

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Department of Computer Science

U . The .
mvers1ty

of Waikato
Te Whare Wananga

o Waikato

Hamilton, New Zealand

Designing Similarity Functions

Leonard Trigg

This thesis is submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy at The University of Waikato.

October 1997

© 1997 Leonard Trigg

Abstract

The concept of similarity is important in many areas of cognitive science,

computer science, and statistics. In machine learning, functions that measure

similarity between two instances form the core of instance-based classifiers.

Past similarity measures have been primarily based on simple Euclidean

distance. As machine learning has matured, it has become obvious that a

simple numeric instance representation is insufficient for most domains.

Similarity functions for symbolic attributes have been developed, and simple

methods for combining these functions with numeric similarity functions were

devised. This sequence of events has revealed three important issues, which

this thesis addresses.

The first issue is concerned with combining multiple measures of similarity.

There is no equivalence between units of numeric similarity and units of

symbolic similarity. Existing similarity functions for numeric and symbolic

attributes have no common foundation, and so various schemes have been

devised to avoid biasing the overall similarity towards one type of attribute.

The similarity function design framework proposed by this thesis produces

probability distributions that describe the likelihood of transforming between

two attribute values. Because common units of probability are employed,

similarities may be combined using standard methods. It is empirically shown

that the resulting similarity functions treat different attribute types coherently.

Designing Similarity Functions-i

The second issue relates to the instance representation itself. The current

choice of numeric and symbolic attribute types is insufficient for many

domains, in which more complicated representations are required. For

example, a domain may require varying numbers of features, or features with

structural information. The framework pr.oposed by this thesis is sufficiently

general to permit virtually any type of instance representation-all that is

required is that a set of basic transformations that operate on the instances be

defined. To illustrate the framework's applicability to different instance

representations, several example similarity functions are developed.

The third, and perhaps most important, issue concerns the ability to

incorporate domain knowledge within similarity functions. Domain

information plays an important part in choosing an instance representation.

However, even given an adequate instance representation, domain information

is often lost. For example, numeric features that are modulo (such as the time

of day) can be perfectly represented as a numeric attribute, but simple linear

similarity functions ignore the modulo nature of the attribute. Similarly,

symbolic attributes may have inter-symbol relationships that should be

captured in the similarity function. The design framework proposed by this

thesis allows domain information to be captured in the similarity function,

both in the transformation model and in the probability assigned to basic

transformations. Empirical results indicate that such domain information

improves classifier performance, particularly when training data is limited.

Designing Similarity Functions-ii

Acknowledg01ents

Researching and writing a DPhil thesis is a long and difficult process, and I

would like to thank those people who have helped me during the course of my

study. Their support has made this process enjoyable.

I would like to thank John Cleary-I could not have hoped for a better

supervisor. His encouragement, ideas, and assistance with the trickiest

mathematical problems has been inspirational. I must confess, after some of

our discussions, my brain felt like it was about to explode ©.

I have received unending support from my family. For this, I am eternally

grateful. Tracy has provided emotional support, supported me financially, and

put up with my grad-student ways .. My parents have encouraged me

throughout my life, and have provided support whenever needed.

Many people have helped in the transformation of this thesis from first draft

to final copy. In particular, I would like to thank the following for their

comments-John, Bill Teahan, Stu Inglis, Geoff Holmes, Kai Ming Ting, and

Ian Witten. Thank you all.

