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Abstract 

The concept of similarity is important in many areas of cognitive science, 

computer science, and statistics. In machine learning, functions that measure 

similarity between two instances form the core of instance-based classifiers. 

Past similarity measures have been primarily based on simple Euclidean 

distance. As machine learning has matured, it has become obvious that a 

simple numeric instance representation is insufficient for most domains. 

Similarity functions for symbolic attributes have been developed, and simple 

methods for combining these functions with numeric similarity functions were 

devised. This sequence of events has revealed three important issues, which 

this thesis addresses. 

The first issue is concerned with combining multiple measures of similarity. 

There is no equivalence between units of numeric similarity and units of 

symbolic similarity. Existing similarity functions for numeric and symbolic 

attributes have no common foundation, and so various schemes have been 

devised to avoid biasing the overall similarity towards one type of attribute. 

The similarity function design framework proposed by this thesis produces 

probability distributions that describe the likelihood of transforming between 

two attribute values. Because common units of probability are employed, 

similarities may be combined using standard methods. It is empirically shown 

that the resulting similarity functions treat different attribute types coherently. 
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The second issue relates to the instance representation itself. The current 

choice of numeric and symbolic attribute types is insufficient for many 

domains, in which more complicated representations are required. For 

example, a domain may require varying numbers of features, or features with 

structural information. The framework pr.oposed by this thesis is sufficiently 

general to permit virtually any type of instance representation-all that is 

required is that a set of basic transformations that operate on the instances be 

defined. To illustrate the framework's applicability to different instance 

representations, several example similarity functions are developed. 

The third, and perhaps most important, issue concerns the ability to 

incorporate domain knowledge within similarity functions. Domain 

information plays an important part in choosing an instance representation. 

However, even given an adequate instance representation, domain information 

is often lost. For example, numeric features that are modulo (such as the time 

of day) can be perfectly represented as a numeric attribute, but simple linear 

similarity functions ignore the modulo nature of the attribute. Similarly, 

symbolic attributes may have inter-symbol relationships that should be 

captured in the similarity function. The design framework proposed by this 

thesis allows domain information to be captured in the similarity function, 

both in the transformation model and in the probability assigned to basic 

transformations. Empirical results indicate that such domain information 

improves classifier performance, particularly when training data is limited. 
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Chapter 1 

Introduction 

Consider the task of comparing two weather maps. There are many reasons 

why we might make such a comparison. For example, one map may represent 

the current weather situation, while the other represents the weather at some 

time in the past. If the two maps are sufficiently similar, looking at what 

happened after the historical situation may help predict how the current 

weather will change. 

Weather maps contain high-level features, for example, high and low-pressure 

systems. To compare two images for similarity, we must first have an idea of 

which features in one image correspond to which features in the second. The 

maps in Figure I. I are from consecutive time periods, so it is easy to 

determine likely feature correspondences. When the placement of the features 

varies it is less obvious which correspondence should be used. Consider the 

effect of incremental changes to one of the images. At some point a small 
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Figure 1.1: Two barometric pressure contour maps taken 24 hours apart 

change in the image will result in a new feature correspondence being 

considered best. This in turn will give a sudden change in predictions made by 

the system, even though only a small change in the image itself has occurred. 

A further complication arises when the number of features in the two images 

is different. In this case a simple one-to-one correspondence cannot be carried 

out. One feature in the first image may have moved outside the boundaries of 

the second image, or it may have merged with another feature to become one. 

In the left-hand image of Figure I. I the high-pressure system splits in two in 

the right hand image, so somehow the similarity between a single feature and 

two features must be evaluated. 

Missing information presents another problem. This may occur when features 

are beyond the image borders, such as the low-pressure feature in the lower 

right of the images in Figure 1.1. If the remainder of the image is sufficiently 

similar, the image may still prove useful when making predictions. Similarity 

is rarely determined by measurement of one property-often many separate 

components must be taken into account. In the weather domain position, size 

and shape of features must be considered and somehow combined to give an 

indication of overall relatedness. Care must be taken to avoid biasing the 

measure towards one component or another. 
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The similarity of two images is often given in terms of a single number 

calculated by a similarity function. It is clear that the similarity function 

should in some sense depend on the underlying domain from which the 

images are generated. For example, in the weather domain a difference in the 

vertical position of a feature is much more significant than a difference in the 

horizontal position, because weather patterns naturally tend to move from 

west to east. Similarly, the function should be sensitive to the purpose of the 

comparisons. If the objective is to predict the weather over New Zealand, 

features closer to New Zealand should have more importance than features 

over Australia. Features used to predict wind speed may be different from 

those used to predict cloud cover. Domain knowledge is crucial to the 

performance of a similarity function. 

The concept of similarity is important in many areas of cognitive science, 

computer science, and statistics. In cognitive science and psychology, 

similarity plays an important role in models of knowledge and behaviour. 

Individuals use similarity when categorizing objects, forming concepts and 

making generalisations. Similarity is employed in accounts of stimulus and 

response generalisation in learning, and to explain errors in memory. In 

computer science and statistics, a common task is pattern recognition. In the 

most general terms this involves determining whether a group of numbers (or 

pattern) is recognised as some previously observed pattern. The pattern may 

represent anything from an image of a vehicle, measurements taken from 

sensors in an industrial process, the waveform produced by a human voice, or 

information about a person's health. If a pattern is similar enough to a 

previously observed pattern it is "recognised" and appropriate action can be 

taken, such as determining whether to issue a speeding ticket, adjusting some 

process control parameter, allowing access to a secure area, or suggesting a 

medical diagnosis. 
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Often similarity is interpreted in a geometric sense-objects are represented as 

a point in geometric space and the similarity of two objects is the negation of 

the distance between them as measured by a metric function. Small distances 

between points result in high similarities and large distances between points 

result in low similarities. This geometric interpretation implies certain 

properties that upon closer inspection do not reflect our intuitive 

understanding of similarity. For example, a geometric interpretation implies 

that the distance from any object to itself is zero, although we intuitively 

perceive two identical twins as more similar to each other than two identical 

cars. This is presumably because there are many identical cars but few 

identical people. A geometric interpretation also implies that similarity is 

symmetric. The asymmetry of human similarity judgement is evident in 

similes and metaphors. We say, ''Turks fight like tigers" and not "tigers fight 

like Turks," since tigers epitomise fighting spirit. Sometimes both directions 

are used but with different meanings. "Life is like a play," says that people 

play roles, while "a play is like life" says that a play captures important 

aspects of our lives. 

Tversky ( 1977) describes several studies in psychology into how humans 

interpret similarity. The asymmetry of human judgement of similarity is 

confirmed in many experiments. For example, in an experiment carried out by 

Rosch (1975), subjects were required to make a statement like "a is essentially 

b" when presented with two objects. In a domain such as comparing numbers, 

objects were divided into prototypical (such as multiples of ten) versus 

variants (such as other numbers). Subjects overwhelmingly preferred placing 

the prototype in the position of b (the referent) and the variant in the position 

of a (the subject). For instance, the sentence "103 is virtually 100" was 

preferred over the sentence "100 is virtually 103." These experiments suggest 
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that if a similarity measure is to correspond with human interpretation of 

similarity, symmetry is not a requirement. 

1.1 Motivation 

One area of machine learning where similarity functions play an important 

role is instance-based learning. The usual task in instance-based learning is to 

classify an instance by relating it to a library of examples for which the 

classification is known. The representation of an instance is typically in terms 

of a set of attributes common to all the instances, such as colour or height. An 

instance is defined by the values it has for each property, such as red or 

178cm. The similarity measure compares an attribute value in one instance 

with the corresponding attribute value in the second instance. The similarities 

between each of the attributes are combined to give an overall indication of 

similarity. In a simple instance-based learner, a new instance is given the same 

category as the most similar instance in the library. Instance-based learning 

algorithms typically use a similarity measure designed to perform well in a 

variety of domains with little or no modification. 

Case-based reasoning algorithms also employ measures of similarity 

(Riesbeck and Schank, 1989). These algorithms are more sophisticated than 

instance-based learners in both the representation used for objects and the 

task. Objects are called cases because an early application of case-based 

reasoning was to search for historic legal cases that provide a precedent 

relevant to a current case. Unlike the attribute-value pair representation of 

instances, there is no simple representation for cases. This is because case­

based reasoning applications are typically very domain specific, and the 

domain determines the case representation. A case may contain features 

unique to itself or it may contain structural information. For example, a 
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description of a "recipe" case would consist of a list of ingredients and 

procedural information about how the meal is prepared. The task carried out 

by case-based reasoning systems is often more than simple classification. An 

example case-based reasoning system might plan a meal by taking the dietary 

requirements of guests and modifying existing recipes accordingly. 

Many of the issues dealt with in measuring the similarity between two objects 

are intimately related to the design of evaluation functions. Evaluation 

functions take a single object and give a number representing the "goodness" 

of that object. Evaluation functions can be viewed as measuring the similarity 

between the current object and some unknown "best possible object" ( or the 

distance from an unknown "worst object"). Two common uses of evaluation 

functions are in game playing and in genetic algorithms. 

In game playing, a possible move is considered and the resulting game state is 

evaluated. It is desirable to be in a state with high goodness, so the move that 

produces the best next state according to the evaluation function is played. 

The quality of the evaluation function directly affects the performance of the 

game-playing program. 

Genetic algorithms use the principles of natural selection to search for an 

optimal solution to some multidimensional problem. An initial "population" 

of potential solutions is randomly generated. Each is then evaluated as to how 

well it solves the problem. Solutions with sufficiently high goodness are 

chosen as parents for a new population. Parents are randomly mutated and 

merged with other parents to produce new potential solutions. Over a number 

of generations the solutions represented by the population converge to a 

solution that is at least locally optimum if not globally optimum. A better 

function for evaluating individual solutions results in faster convergence and 

often (since randomness is involved) a better final solution. 
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The primary goal of machine learning is to bring the practical benefits of 

learning to computer programs, although this results-driven philosophy can 

sometimes inhibit the development of solutions that have an overall 

coherence. Prior to the development of machine learning, similarity functions 

were designed primarily to handle attributes with real or integer values. This 

stemmed from the geometric interpretation of similarity-numeric attributes 

have an obvious distance measure: Euclidean distance. However, not all 

attributes have such a natural interpretation of similarity, for example, colour 

or brand name. Researchers in machine learning who attempted to solve real 

world problems soon discovered that effective treatment of symbolic 

attributes is essential. Some similarity functions designed specifically with 

symbolic attributes in mind have been developed. A review of these similarity 

functions is given in Chapter 2. Functions for dealing with symbolic attributes 

are often combined in an ad hoc manner with functions for dealing with 

continuous attributes. Very few algorithms have any conceptual basis for the 

manner in which different attribute types are treated or how the measures for 

different attributes are combined. 

A desirable goal of machine learning is to develop algorithms that can be 

applied to many problem domains. However, rather than developing a general 

method for tailoring similarity functions to each domain, the usual approach is 

to eliminate domain specific information altogether. Typically all attributes 

are treated as one of the two basic types, numeric and symbolic. Clearly this 

can cause problems. For example, representing the months in symbolic form 

loses information about the order in which months occur, and that the months 

are cyclic. This type of information should be incorporated in similarity 

functions. 
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1.2 Objectives 

The objective of this thesis is to develop a framework for the formulation of 

similarity functions that addresses the issues discussed above. These issues 

may be separated into technical considerations, which are specific problems 

that must be solved in order to provide any measure of similarity, and 

performance issues, which highlight desirable properties of a similarity 

function. 

Technical considerations will vary from domain to domain, but the design 

framework should provide a method for dealing with all of them. The 

following are the technical issues that we are concerned with: 

• Different feature types and complexity. Feature types can vary from 

simple integers, to sets of symbolic values, to complex structural 

information. The design framework must provide a consistent approach 

to developing type specific similarity measures. 

• Multiple features. Often a comparison is made between objects with 

multiple unlabelled features (like the multiple high and low-pressure 

systems of the weather maps). Some correspondence between features 

in two objects must be made for any similarity measure. This is made 

more difficult when the number of features is different in the two 

objects. The particular feature correspondence can have a large effect on 

the calculated similarity. It is imperative that the design framework is 

able to deal with multiple features intelligently. 

• Missing information. Objects of which we have incomplete knowledge 

may still be useful, and so a meaningful comparison should be made. 

Domain knowledge may play a part in dealing with missing 

information. For example, when faced with an image of the left half of a 
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person's face, we can still identify that person on the street because we 

know that human faces are approximately symmetrical. 

• Combining multiple measures of similarity. A frequent problem is that 

objects being compared often consist of several attributes that are 

compared individually. Combining individual similarity measures for 

each attribute must be done carefully and consistently to avoid biasing 

the overall measure towards one attribute. 

Many of these problems have not been solved adequately in past research, and 

certainly not under a common framework which addresses all of the above 

considerations. 

Performance issues are concerned with ensuring that a similarity measure 

designed for a particular domain performs well in that domain. For the 

classification task, performance might be measured solely on classification 

accuracy. In general, performance refers to how much information the 

similarity measure provides about the domain, and how robust the measure is 

over a range of conditions. For example, a reasonably robust similarity 

measure should not be overly sensitive to small changes in the objects being 

compared. The following factors are important in ensuring good performance 

in a similarity measure: 

• The design framework must allow the inclusion of domain information. 

A measure that employs domain specific information intelligently 

should perform better than methods that are insensitive of domain 

dependent characteristics. 

• The design framework should ensure that the similarity measure is 

smooth with respect to the underlying attribute space. This smoothness 

is an important factor in the robustness of a similarity measure. 
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Similarity measures produced within the design framework must perform 

comparably to other measures, if not better. Several similarity measures have 

been developed for general purpose learning methods such as instance-based 

learners. One expects that a coherent solution to the previous problems should 

perform at least as well as these methods on standard tasks. 

1.3 Thesis Claims 

This thesis proposes a framework for the design of similarity functions for 

which we make the following claims: 

1. The framework is general enough to encompass many different object 

types. 

2. The framework allows domain knowledge to be included in similarity 

function design. 

3. The framework permits similarity functions that compare configurations 

of multiple objects. 

4. The framework handles missing information. 

5. The framework coherently combines multiple sources of similarity. 

6. The resulting similarity functions are smooth with respect to small 

changes in the object space. 

In addition we develop a machine learning application that utilises similarity 

functions designed within the framework, and we show that the resulting 

instance-based learner performs well under a variety of conditions. 
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1.4 Terminology 

Instance-base learning and case-based reasoning come under the umbrella of 

lazy learning, which as a general model involves using a library of past 

example solutions as a guide in carrying out the current task. These examples 

are often interchangeably called exemplars, instances and cases. In instance­

based learning the task is to classify each instance in a test set into a category 

or class, using preclassified instances from a training set. Because the 

classification of the training instances is known, this process is called 

supervised learning. Each instance is represented by a fixed set of attributes 

or features. These attributes are usually of a number of basic types. 

Continuous attributes (such as real numbers) have values that are ordered and 

for which there are always intermediate values between any two values. 

Discrete attributes (such as integers) have a number of ordered set values. 

Symbolic ( or nominal) attributes have a set of unordered possible values. 

Boolean attributes have two values, one representing true, and the other 

representing false. Instances described by n attributes are points in an n­

dimensional instance space. 

The terms similarity and distance are often used interchangeably. A high 

similarity implies a small distance, and a low similarity implies a large 

distance. However distance is usually associated with the idea of geometric 

distance, and exhibits the properties of a metric function. Formally, a distance 

function d is a metric if it obeys the following three principles. 

Minimality: d(a,b)?.d(a,a)=O. 
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This principle says that the distance from an object to itself is zero, and 

that no object can be closer to it than itself. It also implies that the 

distance between an object and itself is the same for all objects. 

Symmetry: d(a,b )= d(b,a). 

This principle states that the distance from an object a to an object b is 

the same as if the distance were measured in the other direction, that is, 

from b to a. 

The triangle inequality: d(a,b )+d(b,c )~ d(a, c ). 

The triangle inequality puts an upper limit on the distance between 

object a and object c, given the distance between them via object b. 

Throughout this thesis, distance may be thought of as dissimilarity. Where the 

geometric interpretation is intended it will be explicitly stated. 

1.5 Thesis Overview 

The framework for similarity function design proposed by this thesis has its 

roots in algorithmic complexity. The next chapter provides the reader with a 

brief introduction to inductive inference, complexity theory, and their 

relationships. 

Chapter 3 discusses the role of similarity functions in machine learning. In 

particular, instance-based learning is examined in detail. Work related to the 

ideas of smoothness and robustness in a similarity measure is presented. 

Previous research related to treating different attribute types coherently is 

examined. 
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Chapter 4 develops a framework for uniform similarity measure formulation. 

The key idea is to interpret the similarity between two objects as the 

probability of the first object transforming to the second object. The higher 

the transformation probability the higher the similarity. Objects that are 

extremely unlikely to transform to each other are very dissimilar. A method 

for designing such similarity measures is presented, based on ideas from 

complexity theory. Example similarity measures for several simple domains 

are also developed. 

The implementation of a nearest neighbour classifier that incorporates a 

transformation based similarity measure is presented in Chapter 5. Some 

problems specific to the application are addressed within the framework. The 

classification performance of the resulting instance-based learner is evaluated, 

and it is shown that the measure compares favourably with other machine 

learning algorithms. 

Chapter 6 gives a summary of the thesis and its conclusions, and explores 

areas for future research. 
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Chapter 2 

Inductive Inference and 

Algorithmic Complexity 

This chapter presents background information from fields relevant to the 

development of complexity-based similarity. A brief introduction to inductive 

inference and associated problems is provided. The major problem is the 

difficulty of objectively comparing the simplicity of competing hypotheses, 

and this was a motivating factor in the development of algorithmic 

complexity. Algorithmic complexity defines a measure for the information 

content of objects. The minimum information encoding inference procedure 

(which is based on algorithmic complexity) has since become popular, and an 

introduction to this procedure is provided. 
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2.1 Introduction 

Induction is defined in the Oxford English Dictionary as "the process of 

inferring a general law or principle from the observations of particular 

instances." This is also called inductive inference. Induction is the primary 

method by which we understand and explain the world. How we carry out 

induction is vitally important if we wish to form sound conclusions about how 

the world operates. An alternative definition of inductive inference may be 

expressed as: "given a data set D and a set of hypotheses H={HI' H2, ••• } 

choose the hypothesis that best explains the data." By this definition a single 

hypothesis is accepted as the best explanation of the phenomena and all others 

are rejected. Inductive reasoning is the more general concept of assigning a 

probability (or credibility) to a particular hypothesis-all hypotheses have 

some degree of belief associated with them. 

A fundamental difficulty in induction is evaluating which hypothesis is "best." 

By what criterion should hypotheses be judged? A good hypothesis will 

obviously explain most of the data accurately. If two hypotheses explain the 

data equally well, which one should be preferred (or should they both be 

used)? Philosophers have been aware of these problems for a long time. Two 

approaches to the problem of multiple hypotheses are common today: 

Epicurus' principle of multiple explanations; and Occam's principle of the 

simplest explanation (known as Occam's razor). 

Epicurus' Principle of Multiple Explanations: if more than one theory is 

consistent with the data, keep them all. 

The following information is from Oates ( 1957), and Li and Vitanyi ( 1992). 

The Greek philosopher of science Epicurus (circa 342-270 BC) maintained 
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that if several explanations are equally in agreement with a phenomena, we 

must keep them all for two reasons. First, by making use of multiple 

explanations it may be possible to achieve a higher degree of precision. 

Second, it would be unscientific to choose one explanation over another when 

both explain the phenomena equally well. Epicurus claims this would be to 

"abandon scientific inquiry and resort to myth." His follower Lucretius (95-

55 BC) illustrates the utility of the principle of multiple explanations with the 

following example. 

There are things too, not a few for which it is not sufficient to assign one cause; you 

must give several, one of which at the same time is the real cause. For instance 

should you see the lifeless body of a man lying at some distance, it would be natural 

to mention all the different causes of death, in order that the one real cause of that 

man's death be mentioned among them. Thus you may not be able to prove that he 

died by steel or cold or from disease or haply from poison; yet we know that it is 

something of this kind which has befallen him; and so in many other cases we may 

make the same remark. 

When calculating probabilities a related intuition leads to "the principle of 

indifference." If there is absolutely no other evidence of the conditions under 

which a group of events occur, the principle of indifference suggests that they 

be considered equally likely. What the principle of indifference really 

highlights is the need to make as much use as possible of prior information. 

Consider an urn containing white, green, and red balls. The principle of 

indifference would estimate a probability of 1/3 for drawing a ball of each 

colour. For a colour-blind person to whom red and green both appear the same 

however, the principle of indifference would estimate that the probability of 

drawing a white ball is 1/2, and the probability of drawing a dark (i.e. red or 

green) ball is 1/2. The principle of indifference suggests different probability 

distributions even though the balls in the urn are the same! Prior knowledge is 

vital if we are to avoid this dilemma. 
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It is important to explain the difference between the principle of multiple 

explanations and the principle of indifference. Returning to Lucretius' 

example, the probability of each cause of death could be estimated, either 

from prior knowledge, or from the principle of indifference in the lack of such 

knowledge. The principle of multiple explanations requires the use of all 

possible explanations rather than simply selecting the most probable. 

The second and more sophisticated principle is Occam's razor. This often 

cited principle is attributed to William of Ockham (circa 1290-1349). In 

contrast to the principle of multiple explanations, it states 

Occam's Razor Principle: entities should not be multiplied beyond 

necessity. 

The typical interpretation of this is: if there are several hypotheses that explain 

the observed data equally well, prefer the simplest hypothesis. This makes 

sense from a practical viewpoint-if several theories are equally good, why 

not use the simplest? A difficulty arises when we try to determine which 

hypothesis is the simplest-is x11111 simpler than ax12+bx5+c? It seems there can 

be no objective answer to this problem. The field of algorithmic complexity 

however, tells us there is an objective measure of the complexity of a theory. 

Although this measure is incomputable, it does provide useful information 

about how a good measure should behave. 

The most well known method of evaluating the probability of various 

hypotheses is Bayesian inference. For a set of competing hypotheses H, and 

the observed data D, the inferred probability of a particular hypothesis H; 

given that data, is given by Bayes' formula 
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P(H. ID)= P(DIH;)P(H;) 
I P(D) ' 

where 

P(D )= L P(D I H; )P(H;). 
i 

The probability of the data P(D) can be thought of as a normalising term to 

ensure that Ll(H; ID)= I. The term P(H) is called the prior probability, 

that is, the probability that H; is true before we have seen any data. The issue 

of prior probabilities raises some problems. For large enough data sets the 

prior probabilities become almost irrelevant to the accuracy of the inferred 

probabilities. Conversely, prior probabilities closer to the actual probabilities 

require less data to infer accurate posterior probabilities. Since we wish to 

infer accurate probabilities with as little data as possible it is important to 

choose a sensible prior distribution. In the case where the set of hypotheses is 

limited, a reasonable assumption might be to give them equal probabilities. 

When the set of hypotheses is infinite there seems to be no clear method. An 

ideal solution would be a universal prior that gives satisfactory results no 

matter what the real prior is. The search for a universal prior is partly 

responsible for the birth of algorithmic complexity theory. An introduction to 

these fields is presented in the next section. 

2.2 Complexity, Information, and Probability 

This section presents background information on encoding data efficiently. 

The development of Kolmogorov complexity is outlined, as well as its role in 

the development of a universal prior. The use of minimum information 

encoding approaches in machine learning is also presented. 
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d f h e e b e h g e 

h f e h c h e h e b 

0 b h f e e h a f h t> 

h h d f b h e g h b 

Figure 2.1: A sequence of symbols 

There are several books and papers that give a more detailed coverage of the 

following material. A good explanation for those unfamiliar with complexity 

theory is found in Legg ( 1995) and Li and Vitanyi ( 1992). In a series of three 

technical reports aimed at introducing minimum information encoding to 

statisticians, Oliver and Hand (1994), Oliver and Baxter (1994), and Baxter 

and Oliver (1994) present coding and minimum information encoding. Li and 

Vitanyi (1993) have written an excellent book covering algorithmic 

complexity. 

2.2.1 Coding Data 

A single digit (a bit) of binary information may be either a 1 or a 0. A binary 

string is a sequence of bits such as '00101010'. The length of a binary string x 

is denoted l(x). To store information in a computer, or to communicate 

a: 000 b: 001 c: 010 d: 011 

e: 100 f: 101 g: 110 h: 111 

Figure 2.2: Code dictionary A 
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011101111100100001100111110100 

111101100111010111100111100001 

110001111101100100111000101111 

111111011101001111100110111001 

Figure 2.3: Encoded sequence A 

information from one computer to another, it must be represented in binary. 

For example, to describe the sequence of symbols shown in Figure 2.1 from 

the set S = {a, b, c, d, e, f, g, h}, this information must somehow be represented 

in binary. A common approach is to construct a code dictionary with each 

symbol represented by a corresponding binary codeword. Figure 2.2 gives a 

possible code dictionary for the symbols in S. 

To ensure that the resulting message is unambiguous, the code dictionary 

should be prefix-free, that is, no codeword may consist of another codeword 

followed by one or more bits. For example, if the codeword for 'g' is '11' and 

'h' is '111 ', it is impossible to determine whether the string '11111' represents 

'gh' or 'hg'. In code dictionary A, there is no ambiguity because the 

codewords all have the same length. Since the end of each codeword of a 

prefix-free code can be recognised as such it can be decoded immediately. A 

code dictionary that is prefix-free is called a prefix-code or instantaneous 

code. Figure 2.3 shows the sequence from Figure 2.1 encoded using code 

dictionary A. 

The total length of this message is 120 bits. The code dictionary given in 

Figure 2.2 is inefficient in that other code dictionaries can encode the 

sequence in fewer bits. For example, by assigning short codewords to more 
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a: 0111111 b: 011 c: 1111111 d: 011111 

e: 01 f: 0111 g: 01111 h: 0 

Figure 2.4: Code dictionary B 

frequently occurring symbols we might construct dictionary shown in 

Figure 2.4. 

Although this code dictionary is not prefix-free, it is still uniquely 

decodable-we know a new codeword has started as soon as we see a 'O' bit 

or once the previous codeword exceeds 7 bits. The sequence in Figure 2.1 

encoded with this dictionary gives the message in Figure 2.5, with a total 

message length of only 109 bits. 

The code dictionaries described so far are concerned with encoding from a 

finite set of symbols, but what about an infinite set of symbols, such as the 

natural numbers? To send the (base two) number n requires log/l bits, but this 

is not self-delimiting. One simple prefix-free coding scheme is to first encode 

n's length as l(n) 1 's followed by a O and then give n itself (denoted as 

11<n>on ). This requires a total of 2log2n+ 1 bits. But l(n) can be encoded more 

efficiently in the same manner as n. With this method, n is encoded as 

011111 0111 0 01 01 011 01 0 01111 01 

001110100111111001001011 

011110110011101010011111101110 

000111110111011001011110011 

Figure 2.5: Encoded sequence B 
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11<1<n))oz(n }i with a total length of log2n+2logi(log2n)+ I bits. This is a recursive 

problem because l(l(n)) could itself be encoded more efficiently. The solution 

is called log* coding, which can encode n m about 

3+log2n+logiClogp)+logi(logi(log2n))+... bits (for details on the actual 

encoding see Baxter and Oliver I 994, page I 2). 

The idea of assigning short codewords to more frequent symbols is important. 

If each element x; of the set of symbols S has probability of occurring P(x), it 

can be proven that the shortest expected message length is obtained when the 

length of the codeword for each symbol is equal to -log 2 (P(x;)). The 

quantity - log 2 (P(x; )) is called the entropy in bits of the symbol x;, which is a 

measure of the amount of information provided by the symbol. For example, 

if a bookie gives you a tip that a horse with favourable odds will win a certain 

race, the tip provides little information (since you would probably predict that 

horse anyway). If the bookie tips you to a horse with unfavourable odds, the 

tip provides more information (because you would not normally have 

predicted that horse). 

One coding method that encodes symbols given a probability distribution is 

the Shannon-Fano code. The set of n symbols is ordered by decreasing 

probability with probabilities p1, ••• , p n • Let P,. = L~~.' P; , for r = 1, ... , n . Let 

E(r) be the binary expansion of P,. The codeword for symbol r is obtained by 

truncating E(r) at length l(E(r)) such that 

-log 2 P, ~ l(E(r )) < l- log 2 P,. 

The Shannon-Fano code achieves the minimum message length on average. 

The Shannon-Fano code is also a prefix-code. For more information on the 

Shannon-Fano code see Li and Vitanyi (1993), page 63. 
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a: 0000001 b: 001 c: 0000000 d: 000001 

e: 01 f: 0001 g: 00001 h: 1 

Figure 2.6: Code dictionary C 

A relation known as the Kraft inequality puts precise constraints on the 

lengths of the codewords in a prefix-code. If c is a prefix-code with n 

codewords with lengths 117 ••• ,ln then Lni-'• ::5:1. Conversely, if 117 ••• ,ln is a 

sequence of positive integers that satisfy the inequality, there is a prefix-code 

which has these codeword lengths. The Kraft inequality stays valid for 

uniquely decodable codes, which means that every uniquely decodable code 

can be replaced by a prefix-code without changing the set of codeword 

lengths. Code dictionary B could therefore be replaced by the following 

prefix-code shown in Figure 2.6. 

A uniquely decodable code is complete if the addition of any new codeword 

results in an ambiguous code. The Kraft inequality must therefore be satisfied 

with equality for a complete code (Li and Vitanyi 1993, page 70). 

So far the discussion has centred on the amount of information in bits that are 

needed to represent an object from a known set of alternatives. Only one bit is 

needed to distinguish between two objects, regardless of whether one object is 

the text of Hamlet and the other of Othello. Algorithmic complexity theory is 

concerned with the amount of information in an object when the set of objects 

is universal, that is, the information innate to the object. 
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2.2.2 Algorithmic Complexity 

Occam's Razor requires that we have a measure of the complexity of 

competing theories in order to choose the simplest one. Algorithmic 

complexity theory is concerned with finding an absolute measure of the 

complexity of an object. It is based around the length of description required 

to completely describe an object with no outside information. If an object can 

only be described by a very long description, it has a high complexity. The 

length in bits of the smallest possible description of an object is its 

Kolmogorov complexity. These ideas were developed independently by R.J. 

Solomonoff (1964), A.N. Kolmogorov (1965), and G.J. Chaitin (1969). In the 

early I 960's Solomonoff worked on a completely general theory of inductive 

inference, and "Kolmogorov complexity" was presented as an aside in 

formulating a universal prior probability distribution. In the mid-1960's, 

Kolmogorov independently obtained similar results to Solomonoff. However, 

because Kolmogorov's objectives were purely to obtain an algorithmic 

measure of the information content in individual objects, the complexity 

measure came to be known as Kolmogorov complexity. Around the same 

time, Chaitin also independently proposed similar invariant definitions of 

complexity. Although both Chaitin and Kolmogorov explored Kolmogorov 

complexity after Solomonoff, they were unaware of his work until years later. 

The Kolmogorov complexity of a string is the size in bits of the smallest 

program which, using no additional input, computes the string and terminates. 

Thus, a sequence of 10,000 1 'scan be represented by a short program such as 

FOR I := 1 TO 10,000 

PRINT 1 
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This program is approximately log( 10,000) bits in size. There are strings 

however that cannot be calculated by a short program-in this case there is no 

way to describe the string except literally. The shortest program is to simply 

print out the entire string itself, and this program has length approximately 

10,000 bits. Strings that do not have a shorter description than themselves are 

incompressible. Some strings that appear on the surface to be random may 

actually have a short description, for example, the infinite sequence 

representing 1t = 3.14159265 ... can be produced by a relatively short program. 

This explanation would lead one to believe that the complexity calculated is 

heavily dependent on the programming language chosen. After all, 

programming languages such as LISP favour problems requiring symbolic 

computation, while languages such as FORTRAN are better suited to numeric 

tasks. The notion of the information content of an object is only useful if it is 

a property of the object itself, and not the description language. Fortunately, it 

has been shown that for any reasonable choice of programming language, the 

amount of "innate" information in an object is fixed up to an additive constant 

(think of this constant as the length of an interpreter for one language written 

in the other language). 

We now delve into Kolmogorov complexity more formally. For a string p, 

z(p) denotes the length (that is, the number of zeros and ones) of p. The 

machines which decode the descriptions are Turing machines. The binary 

input strings to the Turing machines are called programs. Let n(x) be a 

standard enumeration of all objects x onto the natural numbers. For a 

particular Turing machine T, a program pis a description of x if, on input p, T 

outputs n(x), which we write as T(p )= n(x). The complexity of x with 

respect to machine T is defined as 

KT (x) = min{l(p): T(p )= n(x )} , 
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where p is a prefix-free program. This value may change depending on the 

particular Turing machine used. However, we can construct a Turing machine 

that for all x assigns a complexity no higher than the minimum complexity 

returned by any Turing machine, to within a constant. 

Universal Turing machines are a subset of Turing machines capable of 

enumerating all other Turing machines. Thus, any Turing machine Tm may be 

identified by a number m with respect to a particular universal Turing 

machine. Let U be the universal Turing machine such that when started on the 

input string O"'lp, U simulates T., on input p. If T"' is the Turing machine that 

returns the minimum complexity for x, U assigns the same complexity plus 

the m + I bits needed to specify Tm· 

Ku(x)= KT (x)+cm, 
"' 

where in this case cm = m + I bits (there are other ways of encoding which 

Turing machine to select). This is known as the Invariance Theorem (Li and 

Vitanyi 1993, page 90). 

Similarly, for each pair of universal Turing machines that satisfy the 

Invariance Theorem, U and U', the complexities are equal up to a fixed 

constant, for all x: 

Since the complexity is equal to within a constant, it is customary to fix a 

single reference machine and define Kolmogorov complexity K(x) with 

respect to it. 

This definition of Kolmogorov complexity should properly be called prefix 

Kolmogorov complexity, due to the requirement that programs executed by the 
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Turing machines be prefix-free. Non-prefix Kolmogorov complexity C(x) has 

some properties that make it unsuitable for inductive inference, the major one 

is that the series L i-c(x) diverges (more on this later). Both functions are 

asymptotically equal, differing by at most an additive term of 2log(C(x )) (Li 

and Vitanyi 1993, page 173). 

Unfortunately, Kolmogorov complexity is incomputable due to the halting 

problem. The halting problem is that no Turing machine can tell whether any 

arbitrary Turing machine will halt execution. It may finish tomorrow or it 

may continue executing forever. As it applies to Kolmogorov complexity, our 

Turing machine can never tell if it has found the shortest program that 

computes x (because there might be a shorter program which is still running 

that may or may not compute x). 

