows the results of a first simulation, corresponding to the dimensionless
parameters

ep = 0.95, bp = 1, φp =−4, δi = 1, δem = 0.0, β = 0.0. (3.4)

Since axial symmetry no longer holds, the macroscopic profiles at the horizontal (y = 0)
and vertical (x = 0) axes of the computational domain are plotted separately in Fig. 3.5(a)
and Fig. 3.5(b), respectively. In addition to the comparison with CPIC, whose results
are identified by light grey ×-markers, a cross-verification between the FEM-RK (dark
grey circles) and FDM-CN (black crosses) solvers is presented (see Table 2.4 for details
about the different solvers implemented in FONKS-G). Despite using slightly different
computational domains, results are in good agreement, though CPIC profiles, which are
averaged over 5000 time steps in order to filter out the statistical noise, show some features
that are absent in the case of FONKS-G.

A first remarkable difference is the behaviour of the electrostatic potential (top-left
panel) at the external boundary of the computational domain. This is due to the differ-
ent boundary condition selected for the Poisson equation. In fact, while for FONKS-G
simulations it was imposed that the potential decays as in Eq. (2.28), CPIC assumes that
φ(Γmax) = 0. As a consequence, the electrostatic potential obtained with CPIC changes
curvature towards the external boundary of the computational domain, where it reconnects
to zero. Due to the presence of potential barriers, such feature has an impact on the den-
sity of the electrons (bottom-right panel), which follows the same trend as the potential
profile. That is, ne itself presents an inflection point towards the outer plasma boundary,
where it assumes a unitary value. In turn, CPIC charge density profiles (top-right panels)
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(a) Plasma sheath at y = 0 for the physical parameters of Eq. (3.4)

(b) Plasma sheath at x = 0 for the physical parameters of Eq. (3.4)

FIGURE 3.5: Comparison of FONKS-G and CPIC results (light grey ×-markers) for the
set of physical parameters in Eq. (3.4). FEM-RK and FDM-CN solvers of FONKS-G are
identified with dark grey circles and balck crosses, respectively.
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show a residual sheath in such region since, contrary to that of the electrons, the density
of the positive ions (bottom-left panel) does not reach a unitary value. As discussed, such
residual sheath is a numerical artifact stemming from the boundary condition selected, and
it does not affect significantly the overall structure of the plasma sheath, nor the values of
the fluxes at the plasma-material interface.

Regarding the latter, the values of the currents of electrons and ions at the plasma-
material interface are gathered in Table 3.1. For the configuration at hand, hydrogen
nuclei giving µi = 1836 were considered, though for the computation of the structure of
the plasma sheath this is relevant only for CPIC as the dynamics of the particles can be
decoupled in the stationary model at the basis of FONKS-G. As expected, the current of
ions, which are the attracted species, is higher than that of the repelled electrons, even
though they are in the same order of magnitude due to the bigger mass of the positively
charged particles. The three solvers provide very similar outputs, with differences in the
order of 1% and 2%.

Solver Ie [A/m] Ii [A/m]

CPIC 2.46×10−6 7.53×10−6

FEM-RK 2.42×10−6 7.67×10−6

FDM-CN 2.43×10−6 7.70×10−6

TABLE 3.1: Magnitude of the currents per unit length of plasma electrons (Ie) and plasma
ions (Ii) at the plasma-material interface, obtained with CPIC and the FEM-RK and FDM-
CN solvers of FONKS-G.

A second appreciable distinction is the discrepancy in the value of the density of the at-
tracted ions at the plasma-material interface at the x-axis [bottom left panel in Fig. 3.5(a)].
There, both FONKS-G solvers give ni ≈ 0.5, which is in agreement with the results pre-
dicted by the OML theory for a two-dimensional probe with small enough radus (see
Ref. [108]). On the contrary, CPIC provides a value which is slightly higher, though it
is not evident in the plot as the corresponding marker lies behind the very dense set of
points located where the curve shows a bump. Rather than a significant disagreement be-
tween the codes, this discrepancy is due to the fact that CPIC does not provide the value
of the density exactly at the plasma-material interface, but an average computed along the
cell next to it. Since the density increases steeply at the horizontal axis (see FONKS-G
curves), a small displacement in the radial direction might result in a significant difference
in the value detected. This is not the case at the vertical axis, where the density of ions
increases more smoothly with the radial distance.

Such difference in the rate of change of the densities of the plasma species at the y-
and x- axes is due to the fact that at the latter the electric field is bigger as it emerges by
looking at the slopes of the electrostatic potential profiles (top-left panels). In fact, the
intensity of the electric field is correlated with the curvature of the biased object, which
is maximum at the semi-major axis lying on the x-axis of the computational domain in
the case at hand. Being the electric field smaller at the semi-minor axis, one observes that
the density of the ions falls below the OML value there. This outcome aligns with the
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analysis of Laframboise and Parker [108], who demonstrated that, in the Laplacian limit,
OML theory holds for oblate spheroids up to an aspect ratio of 2.537 (i.e., ep ≈ 0.92). A
more detailed analysis of why the OML conditions do not hold when the slenderness of the
object becomes too high is provided later in the chapter when the results of a parametric
analysis of different elliptical probes are discussed in Sec. 3.3.2.

Additional results of comparisons between CPIC and FONKS-G are shown in Fig. 3.6,
which correspond to the non-dimensional parameters

ep = 0.75, bp = 1, φp =−4, δi = 1, δem = 0.32, (3.5)

and different value of emission level β as indicated in the captions of the sub-figures. As
before, values are plotted at the x-axis (right sub-figures) and y-axis (left sub-figures) sep-
arately, while the results of FONKS-G (crosses) were obtained with the FDM-CN solver
alone in this specific case. Generally speaking, the two codes are in good agreement,
though the density profiles of the plasma species (bottom panels) differ slightly more than
in the case of the Langmuir elliptical probe discussed above. In particular, while remain-
ing very close, curves obtained with FONKS-G are somewhat higher than those of CPIC.
This little difference might be explained by the fact that the profiles obtained with CPIC
seem to be more affected by numerical noise than those of Fig. 3.5, though the same
averaging was applied while post-processing the output data.

Again, the most prominent difference is detected at the plasma material interface, where
the values of ni and nem do not appear to be in agreement. As discussed previously, this
is due to the fact that the outputs of CPIC do not coincide precisely with the values at
the plasma-material interface. Since the slopes of the curves are very steep, especially in
the case of emitted electrons, whose density decays quickly with the radial distance, the
plots show a relatively big difference, which is not reflected in the values of the current at
the plasma-material interface. As reported in Table 3.2, the two solvers return values of
the currents that are in good agreement for all the three species of plasma considered. In
fact, the relative error is ≈ 4% in the worst case scenario, which is represented by plasma
ions for the configurations at hand. In absolute terms, the discrepancies are highest for
the current of emitted electrons, whose value is bigger than that of the plasma species by
two orders of magnitude. This is consistent with the fact that the density of the emitted
electrons at the probe interface is several times that of the background plasma.

An interesting aspect is that the current does not scale linearly with the emission level
β . This is a well-known phenomenon due to the high density of electrons accumulating
in the region of space close to the emitting surface that results in the appearance of a
potential well next to the plasma-material interface when the emission level increases
above a certain threshold. The subsequent reversal of the electric field causes the least
energetic electrons to be reflected back to the emitting-surface, thus giving rise to the
so-called Space Charge Limited (SCL) emission. As anticipated in the introduction (see
Chapter 1), this is detrimental for LWTs applications as it poses a limit to the amount of
current that the device is able to emit (and therefore to generate).

Intuitively, for a fixed value of probe bias, the potential well appears and increases
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(a) Plasma sheath at x = 0 for β = 5 (b) Plasma sheath at y = 0 for β = 5

(c) Plasma sheath at x = 0 for β = 7 (d) Plasma sheath at y = 0 for β = 7

(e) Plasma sheath at x = 0 for β = 10 (f) Plasma sheath at y = 0 for β = 10

FIGURE 3.6: Plasma sheath corresponding to the physical parameters of Eq. (3.5) and
different values of emission level β , computed with CPIC (× markers) and FONKS-G
(+ markers). Sub-figures on the left (right) shows macroscopic quantities at nodes lying
on the y-axis (x-axis).
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β Solver Ie [A/m] Ii [A/m] Iem [A/m]

5 CPIC 1.39×10−6 4.23×10−6 4.21×10−4

FDM-CN 1.37×10−6 4.40×10−6 4.23×10−4

7 CPIC 1.38×10−6 4.22×10−6 5.75×10−4

FDM-CN 1.36×10−6 4.40×10−6 5.79×10−4

10 CPIC 1.30×10−6 4.23×10−6 6.43×10−4

FDM-CN 1.27×10−6 4.40×10−6 6.33×10−4

TABLE 3.2: Magnitude of the currents of plasma electrons (Ie), plasma ions (Ii) and emit-
ted electrons (Iem) at the plasma-material interface, obtained with CPIC and the FDM-CN
solver of FONKS-G.

in response to a growth of the emission level. In fact, for a low enough value of β ,
the electrostatic potential profiles are monotonic at both the x-axis and the y-axis of the
computational domain [see Figs. 3.6(a)-3.6(b)]. When β increases, a small potential well
develops at the vertical axis of the computational domain [see inset in top-left panel of
Fig. 3.6(c)], while the potential remains monotonic at the horizontal axis. As it will be
discussed more in detail later in the present chapter (see Sec. 3.3.2.2), this is a further
consequence of the correlation between the curvature of the object and the electric field
along its surface. Eventually, when the emission level overcomes a certain threshold, the
potential well grows and extends to the whole plasma-material interface, as depicted in
the insets of the top-left panels in Figs. 3.6(e)-3.6(f). Regarding the comparison between
the two codes, one observes that FONKS-G captures quite well this feature of the sheath,
despite using a much lower spatial resolution than CPIC in the area surrounding Γ.

3.2 Limitations of stationary Vlasov-Poisson solvers

This section presents novel results related to the investigation of some numerical (see
Sec. 3.2.1) and physical (see Sec. 3.2.2) limitations that affect stationary Vlasov-Poisson
solvers based on the backward Liouville method. The analysis deals with both cylindrical
and elliptical Langmuir probes facing a Maxwellian plasma that comply with the math-
ematical model outlined in Chapter 2. In particular, the configurations considered in the
present analysis are described by the following set of physical parameters

bp = 1, φp =−4, δi = 1, δem = 0, β = 0, (3.6)

and different values of the of the probe eccentricity ep, which is conveniently used as
integrability-breaking parameter. A thorough comparison among the different solvers of
Table 2.4 allows not only to characterise deeply the properties of the different algorithms
of FONKS-G, but also to derive a list of good practices that one might take into account
when developing a VP solver based on the backward Liuoville method, with particular
emphasis on how to identify an optimal value for Ntr (i.e., number of loops inside the
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plasma sheath after which the trajectory a particle is classified as trapped) and how to deal
with the filamentation of the distribution function in non-integrable systems.

3.2.1 Numerical limitations

This first type of limitations stems from numerical errors intrinsic to the various algo-
rithms implemented in the code. For the problem at hand, such inaccuracies, which in-
clude discretization, interpolation, and integration errors, are not important for the major-
ity of the Γ-originated and Γmax-originated orbits. Connecting with either one of the two
boundaries of the computational domain, the integration of these orbits typically lasts a
short amount of time and the numerical error can be controlled by using adequate inte-
gration algorithms and selecting appropriately the time step. Therefore, numerical errors
occurring along the integration do not have a significant impact neither on the origin of
the trajectory, nor on the values of the invariant(s).

From a practical point of view, changing slightly the point where a trajectory crosses
a boundary has little influence on the final solution. For Γ-originated trajectories, the
algorithm set to zero the value of the distribution function regardless of the location of
the impact, while for Γmax-originated orbits the value is assigned according the boundary
conditions of Eqs. (2.43a)-(2.43b), where the total energy is the one at the beginning of the
integration. However, for long-lived trapped orbits, numerical errors tend to accumulate
and a proper investigation of the properties of the algorithms is needed in order to select
a good set of numerical parameters that allows to reach accurate-enough results. In fact,
orbits that should be trapped might incorrectly end up at one of the boundaries of the
computational domain and the corresponding value of the distribution function be set by
the algorithm to a finite value rather than zero.

3.2.1.1 Conservation laws

The characteristics of the Vlasov equation [see Eqs. (2.38a)-(2.38b)], which coincide with
the orbits of the charged particles inside the sheath of the probe, are a Hamiltonian sys-
tem, whose Hamiltonian coincides with the total energy εα defined in Eq. (2.39). Being
τ-independent, the Hamiltonian is a constant of motion of the system of Eqs. (2.38a)-
(2.38b). For the particular case of a cylindrical body (i.e., ep = 0), the equations of motion
conserve the angular momentum of the charges as well. In view of the intrinsic inaccu-
racies affecting the numerical algorithms of the code, the invariant(s) of the system are
not (in general) preserved exactly during its numerical integration, unless specifically de-
signed schemes are used. Investigating the capability of the different integrators to recover
these conservation laws provides a measure of their good implementation and their rela-
tive accuracy. In order to address this issue, the performances of the different numerical
integrators of Table 2.4 were compared among each other.

Considering the configuration outlined by the physical parameters of Eq. (3.6) and
ep = 0, a first benchmark is carried out between the RK and CN orbital propagators
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onto an unstructured and structured cylindrical meshes with rmax = 7.5, discretised with
N = 1893 and Nr ×Nθ = 45×45 nodes, respectively. The latter is plotted in the physical
space in the bottom-right panle of Fig. 2.3. For convenience, the VP-solver of Ref. [113]
provided the electrostatic potential profile used as input for the reconstruction of the elec-
tric field. The latter was computed according to the polynomial fitting coupled with the
Natural Neighbour Interpolation for the RK algorithm, while the B-spline procedure was
used in the case of the CN orbital propagator (see Appendix D for details). Starting from
the initial conditions (x0,y0,εi) = (3.05,0,0.505), Fig. 3.7 shows the intersections with
the vr = vx · cosθ + vy · sinθ = 0 plane (Poincaré section) of the trajectories of trapped
ions corresponding to five different values of the initial velocity angle ζ0, identified by
distinct combinations of markers and colours. In the left panel, the orbits computed with

FIGURE 3.7: Poincaré section (vr = 0 plane) of trapped ions moving around a cylindrical
probe. Results are shown for initial conditions with (x0,y0,εi) = (3.05,0,0.505) and five
different velocity angles ζ0, identified by different combinations of colours and markers.
Left and right panels were obtained with the RK and the CN integrators, respectively
[128].

the RK integrator and the unstructured mesh do not conserve exactly the angular momen-
tum pθ ≡ rvθ = −vx · y+ vy · x, which exhibits variations of approximately 1%. These
small changes derive from small errors in the computation of the electric field along the
trajectory, which result in a violation of the axial-symmetry of the physical configuration,
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although the potential profile used as input strictly satisfies ∂φ/∂θ = 0. On the contrary,
the right panel reveals that using the CN algorithm and the cylindrical structured mesh is
beneficial for this particular scenario, since a remarkably better conservation of the an-
gular momentum is achieved. Regarding the discrepancy in the magnitudes of the initial
pθ , whose values are slightly higher in the case of the unstructured mesh, this is due to
the fact that the initial point of the trajectory does not coincide with any of the nodes of
the structured cylindrical mesh. As a consequence, the value of the electrostatic potential
was interpolated. This resulted in a slightly different value of the total energy and, in turn,
of the initial velocities. Given that the goal of the study is that of determining which of
the two integrators conserves better the invariants of motion, this small difference is not
relevant.