Designing Similarity Functions-iii

Designing Similarity Functions-iv

Contents

ABSTRACT .. 1

ACKNOWLEDGMENTS .. m

CONTENTS ... V

LIST OF FIGURES ... IX

LIST OF TABLES .. XllI

INTRODUCTION .. 1

I.I MOTIVATION ... 5

1.2 OBJECTIVES .. 8

1.3 THESISCLAIMS ... 10

I .4 TERMINOLOGY ... 11

1.5 THESIS OVERVIEW .. 12

INDUCTIVE INFERENCE AND ALGORITHMIC COMPLEXITY 15

2.1 INTRODUCTION ... 16

2.2 COMPLEXITY, INFORMATION, AND PROBABil..ITY .. 19

2.2.1 Coding Data .. 20

2.2.2 Algorithmic Complexity ... 25

2.2.3 The Solomonoff-Levin Distribution-A Universal Prior 28

2.2.4 Minimum Information Encoding .. 3/

2.3 CONCLUSIONS ... 35

ISSUES AND CURRENT TREATMENT ... 37

Designing Similarity Functions-v

3.1 WEATHERCASERETRIEVAL ... 38

3.2 INSTANCE-BASED LEARNING .. 40

3.3 DIFFERENT ATTRIBUTE TYPES ... 44

3.3.1 Numeric Distance Functions46

3.3.2 Symbolic Distance Functions .. .47

3.3.3 Coherent Treatment ... 51

3.4 ATTRIBUTE IMPORTANCE .. .58

3.5 INSTANCE IMPORTANCE ... 62

3.6 MISSING INFORMATION ... 66

3.7 ROBUSTNESS ... 70

3. 7. 1 Smoothness 71

3.7.2 Multiple Paths .. 73

3.8 OTHER ISSUES ... 76

3.8.J Memory Requirements .. 76

3.8.2 lnterpretability ... 77

3.9 CONCLUSIONS .. 80

SIMILARITY FUNCTION DESIGN ... 83

4.1 COMPLEXITY AS DISTANCE-PROBABILITY AS SIMILARITY 84

4.2 SPECIFICATION OF K* .. 87

4.3 APPLICATIONS OF K* THEORY ... 94

4.3.J Discrete Infinite Space (lntegers) ... 95

4.3.2 Discrete Finite Space ... 103

4.3.3 Continuous Space (Reals) ... 111

4.3.4 Continuous Space, Wrapped ... 113

4.3.5 Continuous Space, Clipped .. 115

4.3.6 Continuous Space, Splitting Points ...] 18

4.3.7 Symbolic Space (Independent Symbols) .. 126

4.3.8 Symbolic Space (Non-independent Symbols) ... 128

4.3.9 Multiple Attributes ... 133

4.3.10 Missing Values ... 146

4.4 CONCLUSIONS .. 147

K* APPLICATION: AN INSTANCE-BASED LEARNER ... 149

5.1 IMPLEMENTATION ... 150

5. 1. 1 Category Prediction ... 150

Designing Similarity Functions-vi

5.1.2 Simple Numeric Prediction ... 151

5.1.3 Choosing Values for the Free Parameters .. 151

5.2 EVALUATION .. 156

5.2.1 Experimental Methodology .. 157

5.2.2 Coherent Treatment of Different Attributes .. 161

5.2.3 Multiple Attributes ... 165

5. 2.4 Mis sing Values ... 17 4

5.2.5 Automatic Assignment of Symbolic One-step Probabilities 187

5.2. 6 Automatic Stop Parameter Setting .. 192

5.2. 7 Capturing Domain Information .. 194

5.2.8 Comparison with Other Machine learning Schemes 203

5.3 CONCLUSIONS .. 208

CONCLUSIONS ... 211

6.1 CONCLUSIONS .. 214

6.2 FUTURE WORK .. 215

APPENDIX A .. 217

APPENDIX B .. 221

BIBLIOGRAPHY ... 229

Designing Similarity Functions-vii

Designing Similarity Functions-viii

List of Figures

FIGURE 1.1: TWO BAROMETRIC PRESSURE CONTOUR MAPS TAKEN 24 HOURS APART .. 2

FIGURE 2.1: A SEQUENCE OF SYMBOLS .. 20

FIGURE 2.2: CODE DICTIONARY A ... 20

FIGURE 2.3: ENCODED SEQUENCE A ... 21

FIGURE 2.4: CODE DICTIONARY B ... 22

FIGURE 2.5: ENCODED SEQUENCE B ... 22

FIGURE 2.6: CODE DICTIONARY C ... 24

FIGURE 2.7: AN EXAMPLE DECISION TREE .. 34

FIGURE 3.1: IB 1 DISSIMil..ARITY FOR TWO REPRESENTATIONS OF TIME OF DAY 53

FIGURE 3.2: IB1 ERROR RATE FOR UVI AND UV2 DATASETS, AND MODIFIED IB1 ERROR

RATE FOR UV2 DATASET .. 55

FIGURE 3.3: NON-SMOOTH EVALUATION FUNCTION .. 72

FIGURE 3.4: ALGORITHM TO DISCOVER MUTATION PROBABILITIES 74

FIGURE 4.1: DISCRETE INSTANCE POSIDONS .. 95

FIGURE 4.2: P* PROBABILITIES FOR THE DISCRETE LINE .. 98

FIGURE4.3: K* DISTANCE FOR THE DISCRETE LINE ... 99

FIGURE 4.4: ASYMMETRIC K* DISTANCE FUNCTION ... 100

FIGURE 4.5: K* DISTANCE FOR SET-LENGTII PROGRAMS ON THE DISCRETE LINE 102

FIGURE 4.6: FINITE POSIDONS USING WRAPAROUND .. I 04

FIGURE 4. 7: MAPPING WRAPAROUND ONTO THE INTEGERS ... 104

FIGURE 4.8: K* DISTANCE FOR TEN POSIDONS USING WRAPAROUND 106

FIGURE 4.9: MAPPING FINITE POSIDONS, WITH REFLECTION PAST END POINTS 107

FIGURE 4.10: K* DISTANCE FOR TEN POSIDONS USING REFLECTION PAST END POINTS

.. 110

FIGURE 4.11: K* DISTANCE FOR TEN POSIDONS USING REFLECTION AT END POINTS .110

FIGURE 4.12: CONTINUOUS SPACE WRAPPED .. 113

Designing Similarity Functions-ix

FIGURE 4.13: DISTANCE FUNCTIONS FOR CONTINUOUS SPACE WRAPPED 114

FIGURE 4.14: TWO WEATHER MAPS TAKEN 24 HOURS APART 116

FIGURE 4.15: A CLIPPING BOUNDARY ON THE LINE .. 117

FIGURE 4.16: ONE POINT TRANSFORMING TO TWO POINTS ... 119

FIGURE 4.17: CONTOURS OF EQUAL DISSIMILARITY (COMBINED FUNCTION) 123

FIGURE 4.18: RANKED CHARACTER FREQUENCIES FROM THE BROWN CORPUS 131

FIGURE 4.19: CONTOURS OF EQUAL DISTANCE FOR ADDITIVE AND MERGE

COMBINATION .. 143

FIGURE 5.1: BLEND SENSITIVITY TO OTHER ATTRIBUTES ... 154

FIGURE 5.2: LEARNING RATE ON lN DOMAIN ... 163

FIGURE 5.3: ENTROPY GAIN ON lN DOMAIN ... 164

FIGURE 5.4: 100 EXAMPLE INSTANCES FOR THE LINEAR BOUNDARY DOMAIN, 0°

INCLINE ... 166

FIGURE 5.5: ERROR RATES ON ROTATED DATASETS WITH TEN TRAINING INSTANCES

.. 166

FIGURE 5.6: CONTOURS OF EQUAL SIMILARITY FOR ADDITIVE AND MERGE

COMBINATION .. 168

FIGURE 5.7: DECISION BOUNDARIES FOR ADDITIVE AND MERGE COMBINATION 168

FIGURE 5.8: ENTROPY GAIN WITH TEN TRAINING INSTANCES 170

FIGURE 5.9: ENTROPY GAIN WITH INCREASING TRAINING INSTANCES 170

FIGURE 5.10: LEARNING RATE ON lN DOMAIN ... 173

FIGURE 5.11: FISHERS ORIGINAL IRIS DATASET, SHOWN FOR TWO ATTRIBUTES 175

FIGURE 5.12: TWO INSTANCES WITH MISSING PETAL WIDTH VALUES 176

FIGURE 5.13: PSEUDO-IRIS DATASET WITH 20% MISSING DATA 177

FIGURE 5.14: PSEUDO-IRIS DATASET-60 TRAINING INSTANCES 179

FIGURE 5.15: PSEUDO-IRIS DATASET-20 TRAINING INSTANCES 179

FIGURE 5 .16: ENTROPY GAIN FOR 60 TRAINING INSTANCES ... 180

FIGURE 5.17: 100 EXAMPLE INSTANCES FROM THE CHECKERBOARD DOMAIN 182

FIGURE 5.18: CHECKERBOARDDATASET-20% MISSING DATA 184

FIGURE 5.19: CHECKERBOARDDATASET-300TRAINING INSTANCES 184

FIGURE 5.20: CHECKERBOARD DATASET-ERROR RATE FOR 50 TRAINING INSTANCES

.. 186

FIGURE 5.21: ENTROPY GAIN FOR 50 TRAINING INSTANCES ... 186

FIGURE 5.22: ERROR RATE FOR PSEUDO-IRIS DOMAIN-5 BINS PER ATTRIBUTE 189

FIGURE 5.23: ENTROPY GAIN FOR PSEUDO-IRIS DOMAIN-5 BINS PER ATTRIBUTE 189