2.2.3 The Solomonoff-Levin Distribution-A Universal Prior 

Algorithmic complexity was discovered almost as a side issue by Solomonoff 

in the search for a single universal prior distribution (Solomonoff, 1964). 

Solomonoff viewed induction as finding a compact description of past 

observations and predicting future observations in the context of Turing 

machines. Solomonoff argued that observations past and future can be 

encoded as a binary sequence, and theories are equated to Turing machines 

that compute binary sequences starting with the segment which corresponds to 

past observations. Solomonoff's induction theory is as follows. 

Assume the existence of a prior probability distribution described by the 

probability function P over the space of all binary strings B={O,l }*. Define 

the function µ(x) over B by 
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µ(x)= lP(xy). 
YEB 

Thus, µ(x) is the probability of a sequence starting with x. Given a data string 

S representing the past observed data, the task is to predict the next symbol in 

the sequence. This is expressed in terms of Bayes' formula, where the data D 

is the initial sequence S, and the hypothesis H" is that the sequence starts with 

Sa, that is, H" explains the past observations S and predicts the next symbol a. 

µ(Sa IS)= µ(S 1:c:;(sa). 

However, µ(SI Sa)= 1 for any a, since Sa completely specifies S, giving 

µ(Sa IS)= µ(Sa). 
µ(S) 

If the prior probability distribution µ(x) is known, the induction problem is 

solved; however, the actual prior probability is unknown. To solve this 

problem, Solomonoff proposed the idea of a universal prior distribution that 

could be used to give results almost as good as if the actual probability 

distribution were used. Solomonoff succeeded in finding a universal prior, but 

unfortunately it is incomputable because it uses Kolmogorov complexity. All 

is not lost because Kolmogorov complexity (and the universal prior) is semi­

computable, meaning that there are approximations that are computable. 

Solomonoff's original suggestion was that the a priori probability P(x) of a 

binary string x should be the probability that a randomly generated program p 

generates the string x. The probability of a random program p of length l(p) is 

i-1<,,) making Solomonoff's original prior 

P(x)= Ir1<,,), 
U(p )=.r 
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where U is a reference universal Turing machine. 

The problem with this formulation is that for standard Turing machines the 

resulting distribution is not a probability distribution, that is, Lx P(x) 

diverges (i.e., the sum does not converge to 1). Even if one considers only the 

shortest program computing x rather than all programs, the series diverges. To 

counteract this problem Solomonoff had to employ normalising terms. 

L.A. Levin employed prefix Turing machines to remove the normalising 

terms (Levin, 1974). The Kraft inequality ensures that for all prefix-free 

programs ~ 2-t(p):::;; 1. The Solomonoff-Levin distribution is then given by £..ip 

P(x)= Li-t(p)' 
U(p)=x 

where U is the reference prefix-machine. The sum of all P(x) is actually less 

than 1 since not all programs halt and produce output. A surprising result 

known as the coding theorem states that K(x) and - log(P(x )) are equal up to 

an additive constant (Li and Vitanyi 1993, page 223). 

We are interested in how well the universal prior performs in relation to the 

actual prior. Let M(x) be the universal prior (either taken as P(x) above or 

2-K(x)) and µ(x) denote the actual prior. Let S" denote the expected squared 

difference between the probability that the (n+l)th symbol is a Oas given by 

the universal prior and the actual prior 

It can be shown (after a lengthy proof) that the expected squared error at the 

nth prediction converges to zero faster than 1/n, so basically the universal 
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prior is a very good approximation to any actual prior (Li and Vitanyi 1993, 

page 285). 

The combination of Bayes' rule and the universal prior allows us to satisfy the 

dictums of both Occam's razor and Epicurus' principle of multiple 

explanations. Following Occam's razor, if several programs could generate 

the string SO, the shortest one is preferred (that is, accorded the highest prior 

probability). Similarly, if the program that generates SO is shorter than the 

program that generates Sl, the first would be preferred (that is, predict the 

next symbol is O with higher probability than for the symbol 1). Solomonoff's 

induction procedure is also in line with the principle of multiple explanations 

because all hypotheses compatible with the evidence are retained, with the 

probability distribution over hypotheses modified according to the simplicity 

of each. 

2.2.4 Minimum Information Encoding 

The ideas from Kolmogorov complexity and Solomonoff's inference 

procedure served as inspiration in the development of two related principles 

for inference; Rissanen's minimum description length principle (MDL), and 

Wallace's minimum message length principle (MML). Both of these 

principles are similar; Baxter and Oliver ( 1994) provide a description of their 

similarities and differences. The approach described here is closest to MDL 

and can be considered a computable approximation to Solomonoff's induction 

procedure. An intuitive explanation of the principle is as follows. 

Minimum Description Length Principle: the best hypothesis to explain a 

set of data is the one that minimises the sum of 

I) the length in bits of the description of the theory; and 
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2) the length in bits of the data when encoded with the help of the 

theory. 

There are problems to be addressed in the selection of competing hypotheses. 

In general, the more complex a hypothesis, the better it fits the observed data. 

At one extreme, a complex description of the hypothesis H may describe the 

data completely. However, this hypothesis is vulnerable to errors in data 

measurement and statistical irregularities of the observed data, meaning it is 

unlikely to predict new data well-this is known as oveifitting. At the other 

extreme is a trivial hypothesis which does not describe the data at all (and 

offers no predictions). The MDL principle provides a way to find a balance 

between the simplicity of the hypothesis and its accuracy in describing and 

predicting the data. 

Like Solomonoff's procedure, the MDL principle can be derived from Bayes' 

rule with the help of Kolmogorov complexity. When using Bayes' rule we are 

interested in maximising the probability of the hypothesis H given the data D. 

First we take the negative log of Bayes' rule 

-log2P(H ID)= -log2P(D I H)-log2P(H)+ log 2P(D ). 

When comparing competing hypotheses, the data will not change, making 

log2P(D) a constant factor that can be ignored. We are therefore concerned 

with minimising the term - log2P(H ID), which is equivalent to minimising 

Substituting in the universal prior rK(..-), we obtain 

K(H ID)=K(H)+K(D I H). 
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We therefore seek to minimise the length of the shortest encoding of the 

hypothesis H and of the data D with the help of hypothesis H. 

Because Kolmogorov complexity is incomputable, the K function must be 

replaced with some computable approximation for use in practical 

applications. A common method is to use a standard encoding such as the log* 

code to provide a simple upper approximation. 

To outline a simple example of the MDL principle, consider inferring the 

distribution of the heights of a group of people. The data consists of some 

number of height measurements. A hypothesis consists of a specification of 

the type of distribution (such as normal or bimodal) along with any required 

parameters (such as mean and standard deviation stated to some precision). 

The data can be encoded by assigning short codewords to height 

measurements with a high probability (according to the hypothesis), and 

longer codewords to height measurements with a low probability. A good 

hypothesis will result in a short encoding of the data. Stating the hypothesis 

parameters to a higher level of precision may result in a shorter encoding of 

the data but a longer encoding of the hypothesis. Since the average heights of 

women and men are different, a hypothesis representing a bimodal 

distribution may result in a shorter encoding of the data, but the encoding of 

the hypothesis requires more parameters than a hypothesis utilising a 

unimodal distribution. The MDL method will find a trade-off between these 

factors. The hypothesis that results in the shortest total encoding of both the 

hypothesis and the data is defined as the best. 

The MDL principle has been used successfully in many applications, 

particularly in the fields of machine learning and data modelling. Quinlan and 

Rivest ( 1989) describe the use of MDL in constructing decision trees. The 

task is to take a training dataset and infer a set of questions that will yield each 
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>75 

Play DontPlay Dont Play Play 

Figure 2. 7: An example decision tree 

instance's classification. These questions can be represented as a tree. 

Figure 2. 7 shows a decision tree for deciding whether to play golf based on 

the weather. Quinlan and Rivest describe a method for encoding decision 

trees, and for producing good trees guided by the MDL principle. The MDL 

inspired trees were compared to decision trees produced by one of the best 

alternative methods and found to be smaller on average with roughly the same 

classification accuracy. 

Another example application of MDL is in the estimation of linear regression 

models. The task is to fit a polynomial to a set of n data points. Although is it 

always possible to fit a n -1 degree polynomial exactly to the data, such a 

solution provides little general information about the data. Polynomials of 

lower degree may provide more information about general features of the data 

but fit the data values themselves less accurately. This sort of trade-off is 

characteristic of the domains where MDL has found successful application. 

Legg ( 1995) describes a system called LME that uses the MDL principles to 

infer linear regression models that best fit the data. Encoding the data with 

respect to the model is achieved by encoding the error in the model's 

prediction for each data value. The errors are encoded to a set accuracy level 
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that determines the accuracy of the model. (A model that makes predictions 

more accurate than the error resolution will be longer to encode but will not 

give a reduction in the data encoding.) Encoding the model consists of 

specifying the number of coefficients, then the coefficients themselves. Each 

coefficient has an accuracy level (which determines the number of significant 

digits), followed by the coefficient digits. LME and other minimum 

information based methods have been evaluated on several regression 

problems and have excellent performance (Legg, 1995). 

2.3 Conclusions 

A major difficulty with applying Occam's razor to the task of induction is in 

determining the simplicity of competing hypotheses. Algorithmic complexity 

defines the simplicity of any object as the length of the shortest program 

describing that object. The description of any type of object can be expressed 

within this framework. The defined complexity gives a measure of the 

information present in an object independent of description language. While 

the complexity of an object is incomputable, there are computable 

approximations. The ideas from algorithmic complexity have been used 

successfully in inductive inference. The MDL principle is a direct result of 

interpreting Bayes' rule within algorithmic complexity, and has been applied 

in a range of applications with good results. The success of the MDL method 

suggests that a complexity-based approach may also be useful in solving 

problems in the design of similarity functions. 
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Chapter 3 

Issues and Current Treat01ent 

This chapter examines issues related to designing similarity functions and 

describes current treatment of these issues by the machine learning 

community. Similarity functions form the core of instance-based machine 

learning algorithms. This chapter provides an introduction to instance-based 

learning and discusses in detail how the issues of similarity function design 

are currently dealt with. Because geometric domains provided initial 

motivation for this thesis, an example of this type of application is presented 

to give a concrete feel for the types of problems facing designers of similarity 

functions. This example also highlights the ad hoc treatment these problems 

currently receive. 
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3.1 Weather Case Retrieval 

Large repositories of historical weather data have the potential to assist 

weather forecasters and other meteorologists in their decision making. This 

weather data is practically unusable without a mechanism for retrieving past 

situations that are relevant to the current problem. A weather forecaster is 

unlikely to recall the exact date and time of relevant weather situations. 

Rather, the forecaster could specify meteorological features of interest and 

then have similar situations retrieved from the database. Such a system acts as 

a "memory amplifier", which offers fast access to historical situations of 

interest. Jones and Roydhouse (1993) describe such a system called MetVUW. 

MetVUW combines data such as laser disc video, text descriptions, satellite 

images, and numeric information on temperature, humidity, and wind speed. 

As well as allowing retrieval by. date and time, MetVUW provides a case 

retrieval facility that searches for matches based on high-level meteorological 

content. Users of MetVUW enter a graphical query that represents the primary 

meteorological features of interest, such as high and low-pressure systems. 

Queries are compared to annotations• of the historical situations using a 

conventional relational database to quickly build a list of potentially relevant 

cases. Each retrieved case then undergoes a knowledge intensive similarity 

assessment. Cases that are sufficiently similar are presented to the user. 

The following components are considered when comparing cases: 

• The shape of high and low-pressure systems are compared in different 

ways. For high-pressure systems the orientation of ridges is important. 

'Annotations have the same representation as queries, and are semi-automatically extracted 

from the raw data offline. 
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The shape is represented in a conventional manner as a number of 

convergent axes. For low-pressure systems only the size of the system is 

relevant. 

• Clusters of pressure systems are created and evolve by the splitting and 

joining of separate small systems. It is important to match these clusters 

in an intelligent manner. Clusters are represented as hierarchies of 

enclosure. Query retrieval is based only on the outermost cluster, while 

detailed examination considers the internal structure of the tree. 

• The change of weather patterns over time is often important. Assuming 

changes between sequential images are small enough, it is easy to 

identify matching features in successive images. From this information a 

causal graph is created, which is used to compare movement of features 

over time. 

• Spatial relationships between features are another important component, 

particularly when one feature has a causal influence over others. For 

example, a blocking high can impede eastward progress of a low­

pressure feature to its west. 

• There are other important components such as differences in pressure 

minima and maxima, and the difference in pressure at the centre and 

boundary of a system. 

During detailed matching the average positional displacement between 

features in the query and corresponding features in the retrieved example is 

calculated, along with deviations of individual features from the average 

displacement. The average displacement is used to penalise large north/south 

translations of the image as a whole, while individual displacements measure 

the degree of match in the arrangement of features. 
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It is not immediately obvious how to evaluate weather map similarity based 

on any of the components above, neither is it clear how to combine the results 

of multiple components. Jones and Roydhouse (1993) do not describe how the 

individual components of similarity are combined to arrive at an overall 

similarity, but that they are experimenting with different methods. The types 

of information being considered are very different so the lack of an obvious 

overall function is understandable. A general procedure for deriving similarity 

measures for these components and combining them could simplify the design 

of this and other applications that involve measuring similarity between 

complex examples. 

3.2 Instance-based Learning 

Instance-based learners classify by comparing the unclassified instance to a 

database of preclassified instances. The similarity between the new instance 

and those in the database is used to predict the new instance's class. The 

assumption is that similar instances will have similar classifications. The 

important issue is how to define "similar instance" and "similar 

classification." Typically an instance-based learner has a similarity function 

which determines how alike instances are, and a classification function which 

specifies how instance similarities yield a final classification for the new 

instance. For example, a simple classification function returns the class of the 

single closest training instance. Once an instance has been classified, it is 

moved into the database along with its correct classification (for a simple 

instance-based learner, this is all the "learning" that occurs). Thus, if an 

incorrectly classified instance (or more importantly a similar instance) is re­

presented it is more likely to be classified correctly. 

Designing Similarity Functions--40 



Instance-based learning has been applied successfully to many domains such 

as letter recognition (Fogarty, 1992), identifying zone types in document 

images (Inglis and Witten, 1995), predicting word pronunciation (Stanfill and 

Waltz, 1986; Cost and Salzberg, 1993; Lowe, 1993), and predicting the folded 

structure of proteins (Cost and Salzberg, 1993). Although rarer in the 

literature, instance-based learners are also employed in fielded applications. 

Jabbour et al. (1988), describe a system called ALFA, the Automated Load 

Forecasting Assistant, which predicts the short-term demand for electricity at 

Niagara Mohawk Power Corporation. Each instance consists of 12 weather­

related measurements, the time and date measurements were made, and power 

demand at that time. The instance database contains hourly entries for the la~t 

15 years. ALFA retrieves the most similar instances to the current situation and 

uses these along with information about special events such as public holidays 

to predict the electric load. This system was so successful that a similar 

system was implemented to predict natural gas demand (Jabbour and Meyer, 

1989). 

A typical approach when dealing with geometric domains (such as comparing 

weather maps) is to reduce the image to some number of attribute values and 

use these as the basis for comparison. For example, Hastie and Tibshirani 

( 1995) report success using their instance-based learner to identify land usage 

from attributes automatically extracted from satellite photographs. Bankert 

and Aha ( 1995) experiment with several algorithms for automatically 

identifying cloud patterns in satellite images. Initially, values for 98 different 

attributes are automatically computed from the images. A simple instance­

based algorithm is used to search for the best performing subset of these 

attributes, to eliminate redundant or irrelevant attributes. A subset of 9 

attributes was found to perform particularly well. With these attributes the 

instance-based algorithm gave better accuracy than a decision tree algorithm 

and a probabilistic neural network classifier. Good performance can be 
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achieved on this type of problem as long as suitable attributes are calculated. 

It is often difficult to determine what attributes should be considered, which is 

why Bankert and Aha take the approach of computing many different 

attributes and determining the irrelevant ones later. 

The simplest instance-based learners are nearest neighbour (NN) algorithms 

(Fix and Hodges, 1951; 1952). They use a domain-specific distance function 

to retrieve the most similar instance from a database and present the class of 

this instance as the classification for the new instance. Cover and Hart ( 1967) 

found that in the large sample case, the probability of error of the nearest 

neighbour rule is at most twice the Bayes probability of error. This can be 

interpreted as meaning that half the classification information in an infinite 

sample set is contained in the nearest neighbour. 

Standard nearest neighbour algorithms can be generalised to k-nearest 

neighbour (k-NN) algorithms (Fix and Hodges 1951; 1952). The k closest 

neighbours are retrieved, and whichever class is predominant among them is 

given as the class of the new instance. Thus, a standard nearest neighbour 

classifier is a k-NN classifier for k = l. If the number of instances in the 

database is large, it makes sense to use more than the single nearest neighbour, 

but k should be small enough that the chosen instances are close enough to the 

unclassified instance to give an accurate estimate of its class. In the degenerate 

case where k equals the number of instances in the database, the same class 

will be predicted regardless of where the unclassified instance is in the feature 

space. Choosing a suitable value of k for a particular dataset must be done 

carefully. For instance, k should be much smaller than the number of training 

instances in the smallest class. Dasarathy ( 1990) suggests developing an 

explicit method for selecting the optimum neighbourhood size for a particular 

training set. Fix and Hodges ( 1951) showed that when k and the number of 
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instances n tend to infinity such that 1/n ➔ 0 , the probability of error 

approaches the Bayes probability of error. 

While the only requirement of Fix and Hodges ( 1951; 1952) was that the 

distance function be able to specify which of two points is closer to a third, 

the particular function can have a large effect on the learning rate. For a 

simple example several functions were examined, such as ordinary Euclidean 

distance, choosing the maximum difference over all attributes, and attribute 

weighted combinations. They conclude that a distance function must be 

chosen carefully for the particular domain, to minimise the number of 

instances needed to reach the desired performance level. 

When Biberman ( 1994) studied similarity functions in relation to 

psychological notions of similarity, he found that many similarity functions 

are not sensitive to the domain at all. The similarity between two objects is 

usually defined by the objects rather than the domain, and hence is the same 

for all domains. In many domains this is not the case. For example, the 

similarity of "red" and "green" will be different when classifying apples than 

when classifying cucumbers, even though the colour attribute may be of equal 

importance overall in both domains. Biberman also notes that many similarity 

functions assume the similarity of two equal values is the same for all values. 

Humans intuitively take two instances that share some uncommon value as 

more similar than two instances that share a common value. For example, we 

perceive two identical twins as more similar to each other than two identical 

cars. This is because we know that there are many identical cars of a particular 

model, but only two identical twins of a particular "model." 

Designing a similarity function that is ~ppropriate for a particular domain is 

not easy. The issues that must be addressed by the similarity function of 

instance-based learning algorithms are: 
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• Measures for different attribute types must be combined to determine 

overall similarity. Early use of NN algorithms involved numeric 

attributes only; however in practical applications attributes may be of 

different types. The most common other attribute type in current use is 

symbolic. 

• Some attributes may be more relevant to discrimination than others, and 

these attributes should be given more importance in the distance 

function. The weighting scheme must be applied consistently to 

different attribute data types to avoid biasing the measure in favour of 

particular data types. 

• Some instances may be better discriminators than others, and it makes 

sense to prefer the prediction of a good discriminator over that of a poor 

discriminator. Typically, instances that are near class boundaries are 

good discriminators. An instance may be a poor discriminator because it 

is well away from a class boundary, or it may be the result of erroneous 

data. 

• Many real world datasets contain instances with missing attribute 

values, and these must be handled sensibly, to allow the most use of the 

information that is present. 

The following sections discuss these issues in detail and outline the 

approaches currently employed in dealing with them. 

3.3 Different Attribute Types 

In early applications of NN discrimination, datasets consisted primarily of 

numeric attributes. Research during this period focused upon how to select the 
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number of neighbours for comparison, how to deal with missing values, and 

how to avoid problems of attribute scaling. Machine learning as a field began 

to develop when researchers wanted to apply this technology to a wider range 

of real world problems. It soon became apparent that the representation of 

many problems requires more than numeric data. Today machine learning 

classification schemes typically deal with attributes of two basic types: 

numeric and symbolic; other attribute types are often transformed into these 

basic types (Almuallim et. al., 1995). This raises the problems of how to 

measure similarity over a different type of attribute (such as symbolic), and 

how to meaningfully combine the similarity of several different attributes. 

Very little classification research has been directed towards making use of 

domain specific knowledge. There may be a few explanations for this. In 

some cases there is little or no domain knowledge available. A common 

approach when evaluating a machine learning algorithm is to simply run it on 

some standard datasets (many of which have little documentation on the 

meaning of their attributes). While a good classification algorithm might 

perform well with minimum domain knowledge, it is also sensible to utilise 

domain information when it is available. Cleary et al. ( 1996a) promote the 

storage of "metadata" alongside datasets to encourage automated domain 

customisation, although as yet no machine learning schemes are able to make 

use of this metadata. Another explanation for the rarity of classifiers using 

domain specific similarity functions is that there is no general method for 

tailoring functions to the domain. When a domain specific classifier is 

developed it is (by definition) rarely suitable for use on other domains. 

This section presents similarity functions from the literature. Often these 

functions handle numeric or symbolic attributes only. The following section 

discusses research on functions that combine measures for different attribute 

types. 
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3.3.1 Numeric Distance Functions 

Comparing numeric values is relatively easy since there exists a simple 

operation that takes two values and returns a distance between them: 

subtraction. A variety of functions have been proposed when multiple numeric 

attributes are to be considered. Fix and Hodges ( 1952) experiment with the 

following two general distance functions: 

n 

Euclidean(x, y )= L (x; - Y; r 
i=I 

n 

Maximum(x, y )= max Ix; - Y;I 
r=l 

where an instance xis a vector of n attribute values xi' ... ,x". 

The Euclidean distance function measures the distance between points in a 

straight line. A similar distance function measures distance between points as 

the sum of distances along each axis (e.g., travelling between two addresses 

along city streets): 

n 

CityBlock(x, y )= I,lx; - Y;I • 
i=I 

A problem common to all these functions is that they are dependent on the 

attribute scale-attributes that have a large range tend to outweigh attributes 

that have a small range. An early attempt to reduce the sensitivity to attribute 

scales is reported by Devroye ( 1978). This research develops the notion of 

empirical distance, and describes a k-NN algorithm that is independent of 

monotone transformations of the domain attributes. Essentially, continuous 

attributes are transformed into ordered attributes. The distance is 

n 

Empirical(x, y )= ~~{t(x;, Y; )}, 

where f(x;, y;) is the absolute difference in the order of X; and Y;. 
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An alternative approach to the problem of attribute scaling is to normalise 

attribute values. Aha, Kibler and Albert ( 1991) describe an instance based 

learner called 1B I which uses a general purpose distance function to avoid the 

requirement to custom-derive a fun~tion for each domain, allowing the nearest 

neighbour technique to be used in practical applications. The similarity 

function used by 1B 1 is a Euclidean distance measure, with numeric attributes 

normalised to ensure all attributes have equal relevance. 

The problem of measuring similarity between ordinary numerical attributes 

appears to be fairly well solved, although there are a few different methods 

used to combine measures of multiple attributes. Euclidean distance is the 

most popular method in this respect. However, similarity measures have not 

been reported for more specialised numeric attributes, such as those that are 

modulo (such as the distance around the perimeter of a circle, or between 

times of the day). 

3.3.2 Symbolic Distance Functions 

Symbolic attributes are more difficult to deal with than numeric attributes 

because there is no natural notion of distance. lB 1 (Aha, Kibler and Albert, 

1991) uses a simple function, called the overlap metric, where the similarity 

between values is I if they are the same, and O otherwise. For multiple 

attributes, the value returned is a count of which attributes have matching 

values. 

Stanfill and Waltz (1986) describe a measure for symbolic attributes that is 

considerably more sophisticated. Their Value Difference Metric (VDM) 

assumes that symbols that predict the same class are more similar than 
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symbols that predict different classes. This allows a numerical distance 

between two symbols to be calculated. Their metric for the similarity of two 

instances is 

n 

VDM(.x, y )= L weight(x; )J(x;, Y; ) . 
. i=l 

Here J(x;, y;) is a numerical measure of the difference between the 

predictions of two symbols, given by 

J(x;, y;)= L (P(c Ix;)- P(c I y;)f , 
ceC 

where C is the set of classes and P(c I X;) is the probability of class c 

occurring in the subset of training data where the symbol X; occurs. 

weight(x;) is a measure of how predictive symbol X; is; 

weight(x; )= L P(c IX; )2 • 

Thus, the more skewed a symbol's prediction distribution is, the higher its 

weighting. Uniformly distributed symbols with tell us little about the class, so 

have low weighting. This weighting is based on individual symbols as 

opposed to the more commonly used instance weighting and attribute 

weighting. Symbol weighting is often avoided as it makes the similarity 

function non-symmetric (Cost and Salzberg 1993). However, Tversky ( 1977) 

believes that in some domains asymmetry is justified. Weighting schemes are 

discussed in later sections. 

Lee ( 1994) describes a related similarity function for symbolic attributes. 

Where the VDM uses probabilities, Lee's function uses a measure of 

information content. The similarity between two symbols is 
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In spite of its apparent complexity, the heart of this similarity function is 

similar to the VDM. Normalising factors are employed to keep the measure in 

the range O to 1, and the central value is subtracted from 1 to convert from 

dissimilarity to similarity (both of these modifications are for compatibility 

with Lee's functions for other attribute types). 

Biberman (1994) proposes an alternative measure for symbolic attributes, 

called context similarity. This measure is based on the assumption that 

similarity is dependent on context, which consists of the set of instances given 

and the domain being considered. Biberman notes that a common failing of 

simple symbolic measures such as the overlap metric is that they do not allow 

different degrees of similarity between different values. For example, the 

colour red is considered equally dissimilar to the colour orange as it is to the 

colour blue. Between each pair of values there should be a unique parameter 

representing their similarity. How to obtain a value for these parameters is not 

discussed. The primary improvement of the VDM beyond the overlap metric is 

that it incorporates this idea of variable differences between symbolic values, 

their differences calculated from the symbol associations with each class. 

Biberman first defines a similarity measure for equal symbolic values. This 

will vary from value to value, which implies that the triangle inequality will 

not hold. The similarity between two identical infrequent values is taken as 

higher than between two identical frequent values. To ensure that the 

similarity measure is sensitive to the classification concept, the measure is 

scaled by the variance of the value's occurrence rate in the different 
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classifications. If the value is irrelevant the occurrence rate should be equal 

across classifications. The similarity of two equal attribute values X;, Y; is 

where P(x;) is the frequency of occurrence of X;, and var(x;, C) 1s the 

variance of P(x;) over all classifications C. 

Having defined a measure for equal values, Biberman defines the effect that 

two non-equal values have, using the similarity of matching values in other 

attributes: 

( ) " s (x., y.) 
effect X;' Y; = £- eq J J • 

x-=,·· n J • J 

The effect function gives an estimate of how well two instances match based 

on the number of values that match as well as the degree of similarity of the 

matching values themselves. This is incorporated into a measure for non-equal 

values with respect to a classification c: 

effect(w, z) 

effect(w, z) 

effect( w, z) 

where sx, is the set of instances that have the value X;, and n1, n2 , ~ are the 

number of instances in each of the summations. The first summation encodes 

the intuition that if two instances belonging to the same class share many 

values, the values in which they differ are also similar with respect to the 

classification. The second and third summations encode the intuition that if 

two instances belong to different classes and share many values, the difference 

in classification must be due to the values in which they differ. 
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Using the similarity measure defined for equal and non-equal values, the 

similarity between two instances over all attributes is defined as 

ContextSimilarity(x, y) = ( !, s,., ~' y;) )', 

where r is an odd integer greater than one. Raising the sum to a power 

effectively increases the similarity of similar instances, and pushes dissimilar 

instances further away. Biberman states that the exact value of r does not 

affect his results. Biberman found that a nearest neighbour classifier using his 

similarity function performed better than when using a number of other 

measures, although not significantly better than Stanfill and Waltz's VDM. 

These approaches highlight the inherent difficulty of measuring similarity 

between symbolic attributes. The overlap metric is essentially the simplest 

method that could be devised without thought as to what similarity means in 

symbolic attributes. Stanfill and Waltz and Biberman have constructed 

functions that incorporate some intuitive ideas about how similarity between 

symbols should be measured. That both Biberman's context similarity and 

Stanfill and Waltz's VDM perform quite well suggests that even though their 

approaches are quite different, they are capturing some of the right kinds of 

information. 

3.3.3 Coherent Treatment 

Little research has addressed the problems caused by combining several 

fundamentally different similarity measures. Wilson and Martinez (1997) and 

Ting ( 1995) describe methods to treat continuous attributes and symbolic 

attributes using a single uniform metric. Ting notes that the current practice of 

simply combining different attribute measures is analogous to summing 
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numbers of different units-the result may be a bigger number but it is almost 

meaningless. When additional inconsistent processes are incorporated into the 

measure, undesirable effects increase. A similarity measure that combines 

incompatible components for continuous and symbolic attributes is bad 

enough. Adding in different methods for dealing with missing values for each 

will make matters worse. 

Ting's ( 1995) solution is to measure both continuous and symbolic attributes 

using the same function. To achieve this, continuous data is transformed to 

symbolic form. Several methods for discretisation are considered. The method 

employed is Fayyad and !rani's (1993) discretisation, which is based on the 

MDL principle. In this method, a cut point is chosen which maximises the 

information gain (i.e. the entropy of the resulting sets is minimised). Cut 

points are chosen recursively until there is no information gain. 

Discretisation turns out to have a couple of benefits. First, if a continuous 

attribute is irrelevant or contains high levels of noisy data, discretisation will 

place all values into a single set. These attributes are effectively ignored 

during classification, and the discretisation process can be viewed as a type of 

attribute weighting. This in itself can account for a large increase in 

classification accuracy. Second, in domains with a high level of noisy data, 

discretisation results in noise reduction. This is because discretisation 

increases the granularity of the instance space. Without discretisation, if a 

noisy instance is closest to the test instance it will be used in the classification. 

After discretisation all instances within the same hypercube as the noisy 

instance will be the same distance, and classification is effectively k-NN 

(giving fewer noise-induced misclassifications). In Ting's experiments, 

discretisation more than doubled the number of cases where the test instance 

class was determined by more than one training instance. Third, discretisation 

provides a type of local adaptation. In areas of the instance space where there 
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Figure 3.1: 1B1 dissimilarity for two representations of time of day 

are small clusters of instances, discretisation will create small partitions. In 

areas of low instance density the partitions will be larger. This variable 

partition sizing also aids classification, particularly in areas of higher instance 

density. 

The side effects introduced by discretisation during preprocessing result in 

increased classification accuracy, but obscure the issue of whether a uniform 

metric for continuous and symbolic attributes is beneficial in its own right. 

Ting illuminates the issue by examining classification accuracy on two 

artificial domains. 

Ting's first domain models ultra-violet radiation (UV) as a function of time of 

the day. If the time of the day is between 11AM and 3:30PM the level of UV is 

high, and at other times it is low. This domain is represented by two datasets: 

UV I represents the time of the day as one symbolic attribute (AM or PM) and 
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one continuous attribute (the hour rangmg from zero to twelve); UV2 

represents the time as a single continuous attribute ranging from zero to 

twenty four. 

Consider the behaviour of 1B 1 's distance function for the time of day 

representations used by the UV 1 and UV2 datasets. Figure 3 .1 depicts the 

dissimilarity between the time 0900 (9AM) and other times of the day. As 

expected, dissimilarity is at a minimum when the time is 0900. For the 24-

hour representation, dissimilarity varies linearly as the difference in time 

increases. Note however that 2100 is regarded as closer to 0900 than 2300, 

even though the time interval between 2300 and 0900 is 2 hours smaller than 

that from 0900 to 2100. Measuring dissimilarity using the 12-hour 

representation is more interesting. During the AM period the function behaves 

similarly to the function using 24-hour representation. When the PM period 

begins there is a sudden jump in dissimilarity, then a decrease until 9PM when 

it rises again. This function would certainly yield an interesting ordering of 

neighbours during classification. However these effects will not cause a 

difference in classification (for our hypothetical test instance at 9AM) unless 

there are no training instances in the interval between 9AM and 12PM. 

Figure 3.2 shows 1B 1 's error rate for the UVl and UV2 datasets and for a 

modified 1B 1 on the UV2 dataset (labelled UV2*). Each data point is the 

average error over I 00 randomly generated training sets. The same test set of 

1000 instances was used in all cases. Two-tailed, paired t-tests were carried 

out at the 95% confidence level. When the number of training instances is 

between 10 and 40 the 24-hour time representation (UV2) gives a 

significantly lower error rate than the 12-hour representation (UVl). As 

predicted, the artefacts introduced by the 12-hour representation are 

detrimental to the classification accuracy when the number of training 
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Figure 3.2: 1B1 error rate for UVl and UV2 datasets, and modified 

IBl error rate for UV2 dataset 

instances is low. Interestingly the error rates are about equal for 5 training 

instances, primarily because by chance the class boundary lies near the 12-

hour border, and also because the UV-HIGH class is small (IB 1 tends to 

overestimate its size). The curve labelled UV2* shows the error rate for a 

version of IB 1 which assumes the time of day is modulo in nature (i.e. the 

interval between two times x and y is taken as min{x-yl,24-lx- YI}), on the 

UV2 dataset. The UV2* error rate remains significantly lower than the UVl 

error rate even when there are only two training instances. This simple 

experiment suggests that data representation should match the underlying 

domain as much as possible, and that the similarity function should also make 

use of specific know ledge about the domain. 
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Ting compares IBl, IBl*, and IBl-MVDM* on the UVl dataset, and reports 

that automatic discretisation significantly degrades classification 

performance2• When the data is discretised using the actual cut-points in the 

domain, IB 1 * and IB 1-MVDM* perform significantly better than IB 1. Ting 

claims this shows that using a single uniform metric is better than using two 

separate metrics, but this does not follow. IBl* and IBl-MVDM* perform 

better when actual cut-points are given because this is providing information 

that can not be discovered from the training data alone. In any case where two 

training instances of different class are either side of a concept boundary, the 

only conclusion to be drawn is that the boundary lies somewhere between the 

two instances-there is no way of knowing exactly where the boundary lies. 

In addition, automatic discretisation performs more poorly than IB 1 because 

time ordering information is lost in the conversion from a continuous to 

symbolic attribute. 