While the above discussed conservation of the angular momentum took advantage of
a solution computed with the numerical scheme of Ref. [113], the conservation of the
Hamiltonian was studied by finding the full solution of the Vlasov-Poisson system with
the different solvers of FONKS-G for the configuration described by the parameters of
Eq. (3.6) and ep = 0.95. After setting the numerical parameters to

Nζ = 360, Nεα
= 300, ε

max
α = ε

max
α +6.0, Ntr = 2, (3.7)

the simulations were run onto an unstructured and structured elliptical meshes with rmax =
16 and N = 1898, and ξmax ≈ 7.26×ξp and Nξ ×Nη = 45×45, respectively (see top-left
and bottom-left panels in Fig. 2.3). Recalling that the Hamiltonian of the system coincides
with the total energy of the particles, its conservation was investigated by monitoring
the relative error defined as ∆εi ≡ 100×

[︁
εi(τ)/εi(0)−1

]︁
along the trajectories of some

trapped ions. The results are shown in Fig. 3.8.

In the left panel, one observes that the error corresponding to the FEM-RK solver (red
solid line) presents oscillations with peaks of almost 10%, while its mean value undergoes
a secular variation. Comparing such curve with the one obtained with the FDM-RK solver
(dark gray dash-dotted line), whose magnitude does not exceed 3% and shows no secular
variation, reveals that a discretisation of the physical space with a structured mesh, in
tandem with a bi-linear interpolation technique for the reconstruction of the electric field,
ensures better conservation properties than an unstructured mesh with natural neighbor
interpolation. Substituting the RK integrator with a (symplectic) second-order LeapFrog
(LF) scheme lead to analogous conclusions (see right panel of Fig. 3.8), and no significant
improvement in the conservation of the energy was observed by halving the time step (for
clarity, these two curves are not included in the plot). These results identify the algorithm
used for the reconstruction of the electric field along the orbit as the main source of error
for the conservation of the energy. Eventually, much better conservation properties are
exhibited by the FDM-CN solver (blue dashed line in the left panel). In fact, this implicit
method conserves the Hamiltonian up to the tolerance set by the user for the Newton
method used to compute the state vector at subsequent time steps along the trajectory.
Such value was equal to 10−8 in the computations that are being discussed.
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FIGURE 3.8: Evolution of ∆εi =
[︁
εi(τ)/εi(0)−1

]︁
×100 for a trapped ion moving around

an elliptic probe with ep = 0.95. Different curves correspond to different solvers of
FONKS-G [128].

3.2.1.2 Trapping criterion

The previous discussion about the conservation of the energy is very important for setting
an appropriate trapping criterion and having a good understanding of the limitations of
stationary VP solvers. As explained in Chapter 2, stationary solvers cannot assess the
population of trapped particles, and their distribution function is thus set to zero regardless
of their species. Since this population can play a significant role in the solution, it is thus
of uttermost importance to identify a good criterion for classifying an orbit as trapped.
In the present work, this is the role of Ntr, which is the numerical parameter that denotes
the number of loops that an orbit must cover without connecting to the boundaries of the
computational domain for being considered as trapped. The solutions of a well designed
VP solver should not depend on the values of the numerical parameters, like the size of the
computational domain and the resolution, provided that these values are selected above
certain thresholds. For instance, this is the case of the numerical parameters governing
the resolution of the discretisation of fα in the phase space (N, Nχ1 , Nχ1 , Nζ ,Nε , εmax).
However, the role of Ntr is subtler in this regard, and a more involved analysis is required
to identify an optimum value.
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To address this topic, the same numerical integrators and computational domains adopted
during the investigation of the conservation of the angular momentum discussed above
were implemented. Exploiting again the solution computed with the algorithm of Ref. [113],
the different propagators were used to analyse the influcence of Ntr on the structure of the
ions distribution function of at point (x,y) = (3.05,0). Figure 3.9 shows plots of a re-
stricted portion of the velocity space, which was conveniently discretised with a high
resolution grid of Nε ×Nζ = 100×250, where trapped particles are found.

FIGURE 3.9: Distribution function at (x,y) = (3.05,0) in the εi − ζ plane for different
values of Ntr obtained with the RK (top) and CN (bottom) integrators. Orange and black
regions identify initial conditions yielding trapped and Γ-originated orbits, respectively.
The magenta line is the exact boundary computed with FONKS-C [128]. Research data
and post-processing scripts are available at dataset [164].

Top panels represent the results obtained with the RK integrator and the unstructured
mesh, while bottom panels correspond to the CN integator applied onto the structured
cylindrical mesh. In the plots, the black area identifies the area where the distribution
function has a finite positive value given by the Maxwellian (i.e., Γmax-originated orbits),
while the orange area includes initial conditions that yield trajectories that perform Ntr
loops inside the sheath (i.e., trapped), for which the distribution function is set to zero. The
magenta solid line provides a benchmark, as it represents the boundary between these two
regions that is obtained with the algorithm of Ref. [113], which exploits the conservation
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of both energy and angular momentum to compute the exact result without the need for
explicit particle-tracking.

The left panels show that if Ntr is too low (equal to 1 in the present case), the algorithm
incorrectly classifies an excessive amount of orbits as trapped regardless of the numerical
integrator. An integration over the velocity space would thus result in an underestimation
of the ion density. When Ntr grows, the ability of the orbital propagator to conserve the
invariants of the system becomes more important. For Ntr = 10, the RK integrator ends
up overestimating the density bacause some of the orbits that should be labeled as trapped
are incorrectly classified as non-trapped. In fact, small numerical errors accumulate along
the path, leading to the breaking of the conservation of εi and pθ and ultimately to the
deflection of these trapped trajectories, which end up connecting to the outer boundary of
the computational domain.

An interesting side effect is that the boundary between trapped and non-trapped orbits
becomes jagged, since there reside the conditions that most likely lead to the deflection of
the trajectories due to the accumulated numerical errors. Using an algorithm with better
conservation properties is thus beneficial in this case, as shown by the results obtained
with the CN integrator, which captures with good accuracy the boundary even for high
values of Ntr (see bottom right). Therefore, the solutions provided by a VP solver based
on the CN integrator do not depend on Ntr provided that its value is high enough. Once a
well-behaved algorithm is identified, a sensitivity analysis allows to compute the optimal
value for Ntr. The latter should also account that Ntr has an impact on the computational
cost as well.

3.2.2 Physical limitations

In contrast to their numerical counterpart discussed in the previous sections, physical lim-
itations stems from the very nature of the problem and do not depend on the algorithm(s)
implemented to solve it. Stationary descriptions of physical systems like the one outlined
in Chapter 2, though useful for providing approximations of a wide variety of phenom-
ena, cannot address properly certain features. In the following two sections a discussion
of the consequences of neglecting the population of trapped particle and how to deal with
the filamentation of the distribution function when the system becomes non-integrable are
presented.

3.2.2.1 Trapped Particles

One of the most important limitations of stationary Vlasov (collisionless) solvers is their
failure at dealing with the presence of trapped particles. In the majority of cases, this
population is neglected. Coherently, this was the approach adopted in the present work.
However, there are some circumstances in which simply disregarding the presence of
trapped particle might interfere with the computation of a solution, whether not directly
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preventing from finding one. The present section discusses three different scenarios in
which the trapped particles have been shown to play a different role.

A first group includes systems which are not affected significantly by the disregard-
ing of the population of trapped particles, whose effect is just that of slightly modifying
the profile of the electrostatic potential profile. Therefore, a self-consistent solution to
the Vlasov-Poisson system can be found even without taking into account the trapped
population. For a cylindrical Langmuir probe immersed at rest in Maxwellian plasmas,
comparisons between steady-state solutions [93] and solutions with trapped particles aris-
ing from collisions (i.e., stationary Boltzmann-Poisson solver [165]) or during transients
(non-stationary Vlasov-Poisson solver [166]) proved this point.

A second category includes configurations in which ignoring trapped particles lead to
convergence issues. A plasma expansion in a slender magnetic nozzle provides a good
example. In fact, numerical solutions were found with a stationary Vlasov solvers only
after including in the system a heuristic population of trapped electrons [167]. A more
recent study implementing a non-stationary Vlasov solver showed that trapped electrons
are indeed present [151], though in a much smaller fraction than the one considered in the
stationary analysis.

Eventually, a third class involves physical scenarios in which the trapped particles are
indispensable for finding a solution to the problem. To this last category pertains the
case of a positively biased Langmuir probe immersed in a flowing plasma at mesothermal
conditions. That is, with the flow velocity being large (small) with respect to the thermal
velocity of the plasma ions (electrons). If no trapped particles are taken into account, the
density of the attracted species should fall below the background density n0 [108], but the
density of the hypersonic (repelled) ions should exceed n0 at the front side of the probe.
In turn, quasi-neutrality would not hold over a broad region. As proposed in Ref. [168],
simulations with a non-stationary Vlasov solver [169] showed that a population of trapped
particle is in fact necessary for quasi-neutrality to be recovered at the front of the probe.

3.2.2.2 Filamentation

Since its Hamiltonian does not depend on τ , the total energy is a constant of motion of the
4-dimensional system given by Eqs. (2.38a)-(2.38b). In some particular cases, a second
invariant can be identified. For instance, the sheath around a cylindrical object (ep = 0)
at rest inside a Maxwellian plasma features an axi-symmetric electrostatic potential and
the angular momentum is conserved as well along the orbits. The effective dimension
of the phase space thus reduces to 4 − 2 = 2 and the system is said to be integrable,
admitting only regular solutions. However, when the sheath around an elliptical (ep ̸= 0)
probe is considered, the angular momentum is not conserved. The Hamiltonian system
is non-integrable, because its effective dimension is 4−1 = 3. Accordingly, non-regular
(chaotic) dynamics can appear.

In order to investigate the impact of this feature, a solution for the configuration cor-
responding to the physical parameters of Eq. (3.6) and ep = 0.95 was computed with the
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FDM-CN solver, which showed the best performances in the analysis of Sec. 3.2.1.1. The
structure of the plasma sheath was computed self-consistently, setting the numerical pa-
rameters in Eq. (3.7) and Ntr = 2. Afterwards, the electrostatic potential was exploited
as input for investigating in detail the dynamics of trapped ions. For a fixed value of the
total energy εi ≈ 0.062, Fig. 3.10 shows the intersection with the plane vr = 0 of differ-
ent trapped orbits. Each color identifies a different set of initial conditions, all sharing
the same value of energy. The resulting Poincaré section features a pair of two-lobed
structures around θ = 0 and θ = π , though, for clarity, just one is shown in the plot. In
constrast to the analogous plot obtained for a cylindrical probe in Fig. 3.7, pθ is not a con-
stant of motion and a mix of regular and chaotic orbits appears, with Poincaré-Birkhoff
chains and chaotic layers highlighted in the inset.

FIGURE 3.10: Poincaré section (pr = 0 plane) of trajectories of trapped ions. All trajec-
tories have εi ≈ 0.062, but different sets of (x0,y0,ζ0), each one identified by a different
colour [128].

The appearance of chaotic orbits deeply affects the structure of the distribution function.
This is evident in the high-resolution (Nε ×Nζ = 300× 300) maps of Fig. 3.11, where
orange, yellow and blue areas identify initial conditions yielding Γ-originated, Γmax-
originated and trapped (Tr) trajectories. These plots were obtained by setting Ntr = 100.
For a cylindrical probe (ep = 0), the presence of a second invariant of motion implies not
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only that explicit integration of the orbits becomes unnecessary for the computation of
the distribution function [113], but also that the boundaries separating different types of
trajectories in velocity space are smooth curves, as shown in panel (a). When the system
becomes non-integrable (ep ̸= 0), such boundary becomes irregular and the distribution
function presents increasingly complex structures for higher values of the probe eccen-
tricity [see panels (b), (c) and (d)].

For a moderate elongation (ep = 0.75), the boundaries separating trapped from non-
trapped particles are jagged and some empty spots start emerging in the otherwise yellow
area. When the eccentricity further increases (ep = 0.90), an additonal population of Γ-
originating ions appears in view of the larger perimeter of the ellipse (see discussion in
Sec. 3.3.2.1) and the boundaries becomes more complex. At ep = 0.95 [panel (d) and the
detailed region in panel (e)], the different types of trajectories deeply mix in velocity space
and the distribution function is highly filamented, with boundaries between different areas
showing a fractal structure.

FIGURE 3.11: Ions distribution function at (x,y) ≈ (3.4,0) in the εi − ζ plane for ep =
0 (a), ep = 0.75 (b), ep = 0.9 (c), and ep = 0.95 (d). Panel (e) shows a detail of the
region marked with a rectangle in panel (d). Orange, yellow and blue colours identify
Γ-originated, Γmax-originated and trapped orbits, respectively [129].
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This feature was further investigated by considering in detail the ion distribution func-
tion at (x,y) = (3.54,0) and εi ≈ 0.062. Keeping fixed the value of the energy, a high
resolution grid was used for discretising a small ζ -range (1.57 ≤ ζ ≤ 1.77). As shown
in Fig. 3.12, the same color scheme of Fig. 3.11 was implemented to mark the values of
ζ corresponding to different types of orbits. As anticipated, the boundary in the ζ -axis
between trapped and Γ-originated orbits exhibits a complex geometry. The investigation
at smaller scales (using a resolution 10 times bigger) displayed in the insets clearly shows
that a mix of the two types of orbits exists. Nonetheless, the distribution function around
this boundary is smooth since, according to the model outlined in Chapter 2, in both cases
the algorithm sets fi = 0. However, the same does not hold for the boundary that separates
Γ-originated orbits from the ones reaching the plasma boundary Γmax, which also shows a
complex structure (see right insets). There, the distribution function is filamented, with its
value jumping continuously between zero and a positive scalar given by the Maxwellian.

FIGURE 3.12: Structure of the ion distribution function at (x,y) = (3.54,0) with εi ≈
0.062. Insets show details of selected regions along the boundaries between trapped
and Γ-originated orbits (left) and Γ-originated and Γmax-originated (right) orbits [128].
Research data and post-processing scripts can be found at dataset [164].
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3.3 Parametric analysis

This section presents a parametric analysis of the characteristics of the sheath around
electron-emitting prisms with elliptic cross-sections. The targeted configurations span
over a wide range of parameters that are representative of ionospheric plasma and can be
relevant for applications in both plasma physics (e.g., elongated dust grains) and aerospace
engineering (e.g., LWTs applications). Considering a LEO environment, a reference sce-
nario is outlined by setting the values of the plasma density to n0 = 1011m−3 and tem-
peratures Te ≈ Ti ≈ 0.15eV (i.e., δi = 1), which give a Debye length of λD ≈ 1cm. The
analysis aims at filling the theoretical gap between the OMT for probes with cylindrical
and tape-like cross-sections, focusing especially on the investigation of the transition be-
tween different operational regimes. It was already stressed that evaluating the impact
of SCL conditions is important for assessing the performance of an LWT device. To this
extent, the analysis is limited to moderate (negative) values of φp, while the emission level
β varies considerably.