Designing Similarity Functions-x

FIGURE 5.24: ERROR RATE FOR PSEUDO-IRIS DOMAIN-15 BINS PER AITRIBUTE 190

FIGURE 5.25: LEARNING RATE FOR THE PHONEME DOMAIN ... 191

FIGURE 5.26: PHONEME DOMAIN-AUTO VERSUS MANUAL BLEND 193

FIGURE 5.27: CHECKERBOARD DOMAIN-AUTO VERSUS MANUAL BLEND 194

FIGURE 5.28: ENTROPY GAIN FOR VARIOUS SIMILARITY FUNCTIONS ON UV4 DATASET

.. , ... 196

FIGURE 5.29: ENTROPY GAIN FOR VARIOUS SIMILARITY FUNCTIONS ON WASP DOMAIN

.. 200

FIGURE 5.30: ENTROPY GAIN FOR VARIOUS CLASSIFIERS WITH VARYING NUMBERS OF

ATTRIBUTES ... 203

FIGURE A. l: MAPPING FINITE POSITIONS USING REFLECTION AT EDGE POSITIONS 217

FIGURE A.2: MAPPING WHEN B=N-l ... 219

Designing Similarity Functions-xi

Designing Similarity Functions-xii

List of Tables

TABLE 4.1: RANKED ONE-STEP CHARACfER TRANSFORMATION PROBABll..ITIES 132

TABLE 4.2: RANKED P* CHARACfER TRANSFORMATION PROBABll..ITIES 133

TABLE 5 .1 : DATASET CHARACfERISTICS ... 204

TABLE 5.2: ERROR RATES FOR UCI DATASETS .. 205

TABLE 5.3: ENTROPY GAINS FOR UCI DATASETS .. 206

TABLE B. l: ONE STEP PROBABILITIES FROM THE BROWN CORPUS, A-1.. 222

TABLE B.2: ONE STEP PROBABILITIES FROM THE BROWN CORPUS, J-R 223

TABLE B.3: ONE STEP PROBABILITIES FROM THE BROWN CORPUS, S-SPACE 224

TABLE B.4: P* PROBABILITIES FROM THE BROWN CORPUS, A-1 225

TABLE B.5: P* PROBABll..ITIES FROM THE BROWN CORPUS, J-R 226

TABLE B.6: P* PROBABILITIES FROM THE BROWN CORPUS, S-SPACE 227

Designing Similarity Functions-xiii

Designing Similarity Functions-xiv

Chapter 1

Introduction

Consider the task of comparing two weather maps. There are many reasons

why we might make such a comparison. For example, one map may represent

the current weather situation, while the other represents the weather at some

time in the past. If the two maps are sufficiently similar, looking at what

happened after the historical situation may help predict how the current

weather will change.

Weather maps contain high-level features, for example, high and low-pressure

systems. To compare two images for similarity, we must first have an idea of

which features in one image correspond to which features in the second. The

maps in Figure I. I are from consecutive time periods, so it is easy to

determine likely feature correspondences. When the placement of the features

varies it is less obvious which correspondence should be used. Consider the

effect of incremental changes to one of the images. At some point a small

Designing Similarity Functions- I

40

Figure 1.1: Two barometric pressure contour maps taken 24 hours apart

change in the image will result in a new feature correspondence being

considered best. This in turn will give a sudden change in predictions made by

the system, even though only a small change in the image itself has occurred.

A further complication arises when the number of features in the two images

is different. In this case a simple one-to-one correspondence cannot be carried

out. One feature in the first image may have moved outside the boundaries of

the second image, or it may have merged with another feature to become one.

In the left-hand image of Figure I. I the high-pressure system splits in two in

the right hand image, so somehow the similarity between a single feature and

two features must be evaluated.

Missing information presents another problem. This may occur when features

are beyond the image borders, such as the low-pressure feature in the lower

right of the images in Figure 1.1. If the remainder of the image is sufficiently

similar, the image may still prove useful when making predictions. Similarity

is rarely determined by measurement of one property-often many separate

components must be taken into account. In the weather domain position, size

and shape of features must be considered and somehow combined to give an

indication of overall relatedness. Care must be taken to avoid biasing the

measure towards one component or another.

Designing Similarity Functions-2

The similarity of two images is often given in terms of a single number

calculated by a similarity function. It is clear that the similarity function

should in some sense depend on the underlying domain from which the

images are generated. For example, in the weather domain a difference in the

vertical position of a feature is much more significant than a difference in the

horizontal position, because weather patterns naturally tend to move from

west to east. Similarly, the function should be sensitive to the purpose of the

comparisons. If the objective is to predict the weather over New Zealand,

features closer to New Zealand should have more importance than features

over Australia. Features used to predict wind speed may be different from

those used to predict cloud cover. Domain knowledge is crucial to the

performance of a similarity function.

The concept of similarity is important in many areas of cognitive science,

computer science, and statistics. In cognitive science and psychology,

similarity plays an important role in models of knowledge and behaviour.

Individuals use similarity when categorizing objects, forming concepts and

making generalisations. Similarity is employed in accounts of stimulus and

response generalisation in learning, and to explain errors in memory. In

computer science and statistics, a common task is pattern recognition. In the

most general terms this involves determining whether a group of numbers (or

pattern) is recognised as some previously observed pattern. The pattern may

represent anything from an image of a vehicle, measurements taken from

sensors in an industrial process, the waveform produced by a human voice, or

information about a person's health. If a pattern is similar enough to a

previously observed pattern it is "recognised" and appropriate action can be

taken, such as determining whether to issue a speeding ticket, adjusting some

process control parameter, allowing access to a secure area, or suggesting a

medical diagnosis.