In the UV datasets, concept boundaries are orthogonal with respect to the 

axes, and an ideal discretisation can exactly represent the concept with no loss 

of information. The second artificial domain Ting describes has a non­

orthogonal class boundary. The data consists of two continuous attributes 

named X and Y. Where X+Y is greater than 1, instances fall in one class, 

otherwise the second class. Ting found that discretisation in this type of 

domain will result in inaccurately described concept boundaries. IB 1 

performed significantly better than IB 1 * and 1B 1-MVDM* in this domain 

(except when noise was introduced). 

In summary, discretisation at the outset provides a method for treating 

symbolic and continuous attributes with a single uniform metric. However, 

2 Ting defines 18 l * as the standard 181 classifier (using the overlap metric) which discretises 

continuous data to symbolic. IB1-MVDM* uses the MVDM metric (Cost and Salzberg 1993) 

for symbolic attributes. 
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the conversion from continuous to symbolic data results in a loss of 

information. In noise-free domains this reduces classification accuracy. In 

noisy domains accuracy improves because multiple neighbours are considered 

more often, allowing noisy instances to be outvoted. This suggests that a 

better solution is to improve the noise tolerance by means that do not degrade 

performance in noise-free situations. 

Wilson and Martinez (1997) extend Stanfill and Waltz's VDM to handle 

numeric attributes. The difficulty with applying the VDM to numeric attributes 

is that it requires an estimate of the probability of a class given a particular 

attribute value. For symbolic attributes, this probability can be estimated with 

simple counts. Wilson and Martinez examine two methods for estimating class 

probabilities given a numeric attribute value. The first method, IVDM, 

discretises a copy of the numeric attribute into equal-width bins. Class 

probabilities for each bin are calculated, and these probabilities are 

interpolated when a probability for a specific value are required. The second 

method, WVDM, slides a "window" along the range of each attribute, 

calculating class probabilities at each point from the class frequencies in the 

training instances that fall within the window. Wilson and Martinez found that 

both methods perform considerably better than Euclidean distance; in addition 

IVDM performed better than Ting's (1995) IBl-MVDM*, although WVDM 

performed slightly worse than ml-MVDM*. Wilson and Martinez' work is a 

principled approach to treating numeric and symbolic attributes coherently 

with a common similarity function, however there is no provision for 

extending the similarity measure to other attribute types. 

Designing Similarity Functions-51 



3.4 Attribute Importance 

When a dataset is created, it is seldom known exactly which attributes are 

relevant with respect to the class; indeed some attributes may be irrelevant 

altogether. Schemes that attempt to discover the relevance of different 

attributes and weight them accordingly are called attribute-weighting 

algorithms. 

The attribute-weighting scheme employed by Salzberg's (1991) nested 

generalised exemplar learner called EACH is simple. Each attribute is assigned 

a scale factor. When an incorrect prediction is made, the weights for all 

features that match are decreased by an (arbitrary) factor making these 

features less important, and those for features that do not match are increased 

by the same factor making them more important. Unfortunately, this scheme 

suffers from two main problems. In tasks where one class occurs more 

frequently than others, attribute weights are biased towards that class to the 

exclusion of others. A second problem (which applies specifically to EACH) is 

that the distance to EACH' s generalised instances is often zero, which renders 

the attribute weighting ineffective. 

Aha ( 1992) describes an addition to the IBn series which handles irrelevant 

and novel (that is, the introduction of previously unseen) attributes. IB4 

maintains a set of attribute weights for each class. The similarity function used 

is: 

n 

1B 4Similarity(c, x, y )= - L weight: J(x;, Y;), 
i=I 

where weightci is the weight of attribute i for class c, given by: 
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weight. -max --------0.5,0 . . _ (CumulativeWeightc; ] 

<; WeightNormalizerc, 

After an instance has been classified the attribute weights for the class c are 

adjusted in the following manner: For each attribute i, if the predicted 

classification was correct, increase CumulativeWeightc; proportional to 

1- J(x;, y;), otherwise increase CumulativeWeightc; proportional to J(x;, yJ 
Increment WeightNormalizer;_.; by the maximum CumulativeWeight 

increment. The proportion is set lower for frequently occurring classes than 

for less frequently occurring classes to ensure that all classes have their weight 

settings adjusted at the same overall rate. 

The above attribute-weighting schemes assign global weights to the 

attributes-that is, an attribute cannot be regarded as relevant only in some 

areas of the domain space. Hastie and Tibshirani (1995) note that the idea of 

local adaptation of the distance function has received little research attention. 

They describe a method called discriminant adaptive nearest neighbour 

(DANN) classification that determines local decision boundaries and then 

shrinks the space orthogonal to the boundaries, and elongates the space 

parallel to the boundaries. This procedure can be thought of as determining 

the relative attribute importances on a local scale. A further enhancement 

combines local discriminant information to perform global dimension 

reduction. 

Wettschereck and Aha ( 1995) present a comparison of several attribute­

weighting methods. Attribute-weighting schemes are categorised with respect 

to the following five dimensions: 

Designing Similarity Functions-59 



Feedback: Weighting methods that use classification results to continually 

adjust attribute weights are called feedback methods. Those 

schemes that calculate attribute weights in a one-off procedure are 

called ignorant methods. The weighting schemes used by EACH 

and m4 are feedback methods, while the weighting used by DANN 

is an ignorant method. 

Weight Space: Some weighting methods perform feature selection, where 

attributes are either used or completely ignored. Other weighting 

methods allow continuous attribute weights to determine relative 

attribute relevance. Weighting methods are classified as either 

binary or continuous respectively. 

Representation: This dimension refers to whether the attribute set is 

transformed to another representation. The majority of weighting 

methods work with the attribute set as given. The DANN classifier 

transforms the problem space to remove globally irrelevant 

attributes. 

Generality: Many weighting schemes assume the relevance of attributes is 

constant globally. This assumption is not always valid. The 

relevance of attributes may vary with the position in the problem 

space. DANN classification adapts locally to the position of the 

decision boundaries. 

Knowledge: Domain specific knowledge can be used to determine 

attribute weights, suggest attribute transformations, and assign 

instance-specific weights. Few instance-based learners employ 

domain specific knowledge. Domain specific knowledge is often 

used in case-based reasoning (e.g., PROTOS, Porter et al., 1990), 

both in determining the relevance of particular features and in 

defining the case representation itself. 
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Wettschereck and Aha compare five instance-based algorithms with respect to 

the feedback dimension. Two of the algorithms incorporated feedback 

weighting; one that is a slight variant of the IB4 weighting scheme, and a k­

NN classifier using the weight optimising method from VSM (Lowe 1995). 

The other three algorithms incorporated ignorant weighting schemes. The first 

of these algorithms used the cross-category feature importance, defined as 

weight;= LP(c I if. 
l'EC 

Thus, the weight of attribute i is based on the skew in the conditional 

probabilities. 

The second algorithm used the VDM metric of Stanfill and Waltz (1986), 

described previously. The third ignorant weighting method used the mutual 

information between the class and feature values. The mutual information is 

the decrease in uncertainty about one variable's value given the value of the 

second. The weights are calculated as 

~~ ( ) P(x =CAX, =v) 
weight;= £-£.ip Xe= CA X; = V log ( e - )P( I - )' 

veV1 ceC p Xe - C X; - V 

where V; is the set of values that attribute i may take, P(x"=c) is the probability 

that the class of some training instance is c, and P(x;=v) is the probability that 

its value for attribute i is v. 

The five algorithms were tested on several datasets chosen to test an 

algorithm's ability to handle attributes that were irrelevant, noisy, or 

interacted with other attributes. Wettschereck and Aha concluded that: all 

methods can tolerate irrelevant attributes unless there are many interacting 

attributes; feedback methods are better at isolating a few interacting attributes; 

feedback methods appear to learn faster than ignorant methods; and ignorant 

methods are sensitive to the data preprocessing. 
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These conclusions state more about the particular weighting methods used in 

the experiment than the general benefits of feedback versus ignorant 

weighting methods. For example, the ignorant methods were found to be 

sensitive to preprocessing. All the ignorant methods used in the experiment 

were designed only for assigning weights. to symbolic attributes, and datasets 

involving numeric attributes had to be discretised. It is only to be expected 

that these methods do not perform well on this type of problem. However, one 

could design an ignorant weighting scheme that does handle numeric 

attributes without discretisation (such as the method used by DANN). The 

ignorant methods selected by Wettschereck and Aha do not appear to be well 

selected. Feedback methods do have an advantage; since they automatically 

adjust to maximise their classification performance, they can overcome 

initially inaccurate weight estimates and adapt to statistical differences 

between the training and test data: An obvious extension would be to use an 

ignorant method to estimate initial weights, and allow a feedback method to 

continually refine them. 

3.5 Instance Importance 

Some instances in the database may be better predictors than others, and 

instance-weighting algorithms seek to capitalise on this. One reason for the 

difference in predictive accuracy is that some instances may be the result of 

erroneous data, or may be atypical of their class. This issue is intertwined with 

reducing the memory requirements of instance-based learners, because if a 

training instance is sufficiently unimportant it may be removed from the 

database altogether. 

With the aim of decreasing storage requirements, Aha, Kibler and Albert 

( 1991) introduce a system called IB2 that saves only misclassified instances. 
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The idea is that only instances near concept boundaries are required to 

produce correct classifications, and that (since the exact concept is not known) 

misclassified instances provide a good indication of where concept boundaries 

lie. In a noise-free example domain, IB2 required that only 5% of training 

instances be stored with a minimal drop in accuracy. Unfortunately IB2 is 

sensitive to noisy data-these are often misclassified and are therefore added 

to the instance database, causing further misclassifications. Obviously the 

correctness of initial classification alone is not always a good indicator of 

instance importance. Another indicator of the predictive ability of an instance 

is its performance in the past. IB3 (Aha, Kibler and Albert, 1991) can be 

thought of as a simple instance-weighting algorithm that uses past 

performance statistics to divide instances into three pools: those that may 

currently be used in giving predictions; those that may not be used (but we are 

still gathering statistics on); and those that are so poor that they are removed 

from the database. For noisy datasets this resulted in a further reduction in 

storage requirements, and increased overall classification accuracy. 

A similar instance-weighting scheme is used in Cost and Salzberg's (1993) 

instance-based learner PEBLS. They introduce the Modified Value Difference 

Metric (MVDM), which replaces the symbol weight term of the Stanfill and 

Waltz VDM with an instance weighting mechanism: 

n 

MVDM(x, y )= weightx weight_,. L J(x;, Y; ), 
i=I 

where J(x;, y;) is identical to that of the VDM, and weightx and weighty are 

the instance weights for instances x and y based on their past performance. 

When a new instance is added to the database, it is given an initial weight the 

same as its nearest neighbour. Each time an instance gives an incorrect 

prediction its weight is increased, making its area of influence smaller. Thus, 

the weighting system does not remove the instance altogether (as IB3 does); 

rather the instance signifies a small exception in the concept space. 
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Another indicator of a training instance's predictive value is its distance from 

the test instance (this is the fundamental assumption of instance-based 

learners). It is only a small extension to assume that in the case of k-NN 

algorithms each of the k neighbours should have its vote weighted 

proportional to its distance from the current instance. Dudani ( 1976) proposed 

a weighting function where the weight assigned to an instance is proportional 

to its distance relative to the nearest and furthest of the k neighbours: 

where d J , I ::; j ::; k, are the distances of each instance. Dudani also suggested 

two other potential weighting functions; one where the weight of an instance 

is given by the reciprocal of its distance, weight J = fa; (di :;c O ), and one 

based on the rank of the neighbour, weight i = k- j + l. Stanfill and Waltz's 

( 1986) system MBRtalk used the reciprocal distance weighting function 

applied to the ten nearest neighbours retrieved by their VDM metric, and 

produced a prediction based on this weighted vote. 

Macleod, Luk, and Titterington ( 1987) pointed out that in Dudani' s weighting 

function, the kth neighbour is effectively removed from participating in the 

classification, and suggested a generalisation of Dudani's function: 
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where a is a positive constant and s=k,k+I, ... (choosing a =0 and s=k 

gives Dudani's original function). Their experiments indicated an 

improvement in performance for several alternative values of a and s, and 

conclude that in some cases a carefully chosen weighted k-NN function can 

outperform an unweighted k-NN. 

Keller, Gray, and Givens (1985) developed a "fuzzy k-NN" algorithm. Each 

training instance is assigned a class-membership vector which may either give 

complete membership to their known class and non-membership to all other 

classes (the "crisp" method), or partial membership in each class may be 

assigned according to the distances from the training instance to the class 

means (a "fuzzy" method). In classifying a test instance, a distance weighted 

average of the class-membership vectors of the k nearest neighbouring 

instances yields a class-membership vector for the test instance. The 

membership of the test instance x in class c; is given by 

~~ c;-weight. 
( ) - £.J,=1 ~ J 

C; X - k , 

Lj=l weightj 

-2 
where cij is the membership the jth neighbour in class i, and weight j = d j m-1 • 

For most of their experiments a value of m=2 was used, although it was 

reported that similar performance was obtained with other values. While the 

classification for the test instance is taken as that with the highest entry in the 

class-membership vector, it is noted that misclassifications are most likely 

when this entry is not significantly larger than other elements of the vector. 

Lowe (1993) reports a method called variable-kernel similarity metric (VSM) 

learning which combines the benefits of looking at the k nearest neighbours 

with the smooth weighting decline of a Gaussian kernel. The VSM learner 

combines the contribution of the neighbours in the same fashion as the crisp 
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method above, with the weighting function determined by a Gaussian kernel 

centred at the current instance: 

-J/ 
weight. = e 2112 

J ' 

where d . is the attribute-weighted Euclidean distance to the jth neighbour. 
1 

The width of the kernel is determined by o , which is a multiple of the 

average distance to the M nearest neighbours (e.g., M = ½) 

Both r and the attribute weights are determined by optimisation using a cross­

validation method (conjugate gradient descent). 

The instance weighting methods presented fall in two categories, those that 

use past performance to assign an overall importance to an instance's 

predictions (regardless of the current test instance), and those that determine 

the importance of each training instance with respect to the instance currently 

being classified. These methods are not mutually exclusive-for example, the 

VSM learner and PEBLS use weighting schemes of both types. As with 

feedback attribute weighting methods, performance-history instance weighting 

can adapt to statistical differences between the training and test data. 

3.6 Missing Information 

In practical datasets, missing values may occur for a number of reasons, such 

as malfunctioning measurement equipment, change in experimental design 

during data collection, and merging of several similar but not identical 

datasets. In some cases the presence of missing values is in itself informative 
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(for example, the omission of a value may indicate the attribute is not even 

meaningful for the current instance.) Rather than remove attributes or features 

that contain missing values, the best should be done with the data that is 

available. Dixon ( 1979) presents the earliest research that attempts to compare 

several methods for dealing with missing values. 

Dixon first performed the following gedanken experiment to get an intuitive 

feeling for how missing data should be handled. Consider the following two 

5-dimensional vectors A and B: 

A= (1.2 3.7 10.9 6.3 5.9) 

B =(I.I 3.5 blank 6.2 5.7) 

Our intuition would suggest that the blank value is close to 10.9, since the 

other values are close. In addition, we may guess that the blank value is 

slightly lower than 10.9, since all the other B components are lower than their 

A counterparts. Dixon interprets this in the form of three assumptions: 

I) that the data is clustered; 

2) that the features are correlated so that one can carry out linear 

interpolation across features; 

3) that if distances are small along the four dimensions, they will be small 

in the fifth. 

Aided by these assumptions, Dixon suggested the following six methods of 

handling missing values: 

I NNFILL: This method is used as a preprocessing stage to fill any missing 

values in the training data. If an instance has a missing value for 

some attribute, the blank is filled with the corresponding attribute 

of the instance's nearest neighbour. 
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4NNFILL: Similar to INNFILL-missing values are replaced with the 

average value of the instance's 4 nearest neighbours. 

DELETE: This is a preprocessing method that deletes any instances or 

attributes that contain blanks, attempting to minimise the amount 

of good data thrown away. The instance or attribute that contains 

the highest percentage of missing values is deleted. This process is 

repeated until all missing values are eliminated. 

NORMAL: This method is applied when the distance between two instances is 

calculated. The distance to a missing value is assumed to be the 

same as the average distance between the non-missing values in 

other attributes; the distance between two instances is calculated 

using the attributes with values given, and then scaled proportional 

to the number of attributes with missing values. 

AVERAGE: Similar to NORMAL, but the average is calculated over the 

particular attribute with the missing value (that is, calculate the 

average distance between all pairs of values for that attribute). 

ZERO: The distance to any missing value is zero. 

Dixon analysed the performance of these methods in a number of example 

domains, and found that DELETE and ZERO are both bad strategies. The other 

methods performed equally, although Dixon concluded that NORMAL and 

AVERAGE appeared to be more consistent than INNFILL and 4NNFILL. Dixon 

does not point out that in his experiments NORMAL performs consistently 

better than AVERAGE for high levels of missing values, but the situation is 

reversed for low levels of missing values. The methods as described by Dixon 

apply only to numeric attributes. Aha ( 1990) examines the behaviour of three 

methods for treating missing values that are defined for symbolic attributes 

also. 
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MAXDIFF: This method treats missing values as maximally different from the 

value given. Therefore the similarity of a symbolic value to a 

missing value is always 0. The similarity of a (normalised) 

numeric value x to a missing value is min{x,1- x}. The motivation 

here is that for all possible values y, the similarity of x and y 

should be higher than the similarity of x and a missing value. 

MODEMEAN: The missing value is replaced with the most probable value 

from previously observed values. This method is similar to 

Dixon's A VERA GE above. 

IGNORE: The attribute containing the missing value is ignored, and the 

measure normalised. This method is the same as NORMAL above. 

Aha discovered that none of the three strategies is consistently better than the 

other two, although in a particular domain there can be a wide difference in 

performance. Aha concluded that further investigation is required into 

characterising the conditions under which each scheme performs well. 

One method often seen in the statistics literature for estimating values for 

missing data is the expectation maximisation (EM) algorithm. Dempster, 

Laird, and Rubin ( 1977) first formalised the algorithm, although applications 

had been described earlier. The EM algorithm consists of two steps: the 

expectation step, where the missing values are estimated using initial guesses 

as to the parameters of the distribution of values; and the maximisation step, 

where the data (including the estimated values) are used to find maximal­

likelihood estimates of the distribution parameters. The expectation and 

maximisation steps are iterated until no significant variations in the 

parameters occur. The missing values may then be replaced with the estimates 

from the final iteration. 
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It is interesting to note the wide range of methods proposed for dealing with 

missing values. For example, Dixon's ZERO approach is the opposite of Aha's 

MAXDIFF method. It is also interesting that no method appears consistently 

better than the others in spite of the differences in approach. 

3. 7 Robustness 

An area that has received little attention m past research, particularly in 

machine learning, concerns the robustness of similarity functions and the 

algorithms employing them. We define robustness to mean that the similarity 

function should be sensitive to the domain only-the function should not 

register differences in similarity where they do not exist in the domain. For 

example, consider evaluating the similarity of weather maps based on a single 

correspondence of features between the two maps. The similarity can be 

plotted as one image undergoes some continuous change in its features. At 

some point the feature correspondence considered best may change and this 

will cause a sudden change in measured similarity, even though there is no 

sudden change in the images themselves. Reasonable behaviour in the case of 

smoothly changing objects is for the similarity to also change smoothly. 

These ideas extend further than the similarity measure itself. For example, an 

application may adapt parameters to the similarity function on the basis of 

objects seen so far. In this case, small changes in the attributes of training 

objects or their presentation order should not have large effects on the 

refinement of the measure. Sensitivity to presentation order is one of the 

problems Wettschereck and Dietterich (1995) found when analysing EACH' s 

performance. 
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Both Ting ( 1995) and Wilson and Martinez ( 1997) work with coherent 

treatment of different attribute types described in Section 3.3.3 are concerned 

with improving the robustness of the learning algorithms. Aha ( 1992) 

describes another case where robustness of an instance-based learner was 

improved. IB5 is a modification to m4 that adapts to the introduction of novel 

attributes during training. The introduction of novel attributes may be 

simulated in IB4 by presenting the attribute values as missing until actual 

values appear, but the problem is that during this time IB4 sets the weighting 

for this attribute to be very low. However, IB5 only performs weight 

modifications when both values are not missing, allowing it to reach a correct 

weighting much faster once values begin to appear. 

One way to increase robustness is to ensure that domain knowledge is 

employed whenever available. The following studies suggest other methods to 

improve robustness in a similarity measure. 

3.7.1 Smoothness 

It is suggested above that smoothness is one ingredient of a robust similarity 

function. The following research provides evidence for the importance of 

smoothness in a game-playing evaluation function, and the work is relevant to 

similarity functions in general. Berliner (1980) describes the development of 

an evaluation function for the game of backgammon. Using a single 

evaluation function for the entire game did not produce good play because 

different tactics are required for various stages of the game. As a solution 

Berliner tried having several evaluation functions, each for different stages of 

the game. One function would be used for the initial stages, and at some point 

the next evaluation function would take over. However, the discontinuities 

between the separate functions sometimes caused the program to avoid 
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Figure 3.3: Non-smooth evaluation function 

making the transition between game phases, essentially attempting to delay 

the inevitable. 

The primary conclusion drawn by Berliner is the importance of smoothness in 

an evaluation function. An evaluation function defines a surface in the feature 

hyperspace. If a surface is not smooth it may have a ridge, discontinuity or 

sudden step in the surface. Values on either side of such a blemish may be 

quantitatively very different, and therefore a small change in the value of one 

feature may produce a large change in the value of the evaluation function. 

Berliner found that when a program has the ability to manipulate such a 

feature, often it does so to its detriment. For example, if the change in 

evaluation signals an improvement, the program will attempt to enter that 

region of the hyperspace. If the evaluation represents an unfavourable change, 

the program will try to avoid crossing the blemish. The program is making 

decisions based on characteristics that are not really there. 

To illustrate the problems caused by non-smooth evaluation functions, 

consider the evaluation functions depicted in Figure 3.3. The upper function 
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makes use of the natural scale of the attribute, and the lower evaluation 

function internally simplifies this scale (this example could represent the 

conversion of some floating-point attribute to integer). On either side of point 

A the lower evaluation function sees no difference in goodness, and on either 

side of point B the lower evaluation function sees a large difference. The 

reality is that for both points there is a small difference either side (as seen in 

the upper function). Berliner found that these problems were the cause of poor 

performance in his early backgammon programs. By ensuring a smooth 

evaluation function, Berliner was able to achieve a significant improvement in 

his program's performance (his program BKG9.8 defeated the World 

Backgammon Champion in 1979). 

Berliner's findings for evaluation functions also apply to similarity measures. 

If the similarity measure is not smooth it will suffer problems. Between some 

points in the feature space the similarity measure will return a 

disproportionately higher similarity than it should, and in others the measure 

will return a lower similarity than it should. When asked to judge which of 

two objects is most similar to some object, the similarity measure may result 

in an incorrect choice being made. An illustration of this exact problem was 

given in the discussion of the UV datasets in Section 3.3.3. 

3.7.2 Multiple Paths 

Yee and Alison's (1993) research into the comparison of DNA sequences 

presents another idea for increasing similarity function robustness. Under one 

evolutionary model, DNA sequences may undergo any of a set of genetic 

mutations, such as insertion or deletion of nucleotides. A number of 

successive mutations may completely transform one DNA sequence to 

another. Depending on the probabilities for each of the basic mutation 

operators, some possible transformation paths are more likely than others. The 
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, 1. Start with some reasonable values for the probabilities. 

2. Calculate the single optimum alignment using the 

dynamic programming algorithm. 

3. Recalculate the mutation probabilities from their observed 

frequencies in the optimum alignment. 

4. Repeat steps 2-3 until the solution converges (typically 

after 4-8 iterations). 

Figure 3.4: Algorithm to discover mutation probabilities 

objective was to discover the parameters (that is, probabilities for each of the 

basic mutations) for the evolutionary model that produced two strings. 

Yee and Alison initially used the iterative approach shown in Figure 3.4. 

Although convergence is guaranteed, the method may get trapped in a local 

optimum. The dynamic programming algorithm (DPA) is a well-known 

method for finding an optimal alignment between two strings for given 

instruction costs. The DPA uses a matrix D, where D .. is the minimum cost to 
I} 

edit the first i symbols of string A into the first j symbols of string B. Alison 

and Yee formulate the DP A in terms of minimum description length, where 

the increment in cost for each edit operation is the length to encode the 

relevant operation. The DP A result is the message length to encode the 

optimum alignment. In MDL terms, this algorithm searches for a hypothesis 

that specifies the mutation probabilities along with a specific DNA alignment 

that can be used to encode the strings. The obvious null-hypothesis is that the 

strings are unrelated (in that case it is best to encode the DNA strings literally 

at 2 bits per symbol). 
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Yee and Alison define a hypothesis called the r-theory, that the two DNA 

sequences are related but in an unspecified manner. The strings are encoded 

based on all possible alignments between the two strings. In order to estimate 

the mutation probabilities the algorithm in Figure 3.4 is modified. The central 

step of the DP A is adapted to store the message length resulting from 

encoding all possible paths rather than the shortest message length from a 

single path encoding, as follows: 

[

D;_1•1_1 + if ~[i ]= B[J ]then ML(match )else ML(change )] 

D;; =logplus Di.J-i +ML(ms8 ) , 

Di-1.J + ML(insA) 

where logplus(log(P}log(Q} ... )=log(P+Q+ ... ). The new DPA calculates 

the message length to generate strings A and B in an unspecified manner. 

The iterative method to estimate probabilities for the change, match and insert 

operators is also modified, since the DP A no longer tries to find a single 

alignment. From the DP A matrix, weighted averages of the instruction 

frequencies are calculated to obtain parameters for the next iteration. 

To evaluate the r-theory (the method incorporating all possible transformation 

paths) against the single alignment method, Yee and Alison generated many 

strings using known parameters and measured the ability of the two methods 

to discover the actual parameters. Their results indicate that the r-theory 

performs better, particularly at higher mutation levels. The r-theory gives 

unbiased estimates of the parameters of the evolutionary process that gave rise 

to the two strings A and B. Parameter estimates based on a single alignment 

are biased. A possible explanation for the performance difference is that 

evolution is a random process, and the probability that it follows the optimum 
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path may be small. Considering all possible edit paths appears to be a useful 

method for removing biases in the comparison. 

3.8 Other Issues 

The previous sections discuss issues particularly relevant to this thesis. There 

are other points regarding instance-based learners that are worthy of a brief 

discussion, although they are not directly related to the problem of measuring 

instance similarity. In particular, the issues of storage requirements and 

interpretability have not been discussed. These issues are presented in the 

following sections for completeness, not as issues to be addressed by this 

thesis. 

3.8.1 Memory Requirements 

One problem with the basic nearest neighbour algorithm is the large storage 

requirements-all instances are maintained in the database. Aside from the 

disadvantage in its own right, this increases the time taken to find a nearest 

neighbour if the distance to every instance in the database is calculated. Edited 

nearest neighbour algorithms are selective in which instances are stored in the 

database and used in classification with the objective of reducing storage 

requirements. In probably the earliest work in this area, Hart ( 1968) describes 

the condensed nearest neighbour rule (CNN). The set of instances kept in the 

database are defined to be some subset of the instances such that those left out 

would be correctly classified by those in the subset. This subset is generated 

by an iterative procedure: instances are either placed in the database if their 

class was not predicted by the instances already in the database, or they are 

placed in a grab-bag. Repeated passes are made through the grab-bag 
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attempting to classify each instance usmg those in the database. Any 

incorrectly classified instances are moved to the database, and when an entire 

pass is made through the grab-bag without any transfers the process ends. 

CNN trades a possible drop in classification performance on new instances for 

reduced storage requirements (and the corresponding reduction in 

computation time to reach a decision). In a simple letter recognition 

experiment with a large training set, the CNN rule required only 5% of the 

instances be retained. 

Gates ( 1972) further modifies CNN to produce the reduced nearest neighbour 

rule (RNN). The idea here is that each instance in the CNN database is tested to 

see whether its removal results in incorrect classifications of those instances 

not in the database. In their experiments, the CNN rule required on average 

16% of the training instances be retained, and the RNN gave a further 

reduction to 12 % . 

A reduction in storage requirements can also be a secondary achievement 

during instance weighting. We have seen previously that IB3 is able to remove 

sufficiently unimportant instances from the database as part of its instance 

weighting procedure. A similar reduction is often achieved by methods aimed 

at increasing the interpretability of an instance-based learner's results. 

3.8.2 Interpretability 

Instance-based learners often perform very well at classification tasks­

answering the question "what class does this instance belong to?". They are 

not good at answering the question "why does this instance belong to that 

class?" (for which decision trees or rules are ideal). Many machine learning 

algorithms generalise training data to form simple classification rules. These 

systems require more training data in order to learn than instance-based 
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learners; however, they have the advantage of being faster during 

classification, as well as providing the user with an easily understood 

representation of the concept learned (i.e. the rules themselves). It is difficult 

for a human to look at an instance database and gain an understanding of the 

domain. Instance generalisation is a way of providing more human 

interpretable output. 

Instance-averaging algorithms perform a simple form of generalisation. 

Rather than forming rules or decision trees, multiple instances are combined 

together in the database, retaining the primitive form of instances. These 

instances may be considered prototypes for their class. 

Bradshaw (1986) describes an early instance-averaging system called Nexus. 

When a training instance correctly classifies a new instance, a weighted 

average is carried out with the new instance. Weights of 1 are initially 

assigned to all training instances, and whenever an instance is averaged the 

weights increase by 1 (the weights are a therefore measure of how many 

instances are represented by the training instance). If the new instance is 

incorrectly classified, it is simply added to the database. Instances that are not 

useful are removed. NEXUS was applied to speech recognition and obtained an 

accuracy about 13% higher than a traditional speech recognition program. 

Instance-averaging algorithms such as NEXUS have lower storage 

requirements for the instance database and fewer classification errors caused 

by noisy data, but it is not clear how they can be extended to handle symbolic 

attributes (which cannot be averaged easily). 

An alternative approach to providing interpretable output is to combine rules 

and instances. A rule of the form "IF (valuel S attribute A S value2) AND 

(value3 S attribute B S value4) THEN classification X" defines a 
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hyperrectangle in the attribute hyperspace, and any new instance which falls 

inside the hyperrectangle is given the same classification. 

Salzberg ( 1991) introduces a system capable of generalising instances to form 

hyperrectangles while maintaining the nearest neighbour approach. In the 

nested generalised exemplar (NGE) theory, the memory is "seeded" with a 

small set of training instances which can be considered point hyperrectangles. 

A new example is matched to the nearest neighbouring hyperrectangle in 

memory using an instance and attribute weighted Euclidean distance function. 

In the case of a tie between hyperrectangles, the smallest is preferred (as it is 

the most specific). If the new instance is correctly classified, the 

hyperrectangle is extended (generalised) to cover the new instance. When an 

instance is incorrectly classified, the second closest hyperrectangle is 

examined to see whether it would have given the correct classification, had it 

been used. If so, it is generalised to cover the new instance, otherwise the new 

instance is added to the database. One benefit of storing generalised instances 

as hyperrectangles is that hyperrectangles can be examined by a human to 

give an intuitive idea of the concept description (which is hard with traditional 

IBL algorithms). In experiments, it was found that their implementation, 

called EACH, performed as well as other algorithms, although not markedly 

better. EACH required approximately 10% of the instances be stored. 

Wettschereck and Dietterich (1995) conducted an analysis of EACH's poor 

performance in comparison with k-NN and suggested three improvements: 

first, that overlapping hyperrectangles be avoided; second, that if possible the 

classifier should be trained on the entire training set in batch mode to avoid 

problems caused by presentation order (which indicates the original algorithm 

for growing the hyperrectangles was not robust); third, that the attribute 

weighting scheme implemented in NGE was poor. They conclude that their 

modified algorithm (BNGE) gives superior performance in domains where an 
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axis-parallel hyperrectangle bias is appropriate, or interpretability and 

memory efficiency are important, but in other domains k-NN is a better 

choice. 

Wettschereck ( 1994) further examined the performance of BNGE and 

discovered that most misclassification occurs when an instance is not covered 

by a hyperrectangle. A hybrid classifier that uses k-NN whenever an instance 

does not fall inside a hyperrectangle gave a substantial improvement in 

performance while retaining much of the speed and understandable concept 

representation of BNGE. 

3.9 Conclusions 

Specific solutions to many issues pertaining to similarity functions in 

instance-based learning have been described. There are several functions for 

measuring the similarity between instances represented as numeric attributes. 

Other functions have been developed for instances represented as symbolic 

attributes. There has been little work on dealing directly with attributes other 

than plain numeric and symbolic. Combining functions designed for numeric 

attributes with those designed for symbolic attributes causes unwanted biases. 

The addition of attribute weighting schemes is intended to counteract these 

biases as well as to adapt similarity functions to the particular problem 

domain. With the exception of Ting and Wilson and Martinez' work, there 

appears to be no research directed at combining measures from multiple 

sources coherently, or at allowing domain information to be captured within 

the similarity function in a general way. 

There are problems with the current treatment of other issues. Dealing with 

instances that have information missing is a common requirement for an 
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instance-based learning algorithm. Again, several different methods have been 

successfully used in the literature; however, not all of these are applicable for 

different attribute types. There is a general ad hoc approach to dealing with 

this and other issues. Solutions to different problems are combined without 

thought to whether they are compatible. The resulting instance-based learners 

often exhibit non-robust behaviour (the EACH learner is a good example of 

this). Some research has attempted to address specific cases of non-robustness, 

but none have been concerned with producing a robust and general similarity 

function from the outset. 

These issues are vitally important in fielded applications, where a similarity 

function must accurately reflect the characteristics of the domain to give 

optimum performance. These problems are also interesting from an academic 

point of view-how can these problems be solved within a general 

framework. Many of the instance-based algorithms described perform well in 

practical and artificial domains. However, comparison is usually made with 

other similar algorithms rather than domain specific algorithms. Few of these 

solutions have more than empirical justification. Certainly none of the 

solutions are related by a common framework. Discovering better ways of 

dealing with these issues is an area ripe for research. 
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Chapter 4 

Similarity Function Design 

This chapter presents a framework for the design of similarity functions that 

attempts to address the issues identified in the previous chapter. Similarity is 

interpreted as the likelihood of transforming one instance to another. 

Similarity is determined by calculating the probability of a sequence of basic 

transformations; to improve similarity function robustness, all possible 

transformation sequences between instances are considered. Algorithmic 

complexity theory provides the basis for this approach to measuring 

similarity. This chapter presents several examples that illustrate how to 

construct similarity functions for simple domains. 
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4.1 Complexity as Distance-Probability as 

Similarity 

The approach we take to computing the distance between two instances is 

inspired by algorithmic complexity theory. The central idea is that the 

distance between instances can be defined as the complexity of transforming 

one instance to another. Kolmogorov complexity gives us a measure of the 

amount of information in an object. If the object is a description of a 

transformation between two instances, a low Kolmogorov complexity would 

imply that the instances are similar. The similarity between instances 

decreases as the information needed to describe the transformation increases. 