3.3.1 Sheath structure

This sub-section discusses the macroscopic characteristics of the plasma sheath around
ellipses of different geometrical properties. First the impact of modifying the eccentricity
is investigated by setting the physical parameters to

0 ≤ ep ≤ 0.99, φp =−4, bp = 1, δi = 1, δem = 0, β = 0. (3.8)

Figure 3.13 shows the net charge density ρ . Analogously to what was done in Sec. 3.1.2,
the profiles are plotted at the x- [panel (a)] and y- [panel (b)] axes separately. For the
cylindrical (ep = 0) case (dark gray lines with circular markers), which was computed
with the algorithm of Ref. [113] and will be adopted as benchmark for the rest of the
results, one observes that the charge density first grows to a peak in the region close to the
plasma-material interface, and then decreases monotonically along the remaining part of
the domain. Corresponding to a cylinder, such curves are the same in panel (a) and panel
(b). On the contrary, the profiles tend to differ in the region close to Γ when ep > 0, since
axial-symmetry no longer holds. Intuitively, both the discrepancy between the profiles at
y = 0 and x = 0 and the extension of the sheath grow with ep. Since the effect of the
specific geometry of the probe vanishes as r → ∞, higher values of ep require the use of
larger computational boxes (i.e., bigger Lξ ).

The slenderness of the object has an impact on the location and magnitude of the maxi-
mum value of the charge density as well. The former occurs closer to the plasma-material
interface when ep grows, this effect being more pronounced at the semi-minor (x = 0)
axis of the ellipse. For ep = 0.99, one observes that the maximum basically lies on Γ and
the charge density decreases almost monotonically across the entire domain. Regarding
the magnitude, the intensity of the peak is barely constant up to ep = 0.95 at the semi-
major (y = 0) axis, while it diminishes when the eccentricity approaches to one in view
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of a growth in the number of Γ-originated ions orbits. At x = 0, the maximum decreases
monotonically with the eccentricity as the probe gradually enters the non-OML regime
(see Sec. 3.3.2.1 for more details).

FIGURE 3.13: Space charge at the y = 0 [panel (a)] and x = 0 [panel (b)] axes for the set
of parameters given in Eq. (3.8) and several values of ep, identified by different combi-
nation lines and colours [129].

Four simulations of the configurations having

ep = 0.75, φp =−5.0, 1 ≤ bp ≤ 3,
δi = 1.0, δem = 0.32, β = {0, 1.72}. (3.9)

were run to study the influence of the characteristic-size-of-the-object-to-Debye-length
ratio (bp) and the intensity of electron-emission (β ) on the structure of the sheath. Fig-
ure 3.14, which is divided into four quadrants, shows the map of the density of the ions in
a region close to Γ. Being the eccentricity ep = 0.75, one immediately observes that the
density varies in the azimuthal direction. A comparison of the results relative to a non-
emitting body (top panels) with those in presence of emission (bottom panels) reveals that
the dependence on the azimuthal angle becomes more evident in the latter case, especially
in proximity of the horizontal axis of the domain. On the contrary, increasing the char-
acteristic dimension of the probe yields the opposite effect. A comparison between the
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panels on the left (bp = 1) and those on the right (bp) shows that, for a given value of
emission, the sheath is less sensitive to the particular shape of Γ when the size of the body
increases. Arguably, this is due to the local curvature [see definition in Eq. (A.3)] of the
plasma-material interface diminishing with bp. Looking at the trend across the computa-
tional domain, one observes that the growth of ni is much slower for bigger probes. For
instance, the map depicted in the top-right panel (β = 0) features a wide region where the
density of the ions is below 0.6 times the background plasma density. It is thus safe to
state that the extension of the sheath is higher when the dimensions of the body grows, a
result consistent with previous findings on infinite cylinders [72, 93, 123].

FIGURE 3.14: Detail of the density of attracted ions inside the plasma sheath correspond-
ing to the set of parameters given in Eq. (3.9) [129].

In order to understand this last effect, it is necessary to analyse the component of the
electric field normal to the ellipse confocal to Γ at each point of the mesh, shown in Fig.
3.15. Being the bias of the probe negative, the ions see a (negative) electric force directed
inward. An analysis of the orbits of the ions reveals that, the stronger the electric field
and the larger the object, the higher the number of Γ-originated trajectories. In turn, this
reflects in the density of the attracted species being lower. Comparing the left and right
panels of fig. 3.15, it is observed that the component of the electric field directed towards
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the plasma-material interface increases with bp. On the contrary, electron emission (bot-
tom panels) smooths out the electric field, resulting in an increased density of the ions in
the sheath.

FIGURE 3.15: Normal component of the electric field corresponding to the set of param-
eters given in Eq. (3.9) [129].

3.3.2 Operational regimes

This section analyses the different operational regimes in which current collection and
electron emission from elliptic negatively polarised probes fall. In particular, transition
between different regimes is investigated by varying, one at a time, the eccentricity (ep),
the size relative to the Debye length (bp) and the level of electron-emission (β ) of the
body.

3.3.2.1 Transition between OML and non-OML operational regimes

An object immersed in a Maxwellian plasma operates in the Orbital Motion Limited
(OML) regime when the sheath associated to its presence does not feature any barrier
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of effective potential, which would hinder some of the attracted particles from reaching
the plasma-material interface [108]. Therefore, the OML conditions represent a maxi-
mum condition for current collection and, under such circumastance, some fundamental
results hold. For a two-dimensional arbitrarily-shaped object with a negative bias relative
to the plasma operating under OML conditions, the density and net current of the attracted
species (i.e., positive ions) at the object are given by

nOML
i (Γ) =

1
2
, (3.10)

jOML
i (Γ) =

√︄
δi

µi

[︄
2
√︃

−χα

π
+ exp(χi) · er f c(

√
χi)

]︄
, (3.11)

where χi ≡−φp/δi [108]. Analytical relations such as those in Eqs. (3.10)-(3.11) are very
useful in plasma-material interaction problems and considerable efforts in the past were
targeted at determining the range of physical parameters under which an object meets
OML conditions. Relevant theoretical results were obtained for configurations involving
non-emitting cylinders, thin tapes and infinite prisms with convex and concave cross-
sections in the high bias limit [94, 122], and spheroids in the Laplace limit [108]. In
presence of emission, a recent work has identified the validity of the OML regime for
infinite-cylinders [162]. In the following paragraphs, the VP solver described in Chapter 2
was used to revisit some of these previous results, which typically rely on asymptotic
analysis and compliance to a certain set of sensible hypotheses. Relaxation of some of the
latter allows also to address to a higher degree of detail the impact of the object shape and
the electron emission on the plasma sheath.

Slenderness of the object Simulating the configurations defined by the set of physi-
cal parameters of Eq. (3.8) for several values of ep helps to understand the impact of
the eccentricity of the ellipses onto the current collection operational regime. To this ex-
tent, panels (a) and (b) in Fig. 3.16 show the electrostatic potential, normalised to φp,
at the vertical (x = 0) and horizontal (y = 0) axes of the computational domain. Re-
calling that, for ep = 0, the OML condition reads r2

pφp ≤ r2φ(r) [i.e., Equations (3.10)-
(3.11) hold provided that the potential profiles do not cross the diagonal], it was decided
to follow Ref. [94] and plot φ/φp curves against a2

p/r2 and b2
p/r2, respectively, with

ap = bp/
√︂

1− e2
p the dimensionless semi-major axis of the ellipses. For convenience,

the non-OML region for cylinders is highlighted in yellow in the plots. Panel (a) and
its inset show that the profiles enter such region when ep grows. Nonetheless, this do
not imply that the current collected by ellipses falls beyond the OML regime. In fact,
panel (c), which displays the ratio ji/ jOML

i for the different configurations considered,
shows that current collection meets the predicted OML value up to ep = 0.90, despite
their corresponding electrostatic potential profiles enter the yellow area mentioned above.
Therefore, the OML condition for cylinders does not hold for an elliptic geometry.
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For the physical parameters of Eq. (3.8), the transition between the OML and non-OML
operational regimes lies within the interval 0.90 ≤ ep ≤ 0.95. As anticipated in Sec. 3.1.2,
this result aligns with the outcome of a study by Laframboise and Parker [108], who
predicted such transition to happen for oblate spheroids of aspect ratio 2.537 (ep ≈ 0.92) in
the Laplace limit. For increasingly higher values of ep, the shape of the object approaches
that of a tape and the ratio ji/ jOML

i keeps decreasing, reaching a minimum of ≈ 0.88 for
the cases taken into account. Such minimum is considerably lower than the value obtained
with the asymptotic analysis of Ref. [94], which predicted a drop in the current collection
in the order of 1% for thin tapes at high biased relative to the plasma. The magnitude of
the bias mitigates the influence of the geometry of Γ on the current collection. In addition,
an elongated shape might actually be beneficial for current collection even if OML current
collection no longer hold. In fact, for a fix value of bp, the growth in the perimeter of Γ

[see Eq. (2.48)] with the eccentricity effectively counteracts the reduction in ji induced by
its shape. For instance, one finds p |ep=0.99= 4.9× p |ep=0 and p |ep=0.99= 2.71× p |ep=0.9.

FIGURE 3.16: Electrostatic potential at the y = 0 [panel (a)] and x = 0 [panel (b)] axes
for for the set of parameters given in Eq. (3.8) and several values of ep, identified by
different combination lines and colours. Collected current-to-OML current ratio versus
the eccentricity [panel (c)]. The red squared marker provides a reference value computed
with FONKS-C for a cylindrical probe [129].
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To further characterise the impact of the shape of the object on the current collection,
it is also interesting to analyse the distribution of the current along the plasma-material
interface. Panel (a) in Fig. 3.17 displays the ratio js(γ)/ jOML

s versus the eccentric anomaly
γ [see Eqs. (2.49), (A.1a)-(A.1b)]. Since the configuration is symmetric with respect to
both Cartesian axes, only a quarter of the ellipse is considered. Before analysing the
results, the authors of Ref. [129] (the first one being the author of the current manuscript)
would like to take the opportunity to provide an errata corrige regarding Fig. 5 of this
very work. While reviewing the results published at Ref. [129] in order to adapt them
for the redaction of the present manuscript, a typo was detected in the code script used
to post-process the data shown in Fig. 5. In particular, the value of γ (referred to as θ in
Ref. [129]) provided was incorrect. Therefore, panel (a) in Fig. 3.17 provides the actual
curves obtained from the analysis of the distribution of the current along the perimeter of
Γ. A thorough double-checking of the rest of the results presented in Ref. [129] proved
that these are not affected by the error. All the conclusions drawn are still valid, except the
one concerning the correlation between the minimum current collection and the maximum
rate of change of the curvature.

FIGURE 3.17: Ratio js(γ)/ jOML
s (a), curvature k (b) and dk/dγ (c) versus γ for different

values of ep, identified by different combinations of lines and colours. Errata corrige of
Fig. 5 in Ref. [129].
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Back to the discussion of the results, current collection is uniform along Γ up to ep =
0.90 (dark grey solid line), which is the range of parameters for which OML conditions
hold. However, for bigger values of ep, ions are not collected uniformly along the plasma-
material interface. At (x,y) = (ap,0) (i.e., γ = 0) the current per unit area is that predicted
by the OML. Then, the ratio js(γ)/ jOML

s decreases along Γ, reaching a minimum that
displaces closer to γ = 0 and becomes deeper as ep grows. Eventually, the current col-
lected grows back monotonically with γ up to a value lower than 1 and barely constant
for γ > π/4. Along the plasma-material interface, points collecting OML and non-OML
current coexist. This outcome is in agreement with the charge density profiles shown in
panels (a) and (b) of Fig. 3.13. Since the density of the repelled species is negligible at
Γ, one has that the charge density at the probe boundary is equal to ρ(Γ) ≈ ni(Γ) = 0.5
at the semi-major axis, which coincides with the OML condition of Eq. (3.10). On the
contrary, at the semi-minor axis (x = 0) one finds ρ(Γ)< 0.5, which implies that some of
the attracted particles are prevented from reaching that portion of the probe.

The trend of js(γ)/ jOML
s versus γ correlates significantly with that of the local curvature

k in panel (b) [see its definition in Eq. (A.3)]. Close to γ = 0, the curvature is high and the
collected current approaches the OML value. Moving rightward, both js and k diminishes
following similar trend. In the region where γ approaches π/2, the curvature is low. There,
the ellipse is no longer convex enough to meet OML current collection, though the point
of minimum current collection does not coincide exactly with (x,y) = (0,bp). Originally,
it was thought that such minimum occured where the derivative dk/dγ , shown in panel
(c), is maximum in magnitude. However, after fixing the typo in the post-processing script
as discussed above, this correlation happens no longer to hold. Nonetheless, the results
of the analysis prove that the geometry of the plasma-material interface has a significant
impact on the current collection, particularly when its distribution along the perimeter is
concerned. Being able to assess this kind of correlation is a key aspect in applications
involving plasma-sheath lenses [119–121].

A deeper understanding of the behaviour of the ratio js(γ)/ jOML
s requires an analysis

of the ion distribution functions. For convenience, the analysis is made in the εn − εt
[123, 127] defined as

εn ≡εα · cosζ (3.12)
εt ≡εα · sinζ , (3.13)

Panels (a) and (c) in Fig. 3.18, which is adapted from Fig. 6 in Ref. [129], display the ion
distribution function for ep = 0.99 and ep = 0.95 at the point along Γ where the current
collected is minimum. Since a point pertaining to the plasma-material interface is consid-
ered, and no ions are emitted from such surface, both diagrams feature an empty region for
εn > 0, which corresponds to outgoing particles. A second unpopulated region is present
in both diagrams in the quadrant defined by εn < 0 and εt < 0. This second empty re-
gion becomes larger for higher eccentricities, therefore explaining the lower value of the
current collected by the probe with ep = 0.99.

A detailed analysis regarding the particle orbits in panel (b), which correspond to the
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initial condition identified by labels A and B in panel (a), allows to understand why such
is the case. In view of the elliptic geometry, trajectories with π ≤ ζ ≤ 3π/2 follow a long
path across a vast area close to the probe boundary, which exerts an attractive force on the
charges, thus deflecting them towards Γ. For a fixed value of energy, the closer ζ is to
3π/2, the more likely the origin of the trajectory pertains to Γ [see orbit B in panel (b)].
The resulting empty region in the third quadrant shrinks when the energy grows, for high-
energetic particles are less prone to be deflected towards the plasma-material interface
[see panel (c)]. Intuitively, the length of the trajectory running along the perimeter of the
probe increases with ep, thus resulting in a higher number of Γ-originated orbits for bigger
eccentricities.

FIGURE 3.18: Ion distribution functions for ep = 0.99 (a) and 0.95 (c) evaluated at the
point along Γ where js(γ)/ jOML

s in panel (a) of Fig. 3.16 is minimum. Panel (b) shows
two orbits for the initial conditions labelled with A and B in panel (a). Panel (d) displays
the ions distribution function at Γ for a cylinder (ep = 0) of perimeter equal to that of the
ellipse considered in panel (a) [129].

Panel (d) shows that a cylinder with radius such that its perimeter is equal to that of
an ellipse of ep = 0.99 (i.e., the most eccentric probe considered in the present analysis)
also operates under non-OML conditions. In fact, the diagram of the distribution function
features two unpopulated regions that are, in view of the axial symmetry of the config-
uration, symmetric with respect the εt-axis. In order to complete the analysis regarding
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the impact of the shape, it is interesting to compare the amount of current collected by
these two objects. Despite the distribution function of the cylinder presents a pair of Γ-
originated regions, their impact on the current collection is smaller overall. In fact, one
has ji |ep=0= 1.08 ji |ep=0.99, meaning that the current collected by a cylinder is higher for
a given perimeter.