Designing Similarity Functions-3

Often similarity is interpreted in a geometric sense-objects are represented as

a point in geometric space and the similarity of two objects is the negation of

the distance between them as measured by a metric function. Small distances

between points result in high similarities and large distances between points

result in low similarities. This geometric interpretation implies certain

properties that upon closer inspection do not reflect our intuitive

understanding of similarity. For example, a geometric interpretation implies

that the distance from any object to itself is zero, although we intuitively

perceive two identical twins as more similar to each other than two identical

cars. This is presumably because there are many identical cars but few

identical people. A geometric interpretation also implies that similarity is

symmetric. The asymmetry of human similarity judgement is evident in

similes and metaphors. We say, ''Turks fight like tigers" and not "tigers fight

like Turks," since tigers epitomise fighting spirit. Sometimes both directions

are used but with different meanings. "Life is like a play," says that people

play roles, while "a play is like life" says that a play captures important

aspects of our lives.

Tversky (1977) describes several studies in psychology into how humans

interpret similarity. The asymmetry of human judgement of similarity is

confirmed in many experiments. For example, in an experiment carried out by

Rosch (1975), subjects were required to make a statement like "a is essentially

b" when presented with two objects. In a domain such as comparing numbers,

objects were divided into prototypical (such as multiples of ten) versus

variants (such as other numbers). Subjects overwhelmingly preferred placing

the prototype in the position of b (the referent) and the variant in the position

of a (the subject). For instance, the sentence "103 is virtually 100" was

preferred over the sentence "100 is virtually 103." These experiments suggest

Designing Similarity Functions-4

that if a similarity measure is to correspond with human interpretation of

similarity, symmetry is not a requirement.

1.1 Motivation

One area of machine learning where similarity functions play an important

role is instance-based learning. The usual task in instance-based learning is to

classify an instance by relating it to a library of examples for which the

classification is known. The representation of an instance is typically in terms

of a set of attributes common to all the instances, such as colour or height. An

instance is defined by the values it has for each property, such as red or

178cm. The similarity measure compares an attribute value in one instance

with the corresponding attribute value in the second instance. The similarities

between each of the attributes are combined to give an overall indication of

similarity. In a simple instance-based learner, a new instance is given the same

category as the most similar instance in the library. Instance-based learning

algorithms typically use a similarity measure designed to perform well in a

variety of domains with little or no modification.

Case-based reasoning algorithms also employ measures of similarity

(Riesbeck and Schank, 1989). These algorithms are more sophisticated than

instance-based learners in both the representation used for objects and the

task. Objects are called cases because an early application of case-based

reasoning was to search for historic legal cases that provide a precedent

relevant to a current case. Unlike the attribute-value pair representation of

instances, there is no simple representation for cases. This is because case­

based reasoning applications are typically very domain specific, and the

domain determines the case representation. A case may contain features

unique to itself or it may contain structural information. For example, a

Designing Similarity Functions-5

description of a "recipe" case would consist of a list of ingredients and

procedural information about how the meal is prepared. The task carried out

by case-based reasoning systems is often more than simple classification. An

example case-based reasoning system might plan a meal by taking the dietary

requirements of guests and modifying existing recipes accordingly.

Many of the issues dealt with in measuring the similarity between two objects

are intimately related to the design of evaluation functions. Evaluation

functions take a single object and give a number representing the "goodness"

of that object. Evaluation functions can be viewed as measuring the similarity

between the current object and some unknown "best possible object" (or the

distance from an unknown "worst object"). Two common uses of evaluation

functions are in game playing and in genetic algorithms.

In game playing, a possible move is considered and the resulting game state is

evaluated. It is desirable to be in a state with high goodness, so the move that

produces the best next state according to the evaluation function is played.

The quality of the evaluation function directly affects the performance of the

game-playing program.

Genetic algorithms use the principles of natural selection to search for an

optimal solution to some multidimensional problem. An initial "population"

of potential solutions is randomly generated. Each is then evaluated as to how

well it solves the problem. Solutions with sufficiently high goodness are

chosen as parents for a new population. Parents are randomly mutated and

merged with other parents to produce new potential solutions. Over a number

of generations the solutions represented by the population converge to a

solution that is at least locally optimum if not globally optimum. A better

function for evaluating individual solutions results in faster convergence and

often (since randomness is involved) a better final solution.

Designing Similarity Functions-6

The primary goal of machine learning is to bring the practical benefits of

learning to computer programs, although this results-driven philosophy can

sometimes inhibit the development of solutions that have an overall

coherence. Prior to the development of machine learning, similarity functions

were designed primarily to handle attributes with real or integer values. This

stemmed from the geometric interpretation of similarity-numeric attributes

have an obvious distance measure: Euclidean distance. However, not all

attributes have such a natural interpretation of similarity, for example, colour

or brand name. Researchers in machine learning who attempted to solve real

world problems soon discovered that effective treatment of symbolic

attributes is essential. Some similarity functions designed specifically with

symbolic attributes in mind have been developed. A review of these similarity

functions is given in Chapter 2. Functions for dealing with symbolic attributes

are often combined in an ad hoc manner with functions for dealing with

continuous attributes. Very few algorithms have any conceptual basis for the

manner in which different attribute types are treated or how the measures for

different attributes are combined.

A desirable goal of machine learning is to develop algorithms that can be

applied to many problem domains. However, rather than developing a general

method for tailoring similarity functions to each domain, the usual approach is

to eliminate domain specific information altogether. Typically all attributes

are treated as one of the two basic types, numeric and symbolic. Clearly this

can cause problems. For example, representing the months in symbolic form

loses information about the order in which months occur, and that the months

are cyclic. This type of information should be incorporated in similarity

functions.

Designing Similarity Functions-?

1.2 Objectives

The objective of this thesis is to develop a framework for the formulation of

similarity functions that addresses the issues discussed above. These issues

may be separated into technical considerations, which are specific problems

that must be solved in order to provide any measure of similarity, and

performance issues, which highlight desirable properties of a similarity

function.

Technical considerations will vary from domain to domain, but the design

framework should provide a method for dealing with all of them. The

following are the technical issues that we are concerned with:

• Different feature types and complexity. Feature types can vary from

simple integers, to sets of symbolic values, to complex structural

information. The design framework must provide a consistent approach

to developing type specific similarity measures.

• Multiple features. Often a comparison is made between objects with

multiple unlabelled features (like the multiple high and low-pressure

systems of the weather maps). Some correspondence between features

in two objects must be made for any similarity measure. This is made

more difficult when the number of features is different in the two

objects. The particular feature correspondence can have a large effect on

the calculated similarity. It is imperative that the design framework is

able to deal with multiple features intelligently.