This raises the question of how to describe the transformation between 

instances. First, a finite set of transformations that map instances to instances 

is defined. A "program" to transform one instance (a) to another (b) is a finite 

sequence of transformations starting at a and terminating at b. This procedure 

will not enable us to calculate the Kolmogorov complexity (since there may 

be more efficient encodings for the transformation), but it will allow us to 

calculate an upper bound to it. The set of transformations should be chosen 

carefully as this will affect how close an approximation the upper bound is. 

Following the usual development in complexity theory, transformation 

programs are made prefix-free by appending a termination symbol to each 

string. Recall from Chapter 2 that the Kolmogorov complexity of an object is 

the length of the shortest string describing it. A Kolmogorov distance between 

two instances can be defined as the length of the shortest transformation 

program connecting them. This method focuses on a single transformation 

(the shortest one), out of many possible transformations. Chapter 3 presented 

evidence that this type of approach is likely to make the resulting distance 

measure overly sensitive to small changes in the instance space, or to the set 
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of basic transformations chosen, and therefore does not solve the robustness 

problem well. The distance measure defined below attempts to deal with this 

problem by considering all possible transformations between two instances 

(and hence we name our distance measure K*). 

It is not immediately obvious how the transformation paths should be 

combined-adding the lengths of the different transformations is clearly not 

correct. The solution is to associate a probability with each sequence. If the 

complexity (length) of a program measured in bits is c, the corresponding 

probability is z-c. In particular, it is true that in any well-defined distance 

measure based on Kolmogorov complexity, the sum of this probability over 

all transformations will satisfy the Kraft inequality. This sum can be 

interpreted as the probability that a program will be generated by a random 

selection of transformations. In terms of the similarity between instances, it is 

the probability of reaching an instance after executing a random walk from the 

original instance and stopping. After summing over all paths this probability 

(similarity) may be transformed into units of complexity (distance) by taking 

the logarithm; however in most cases it is convenient to deal directly with 

probabilities. 

This approach is somewhat different from traditional random walk treatment 

(Wax, 1954; Spitzer, 1975). In these models a particle moves stochastically 

without stopping. The type of question asked in random walk problems is 

"what is the probability of the particle being at point x at time t?" or "what is 

the probability that the first visit to point x occurs at time t?", whereas the 

question we ask is "what is the probability of stopping at point x, regardless of 

the time taken?". As we shall see though, our theory is general enough to 

encompass ordinary random walk models. 
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This approach may be likened to the Solomonoff-Levin universal prior. 

However, the Solomonoff-Levin prior employs a universal Turing machine, 

whereas our similarity measure uses a simplified machine that processes a 

defined set of basic transformations. In our formulation of transformation 

programs it is possible to ensure the transformation machine halts for all 

input, and therefore the similarity is computable. 

The beauty of this interpretation of similarity is that it is applicable to many 

types of instances, be they one-dimensional numbers, points on a plane, 

images, or high-level feature descriptions. Because similarities are expressed 

in common units of probability, we may use standard methods for 

manipulating them. 

There are two issues that require further explanation. The first is how to 

define a good set of basic transformations. Clearly the set of basic 

transformations must be expressive enough to allow any two instances to be 

connected by some program. In many cases a reasonable set will be apparent 

by looking at the underlying domain. For example, if the instances are integer 

numbers the most obvious transformations are to add one and subtract one. To 

define a set of basic transformations for other instance types may require more 

creative modelling. Changing the set of basic transformations allows the 

similarity function to be customised to different types of instance, whether 

they are simple numbers, DNA sequences, or weather maps. 

The second issue is how to determine the actual length of a transformation 

program in bits (or its corresponding probability). One method is to assign 

reasonable probabilities to each basic transformation. The actual probabilities 

chosen will depend on the domain, however they must sum to less than 1 for 

the resulting code to satisfy the Kraft inequality. A special case arises when 

they sum to exactly 1-the resulting code is complete and the transformation 

Designing Similarity Functions-86 



machine will halt for all randomly chosen programs. The probability of an 

entire transformation program is the product of the probabilities of each 

transformation in the sequence. This method is used in most of the worked 

examples, although other methods could be envisaged. For example, the 

probability of each basic transformation could be adaptively altered on the 

basis of its context. This approach might be employed in DNA sequence 

comparison by allowing the probability of a "delete nucleotide" instruction to 

be higher if the immediately preceding instruction is also a delete instruction, 

effectively giving block deletions a higher probability than many single 

deletions. The probabilities assigned to the basic transformations permit 

customisation of the similarity measure to the actual domain. For example, 

weather map instances may be used in predicting both temperature and 

pressure. While the set of basic transformations will be the same for both 

domains, the assigned probabilities may well be different. 

4.2 Specification of K* 

This section presents a formal specification of the transformation-based 

similarity measure, before proceeding to worked examples of constructed 

similarity functions. 

Let I be a (possibly infinite) set of instances and T a set of transformations 

that operate on I. Each t e T maps instances to instances: t: I ➔ I . T contains 

a distinguished member o (the stop symbol), which for completeness maps 

instances to themselves ( o (a)= a). Let P be the set of all prefix codes from 

T* that are terminated by o. Members of T* (and so of P) uniquely define a 

transformation on I: 

t(a )= tn (tn_i{. .. t1 (a) .. )) where t = tp••· tn. 
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(We denote members of T* with an overbar, and members of T without. 

Concatenation of t1, t2 e T * is denoted by t1t2 • Concatenation of t I e T * 

with t 2 e T is denoted by t1t 2 • The length of t e T* is denoted by z[t).) 

A probability function p is defined on T* which satisfies the following 

properties: 

0~ p~1~1 
pt 

(4.1) 

That is, 0 $ p(u Ii)::; 1. The probability of transformation u occurring is not 

necessarily independent of the previous transformations t. 

(4.2) 

Thus, from any point in a transformation sequence, the probabilities of the 

next possible transformations sum to I . 

p(A)= 1. (4.3) 

That is, the initial probability (before any transformations take place) is 1. 

Theorem 4.4: n = I p(t)::; i. 
ieP 

That is, the sum of all prefix transformation programs is no greater than 1. We 

call Q the halting probability, because it may be thought of as the probability 

that the transformation-processing machine halts when its program is supplied 

randomly. 
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Proof: Let Qk = Pk u Rk, where Pk=~: te P,z[t)~ k }, the set of all prefix 

codes with length k or less, and Rk =~:toe P,z[t)=k}, the set of not-yet 

terminated codes of length k. Note that Pk and Rk are disjoint. Then 

Qk+I = pk+) u Rk+I 

= (Pk u ~CT : t e Rk })u ~u : t e R k, u e T, u * CT} 

So we see that lim Qk => P. 
k-+oo 

First, we show by induction that L p[t)= I for all natural numbers k. 
IEQk 

Base step: L p[t)= p(A)= I. 
ieQ 11 

Induction step: Assume L p[t)= I for some value k. Then, 
ieQk 

I pft)= I pft)+ I pft) 
ieQ k+I ie Pk+I ie R k+I 

= [ J;, p(i}+ ,~ p(icr)} ,~ ~ p(iu) 
U,.(T 

= L,Plt)+ LLP(tu) 
iePt ieRtueT 

= I pft)+ I pft) 
iePt ieRt 

= L,Plt) 
teQk 

=l. 

Now, since 

the inequality holds. 
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The case where Q = 1 requires that lim """'_ p(t)= 0 , that is, the probability 
k➔oo .£.Jee Rk 

that a randomly chosen program has not been terminated approaches zero as 

the length of the program increases. One way to ensure this is to impose an 

extra condition on p, for example 

O < c < PIJ/,;, I , (4.5) 

where c is some small constant. Note that it is not sufficient to simply have 

p(ta) . p(ta) 1 . . L r♦) 1 
0 < -r) ~ 1. For example, 1f ~) = r♦), we fmd that hm _ P\t = - . 

P\t P\t l\t k➔oo reRk e 

The probability function P* is defined as the probability of all programs 

transforming instance a to instance b: 

P*(bla)= LP\t). 
ieP 
i(u)=h 

P* satisfies the following properties: 

Theorem 4. 7: 0~ P* (bl a)~ Q ~ 1. 

(4.6) 

That is, the P* transformation probability (or similarity) from instance a to 

instance b is between zero and the halting probability. When no programs 

transform a to b, P* (b I a)= 0, and when all (halting) programs transform a 

to b, P* (b I a)= Q . 

Proof: Theorem 4.4 states that the probability of all possible programs is Q . 

Since f: t e P, t(a )= b }c P, the probability P* must be less than or equal to 

n. 
0 
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Theorem 4.8: 

That is, from any initial instance a, the sum of transformation probabilities to 

all instances equals the halting probability. 

Proof: From Theorem 4. 7 we see that ~ P* (b I a)=~ ~ _ -c )= p(t). This 
£-b £-b£-1eP.1 a h 

is equivalent to ~ _ p(t) which by Theorem 4.4 is Q. 
£-1eP 

The K* distance function is defined as: 

K*(b I a)=-log2(P* (b I a)). 

◊ 

(4.9) 

K* is not strictly a distance metric. For example, K* (a I a) is typically non­

zero, and the function (as emphasised by the I notation) is not necessarily 

symmetric. 

The following properties are provable: 

Theorem 4.10: K*(bla)~O. 

That is, the K* transformation complexity (or distance) between two instances 

is greater than or equal to 0. 

Proof: Directly from Theorem 4.7. 

◊ 
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Theorem 4.11: If we make it a condition that the basic transformations are 

independent, that is, p(tu )= p(t)p(u) (which is also sufficient to ensure that 

.Q = 1), then 

P* (c I b )P* (b I a ):5 P* (c I a). 

After converting from similarity to distance we see that this is actually the 

triangle inequality: 

Proof: 

P* (c I b )P* (b I a ):5 P* (c I a) 
¢::> -log 2 (P* (c I b ))- log 2 (P* (b I a))~ -log 2 (P* (c I a)) 
¢::> K* (c I b )+ K* (b I a)~ K* (c I a). 

P* (c I b )P* (b I a)= L p(ta) L p(u) 
io-eP iieP 
1(11 }=b ii(b )=,· 

=:;; L LP\t)p(u) 
io-eP iieP 
i(a)=b ii(b )=c 

:5 I LP\tU) 
iueP iieP 
i(a)=b ii(b )=,· 

= LP\tU) 
riieP 

irb~· 
:5 I p(tu) 

iiieP 
rii(a )=c 

= P*(cl a). 

That is, programs that transform a to b can be concatenated with programs 

that transform b to c, to give all programs that transform a to c by including b 

as an intermediate stage. All of these new programs are already included in 

the calculation of P* (c I a), so it cannot be lower than the product of P* (c I b) 

and P* (b I a). If there are no programs that transform a to c that bypass b 
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(and the stop probability 1s 1), the two sides are equal, otherwise the 

inequality holds. 

Theorem 4.12: If, (in addition to the condition required for Theorem 4.11) 

each basic transformation t e T has an inverse t· 1 e T such that 

t(a )= b H r 1 (b )=a, and p(t)= p(t·1 ), then 

P* (a I b )= P* (b I a). 

That is, the similarity function is symmetric. 

◊ 

Proof: First we show by induction that each t e T* has an inverse sequence 

Base step: Let t e T* such that z(t)= 1. Then t consists of a single basic 

transformation, for which an inverse exists as given. 

Induction step: Assume an inverse sequence exists for all u e T* with 

l(u)= k . Let t e T* such that z(t)= k +I. Then t = uv with u e T*, 

l(u)= k ' Ve T. Let "t· 1 = v· 1u·1• Then 

p(t)= p(u)p(v) 

= p(u-1 )p(v-1) 
= p(t·l). 

Let a= t(b )= v(u(b )) and c = u(b) (and so a= v(c )). Then, since b = u-1 (c) 

and c = v· 1 (a), b =u·1{v·1 (a))= 1·1(a). Thus, 1·1 is an inverse sequence tot. 
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If toe P, its prefix inverse sequence is defined as 1·10 (and since <J maps 

instances to themselves, 1·10 is also an inverse sequence of to ). Then 

P*(a lb)= LP\t) 
ieP 
i(bpu 

= LPft·1 ) 

i·'eP 
1·1 (u)=h 

= P* (b I a). 

Effectively, each possible transformation program may be replaced by its 

prefix inverse sequence with equal probability, and so the similarity function 

is symmetric. 

◊ 

Having defined the K* theory and its properties, the following section 

describes its application to some example domains. 

4.3 Applications of K* Theory 

The examples presented in this section illustrate potential approaches to 

developing K* distance functions, and provide a foundation for the K* 

instance-based classifier described in Chapter 5. Many of these examples 

illustrate methods for dealing with problems identified in the weather ·domain 

discussed in Chapter I and Chapter 3. It is important to note that the particular 

models for instance transformations used in these examples are by no means 

the only (or best) models. These transformation models may be useful in some 

domains, while in other domains different models may be more applicable. In 

many of the following examples multiple transformation models are 

discussed. 
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I I I I I I I I I I .. 
a b 

Figure 4.1: Discrete instance positions 

4.3.1 Discrete Infinite Space (Integers) 

In this example we are interested in determining the similarity between two 

integers. Let the set of instances I be the integers (positive and negative). 

There are three transformations in the set T: o the end of string marker; and 

left and right, which respectively subtract one and add one. The probability of 

a string of transformations is the product of the probability of the individual 

transformations, 

p(t)= ITp(t;), where t = ti,••· t,,. 
i 

The probability of the stop symbol o is set to the (arbitrary) value s and 

) 1-s 
p(left) = p (right = - . 

2 
This probability assignment satisfies the 

preconditions for Theorem 4.11 and Theorem 4.12. 

The shortest transformation program that transforms a to b and terminates 

consists of i right symbols ( or left symbols if a>b) followed by the stop 

symbol o, where i =lb-al (see Figure 4.1 ). The probability of the shortest 

transformation from a to b is therefore 

1-s P(bla)= - s. ( Ii 

2 I 
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As P(b I a) depends only on the absolute difference between a and b, we can 

abuse our notation slightly and write P(i). 

To generate alternative programs, additional left symbols may be inserted 

anywhere in the shortest transformation string, and provided that each has a 

corresponding right symbol added, the new transformation string will still 

map a to b. Adding k symbol pairs yields ( 2k + i I valid transformation 
k i 

strings. Considering all possible mutations to the shortest transformation gives 

Pg .. * (i)= (~); s r(2k + i1(~)2k 
2 k~ k 1 2 

( Pg .. denotes that the domain of Pis all integers.) 

The sum on the right hand side has a closed form using the following 

generating function identities (from Graham, Knuth and Patashnik, page 203) 

~(2k+i') k _ PiCzY h p ( )-1-~ £.i 1z - ,.--;- , w ere 2 z - . 
k.?O k 1 -v1-4z 2z 

Thus, 
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Returning to P*: 

s 
It will prove helpful for later developments to assign c = ---;=== and 

✓2s-s2 

m = ln(I- s )- ln~ -.J2s - s2 ), enabling the probability to be re-expressed as 

P5_ * (i)= ce-mi. (4.13) 

Figure 4.2 shows the probability of an instance at position O transforming to 

other positions on the line. When the probability of the stop symbol is set to 

-½ , there is a high probability of finishing at position 0. The three most 

probable transformation programs are "o" with probability -½ , "left right o " 

and "right left o" both with probability ;2 ; the contribution from longer 

programs drops off rapidly. Similarly, the probability of finishing at positions 

further away from the start position also decreases rapidly. With p( o )= 1~ the 

distribution over the final positions becomes more uniform because long 

programs are more likely. 

The K* distance function is obtained by taking the log of the P* probability 

function, 

K5_ *(i)= ½1o&(2s-s2 )-lo&(s)+i ~o&(l-s)-lo&(1-.J2s-s2 )). 
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Figure 4.2: P* probabilities for the discrete line 

That is, the distance (in bits) is proportional to the absolute difference between 

two instances. Figure 4.3 plots the distance functions corresponding to the 

probability functions in Figure 4.2. As mentioned previously, the distance 

from position O to itself is non-zero. 

The set of transformations chosen above is not determined by the theory. 

Other transformation sets (with different distance functions) could be 

envisaged, but this formulation seems to capture the idea that all points are 

equivalent, and that space is "invariant" under left and right shifts. It is easy to 

imagine a situation where the probability of the left and right transformations 

should be different, perhaps to provide a distance measure between points in a 

slowly flowing river. The probability of randomly arriving at a point 

downstream would be higher than arriving at a point upstream. This 
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Figure 4.3: K* distance for the discrete line 

asymmetry may be useful for the weather domain, where weather pressure 

systems generally move from west to east and not from east to west. 

Following the same general development as above, let p(left )= l and 

p(right )= r, so that s + l + r = 1. Since the measure will be asymmetric, we 

return to the P* (b I a) notation. 

P5_ * (b I a)= ((b-a > O)?r: zr-al SL rklk (2k+ lb-a I] 
k~O k 

=((b-a>O)?r:zr-als 1 (1- ✓1-4rl]lb-al 
.JI-4rl 2rl 

( J
ib-al 

s 1- ✓1-4rl 

= .Ji - 4rl 2((b- a > 0 )? l : r) ' 

where E?A:B is a ternary operator that takes the value A if expression E is 

true and B otherwise. 
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Figure 4.4: Asymmetric K* distance function 

Figure 4.4 graphs the resulting distance function when the probability of the 

right transformation is ten times as high as the left transformation, in 

comparison to when the probabilities for these transformations are equal. As 

expected, the distance from the starting point to a position to the left is greater 

than to the same distance to the right. 

In this development it was assumed the transformation probabilities were 

constant throughout the length of each program. By setting the probability of 

the stop symbol to O for the first N program instructions, and 1 thereafter, it is 

possible to obtain the probability of transforming from instance a to instance b 

by any program consisting of N displacements. This is the problem commonly 

found in random walk texts (Wax, 1954; Spitzer, 1975). 
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Let the left and right instructions each have probability of ½ for the first N 

instructions and O after. The probability of the stop symbol is O for the first N 

instructions and I after that. N must be odd or even as i is odd or even. The 

probability of all programs of length N transforming a to b is 

Since the most interesting case is when N is large and i<<.N, the formula can 

be simplified somewhat. Using Stirling's approximation for logn!, 

log(P5 .. * (i,N))= (N +½)logN 

-t(N+i+l)lo{:(1+ ~ )J 
-t(N-i+l)log(: (1-~ )J 
-t log 2,r - N log 2. 

Since i<<N, the series expansion for log(l+x) may be applied, to obtain 

log(P5 .. * (i,N))= (N +-½)logN -tlog2,r-Nlog2 

-.L(N +i+lflogN-log2+..!:._-~J 
2 \ N 2N 2 

-.i(N -i+l{logN-log2-..!:._-~ l_ 
2 N 2N2 I 

) 

Simplifying this further, 

i2 
log(P5 .. * (i,N))=-t logN + log2-½log2,r- 2N. 

In other words, for large N, the transformation probability is given by the 

asymptotic formula 
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Figure 4.5: K* distance for set-length programs on the discrete line 

-2 

-'-
P~ .. * (i,N)= e 2N. (4.14) 

The resulting K* distance function is shown in Figure 4.5 for N = 10 and 

N = 50. In comparison with Figure 4.3, the function is no longer linear but is 

instead proportional to i2. Only even values are sampled because, for the 

values of N chosen, finishing an odd number of positions away is impossible. 

The similarity function given in Equation 4.13 assumes that programs may be 

any length, in contrast to the assumption in Equation 4.14 that programs be 

the same length. It is important to choose the appropriate function for the 

domain. One can imagine cases where the above function would be more 

suitable than Equation 4.13, such as when a constant time interval separates 

the instances being compared. 
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Take, for example, a domain where plant growth measurements are compared 

for fertiliser effectiveness. If the plants are the same age, it is sensible to use 

Equation 4.14, whereas if plant ages vary, Equation 4.13 is more appropriate. 

In the first case, one expects many measurements in the same region, so a 

large difference between two plant measurements is significant. In the second 

case, one would not expect the measurements to be similar, due to the varying 

ages of the plants. A large measurement difference is not as significant; it may 

be due to an age difference between the plants, rather than due to the fertiliser. 

4.3.2 Discrete Finite Space 

Consider the case where the set of instances is restricted to n integers in the 

range 0, ... , n -1 . The same basic transformations may be used; however some 

reasonable behaviour must be proposed for transformations at the two edge 

positions. Two obvious possibilities come to mind: instances may wrap 

around, so an attempt to move past one edge transforms the instance to the 

other edge, or instances may "reflect" off an imaginary border. The first case 

may be useful when comparing modulo instances, such as the days of the 

year. The second case is less useful, because it turns out the resulting measure 

is not significantly different from the infinite case. It is also more difficult to 

imagine a practical situation where this type of model would apply, but for the 

purpose of comparison both possibilities are examined. 

4.3.2.1 Wraparound 

Take n positions labelled 0, ... , n -1 . Assume that at position 0, possible 

transformations are to transform left to position n -1 and right to position I, 

and at position n -1 the possible transformations are left to position n - 2 
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Figure 4.6: Finite positions using wraparound 

and right to position 0, as depicted in Figure 4.6. This situation could be 

useful in obtaining a similarity measure between days of the year. The first 

day of the year should be equally similar (perhaps with respect to the 

probability of rain) to the last day of the year as to the second day of the year. 

The possible transformations from instance a to instance b can be mapped 

onto the integers by placing "images" of b on the line wherever integer 

i mod n = b (see Figure 4.7). Any transformation sequence on the integers 

that transform a to either b or one of the images b' also map a to b in 

Figure 4.6. 

To calculate the probability of transforming from position a to position b, first 

assume b ~ a . Then 

0 I 11-l O I n-1 0 I 11-l 

4 I I I I I I I I I I I I I I I I I I .. 
b' a b b' 

Figure 4.7: Mapping wraparound onto the integers 
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P!3,.*(bla)= Il!3oo *(nk+(b-a))+ Il!3oo *(n(k+I)-(b-a)). (4.15) 
k2:0 k2:0 

In this equation, the first sum corresponds to the probability of a transforming 

to b, as well as to all pseudo-bs to the right. The second sum calculates the 

probability of a transforming to all pseudo-bs to the left. P!J .. * (i)= ce-mi is the 

probability function over all integers from Equation 4.13. 

p!3n * (b I a)= Iice-m(nk+(b-a)) + Iice-m(n(k+l}-(b-a)) 

k2:0 k2:0 

= ce-m(b-a)Le-mnk +ce-m(n-(b-a))Le-mnk 

k2:0 k2:0 

e-m(b-a} + e-m(n-(b-a)) 

=c-------
1-e-mn 

m(.!!.-(b-a)) -m(.!!.-(b-a)) 
e 2 +e 2 

=c-------
m.!1.. -m.!1.. e 2 -e 2 

= c cosh(m(f-(b-a)))_ 
sinh(m~) 

The development is similar for the case where b<a. In the following equation 

the transformation from a to b itself is moved from the first sum to the 

second. 

P!3n * (b I a)= LP!J .. *(n(k +l)+(b-a))+ LP!J .. *(nk-(b-a)). 
k2:0 k~ 

Rearranging this to the same form as Equation 4.15 we find 

P5n * (b I a)= LP!3 .. *(kn+ (a-b ))+ LP!J .. *((k + l}z-(a-b )) 
k2:0 

cosh(m(t-(a-b ))) 
=C----'-----'"-.-'-,---"-""-

Sinh(mt) 

Designing Similarity Functions- I 05 



10 I I 

9 ... 

8 ~ 

7 ~ 

6 ... 
Q) 
u 
C: 

~ 5 ~ 

i5 
\ 

4 ~ '\ 
', 
' \ 

3 ... 

2 ~ 

1 ~ 

0 
0 2 3 4 5 6 7 8 9 

Final Instance Position 

Figure 4.8: K* distance for ten positions using wraparound 

For both cases, we can write 

1 ) cosh{m{t-lb-aj)) 
P 5n * \b I a = C • ( ) 

smh mt 

As with the infinite discrete example, this function depends only on the 

relative instance positions. Figure 4.8 shows the distance function for an 

example with ten positions, with the instance initially at position 2. The first 

point to note is that the distance drops as the final position increases above 

position 7. This is due to transformation paths that wrap left, past the edge 

position 0. This effect is more prominent when the stop probability is high 

( s = 0.5) because the distance to positions near the original position is 

primarily determined by the shortest transformation path. The distance to 

"opposite" positions, such as 6, 7, and 8, is slightly reduced due to 

transformation paths from both directions contributing almost equally. When 

the stop probability is low ( s = 0.01 ), this smoothing effect is greater because 
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Figure 4.9: Mapping finite positions, with reflection past end points 

the bias towards the shortest path is lowered-transformation paths that circle 

multiple times have more weight in the distance function. 

4.3.2.2 Reflecting 

Consider the case where an imaginary reflective boundary is placed at each 

edge of the range of positions. The boundary may be placed either halfway 

between an end position and where the next position would be, or exactly at 

the edge positions. The first of these alternatives is examined in detail, the 

second alternative is treated in Appendix A. 

Take n positions labelled 0, ... , n -1 . Assume that at position 0, possible 

transformations are right to position 1, and left to position 0 (after reflecting 

off the boundary mid-way through the transformation). At position n -1 , 

possible transformations are left to position n - 2, and right to position n -1 

(after reflecting mid-way through the transformation). 

Figure 4.9 shows a mapping onto the integers (similar to the previous 

example) that is valid if p{left)= p(right). This condition is required because 

the behaviour of the left and right instructions must swap at each reflection. 

For example, the shortest program transforming instance a to the closest 

image of b to the left in Figure 4.9 is "left left left left left er", while the 

corresponding program for Figure 4.6 is "left left right right right er" (a 

reflection occurs mid-way through the second instruction). 
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To calculate the probability of transforming from position a to position b 

P5n * (b I a), first assume b ~a. Then, 

P5n * (b I a)= LP5 .. * (2nk + (b-a))+ LP5 .. * (2n(k + 1)-(b- a)) 
k~O k~O 

+ LPs .. * (2nk + (b +a+ 1))+ LPs .. * (2n(k + 1)-(b +a+ 1)} 
k~O k~O 

where P5 .. * (i)= ce-m; is the probability function over the integers defined in 

Equation 4.13. 

The first sum incorporates the transformation from a to b and all b' s to the 

right. The second sum includes the transformations to all b' s to the left. The 

third sum takes the transformations to all b" s to the left of a, and the fourth 

sum takes the transformations to all b" s to the right. Following the equation 

through, 

Psn * (b I a)= Ice-m(2nk+(b-u)) + Ice-m(2n(k+I)-(b-u)) 

k~ k~O 

+ Ice-m(2nk+(b+u+I)) + Ice-m(2n(k+l)-(h+u+1)) 

k~ k~ 

= Ce-m(h-u)re-m2nk + Ce-m(2n-(h-u))re-m2nk 

k~O k~O 

+ ce-m(b+u+I)Le-m2nk + ce-m(2n-(b+u+I))Le-m2nk 

k~ k~ 

e-m(h-u) + e-m(2n-(h-u)) + e-m(b+u+I) + e-m(2n-(b+u+1)) 

=c------------------I-e-m2n 

em(n-(b-u )) + e-m(n-(b-u )) + em(n-(b+u+I )) + e-m(n-(b+u+I )) 

=c-------------------mn -mn e -e 
cosh(m(n - (b- a)))+ cosh(m(n - (b +a+ I))) =c-----------------,.-,-----------'-. 

sinh(mn) 

The case when b < a is similar, and the following expression holds for both 

cases: 
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*I )- cosh(m(n-lb-al))+cosh(m(n-(b+a+l))) 
p !;In ,b I a - C . { ) 

smh,mn 

Figure 4.10 plots the resulting distance function for a case with ten discrete 

positions and stop probability s = O._ 1 . This distance function is dependent on 

the absolute instance positions, so plots are shown for instances starting at 

positions 0, 2, and 4. Under this transformation model we expect some effects 

caused by the edge positions. What we find is that the distance function is 

almost linear except near the edge positions. For final positions near edges, 

transformation programs that go a few steps further and reflect off the 

boundary contribute to the distance measure. For final positions away from 

edges more transformations are needed to reflect off a boundary and return so 

the contribution from such programs is negligible. 

The second alternative has the reflecting boundary placed exactly on the edge 

positions. The derivation is fairly straightforward, and is presented in 

Appendix A. However, it turns out that a special-case function is required 

when the destination position is exactly at one of the edges. Figure 4.11 

illustrates the behaviour of this distance function. Other than at edge positions, 

the function is similar to that shown in Figure 4.10. However, the distance to 

actual edge positions is much higher. Consider a billiard table as a physical 

analogy. Assume we can measure the position of a ball to the nearest 

centimetre. On average (for randomly sized tables) the size of the interval 

containing the edge of the table will be half a centimetre in size. If a ball is 

given an initial push of random strength, the ball is approximately half as 

likely to stop in the region against the edge of the table as in the adjacent full­

centimetre wide interval. 
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Figure 4.10: K* distance for ten positions using reflection past end points 
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Figure 4.11: K* distance for ten positions using reflection at end points 
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4.3.3 Continuous Space (Reals) 

The function developed for discrete space may be reformulated for real 

numbers by making the assumption that underlying the real space is a discrete 

space with very small distances between the discrete instances. 

Transformation strings between two real numbers will then be very long, so 

the first step is to examine the expressions c and m from Equation 4.13 in the 

limit as s approaches 0. This gives 

-i(ln(l-s )-1n(1-.J2s-.v2 )) 

P * (i)= -' e 5- ~ ,J1.v-s• 

Note: The above function can also be derived from Equation 4.14 as follows. 

Equation 4.14 is the probability of transforming from a to b (i positions apart) 

when all programs involve N transformations. This can be extended to include 

programs of all lengths by multiplying Equation 4.14 by the probability of a 

program stopping after N transformations, and summing over all lengths. 

P5_ * (i)= L,P5_ * (i,N)(l- st s 
N 

where the sum is over all positive integers that are either odd or even as i is 

odd or even. This can be approximated by dividing by 2, and taking the 

integral from O to infinity. 
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-2 oo I 

s f II - N =-- v½e 2N(1-s) dN 
..fiii 0 

-2 

S Joo (i"' Nln{I-.,~ = -- v½e 2N dN 
..fiii 0 

= S e-i,f-21n(t-.,) 

.J-21n(I-s) 

0 

This can be reformulated as a probability density function where the 

probability that an integer between i and i + ~i will be generated is 

(4.16) 

which can be re-scaled in terms of a real value x where ..L = i.fi;, resulting in 
Xu 

the probability density function P* over the reals 

P. 00 * (x) = - 1 e-rx0 dx • 
9t 2x0 

(4.17) 

In this formulation, x0 functions as a scale length; for example, it is the mean 

expected value for x over the distribution P*. For different applications it is 

necessary to choose a reasonable value for x0• There are some rough 

guidelines about how to do this. For example, if the instances have a 

measurement error, x0 should probably not be smaller than the standard 

deviation of the errors on the measurement. The next chapter specifies a 

technique for choosing x0 values. 
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v-x X 

Figure 4.12: Continuous space wrapped 

4.3.4 Continuous Space, Wrapped 

The similarity function developed in Section 4.3.2.1 for modulo attributes 

would prove useful for comparing days of the year, because these are 

essentially discrete. For continuous modulo attributes, such as time of day or 

longitude (which could be stated to any accuracy) we should use a measure 

designed for continuous attributes. Consider the space represented by the 

perimeter of a circle; this may be treated as a case of one-dimensional 

continuous space wrapped. Let the circumference be of length v. Let a and b 

be two points on the perimeter of the circle (separated by a distance x in one 

direction, and v - x in the other). This situation is represented in Figure 4.12. 

Let P91 .. * be a probability function for one-dimensional infinite continuous 

space (Equation 4.16). The probability of the shortest path between a and bis 

P91)x) = max(P!Jt .. * (x), P91 .. * (v- x) ). 
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Figure 4.13: Distance functions for continuous space wrapped 

The probability of all paths between a and b, allowing any number of trips 

around the entire circumference in either direction is 

P91v*(x)= LP91 .. *(vk+x)+ LP91 .. *{v{k+l)-x). 
k.?0 k.?O 

1 1 
Substituting P91 .. * (x) = ce-mx, where c = -- and m = - from the one-

2x0 x0 

dimensional continuous probability function of Equation 4.16, the 

development is similar to that in Section 4.3.2.1: 
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P. * ( )- "" -m(vk+x) +"" -m(v(k+l}-x) 
9!v X - £.J Ce £.J Ce 

k~O k~ 

-mx"" -mvk -m(v-x)"" -mvk = ce £.J e + ce £.J e 
k~ k~ 

e-mx + e-m(v-x) 

=c-----
1-e-mv 

m(.i:-x) -m(.i:-x) e i +e i 

=c------
m.!. -mf e 2 -e 

=c cosh(m(t-x))_ 
sinh(mt) 

Taking the log gives the corresponding K* distance function 

K 91v * (x) = log2 (sinh(';v ))-log2 (cosh(m{t-x )))-log2 (c) 

= log2 (sinhb:11 ))-log 2 (coshb:11 - ;, ))+ log2 (2x0 ) 

Figure 4.13 shows a comparison between the K* distance function and the 

"shortest path" distance function, K. The circumference of the circle is ten. 

When the scale length x0 is set to 0.8, the K* function is determined almost 

entirely by the shortest programs, and hence behaves like the K function. For 

small differences in instance positions the function is almost linear. When the 

final instance position is opposite the initial position, both the shortest 

"anticlockwise" program and the shortest "clockwise" program have similar 

contributions, resulting in a smoothing of the curve. When x0 is set to 5, 

programs that transform the instance around the entire circumference are more 

likely and the distance function makes little distinction between the possible 

final positions. 

4.3.5 Continuous Space, Clipped 

Clipping boundaries are another interesting problem. We define a clipping 

boundary as a point on the line beyond which we are uncertain as to an 
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Figure 4.14: Two weather maps taken 24 hours apart 

instance's exact position. This type of situation might occur when a 

measurement for some feature is beyond the capabilities of the measuring 

apparatus (such as an off-scale pressure reading). In the case of weather maps, 

clipping occurs as features move off the image borders. For example, the 

lower right of the second map of Figure 4.14 contains a low-pressure system 

not visible in the first map; the low-pressure system is still present in the first 

map, but it has been clipped so its position cannot be determined exactly. 