Characteristic size A biased object is known to operate under OML conditions when its
shape is convex enough and its characteristic dimension is small relatively to the Debye
length [108]. This section presents a quantitative analysis of the impact of this second
aspect for a set of ellipses with

ep = {0, 0.5, 0.75} 1 ≤ bp ≤ 3,

immersed in the Maxwellian plasma consistent with the physical parameters δi = 1.0,
φp =−5, δem = 0.32. Panels (a) and (b) in Fig. 3.19 display the ratio ji/ jOML

i versus the
characteristic size bp for an emission level β = 0 and β = 1.72, respectively. Different
combinations of colours, style of lines and markers correspond to different probe eccen-
tricities, with markers identifying the configurations that were simulated. For the three
eccentricities, in absence of emission (β = 0), the current collected coincides (up to the
numerical accuracy of the VP solver) with the value predicted by OML theory when bp
is small. However, when the size of the probe increases, the attracted particles travels
on longer orbits in regions near Γ where the intensity of the electric field is stronger (see
Fig. 3.15). Subsequently, they are more prone to end up at the probe boundary Γ, thus not
contributing to the distribution function. When this happens, the current collected falls
below the OML value and the probe operates under non-OML conditions.

When a cylindrical probe is considered (ep = 0, dotted black lines with round markers),
the transition starts at a radius which is approximately 1.5 times the Debye length [162],
and the current gradually decreases as bp increases, though the discrepancy with the OML
value remains small even for the highest value of radius considered. These results, which
are found for φp =−5, extend to low-bias conditions the analytical results obtained in the
limit of high-biases in Ref. [109].

As compared to a cylinder with the same plasma conditions, ellipses not only enter the
non-OML operational regime at lower values of bp, but also exhibit a steeper reduction in
the current collected. Nonetheless, the overall reduction remains limited, as doubling and
tripling bp in the worst case scenario (ep = 0.75) induces a drop in the order of 2% and 5%,
respectively. Similar conclusions were found in previous analyses that took into account
thin tapes [123] and 2-dimensional prisms of arbitrary shape in the limit of high-bias
[122]. Overall, the results of the present and previous analyses show that the geometry
of Γ (i.e., its eccentricity) has a bigger impact on current collection than its characteristic
size.
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FIGURE 3.19: Collected-to-OML current versus bp for ep = 0 (black, dotted line with
circles), ep = 0.5 (cyan, solid line with down triangles) and ep = 0.75 (magenta, dash-
dotted line with up triangles). Panels (a) and (b) corresponds to β = δem = 0 and β = 1.72
and δem = 0.32, respectively. The rest of the parameters is given in Eq. (3.9) [129].

Electron emission In addition to the shape and the size of the object, also the emission
of electrons at its surface can have an impact on the current collected. A comparison be-
tween panel (a) and panel (b) of Fig. 3.19 reveals that, in presence of electron-emission
(β = 1.72), the transition between the OML and non-OML operational regimes occurs at
higher bp for all the three probes considered. Such a result is consistent with previous
studies on infinite electron-emitting cylinders [113, 162], and derives from the reduction
of the electric field in the proximity of Γ as a consequence of the enhanced density of elec-
trons (see Fig. 3.15). In turn, this translates into a reduction of the number of Γ-originated
ions. In addition to being triggered at higher bp, the drop in the current collection is more
gradual than the case where β = 0, and ji/ jOML

i ≈ 1 holds approximately for the three
eccentricities considered. These results prove that the validity of the OML results ex-
tends to a wider range of parameters (eccentricities and sizes) when electrons are emitted
at the plasma-material interface. This is a relevant outcome for applications that require
modeling the current exchange between an object and the surrounding plasma. Probes for
plasma diagnostics, dusty plasmas and space tethers represent pertinent examples.
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3.3.2.2 Transition between non-SCL and SCL operational regimes

When electrons are emitted at a negatively biased plasma-material interface, their pres-
ence in the region surrounding the object might induce a reversal of the electric field that
stems from the formation of a potential well. For fixed values of δi, ep, bp, and φp < 0, this
occurs when the emission level (β and δem) increases beyond a certain threshold. Under
such operational condition, the current emitted by the probe is said to be Space Charge
Limited (SCL) because a portion of the emitted electrons (namely, the least energetic)
are reflected back to Γ due to the action of the reversed electric field. The non-SCL/SCL
transition for electron-emitting ellipses was investigated by setting

ep = 0.75, φp =−4, bp = 1, ,δi = 1, δem = 0.32 0 ≤ β ≤ 30. (3.14)

Panel (a) and panel (b) in Fig. 3.20 display the electrostatic potential profile and the
fraction of the perimeter of the ellipse under SCL conditions to the total perimeter (rSCL =
pSCL/p), respectively. For consistency with the results of Sec. 3.3.2.1, the potential is dis-

FIGURE 3.20: Panel (a): normalized electrostatic potential profile versus (bp/r)2 for the
set of parameters given in Eq. (3.14) and β = 6 (black), β = 7 (red) and β = 10 (cyan)
at x = 0 (dashed lines) and y = 0 (solid lines). Panel (b): fraction of the perimeter under
SCL conditions versus emission level β [129].
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played against (bp/r)2. In the resulting graph, the presence of a potential well in the φ/φp
versus r plane (not shown) is identified by a normalized potential profile above the hori-
zontal line φ/φp = 1 [panel (a) in Fig. 3.20]. Markers in panel (b) identify the configura-
tions that were simulated, with the coloured diamonds corresponding to the configurations
shown in panel (a).

When the emission is low (β < 6.2), the electrostatic potential profile is monotonic and
no potential dip develops [see black curves in panel (a) of Fig. 3.20]. Accordingly, the
electric field point inward everywhere, as observed in the top panels of Fig. 3.21, which
shows the normal component of the electric field for various configurations. When β = 6,
all the electrons that are emitted at Γ are driven away from it and their corresponding
distribution function, whose maps are provided in Fig. 3.22, is filled with outgoing (i.e.,
εn ≥ 0) orbits only [panels (a) and (d)]. As expected, for low values of emission level the
probe operates in non-SCL. Nonetheless, from the top-right panel in Fig. 3.21, one ob-
serves that at the semi-minor axis (x = 0), where the curvature of the ellipse is minimum,
the electric field approaches zero, thus suggesting that a potential dip is about to develop
in the region surrounding that area.

FIGURE 3.21: Normal component of the electric field for for the set of parameters given
in Eq. (3.14) [129].
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Analysing the interval 6.2 < β < 9, one observes that non-SCL and SCL conditions
coexist along the perimeter of the object. While at x = 0 the electrostatic potential profile
enters the SCL regime (yellow area) for β = 7.00 (solid and dashed red lines in Fig. 3.20),
the potential is still monotonic at the horizontal axis of the computational domain (y =
0). In the bottom left panel of Fig. 3.21, one can appreciate the partial reversion of the
electric field around the point (x,y) = (0,bp). Here, emitted electrons fill a portion of the
area of incoming particles (εn < 0), whereas the same region remains unpopulated at the
semi-major axis (x,y) = (ap,0) [panels (b) and (e) in Fig. 3.22, respectively]. A further
increase in the emission level (β > 9) results in an extension of the potential well to the
entire Γ. For β = 10, the whole probe operates under SCL conditions (rSCL = 1) and the
electrostatic potential is non-monotonic at both x = 0 and y = 0 (Fig. 3.20). In addition to
growing in the azimuthal direction, the potential dip grows in magnitude and penetrates a
bigger region of the sheath (bottom right panel of Fig. 3.21). Accordingly, electrons with
higher energies are reflected back to Γ, and the populated areas of incoming particles in
panels (c) and (f) of Fig. 3.22 are larger as compared to the previous case.

FIGURE 3.22: Normalized distribution functions for emitted electrons ( fem) at (x,y) =
(0,bp) [panels (a), (b) and (c)] and (x,y) = (ap = 0) [panels (d), (e) and (f)] for β = 6
[panels (a) and (d)], β = 7 [panels (b) and (e)] and β = 10 [panels (c) and (f)], respec-
tively. Rest of parameters given in Eq. (3.14) [129].
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Operating under SCL conditions is not ideal for the performances of devices such as
LWTs. In order to quantify the reduction in the capability of emitting electrons, Fig. 3.23
shows the variation of jem/ jem0 for a wide range of emission levels, with

jem0 =−2β

√︁
δem (3.15)

the current emitted by a half-Maxwellian (i.e., the current emitted under non-SCL condi-
tions). Each colour identifies the results obtained for a specific geometry, while markers
highlight the configurations that were simulated.

FIGURE 3.23: Emitted-to-half-Maxwellian current versus emission level β for the dif-
ferent probes shown in the inset. Rest of parameters given in Eq. (3.14). Markers identify
the configurations that were simulated [129].

The analysis compares the performances of the three different probes shown in the
inset: i) an elliptical probe with eccentricity ep = 0.75 and semi-minor axis bp = 1 (solid
red curve with squares), and two cylindrical probes with radius equal to the semi-minor
(solid black curve with diamonds) and semi-major (solid cyan curve with bullets) axes of
the ellipses. For convenience, results regarding cylindrical probes were computed with the
solver of Ref. [113]. When the electron emission is low, the simulations gave jem/ jem0 = 1
for the three configurations. An increase in β causes each body to enter the SCL regime,
resulting in a reduction of the emitted current. Similarly to the OML/non-OML transition
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discussed in Sec. 3.3.2.1, the SCL regime does not occur for the same value of β for all the
objects. In particular, the probe with lowest radius is the one that enters the SCL regime
for the largest value of β .

Regarding the ellipse and the cylinder of highest radius, the transition occurs for β ≈ 6.5
in both cases, and the two curves follow a similar trend. Despite gradually developing
along Γ as discussed previously, the potential well that appears at the point of minimum
curvature for the probe with ep = 0.75 has a similar impact to the one that cover the whole
probe for ep = 0 and bp = 1.51. Unlike the relatively weak influence of bp on ji/ jOML

i , the
ratio jem/ jem0 happens to be much more sensitive to the variation in β . For all the three
cases, the current emitted drops considerably, reaching values of about 50% for β ≈ 15 in
the two worst scenarios. The outcomes of the analysis show that, when moderate biases
are considered, there is a good agreement between the current emitted by an ellipses and
the one from a cylinder with radius equal to the semi-major axis. Upon using appropriate
dimensionless variables, the results for electron-emitting cylinders can thus be used to
predict the current emitted by ellipses. This is an important result because, by using an
equivalent radius, the broad database that was constructed in [162] for electron-emitting
cylinders can be used to estimate the emitted current by ellipses without running additional
simulations.



Chapter 4

Non-Stationary Vlasov-Poisson solver

The present chapter describes a novel (backward) semi-Lagrangian solver that was de-
veloped as an extension of FONKS-G for the purpose of investigating the plasma sheath
around (electron-emitting) two-dimensional bodies in non-stationary scenarios. Exten-
sion to time-varying conditions is necessary in order to properly assess the population of
trapped particles that, in a collisionless plasma, arise during the transient response of a
plasma sheath to a perturbation [166, 170–172]. As discussed in Sec. 3.2.2.1, trapped
particles are a fundamental part of the solution for probes facing flowing plasmas.

Since FONKS-G was used as a starting point for the development of this second soft-
ware, the discussion leaves asides the aspects that the two codes share, and focuses the
differences among them. In particular, both the new normalistion and the novel interpola-
tion algorithm, which is at the core of the semi-Lagrangian method, will be discussed in
detail. An overview of a first analysis assessing the role of the trapped population is also
present.

4.1 Collisionless plasma model in non-stationary condi-
tions

While all the hypotheses introduced in Sec. 2.1 still hold, the novel model relaxes the
requirement about the stationary state of the plasma sheath that was at the basis of the
stationary solver presented in Sec. 2.2. In these non-stationary conditions, the sheath
obeys the set of Eqs. (2.10)-(2.11)-(2.12)-(2.13) that is solved together with the appropri-
ate boundary conditions. The extension to non-stationary scenarios requires introducing
a new normalisation, which reads

rrr
λDe

→ rrr,
vvv√

2vthe
→ vvv,

ne,i

n0
→ ne,i,

nem

nem0
→ nem,

√
2ωpet → τ,

2kBTα fα

mαnα0
→ fα(rrr,vvv),

eφ

kBTe
→ φ(rrr), (4.1)
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where ωpe ≡ λDe/vthe is the electron plasma frequency. Substituting the above magnitudes
in the Vlasov-Poisson system of equations yields

∂ fα

∂τ
+ vvvα ·∇rrr fα − qα

2µα

∇φ ·∇vvv fα = 0, (4.2a)

∆φ =−ρ ≡ ne +βnem − eini. (4.2b)

While the normalized Poisson equation is the same as the one found previously [see
Eq. (2.19b)], the non-stationary Vlasov equation now involves the mass ratio µα , which
entered only in the definition of the current in the stationary case [see Eq. (2.48)]. Con-
trary to the stationary case, the time appears explicitly in the Vlasov equation and the
self-consistent evolution of the sheath depends on the the relative speed of the different
species and, in turn, on their relative mass. Therefore, µα ≡ mα/me adds to the set of
dimensionless parameters of Eq. (2.20) that, together with the geometry and the bias of
the object φp, identify the configuration of interest. Regarding the boundary conditions,
the new normalisation introduced above gives

φ(τ,Γ) = φP, φ(τ,r → ∞)→ 0

fem(τ,Γ,vvv ·uuun > 0) = fHM ≡ 2
π

exp{−µα(vvv · vvv)}, fem(τ,r → ∞,vvv) = 0 (4.3)

fe,i(τ,Γ,vvv ·uuun > 0) = 0, fe,i(τ,r → ∞,vvv)→ fM ≡ 1
π

exp{−µα(vvv · vvv)},

where it was highlighted how the macroscopic magnitudes depend on the non-dimensional
time τ in a non-stationary setting.

In order to find a solution to the non-stationary Vlasov-Poisson system just discussed, a
novel semi-Lagrangian software was implemented as an extension to FONKS-G. Widely
applied in problems described by the Vlasov-Poisson system [173–176], semi-Lagrangian
schemes rely on the hypothesis of collisionless plasma, which must hold for the Liouville
theorem to be valid. After sampling it onto an Eulerian grid in phase space, the distribu-
tion function is advanced in time along the characteristics of the Vlasov equation. It is
convenient to recall that, for a collisionless plasma, fα is conserved along such character-
istics, which coincide with the orbits of the charged particles (see Sec. 2.2.3). If the latter
are followed forwardly, the new values of the distribution function at the nodes of the
grid are found through a scatter operation from the arriving point of the characteristics.
For backward semi-Lagrangian schemes, the value of the distribution function is updated
through interpolation at the origin of the characteristics from the known values of fα at
the previous time step.