• Missing information. Objects of which we have incomplete knowledge

may still be useful, and so a meaningful comparison should be made.

Domain knowledge may play a part in dealing with missing

information. For example, when faced with an image of the left half of a

Designing Similarity Functions-8

person's face, we can still identify that person on the street because we

know that human faces are approximately symmetrical.

• Combining multiple measures of similarity. A frequent problem is that

objects being compared often consist of several attributes that are

compared individually. Combining individual similarity measures for

each attribute must be done carefully and consistently to avoid biasing

the overall measure towards one attribute.

Many of these problems have not been solved adequately in past research, and

certainly not under a common framework which addresses all of the above

considerations.

Performance issues are concerned with ensuring that a similarity measure

designed for a particular domain performs well in that domain. For the

classification task, performance might be measured solely on classification

accuracy. In general, performance refers to how much information the

similarity measure provides about the domain, and how robust the measure is

over a range of conditions. For example, a reasonably robust similarity

measure should not be overly sensitive to small changes in the objects being

compared. The following factors are important in ensuring good performance

in a similarity measure:

• The design framework must allow the inclusion of domain information.

A measure that employs domain specific information intelligently

should perform better than methods that are insensitive of domain

dependent characteristics.

• The design framework should ensure that the similarity measure is

smooth with respect to the underlying attribute space. This smoothness

is an important factor in the robustness of a similarity measure.

Designing Similarity Functions-9

Similarity measures produced within the design framework must perform

comparably to other measures, if not better. Several similarity measures have

been developed for general purpose learning methods such as instance-based

learners. One expects that a coherent solution to the previous problems should

perform at least as well as these methods on standard tasks.

1.3 Thesis Claims

This thesis proposes a framework for the design of similarity functions for

which we make the following claims:

1. The framework is general enough to encompass many different object

types.

2. The framework allows domain knowledge to be included in similarity

function design.

3. The framework permits similarity functions that compare configurations

of multiple objects.

4. The framework handles missing information.

5. The framework coherently combines multiple sources of similarity.

6. The resulting similarity functions are smooth with respect to small

changes in the object space.

In addition we develop a machine learning application that utilises similarity

functions designed within the framework, and we show that the resulting

instance-based learner performs well under a variety of conditions.

Designing Similarity Functions-IO

1.4 Terminology

Instance-base learning and case-based reasoning come under the umbrella of

lazy learning, which as a general model involves using a library of past

example solutions as a guide in carrying out the current task. These examples

are often interchangeably called exemplars, instances and cases. In instance­

based learning the task is to classify each instance in a test set into a category

or class, using preclassified instances from a training set. Because the

classification of the training instances is known, this process is called

supervised learning. Each instance is represented by a fixed set of attributes

or features. These attributes are usually of a number of basic types.

Continuous attributes (such as real numbers) have values that are ordered and

for which there are always intermediate values between any two values.

Discrete attributes (such as integers) have a number of ordered set values.

Symbolic (or nominal) attributes have a set of unordered possible values.

Boolean attributes have two values, one representing true, and the other

representing false. Instances described by n attributes are points in an n­

dimensional instance space.

The terms similarity and distance are often used interchangeably. A high

similarity implies a small distance, and a low similarity implies a large

distance. However distance is usually associated with the idea of geometric

distance, and exhibits the properties of a metric function. Formally, a distance

function d is a metric if it obeys the following three principles.

Minimality: d(a,b)?.d(a,a)=O.

Designing Similarity Functions-11

This principle says that the distance from an object to itself is zero, and

that no object can be closer to it than itself. It also implies that the

distance between an object and itself is the same for all objects.

Symmetry: d(a,b)= d(b,a).

This principle states that the distance from an object a to an object b is

the same as if the distance were measured in the other direction, that is,

from b to a.

The triangle inequality: d(a,b)+d(b,c)~ d(a, c).

The triangle inequality puts an upper limit on the distance between

object a and object c, given the distance between them via object b.

Throughout this thesis, distance may be thought of as dissimilarity. Where the

geometric interpretation is intended it will be explicitly stated.

1.5 Thesis Overview

The framework for similarity function design proposed by this thesis has its

roots in algorithmic complexity. The next chapter provides the reader with a

brief introduction to inductive inference, complexity theory, and their

relationships.

Chapter 3 discusses the role of similarity functions in machine learning. In

particular, instance-based learning is examined in detail. Work related to the

ideas of smoothness and robustness in a similarity measure is presented.

Previous research related to treating different attribute types coherently is

examined.

Designing Similarity Functions-12

Chapter 4 develops a framework for uniform similarity measure formulation.

The key idea is to interpret the similarity between two objects as the

probability of the first object transforming to the second object. The higher

the transformation probability the higher the similarity. Objects that are

extremely unlikely to transform to each other are very dissimilar. A method

for designing such similarity measures is presented, based on ideas from

complexity theory. Example similarity measures for several simple domains

are also developed.

The implementation of a nearest neighbour classifier that incorporates a

transformation based similarity measure is presented in Chapter 5. Some

problems specific to the application are addressed within the framework. The

classification performance of the resulting instance-based learner is evaluated,

and it is shown that the measure compares favourably with other machine

learning algorithms.

Chapter 6 gives a summary of the thesis and its conclusions, and explores

areas for future research.

Designing Similarity Functions-13

Designing Similarity Functions-14

Chapter 2

Inductive Inference and

Algorithmic Complexity

This chapter presents background information from fields relevant to the

development of complexity-based similarity. A brief introduction to inductive

inference and associated problems is provided. The major problem is the

difficulty of objectively comparing the simplicity of competing hypotheses,

and this was a motivating factor in the development of algorithmic

complexity. Algorithmic complexity defines a measure for the information

content of objects. The minimum information encoding inference procedure

(which is based on algorithmic complexity) has since become popular, and an

introduction to this procedure is provided.

Designing Similarity Functions-15

2.1 Introduction

Induction is defined in the Oxford English Dictionary as "the process of

inferring a general law or principle from the observations of particular

instances." This is also called inductive inference. Induction is the primary

method by which we understand and explain the world. How we carry out

induction is vitally important if we wish to form sound conclusions about how

the world operates. An alternative definition of inductive inference may be

expressed as: "given a data set D and a set of hypotheses H={HI' H2, ••• }

choose the hypothesis that best explains the data." By this definition a single

hypothesis is accepted as the best explanation of the phenomena and all others

are rejected. Inductive reasoning is the more general concept of assigning a

probability (or credibility) to a particular hypothesis-all hypotheses have

some degree of belief associated with them.