Although the precise position of an instance beyond the clipping boundary is 

unknown, we can ask questions like how likely the instance is to move from a 

known position to somewhere past the clipping boundary, and where past the 

boundary the instance is most likely to be. This problem is also related to that 

of missing values as discussed in Chapter 3-missing values could be viewed 

in this context as cases where the clipping region covers the entire instance 

space. Section 4.3.10 deals with the problem of missing values further. 

As a ~imple example, consider the probability that a point to one side of a 

clipping boundary will transform to the other side of the clipping boundary. 

This situation is represented in Figure 4.15. Let instance a be at distance d0 
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do 

------------ - - - - - - -+ 
a 

Figure 4.15: A clipping boundary on the line 

from the clipping boundary. The probability of a transforming to any point 

beyond the clipping boundary is 

00 

P*(?la)= f P91 .. *(x)dx, 
do 

where '?' denotes the clipping region, and P91 .. * is a probability function for 

one-dimensional infinite continuous space. Substituting in the function from 

Equation 4.16, 

-Jo/ 
=.Le /x,, 2 • 

It is possible to calculate the single instance position that corresponds to this 

probability: 

1 -xi 1 -do/ 
--e lxt, = -e /xo 
2x0 2 

1 -xi -Jo/ 
⇒ -e lxt, = e /x,_, 

Xo 

⇒ - xi = ln(xo )-do/ 
/xo /xo 

⇒ x = d0 - x0 ln(x0 ). 

Designing Similarity Functions-111 



That is, the probability of a moving to any point beyond the clipping border is 

the same as the probability of a moving to a point x away. 

If is known that an instance has transformed to beyond the clipping boundary, 

its expected position past the boundary is 

.. f xe -,½" dx 
-Jn/ 

Jn X e /xn 
0 

= - (x + Xo )e / xn 
-x+Jn/ ] 00 

Jn 

4.3.6 Continuous Space, Splitting Points 

A problem often faced in complex domains occurs when there are multiple 

features of the same basic type that may differ in number between the two 

objects being compared. One domain where this type of problem arises is 

weather map comparison; the number of high-pressure and low-pressure 

systems may be different in the maps being compared. Another domain is 

when determining likely evolutionary paths of plant populations-a 

description of the current state would include multiple populations of plant 

species (each with their own size, locality, and physical characteristics). The 

task is to determine which initial configurations of parent populations are 

most likely to give rise to the current distribution. The number of populations 

in the current state will probably be more than in the proposed initial state due 

to speciation. A natural way to deal with this type of problem is to introduce a 

"split" transformation. In this section we consider simple examples where 

instances consist of points on the real line. 
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XJ xi 

◄ I I 

Figure 4.16: One Point Transforming to Two Points 

4.3.6.1 Transforming One Instance to Two 

As a simplification of this problem, consider the probability of one instance 

on the real line transforming to two instances at different positions. 

Let the initial instance be x, and the two final instances be x1 and x2, as shown 

in Figure 4.16. One way to model this situation is to allow x to split into two 

instances at some point during the transformation, with one of the new 

instances transforming to each of x1 and xr This can be treated as three 

separate sub-transformations, with the behaviour of the basic transformations 

changing during the course of the transformation: 

1) A transformation sequence taking_x to some intermediate position y and 

which is terminated by the stop transformation. This first occurrence of 

the stop instruction results in x splitting in two, and further 

transformations affect only one of the parts. (Under this model there 

will be only one split transformation.) The probability of this 

transformation is P!R_ * ~x- YI), where P!R_ * is a probability function for 

one-dimensional infinite continuous space. 

2) A transformation sequence taking the first of the instances at y to x 1 and 

which is terminated by the stop transformation. This second occurrence 

of the stop instruction results in further transformations affecting the 
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second instance. The probability of transforming the first instance from 

y to x 1 is P91_ * ~x, - YI). 

3) A transformation sequence taking the other instance to x2, terminated by 

the stop transformation (which signals the end of transformations). The 

probability of transforming the second instance from y to x2 is 

P91 .. * ~X2 - YI). 

In order to consider all transformation paths, we must also integrate over all 

possible intermediate split positions, 

00 

P* (x,, x2 Ix)= J P91 .. * (Ix- Yl)P91 .. * (jx1 - yj)P91 .. * (jx2 - Yl)dy • 

The first case to consider is where both of the final instances are to one side of 

the initial instance. To deal with the absolute values above the integral is split 

into parts; this is simplified by assuming assume that the initial instance x is at 

. . n * ( ) -nu 1 1 0. Subst1tutmg r 91.. x = ce , where c = -- and m = - from the one-
2x0 x0 

dimensional continuous probability function of Equation 4.17 gives 

0 

P* (x, ,X2 IO)= J cem)'ce-m(xi-y)ce-m(xz-y)dy 

.IC1 

+ f ce-m_,·ce-m(x1-.'->ce-m(xz-Yldy 

0 

;c, 

+ J ce-m>"ce-m(y-xi>ce-m(xz-y)dy 

.IC1 

Carrying out the integrations yields 
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' 3 
P*(xi,X210)= 3c· e-m(x,-x2)+~(e-=2 -e-m(x,+x2)) 

m m 
3 3 

+ C { -mx2 -m(2x2-x1))+ C -m(2x2-x1) -,e -e -e 
m m 

~1 
-e Xo I· 

I 

A similar function is obtained for cases where x1 > x2 • The upper right 

quadrant of Figure 4.17 shows the contours of equal dissimilarity for the 

corresponding distance function, with scale factor x0 set to 1. Notice that 

dissimilarity is largely dependent upon whichever of the two final instances is 

furthermost. The function has the same value when x1 = x = 0 as when 

x1 = x2 • In the former case, significant contributing programs involve x 

splitting almost immediately, when very little transformation is required for 

one part to reach x1• In the latter case, programs with high probability involve 

x transforming near to x2 before splitting, leaving the new instances near x1 and 

xr Both cases involve one instance transforming the distance from x to xr 

Consider the case where x1 and x2 are on opposite sides of x. Again, it is 

assumed that x is at 0, and that x1 > x2 • Following a similar development to 

above, 
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x, 

P* (xi' X2 IO)= J cemyce-m(x,-y)ce-m(xz-y)dy 

0 

+ I cemyce-m(y-x,)ce-m(xz-y)dy 

x, 

Xz I -m,· -m{r-x1} -m(x,-,·)d + ce · ce · ce - · y 

0 

00 

+ I ce-myce-m(y-x,)ce-m(_,·-xz)dy. 

Xz 

Carrying through the integration gives 

3 

P*(x X IO)=~e-m(xz-2xi) 

" 2 3m 
3 

+ ~ (e-m(xz-X1) _ e-m(xz-2x1)) 

m 

1 ( ~ =-- 3e Xo -e 
12x0 

,,, -, ,,~~,, I 
) 

The upper left quadrant of Figure 4.17 shows contours of equal dissimilarity 

for the corresponding distance function, with scale factor x11 set to 1. In 

contrast to the upper right quadrant, dissimilarity is primarily dependent on 

the total distance between x1 and x2• Major contributing programs in this case 

involve the original instance x splitting almost immediately, leaving two 

distances to be transformed over, from x to x1 and from x to xi- The total 

distance is independent of the exact position of x between x1 and x2, although 
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Figure 4.17: Contours of equal dissimilarity (combined function) 

if the distances are small in relation to the scale factor x0 , dissimilarity is 

slightly lower when both distances are approximately equal. 

The functions developed above (along with those for the cases when x2<0) 

may be combined piecewise to give the final similarity function, 

P* (x1 , x2 I x). Contours of equal dissimilarity for the corresponding distance 

function are shown in Figure 4.17. The positions of instances x1 and x2 may be 

Designing Similarity Functions-123 



swapped without changing the similarity, and their positions may be reflected 

about x without changing the similarity. 

4.3.6.2 Transforming One Instance to Three 

The above results are applicable to the problem of where one instance x 

transforms to three instances, x" x2, and x3• Instead of allowing only one split 

transformation to occur, two splits are required (or alternatively, a single 

ternary split, which we will not consider for simplicity). The original instance 

x first transforms to an intermediate position y and splits. Now one instance 

must transform to one of the final positions, and the other instance must 

transform to the other two final positions. There are three combinations to 

consider, one for each final destination of the instance that undergoes a single 

split transformation. The destination in each case is specified by an instruction 

with probability ½ . The transformation probability for two instances at 

position y transforming to x,, x2, and x3 is 

f P* (x1 I y )P* (x2 , x3 I y )+ f P* (x2 I y )P* (xi' x3 I y )+ f P* (x3 I y )P* (x2 , x1 I y), 

where P* (x I y) is a probability function for an instance y transforming to an 

instance x (from Equation 4.17), and P* (x1, x2 I y) is a probability function for 

an instance y transforming to two instances x, and x2 ( developed in 

Section 4.3.6. l ). 

As in Section 4.3.6.1, all possible initial split positions must be considered, so 

the probability function is 
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.. 
P* (xi' x2 , x3 I x) = J ½ P* (y I x )P* (x1 I y )P* (x2 , x3 I y )dy 

.. 
+ f ½ P* (y I x )P* (x2 I y )P* (xi' x3 I y )dy 

.. 
+ f ½P* (y I x)P* (x3 I y )P* (x2 ,x1 I y )dy. 

We will leave the function at this point, although it is not difficult to carry out 

the integrations piecewise as in the previous section. In principle this approach 

can be used to derive similarity functions transforming one instance to higher 

numbers of instances. 

4.3.6.3 Transforming n Instances to m Instances 

Given a series of probability functions for transforming one instance to 

multiple instances, it is possible to formulate a similarity measure for an 

arbitrary number of instances to some higher number of instances. As 

indicated by the developments above, it is impossible to derive a single 

analytical expression for the similarity function, so instead an algorithm is 

outlined. Assume n original instances x1 , ••• , xn , and m final instances 

y 1 , ••• , y m , where n < m. The calculation has two steps. 

1) Determine the set of all possible instance mappings, where each of the 

initial instances maps to at least one final instance (and each final instance has 

only one initial instance mapping to it). The number of such mappings is 

given by the recursive function 

mappings(!, m) = 1 

mappings(n,m )= ~t''( 7 )mappings(n -1, m - i ). 
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2) Sum the transformation probabilities for each possible instance mapping. 

For a given mapping, let Mi be the number of final instances that initial 

instance xi maps to, and y i, ••• , y M; be those final instances. The 

transformation probability for the mapping is 

1 n 

. ( )TIP*(yp••·•YM, Ix;}, 
mappmgs n, m i=l 

where P* (yp••·• YM; I xJ is a probability function for one instance 

transforming to Mi instances as described in the previous section. 

This example illustrates one potential method for treating different numbers of 

instances. These models utilise a new instance transformation-the "split" 

operation. For domains such as the weather it also makes sense to introduce a 

"merge" transformation. With both split and merge transformations, the next 

step is to model multiple merge/split operations. For example, two high­

pressure systems may merge as their paths cross, and split as the paths 

diverge. These types of problems are more complicated, but can be handled 

within the general framework. 

4.3. 7 Symbolic Space (Independent Symbols) 

One advantage of the K* approach is that both numeric attributes and 

symbolic attributes can be handled within the same framework. To deal with 

symbolic attributes consider a set S of instances that occur with probabilities 

P,, , a e S ; the transformations allowed on instances are the transmutation of 

any instance to any other instance. In this example, it is assumed that the 

probability of transmuting to an instance is independent of the current 

instance. The probability of not transforming an instance (the end of string 

Designing Similarity Functions-126 



instruction) is assigned probability sand the probability of a transformation to 

instance a to be (1- s) pa (regardless of the current instance). 

The probability of the shortest string that transforms symbol a to symbol b, 

where a::/: b is 

P(b I a)= (1- s )p,,s. 

The probability of all programs allowing one intermediate transformation to 

another symbol, c, is 

P1(bla)= l(I-s)pc(l-s)p,,s 
ceS 

= (1- s )(1- s )p,,s. 

Summing over all possible intermediate transformations gives 

P5 *(b I a)= (1-s)p,,s l(I-sf 
k2'0 

=(1-s)p,,s( / )J 1- 1-s 

= (1-s )p,,. 

In the special case where a = b , there is also the shorter transformation string 

which simply consists of the stop symbol. The final symbolic probability 

function is given by 

P5 *(bla)={ (1-s)p,, 
s+(l-s)p,, 

if a ::t: b 

if a= b. 
(4.18) 

The probability s here is analogous to the probability s (and the equivalent x0) 

in the developments above. That is, some reasonable value must be chosen for 

s depending on the data being modelled. When s = I , this function behaves the 

same as the overlap metric for symbolic values discussed in Chapter 3. 
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4.3.8 Symbolic Space (Non-independent Symbols) 

The following development assumes that the probability of transforming to an 

instance is not independent of the current instance. This is the case for many 

real domains; for example, if instances represent traffic light colours, the 

probability of transforming to red depends on whether the light is currently 

green or amber. Let S be the set of instances. Define P(b I a) as the 

probability of instance a transmuting directly to instance b, where a, be S 

(this is called the one-step probability). Basic transformation instructions 

include the stop symbol cr (with probability s), and the symbols required to 

specify changes between instances ( denoted as "a➔b", and assigned 

probability (1- s )P(b I a)). 

A transformation program consists of a number of change instructions 

terminated by the stop symbol. For example, if S = {a., p, x}, the following 

programs specify a transformation from instance a. to instance p : 

"a. ➔ Pa", 

with probability (1- s )P(p I a )s ; 

"a. ➔ a.a ➔ XX ➔ Pcr", 

with probability (1- s )P(a I a )(1- s )P(x I a. )(1- s )P(p I x)s. 

The possible programs can partitioned by their length, and P" (b I a) defined 

as the probability of all programs with length n that transform instance a to 

instance b. Thus, 
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I ( ) {o if a :t= b 
P \b I a = 

s if a= b 

P2 (b I a)= (1- s )P(b I a )s 
P3(bla)= L(1-s)P(cla)P2 (blc) 

ceS 

pn (b I a)= L (1- S )P(c I a )pn-l (b I c) 
ceS 

The P* function that considers all programs of all lengths is 

Ps*(bla)= Lpk(bla). 
k~O 

This can be expressed using matrix notation. Let I denote the identity matrix. 

Let all P(b I a) form the elements of a matrix P; that is, element Puh = P(b I a) 

( and similarly P * uh = Ps * (b I a)), then 

P* = sI(1-sYPk 
k~O 

= sl + s L (1- s Y pk 

= sl + s(l-s )PL(l-s y-1 pH 

= sl+(l-s)PP* 

P * -(1- s J:»P* = sl 

(I - (1- s )P )P* = sl 

P* = (I - (1- s )> t sl. 

(4.19) 

Element P * uh is the probability of symbol a transforming to symbol b, 

considering all possible transformation paths. 

It turns out that this result is a good general tool for problems with a finite 

number of instances. For example, the results obtained in Section 4.3.2 can be 

duplicated by inserting appropriate transformation probabilities into the initial 

matrix P. For the simple examples in Section 4.3.2, reasonable probabilities 
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are obvious; however, choosing probabilities for other domains may be more 

difficult. One common situation is where the set of instances is found in 

association with another set of instances (for example, a "class" attribute that 

the similarity function should be sensitive to). The following method is one 

way to choose transformation probabilities. 

Assume a set of classes C is found in association with the instances. It is 

possible to calculate the frequency of each class c e C given instance s e S, 

Pcs (c Is), and also the frequency. of each instance given a class, Psc (s I c ). 

One way to define the probability of instance a transmuting to instance b is as 

the probability of a transforming to some class c and then transforming from c 

to b, summed over all classes: 

P(b I a)= LP(c I a)P(b I c). (4.20) 
,1:C 

This method is analogous to the method for assigning symbol similarities used 

by Stanfill and Waltz (1986) in the Value Difference Metric. The benefit of 

this type of method for assigning basic transformation probabilities is that the 

resulting function is sensitive to the distribution of the classes. For example, 

assume the set of instances contains the alphabetic characters and we wish to 

assign basic transformation probabilities specifying the likelihood of one letter 

transforming to another in the context of English text. In the Brown corpus 

(Francis and Kucera, 1982), characters occur with the frequencies shown in 

Figure 4.18. However, using these frequencies in conjunction with the 

similarity function of Section 4.3.7 is not a good solution, because the 

characters are not independent in their usage. 
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0.178 space 0.103 E 0.076 T 0.066 A 0.062 0 

0.060 I 0.058 N 0.054 S 0.050R 0.045 H 

0.034 L 0.033 D 0.026 C 0.022 U 0.021 M 

0.019 F 0.017 P 0.016 G 0.015 W 0.014 Y 

0.013 B 0.008 V 0.005 K 0.002 X 0.0012 

0.001 Q 0.001 J 

Figure 4.18: Ranked character frequencies from the Brown corpus 

If the "class" instances are taken as the characters that appear immediately 

following occurrences of the current character, transformation probabilities 

can be assigned using Equation 4.20. The results for some characters are 

shown in Table 4.1 (the full table is provided in Appendix B). These are the 

one-step probabilities that form the matrix P in Equation 4.19-that is, they 

do not consider multiple letter transformations, or the possibility of not 

transforming at all. The letter 'A' is most likely to transform to (in order), a 

space character, the vowels 'E', 'A', 'I', 'O', the consonant 'N', and the vowel 

'U'. The letter 'B' is most likely to transform to the space character, the 

consonants 'H', 'R', 'T', and 'L'. It is relatively unlikely that a 'B' will 

transform to a 'B', primarily because the letter occurs infrequently (as seen in 

Figure 4.18). Similarly, the space character is often the most likely character 

to transform to. Interestingly, there are half a dozen characters that the letter 

'D' is more likely to transform to than the space character, presumably 

because the characters that 'D' precede are rarely preceded by the space 

character (for example, the letter 'D' is often the last letter of a word, whereas 

the space character never is). In this simple example the assigned probabilities 

have extracted information about the grouping of vowels and consonants 

based only on the characters they precede. 
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:A E I B C D 
' 0.190 sp 0.178 E 0. 197 sp 0.133 sp 0.191 sp 0.138 E 
r 0.132 E 0.121 sp 0.142 I 0.090H 0.135 T 0.091 S 

i 0.131 A 0.085 A 0.125 A 0.071 R 0.065 H 0.087 T 
! 0.113 I 0.075 0 0.116 E 0.069 T 0.059 R 0.074 D 
: 0.093 0 0.070N 0.094 0 0.066 L 0.057 C 0.072N 

0.055 N 0.067 I 0.058 N 0.059 0 0.051 S 0.067 R 
I 0.040 u 0.058 S 0.038 U 0.059 E 0.046E 0.063 sp 
i o.037 s 0.052 T 0.037 R 0.052 A 0.041 N 0.061 H 
i 0.034R 0.044 R 0.031 S 0.043 S 0.041 I 0.042 0 
, 0.030T 0.044 D 0.026T 0.037 N 0.039 A 0.041 L 

0.030 L 0.030 L 0.021 L 0.037 C 0.038 L 0.036 Y 
, 0.016 D 0.027 U 0.019 H 0.036 B 0.0360 0.033 F 

0.015 P 0.023 Y 0.018 C 0.035 I 0.027W 0.033 A 
i 0.015 C 0.023 H 0.011 P 0.034M 0.026M 0.025 M 
'0.011 H 0.021 F 0.011 M 0.031 D 0.023 P 0.025 G 
j 0.0IOG 0.018 G 0.Ql1 D 0.029 P 0.023 D 0.0201 
: 0.010 F 0.015 P 0.009 F 0.021 F 0.021 F 0.018 C 
I 0.010 B 0.014 M 0.008 W 0.019 V 0.019 G 0.016 W 
i 0.009M 0.011 C 0.008 G 0.018 W 0.018 B 0.014 P 
I 0.001 Y 0.009W 0.007 B 0.018 U 0.014 U 0.012 B 
! 0.006W 0.007 B 0.006 Y 0.018 G 0.012 V 0.011 V 
: 0.004 K 0.005 K 0.004 K 0.007 K 0.008 Y 0.009 U 
i 0.001 X 0.002 V 0.003 V 0.006Y 0.005 K 0.009 K 
i 0.001 V 0.001 X 0.001 2 0.004 Q 0.0031 0.001 2 
[ 0.0002 0.0002 0.001 X 0.0041 0.001 2 0.001 X 
I 0.000 Q 0.OOOQ 0.0011 0.002 2 0.001 X 0.001 Q 
. 0.0001 0.0001 0.OOOQ 0.001 X 0.001 Q 0.0011 

Table 4.1: Ranked one-step character transformation probabilities 

Table 4.2 shows the corresponding P* probabilities obtained from 

Equation 4.19 when the stop probability is 0.2 (the full matrix is given in 

Appendix B). Because the P* matrix includes programs that stop before 

making any transformations, the probability of a character transforming to 

itself is much higher than in Table 4.1. The lower the stop probability, the 

more the transformation distributions will resemble the distribution in 

Figure 4.18. 

This method for assigning one-step probabilities could also be used in ordered 

domains (that is, each instance has definite neighbours to which it may 

transform), but the transformation probabilities are unknown. Given an 
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A E I B C D 
0.266A 0.296 E 0.264 I 0.214 B 0.226 C 0.234 D 
0.146 sp 0.131 sp 0.148 sp 0.133 sp 0.144 sp 0.118 sp 

, 0.089 E 0.057 A 0.086 E 0.074 E 0.073 T 0.089 E 
: 0.059 I 0.056 T 0.065 A 0.061 T 0.071 E 0.064T 
'0.057 0 0.053 0 0.057 0 0.049 A 0.047 A 0.050 S 

0.050T 0.050 I 0.050T 0.049 0 0.044 0 0.049N 
· 0.046 N 0.049 N 0.047 N 0.045 H 0.043 I 0.046A 

0.039 S 0.044 S 0.038 S 0.045 R 0.043 N 0.045 0 
0.037 R 0.039 R 0.037R 0.043 I 0.043 S 0.044R 

: 0.028 H 0.031 H 0.029 H 0.043 N 0.042 R 0.040 H 
0.026 L 0.028 D 0.024L 0.041 S 0.040 H 0.039 I 
0.022 D 0.026 L 0.021 D 0.033 L 0.028 L 0.029 L 
0.022 U 0.019 U 0.021 U 0.026 D 0.025 D 0.019 C 

: 0.018 C 0.018 C 0.018 C 0.023 C 0.018 M 0.018 F 
i 0.014 F 0.016 F 0.014M 0.019 M 0.016 F 0.018 M 
'0.014 M 0.015 M 0.013 F 0.017 U 0.016 U 0.016 Y 

0.013 P 0.013G 0.012 P 0.016 F 0.015 P 0.015 G 
0.011 G 0.013 P 0.QllG 0.016 P 0.015 W 0.015 U 
0.010 W 0.013 Y 0.QllW -0.013 G 0.013 G 0.013 P 

: 0.010 Y 0.011 W 0.0IOY 0.013 W 0.Qll B 0.013 W 
I 0.009 B 0.009 B 0.009B 0.010 Y 0.010 Y 0.010 B 

0.005 V 0.005 V 0.005 V 0.009 V 0.008 V 0.007 V 
0.004 K 0.004 K 0.004 K 0.005 K 0.004 K 0.005 K 

! 0.001 J 0.001 J 0.001 J 0.002 J 0.001 J 0.001 J 
0.001 Q 0.001 Q 0.001 Q 0.001 Q 0.001 Q 0.001 Q 
0.001 X 0.001 X 0.001 X 0.001 X 0.001 X 0.001 X 
0.001 Z 0.001 Z 0.001 Z 0.001 Z 0.001 Z 0.001 Z 

Table 4.2: Ranked P* character transformation probabilities 

instance s; with neighbours si-i and si+i, the association of classes with s;, 

Pcs {c I si) is calculated as above. The association of instances with classes 

Psc (s I c) is calculated only for the neighbouring instances si-J and si+I. The 

transformation probability can then be calculated using Equation 4.20. 

4.3.9 Multiple Attributes 

To compute a distance between instances with more than one attribute is 

conceptually straightforward. The set of transformations on the combined 

attributes can be taken as the union of the transformations for the individual 
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attributes. Two potential methods for modelling transformation strings are 

immediately obvious. 

The first method (called the additive method) is to sequentially transform the 

first attribute, then the second attribute and so on until all attributes are 

transformed. The resulting probability for the total string is the product of the 

probabilities of the individual strings, so the distance is the sum of the 

distances for the individual attributes. Removing the restriction of 

transforming the attributes in order and considering all attribute orderings 

produces the same result, because the transformation programs must then be 

prefixed with an instruction specifying the attribute transformation order. 

However, the restriction of transforming an entire attribute at one time is 

arbitrary. 

The second method (called the merge method) allows transformations on any 

attribute in any order-the probability of transforming from instance a to 

instance b is the probability of stopping at b when taking an unconstrained 

random walk along all attributes, starting at a. The merge method is more 

difficult to calculate because a single similarity function must be derived for 

all the attributes, rather than combining the results of the individual attribute 

similarity functions. The next section considers examples of this nature. 

4.3.9.1 Two Symbolic Attributes 

This example extends the model used for independent symbols in 

Section 4.3.7 to two attributes. Consider two sets of symbols, S1 and S2 with 

their associated occurrence frequencies. An instance is represented as a pair of 

symbols (a,b ), with a e S 1 and be S2 . 
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Additive Method 

The following similarity function is obtained directly from Section 4.3.7: 

(1- S )pa (1- S )pb 

Ps2 * ((a,b )1 (c,d))= 
((1- S )pa + S )(1- S )pb 

(1- S )pa ((1- S )pb + S) 

((1-s)pa +s)((l-s)pb +s) 

if a -:t: c,b -:t: d 

if a= c,b -:t: d 

ifa-:t:c,b=d 

if a =c,b =d. 

In this example the probability of the stop instruction is the same for both 

attributes. This need not be the case-if one attribute is more likely to 

undergo transformations, the probability of its stop instruction could be 

lowered. 

Merge Method 

The probability of the end of string instruction is s. Let the probability of a 

transformation of the first attribute to symbol a equal c1 pa, and the 

probability of the second attribute transforming to symbol b equal c2 pb. In 

this example, c1 = c2 = l- s (in any case, c1 and c2 should sum to (1- s )). The 
2 

probability of transforming from (c,d) to (a,b) by any program involving n 

symbol transformations on the first attribute and m symbol transformations on 

the second attribute is 

P,,""((a,b )1 (c,d))= ( n :m J(1 ;s J(1; s r P.P,s (n >0,m >0) 

Ps2°·m((a,b)l(c,d))=(l-slm pbs (a=c,m>O) 
2 ) 

P,,"·0 ((a,b )1 (c,d))= (1 ;s J" p 0 s (n >0,b=d) 

Ps/·0 ((a,b )1 (c,d))= s. (a= c,b =d) 
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Consider the case where a -::;; c and b -::;; d . The probability of transforming 

from (c,d) to (a,b) by any program involving N total symbol transformations 

lS 

N-1 

P82 N ((a,b )1 (c,d))= Ils2 n.N-n ((a,b )1 (c,d)) 
n=I 

The probability when considering programs of all possible lengths (which 

must include at least two symbol transformations in this case) is 

P82 * ((a,b )1 (c,d))= LPs2 N ((a,b )1 (c,d)) 

= ~((1-,r-2(1 ;·)"}.p,s 
= (1- S )2 pap b 

l+s 

The case where a = c and b -::;; d requires the addition of transformation 

programs do not transform the first attribute. In this case the total 

transformation probability is 
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(I-s)2 PaPb ~(1-sJm =...;.__;...._...a;;.....;.;...+~ -- PbS 
l+s m>O 2 

{1-s)2 PaPb (I-s)pbs 
=-----+----

1+ s l+s 
_ ((I-s)pa +s)(I-s)pb 

.I+s 

The development for the case where a ,:;:. c and b = d yields a similar result. 

When both a = c and b = d , the program consisting of only the stop 

instruction must also be included; in this case the final probability function is 

The probability functions produced by the additive and merge methods are 

very similar; the functions are identical when s is O or 1. For other values of s, 

the shortest program that transforms between two identical instances is 

assigned higher probability by the merge method than the additive method (s 

versus s2, respectively). The probability of all other programs is reduced 

accordingly. 

4.3.9.2 Integers in Two Dimensions 

Let the set of instances have two integer dimensions. Let i be the number of 

horizontal positions to be transformed through, and j be the number of vertical 

positions to be transformed through. Assume for simplicity that both of these 

are positive. In the following sections, similarity functions are derived for 

both combination methods. 
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Additive Met hod 

Assuming the probability of the stop instruction is the same for both 

attributes, the additive similarity function may be obtained directly from 

Equation 4.13 

P52_ * (i, j)= ce-m;ce-mj 

= c2e-m(i+j)_ 
(4.21) 

Since the core of this function is simply i + j , this function is analogous to the 

city block metric described in Chapter 3. 

Merge Method 

The merged set of transformations contains five members: left and right, 

which operate on the horizontal dimension, up and down, which operate on 

the vertical dimension, and the stop symbol cr. Let k be a number of additional 

right instructions, beyond the minimum needed to get to i-there must also be 

k additional left instructions to ensure we still finish at i. Let l be a number of 

additional up instructions (similar to k above). 

Let numright = i + k, numleft = k, numup = j + l, numdown = l . For a given 

number of these instructions, there are 

(numleft + numright + numup + numdown )! _ (i + 2k + j + 21 )! 
numleft!numright!numup!numdown! (i + k )!k!(j + l )!l! 

possible programs. 

If the probability of the stop symbol is s and the probabilities assigned to each 

of the other symbols is 1;·• , the expression for the sum of the probabilities of 

all programs stopping at (i, j) is 

p *. . (1-s)(;+;) (i+2k+j+21)! (l-s)(it+2i) 

52- (z,J)= 4 s~~(i+k)!k!(j+l)!l! 4 
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The double sum may be reformulated by summing diagonally. Let t = k + l, 

then the expression is 

-s v+1+ t. -s (1 J
(i+j) / /· . 2 )' (1 ](2,) 

4 s~~(i+(t-l))!(t-l)!(j+l)!l! 4 (4.22) 

Another way of interpreting the problem is in terms of the number of 

displacements N. The only possible program that stops after O displacements 

is "cr." For N=l, one program terminates at each of (-1,0), (1,0), (0,-1), 

(0,1). The number of programs that terminate at position (i, j) after N 

displacements is 

( N +i+ j)IN +i-j) I, 
2 1 2 1 

and the expression for the sum of the probabilities of all programs stopping at 

(i,j) is 

(4.23) 

N-(i+ j) 
Note: Equation 4.22 and Equation 4.23 are identical. If t = 2 , 

Equation 4.23 becomes 

( l-s](i+j)sL(2t+_i+ !J2t+i~ jYl-s]2
' 

4 ,~o t + z + J I t + l 1l 4 
(4.24) 

Considering only the inner sum in Equation 4.22 and the two binomials in 

Equation 4.24, 
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To proceed with Equation 4.23, we first derive an expression for the 

probability of transforming to (i,j) when all programs contain N 

transformations-that is, the probability assigned to the stop symbol is zero 

for the first N instructions and I afterwards. This gives 

Note that N here must be odd or even as i + j is odd or even. 

Using Stirling's approximation for log(n!), we have 

log(P~2 .. * (i, j,N))= (2N + I)log N -log21l -Nlog4 

-t(N + i + j + I )lo{: ( I + i; j ) J 
-t(N-i- j+l)lo{ ~ (1- i;j)J 
-t(N +i- j +!)log(~ (1 + i ~j) J 
-½(N-i+ j+l)lo{ ~ (1- i~j)) 
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Using the series expansion for Iog(l + x ), we obtain 

log(P!32 .. *(i,j,N))== (2N +1)1ogN-:-log21Z -Nlog4 

--t(N +i+ j+l)(logN-log2+ i+ j -(i+ jr J 
N 2N 

-- -z-1+ og - o0 -------I (N . . 1)(1 N 1 2 i + j (i + j)2 J 
2 o N 2N2 

- .L (N + i - j + 1 )(log N - log 2 + i - j - (i - j )2 J 
2 N 2N2 

- .L (N - i + j + 1 )(log N - log 2 - i - j - (i - j )2 1. 
2 N 2N2 I 

) 

This may be further simplified, to obtain 

log(P5,_ * (i, j, N ))~ lo{; tr J 
·2 ·2 
l + J 

N 
;2+/ 

P *{· . N)-~ -N-
n2 \l, ], ~ e . .,.. N1Z 

This similarity function is the two dimensional equivalent to that of 

Equation 4.14. To find the similarity function when the probability of the stop 

instruction is constant, we use the above result in a procedure like that in 

Section 4.3.3. 

P!32 .. * (i, j)= L,P!32 .. * (i, j, N)(I - st s 
N 

;2+j2 

= I,~e-N-(I-st s, 
N Ntr 

where the sum is over all positive integers that are either odd or even as i + j 

is odd or even. This can be approximated by dividing the sum over all integers 

by two and taking the integral from O to infinity. 
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·" ·2 

2 ~ 
P * 1i 1·) = .l ""'-e N (1- s)N s 

~2- ~' 2"";;N1t 

00 ;2+ j2 

=-; f ~ e-N-(I-st dN (4.25) 
0 

= ~' BesselK(o,2.Ji 2 + j2 .J-log(l-s)), 

where BesselK is the modified Bessel function of the second kind of order 0 

(Thomas and Finney, 1988). The central term includes the Euclidean distance 

function, and so the contours of equal distance will have circular symmetry. 

Tables of Bessel functions can be computed from series, although in practice 

an approximation based on Euclidean distance may be more appropriate. 

Carrying out a series expansion, we find that for large x, 

Besse/Kio x)- ILe-x (1- I + 9 - 75 + 3675 + of~ )~ 
~ ' "I/"'[; Bx 128x2 1024x1 32768x4 \x5 ~ 

r;; -x 
= -v-:r;e ' 

and so Equation 4.25 may be approximated as 

P *{· ·)- J -2.J;2+/.J-tog(l-.1') 
2 l..,Z, J - s ,--=====--e 

~ - ✓,r..f;2+/.J-tog(l-.,) 

Figure 4.19 compares the contours of equal distance for the distance functions 

obtained from Equations 4.21 and 4.25 (that is, after we take the log) when 

the stop probability is set to 0.1. The additive method (shown on the left) 

results in distances similar to the city block distance, while the merge method 

gives distances similar to Euclidean distance. However, both of these 

functions are now measured as probabilities (for similarity), or bits (for 

distance). 

4.3.9.3 One Integer Dimension and One Symbolic Dimension 

In this example, instances have one symbolic attribute (values of which come 

from the set S) and one integer attribute (values of which are from the set I). 
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Figure 4.19: Contours of equal distance for additive and merge combination 

Instances are represented as an ordered pair (a,b) where a e S and be I. Let 

the two instances being compared be (a, b) and (c, d). Let i = lb - di. 