Here, the latter approach is adopted as explained in detail in the next section. Regarding
the Poisson solver, which is the other main block of the algorithm, it remains the same as
that presented in Sec. 2.2.2. Starting from an initial condition fα(0,rrr,vvv) = f0, the struc-
ture of the sheath is updated self-consistently at each time step. Likewise the stationary
software presented in Sec. 2.2, FORTRAN was selected as the coding language.
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4.2 Semi-Lagrangian Vlasov-Poisson solver

The Vlasov solver advances in time the distribution function and, at each time step, it
computes the charge density profile that is passed as input to the Poisson solver. A back-
ward semi-Lagrangian approach is implemented to update the value of fα at the nodes
of the discrete phase space. Similarly to the stationary case, this requires the numerical
integration of the characteristics of the Vlasov equation, which read

drrr
dτ

=vvvα (4.4a)

dvvvα

dτ
=− eα

2µα

∇φ . (4.4b)

Multiplying scalarly Eq. (4.4) by the velocity vvvα , one obtains the equation of the energy

dεα

dτ
= eα

∂φ

∂τ
, (4.5)

which shows that the total energy

εα ≡ µαvvv · vvv+ eα [φ(rrr)−Hαφp], (He,i = 0,Hem = 1). (4.6)

is conserved along the characteristics only if the electrostatic potential profile does not de-
pend on time. Since this is not the case for the non-stationary scenarios here considered,
the code applies the change of variables (vvv)→ (κα ,ζ ), with κα ≡ µαvvv · vvv the dimension-
less kinetic energy and ζ the angle in velocity space defined in Eq. (2.40), and discretises
the distribution function in the 4-dimensional space (x,y,κα ,ζ ).

For each node in the physical space, the code discretises with a Nκ ×Nζ grid the region
in the velocity space delimited by

(κα ,ζ ) ∈ [0, κ
max
α ]× [0, 2π]. (4.7)

with κmax
α a numerical parameter selected high enough to cover an appropriate range of

velocities in order to include the relevant part of the distribution. The semi-Lagrangian
solver keeps the κα −ζ grid fixed. Since there is a transient and the energy of the particles
changes according to Eq. (4.5), particles with a positive energy at a certain insant in time
can be trapped with a negative energy afterwards due to the change in the profile of the
electrostatic potential. This a collisionless trapping mechanism described in Ref. [170].

The nodes of the discrete phase-space are denoted as zzzs = [rrri,κk
α ,ζ

l], with i = 1, . . . ,N,
k = 1, . . . ,Nκ and l = 1, . . . ,Nζ , while the boundary conditions for the distribution function
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become

fe,i(τ,Γ,κe,i,−
π

2
< ζ <

π

2
) = 0, fe,i(τ,Γmax,κe,i,ζ ) =

exp(−εe,i)

π
(4.8a)

fem(τ,Γ,κem,−
π

2
< ζ <

π

2
) =

2exp(−εem)

π
, fem(τ,Γmax,κem,ζ ) = 0. (4.8b)

with the dependence on κα implicit in the value of the total energy εα . Once the grid in the
energy-ζ (velocity) space is defined and an initial condition f0 assigned, the distribution
function is advanced in time as follows.

At τ = τ0, the distribution function is known at all the nodes zzzs of the discrete phase
space. To compute the value of the distribution function at node zzzs0 at time τ0 +∆τ , with
∆τ a (small) time step, one integrates Eqs. (4.4a)-(4.4b) backward in time with initial
condition zzzs0. The final point of the orbit zzzs f identifies the root (origin) of the character-
istics passing through (zzzs0) at time τ0 +∆τ . During the backward integration step, if an
orbit crosses one of the boundaries of the computational domain, the unknown value of
the distribution function fα(τ0 +∆τ,zzzs0) is assigned according to the BCs in Eqs. (4.8a)-
(4.8b). However, when the root of the characteristic lies inside the computational domain,
the value of the distribution function there is computed by interpolating the distribution
function at the previous time step [i.e., fα(τ0,zzzs)].

Table 4.1 summarises the different type of orbits together together with the value of
the distribution function that they yield, while Fig. 4.1 provides a sketch of the backward
semi-Lagrangian approach described above. The black filled circle represents the node at

Types of orbits (non-stationary)
Stop condition Label Distribution function

rrrs f ∈ Γ Γ-originated fe,i(τ0 +∆τ,zzzs0) = 0
fem(τ0 +∆τ,zzzs0) = fHM

rrrs f ∈ Γmax Γmax-originated fe,i(τ0 +∆τ,zzzs0) = fM
fem(τ0 +∆τ,zzzs0) = 0

rrrs f /∈ Γ,Γmax Trapped fα(τ0 +∆τ,zzzs0) = fα(τ0,zzzs f )
fα(τ0,zzzs f ) interpolated from fα(τ0,zzzs)

TABLE 4.1: Classification of orbits (non-stationary case)

which the distribution function is unknown, which coincide with the initial condition for
the numerical integration. The resulting orbit (dashed black curve) ends up at the red filled
circle, which identifies the origin of the characteristic passing through (τ0+∆τ,xxxs0). After
determining the cell that contains it, the value of the distribution function at (τ0,rrr f ,vf) is
found through an interpolation procedure. In the current version of the code, the latter
is carried out with the cloud-in-cell (CIC) approach described in Appendix F. Since it is
a local method, the CIC interpolation uses only the information from the vertices (red
empty circles) of the cell that contains the root of the characteristics (rrr f ,vf).
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FIGURE 4.1: Sketch of the backward semi-Lagrangian Vlasov solver using the CIC in-
terpolation method.

Once the value of the distribution function is known at time τ0, the densities at the
nodes of the computational domain are obtained from

nα(τ0,rrr)≈
1

2µα

∫︂
κmax

α

0

∫︂ 2π

0
fα(τ0,rrr,κα ,ζ )dκαdζ , (4.9)

where 1/(2µα) represents the Jacobian of the (vvv) → (κα ,ζ ) transformation. The new
space charge density is then passed to update the electrostatic potential profile that is used
in the next iteration of the Vlasov solver. In order to monitor whether the latter system
reaches a steady-state, the code keep records at each time step of some scalar quantities
such as the total density inside the computational domain ρscl and the charge and current
densities of the various species at the object boundary Γ.

4.3 Particle trapping analysis

This section presents the results of a first analysis assessing the impact of the population of
trapped particles on the structure of the sheath around electron-emitting two-dimensional
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objects. A comparison between the results of FONKS-C, CPIC and the semi-Lagrangian
Vlasov-Poisson (SLVP) solver introduced above is presented.

4.3.1 Effect of particle trapping on the structure of the sheath

This section presents a comparison between the different solvers. Since it assumes sta-
tionary conditions (i.e., ∂ fα/∂τ = 0), FONKS-C cannot compute self-consistently the
population of trapped particles. Their distribution function is set to zero. On the contrary,
the novel SLVP and CPIC can assess the role of the trapped population that arises during
the transient. Therefore, comparing the results of the different solvers provides an insight
of the impact of the trapped population on the macroscopic magnitudes of the sheath.
In addition, it allows to verify the correct implementation of the novel semi-Lagrangian
solver. An sensitivity analysis varying the space resolution in the radial dimension (i.e.,
Nr) is also carried out in order to identify a good set of numerical parameters for the novel
semi-Lagrangian solver.

Figure 4.2 compares the plasma sheath in a simulation with the set of physical param-
eters

bp = 1, δi = 1, µi = 1, φp =−10, δem = 0, β = 0, (4.10)

computed with FONKS-C (solid green), CPIC (dashed magenta) and SLVP (dash-dotted
black). For the non-stationary solvers, a Maxwellian plasma was considered as initial con-
dition (i.e., f0 = fM). Overall, the SLVP results are free-of-numerical noise and smooth,

FIGURE 4.2: Plasma sheath computed with FONKS-C (solid green), CPIC and SLVP
(dash-dotted balck) for the set of parameters in Eq. (4.10). CPIC results are shown before
(red dotted) and after (dashed magenta) averaging in time.

as opposed to the results obtained with CPIC. For the latter, a proper average in time is
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necessary to remove the statistical noise induced by the macro-particle description (high-
lighted by the red dotted curve). Panel (a) shows that the ni profiles obtained with the
non-stationary solvers all display a region close to the probe boundary where the den-
sity of the ions is significantly higher than that obtained with the stationary solver. Such
enhancement, which is analogous to that shown in Fig. 5 of Ref. [166], is a footprint of
the particle trapping, whose magnitude changes between the two different solvers. While
the CPIC profile overcomes the background plasma density value, the solution obtained
with the SLVP solver does not reach as high a peak. Such discrepancy between the two
local maxima, in the order of 18%, is likely due to the different evolution in time of the
potential profile, which affects the amount of particles that get trapped inside the plasma
sheath (see also discussion in Sec. 4.3.2).

The bigger population of plasma ions given by CPIC reflects in the electrostatic poten-
tial profile, displayed in panel (b). While overall the solvers provides results that are in
good agreement among each other, a more detailed look show that the profiles slightly
differ from one another. In the region close to the probe, the SLVP is below the one of
CPIC, which is less negative in view of the bigger population of plasma ions. At r ≈ 7 the
curves cross (see inset) and, far away from the probe, the SLVP electrostatic potential is
above both the other two curves. Therefore, the SLVP slightly overestimates the density
of the plasma species far away from the probe [see panels (a) and (c)], though such differ-
ences do not affect the extension of the sheath. In fact, the space charge density profiles
in panel (d) show that quasi-neutrality is recovered in all cases around r ≈ 10.

In order to understand the source of the enhancement of the density of attracted species
in the region near the probe, Fig. 4.3 shows the results of a detailed analysis of the ions dis-
tribution function. The three panels show a comparison between the distribution function
in the velocity space obtained with SLVP (top half) and FONKS-C (bottom half) at the
probe boundary (left panel), the point where the maximum difference with respect to the
stationary solver occurs (middle panel), and a point close to the plasma boundary (right
panel). At the probe boundary (left), the maps are populated with incoming (v ·cosζ < 0)
particles only since no ions are emitted from the probe. In the case of FONKS-C (bottom
half), the peak of the distribution function is well defined and a net separation exists be-
tween the areas where the distribution function has null and finite positive values. On the
contrary, the peak of the distribution function does not emerge as clearly in the case of
SLVP (top half) and part of the area that is unpopulated in the stationary solver is filled.
The distribution function gradually diminishes to zero from its maximum, which is also
appears smaller than the corresponding one for the stationary solver.

This is even more evident in the middle panel, which corresponds to the point where the
peak of the ions density occurs. The area inside the potential barrier that is populated in
the non-stationary case is bigger than at the probe boundary, especially for velocity angles
that are close to ζ = π/2, while it shrinks as ζ approaches π . Far away from the probe
(right panel), the distribution function resembles a Maxwellian with a small empty cone in
the v ·cosζ > 0 region. Such cone is due to the presence of the probe [166] and is present
in both plots, though in the stationary case is much narrower than in the non-stationary
one and it cannot be appreciated as clearly. Again, the region inside the potential barrier
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FIGURE 4.3: Plasma ions distribution function maps in the veloctiy space computed with
FONKS-C (bottom half) and SLVP (top half) for the set of parameters in Eq. (4.10). Left,
middle and right panel correspond to r = 1 (i.e., probe boundary), r = 1.9 and r = 19.8.

that is empty in the case of FONKS-C (bottom) is populated in the case of SLVP (top).
Though small, the contribution of this population to the distribution function explains why
the SLVP density is higher than FONKS-C one far away from the probe [see panel (a) in
Fig. 4.2].

The above discussion shows that the enhanced ions density is due to particles with
negative (at steady-state) energy that gets trapped inside the sheath during the transient
phase. This appears more clearly in Fig. 4.4, which displays the distribution function at
the probe boundary (left panel in Fig. 4.3) versus the kinetic energy for different angles
in the velocity space. Results of the SLVP are shown for Nr = 120 (dashed orange) and
Nr = 240 (dash-dotted black) in order to highlight the effect of the spatial resolution on
the numerical results. Contrary to the stationary solver, the distribution function obtained
with the SLVP does not feature a discontinuity in the energy-direction. Overall, the SLVP
curves spread over a wide range of energies and its maximum is considerably lower than
that of the stationary solver, especially at ζ = 90◦. As ζ approaches 180◦, the distribution
functions obtained with SLVP shrink and their maximum increase, but never reach the
value of FONKS-C. When the spatial resolution is low (i.e., Nr = 120), the distribution
function spreads over a wider range of energies and its maximum is considerably smaller
than that of the stationary solver. The distribution obtained with Nr = 240 nodes along r
has lower tails and is closer to the FONKS-C one.

These results suggest that, due to the fact that a low order (linear) interpolation scheme
is used, a high number of node in the radial dimension is needed in order to capture cor-
rectly the gradients of the distribution. In order to see whether a higher order interpolation
scheme could be useful in this regard, a cubic B-spline interpolation method was tested by
implementing the library of Ref. [177]. Unlike the CIC interpolation method, the cubic B-
spine does not conserve the distribution function by construction and particular measures
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FIGURE 4.4: Ions distribution function versus kinetic energy computed at the probe
boundary for the set of parameters in Eq. (4.10). Top, middle and bottom panels corre-
spond to ζ = 90◦, ζ = 130◦ and ζ = 180◦, respectively. Results are shown for FONKS-C
(solid green) and SLVP with Nr = 120 (dashed orange) and Nr = 240 (dash dotted black).

must be taken to avoid negative values of the distribution function. Therefore, a simple
filter that assigns a null value to the function when this reaches negative values was im-
plemented. However, this introduced several discontinuities along the energy direction,
which prevented the code from reaching a numerical convergence. It was thus decided to
use the low order interpolation method. Since a further increase in the spatial resolution
did not bring significant changes, the SLVP results shown in Fig. 4.2 are consistent with
Nr = 240.

To complete the comparison between the different solvers, it is interesting to compare
the values of the current at the plasma-probe interface, which are listed in Table 4.2. For
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both non-stationary solver, the ions current is bigger than its stationary counterpart. In the
case of CPIC, the increment is contained and could be traced back to a numerical error.
On the contrary, the SLVP solver predicts a current sensibly higher (≈ 13%) than that
of the stationary solver. The increase in the ions current is comparable to that observed
for the ions density and is consistent with what discussed about the distribution function.
An even bigger discrepancy is observed for the electron current, though in absolute value
its magnitude is negligible. Overall, the results of SLVP are expected and are in good
agreement with previous works regarding current collection by probe in non-stationary
scenarios [166]. Therefore, it can be stated that the solver is well-implemented.

Solver Ie [A/m] Ii [A/m]

FONKS-C 2.71×10−9 2.23×10−4

SLVP 3.44×10−9 2.54×10−4

CPIC ( f0 = fM) 2.69×10−9 2.28×10−4

TABLE 4.2: Magnitude of the currents of plasma electrons (Ie) and plasma ions (Ii) at
the plasma-material interface, obtained with FONKS-C, SLVP and CPIC for the set of
parameters in Eq. (4.10).

4.3.2 Effect of the electron emission on particle trapping

This section presents a parametric analysis that quantifies the influence of electron-emission
at the plasma-probe interface on the trapped population, and how this affects the macro-
scopic quantities of the plasma sheath. The first case of the analysis involves a cylindrical
probe (ep = 0) and the set of non-dimensional parameters

bp = 1, δi = 1, µi = 1, φp =−10, δem = 0.32, β = 10 (4.11)

Figure 4.5 displays a comparison between the plasma sheath obtained with FONKS-C
(green lines) and that of SLVP initialised with a Maxwellian plasma ( f0 = fM, black lines).
Panel (a) shows that the electrostatic potential profiles follow similar trends, though the
one obtained with the stationary solver is slightly above that of SLVP. This is consistent
with what shown in panel (b), which displays the densities of the various species computed
with the two solvers. Similarly to what discussed in the previous section (see Fig. 4.2 and
the corresponding discussion), the plasma ions profile given by the non-stationary solver
features a region where the population of the species is singificantly higher with resepct
to the stationary one. This is particularly evident in the region near the probe, where the
largest part of the trapping occurs. Far away from the probe, the SLVP ni profile is also
above FONKS-C one.