A fundamental difficulty in induction is evaluating which hypothesis is "best."

By what criterion should hypotheses be judged? A good hypothesis will

obviously explain most of the data accurately. If two hypotheses explain the

data equally well, which one should be preferred (or should they both be

used)? Philosophers have been aware of these problems for a long time. Two

approaches to the problem of multiple hypotheses are common today:

Epicurus' principle of multiple explanations; and Occam's principle of the

simplest explanation (known as Occam's razor).

Epicurus' Principle of Multiple Explanations: if more than one theory is

consistent with the data, keep them all.

The following information is from Oates (1957), and Li and Vitanyi (1992).

The Greek philosopher of science Epicurus (circa 342-270 BC) maintained

Designing Similarity Functions-16

that if several explanations are equally in agreement with a phenomena, we

must keep them all for two reasons. First, by making use of multiple

explanations it may be possible to achieve a higher degree of precision.

Second, it would be unscientific to choose one explanation over another when

both explain the phenomena equally well. Epicurus claims this would be to

"abandon scientific inquiry and resort to myth." His follower Lucretius (95-

55 BC) illustrates the utility of the principle of multiple explanations with the

following example.

There are things too, not a few for which it is not sufficient to assign one cause; you

must give several, one of which at the same time is the real cause. For instance

should you see the lifeless body of a man lying at some distance, it would be natural

to mention all the different causes of death, in order that the one real cause of that

man's death be mentioned among them. Thus you may not be able to prove that he

died by steel or cold or from disease or haply from poison; yet we know that it is

something of this kind which has befallen him; and so in many other cases we may

make the same remark.

When calculating probabilities a related intuition leads to "the principle of

indifference." If there is absolutely no other evidence of the conditions under

which a group of events occur, the principle of indifference suggests that they

be considered equally likely. What the principle of indifference really

highlights is the need to make as much use as possible of prior information.

Consider an urn containing white, green, and red balls. The principle of

indifference would estimate a probability of 1/3 for drawing a ball of each

colour. For a colour-blind person to whom red and green both appear the same

however, the principle of indifference would estimate that the probability of

drawing a white ball is 1/2, and the probability of drawing a dark (i.e. red or

green) ball is 1/2. The principle of indifference suggests different probability

distributions even though the balls in the urn are the same! Prior knowledge is

vital if we are to avoid this dilemma.

Designing Similarity Functions-I?

It is important to explain the difference between the principle of multiple

explanations and the principle of indifference. Returning to Lucretius'

example, the probability of each cause of death could be estimated, either

from prior knowledge, or from the principle of indifference in the lack of such

knowledge. The principle of multiple explanations requires the use of all

possible explanations rather than simply selecting the most probable.

The second and more sophisticated principle is Occam's razor. This often

cited principle is attributed to William of Ockham (circa 1290-1349). In

contrast to the principle of multiple explanations, it states

Occam's Razor Principle: entities should not be multiplied beyond

necessity.

The typical interpretation of this is: if there are several hypotheses that explain

the observed data equally well, prefer the simplest hypothesis. This makes

sense from a practical viewpoint-if several theories are equally good, why

not use the simplest? A difficulty arises when we try to determine which

hypothesis is the simplest-is x11111 simpler than ax12+bx5+c? It seems there can

be no objective answer to this problem. The field of algorithmic complexity

however, tells us there is an objective measure of the complexity of a theory.

Although this measure is incomputable, it does provide useful information

about how a good measure should behave.

The most well known method of evaluating the probability of various

hypotheses is Bayesian inference. For a set of competing hypotheses H, and

the observed data D, the inferred probability of a particular hypothesis H;

given that data, is given by Bayes' formula

Designing Similarity Functions-18

P(H. ID)= P(DIH;)P(H;)
I P(D) '

where

P(D)= L P(D I H;)P(H;).
i

The probability of the data P(D) can be thought of as a normalising term to

ensure that Ll(H; ID)= I. The term P(H) is called the prior probability,

that is, the probability that H; is true before we have seen any data. The issue

of prior probabilities raises some problems. For large enough data sets the

prior probabilities become almost irrelevant to the accuracy of the inferred

probabilities. Conversely, prior probabilities closer to the actual probabilities

require less data to infer accurate posterior probabilities. Since we wish to

infer accurate probabilities with as little data as possible it is important to

choose a sensible prior distribution. In the case where the set of hypotheses is

limited, a reasonable assumption might be to give them equal probabilities.

When the set of hypotheses is infinite there seems to be no clear method. An

ideal solution would be a universal prior that gives satisfactory results no

matter what the real prior is. The search for a universal prior is partly

responsible for the birth of algorithmic complexity theory. An introduction to

these fields is presented in the next section.

2.2 Complexity, Information, and Probability

This section presents background information on encoding data efficiently.

The development of Kolmogorov complexity is outlined, as well as its role in

the development of a universal prior. The use of minimum information

encoding approaches in machine learning is also presented.

Designing Similarity Functions-19

d f h e e b e h g e

h f e h c h e h e b

0 b h f e e h a f h t>

h h d f b h e g h b

Figure 2.1: A sequence of symbols

There are several books and papers that give a more detailed coverage of the

following material. A good explanation for those unfamiliar with complexity

theory is found in Legg (1995) and Li and Vitanyi (1992). In a series of three

technical reports aimed at introducing minimum information encoding to

statisticians, Oliver and Hand (1994), Oliver and Baxter (1994), and Baxter

and Oliver (1994) present coding and minimum information encoding. Li and

Vitanyi (1993) have written an excellent book covering algorithmic

complexity.

2.2.1 Coding Data

A single digit (a bit) of binary information may be either a 1 or a 0. A binary

string is a sequence of bits such as '00101010'. The length of a binary string x

is denoted l(x). To store information in a computer, or to communicate

a: 000 b: 001 c: 010 d: 011

e: 100 f: 101 g: 110 h: 111

Figure 2.2: Code dictionary A

Designing Similarity Functions-20

011101111100100001100111110100

111101100111010111100111100001

110001111101100100111000101111

111111011101001111100110111001

Figure 2.3: Encoded sequence A

information from one computer to another, it must be represented in binary.