Additive Met hod 

Assume the probability of the stop instruction is the same for both attributes. 

Simple combination of the probability functions from Equation 4.13 and 

Equation 4.17 gives 

if a ':F-C 

P8~ .. * ((a,b )1 (c,d))= 

if a= C. 

Merge Method 

In the merged transformation set, the left and right instructions are each 

assigned probability 1~"' • The probability of transforming to a symbol a e S is 

set to 1;"' p . First we take the case where a * c . The probability of all 
- u 
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programs with k extra left/right pairs, and j transformations of the symbolic 

attribute is 

(
2k . . r J2k+i( Jj k. +i+J 1-s 1-s 

Ps5oo ·1 ((a,b)l(c,d))= . . . - - PuS-
k+i,k,J J 4 2 

Summing over all possible lengths of programs gives 

The inner sum can be dealt with by the following generating function identity 

(from Graham, Knuth and Patashnik, page 199) 

~(n+ /) j = 1 
~ 12 1 • 
j~O n ) (1 - z r+ 

Thus 

PS5oo*((a,b)l(c,d))=I l ~ PuS - -1 ( 2k+ ·rl J2k+i (( 2 J2k+i+l J 
k~O k 4 I+ s 

-PSL - -
_ (2k + irl-s J2k+i( 2 J2k+i+I 

a k~o k 4 I +s 

-psI -(
2k + il 1-s Jik+i 

u k~ k 4 

2 1-s +i 1-s 
( Ji (2k ·r J2k 

= Pus l+s 2(1+s) ~ k 2(1+s) 

-P.f ~· J~(2ktr~· r 
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Each of the sums can be dealt with in the same manner as the one-dimensional 

discrete case in Section 4.3.1, to obtain 

Ps~-*((a,b)l(c,d))=pu✓s(l+s-2✓sJ; - 2pus [2-.J3+2s-s2 Y_ 
1-s J3+2s-s 2 1-s I 

) 

When a = c, there are additional programs that do not undergo any 

transformations on the symbolic attribute. The probability function in this case 

is 

These examples illustrate the relative difficulty of developing similarity 

functions using the merge method. Conceptually, the merge method seems a 

better way of combining attributes than the additive method, because instances 

are not restricted to completely transforming along each attribute before 

beginning transformation on another. However, the choice of method for 

modelling multiple attributes is also dependent on the domain. As is shown in 

Chapter 5, there are domains for which the additive method is a better choice. 
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In addition, unless the instances are simple, the development of a similarity 

function using the merge method may be difficult. 

4.3.l0Missing Values 

An issue to be dealt with in many datasets is instances where one or more 

attribute values are missing. As discussed in Chapter 3, approaches in the 

literature vary widely on how to deal with this problem. In some cases, the 

distance to the missing attribute is taken to be the maximum possible, in some 

it is the minimum possible, and in others the entire instance is ignored (Aha, 

1990; Dixon, 1979). 

One intuitive way to deal with this is to assume that missing values can be 

treated as if they were drawn at random from among the instances in the 

database. This fits within the probability-based similarity method, by setting 

the probability of transforming to a missing value to be the mean probability 

of transforming to each (specified) attribute value in the database. That is, 

P*(?la)= L P*(bla), 
b N 

where '?' represents the unknown value, and the sum is over all N specified 

instances in the database. The effective distance to a missing value is 

(roughly) the expected distance to a random instance of that attribute. 

For instance-based classification, missing values in a test instance can be 

ignored since the test instance missing value will produce a constant value 

across all training instances-predictions can be made on just the remaining 

attributes. With this method the probability for missing values is therefore 

only needed for missing values in training instances. This method (and others) 

for treating missing values is evaluated in Chapter 5. 
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4.4 Conclusions 

This chapter presented the idea of interpreting similarity between instances as 

the probability of transforming between them; transformations are modelled 

as sequences of smaller basic transformations that can be customised for 

different instance representations. In order to calculate the probability of a 

transformation sequence, probabilities are assigned to the basic 

transformations. The probabilities should be chosen according to what 

constitutes an important difference in the comparison domain. Adjusting these 

probabilities is a natural way of setting the relevance of attributes-if a 

transformation on some dimension is relatively unimportant it should be given 

a high probability of occurring. 

The design framework meets the basic requirements set out in Chapter 1. 

Different instance types are treated consistently-the only difference between 

instance types is the set of basic transformations. With appropriate basic 

transformations we can measure similarity between differing numbers of 

instances. Missing information may also be treated intuitively within the 

framework. Domain information is captured within the similarity functions, 

both in the set of basic transformations and the probabilities assigned to them. 

Several similarity functions for simple domains have been developed and 

discussed. The example similarity functions demonstrate that the difficulties 

identified in Chapter 1 can be handled within the framework. In the next 

chapter these examples are combined into a practical implementation that can 

be applied to real-world problems. 
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Chapter 5 

K* Application: An Instance-

based Learner 

This chapter deals with the construction of the K* instance-based learner, a 

machine learning scheme that makes use of K* theory in its distance measure. 

The K* learner is used to test our claims of coherent attribute treatment and 

missing value handling, and the ability to capture domain information within 

the function. We evaluate the K* learner on artificial and real-world datasets, 

and compare its performance against other machine learning schemes. 
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5.1 Implementation 

The implementation of an instance-based learner that determines similarity 

based on the K* theory requires solving. two specific problems. The first is 

how to employ the similarity function in making predictions about the test 

instance. The second is how to select values for the free parameters in the 

similarity functions of the previous chapter. These can be handled within the 

K* framework, and are discussed in detail below. 

5.1.1 Category Prediction 

The usual task for an instance-based learner is to predict the category of test 

instances. A nearest neighbour learner returns the category of the nearest 

training instance as its prediction-an analogous treatment in this 

implementation would be to return the category of the training instance most 

likely to be transformed to. However, following the K* philosophy of 

considering all possible paths, we calculate the probability of an instance a 

being in category c by summing the probabilities from a to each training 

instance t that is a member of c: 

P* (c I a)= I,P* (t I a). (5.2) 
tee 

The probabilities are calculated for each category; the relative probabilities 

obtained give an estimate of the category distribution in the area of instance 

space represented by a. Most other techniques return a single category as the 

classification result, so for ease of comparison we choose the category with 

the highest probability as the classification of the new instance. Alternatives to 

this include choosing a class at random using the relative probabilities, or 

returning a normalised probability distribution as the result. 
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5.1.2 Simple Numeric Prediction 

Instance-based learners are frequently used to predict numeric values. The K* 

learner's prediction of numeric attributes is simply based on the expected 

value for the attribute after the test instance has transformed to one of the 

training instances. The predicted value of attribute x for instance a is 

ax = L/ x P* (t I a). 

Additionally, the predicted variance of the value ax is 

Vax= It/ P*(t I a)-(Irx P*(t I a)r 
t t ) 

(5.3) 

This method assumes the predicted attribute is a standard numeric attribute­

that is, the attribute is not (for example) modulo in nature. For example, if the 

predicted attribute is modulo in the range zero to ten, with the bulk of similar 

training instances having values one and ten, the method above would return 

an expected value of around five rather than zero. However, custom methods 

for predicting modulo and other types of attributes could be derived. For 

example, one method to obtain a predicted distribution over a modulo 

attribute is to calculate the sum of transformation probabilities to each training 

instance (including transformation of the predicted attribute). 

5.1.3 Choosing Values for the Free Parameters 

For each attribute of a test instance, values must be chosen for the free 

parameters of the similarity function. If the similarity function combines 

attributes with the merge method, the free parameters will depend on the 

particular function. If the similarity function uses the additive method of 
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attribute combination, the free parameters are x0 (for each numeric attribute) 

and s (for each symbolic attribute). In this section we consider only the 

additive method of attribute combination. One approach to setting the free 

parameter values is to determine global values (that is, use the same values for 

every test instance) using a method such as cross-validation on the training 

data. However, the best setting for these parameters is likely to vary 

depending on position in the instance space, so we calculate the parameters for 

every test instance. 

The behaviour of the distance measure as the parameters x0 and s change is 

interesting. Consider the probability function for symbolic attributes from 

Section 4.3.7 ass changes. With a value of s close to 1, training instances with 

a symbol different to the current one have a low transformation probability, 

while instances with the same symbol have a high transformation probability. 

Thus, the distance function exhibits nearest neighbour behaviour. As s 

approaches 0, the transformation probability directly reflects the probability 

distribution of the symbols, favouring symbols that occur more frequently. 

This behaviour is similar to the default rule for many learning schemes, which 

is simply to predict whichever classification is most likely (regardless of the 

new instance's attribute values). As s changes, the behaviour of the function 

varies smoothly between these two extremes. The similarity function for real 

valued attributes exhibits the same properties. When x 0 is small, the 

probability function decreases quickly with increasing distance, functioning 

like a nearest neighbour measure. Conversely, if x 0 is large almost all the 

instances will have the same transformation probability and will be weighted 

equally. 

Designing Similarity Functions-152 



5.1.3.1 "Sphere of Influence" Approach 

In both these cases the number of instances that are effectively included 

within the probability distribution vary from 1, when the distribution is 

nearest neighbour, to the total number of instances N, when all instances are 

weighted equally. If more than one neighbour is nearest, the minimum will be 

greater than 1. The effective number of instances E can be computed for any 

function P* using the following expression: 

(5.1) 

E ranges from n0 , the number of training instances at the smallest distance 

from instance a, to the total number of training instances N. 

The K* algorithm chooses a value for x 0 (ors) by selecting a number between 

n0 and N and inverting the expression above. Selecting n0 gives a nearest 

neighbour algorithm; choosing N gives equally weighted instances. For 

convenience the number is specified using the "blend parameter" b, which 

varies from b = 0% (for no) and b = I 00% (for N), with intermediate values 

interpolated linearly. 

We think of the blend parameter as a "sphere of influence", specifying how 

many of a's neighbours should be considered important (although there is not 

a harsh cut off at the edge of the sphere-more a smooth decrease in each 

instance's relative contribution). 

An iterative root finder is used to compute x 0 (ors), with the results cached, 

so that whenever an instance value reappears the pre-calculated parameters 

can be used. The x 0 (and s) parameters are calculated for each dimension 
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attribute y 

ct ___ b----.--,-:a-.-:-==>- Class A 

attribute x 

Figure 5.1: Blend sensitivity to other attributes 

independently (that is, substituting the probability function for a single 

attribute into Equation 5.1), but using the same blend parameter, which gives 

equal weight to each attribute. The size of the final sphere of influence is 

computed from the combined attribute distance measure. This is usually much 

smaller than the size specified at the single attribute level ( on the order of bJ , 

where dis the number of attributes). 

The drawback to setting the parameters for each attribute independently is that 

the settings can be affected by instances that are dissimilar on other attributes. 

Assume that in the situation shown in Figure 5.1 each class contains equal 

numbers of training instances, and that they are uniformly distributed within 

the regions marked. The dashed lines surrounding instances a and b indicate 

the surrounding x-attribute interval that contains 25% of the training 

instances. The x-attribute is effectively assigned low importance when 

classifying instance b and high importance when classifying instance a, even 
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though in both cases the x-attribute is less relevant than the y-attribute in 

determining the class. However, to employ the probability function for all 

attributes in Equation 5.1 would be prohibitively slow due to the additional 

computation required, and because it would require the free parameters for the 

other attributes to be initialised by some method. 

5.1.3.2 Automatic Determination 

The sphere of influence method for setting the free parameters effectively 

gives each attribute equal relevance. However, performance on many domains 

can be significantly improved if irrelevant attributes are either ignored 

entirely, or given lower weight in the similarity function. In general, irrelevant 

attributes should be assigned a large sphere of influence, while relevant 

attributes should be assigned a small sphere of influence. Assuming a 

categorical class attribute, the entropy of the predicted class distribution for 

each attribute can be calculated with respect to the free parameter ( x 0 or s 

depending on the attribute type) from the training attribute values. 

Ent(a) = -IP* (c I a)log(P* (c I a)), 
C 

where P* (c I a) is the predicted probability of class c for test instance a, 

calculated using only the current attribute of interest. The parameter value 

could then be chosen to minimise the entropy of the prediction. However, this 

will usually reduce the sphere of influence to include only the single nearest 

neighbour ( even if the attribute is irrelevant( This is clearly not the best plan, 

even for relevant attributes. For example, if many surrounding neighbours 

~ This problem is analogous to that of overfitting in decision tree construction. It is (barring 

identical instances with different classes) always possible to construct a decision tree that 

correctly classifies all training instances, by ensuring that each leaf node corresponds to one 

training instance. Such a tree typically performs poorly on new instances. 
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belong to a different class than the nearest neighbour, it makes sense to give 

their predictions higher weight, in case the single nearest neighbour contains 

erroneous data. In theory the same entropy curve can be computed if classes 

were randomly assigned to attribute values. The proposal is that the 

parameters should be set to maximise the entropy difference between the two 

curves. That is, set the parameters so that the entropy is maximally different to 

the expected entropy for an irrelevant attribute. 

In terms of implementation, the expected entropy for random class assignment 

is approximated by averaging the entropy calculated from a number of 

random permutations of the class attribute. We use 5 permutations-a higher 

number yields a more accurate approximation but increases classification 

time. The entropy difference optimisation is computed for each attribute 

independently (for the same performance reasons as stated in 

Section 5.1.3.1)-again the procedure may be sensitive to instances that are 

dissimilar on attributes other than the one being optimised, as well as losing 

information about the relative importance of attributes. This problem is 

particularly noticeable with symbolic attributes where, if the attribute is even 

marginally correlated with the class, the optimisation attempts to weight the 

attribute as high as possible. This would not be a problem if the attribute is the 

only predictor attribute. The independent optimisation is unable to determine 

the relative importance of the attributes. To alleviate this problem, attributes 

that do not yield an entropy difference higher than a threshold have their 

parameters set so that the attribute is effectively rendered irrelevant. 

5.2 Evaluation 

In this section the behaviour of the K* classifier is empirically studied with 

regard to the issues discussed in Chapter 3. In particular, we examine our 
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claims of the coherent treatment of different attribute types and multiple 

attributes, making use of instances with missing information, and ease of 

customisation to the domain. In addition, we evaluate the automatic method 

for selecting one-step symbolic probabilities described in Section 4.3.8, and 

the automatic method for selecting stop parameters described in 

Section 5.1.3.2. Finally, the K* classifier is compared with standard machine 

learning schemes on a variety of datasets. 

Any instance-based learner with an adequate similarity function will 

eventually reach the optimal error rate (Fix and Hodges 1951 ), so in most of 

the following experiments we are primarily interested in examining the 

learning rate (that is, the change in classifier performance as number of 

training instances increases). A scheme that learns faster will have an 

advantage over other schemes when the number of training instances is 

limited. Alternatively, a fast learning scheme may employ an editing function 

to minimise storage requirements and classification time, while maintaining 

the same accuracy as other schemes. 

5.2.1 Experimental Methodology 

This section describes the features and performance measures common to the 

following experiments. In many of the experiments, artificial domains are 

employed. Artificial domains are useful because they can be designed 

specifically to test a particular hypothesis in isolation. Where artificial datasets 

are used, the number of test instances is 500. Each data point is the result of 

50 trials, with randomly chosen test and training instances for each trial. 

When two data points are stated to be significantly different, this means that a 

two-tailed, paired t-test, indicates the results to be different at the 95% 

confidence level. The default settings for the K* classifier are to use additive 

Designing Similarity Functions-157 



attribute combination (since the merge method requires a similarity function 

derived for each particular combination of attribute types) and a manual blend 

parameter setting of 20%. Except where explicitly stated, these settings are 

used in all experiments. 

Classifier performance is evaluated with respect to error rate and entropy gain. 

The error rate of a trial is expressed as a percentage of test instances that were 

not correctly classified. When a test instance produces multiple classifications, 

it is counted as incorrect (even if the correct class was one of the predictions). 

Although commonly used in the literature, error rate is a coarse measure of 

classifier performance, as it is based only on the single prediction offered for a 

test instance. Since the K* classifier can produce a class distribution as a 

prediction, we can use this to provide a better measure of how much 

information the classifier is extracting from the domain. 

5.2.1.1 Entropy Gain Measure 

The entropy gam measure is effectively a measure of how much less 

information is required to encode the test instance classes when using the 

scheme's predictions as opposed to encoding the classes using a naive method. 

This measure has been applied to machine learning schemes that produce rules 

(Cleary et al., 1996b). This section describes a comparable measure for 

instance-based learners ( or any machine learning scheme that infers a 

probability distribution over the classes for each instance). 

The number of bits required to encode the category of an instance with class c 

with respect to a probability distribution P is -log 2 (P(c )). One naive method 

for obtaining a class probability distribution is simply to count the number of 

instances of each class that appear in the training data. However, if a class 
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does not appear in the training data, it is assigned a probability of 0, which 

requires an infinite number of bits to encode. This is called the zero frequency 

problem, discussed further in Witten and Bell ( 1991 ). To circumvent this, the 

counts for each possible class start from 1. If there are N training instances 

and n possible classes (each of which occurs!, times in the training data), the 

probability assigned to class c is: 

p . 'c)= fc + 1 . 
na,ve~ N +n 

This probability is independent of the test instances. The associated entropy is 

entropy nuive (c )= -log2 (Pnuive (c )). 

The zero frequency problem can also occur with the probability distribution 

provided by the classifier. To counter this, the scheme's probability 

distribution is combined with the naive distribution so that the relative 

probabilities assigned by the scheme are preserved. Two weights a and ~ 

control the blending. a and ~ are initially assigned probabilities of -; . After 

each prediction, a is incremented by P* (c I a), and ~ is incremented by 

Pnuive (c ). Thus, if the scheme is consistently providing more accurate 

predictions than the naive method, a>> /3 and so a will dominate the 

weighting below. The modified predicted probability for the class of instance 

a is calculated as 

P'(c I a)= a P*(c I a)+ /3 P naive(c), 
a+/3 

where P* (c I a) is the probability distribution predicted by K* as given in 

Equation 5.2. The corresponding entropy is 

entropy K* (c I a)= -log2 (P'(c I a)). 
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Where a standard k-NN learner is used, the P* probability distribution is 

replaced by one that assigns probabilities according to the distribution of 

classes among the k nearest neighbours. Thus, a 1-NN learner always assigns a 

(pre-modification) probability of 1 to its predicted class. 

The entropy gain measure is defined as the difference between entropy n"iv, and 

entropy K*' averaged over all test instances. Although an absolute difference 

between entropynuivc- and entropyK. intuitively makes more sense, we use the 

average, to permit comparison over varying numbers of test instances (which 

is required for domains with a fixed total number of instances). A negative 

entropy gain implies the classifier performed no better than predicting the 

class based solely on the class distribution in the training data. A positive 

entropy gain implies the classifier has successfully captured domain 

information when making its predictions. It is possible for a scheme to 

achieve a high error rate in a domain, and at the same time perform well with 

regards to the entropy gain. For example, when a classifier provides multiple 

classifications for an instance, these are typically regarded as incorrect when 

calculating error rates. Allocating equal probability to multiple classes can 

improve the entropy gain measure if the scheme has managed to effectively 

determine which classes are unlikely. Similarly, if a scheme would have 

produced the actual class as a "second choice", the error rate would increase, 

but the entropy gain measure would not necessarily decrease, particularly if 

the scheme has successfully determined which classes are unlikely. For some 

problems there will be a simple correspondence between these two 

measures-if one scheme has a lower error rate than another scheme, it will 

typically also have a higher entropy gain (Cleary et al., 1996b). 
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5.2.2 Coherent Treatment of Different Attributes 

In this section we examine whether the K* learner treats different types of 

attributes consistently. The method taken is to select a domain and represent it 

using different types of attributes. Assuming the different representations 

contain the same information, classification performance on the different 

datasets should be the same. In this section we only consider domains with 

one predictor attribute (methods for combining attributes are evaluated in 

Section 5.2.3). 

5.2.2.1 Ultra-violet Domain 

Ting ( 1995) describes a domain where the time of the day is used to predict 

the level of ultra-violet radiation. If the time is between 11AM and 3:30PM, the 

level of UV is high, otherwise it is low. The first dataset, UVl, represents the 

time of the day as two attributes: a symbolic AM/PM indicator; and a real­

valued time in the range [0,12). The second dataset, UV2, represents the time 

of the day as a single real value in the range [0,24). Chapter 3 showed that 

these representations do not contain the same information-for example, UV2 

implicitly contains information about the relationship between 11 :59AM and 

12:00PM that UV 1 does not. Two new datasets are defined for this 

experiment. UV3, which differs from UV2 by representing the time as an 

integer hour rather than a real. Information about the minute within the hour 

present in UV2 is not contained in UV3. The second dataset, UV4, represents 

the time as a symbolic type, with one symbol for each hour of the day. UV 4 

does not contain hour-ordering information present in UV3. 
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The following four methods of classification are examined: 

REAL: The UV2 dataset is classified using the similarity function for 

wrapped space developed in Section 4.3.4. This provides the 

classification with the information that the time of day is modulo. 

INTEGER: The UV3 dataset is classified using the similarity function for 

wrapped space developed in Section 4.3.4 (effectively the same as 

that derived in Section 4.3.2.1). 

INDEPENDENT: The UV 4 dataset is classified using the similarity function for 

independent symbols developed in Section 4.3.7. 

NON-INDEPENDENT: The UV4 dataset is classified using the similarity 

function for non-independent symbols developed in Section 4.3.8. 

The one-step transformation probabilities for symbols are set so 

that each hour has an equal probability of transforming to each of 

its neighbouring hours. For example, the "13th hour" symbol may 

transform to the "12th hour" symbol or the "14th hour" symbol 

each with probability of 0.5. The assigned probabilities also reflect 

the modulo nature of the symbols-the "1st hour" symbol may 

transform to either the "2nd hour" or the "24th hour" symbol and 

similarly for transformations from the "24th hour" symbol. 

Figure 5.2 shows the learning rate for these four classifiers. REAL performs 

better than the other methods particularly as the number of training instances 

increases. The differences are consistently significant above 55 training 

instances and are often significant below. REAL is able to locate the exact 

location of the class boundary at 3:30PM as the number of training instances 

increases. The other methods are unable to distinguish between instances half 

an hour either side of the boundary so the lower bound on the error rate is 

2.1 %, regardless of which class is chosen; INTEGER and NON-INDEPENDENT 
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Figure 5.2: Learning rate on UV domain 

80 

approach this error rate, while real continues to slowly improve its 

performance. 

INDEPENDENT performs significantly poorer than the other methods for all 

levels of training instances except for the 5 training instances sample, 

primarily because INDEPENDENT has no indication of inter-hour relationships. 

Test instances for which there are no training instances with the same hour are 

often misclassified; their predictions are based on whichever hour has a 

majority (which is likely to have class UVLOW). The performance of 

INDEPENDENT should gradually approach that of INTEGER and NON­

INDEPENDENT as the probability of having at least one training instance in 

each hour period increases. 

Figure 5.3 shows the corresponding entropy gain graph. INDEPENDENT 

performs significantly poorer than the other methods. REAL performs 
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Figure 5.3: Entropy gain on UV domain 

significantly better than INTEGER above 2 training instances, and significantly 

better than NON-INDEPENDENT above 20 training instances. Although the 

error rates for INTEGER and NON-INDEPENDENT are not significantly different, 

the corresponding entropy gain results are significantly different above ten 

training instances (but converge as training levels increase). 

The performance differences observed between REAL and the other methods, 

and between INDEPENDENT and the other methods are expected, and are due 

to the domain representations implicitly containing different types of 

information. INTEGER and NON-INDEPENDENT have few significant 

differences in performance; small differences are likely due to implementation 

details. Their similar performance confirms that different attribute types are 

treated coherently. In addition, the large performance difference between 

REAL and INDEPENDENT highlight the importance of making use of domain 

information wherever possible. 
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5.2.3 Multiple Attributes 

The objective of this section is to examine whether multiple attributes are 

combined coherently. Our approach is to apply transformations to the domain 

attributes and see whether this has an effect on performance. For example, in 

some domains it may make sense to perform a "rotation" operation on the 

attributes with no change in performance. 

5.2.3.1 Rotating Linear Decision Boundaries 

This simple two-class problem contains linear concept boundaries at an angle 

that can be varied. Figure 5.4 shows 100 example instances where the concept 

boundaries are at a 0° angle relative to the x-axis. For each trial, the test and 

training datasets are rotated about the origin by various angles. 

Two methods from Section 4.3.9 for combining attributes are examined: the 

simple additive method (which corresponds to transforming each attribute 

sequentially); and the merge method (which allows transformations on each 

attribute to be intermingled). The merge results do not use the exact function 

derived in Section 4.3.9 but an approximation that shares the essential 

characteristic of being based on the Euclidean distance between attribute 

values. 

The results for ten training instances are shown in Figure 5.5. The first 

noticeable feature is that the merge method error rate is constant, regardless of 

the concept boundary angle. The additive method error rate varies 

significantly from the lowest point at 0° and 90° rotation to the highest point 

around 40° rotation. From 25° to 60° rotation, the additive method performs 
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significantly poorer than the merge method. From 0° to I 0°, and from 75° to 

90° rotation, the additive method performs significantly better than the merge 

method. The conclusion is that the additive method is sensitive to dataset 

rotation. 

To understand these results, consider how the similarity function changes for 

areas around each instance. Figure 5.6 shows a contour of constant similarity 

around a training instance using the two methods-the contour is circular for 

merge combination, and diamond shaped for additive combination. Now 

consider the decision boundaries formed by pairs of training instances. 

Figure 5.7 shows the decision boundaries for pairs of training instances; the 

additive method on the left, the merge method on the right. The boundary 

between the training instances represents the points at which the similarity to 

both instances is equal. When the two instances are aligned horizontally, both 

methods produce the same decision boundary. When the alignment of the two 

instances is 15°, the additive method produces a predominantly vertical 

boundary (with a short section at -45° ). 

An interesting effect occurs when the instances are aligned at 45° . The black 

areas indicate regions where the decision boundary has widened (that is, the 

distance to both instances is equal), and classification is impossible. Thus, to 

exactly represent a concept boundary at 45° requires multiple pairs of training 

instances. (Due to rotational symmetry of the additive method, the figures will 

still be correct when rotated by 90° .) These effects produce a bias in the 

additive method toward domains with axis-parallel concept boundaries, and 

against domains with concept boundaries approaching 45°, and hence explain 

the curve seen in Figure 5.5. 
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The entropy gain results for ten training instances (Figure 5.8) are much as we 

would expect given the error rate results. ADDITIVE performs significantly 

better than MERGE from 0° to 30° rotation and from 60° to 90° rotation. 

ADDITIVE performs significantly worse than MERGE from 40° to 45° 

rotation. 

A more interesting result is obtained when we plot the entropy gain over a 

range of training instances, as shown in Figure 5. 9. ADDmVE-0 corresponds 

to the additive method classifying the unrotated dataset; ADDITIVE-45 is the 

additive method classifying the dataset rotated 45° ; and MERGE shows the 

results of the merge method (which showed no significant differences with 

dataset rotation) classifying the unrotated dataset. ADDITIVE-0 has a 

significantly higher entropy gain than ADDITIVE-45 for all the levels shown 

(although the results converge with increasing training instances), reflecting 

the bias of the additive method towards axis-parallel concept boundaries. 

Initially, the entropy gain for MERGE is almost indistinguishable from the 

entropy gain of ADDITIVE-45. As the number of training instances increases 

MERGE achieves significantly better entropy gain than ADDITIVE-45, 

approaching that of ADDITIVE-0. 

These results suggest that the additive method's bias toward axis-parallel 

concept boundaries is mainly beneficial when the number of training instances 

is low. Under these conditions, the distance from the actual to the estimated 

concept boundary for the ADDITIVE is often bounded, while for MERGE the 

distance is not bounded. As training instances are added, the estimated 

boundary position is refined to the point where the bounds are not 

significantly different. 
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So, which of the two combination methods is better? The results above show 

that it depends on the domain. If domain concept can be effectively 

partitioned into independent sub-concepts, the attributes relevant to different 

sub-concepts should probably be combined with the additive method. For 

example, say the task is to predict a person's age group at death, with 

attributes "number of cigarettes smoked per day" and "CC rating of the 

person's car." The relevant sub-concepts are "age of people who die driving 

powerful cars" (who tend to be young, inexperienced drivers) and "people 

who die as a result of smoking" (who tend to be older). The number of 

cigarettes smoked per day has no effect on whether or not a person is likely to 

die while driving a powerful car, and similarly the car CC rating is not a good 

indicator to whether a person might die as a result of smoking. Any concept 

boundaries will be axis-parallel, and so the additive method for combining 

attributes would prove a better choice. There may be some domains where it 

is reasonable to use a hybrid method, within groups of attributes the merge 

method may be used, and the results between groups combined with the 

additive method. 

The domain transformation used in this example, rotation, is not applicable to 

all domains. For example, rotation cannot sensibly be applied to two symbolic 

attributes. The next section examines a domain where multiple symbolic 

attributes are combined. 

5.2.3.2 Ultra-violet Domain 

In this experiment, the transformation applied to the UV domain is to split one 

symbolic attribute into two separate attributes. The original dataset used is the 

UV4 dataset described in Section 5.2.2.1; that is, the time of the day is 

represented as a single symbolic attribute with one symbol for each hour of 

the day. The modified dataset, called UV5, contains the time of the day 
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represented as one symbolic attribute containing an AMIPM indicator, and one 

symbolic attribute containing the hour, numbered from O to 11. In the 

previous section, dataset rotation did not alter the domain information implicit 

in the representation-this is not true for this example. The UV5 

representation gives an implied similarity between (for example) 6AM and 

6PM, and an implied similarity between 6AM and 1 OAM. There is also a large 

implied dissimilarity between 11AM and OPM. Basic transformation 

probabilities must be chosen carefully, to ensure the results are not biased by 

these differences. The classification methods used are: 

UV4-lNDEPENDENT: The UV4 dataset is classified using the similarity 

measure for independent symbols developed in Section 4.3.7. 

UV5-lNDEPENDENT: The UV5 dataset is classified using the similarity 

measure for independent symbols developed in Section 4.3.7. 

Attributes are combined using the additive method 

UV4-NON-INDEPENDENT: The UV4 dataset is classified using the 

similarity measure for non-independent symbols developed in 

Section 4.3.8. One-step probabilities are assigned as follows: each 

hour has equal probability of transforming to either the preceding 

hour, the following hour, or 12 hours distant (corresponding to an 

AM/PM switch). 

UV5-NON-INDEPENDENT: The UV5 dataset is classified using the 

similarity measure for non-independent symbols developed in 

Section 4.3.8. One-step probabilities are assigned as follows: the 

AM or PM symbol has transformation probability O to itself, and 1 

to the other symbol; and the hour symbol has equal probability of 

transforming to the preceding hour or the following hour (in this 

case there are only 12 hour symbols). The attributes are combined 

using the additive method 
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Figure 5. IO shows the learning rates for the above methods. UV4-

INDEPENDENT and UV5-INDEPENDENT are significantly different for 2 

training instances, and above 40 training instances. UV4-NON-INDEPENDENT 

and UV5-NON-INDEPENDENT are not significantly different. The important 

result is that, although the representations of the domain are different and 

contain different implicit similarity information, once these differences are 

adjusted for, there is no significant performance difference between the single 

attribute representation and two attribute representation. The contributions of 

each attribute in the two-attribute representation are combined coherently. 
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5.2.4 Missing Values 

In this section the K* classifier is evaluated on datasets containing missing 

values. The objective is to show that our method for utilising instances with 

missing values performs better than discarding such instances, and that this 

method performs comparably to other methods. 

The following methods for dealing with instances containing missing values 

are examined: 

DELETE: Ignore any training instance containing missing values; this is 

similar to DELETE (Dixon, 1979). This method is implemented in 

the K* classifier by setting the probability of transforming to a 

missing value to 0; instances containing missing values contribute 

nothing to the sum in Equation 5.2. 

MAxDIFF: Assume the probability of transforming to a missing value is the 

same as transforming to the furthest value for that attribute. This 

method is similar to MAXDIFF (Aha, 1990). 

NORMAL: Assume the probability of transforming to a missing value is the 

same as the average transformation probability over the other 

attributes. This is similar to NORMAL (Dixon, 1979), and IGNORE 

(Aha, 1990). 

AVERAGE: Assume the probability of transforming to a missing value is the 

same as the average transformation probability over the other 

instance values, as described in Section 4.3.10. This method is 

most similar to AVERAGE (Dixon, 1979) and MODEMEAN (Aha, 

1990). 

These methods are all run-time methods (that is, the similarity to a missing 

value can be easily computed during classification), as opposed to the 
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Figure 5.11: Fishers original iris dataset, shown for two attributes 

preprocessing methods for filling in missing values described by Dixon 

(1979). 

5.2.4.1 Pseudo-iris Domain 

Fisher's well known iris dataset contains measurements taken from 50 

examples of each of three species of iris: setosa, versicolor, and virginica. 

There are four predictor attributes: sepal width, sepal length, petal width, and 

petal length. The classes can be almost completely differentiated by the petal 

attributes, as seen in Figure 5.11. 

Before attempting classification, consider the behaviour of the different 

methods for dealing with missing values on this dataset. An instance with a 

missing value may be viewed as a line (rather than a point), along which we 
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Figure 5.12: Two instances with missing petal width values 

are unsure of its position. Figure 5.12 shows the addition of two instances 

with missing petal width values. The clusters in the data suggest that instance 

a has a petal width value between O and 0.5, and that instance b has a petal 

width value between 1 and 1.5. The ideal method for dealing with missing 

values would return a distance between instances that reflects this expectation. 

The first method, DELETE, sets the similarity to instances containing missing 

values to be 0. MAXDIFF behaves as though the instances have petal width 

values of either 2.5 or 0.1, whichever is the furthest from the other instance 

being compared-this method effectively "pushes away" instances with 

missing values to be used as a last resort. 

The behaviour of NORMAL is more interesting. By assuming the similarity to 

a missing value is the same as the average similarity along the other attributes, 

the overall similarity reflects our earlier intuition about what the missing 
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40 

values should be. The similarity from instance c to instance a will be about the 

same as if a had a petal width of 0.5. The similarity from instance c to 

instance b will be about the same as if b had a petal width of 1.5. NORMAL is 

therefore expected to perform well on this dataset. 

The behaviour of AVERAGE is only dependent on the attribute containing the 

missing value. The average petal width value is about 0.7 different from 

instance e's petal width. In this case the similarity from instance c to instance 

b will be about the same as if b had a petal width of 1.8. The similarity from 

instance c to instance a will be about the same as if a had a petal width of 0.4. 