Regarding the electron density (dashed lines), there is good agreement among the
curves, though again the one obtained with SLVP is slightly below that of the station-
ary solver. Panel (b) also shows the profile of the emitted electrons. In both cases, the
curves follow the expected trend, rapidly decreasing as one moves away from the probe,
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FIGURE 4.5: FONKS-C (green) and SLVP (black) plasma sheath for the set of parame-
ters in Eq. (4.11). Panel (a): electrostatic potential profile; panel (b): densities of plasma
ions (dash-dotted), plasma electrons (dashed) and emitted electrons (solid).

though in the case of the semi-Lagrangian solver the steepness of the decay is smoother.
This slight difference can be explained by the different numerical resolutions used by the
two codes. In fact, FONKS-C allows to define a much finer mesh in the energy-ζ domain
than SLVP. Given that the population of emitted electrons is particularly sensitive to the
resolution in the ζ -direction, this can explain the difference that arises in the region near
the probe.

Nonetheless, the results are useful in understanding the influence of the population of
the emitted electrons on the particle trapping. In fact, by comparing the profile of the
plasma ions with the corresponding one in Fig. 4.2, the former is significantly higher
than the one in absence of emitted electrons. Therefore, in presence of electron emission,
the trapped population is enhanced. Accordingly, Table 4.3 highlights that the current
of plasma ions is approximately 10% bigger than the one collected when no electrons
are emitted at the probe contour Γ (see value in Table 4.2). Regarding the current of
emitted electrons, it is interesting to highlight that the value of SLVP is in agreement with
that of FONKS-C, which is consistent with the current emitted by a half-Maxwelllian
| jem0/λDe|= 2β

√
δem = 6.76×10−4 A/m. This is expected because both solvers predicts

that the probe operate under non-SCL conditions.

Since the semi-Lagrangian solver is computationally expensive, the previous results
were computed assuming that the mass of the ions is equal to that of the electrons (i.e,
µi = 1). Although unphysical, the discussion provides an insight about the mechanism of
particle trapping and how it affects the plasma sheath around the probe with and without
electron emission. In order to verify whether the previous conclusions still hold for a more
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β Solver Ie [A/m] Ii [A/m] Iem [A/m]

10 FONKS-C 2.45×10−9 2.23×10−6 6.76×10−4

SLVP 3.05×10−9 2.80×10−4 6.68×10−4

TABLE 4.3: Magnitude of the currents of plasma electrons (Ie), plasma ions (Ii) and
emitted electrons (Iem) at the plasma-material interface, obtained with FONKS-C and
SLVP for the set of parameters in Eq. (4.11).

realistic case, a parametric analysis was carried out with CPIC to quantify for a cylindrical
probe and the set of non-dimensional parameters

bp = 1, δi = 1, µi = 1836, φp =−10, δem = 0.32, β = {0, 10, 30}. (4.12)

Besides verifying whether previous conclusions drawn from the case of µi = 1 still hold
for a more realistic case considering hydrogen ions (µi = 1836), several values of electron
emission are considered in order to quantify the influence of the trapped population on
the transition between the non-SCL and SCL regime for an emissive cylindrical probe.
In addition, the occurrence of multiple solutions for the same values of the parameters is
investigated by considering two different initial conditions for CPIC: (i) an empty compu-
tational domain, and (ii) a computational domain filled with a Maxwellian plasma. Since
the amount of trapped particles depends on the transient phases and the initial conditions,
the same set of physical parameter can give different steady solutions in non-stationary
simulations.

Figure 4.6 displays a comparison between the solutions obtained with FONKS-C (solid
green lines) and those of CPIC starting from an empty domain ( f0 = 0, dash-dotted blue
line) and a Maxwellian plasma ( f0 = fM, dashed magenta line). When f0 = 0, the popula-
tion of trapped particles seems to be zero or very small because the density profiles of the
ions obtained with CPIC resemble those of the stationary solver. However, when the ini-
tial condition is a Maxwellian plasma ( f0 = fM), the ni profiles display a bump close to the
probe boundary. This region of enhanced density is the footprint of the particle trapping,
whose magnitude happens to depend on the history of the system. Different initial con-
ditions yield different steady-states. This outcome was also observed in Vlasov-Poisson
simulations of the expansion of a collisionless plasma in a magnetic nozzle [151].

Compared to the results shown in Fig. 4.2 (see corresponding discussion in Sec. 4.3.2),
one observes that the trapped population is lower for higher values of µi. The final amount
of trapped particles depends also on the emission level β . The top right (β = 10) and
bottom left (β = 30) panels of Fig. 4.6 show that the population of trapped particles
increases with it. For β = 30, the ions density close to the probe becomes even greater
than the unperturbed plasma density (i.e., ni > 1). In this condition, the current emitted at
the plasma-probe interface is SCL due to the presence of a potential well close to the Γ

boundary (see inset in the bottom right panel). However, the population of trapped ions
makes the potential well less pronounced, thus delaying the onset of the SCL regime and
mitigating its effect on current emission. As a result, the emitted current for β = 30 is
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FIGURE 4.6: FONKS-C (solid green) and CPIC results for the set of parameters in
Eq. (4.12). CPIC results are shown for f0 = 0 (dash dotted blue) and f0 = fM (dashed
magenta). Top left, top right and bottom left panels show the ions density for β = 0,
β = 10 and β = 30, respectively. Bottom right panel shows the electrostatic potential for
β = 30.

approximately 20% bigger with respect to the case where the trapping is neglected, as
shown in Table 4.4.

Disregarding the numerical error that causes the discrepancies between the results of
the stationary solver and CPIC started with f0 = 0, it emerges how particle trapping not
only enhances the emitted current under the SCL regime (i.e., β = 30), but also increases
the collected current (Ii) under any operational condition. In fact, while CPIC ions current
for f0 = 0 is typically smaller than that of FONKS-C, it becomes bigger than the latter
when particle trapping occurs (i.e., f0 = fM). The increase in the collected current is in
the order of 7−8%, which is aligned with what observed with the SLVP solver for µi = 1
(see Table 4.3 and related discussion).

Overall, this is an interesting result for LWTs applications because it suggests that
the presence of trapped particles mitigates the SCL effects, thus improving the overall
performances of the tether. Quantifying and measuring the population of trapped particles
is also convenient in order to improve current models implemented in plasma diagnostics
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β Solver Ie [A/m] Ii [A/m] Iem [A/m]

0 FONKS-C 2.71×10−9 5.21×10−6 /
CPIC ( f0 = 0) 2.51×10−9 4.88×10−6 /

CPIC ( f0 = fM) 2.76×10−9 5.33×10−6 /

10 FONKS-C 2.71×10−9 5.21×10−6 6.76×10−4

CPIC ( f0 = 0) 3.09×10−9 4.99×10−6 6.68×10−4

CPIC ( f0 = fM) 2.52×10−9 5.35×10−6 6.68×10−4

30 FONKS-C 2.45×10−9 5.21×10−6 1.34×10−3

CPIC ( f0 = 0) 2.25×10−9 4.94×10−6 1.29×10−3

CPIC ( f0 = fM) 2.71×10−9 5.42×10−6 1.67×10−3

TABLE 4.4: Magnitude of the currents of plasma electrons (Ie), plasma ions (Ii) and
emitted electrons (Iem) at the plasma-material interface, obtained with FONKS-C and
CPIC for the set of parameters in Eq. (4.12).

with emissive probes [112].



Chapter 5

Conclusions and Future work

This final Chapter discusses1 the main contributions of the present work and provides an
overview of the foreseen activities that are being planned in order to continue the analysis
started with the present thesis.

5.1 Summary of contributions

Motivated by the need to extend OMT-based models to geometrical configurations that are
relevant for LWTs applications, the present work led to the development, from scratch,
of two novel Vlasov-Poisson solvers for the investigation of the plasma sheath around
two-dimensional electron-emitting objects immersed in an unmagnetised, collisionless,
Maxwellian plasmas.

The first software, registered under the name FONKS-G, solves self-consistently the
stationary Vlasov-Poisson system of equation adopting a kinetic description of all the
charged species. Built toward guaranteeing both accuracy and capability to adapt to dif-
ferent geometries, it features different solvers that are coupled together according to the
case of interest. Some of its most relevant aspects are:

• Physical space discretization: discretisation of the computational domain with both
structured and non-structured meshes. This enhances the versatility of the code,
which can address plasma-material interfaces of any two-dimensional geometry.

• Backward Liouville method: the distribution function is discretised onto a four-
dimensional (2D-2V) Eulerian grid in phase-space and, at each node, its value is
inferred from a backward numerical integration of the Vlasov characteristics. This
choice guarantees high accuracy of the results, which are free from the statistical
noise induced by the macro-particle discretisation implemented in the widely-used
PIC method.

1Part of the summaries of the main contributions and the future activities is adapted from those provided
in Ref. [128, 129].
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• Orbit integrators and electric field reconstruction: the code includes different nu-
merical integrators for computing the trajectories of the particles. Depending on the
strategy adopted for the reconstruction of the electric field along the orbit, the prop-
agators show different conservation properties. In particular, an energy-conserving
hybrid Crank-Nicolson scheme was adapted from PIC applications in order to guar-
antee the conservation of the energy.

• Parallelisation strategy: the tasks of the Vlasov solver, which is the most demand-
ing part of the algorithm from a computational standpoint, are distributed among
an arbitrary number of processors. The current strategy involves assigning to each
process an (almost) equal set of nodes in the physical space. After defining a dis-
crete domain in the velocity space, the processes computes the distribution function
there according to the backward Liouville method discussed above.

An extensive verification campaign was carried out against numerical results obtained
with FONKS-C and CPIC. The former is an Eulerian Vlasov-Poisson solver developed
at UC3M and used for simulating emissive probes with cylindrical cross-section. The
second is a PIC code developed at Los Alamos National Laboratory for the modelling of
plasma-material interaction in curvilinear configurations. A good agreement was found
between the results obtained with different solvers of FONKS-G and those generated with
the above tools for both cylindrical and elliptical geometries. This provided a solid proof
of the correct implementation of the novel algorithm. Compared to the PIC algorithm,
FONKS-G captures interesting features of the sheath, such as the potential well in pres-
ence of SCL emission, even if a lower resolution in physical space is used. In addition, its
results are free of the statistical noise.

5.1.1 Limitations of stationary Vlasov-Poisson solvers

A first simulation campaign allowed to investigate some limitations that are intrinsic to
stationary Vlasov solvers based on backward Liouville methods. This section summarises
its findings, which helped identifying a set of good practices for the development of such
solvers.

First, a detailed analysis of the dynamics of the charges attracted by a cylindrical probe
revealed that conservation laws of physical invariants (energy and angular momentum)
cannot be recovered unless specifically designed algorithms are implemented. The long-
living trapped particles are the most affected population. Rather than the orbital propaga-
tor, the major culprit for the above inaccuracies turned out to be the algorithm in charge of
computing the electric field along the orbits from the values of the electrostatic potential
at the grid points. A structured mesh proved to work better with respect to an unstructured
one. Also, energy-conserving algorithms are necessary for a highly detailed and accurate
analysis of the kinetic features. The Crank-Nicolson scheme implemented in this work
represents a valuable example.
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A second step involved studying the trajectories of particles trapped in sheath around an
elliptic probe. This revealed the presence of chaotic dynamics that creates, regardless of
the numerical algorithm adopted, complex structures in the distribution function. In fact,
boundaries in velocity space separating regions yielding different kinds of orbits display a
fractal structure. This is a physical feature, overlooked in previous works on probe theory,
that appears independently of the numerical strategy followed to compute the solution.
Therefore, assessing the integrable or non-integrable character of the physical system
under analysis is essential during the development of a stationary Vlasov-Poisson solver
based on a backward Liouville method.

Integrable problems, such as the case of a cylindrical probe, admit using arc-length
algorithms that computes solely the location of the empty-full boundaries of the distribu-
tion function rather than its value at every point of the velocity space grid. This solution is
obviously beneficial from a computational point of view. On the contrary, in view of the
filamented structure of the distribution function, the arc-length approach is non-feasible
when the problem becomes non-integrable (e.g., elliptic probe). The distribution function
must then be computed at every point of the mesh, which filters out the finest structures.
The appearance of filamentation in abscence of azimuthal symmetry may also explain
convergence issues that were detected in previous works [123] involving stationary VP
solvers that overlooked this aspect.

Previous considerations are important for the definition of an optimum for Ntr (i.e., the
numerical parameter that measures the number of loops around the probe after which a
particle is deemed as trapped). For integrable configurations (i.e., round probes), if the
numerical integrator has good conservation properties, a parametric analysis gradually
increasing Ntr is recommendable. However, if the chosen integrator does not conserve
the invariants exactly, increasing indefinitely Ntr would cause more particles that should
be trapped to be deflected towards one of the boundaries of the computational domain
in response to the accumulation of numerical errors. On the other hand, a too small Ntr
would incorrectly classify as trapped particles that should not. Recalling that large values
of Ntr increase the computational cost, a trade-off analysis is recommendable to select
the optimum Ntr. When the configuration is non-integrable, the distribution function is
filamented regardless of the numerical integrator used. Therefore, one might follow a
similar trade-off procedure to the one described for the numerical integrator that does not
conserve the energy applied to integrable configurations. In fact, a large value of Ntr would
yield an overestimation of the density even when using energy-conserving propagators
because trapped and non-trapped orbits are mixed in phase space.

Despite the above limitations, stationary Vlasov-Poisson solvers based on a backward
Liouville method remain valuable for the numerical study of plasma-material interaction
in a wide range of conditions, including those of interest for LWTs. Since most studies
mainly focus on estimating the collected and emitted fluxes at the interface and the struc-
ture of the electrostatic potential, relatively rough tools like the FEM-RK solver combined
with an unstructured mesh can perform well when complex geometries (beyond cylinders
and ellipses) are considered. However, if a detailed and fine analysis of kinetic features
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is sought for, then better-behaved algorithm like the FDM-CN solver coupled with struc-
tured meshes are preferable.

5.1.2 Parametric analysis of electron-emitting elliptical probes

The present section summarises the results of an extensive analysis that covered a wide
range of plasma parameters representative of an ionospheric plasma, where the hypotheses
of the OMT at the basis of the solver hold reasonably. While the code can address any two-
dimensional configuration, the investigation focused on the characterization of the steady-
state sheath around elliptic probes. In addition to representing per se a novel contribution,
the elliptical geometry is a convenient choice from multiple points of views.

First, it represents the natural link between infinite prisms with round and tape cross-
sections that can be recovered as limit cases when the eccentricity goes to 0 or 1, respec-
tively. In the latter case, the results of this work are relevant for EDT devices. In particular,
when electron-emission from the body is taken into account, the configuration resembles
the cathodic segment of a LWT. Second, since the eccentricity of the ellipse acts as an
integrability-breaking parameter, moving gradually from a cylindrical to an elliptical ge-
ometry triggers the appearance of fine structures in the velocity space distribution function
that have a significant impact on the properties of the numerical algorithm, as discussed
previously.

The analysis allowed to characterise the transitions of elliptical probes into different op-
erational regimes (e.g., OML/non-OML current collection and SCL/non-SCL emission).
In addition to probes for plasma diagnostics and EDTs, the findings can be relevant for
fundamental studies regarding the interaction between non-spherical dust grains in plasma
and plasma-sheath lenses. The characteristic dimension-to-Debye length ratio (bp), the
emission level (β ) and the eccentricity (ep) were the governing parameters that were var-
ied during the study. A first set of results showed that the dependence of the macroscopic
quantities on the azimuthal angle decreases with the size of the probe, while it is more
pronounced for higher values of both the emission level and the eccentricity.