For example, to describe the sequence of symbols shown in Figure 2.1 from

the set S = {a, b, c, d, e, f, g, h}, this information must somehow be represented

in binary. A common approach is to construct a code dictionary with each

symbol represented by a corresponding binary codeword. Figure 2.2 gives a

possible code dictionary for the symbols in S.

To ensure that the resulting message is unambiguous, the code dictionary

should be prefix-free, that is, no codeword may consist of another codeword

followed by one or more bits. For example, if the codeword for 'g' is '11' and

'h' is '111 ', it is impossible to determine whether the string '11111' represents

'gh' or 'hg'. In code dictionary A, there is no ambiguity because the

codewords all have the same length. Since the end of each codeword of a

prefix-free code can be recognised as such it can be decoded immediately. A

code dictionary that is prefix-free is called a prefix-code or instantaneous

code. Figure 2.3 shows the sequence from Figure 2.1 encoded using code

dictionary A.

The total length of this message is 120 bits. The code dictionary given in

Figure 2.2 is inefficient in that other code dictionaries can encode the

sequence in fewer bits. For example, by assigning short codewords to more

Designing Similarity Functions-21

a: 0111111 b: 011 c: 1111111 d: 011111

e: 01 f: 0111 g: 01111 h: 0

Figure 2.4: Code dictionary B

frequently occurring symbols we might construct dictionary shown in

Figure 2.4.

Although this code dictionary is not prefix-free, it is still uniquely

decodable-we know a new codeword has started as soon as we see a 'O' bit

or once the previous codeword exceeds 7 bits. The sequence in Figure 2.1

encoded with this dictionary gives the message in Figure 2.5, with a total

message length of only 109 bits.

The code dictionaries described so far are concerned with encoding from a

finite set of symbols, but what about an infinite set of symbols, such as the

natural numbers? To send the (base two) number n requires log/l bits, but this

is not self-delimiting. One simple prefix-free coding scheme is to first encode

n's length as l(n) 1 's followed by a O and then give n itself (denoted as

11<n>on). This requires a total of 2log2n+ 1 bits. But l(n) can be encoded more

efficiently in the same manner as n. With this method, n is encoded as

011111 0111 0 01 01 011 01 0 01111 01

001110100111111001001011

011110110011101010011111101110

000111110111011001011110011

Figure 2.5: Encoded sequence B

Designing Similarity Functions-22

11<1<n))oz(n }i with a total length of log2n+2logi(log2n)+ I bits. This is a recursive

problem because l(l(n)) could itself be encoded more efficiently. The solution

is called log* coding, which can encode n m about

3+log2n+logiClogp)+logi(logi(log2n))+... bits (for details on the actual

encoding see Baxter and Oliver I 994, page I 2).

The idea of assigning short codewords to more frequent symbols is important.

If each element x; of the set of symbols S has probability of occurring P(x), it

can be proven that the shortest expected message length is obtained when the

length of the codeword for each symbol is equal to -log 2 (P(x;)). The

quantity - log 2 (P(x;)) is called the entropy in bits of the symbol x;, which is a

measure of the amount of information provided by the symbol. For example,

if a bookie gives you a tip that a horse with favourable odds will win a certain

race, the tip provides little information (since you would probably predict that

horse anyway). If the bookie tips you to a horse with unfavourable odds, the

tip provides more information (because you would not normally have

predicted that horse).

One coding method that encodes symbols given a probability distribution is

the Shannon-Fano code. The set of n symbols is ordered by decreasing

probability with probabilities p1, ••• , p n • Let P,. = L~~.' P; , for r = 1, ... , n . Let

E(r) be the binary expansion of P,. The codeword for symbol r is obtained by

truncating E(r) at length l(E(r)) such that

-log 2 P, ~ l(E(r)) < l- log 2 P,.

The Shannon-Fano code achieves the minimum message length on average.

The Shannon-Fano code is also a prefix-code. For more information on the

Shannon-Fano code see Li and Vitanyi (1993), page 63.

Designing Similarity Functions-23

a: 0000001 b: 001 c: 0000000 d: 000001

e: 01 f: 0001 g: 00001 h: 1

Figure 2.6: Code dictionary C

A relation known as the Kraft inequality puts precise constraints on the

lengths of the codewords in a prefix-code. If c is a prefix-code with n

codewords with lengths 117 ••• ,ln then Lni-'• ::5:1. Conversely, if 117 ••• ,ln is a

sequence of positive integers that satisfy the inequality, there is a prefix-code

which has these codeword lengths. The Kraft inequality stays valid for

uniquely decodable codes, which means that every uniquely decodable code

can be replaced by a prefix-code without changing the set of codeword

lengths. Code dictionary B could therefore be replaced by the following

prefix-code shown in Figure 2.6.

A uniquely decodable code is complete if the addition of any new codeword

results in an ambiguous code. The Kraft inequality must therefore be satisfied

with equality for a complete code (Li and Vitanyi 1993, page 70).

So far the discussion has centred on the amount of information in bits that are

needed to represent an object from a known set of alternatives. Only one bit is

needed to distinguish between two objects, regardless of whether one object is

the text of Hamlet and the other of Othello. Algorithmic complexity theory is

concerned with the amount of information in an object when the set of objects

is universal, that is, the information innate to the object.

Designing Similarity Functions-24

2.2.2 Algorithmic Complexity

Occam's Razor requires that we have a measure of the complexity of

competing theories in order to choose the simplest one. Algorithmic

complexity theory is concerned with finding an absolute measure of the

complexity of an object. It is based around the length of description required

to completely describe an object with no outside information. If an object can

only be described by a very long description, it has a high complexity. The

length in bits of the smallest possible description of an object is its

Kolmogorov complexity. These ideas were developed independently by R.J.

Solomonoff (1964), A.N. Kolmogorov (1965), and G.J. Chaitin (1969). In the

early I 960's Solomonoff worked on a completely general theory of inductive

inference, and "Kolmogorov complexity" was presented as an aside in

formulating a universal prior probability distribution. In the mid-1960's,

Kolmogorov independently obtained similar results to Solomonoff. However,

because Kolmogorov's objectives were purely to obtain an algorithmic

measure of the information content in individual objects, the complexity

measure came to be known as Kolmogorov complexity. Around the same

time, Chaitin also independently proposed similar invariant definitions of

complexity. Although both Chaitin and Kolmogorov explored Kolmogorov

complexity after Solomonoff, they were unaware of his work until years later.