AVERAGE is not expected to perform as well as NORMAL on this dataset. 

To test these theories a pseudo-iris dataset generator was constructed that 

produces datasets similar to the original iris dataset (only the petal length and 
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petal width attributes are generated). The benefit of using artificial data is that 

we can create more than the 150 instances in the original dataset. 

Figure 5.13 shows the learning rate when 20% of the predictor values are 

missing, over a variety of training set sizes. The line labelled ORACLE shows 

the error rate when the training sets do not contain any missing values, and is 

included for comparison purposes. The baseline accuracy is 33%. Initially 

there is a wide difference in classification error rate between the different 

methods, but by the time the number of training instances reaches 40, the 

error rates are within 1 % of each other. The difference between AVERAGE and 

NORMAL is not significant. MAXDIFF and DELETE perform significantly worse 

than the other methods when the number of training instances is lower than 

20, and below 15 training instances DELETE performs worse than MAXDIFF. 

These results are consistent with our predictions above. 

Figure 5.14 shows the error rate for increasing levels of missing values when 

the number of training instances is 60. DELETE performs significantly worse 

than MAXDIFF above 60% missing values, because DELETE often discards so 

many training instances that most test instances are misclassified or 

unclassified (which occurs when all training instances are discarded). 

MAxDIFF performs significantly worse than NORMAL, AVERAGE and ORACLE 

when there are more than 45% missing values. AVERAGE tends to perform 

better than NORMAL, although the differences are not significant. 

Figure 5.15 shows the error rate for 20 training instances as the level of 

missing values increases. The differentiation between methods begins at lower 

levels of missing values than in Figure 5.14. The quantity of "good" training 

information is about the same, since the error rates in these regions are similar 
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for both graphs. MAXDIFF and DELETE are significantly different from the 

other three methods when more than 20% of values are missing. DELETE 

performs significantly worse than MAXDIFF when more than 40% of values 

are missing. The AVERAGE error rate is significantly higher than NORMAL 

when more than 55% of values are missing. 

The entropy gain results contain some interesting differences. Figure 5 .16 

shows the entropy gain for increasing levels of missing values in 60 training 

instances. The results for DELETE, MAXDIFF, ORACLE, and NORMAL are as 

expected based on the error rates for these methods. However, the striking 

difference is that AVERAGE performs significantly worse than all these 

methods over most of the range shown. The explanation is somewhat 

complicated. 
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One can imagine the procedure of choosing a value to substitute for an 

instance's missing value as translating the instance to a new position in the 

instance hyperspace, moving along the axis of the attribute containing the 

missing value. MAXDIFF effectively moves instances to the furthest surface of 

the bounding hypercube. Instances containing multiple missing values are 

moved to corners of the hypercube. Thus, these instances only contribute 

significantly to classification when there are few instances contained within 

the hypercube. AVERAGE moves instances in a similar manner to MAXDIFF; 

however, rather than moving them to the bounding hypercube, instances are 

moved to a hypercube defined by the mean similarity to the test instance for 

each attribute. The ranking of the class probabilities are determined primarily 

by the instances inside this hypercube because the instances on the surf ace of 

the hypercube will have approximately the same class distribution as occurs 

globally. Thus, the error rate (which only depends on the most likely predicted 

class) is not degraded. However, the instances on the surface of the hypercube 

effectively add noise to the predicted class distribution, producing a 

significant decrease in entropy gain. This effect is magnified as the proportion 

of missing values increases, causing the entropy gain to tend towards 0. 

The conclusion to be drawn from this experiment is that most sensible 

methods for dealing with instances containing missing values perform 

significantly better than discarding the instances. When the proportion of 

missing values is high or the number of training instances is low, NORMAL 

performs better than other methods, followed by AVERAGE. The reason for 

NORMAL's good performance is the assumption that the similarity along each 

attribute is roughly the same. In this domain, petal length is strongly 

correlated with petal width. The next experiment examines the various 

methods in a domain where there is no such correlation. 
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Figure 5.17: 100 example instances from the Checkerboard domain 

5.2.4.2 Checkerboard Domain 

In this domain, instances have two real valued predictor attributes, an x 

coordinate and a y coordinate. An instance is classified as either white or 

black depending on its position. The arrangement of white and black instances 

is like a quarter of a checkerboard, as shown in Figure 5.17. Instances are 

uniformly distributed, so the baseline error rate is 50%. 

Figure 5.18 shows the learning rate when 20% of the values are missing. 

Because the classes are not as easily separable as in the iris domain, learning 

is much slower. All the methods for dealing with missing values perform 

significantly worse than ORACLE over the range of training instances shown. 
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The greatest difference from the results obtained in the iris domain is that 

NORMAL performs significantly worse than the other methods. This poor 

performance is due to a lack of clustering in the domain. Because instances 

are uniformly distributed throughout the predictor space, the assumption that 

differences in predictor values will be similar is incorrect. 

These results are confirmed when we examine the error rate for 300 training 

instances as the number of missing values increases, as shown in Figure 5.19. 

Again, NORMAL is significantly poorer than the other methods through the 

range of missing value levels. AVERAGE performs significantly poorer than 

MAXDIFF and DELETE until the 70% missing value level. Above 70%, 

AVERAGE performs significantly better than these two. 

When the number of training instances is lower, the results are different. 

Figure 5.20 shows the results for 50 training instances. NORMAL performs 

significantly worse than the other methods when the level of missing values is 

below 50%. Above 65%, there is no significant difference between it and 

AVERAGE. DELETE and MAXDIFF perform almost identically until the 

proportion of missing values is so high that DELETE has little or no training 

data left for classification. At this point, the methods only exhibit marginally 

smaller error rates than the baseline. (DELETE performs worse than the 

baseline). 

The entropy gains for 50 training instances are shown in Figure 5.21. In 

contrast to the iris domain, AVERAGE performs significantly better than the 

other methods--entropy gain tends towards zero, rather than being negative. 

While the error rates for AVERAGE and NORMAL converge in Figure 5.20, 
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NORMAL performs significantly worse than AVERAGE for the whole range 

shown. Above 40% missing values, NORMAL, MAXDIFF and DELETE have 

negative entropy gains. 

The results of these experiments are quite different from those obtained in the 

previous section. In this domain, NORMAL performs considerably worse than 

the other methods, particularly when the level of missing values is low enough 

to obtain results better than the baseline error rate. This poor performance is 

because NORMAL's assumption of correlated predictor attributes is not true of 

this domain. 

In summary, these experiments show that most methods for handling missing 

values are capable of performing better than discarding the instances 

altogether. However, some methods are based on assumptions that may not 

necessarily be true of the domain. AVERAGE is a good "middle of the road" 

method that is able to perform well under a range of conditions. However, 

additional knowledge about the domain can provide assistance as to which 

method might be more suitable. If it is known that attributes are correlated, 

NORMAL is likely to be a better choice. NORMAL could potentially be 

improved by incorporating the inter-attribute correlation in the missing value 

similarity calculation. AVERAGE is independent of the other attributes-its 

performance may be improved by considering the training instance classes. 

For example, the similarity to a training instance's missing value would 

become the expected similarity to the values of other training instances with 

the same class. 
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5.2.S Automatic Assignment of Symbolic One-step 

Probabilities 

The aim of this section is to establish under what circumstances the non­

independent symbolic measure developed in Section 4.3.8, using automatic 

one-step probability assignment, performs better than the measure for 

independent symbols developed in Section 4.3.7. As seen in Section 5.2.2.1, 

one-step probabilities may be manually assigned to improve performance; 

here we wish to examine the automated method for assigning one-step 

probabilities. 

5.2.5.1 Discretised Pseudo-iris Domain 

This experiment utilises the pseudo-iris dataset generator from 

Section 5.2.4.1, but the petal length and petal width attributes are discretised 

to form symbolic attributes. The discretisation method divides the range of 

values for an attribute into a number of equal sized partitions. The resulting 

symbols should be assigned similarities that are related to their original 

ordering. The following two methods are compared: 

INDEPENDENT: The dataset is classified using the similarity function for 

independent symbols developed in Section 4.3.7. 

NON-INDEPENDENT: The dataset is classified using the similarity function for 

non-independent symbols developed in Section 4.3.8. The one­

step transformation probabilities are automatically assigned using 

the method given in Equation 4.18. 

Figure 5.22 shows the learning rate for the two methods when each attribute is 

divided into 5 bins. The INDEPENDENT measure generally performs 
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significantly better than the NON-INDEPENDENT measure when the number of 

training instances is above 15. This is a result of two factors. First, 

INDEPENDENT performs well because there are few symbols per attribute­

relatively few training instances are required to obtain coverage of at least one 

training instance per test point in the instance space. INDEPENDENT is 

primarily expected to perform poorly when no training instances exactly 

match each test instance. Second, there are too few symbols per attribute for 

customised symbol similarities to be significantly advantageous. 

The equivalent entropy gain curve is shown in Figure 5.23. In contrast to the 

error rate results, NON-INDEPENDENT performs significantly better than 

INDEPENDENT when there are more than 60 or less than 20 training instances. 

As the number of training instances increases, the automatic method for 

setting one-step probabilities is able to more accurately represent the probable 

class distributions throughout the instance space, but not enough to result in 

changes to the predicted class. 

Figure 5.24 shows the learning rate when each attribute is divided into 15 

partitions. In contrast to the previous experiment, INDEPENDENT performs 

significantly poorer than NON-INDEPENDENT at all levels of training instances 

shown. This is partially because many areas of the instance space contain no 

training instances; when there is a symbol mismatch on one attribute, 

INDEPENDENT takes the most probable other symbol as closest, often resulting 

in misclassification. NON-INDEPENDENT is able to piece together relationships 

between symbols so its learning rate is faster. 
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These experiments indicate that the automated method for assigning symbol 

transformation probabilities can significantly outperform the class-blind 

measure for symbolic attributes in domains with many symbols for each 

attribute. This domain is relatively simple, so the next section considers a 

more complex real-world domain. 

5.2.5.2 Phoneme Domain 

The objective in the phoneme domain is to predict the correct pronunciation 

of English words, given a database of correct pronunciations. This task has 

been examined with artificial neural nets (Sejnowski and Rosenberg, 1987) 

and nearest neighbour methods (Stanfill and Waltz, 1986). Predictor attributes 

include: the current letter for which pronunciation is to be predicted; the three 
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preceding letters in the word; and the three succeeding letters in the word. 

These attributes are labelled "en", "en -1 ", "en - 2 ", "en - 3 ", "en + 1 ", 

"en + 2 ", and "en + 3 " respectively. There are 27 symbols per attribute, and 

59 possible classes. Each n-letter word is represented in the database by n 

instances, one for each letter to be pronounced. 1000 of the most commonly 

used English words were used in the dataset-those that are not used in 

training are used in testing. The total number of instances is 5603. Figure 5.25 

shows the learning rate for the independent symbolic metric and the non­

independent metric using automatic one-step probability assignment. Each 

data point is the result of ten trials. 

In this domain, NON-INDEPENDENT performs significantly better than 

INDEPENDENT at all the levels of training instances shown, largely due to the 

high number of symbols per attribute. There are insufficient training instances 
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to fill the instance space, so INDEPENDENT performs poorly. NON­

INDEPENDENT builds class-based inter-symbol similarities, allowing it to 

perform much better when there are mismatches between test and training 

instances. 

5.2.6 Automatic Stop Parameter Setting 

This section evaluates the automatic method for setting values for the stop 

parameter as described in Section 5.1.3.2. In particular, its performance is 

compared against the manual blend setting method from Section 5.1.3.1. 

5.2.6.1 Phoneme Domain 

Figure 5.26 shows the learning rate on the phoneme domain for automatic 

blend setting, in comparison with the default manual blend value of 20%. 

Results labelled IND use the independent symbol similarity function, and those 

labelled NON-IND use the non-independent symbol similarity function with 

automatic one-step probability assignment (the learning rates for manual 

blend are therefore the same as those obtained in Section 5.1.3.2). In this 

domain, the automatic blend setting method improves the initial learning rate 

significantly. After 500 training instances, the error rate is approximately 15% 

lower than each corresponding error rate using the manual blend setting. If the 

attributes are ranked according to_ the average stop probability assigned, the 

( descending) order is "en ", "en -1 ", "en + 1 ", "en - 2 ", "en + 2 ", "en - 3 ", 

and "en + 3 . " Thus, the importance of each character position is proportional 

to how near it is to the character being pronounced, with a slight bias towards 

preceding characters. 
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Figure 5.26: Phoneme domain-auto versus manual blend 

5.2.6.2 Checkerboard Domain 

Figure 5.27 shows the learning rate on the checkerboard domain. In contrast 

to the results from the last section, the automatic method performs 

significantly worse than manually setting the blend parameter to its default. 

Because the blend value is determined for each attribute independently, the 

blend optimisation effectively sees training instances projected onto one 

attribute at a time, and the class distribution is uniform with respect to each 

attribute. Only by considering both attributes at once is the clustering 

apparent. This domain will prove difficult for any machine learning scheme 

that attempts optimisation based on a single attribute at a time-for example, 

c4.5 rarely achieves better than a 50% error rate in this domain. 
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In summary, the automatic blend parameter setting method is able to 

determine attribute importance in domains where the class distributions appear 

non-random with respect to individual attributes. However, in domains where 

the relevance of attributes is only readily apparent when training instances are 

projected onto multiple attributes (as in the checkerboard domain), the 

automatic method for setting blend parameters performs poorly. 

5.2. 7 Capturing Domain Information 

The objective of this section is to show that customising the similarity 

function to the domain can give increased performance. There are two types 

of domain information that should be treated separately-information about 

the underlying reality of which the instances are representations (which is 

independent of concept boundaries), and information about the location of 
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class boundaries. Often the task for machine learning algorithms is to infer the 

location of class boundaries from the training data-providing this 

information explicitly could be interpreted as "cheating." However, it is 

perfectly acceptable to provide information about the instance representations. 

To illustrate these differences we first examine the UV domain. 

5.2.7.1 Ultra-violet Domain 

In Chapter 3 it was shown that 1B 1 learned the ultra-violet domain concepts 

significantly faster when its similarity function was modified to reflect the 

modulo nature of the time of day. In this experiment these effects are further 

examined, using the UV4 dataset as described in Section 5.2.2.1. That is, the 

time of day is represented as a single symbolic attribute, with one symbol for 

each hour of the day. The following similarity functions are used. 

INDEPENDENT: Classification employs the similarity measure for 

AUTO: 

independent symbols developed in Section 4.3.7. In the context of 

the ultra-violet domain, this similarity function assumes there is 

no special relationship between one hour and any other hour. 

Classification employs the similarity measure for non-independent 

symbols developed in Section 4.3.8. The one-step transformation 

probabilities are automatically assigned using the method given in 

Equation 4.18. That is, there are special inter-hour relationships, 

but they must be inferred from the training instances. 

MANUAL}: Uses the same similarity measure as AUTO. One-step probabilities 

are assigned as follows: each hour has equal probability of 

transforming to the preceding hour, as the following hour (with 

hour O following hour 23). This similarity function embodies the 
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Figure 5.28: Entropy gain for various similarity functions on UV 4 dataset 

domain knowledge about the ordering of hours, but no 

information about the domain concepts. 

MANUAL2: Uses the same similarity measure as AUTO. The hours are treated 

as three groups, hours 16-10, hours 11-14, and hour 15. Within 

each group, one-step probabilities are assigned as follows: each 

hour has equal probability of transforming to the preceding hour 

as the following hour ( except where this would cross between 

groups, in which case the transformation returns the instance to 

itself). This similarity function is therefore provided with 

information relating to the domain concepts. 

Figure 5.28 shows the entropy gain results for a range of training instances. 

MANUAL2 performs significantly better than the other functions for the entire 

range shown. This is to be expected, since the similarity function has been 
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given concept boundary information. INDEPENDENT performs significantly 

worse than the other functions for the entire range shown. We would not 

initially expect INDEPENDENT to perform significantly worse than the other 

methods once the number of training instances is large enough to ensure at 

least one training instance for each ~our. However, this is not what we find­

INDEPENDENT's entropy gain converges to around 0.2 bits per instance. This 

effect is due to the default blend value of 20%. Since each hour constitutes 

approximately 4% of instances, a large pr<?portion of the prediction is derived 

from instances with an hour different to the current test instance. 

INDEPENDENT weights each of these other hours equally-however the 

majority will be UV-LOW instances. With a blend value of 20%, this bias 

toward the UV-LOW class results in misclassification of all UV-HIGH 

instances. A similar bias provides a bound on the performance of MANUALl­

the effect is not as prominent since MANUAL! has hour ordering information. 

When the blend value is 5%, predictions are primarily based on instances with 

the same hour as the test instance-INDEPENDENT converges to 0.32 bits per 

instance and MANUAL 1 converges to 0.42 bits per instance; both are closer to 

the limit of 0.44 bits per instance obtained by MANUAL2. MANUALl performs 

significantly better than AUTO below 30 training instances, and significantly 

worse above 45 training instances. AUTO learns some of the concept-specific 

inter-hour relationships that MANUAL2 is provided with manually. Error rate 

results (not shown) show no significantly different trends from the entropy 

gain results. 

Customisation of the similarity function to include domain information clearly 

improves the learning rate, particularly when the number of training instances 
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1s limited. The following experiment describes an interesting real-world 

domain that permitted domain customisation4• 

5.2. 7.2 Wasp Domain 

Predictor attributes in this domain consist of various measurements taken from 

wasp nests, such as the width, height, and depth of the nest, the type of nest 

site, the direction of the nest entrance, and the number of layers in the nest. 

The task is to predict which of two species of wasp (the common wasp 

Vespula vulgaris, and the German wasp Vespula germanica) constructed the 

nest. The dataset contains 226 instances and 12 predictor attributes. 167 of the 

instances are for the species Vespula vulgaris, so the baseline error rate is 

26%. It turns out that differentiating the two species given these predictor 

attributes is actually very difficult (Donovan et al., 1992). However, some 

differences between species have been identified. For example, German wasps 

showed no preference for direction of nest entrances while common wasps' 

nests were more numerous in locations exposed to morning sun. The bias is 

not significant enough to alter the default prediction. The nest entrance 

direction attribute is interesting in that it consists of 9 possible values: North, 

Northeast, East, Southeast, South, Southwest, West, Northwest, and Upwards 

Gudged as when the vertical angle of the entrance was above 45°). There are 

obvious relationships between the symbols that could be captured within a 

custom similarity function. In the following experiment we classify the wasp 

4 Finding a real-world domain suitable for customisation is not an easy task, as this requires 

a dataset with three properties: that there is information in the data for a ML scheme to 

exploit; that there are attributes better suited to a custom metric; and that those attributes are 

actually relevant. The relative scarcity of these datasets may indicate an unintentional bias 

towards creating datasets with only simple numeric and symbolic attributes. 
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dataset using only the direction attribute for prediction. The following 

similarity functions are examined. 

INDEPENDENT: Classification uses the similarity measure for 

AUTO: 

independent symbols developed in Section 4.3.7. This similarity 

function assumes there is no special relationship between one 

direction and any other direction. 

Classification uses the similarity measure for non-independent 

symbols developed in Section 4.3.8. One-step transformation 

probabilities are automatically assigned using the method given in 

Equation 4.20--that is, there are inter-direction relationships, but 

they must be inferred from the training instances. 

MANUAL: Classification uses the same similarity measure as AUTO. One-step 

probabilities are assigned as follows. The eight primary directions 

are taken as modulo, with an equal transformation probability 

from a primary direction to its neighbours. In addition, we assume 

a direction may transform to the "Upwards" direction with half 

this probability. These assumptions (which constitute domain 

knowledge) assign one-step probabilities of 0.4 to each of the 

former transformations, and 0.2 to the latter transformation. The 

one-step probability from the "Upwards" direction to the eight 

primary directions is assumed to be equal (that is, 0.125). This 

similarity function embodies intuitive domain knowledge about 

the ordering of the compass directions. 
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Figure 5.29: Entropy gain for various similarity functions on wasp domain 

For this experiment the dataset is randomly split into a training set with a 

specified number of instances, and a test set containing the remaining 

instances. For each level of training data, results are averaged over 50 trials. 

Due to the large number of common wasps in relation to the relevance of the 

nest entrance direction, the error rate for the three similarity functions is never 

better than the default accuracy-the only significant difference between the 

methods is that AUTO performs worse than the other methods below 80 

training instances (due to the relative lack of training data, as discussed in 

Section 5.2.5). However, the entropy gain for these similarity functions 

(Figure 5.29) shows some interesting differences. As with the error rate, AUTO 

performs significantly worse than the other methods below 80 training 

instances. MANUAL performs significantly better than both INDEPENDENT and 

AUTO above 30 training instances ( except between 80 and 90 training 

instances, and 140 training instances, where the difference is not significant). 
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The domain knowledge captured within MANUAL results in improved 

performance in this domain. 

There are several conclusions to be drawn from these experiments. Domain 

customisation provides the most benefit when the quantity of training is 

relatively low. There are two reasons for this. First, discontinuities in the 

similarity function are more likely to cause classification errors when training 

data is limited (because the average distance between a test instance and the 

nearest training instances is increased). Second, as the quantity of training 

data increases, some domain information can be learned (for example, by the 

automatic method for one-step probability assignment). The benefits of 

domain customisation are more visible when there are relatively few non­

customisable attributes (simply because the contribution from the customised 

attributes is lower). 

5.2.7.3 Varying Numbers of Features 

The previous experiments have been dealing with instances that can be 

represented naturally as a fixed number of attributes. In tasks such as 

comparing multiple high and low pressure systems of weather maps, the 

number of features can vary between instances. In this experiment instances 

have between one and three numeric features, each in the range 0-10. The 

class of an instance is determined by taking the average of the feature values 

and converting the result to one of ten symbolic bins. To represent these 

instances with a constant number of attributes (which is required by typical 

instance-based learners), missing values are added to instances until each 

instance contains three predictor attributes. The following classifiers are 

examined. 
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NORMAL: Classification uses the similarity measure for numeric attributes 

developed in Section 4.3.3. This similarity function assumes there 

is no special relationship between attributes. 

MULTIREAL: Classification uses the similarity measure for multiple 

attributes developed in Section 4.3.9. This function considers 

possible mappings between attributes. 

IBI K=l: Classification uses the ml instance-based learner (Aha, Kibler and 

Albert, 1991 ), with predictions obtained from the single nearest 

neighbour. 

1B 1 K=3: Classification uses the m I instance-based learner, with predictions 

obtained by voting among the three nearest neighbours. 

1B I K=5: Classification uses them I instance-based learner, with predictions 

obtained by voting among the five nearest neighbours. 

The number of training instances for this experiment varies from 2 to I 00, and 

the number of test instances is 500. The entropy gain results are presented in 

Figure 5.30. The benefits of using an appropriate similarity function for this 

domain are clear-above ten training instances MUL TIREAL performs 

significantly better than the other methods. MULTIREAL is not sensitive to 

either the position of attribute values in the representation or to the number of 

attribute values present. 1B 1 employing a single neighbour for prediction 

performs very poorly; in order to make a correct prediction, there must 

usually be an exact match to the current test instance. As more neighbours are 

considered, m I 's performance improves, but remains significant! y worse than 

NORMAL when more than ten training instances are present. This experiment 

illustrates the potential for K* theory to allow instance-based learning to be 

applied to domains that don't naturally lend themselves to the usual instance 

representation of a fixed number of either symbolic or numeric attributes. 
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Figure 5.30: Entropy gain for various classifiers with varying 

numbers of attributes. 

5.2.8 Comparison with Other Machine Learning Schemes 

100 

This section evaluates the K* classifier in relation to other machine learning 

schemes. The purpose is not to show that K* has superior performance to all 

other machine learning schemes, but that it performs well under typical 

circumstances. The following schemes are employed: a state of the art 

decision tree learner C4.5 (Quinlan and Rivest, 1989); and the instance-based 

learners ml (Aha, Kibler and Albert, 1991) and PEBLS (Cost and Salzberg, 

1993). 1B 1 is perhaps the simplest practical instance-based learner; it employs 

the simple distance function described in Chapter 3, treats missing values as 

maximally different from the current value. 1B 1 bases predictions on a 
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Dataset (abbr) Size ! Missin Classes i Binary: Symbolic 1 Numeric 
Breast-cancer (BC) 286 9: 2' 3 61 0i 

Chess (CH) 3196 0 2' 35: 1 0 

Glass (GL) 214: oi 7 0 o: 91 

Glass2 (G2) 163 1 o: 2: 0; 0 9 

Heart disease (HD) 303 7: 5 1 0 12. 
Hepatitis (HE) 155. 167 i 2 o· 0: 191 
Horse colic (HO) 368 1927 I 2 2 13 7: 
Hypothyroid (HY) 3163 5329 i 2 18 0 7 

1 Iris (IR) 150 0' 
I 

3 0 0 4 
! Labor (LA) 57 326: 2 3 5 8 
Lymphography (LY) 148: o: 4· 9 6, 3i 

Mushroom (MU) 8124 i 2480, 2 4, 18 · oi 
Sick euthyroid (SE) 3163 5329: 2 18' 0 7' 

i Soybean (SO) 47: 0 4 13 8: 0, 

I Vote (VO) 435 392' 2' 16 0 o' 
Vote no h s (Vl) 435: 381 2: 15 0 0, 

Table 5.1: Dataset characteristics 

majority vote among the k nearest neighbours (values of k=l, k=3, k=5, and 

k=7 were used, labelled as INN, 3NN, 5NN, and 7NN respectively). C4.5 and 

PEBLS on the other hand are more sophisticated schemes-C4.5 can build 

complex decision trees involving many attributes, and PEBLS employs a 

sophisticated distance function for symbolic attributes in its classification. K* 

results are obtained with default settings; that is, the blend value is 20%, and 

symbolic attributes use the simple function that assumes independent symbols. 

In addition, results are obtained for two different K* settings: K*(n) differs 

from standard K* by employing the symbolic function for non-independent 

symbols with automatic one-step probability assignment; and K*(e) differs 

from standard K* in that it uses automatic blend setting. 

Many of the datasets used are commonly seen in the machine learning 

literature. The datasets are the same as those used by Holte ( 1993), and were 

originally taken from the UCI Machine Learning Database Repository. 

Table 5.1 lists the datasets and their characteristics. "Size" shows the total 

number of instances. "Classes" lists the number of possible classes. "Binary", 
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I 

' 

Data K* i C4.5 I INN 3NN 5NN 7NN PEBLS i K*(n) K*(e) I 
BC 27.05 ! 30.10+ 30.93+ : 29.03+ : 26.80 27.13 32.95+ ! 28.70+ 30.43+ i 
CH 4.15 0.77- IO.IO+ 5.41+ 5.10+ 5.44+ 2.98- 4.29+ 4.66+ 
G2 16.73 27.42+ 22.84+ 23.49+ 24.95+ 26.62+ : 23.78+ i 16.73 31.20+ 
GL , 26.63 33.04+ : 31.51+ : 36.16+ 40.93+ 40.88+ i 39.45+ ! 26.63 38.90+ 
HD 25.09 27.92+ : 23.57 i 19.84- 19.18- 19.65- . 22.80- • 25.17 28.23+ 
HE 19.70 35.25+ 18.94 ! 17.0fr 16.75- 16.98- 19.92 19.70 20.15 
HO 23.42 23.26 : 21.92- ; 18.5fr 18.18- 18.21- : 21.73- 23.17 22.66 
HY 2.20 8.99+ ! 2.96+ 2.82+ 2.88+: 2.95+ 3.37+ 2.17 2.67+ 
IR 5.73 6.27 5.02- 4.78- 4.08- 4.08- 5.88 5.73 6.27 
LA 9.05 ; 29.68+ 24.21+ 20.00+ 41.05+ 22.74+ 9.26 9.05 16.84+ ! 

LY 1 17.20 i 24.72+ 20.32+ 19.12+ 18.40 18.24 17.44 17.52 24.24+ I 
MU ' 0.00 i 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 i ' ' 

SE 5.70 j 24.65+ 7.78+ 7.54+ ! 7.33+ 7.29+ 6.51+ 5.78+ 8.29+: 

so 0.00 i 2.00+: 0.00 0.00 i 0.00 1.50 0.00 7.00+ 0.00 I I 

VO 6.73 7.49 7.27 6.62 ! 6.76 I 6.81 ! 5.51- 6.73 6.57 
Vl 9.19 ! 15.81+ 11.84+ 9.86+ ! 9.70 9.65 11.49+ • 9.19 11.62+ ! 

Table 5.2: Error rates for UCI datasets 

"Symbolic", and "Numeric" indicate the numbers of each type of predictor 

attributes. "Missing" shows the number of unknown attribute values. The 

datasets were partitioned into two-thirds training, one-third test instances. 25 

different partitions were made for each dataset. Schemes were run on all 25 

partitions and the results averaged. These experiments were obtained using the 

WEKA machine learning workbench (Holmes, Donkin and Witten, I 994). 

Table 5.2 shows the error rates each scheme achieved for the datasets. Error 

rates postfixed by '+' are significantly higher (i.e. worse than) than the error 

rate obtained by K*. Error rates postfixed by '-' are significantly lower than 

the error rate obtained by K*. The best error rates are shown in bold. 

Overall, the K* classifier performs well in comparison to the other schemes 

used. For example, K* performs significantly better than the decision tree 

methods for 11 of the 16 datasets. Only once did C4.5 perform significantly 

better than K*. K* also performs comparably to the instance-based learners 

lNN and PEBLS. K* has significantly lower error rates than lNN for 9 of the 

Designing Similarity Functions-205 



Data K* I C4.5 lNN 3NN 5NN 7NN PEBLS! K*(n) K*(e) 
BC 0.08 '-0.04- i-0.02- 0.05- 0.08 0.08 -0.05- 0.07- 0.00-
CH 0.53 0.93+ ' 0.50- 0.54+ 0.52- 0.49- 0.66+ ' 0.53 0.61+ 
G2 0.41 0.11- 0.24- 0.30- 0.29- 0.27- 0.23- 0.41 I 0.12-

GL 1.08 0.64- 0.74- 0.96- 0.96- 0.95- 0.44- 1.08 0.68-
HD 0.34 0.19- ' 0.29- 0.41+ ' 0.44+ , 0.45+ 0.31- ' 0.34 0.25-
HE 0.15 0.011- I 0.11 0.17 0.18+ 0.18+ 0.11 0.15 0.04-
HO 0.23 0.23 0.21 0.29+ 0.30+ 0.29+ 0.22 0.23 0.22 
HY 0.15 0.16+ 0.10- 0.11- 0.11- 0.11- ! 0.11- 0.15 i 0.12-
IR 1.21 l.16 1.20 1.22 1.24+ 1.24+ l.17- 1.21 1.20 
LA : 0.55 0.12- 0.24- 0.35- 0.28- 0.24- 0.51 0.55 0.39-
LY 0.62 0.29- 0.47- 0.58- 0.56- 0.54- 0.55- 0.61 ! 0.39-
MU 0.74 1.00+ 0.74 0.74 0.74 0.74 0.74 0.74 i 0.74 

SE 0.19 0.16- 0.11- 0.13- 0.14- 0.13- 0.16- 0.18- 0.09-
so 1.80 1.62- 1.80 1.79 1.74- l.59- 1.80 l.79 1.80 
VO 0.58 0.71+ 0.50- 0.58 0.58 0.57- 0.59 0.58 0.57 
Vl 0.51 0.46- 0.45- 0.49- 0.50- 0.50- 0.45- 0.51 0.45-

Table 5.3: Entropy gains for UCI datasets 

datasets, and significantly higher error rates for 2 datasets. K* has 

significantly lower error rates than PEBLS for 6 datasets, and significantly 

higher error rates for 4 datasets. The primary explanation for the better overall 

performance of K* over these instance-based learners is that INN and PEBLS 

make predictions based on the single nearest neighbour, while K* incorporates 

all training instances. Increasing the number of neighbours considered 

(bringing the learners closer to the k* philosophy) increases their 

perf ormance-IB 1 using voting among the 5 nearest neighbours performs 

almost as well as K*. 

Table 5.3 shows the entropy gain results for each of the schemes. Entropy 

gain results postfixed by '+' are significantly higher (i.e. better than) than the 

corresponding K* result. Entropy gain results postfixed by '-' are significantly 

lower than the corresponding K* result. The best entropy gain results are 

shown in bold. In general, a positive score signifies that the scheme has 

managed to extract significant domain information in making its predictions. 
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K* performs significantly better than the other schemes for the majority of 

datasets, with some caveats. The entropy gain calculation is different for the 

instance-based learners and the decision tree learners-a different method is 

used to combine each scheme's predicted distribution with the naive 

distribution when dealing with the zero-frequency problem. The entropy gain 

figures are similar in practice, but care should be exercised when making 

conclusions about performance differences between instance-based and 

decision tree schemes. As with the results in Table 5.2, much of K*'s good 

performance is due to weighting all neighbours into its predictions. 

When examining the entropy gain figures for individual datasets, one 

interesting feature is that the results for the BC dataset are often negative or 

close to zero. This indicates that there is little information to be learned from 

the predictor attributes (indeed, the baseline error rate for this dataset is 30%, 

similar to all the schemes' error rates). A similar comment may be made about 

the HE dataset, where the entropy gain figures are very small. 

K*(e) performs poorly on many of the other datasets. One cause is that 

individual attributes are often poor predictors. K*(e) sets the stop parameter 

for attributes independently, and if an individual attribute is a poor predictor, 

it is effectively discarded by the parameter optimisation. Poor performance 

can also arise when this is not the case, particularly for enumerated attributes. 

Often the optimisation assigns high relevance to all attributes that have some 

relevance because the optimiser cannot determine whether other attributes 

may be more relevant. This problem occurs on the VO dataset, where there 

are many attributes that are reasonable predictors. One attribute is an excellent 

predictor, but its weight is not set higher than the other attributes. 

K*(n) does not perform significantly better than K* in spite of using a more 

advanced metric for symbolic attributes. K*(n) has a slightly lower error rate 
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than K* on two datasets, but significantly higher on four datasets. However, 

according to the findings of Section 5.2.5, K*(n) is only expected to perform 

better than K* on datasets with many symbolic attributes and with multiple 

symbols per attribute. Most of the domains contain predominantly numeric 

and binary attributes. Examining Table 5.1, the datasets K*(n) is most likely 

to perform on well are BC, HO, LA, LY, MU, and SO. K*(n) does achieve 

lower error rates than K* for the BC and HO datasets (although the difference 

is not significant for BC). K*(n) achieves significantly higher entropy gains 

than K* on all these datasets except LA and SO-on the SO dataset K*(n) 

performed significantly poorer than K*. The reason why K*(n) did not 

perform as well as expected in LA and SO is that these datasets contain few 

instances. As identified in Section 5.2.5, learning accurate one-step 

probabilities requires sufficient training data. 