Regarding current collection, this proved to be particularly sensitive to the slenderness
of the object. For a fixed set of parameters, the number of Γ-originated particles (i.e. or-
bits connecting to the plasma-probe interface when integrated backward in time) increases
with ep. When this overcomes a certain threshold, the collected current falls below the
one predicted by the OML theory. It was shown that the critical value of the eccentric-
ity at which the OML/non-OML transition occurs falls in the range 0.90 < ep < 0.95,
in agreement with previous analytical results found for oblate spheroids in the Laplace
limit [108]. A second comparison measuring the drop of current with that predicted by
asymptotic analysis in the limit of high bias revealed that a high bias [94] mitigates the
impact of the geometry of Γ on the collected current. For a fixed perimeter, the reduction
in the collected current turned out to be more severe (≈ 8%) for elliptical probes than for
cyindrical one.
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The above results were explained by highlighting a the strong correlation between the
curvature of the plasma-material interface and the current distribution along its perimeter.
Generally speaking, the higher the curvature, the more likely the current complies with
the OML predictions, though the absolute minimum does not coincide with the point of
minimum curvature (i.e., the semi-minor axis for an ellipse). In presence of electron emis-
sion, both the magnitude of the reduction in the current collection in non-OML conditions
and its dependence with the eccentricity were shown to decrease. The range of validity of
the OML theory is therefore enhanced in applications where emission plays a significant
role (e.g., LWT devices), regardless of the shape of the plasma-material interface.

Finally, a parametric analysis varying the emission level for a certain configuration
proved that a potential well develops gradually from the point of minimum curvature,
which is the first to enter SCL conditions. A transitional regime where the ellipse is
partially SCL follows, until the emission is so high that the whole surface emits under SCL
conditions. A comparison with the current emitted by cylinders in the same conditions
showed that ellipses in SCL conditions behaves like cylinders with radius equal to the
semi-major axis. In relation to LWT-plasma interaction, this is an important result because
it justifies using existing database of current-voltage characteristics for electron-emitting
cylinders, which are much less costly to generate from a computational standpoint.

5.1.3 Emissive probes in non-stationary conditions

While the largest part of the analysis focuses on the investigation of the sheath around
ellipses in stationary conditions, a second semi-Lagrangian software was developed for
the investigation of non-stationary scenarios. In addition to greatly increasing the analysis
capability, extending it for instance to configurations where the probe is in relative motion
with respect to the background plasma, this second software can help understanding more
deeply the impact of some of the hypotheses of the stationary model on the final solution.
A relevant example is the role of the trapped population that cannot be taken into account
in a stationary setting.

A comparison with the results of FONKS-C and CPIC obtained for a Langmuir cylin-
drical probe allowed to verify the correct implementation of the SLVP and provided an
insight about the trapping mechanism and its effect on the structure of the plasma sheath
and the current collection. A second analysis using the SLVP showed the influence of
the electron emission on the population of trapped particles. The latter increases when
electrons are emitted at the plasma-probe contour and current collection is enhanced ac-
cordingly. Due to the computational cost involved by using the semi-Lagrangian solver,
these first analyses considered non-physical ions with mass equal to that of the electrons.

Taking advantage of the lower computational cost of CPIC, a more realistic analysis
considering hydrogen ions was carried out in order to assess whether the above conclu-
sions still hold. By gradually varying the emission level, it showed that the final pop-
ulation of trapped depends on the history of the system, with different initial conditions
giving rise to different sheaths.The mass of the attracted species and the electron-emission
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level also proved to have a deep impact on the final structure of the sheath. In particular,
the population of trapped particles increases with the emission level and opposes the onset
of the SCL regime. As a result, the drop in the emitted current is weaker than in the case
when trapped particles are neglected. Regarding current collection, a similar growth to
that obtained for the case of an electron-positron plasma was observed in the simulations.

5.2 Future activities

Both codes can be used to target additional scenarios relevant for LWTs devices and
other space-related applications. Simulations involving configurations where electrons
are emitted non-uniformly along the probe contour can be carried out with FONKS-G in
order to measure the impact of a non-uniform emission on the behaviour of the object
under SCL conditions. This would be extremely relevant for LWTs applications, since
only part of the tether is exposed directly to the sunlight.

Regarding the novel backward semi-Lagrangian Vlasov-Poisson solver, the short-term
objective is that of complementing its verification by a thorough comparison with the
results obtained with CPIC for the case of an emissive cylindrical probe. Later, an ex-
tensive parametric analysis will be carried out to characterise deeply the impact of the
trapped population on the characteristics of the sheath around electron-emitting objects.
After reproducing the results already obtained with CPIC in order to assess the role of the
numerical noise, the analysis will be extended in order to target

• A wider parametric space for cylindrical emissive probes in order to provide a better
insight of the role of the trapped population on the non-SCL/SCL transition

• Objects with elliptic cross-sections. Similarly to what done for the stationary case,
this will provide results that are more representative for LWTs applications

• Investigation of charging of cylindrical and elliptic electron-emitting objects im-
mersed in Maxwellian plasmas. This could be of particular interest for applications
regarding dusty plasmas.

• Extension of the model to configurations featuring flowing plasmas

Numerical simulations of some of these scenarios with CPIC is already on-going, and
their results will be compared with numerical results from the Eulerian code.



Appendix A

Basic formulae for ellipses and
circumferences

The parametric equations1 of an ellipse of eccentricity ep and semi-minor axis bp are

x(γ) =
bp√︂
1− e2

p

cosγ, (A.1a)

y(γ) =bp sinγ, (A.1b)

where γ is the eccentric anomaly. The arc-length measured from the x-axis is

s(γ) = bp

∫︂
γ

0

√︄
sin2 t
1− e2

p
+ cos2 tdt. (A.2)

Along the ellipse contour, the curvature is given by

κ(γ) =
1− e2

p

bp

1[︂
sin2

γ +(1− e2
p)cos2 γ

]︂3/2 . (A.3)

For ep = 0, equations (A.1)- (A.2)-(A.3) provide the parametrisation, the arc length and
the curvature of a circumference of radius bp. In this case, γ ≡ θ identifies the aziumuthal
angle measured from the x-axis in the counter-clockwise direction.

1The content of this Appendix is adapted from the Appendix in Ref. [129]
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Appendix B

Poisson Solver: numerical outer
boundary condition

Following Ref. [123], we provide the explicit formulae for the computation of the coeffi-
cients appearing in Eq. (2.28). These are given by

A0 =
1

2π

∫︂ 2π

0
φ(rmax,θ)dθ ≈ 1

2π

Nb

∑
i=1

ai
0φ(ri

max,θ
i) (B.1a)

An =
1
π

∫︂ 2π

0
φ(rmax,θ)cosnθdθ ≈ 1

2π

Nb

∑
i=1

ai
nφ(ri

max,θ
i) (B.1b)

Bn =
1
π

∫︂ 2π

0
φ(rmax,θ)sinnθdθ ≈ 1

2π

Nb

∑
i=1

bi
nφ(ri

max,θ
i) (B.1c)

where Nb represents the number of points at the outer boundary Γmax, n= 1, 2, . . . , Nmodes
identifies the mode of the harmonic and the numerical coefficients ai

0, ai
n and bi

n are com-
puted at the ith-node along the external boundary as

ai
0 =

1
2
[mod(θ i+1 −θ

i,2π) + mod(θ i −θ
i−1,2π)] (B.2a)

ai
n =

cosnθ i − cosnθ i−1

n2mod(θ i −θ i−1,2π)
− cosnθ i+1 − cosnθ i

n2mod(θ i+1 −θ i,2π)
(B.2b)

bi
n =

sinnθ i − sinnθ i−1

n2mod(θ i −θ i−1,2π)
− sinnθ i+1 − sinnθ i

n2mod(θ i+1 −θ i,2π)
(B.2c)

with mod(arg1,arg2) the remainder of the division arg1/arg2.

By definition [see Eqs. (2.22) and (2.26)] rmax is the same for all the nodes lying on
Γmax when the computational domain is discretised onto an unstructured Cartesian mesh
or structured meshes in polar coordinates. In these cases, the numerical computation of
the coefficients given in Eqs. (B.1) is straightforward. However, when structured elliptic
meshes are used, the procedure is different. Although the higher the value of Lξ , the more
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the ellipse at the external boundary ξmax = Lξ ξp resembles a circumference, the radial
distance of the nodes lying on Γmax varies along the outer boundary.

In order to be able to compute the coefficients of Eqs. (B.1), the algorithm defines an
auxiliary virtual plasma boundary

Γ
v
max = {(r,θ) | r = bmax, 0 ≤ θ ≤ π/2} (B.3)

where bmax is the normalized semi-minor axis of the ellipse ξmax. The red line in the
left panel in Fig. B.1 identifies the virtual plasma boundary. The value of the potential at
each of the node lying on it boundary is computed through bi-linear interpolation from the
values at the nodes of the computational domain. The right panel in Fig. B.1 illustrates
how the procedure works. After identifying the cell that contains the query point Pi

q ∈
Γv

max, the value of the electrostatic potential there is approximated as

φ
i
q ≈

∆χ i
p∆η i

pφ i
1 −∆χ i

m∆η i
pφ i

2 −∆χ i
p∆η i

mφ i
3 +∆χ i

m∆η i
mφ i

4

(∆χ i
m +∆χ i

p) (∆η i
m +∆η i

p)
, (B.4)

where the sub-indexes match the enumeration in the figure, while the super-index iden-
tifies the node along the boundary. Equation (B.4) applies for the i = 2, 3, . . . , Nb − 1

FIGURE B.1: Left: Elliptical mesh with plasma boundary Γmax (solid black curve with
dots) and virtual plasma boundary Γv

max (solid red curve with star) highlighted. Right:
detail in the logical space (ξ ,η) of the bi-linear interpolation procedure to compute the
value of the potential at the ith-node of the virtual plasma boundary.

internal nodes of the virtual plasma boundary Γv
max. At (x,y) = (bmax,0) the interpolation
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reduces to a one-dimensional one in the ξ -direction

φ
1
q ≈

∆χ1
pφ 1

1 −∆χ1
mφ 1

2

(∆χ1
m +∆χ1

p)
, (B.5)

while (x,y) = (bmax,π/2) the virtual plasma boundary coincides with Γmax and no inter-
polation is needed. Once the procedure is completed along the entire virtual boundary,
coefficients A0, An and Bn can be computed by taking φ(ri

max = bmax,θ
i) = φ i

q.



Appendix C

Numerical integrators

The present analysis considers three different algorithms1 for the integration of the Vlasov
characteristic equations. For every time step, the reconstruction of the electric field EEE from
the values of the electrostatic potential at the nodes depends on the type of mesh (see
Appendix D). The first integrator is an explicit time-adaptive Runge-Kutta-Fehlberg (RK)
algorithm. Adapted from the corresponding function in Ref. [153], it is used indifferently
for unstructured and structured meshes. In tandem with a finite difference (finite element)
Poisson solver, it constitutes what is here referred to as FDM-RK (FEM-RK) solver (see
Table 2.4).

A second-order (symplectic) LeapFrog (LF) scheme [153] can also be used for both
types of discretisation, and therefore coupled with both the finite element and finite dif-
ference P to give the FEM-LF and FDM-LF solvers, respectively. The LF scheme was
implemented in an attempt to improve the conservation properties of the numerical inte-
grator, since the RK algorithm is known to be prone to energy drift. Nonetheless, results
of the analysis of the conservation properties of the different schemes showed that the
numerical integrator itself does not bring significant improvement of the conservation
properties if an adequate reconstruction of the electric field is not achieved. In order to
solve this problem and improve the conservation properties of the solver, a third integrator
was implemented.

The latter is an implicit Crank-Nicolson (CN) scheme that was originally proposed for
particle-in-cell applications [160, 163, 178]. Contrary to the RK and LF schemes, it is only
used with curvilinear structured meshes. In fact, it is a hybrid integrator that integrates in
time

χ̇
k =vvv ·aaak k = 1,2 (C.1a)

vvv̇ =
eα

δα

EEE. (C.1b)

1The description of the numerical integrators is adapted from that provided in Appendix A.3 of
Ref. [128]
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From the equations above, one observes that the CN algorithm updates the position in the
logical curvilinear space (χ1,χ2), while velocities are still updated in Cartesian space. As
explained in detail in [160], this choice enhances the performances of the algorithm. In
fact, updating the position in the logical makes the localization of a particle along its tra-
jectory trivial, unlike what occurs when the unstructured meshes are used (see discussion
at the end of Sec. D.2).

Using superscript ν and ν +1 to identify the values of the variables at the instant τ = τν

and τ = τν +∆τ , and defining the contravariant base vectors aaak = ∇χk and the covariant
base vectors aaak = ∂ rrr/∂ χk with k = 1, 2, the discrete form of Eqs. (C.1) according to the
implicit CN scheme read

χk,ν+1 −χk,ν

∆τ
=vvvν+1/2 ·aaak,ν+1/2 k = 1,2 (C.2a)

vvvν+1 − vvvν

∆τ
=

eα

2δα

Eν+1/2
k aaak,ν+1/2, (C.2b)

In Eqs. (C.2), Einstein summation convention was adopted and vvvν+1/2 = (vvvν+1 + vvvν)/2,
aaak,ν+1/2 = (aaak,ν+1 +aaak,ν)/2. The computation of the covariant electric field components
Ek = EEE ·aaak is described in Appendix D, and it is an adaptation of the procedure described
in Ref. [160] to the two-dimensional, stationary problem addressed in the present analysis.

C.1 Criterion for trapped particles

As explained in Sec. 2.2.3, a particle is classified as trapped if its orbit does not connect
with neither Γ nor Γmax after carrying out Ntr full revolutions about the origin of the com-
putational domain. In order to stop the integration when the latter condition is satisfied,
the numerical integrator updates the angular displacement according to

θ
ν+1 = θ

ν +ω
ν ·∆τ, (C.3)

with

ω
ν =

−vν
x yν + vν

y xν

(xν + yν)2 . (C.4)

Setting θ 0 = 0, the integration is stopped at τ = τ f , when it holds that θ f ≥ 2π ·Ntr. The
role of the numerical parameter Ntr, which can impact significantly the accuracy and the
performances of the algorithm, is discussed in detail in Sec. 3.2.1.2.



Appendix D

Reconstruction of the electric field

From Eq. (2.38b) it appears clear that, regardless the scheme implemented, an algorithm
that computes the value of the electric field at any point contained in the computational
domain from the value of the electrostatic potential profile at the nodes of the mesh is
necessary. The different strategies to reconstruct the gradient of the potential along the
orbits are described in detail in the following sections1.

D.1 Unstructured meshes

For unstructured meshes, two different strategies were implemented in the code. Consis-
tently with the approximation of Eq. (2.30), a first option involves assuming the value
of the electric field as constant within the each triangular element. From the point of
view of the computational cost, this is a convenient choice and it also allows for the an-
alytical computation of the trajectory (see tracking algorithm in Ref. [123]). However,
the outcome is a piece-wise constant electric field whose discontinuities might introduce
significant numerical errors in the integration of the particle trajectories if the size of the
elements is not small enough where the magnitude of the gradient becomes large.