In summary, K* performs well in comparison to other machine learning 

schemes. However, on the datasets tested, the automatic method for setting the 

blend parameter described in Section 5.1.3.2 does not perform as well as 

expected, primarily because the parameters are set for each attribute 

independently. The advanced metric for symbolic attributes can improve the 

performance of the classifier on datasets where there are large symbolic 

attributes, provided there is sufficient training data. A heuristic method for 

selecting the appropriate metric for symbolic attributes could take these 

factors into consideration. 

5.3 Conclusions 

This chapter described the practical implementation of an instance-based 

learner using similarity functions developed within the proposed framework. 

The basic similarity functions employed were those developed as examples in 
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Chapter 4. The instance-based learner required two additional problems to be 

solved. 

The first of these problems was how to choose appropriate values for the free 

parameters of the similarity functio~. Ideally these parameters should be set to 

reflect the relative importance of attributes to the classification domain. The 

first approach to setting these parameters effectively assumed that each 

attribute has approximately equal relevance, and the second approach 

attempted to automatically determine each attribute's relevance by examining 

the entropy of the predicted class distribution. Both methods currently set the 

parameters for each attribute independently; it turns out that this approach 

causes problems during classification. 

The second problem was how to use the similarities between test and training 

instances to provide a prediction. This problem is treated following the K* 

philosophy by incorporating transformations to all training instances. 

Instances are effectively weighted by their transformation probability. A 

predicted probability distribution can be calculated for categorical attributes, 

and the expected value calculated for numeric attributes. 

In empirical evaluation, it was shown that the K* classifier meets the 

objectives set out in Chapter I: different attribute types are themselves treated 

coherently and can be combined avoiding biases; missing values can be 

handled intelligently; domain information can be used to customise the 

similarity function; and the scheme performs well in comparison to other 

methods. 

Although different attribute types are not always directly comparable due to 

the different information they are capable of representing, it is possible to 

place some attribute types "on an even playing field." In these cases the 
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different attribute types have shown similar performance, indicating our 

treatment is consistent. Both the additive and merge methods for combining 

attributes (as described in Chapter 4) appear to work well-the choice of 

method should depend on the domain characteristics. The additive method 

introduces biases that may or may not be appropriate to the domain, while the 

merge method appears to avoid introducing biases. We use the additive 

method in practice because it greatly simplifies the similarity function. 

Missing values may be treated within the framework by several methods, each 

reflecting different assumptions about the domain. None of these methods is 

consistently better over all domains, although domain characteristics have 

been identified to assist in the choice of a suitable method. Some knowledge 

of the domain can also assist in customising the similarity function. We have 

shown that customisation gives improved performance, particularly when 

training data is limited. Finally, the K* classifier using default similarity 

functions has been shown to perform well in comparison to other machine 

learning schemes with regard to classification accuracy. Memory usage, while 

not specifically addressed, is typical of instance-based learners. Classification 

speed depends on the similarity function employed-for functions with an 

analytic form, classification time increases linearly with the number of 

instances and the number of attributes. For more complex similarity functions, 

such as that used in Section 5.2.7.3, classification time can increase 

exponentially with the number of attributes. 
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Chapter 6 

Conclusions 

This thesis proposed a method for designing similarity functions that included 

natural solutions to several difficulties identified in previous systems. The 

chief difficulty was that of measuring similarity for vastly different types of 

objects. Another problem lies in tailoring the similarity function to the domain 

characteristics. There are other problems to be faced, such as dealing with 

objects that are missing information. The design framework should be able to 

encompass all these problems. 

The design framework (called K*) proposed in Chapter 4, centres around 

treating object similarity as the probability of transforming from one object to 

another. An alternative view is that object dissimilarity can be regarded as the 

complexity of such transformations. Transformations between objects are 

taken to consist of sequences of smaller, basic transformations. The set of 

basic transformations chosen will depend on the type of objects undergoing 
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comparison, but often a reasonable set can be determined intuitively. Each 

basic transformation is assigned a probability dependent on the domain, and 

so a probability can be calculated for any transformation sequence as a whole. 

There are usually many possible transformations between two objects. The 

decision to choose any one transformation path (such as that with the highest 

probability) would be arbitrary, and would introduce more problems (such as 

how to decide between multiple transformation paths that have the same 

probability). The K* approach considers all possible transformation paths 

(with their corresponding probability), rather than just the most likely path, 

combining the philosophies of both Occam's razor and Epicurus' principle of 

multiple explanations. Considering all possible transformation paths can be 

likened to the Solomonoff-Levin universal prior. This view of similarity as 

transformation probability is general and can be applied to any type of object 

by changing the set of basic transformations. 

Several properties are typically held by traditional similarity functions, and 

these may also hold for similarity functions designed within the K* 

framework under certain conditions. Similarity functions are typically 

symmetric, although Tversky (1977) argues from a psychological perspective 

that human notions of similarity are often not symmetric. K* similarity 

functions are not necessarily symmetric, however it has been shown that the 

functions may be made symmetric by imposing conditions on the basic 

transformations. Similarly, the triangle inequality can be shown to hold given 

similar conditions. Whether these properties are desirable depends on the 

domain for which the similarity function is intended. A third property 

distinguishing K* dissimilarity functions from traditional dissimilarity 

functions is that the dissimilarity between an object and itself is typically non­

zero. The dissimilarity an object has to itself varies in accordance with the 

intuitive notion of self-similarity described by Tversky. 
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In Chapter 4 several example similarity functions were developed. These 

examples illustrate potential approaches to dealing with common problems for 

similarity functions, and show that the framework satisfies the basic objectives 

identified in Chapter 1: the design framework handles different object types 

consistently, including multiple objects; the framework can handle missing 

information; the framework permits similarity from several sources to be 

combined coherently; the resulting functions are smooth with respect to small 

changes in the instances. 

Chapter 5 built on the results of Chapter 4 to implement an instance-based 

learner employing K* similarity. Several specific problems were solved by 

following the K* design philosophy where possible. One area of difficulty 

was to find methods for setting the free parameters for the similarity function. 

Two methods were implemented, but both were limited by practical 

considerations. The K* classifier was evaluated along several dimensions to 

examine the behaviour of the similarity function in more detail. 

Experimentation supported the conclusion that different attribute types are 

treated consistently and that domain customisation of the similarity function 

can improve classifier performance. It was anticipated that the simple method 

for combining similarity from multiple attributes could introduce biases 

during classification (which may or may not be beneficial depending on the 

domain). Domain characteristics were identified that suggest which method 

for treating missing information is likely to be most appropriate. The K* 

classifier was found to perform well in relation other machine learning 

schemes. 
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6.1 Conclusions 

A little domain information can go a long way. We have seen in the case of 

the K* learner that domain information may be used to choose an appropriate 

method for treating missing values and for combining similarity measures 

from multiple attributes. Domain information is also beneficial when choosing 

the basic method for measuring similarity for individual attributes. There are 

often many methods for modelling transformations between instances, and 

domain information is crucial for deciding which models are appropriate. 

Failure to correctly adapt the similarity function to the domain will lead to a 

loss in performance. However, in comparison with most general-purpose 

similarity functions, the advantages of domain customisation are primarily 

apparent when training data is limited (since this is when discontinuities in the 

general-purpose similarity function are more likely to cause incorrect 

classification). This finding is consistent with the findings of Fix and Hodges 

( 1951) that any reasonable similarity function will eventually converge to the 

optimal error rate as training data increases. Domain customisation may not be 

worthwhile in domains where ample training data is available and storage 

requirements are not an issue. 

These comments generalise to applications other than the K* learner. If 

sensitivity to the domain characteristics is paramount, the similarity function 

must capture as much domain information as possible. The design framework 

that this thesis proposed is the only method that I am aware of that permits 

such domain customisation of similarity functions. 

Perhaps of more importance to machine learning as a field is the potential for 

instance-based learning to be extended to domains that require more complex 

instance representations than a fixed collection of numeric and symbolic 
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attributes. For example, in Chapter 5 the K* classifier was applied to a domain 

with varying numbers of attributes, and shown to perform significantly better 

than a traditional machine learning algorithm. In these domains, decision tree 

and rule inducing schemes must either· be custom developed (generally with 

no guiding principles to ensure robustness), or transform the instances to the 

learner's native representation (potentially losing information in the process). 

This thesis provides a framework for constructing instance-based learners for 

such domains. 

6.2 Future Work 

This thesis has uncovered several issues that deserve further investigation. The 

central objective of this thesis is the proposal of a design framework for 

similarity functions and the demonstration of its feasibility with a practical 

implementation. Issues not directly related to this objective have been 

relegated to future work, and these may be primarily categorised as 

improvements to the K* classifier, and developing further applications 

incorporating K* based similarity. 

The K* classifier was not designed to be the best machine learning scheme­

its purpose is to provide a test-bed for different similarity functions. It turns 

out that the K* classifier does perform very well; however, there are a number 

of improvements that could be made to yield even better performance. The 

first is to implement a method for automatically setting the blend parameters 

for multiple attributes simultaneously, perhaps using methods such as 

conjugate gradient descent. The current automatic method sets the blend 

parameter for each attribute independently so the relative importance of 

attributes cannot be determined. Other, cheaper heuristic methods for setting 
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attribute weights (such as those described in Section 3.4) could provide easy 

performance improvements over the basic K* classifier. 

The K* classifier implements a variety of basic measures for different 

attribute types. The experiments in Chapter 5 identified possible criteria for 

selecting one measure over another, and these could be incorporated into a 

heuristic method for automatically choosing appropriate metrics for attributes. 

Similar heuristics could choose an appropriate method for missing value 

handling. 

A further enhancement to the K* classifier is to implement an editing 

mechanism to reduce storage requirements. For example, a method similar to 

that used by IB3 would involve each training instance having a record of how 

important it has been in classification. The importance updating procedure 

could be dependent on the relative probability of the instance's contribution 

towards a test instance, along with whether it supported the correct decision. 

The importance would be maintained as a "probability that this instance 

supports the correct classification." 

Another area for future research is to carry out further work in geometric 

domains. This would involve developing more similarity functions for 

specific geometric applications-incorporating all these results together for a 

practical geometric application is a large task, and outside the scope of this 

thesis. However, we have shown that the framework can handle all the types 

of problems encountered in geometric domains. 
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Appendix A 

The following similarity function development models a finite number of 

instance positions as having a reflective barrier placed at each edge position. 

0 I n-1 I O I n-1 I O I n-1 

4 I I I I I I I I I I I I I I I I I I I I I I I I I I .. 
b' b" a b b" b' 

Figure A.I: Mapping finite positions using reflection at edge positions 

Assume that at position O the possible transformations are to transform right 

to position 1 and left to position 1 (having reflected immediately upon starting 

the transformation). At position n -1 the possible transformations are left to 

position n - 2 and right to position n - 2 (having reflected immediately upon 

starting the transformation). The mapping that can be carried out on the 

integers (again assuming p(left)=p(right)) is shown in Figure A. 1. 

We want to calculate the probability of transforming from position a to 

position b P5n * (b I a). First assume b ~ a and O < b < n-1, then 

Pn *(bla)= LP .. *(2(n-I)+(b-a))+ LP .. *(2(n-IXk+I)-(b-a)) 
k~ k~O 

+ LP .. *(2(n-I)+(b+a))+ LP .. *(2(n-IXk+I)-(b+a)) 
k~ k~ 
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where P 500 * (i) = ce -mi is the probability function over all integers as defined 

in Equation 4.13. 

The first sum incorporates the transformation from a to bas well as all b' s to 

the right. The second sum takes the transformations to all b' s to the left. The 

third sum takes the transformations to all b" s to the left of a, and the fourth 

sum takes the transformations to all b" s to the right. Note that if b were at 

position O or position n -1 , each transformation would be included in the 

sums twice. For example, the probabilities for programs finishing one position 

to the left of a (i.e. b = 0) would be counted once by the first sum of the 

equation, and once by the third sum. 

pn * (b I a)= L, ce-m(2(n-l )k+(b-a )) + L, ce -m(2(n-l }{k+I }-(b-a )) 

k~O k~O 

+ L, ce -m(2(n-l )l:+(h+a )) + L, ce-m(2(n-l Xk+l }-{b+a )) 

k~ k~O 

= ce -m(b-a) L, e -m2(n-l )I: + ce -m(2(n-l }-(b-a )) L, e -m 2(n-l )k 

k~ k~ 

+ ce-m(b+a )L e-m2(n-l )k + ce-m(2(n-l}-{h+a )) L, e-m2(n-l )k 

k~O k~ 

e-m(b-a) + e-m(2(n-l}-(h-a)) + e-m(h+a) + e-m(2(n-i}-{b+a)) 

=c-----------,--.--------1_ e-m2(n-1) 

em((n-1}-(h-u)) + e-m((n-1}-(b-u)) + em((n-l}-(b+a)) + e-m((n-1}-(b+u)) 

=c---------,--.----,--.--------em(n-1) _ e-m(n-1) 

= c cosh(m((n -1 )- (b- a)))+ cosh{m((n -1 )- (b +a))) 
sinh(m{n-1)) 

Similarly, we find the following form will also hold for the case when b < a 

1 ) cosh{m{(n-1)-lb-al))+cosh{m((n-1)-(b+ a))) 
~ * ,b I a = c------------'------------

5n sinh{m{n-1)) 
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0 I n-1 I O l n-1 I O I n-1 

.. I I I I I I I I I I I I I I I I I I I I I I I I I I ., 
b" a b b" 

Figure A.2: Mapping when b=n-1 

When b = 0 or b = n -1, the first two terms of the previous equation are 

sufficient to include the transformations to all images of b. Figure A.2 depicts 

the situation when b ~ a (i.e. b = n -1 ). 

The expression encompassing the transformation probability from a to b and 

all its images is 

Substituting in our equation for P 5 .. , 

p5n * (b I a)= Ice-m(2(n-l)k+(h-a)) + Ice-m(2(n-1Xk+l)-(h-a)) 

k~O k~ 

= ce-m(h-a)L e-m2(n-l)k + ce-m(2(n-l}-(h-a))L e-m2(n-l)k 

k~ k~ 

e -m(h-a) + e -m(2(n-l }-(h-a )) 

=c------,---,----1_ e-m2(n-1) 

em((n-1)-(h-a)) + e-m((n-1)-(h-a)) 

=c---......,...--......,...--em(n-1) _ e-m(n-1) 

cosh(m((n -1 )- (b - a))) = C----'----'-''----""---'--~ 

sinh(m(n-1)) 

Again a similar development for the b<a (i.e. b = 0) case allows us to use the 

following expression for both: 

1 ) cosh(m((n-1)-lb-al)) 
P *,bla =c-----~..,......~ 

5n sinh(m(n- 1)) 
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AppendixB 

The following tables show one-step transformation probabilities obtained 

from the Brown corpus, as described in Section 4.3.8. Each column gives the 

letter transformed from, and each row gives the letter transformed to (the sum 

of each column is 1). 
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,-
i A B :c ·D IE ·F G H : I 

IA 0.131 0.052 : 0.039 0.033 0.085 : 0.035 0.040 0.016 . 0.125 

iB 0.010 0.036 0.018 0.012 0.007 , 0.014 , 0.014 0.025 0.007 
·c 0.015 0.037 I 0.057 0.018 0.011 0.028 ; 0.030 0.037 : 0.018 

D 0.016 0.031 : 0.023 0.074 : 0.044 0.056 : 0.051 0.044 : 0.011 

E 0.132 0.059 i 0.046 , 0.138 0.178 1 0.113 0.112 0.054 0.116 
F 0.010 0.021 i 0.021 I 0.033 0.021 0.036 0.026 0.023 0.009 
G 0.010 0.018 I 0.019 0.025 0.018 0.022 0.025 , 0.021 0.008 
H 0.011 0.090 ! 0.065 0.061 0.023 0.053 0.058 0.133 0.019 
I 0.113 0.035 I o.041 0.020 0.067 i 0.029 0.029 0.025 0.142 

J 0.000 0.004 I 0.003 0.001 , 0.000 ! 0.002 , 0.002 0.002 0.001 
K 0.004 0.007 i 0.005 0.009 j 0.005 ' 0.007 ! 0.007 O.Qll : 0.004 

'L 0.030 I 0.066 0.038 0.041 ! 0.030 : 0.039 . 0.035 0.050 0.021 
IM 0.009 i 0.034 0.026 I 0.025 ; 0.014 i 0.025 0.023 i 0.042 0.011 
!N 0.055 ! 0.037 0.041 j 0.072 j 0.070 ' 0.057 i 0.054 . 0.047 : 0.058 

10 0.093 0.059 . 0.036 I 0.042 I 0.015 0.064 ; 0.048 0.018 i 0.094 
IP 0.015 0.029 i 0.023 i 0.014 0.015 0.020 0.019 i 0.025 0.01 I I 

IQ 0.000 I 0.004 : 0.001 i 0.001 i 0.000 0.001 I 0.001 i 0.000 ! 0.000 
iR 0.034 ! 0.071 I 0.059 , 0.067 1 0.044 0.060 i 0.056 ! 0.087 0.037 

0.037 i 0.043 . 0.058 i 0.074 
; 

s : 0.051 0.091 0.070 : 0.057 0.031 
:T 0.030 : 0.069 ! 0.135 i 0.087 ; 0.052 : 0.084 i 0.126 i 0.079 ! 0.026 
!u 0.040 0.018 '0.014 0.009 0.027 0.012 ' 0.015 0.010 i 0.038 
iv 0.001 · 0.019 '0.012 : 0.011 0.002 ! 0.008 0.011 i 0.030 ! 0.003 
:w 0.006 0.018 0.027 I 0.016 0.009 ; 0.017 0.021 ! 0.027 0.008 

X 0.001 0.001 0.001 i 0.001 0.001 0.001 , 0.001 ; 0.002 0.001 
,Y 0.007 0.006 0.008 i 0.036 0.023 0.028 1 0.023 0.012 0.006 
·z 0.000 0.002 i 0.001 ! 0.001 0.000 0.001 1 0.001 0.002 I 0.001 
,s 0.190 . 0.133 i 0.191 : 0.063 0.121 0.116 · 0.101 0.120 i 0.197 

Table B.1: One Step Probabilities from the Brown Corpus, A-I 
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J K L ; N :M !0 p ;Q ;R 
,A 0.014 0.043 · 0.058 '0.028 0.063 I 0.098 i 0.058 I 0,033 0.044 

B 0.038 0.017 0.025 0.020 0.008 '. 0.012 I 0.022 0.063 0.018 
C 0.049 I 0.022 0.028 0.032 0.oI8 0.oI5 ! 0.036 0.036 0.030 
D 0.033 : 0.056 0.039 I 0.039 0.040 0.022 '. 0.027 0.036 0.043 
E 0.026 0.099 1 0.090 0.068 0.124 i 0.124 1 0.090 ; 0.010 . 0.089 
F 0.031 0.024 0.022 0.023 0.oI9 : 0.020 j 0.023 i 0.028 0.023 
G 0.020 0.022 0.016 '0.Ql8 : 0.015 0.012 : 0.019 i 0.022 0.oI8 

:u 0.083 0.094 0.066 i 0.089 i 0.036 0.013 0.067 : 0.024 . 0.077 

: I 0.030 0.041 0.036 : 0.030 i 0.060 0.090 0.041 0.004 0.044 

!J 0.009 0.001 i 0.002 i 0.003 , 0.001 ; 0.002 0.002 0.019 0.002 
'K 0.005 0.011 I 0.001 0.008 0.005 j 0.003 ; 0.005 0.001 0.008 

L 0.043 0.044 ; 0.069 i 0.044 0.035 ! 0.022 i 0.042 0.037 0.045 
M 0.041 0.030 j 0.027 ! 0.041 0.oI5 : 0,013 i 0.030 0.036 0.029 
N 0.037 0.056 ! 0.060 ; 0.043 ; 0.135 ; 0.037 0.033 0.023 0.062 

0 0.104 0.037 0.040 i 0.039 i 0.039 I 0.154 i 0.060 0.279 0.039 
·p 0.030 0.017 , 0.021 ! 0.024 : 0.009 • 0.016 ; 0.033 I 0.028 0.oI8 I 

Q 0.013 0.000 : 0.001 0.002 0.000 0.004 ; 0.002 · 0.038 0.001 
R 0.068 0.075 0.067 0.071 0.054 0.032 0.055 0.037 I 0.070 

s 0.056 0.070 0.052 . 0.056 I 0.060 0.038 i 0.044 0.083 0.061 
T 0.081 0.079 0.070 , 0.071 i 0.051 0.037 ; 0.078 0.067 0.071 
u 0.005 0.014 0.017 : 0.015 : 0.022 0.029 0.027 0.001 0.015 
V 0.oI5 0.021 I 0.013 i 0.oI8 0.006 i 0.001 0.013 0.001 0.016 
w 0.020 i 0.019 : 0.018 : 0.023 ; 0.010 I 0.006 . 0.019 I 0.001 : 0.018 

,x 0.001 : 0.001 0.001 i 0.003 I 0.001 . 0.001 0.002 1 0.001 j 0.001 
'Y 0.008 i 0.022 : 0.014 ; 0.014 · 0.019 I 0.009 0.009 : 0.001 i 0.017 
;Z 0.001 • 0.002 i 0.001 : 0.001 j 0.001 . 0.000 0.001 i 0.000 · 0.001 

s 0.140 i 0.082 0.139 . 0.175 0.154 i 0.190 0.162 : 0.091 i 0.138 

Table B.2: One Step Probabilities from the Brown Corpus, J-R 
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s ,T u •V !W X :y z ' s 

A 0.046 I 0.026 0.119 ! 0.009 0.024 : 0.060 0.034 I 0.026 ! 0.071 

iB 0.010 : 0.012 0.010 • 0.030 [ 0.015 i 0.008 ! 0.006 0.026 0.009 
IC 0.024 I 0.045 j 0.016 : 0.039 I 0.045 : 0.021 : 0.014 I 0.035 i 0.028 

;D 0.055 · 0.037 0.014 : 0.043 0.033 i 0.027 ! 0.083 I 0.039 0.012 

iE 0.110 0.070 0.124 0.030 0.058 ' 0.076 ! 0.164 • 0.050 0.070 

IF 0.026 : 0.021 . 0.010 0.020 0.021 0.015 • 0.037 0.019 0.013 

]G 0.021 0.027 0.010 0.021 0:022 0.011 0.026 0.019 0.009 

H 0.047 . 0.047 0.020 0.165 0.079 0.042 ; 0.038 1 0.126 0.030 

I 0.035 0.020 
I 

0.101 0.021 0.031 0.046 . 0.024 • 0.062 0.066 

J 0.001 0.001 ! 0.000 0.002 0.002 : 0.001 0.001 : 0.002 0.001 

i K 0.007 0.006 i 0.003 0.014 I 0.007 i 0.004 i 0.008 : 0.010 \ 0.002 

IL 0.033 0.031 j 0.026 0.056 i 0.039 0.028 : 0.033 : 0.053 0.027 
'M 0.022 0.020 1 0.014 0.047 0.031 · 0.037 I 0.021 ! 0.040 ' 0.021 

: 0.057 
: 

N 0.065 0.039 0.044 0.037 0.048 0.078 0.043 0.051 

0 0.044 0.030 0.081 0.007 0.023 1 0.046 1 0.042 ! 0.017 0.067 
p 0.014 0.017 0.020 0.026 0.021 0.024 1 0.011 1 0.024 0.015 I 

Q 0.001 0.001 0.000 i 0.000 0.000 I 0.001 0.000 0.000 0.000 

R 0.057 0.047 0.034 0.098 0.060 i 0.045 I 0.061 0.082 i 0.039 

s 0.088 0.065 0.035 , 0.052 0.051 0.072 · 0.105 0.048 i 0.041 

iT 0.092 0.219 ' 0.030 I o.083 0.154 ' 0.053 : 0.088 0.074 0.065 

lu 0.015 0.009 1 0.045 0.009 0.010 : 0.029 i 0.009 1 0.011 1 0.027 

V 0.008 0.009 [ 0.003 j 0.040 0.016 0.008 i 0.004 ; 0.028 I 0.005 

w 0.015 0.031 ! 0.007 • 0.030 0.035 1 0.014 i 0.011 ! 0.026 I 0.015 

X 0.002 0.001 I 0.002 l 0.002 0.001 0.009 i 0.001 i 0.001 0.002 
y 0.028 0.016 I 0.006 • 0.007 0.011 0.013 · 0.046 I 0.010 , 0.004 

I Z 0.001 0.001 i 0.000 ] 0.003 0.001 0.001 I 0.001 0.008 ! 0.001 

I s 0.135 ! 0.151 i 0.211 ' 0.104 0.173 1 0.265 0.053 ! 0.119 0.311 

Table B.3: One Step Probabilities from the Brown Corpus, S-space 
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The following tables show the P* transformation probabilities obtained from 

the Brown corpus, when the stop probability is 0.2. 

A B ;c D :E •F 1G H : I 
A 0.266 0.049 0.047 0.046 j 0.057 '0.047 0.047 0.042 0.065 
B 0.009 0.214 0.011 0.010 i 0.009 0.010 0.010 0.013 0.009 
C 0.018 0.023 0.226 0.019 : 0.018 i 0.021 0.021 0.023 0.018 
D 0.022 0.026 0.025 0.234 , 0.028 I 0.031 0.030 0.029 0.021 
E 0.089 0.074 1 0.071 I 0.089 j 0.296 '0.084 0.084 i 0.072 0.086 

iF 0.014 0.016 I 0.016 ! 0.Ql8 0.016 0.218 0.017 l 0.016 0.013 
:G 0.011 0.013 ; 0.013 : 0.Ql5 0.013 0.014 0.215 ; 0.014 0.011 
.H 0.028 0.045 i 0.040 j 0.040 0.031 0.038 0.039 i 0.254 0.029 
j I 0.059 0.043 . 0.043 ' 0.039 0.050 0.041 0.041 , 0.039 0.264 

i 
'J 0.001 0.002 i 0.001 i 0.001 0.001 0.001 0.001 ! 0.001 0.001 
,K 0.004 0.005 0.004 ! 0.005 0.004 0.005 0.005 : 0.006 0.004 
!L 0.026 0.033 0.028 0.029 0.026 0.028 0.028 ' 0.031 I 0.024 
:M 0.014 0.019 0.018 0.Ql8 0.Ql5 0.018 0.017 0.021 I 0.014 
:N 0.046 I o.043 0.043 0.049 0.049 0.047 0.046 0.045 I o.047 

0 0.057 ! 0.049 0.044 0.045 0.053 0.049 0.046 0.040 , 0.057 

iP 0.013 '0.016 j 0.015 0.013 0.013 0.014 0.014 ' 0.015 I 0.012 
;Q 0.001 I 0.001 i 0.001 0.001 0.001 0.001 I 0.001 0.001 I 0.001 

iR 0.037 '0.045 0.042 0.044 0.039 0.042 I o.042 0.048 . 0.037 
!5 0.039 I 0.041 0.043 0.050 0.044 0.047 1 0.047 0.044 0.038 

T 0.050 l 0.061 0.073 0.064 0.056 0.063 0.071 0.064 0.050 
·u 0.022 ; 0.017 , 0.016 0.Ql5 0.019 0.016 0.016 0.015 0.021 

V 0.005 ! 0.009 ~ 0.008 0.007 1 0.005 0.007 0.007 : 0.011 0.005 
w 0.010 0.013 , 0.015 0.013 , 0.011 0.013 0.014 : 0.015 0.011 

X 0.001 • 0.001 j 0.001 0.001 0.001 0.001 0.001 0.001 · 0.001 
y 0.010 i 0.010 i 0.010 0.016 0.013 0.014 0.013 0.011 0.010 

z 0.001 ! 0.001 : 0.001 0.001 0.001 i 0.001 0.001 0.001 0.001 
' ! s 0.146 ' 0.133 ! 0.144 . 0.118 ' 0.131 I 0.129 0.126 0.129 0.148 

Table B.4: P* Probabilities from the Brown Corpus, A-I 
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J . K .L M N 0 p Q ·R 
:A 0.042 0.047 0.051 0.045 0.053 0.061 0.051 . 0.047 0.048 

B 0.015 0.011 . 0.012 I 0.012 0.009 0.010 0.012 0.019 0.0ll 
C 0.025 0.020 ; 0.021 i 0.022 0.019 0.018 0.022 0.022 0.021 
D 0.027 0.031 0.028 ; 0.028 · 0.028 : 0.024 0.025 0.027 0.028 
E 0.068 : 0.081 0.080 0.075 i 0.087 , 0.087 : 0.079 0.066 : 0.079 
F 0.017 0.016 0.016 0.016 i 0.Ql5 0.Ql5 ! 0.016 0.017 ! 0.016 
G 0.014 0.014 0.013 0.013 , 0.013 0.012 I 0.013 0.014 I 0.013 
H 0.044 0.046 0.040 0.045 I 0.034 0.029 , 0.040 0.032 : 0.042 
I 0.041 0.043 0.043 0.041 0.048 0.055 : 0.044 0.038 ~ 0.044 

J 0.202 0.001 0.001 0.001 : 0.001 0.001 0.001 0.004 I 0.001 
K 0.004 0.205 0.005 ; 0.005 0.004 0.004 0.004 0.004 • 0.005 
L 0.029 0.029 0.233 I 0.029 0.027 0.025 0.029 0.028 0.029 
M 0.021 0.019 0.018 i 0.221 0.016 i 0.015 0.019 0.019 0.018 
N 0.042 0.046 0.047 ! 0.044 , 0.260 . 0.043 0.042 0.039 0.047 
0 0.056 0.044 0.045 0.045 : 0.046 0.268 I 0.049 : 0.088 i 0.045 
p 0.016 0.013 0.014 0.Ql5 0.012 , 0.013 0.216 0.015 : 0.014 
Q 0.003 0.001 0.001 I 0.00.1 , 0.001 i 0.001 I 0.001 0.207 0.001 

0.044 0.045 i 0.044 I 0.044 : 0.041 : 0.036 i 
, 0.038 , 0.244 ;R ! 0.041 

Is 0.044 ! 0.046 ! 0.043 
' 

0.044 ! 0.044 0.040 ' 0.041 i 0.048 i 0.045 

!T 0.063 : 0.063 ; 0.061 i 0.061 , 0.056 0.052 0.062 0.059 0.061 
u 0.014 i 0.016 ! 0.017 0.016 : 0.018 0.020 1 0.Ql8 I 0.014 0.016 

:v 0.008 I 0.009 I 0.008 i 0.009 ; 0.006 , 0.005 ; 0.008 ! 0.005 i 0.008 
iw 0.014 . 0.013 0.013 ! 0.014 '0.0ll '0.010 0.013 0.010 I 0.013 

X 0.001 I 0.001 j 0.001 : 0.002 i 0.001 0.001 '. 0.001 0.001 0.001 
!y 0.010 0.013 , 0.011 ' 0.011 1 0.012 : 0.010 0.010 i 0.009 ! 0.012 
;z 0.001 I 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
' 0.135 0.123 , 0.134 0.141 : 0.137 : 0.146 . 0.139 0.127 : 0.134 i s 

Table B.5: P* Probabilities from the Brown Corpus, J-R 
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A 
B 
C 
D 
E 
F 

• G 
H 
I 

,J 
K 
L 

,M 
jN 
lo 

p 

jQ 
IR 

s 
iT 
u 
V 

~w 
X 
y 

z 

s .T 
0.048 · 0.044 
0.010 0.010 

u ,v 
0.064 : 0.040 
0.009 : 0.014 

W · X 
0.044 · 0.052 
0.011 , 0.009 

y z 
0.046 0.044 
0.009 0.013 

s 
0.055 1 

0.009 I 

0.020 i 0.025 0.018 : 0.024 0.024 : 0.020 0.018 0.023 0.021 1 

0.031 0.028 0.022 1 0.029 1 0.027 : 0.025 0.036 0.028 0.022 
0.084 0.075 0.087 . 0.067 0.073 0.077 0.094 0.072 0.076 
0.017 0.016 ! 0.014 i 0.016 0.016 0.015 0.019 0.016 0.014 
0.014 0.015 0.012 i 0.014 0.014 0.012 0.015 0.014 : 0.01 I 
0.037 0.037 0.030 0.060 0.043 0.035 0.035 0.052 0.033 1 

0.043 0.039 0.057 . 0.038 0.041 , 0.046 0.040 0.046 0.050 I 

0.001 0.001 0.001 0.001 0.001 i 0.001 0.001 0.001 0.001 
0.005 . 0.004 • 0.004 0.006 I 0.005 0.004 0.005 0.005 0.004 
0.027 · 0.027 i 0.025 i 0.032 i 0.029 0.026 0.027 i 0.031 0.026 
0.017 0.017 i 0.015 i 0.022 ! 0.019 , 0.019 I 0.017 0.021 i 0.017 
0.048 0.043 I 0.047 I 0.044 , 0.043 0.045 0.051 0.044 • 0.045 ' 
0.046 i 0.043 : 0.055 ! 0.037 0.041 0.047 0.045 0.040 0.051 
0.013 i 0.014 0.014 0.015 , 0.014 : 0.014 0.012 0.015 0.013 
0.001 : 0.001 i 0.001 i 0.001 I 0.001 j 0.001 0.001 ; 0.001 0.001 
0.042 I 0.040 I 0.037 j 0.050 j 0.043 ! 0.039 0.043 i 0.047 0.038 
0.249 I 0.046 0.039 0.044 0.043 1 0.046 0.053 ! 0.043 0.040 1 

0.065 . 0.289 i 0.051 ; 0.065 i 0.077 i 0.057 0.064 0.062 0.058 
0.016 ! 0.015 0.222 ' 0.015 • 0.015 0.019 0.015 0.015 0.019 ' 
0.007 1 0.007 0.005 0.213 0.008 0.006 1 0.006 0.011 0.006 
0.012 · 0.016 0.011 . 0.016 0.216 ' 0.012 0.012 · 0.015 0.012 
0.001 i 0.001 0.001 1 0.001 0.001 0.202 0.001 i 0.001 j 0.001 
0.014 ! 0.012 0.010 0.010 0.011 0.011 

1 
0.217 t 0.011 : 0.009 I 

0.001 0.001 , 0.001 0.001 0.001 0.001 I 0.001 , 0.202 ' 0.001 
:~P _ _c___o._1_33 __ 0._13_6_1

_ o_._15_0~i_0_.1_2_6~j_o_.1_4_0 __ 0_.1_5_8~1 _o_.1_16_~i _o._13_0_,_i o_._36_8~1 

Table B.6: P* Probabilities from the Brown Corpus, S-space 
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