Alternatively, one can build a piece-wise polynomial approximation of the electric field
across the domain. At each node (x0,y0), this is done by first computing the second order
polynomial

φ f (x,y)−φ(x0,y0) = c1
f (x− x0) + c2

f (y− y0) +

+ c3
f (x− x0)

2 + c4
f (y− y0)

2 + c5
f (x− x0)(y− y0), (D.1)

that best fits (in the least-square sense [153]) the electrostatic potential profile locally. In
order to obtain the coefficients appearing in the equation above, it is necessary to solve

1The description of the strategies for the reconstruction of the electric field is adapted from that provided
in Appendix A.3 of Ref. [128]

101



102

numerically the system of equations

GGḠT
f GGḠ f ccc f = GGḠT

f bbb f (D.2)

with matrix GGḠ f ∈ RN f×5 and vector bbb f ∈ RN f defined as

GGḠ f ≡

⎡⎢⎢⎢⎢⎢⎢⎣
∆x1 ∆y1 ∆x2

1 ∆y2
1 ∆x1 ·∆y1

...
...

...
...

...
∆xi ∆yi ∆x2

i ∆y2
i ∆xi ·∆yi

...
...

...
...

...
∆xN f ∆yN f ∆x2

N f
∆y2

N f
∆xN f ·∆yN f

⎤⎥⎥⎥⎥⎥⎥⎦ , bbb f ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∆φ1
...

∆φi
...

∆φN f

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

(D.3)

In the equations above, ∆xi = xi − x0, ∆yi = yi − y0, ∆φi = φi − φ0, with sub-index i =
1, . . . ,N f identifies the quantities computed at the ith-node connected with the node of
interest (x0,y0). A second-order polynomial like that of Eq. (D.1) requires N f ≥ 5. In the
eventuality that a given node does not present a sufficient amount of direct connections
(e.g., nodes at the boundaries of the computational domain), the code takes into account
an additional number of 5−N f nodes, selected in order of proximity to the one of interest.

Once the polynomial φ f is obtained, the value of the electric field at the nodes of mesh
is obtained through analytic derivation. The components of the electric field are then gath-
ered at a generic point along an orbit through interpolation from the values at the nodes.
To this purpose, a natural neighbor interpolation scheme [179] is used, which is partic-
ularly suitable for unstructured meshes and guarantees a smoother reconstruction of the
electric field with respect to the piece-wise constant representation previously discussed.

D.1.1 Tracking procedure

Regardless of the technique implemented, the computation of the gradient requires first
identifying in which element of the mesh the particle is located at any time step. To this
purpose, it is convenient to define the barycentric coordinates of the query point (xq,yq),
which identifies the position of the orbit at a given time step, as

λ
q
1 =

(y2 − y3) · (xq− x3)+(x3 − x2) · (yq− y3)

2∆elm , (D.4a)

λ
q
2 =

(y1 − y3) · (xq− x3)+(x3 − x1) · (yq− y3)

2∆elm , (D.4b)

λ
q
3 = 1− (λ

q
1 +λ

q
2 ), (D.4c)

with sub-indexes identifying the vertexes of the triangle in counter-clockwise order, and
∆elm defined in Eq. (2.31). Geometrically, (xq,yq) lies inside the triangular element as
long as λ

q
i ≥ 0 for i = 1,2,3. Since the typical number of elements used for discretising
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a domain is of the order ∼ 103−4, evaluating the above-mentioned condition at each ele-
ments is computationally expensive. In order to improve the efficiency of the localization
algorithm, the code exploits the information of the position of the particle at the previ-
ous step and the information about the connectivity of the elements in order to lower the
number of times the above condition is assessed. In the pre-processing phase, for each
element, the code defines subsequently higher level patches (i.e., a lists of elements that
share with an element a node or a face). This information is then used during the numer-
ical integration of the characteristics to identify the location of the particle at a certain
time.

A graphical representation of the localization procedure is shown in Fig. D.1. At a given
time step, the code checks whether the particle is still inside the element elm0 in which it
was lying at the previous time step (black triangle in Fig. D.1). If the outcome is negative,
the algorithm scans the 1st-level patch of triangles confining with the element of interest
(magenta triangles in Fig. D.1). If the query point is still not found, the codes scans the
2nd-level patch (i.e., cyan triangles) and so on. This recursive procedure terminates once
the particle is localised within a certain triangle. Since the time step adopted is relatively
small, the localization procedure takes place onto a limited area of the computational
domain, which is convenient from a computational point of view.

FIGURE D.1: Localization procedure for an orbit integrated onto an unstructured mesh.
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D.2 Structured meshes

Similarly to the previous case, the code implements two alternative strategies for recon-
structing the electric field along the orbits when structured meshes are used. The first one
involves approximating the values of the electric field at the nodes of the mesh through
second-order finite differences. The centred scheme of Eqs. (2.34b)-(2.37) is applied for
the internal nodes, while a forward (+) and a backward (−) schemes are used at the inner
and outer boundary of the computational domain, respectively. For a generic distribution
of nodes, one has the following approximations

∂φ

∂ r

⃓⃓⃓⃓
i, j

≈ 1
D+

[︄
− 1

Q+
φi+2, j +

(︃
1

Q+
+2+Q+

)︃
φi+1, j − (Q++2)φi, j

]︄
, (D.5a)

∂φ

∂ r

⃓⃓⃓⃓
i, j

≈ 1
D−

[︄
(Q−+2)φi, j −

(︃
Q−+2+

1
Q−

)︃
φi−1, j +

1
Q−φi−2, j

]︄
, (D.5b)

where gradients along r were taken as example and the coefficients are defined as

Q+ ≡ ∆ri+2

∆ri+1
, D+ ≡ ∆ri+2 +∆ri+1, (D.6a)

Q− ≡ ∆ri−1

∆ri
, D− ≡ ∆ri−1 +∆ri. (D.6b)

Similarly to what discussed for the centred scheme in Sec. 2.2.2.2, in case the nodes along
the direction of interested are uniformly distributed (∆ri = ∆ri+1 = ∆r), the coefficients
become Q+ = Q− = 1, D+ = D− = 2∆r, resulting in

∂φ

∂ r

⃓⃓⃓⃓
i, j

≈
−φi+2, j +4φi+1, j −3φi, j

2∆r
, (D.7a)

∂φ

∂ r

⃓⃓⃓⃓
i, j

≈
3φi, j −4φi−1, j +φi−2, j

2∆r
. (D.7b)

Once the gradient is known at the nodes of the computational domain, bi-linear interpo-
lation [153] is then applied in order to provide an estimation of the electric field along the
orbit. This requires identifying previously where the particle is located. For structured
meshes, this operation is straightforward and, at the time step τν , the computational cell
[χ1

iν ,χ
1
iν+1]× [χ2

jν ,χ
2
jν+1] in which the particle lies is found through

iν = 1+ f loor

(︄
χ1,ν −χ1

1
∆χ1

)︄
, jν = 1+ f loor

(︄
χ2,ν −χ2

1
∆χ2

)︄
, (D.8)

with f loor() a built-in function in Fortran returning the less or equal integer to its argu-
ment.
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The same localization procedure is applied when the gradient along the orbit is com-
puted through B-spline interpolation. This alternative strategy was adapted from the al-
gorithm presented in [160] to the stationary, two-dimensional problem addressed here.
For convenience, the following treatment describes the case for a uniform mesh (i.e.,
∆χk ≡ χk

i −χk
i+1 = χk

i −χk
i−1 = constant, with k = 1,2). In addition, integer sub-indexes

(i, j) and semi-integer sub-indexes (i+1/2, j+1/2) to denote quantities computed at the
faces and centres of the grid cells, respectively, with

χ
k
i+1/2 =

χk
i +χk

i+1

2
, k = 1,2, i = 1, . . . ,Nχk (D.9)

The code computes the electric field at the faces of each cells from the values of the
electrostatic potential profile at the centres of the two cells sharing that face. The latter is
obtained as the mean values of φ at the vertices of the cell as

φ
c
i+1/2, j+1/2 =

φi, j +φi+1, j +φi, j+1 +φi+1, j+1

4
. (D.10)

The values of the electric field at the faces (i.e., at the nodes of the computational grid)
are then found from

Eχ1,(i, j) =−
φ c

i+1/2, j+1/2 −φ c
i−1/2, j+1/2

∆χ1
i

, (D.11a)

Eχ2,(i, j) =−
φ c

i+1/2, j+1/2 −φ c
i+1/2, j−1/2

∆χ2
j

. (D.11b)

The B-spline shape functions are then gathered into vectors

SSSχk

1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1−
(︃

χ
k,νh−χk

iνh
∆χk

)︃
(︃

χ
k,νh−χk

iνh
∆χk

)︃
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

T

, SSSχk,ν

2 =
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1
2
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1
2 −
(︃

χk,ν−χk
iν−1/2

∆χk

)︃]︄2

[︄
3
4 −
(︃

χk,ν−χk
iν−1/2

∆χk

)︃]︄2

1
2

[︄
1
2 +

(︃
χk,ν−χk

iν−1/2

∆χk

)︃]︄2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D.12)

where super-scripts ν , νp and νh denote quantities computed at times τνp = τν+1 = τν +
∆τ and τνh = τν+1/2 = 0.5(τν + τν+1), respectively. After defining the matrix

EEĒνh,ν
k ≡

⎡⎢⎣ Ek,iνh−1, jν−1 Ek,iνh−1, jν Ek,iνh−1, jν+1

Ek,iνh , jν−1 Ek,iνh , jν Ek,iνh , jν+1

⎤⎥⎦ (D.13)
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the components of the electric field at point (χ1,νh,χ2,νh) [see right-hand-side of Eq.
(C.2b)] are

Eνh
1 =

1
2

(︃
SSSχ1

1 · EEĒνh,ν
1 · SSSχ2,ν

2 + SSSχ1

1 · EEĒνh,νp
1 · SSSχ

2,νp

2

)︃
, (D.14)

Eνh
2 =

1
2

(︃
SSSχ2

1 · EEĒνh,ν
2 · SSSχ1,ν

2 + SSSχ2

1 · EEĒνh,νp
2 · SSSχ

1,νp

2

)︃
. (D.15)

Regarding the boundary conditions along χ1, these are imposed by adding ghost cells
inside Γ and outside Γmax. At these locations, the value of the electrostatic potential profile
is computed through quadratic extrapolation in χ1 for each value of χ2. For convenience,
Table D.1 summarises the different strategies implemented for the reconstruction of the
electric field.

Mesh EEE reconstruction
Unstructured Piecewise constant [123]
Unstructured Polynomial fitting + Natural neighbor interpolation [179]

Structured FDM + Bilinear interpolation [153]
Structured B-spline [160]

TABLE D.1: Summary of the different algorithms for the reconstruction of the electric
field.



Appendix E

Tikhonov regularization procedure

Since the problem is ill-conditioned, updating the solution according to the simple Newton-
Raphson map of Eq. (2.53) might yield convergence issues. Therefore, the stationary Eu-
lerian solver presented in Chapter 2 implements a progressive Tikhonov regularisation.
Since a detailed explanation of the latter is found in Ref. [123] and references therein,
the following description provides only a summary of the various steps that the algorithm
follows in order to update the space charge density vector.

Let us start by re-writing the Newton map as the generic linear system

AAĀ xxx = bbb (E.1)

where AAĀ coincides with the N ×N Jacobian matrix JJJ|ρρρn
, xxx = ρρρn+1 − ρρρn and the right-

hand-side (RHS) vector bbb is equal to GGG(ρρρn). A first reduction of the condition number of
matrix AAĀ is obtained by applying the right diagonal preconditioning

AAĀ DDD̄⏞⏟⏟⏞
AAĀ′

(DDD̄−1 xxx)⏞ ⏟⏟ ⏞
xxx′

= bbb, (E.2)

where DDD̄ is a N ×N diagonal matrix whose elements are given by

D(i, j) =

⎧⎨⎩ 1
∥DDD̄(:,i)∥2

j = i

0 j ̸= i
(E.3)

Since the diagonal preconditioning is not, in general, sufficient to prevent the amplifi-
cation of numerical errors in the computation of the RHS, the algorithm implements a
Tikhonov regularisation. Using singular value decomposition [153], one obtains AAĀ′

=

UUŪ diag{σσσ}VVV̄ T , where UUŪ and VVV̄ are N×N orthogonal matrixes and diag{σσσ} is a diagnoal
matrix whose elements correspond to the singular values of AAĀ′. Substituting into Eq. (E.2)
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gives
diag{σσσ} VVV̄ T xxx⏞⏟⏟⏞

xxx̃

=UUŪT bbb⏞ ⏟⏟ ⏞
bbb̃

. (E.4)

Since diag{σσσ} is diagonal, the components of the unknown vector xxx̃ are

x̃i =
b̃i

σi
, i = 1,2, . . . ,N. (E.5)

However, if AAĀ′ is ill-conditioned, some of its singular values can be extremely small,
resulting in a magnification of the numerical errors affecting vector bbb̃. To avoid this issue,
the algorithm applies the low-pass filter

x̃i =
σi

σ2
i +λ 2 b̃i, (E.6)

which prevents singular values smaller than the Tikhonov parameter λ to affect the so-
lution. The optimal λ is selected such that ∥bbb∥2 is halved at each iteration. Following
Ref. [123], one has

N

∑
i=1

λ 4

(σ2
i +λ 2)2 b̃i =

1
4

N

∑
i=1

b̃i, (E.7)

which, in the present implementation, is solved numerically with a bi-section method.
Once the optimal Tikhonov parameter is found, the unknown vector is obtained

ρρρn+1 −ρρρn = xxx = DDD̄ VVV̄ xxx̃, (E.8)

with xxx̃ computed according to Eq. (E.6).



Appendix F

CIC Interpolation module

Since it provides the evolution in time of the distribution function, the interpolation mod-
ule is a key aspect in a semi-Lagrangian backward scheme. The first version of the present
algorithm implements the so-called cloud-in-cell (CIC) method [180]. In a n-dimensional
phase space, each cell of the discrete Eulerian grid is identified by an hyperrectangle of
dimension n with sides [ah,bh]|nh=1, with ah and bh the limits of the cell along the h-
dimension. Together with the vertices of such hyperrectangle, the query point xh

q (i.e., the
origin of the characteristic) at which one wants to compute the unknown distribution func-
tion divides the cell into 2n sub-hyperrectangles. The CIC model assigns to each vertex of
the cell a weight equal to the ratio between the volume of the sub-hyperrectangle opposite
to it and the total volume of the cell in the phase space. In the presental analysis we have
n = 4. After defining the variables

∆xh ≡ bh −ah, (F.1)

wh
q ≡

{xh
q −ah, bh − xh

q}
∆xh (F.2)

(F.3)

the interpolated value at the query point is given by

fq =
2

∑
i, j,k,l=1

fi, j,k,l ·wi, j,k,l
q , (F.4)

wi, j,k,l
q =

4

∏
h=1

wh
q(ii

h), iih = mod(ih,2)+1 (F.5)

where f i, j,k,l and wi, j,k,l
q identify the value of the distribution function and the weight

associated with the vertices of the hyperrectangle. In Eq. (F.5), mod(ih,2) is the remainder
of the ratio ih/2 and ih identifying the vertex along the h-dimension (i.e., i1 = i, i2 = j,
etc..).
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Figure F.1 shows the corresponding representation for the simplified case of a 1D-1V
phase space. Once normalized to the total area of the cell, areas of different colours
identify the weight associated to the sample of the distribution function corresponding to
the node denoted by the round marker of the same colour. In other words, the purple area

FIGURE F.1: Cloud-in-cell interpolation in two-dimensional phase space.
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