The Kolmogorov complexity of a string is the size in bits of the smallest

program which, using no additional input, computes the string and terminates.

Thus, a sequence of 10,000 1 'scan be represented by a short program such as

FOR I := 1 TO 10,000

PRINT 1

Designing Similarity Functions-25

This program is approximately log(10,000) bits in size. There are strings

however that cannot be calculated by a short program-in this case there is no

way to describe the string except literally. The shortest program is to simply

print out the entire string itself, and this program has length approximately

10,000 bits. Strings that do not have a shorter description than themselves are

incompressible. Some strings that appear on the surface to be random may

actually have a short description, for example, the infinite sequence

representing 1t = 3.14159265 ... can be produced by a relatively short program.

This explanation would lead one to believe that the complexity calculated is

heavily dependent on the programming language chosen. After all,

programming languages such as LISP favour problems requiring symbolic

computation, while languages such as FORTRAN are better suited to numeric

tasks. The notion of the information content of an object is only useful if it is

a property of the object itself, and not the description language. Fortunately, it

has been shown that for any reasonable choice of programming language, the

amount of "innate" information in an object is fixed up to an additive constant

(think of this constant as the length of an interpreter for one language written

in the other language).

We now delve into Kolmogorov complexity more formally. For a string p,

z(p) denotes the length (that is, the number of zeros and ones) of p. The

machines which decode the descriptions are Turing machines. The binary

input strings to the Turing machines are called programs. Let n(x) be a

standard enumeration of all objects x onto the natural numbers. For a

particular Turing machine T, a program pis a description of x if, on input p, T

outputs n(x), which we write as T(p)= n(x). The complexity of x with

respect to machine T is defined as

KT (x) = min{l(p): T(p)= n(x)} ,

Designing Similarity Functions-26

where p is a prefix-free program. This value may change depending on the

particular Turing machine used. However, we can construct a Turing machine

that for all x assigns a complexity no higher than the minimum complexity

returned by any Turing machine, to within a constant.

Universal Turing machines are a subset of Turing machines capable of

enumerating all other Turing machines. Thus, any Turing machine Tm may be

identified by a number m with respect to a particular universal Turing

machine. Let U be the universal Turing machine such that when started on the

input string O"'lp, U simulates T., on input p. If T"' is the Turing machine that

returns the minimum complexity for x, U assigns the same complexity plus

the m + I bits needed to specify Tm·

Ku(x)= KT (x)+cm,
"'

where in this case cm = m + I bits (there are other ways of encoding which

Turing machine to select). This is known as the Invariance Theorem (Li and

Vitanyi 1993, page 90).

Similarly, for each pair of universal Turing machines that satisfy the

Invariance Theorem, U and U', the complexities are equal up to a fixed

constant, for all x:

Since the complexity is equal to within a constant, it is customary to fix a

single reference machine and define Kolmogorov complexity K(x) with

respect to it.

This definition of Kolmogorov complexity should properly be called prefix

Kolmogorov complexity, due to the requirement that programs executed by the

Designing Similarity Functions-21

Turing machines be prefix-free. Non-prefix Kolmogorov complexity C(x) has

some properties that make it unsuitable for inductive inference, the major one

is that the series L i-c(x) diverges (more on this later). Both functions are

asymptotically equal, differing by at most an additive term of 2log(C(x)) (Li

and Vitanyi 1993, page 173).

Unfortunately, Kolmogorov complexity is incomputable due to the halting

problem. The halting problem is that no Turing machine can tell whether any

arbitrary Turing machine will halt execution. It may finish tomorrow or it

may continue executing forever. As it applies to Kolmogorov complexity, our

Turing machine can never tell if it has found the shortest program that

computes x (because there might be a shorter program which is still running

that may or may not compute x).

2.2.3 The Solomonoff-Levin Distribution-A Universal Prior

Algorithmic complexity was discovered almost as a side issue by Solomonoff

in the search for a single universal prior distribution (Solomonoff, 1964).

Solomonoff viewed induction as finding a compact description of past

observations and predicting future observations in the context of Turing

machines. Solomonoff argued that observations past and future can be

encoded as a binary sequence, and theories are equated to Turing machines

that compute binary sequences starting with the segment which corresponds to

past observations. Solomonoff's induction theory is as follows.

Assume the existence of a prior probability distribution described by the

probability function P over the space of all binary strings B={O,l }*. Define

the function µ(x) over B by

Designing Similarity Functions-28

µ(x)= lP(xy).
YEB

Thus, µ(x) is the probability of a sequence starting with x. Given a data string

S representing the past observed data, the task is to predict the next symbol in

the sequence. This is expressed in terms of Bayes' formula, where the data D

is the initial sequence S, and the hypothesis H" is that the sequence starts with

Sa, that is, H" explains the past observations S and predicts the next symbol a.

µ(Sa IS)= µ(S 1:c:;(sa).

However, µ(SI Sa)= 1 for any a, since Sa completely specifies S, giving

µ(Sa IS)= µ(Sa).
µ(S)

If the prior probability distribution µ(x) is known, the induction problem is

solved; however, the actual prior probability is unknown. To solve this

problem, Solomonoff proposed the idea of a universal prior distribution that

could be used to give results almost as good as if the actual probability

distribution were used. Solomonoff succeeded in finding a universal prior, but

unfortunately it is incomputable because it uses Kolmogorov complexity. All

is not lost because Kolmogorov complexity (and the universal prior) is semi­

computable, meaning that there are approximations that are computable.

Solomonoff's original suggestion was that the a priori probability P(x) of a

binary string x should be the probability that a randomly generated program p

generates the string x. The probability of a random program p of length l(p) is

i-1<,,) making Solomonoff's original prior

P(x)= Ir1<,,),
U(p)=.r

Designing Similarity Functions-29

where U is a reference universal Turing machine.

The problem with this formulation is that for standard Turing machines the

resulting distribution is not a probability distribution, that is, Lx P(x)

diverges (i.e., the sum does not converge to 1). Even if one considers only the

shortest program computing x rather than all programs, the series diverges. To

counteract this problem Solomonoff had to employ normalising terms.

L.A. Levin employed prefix Turing machines to remove the normalising

terms (Levin, 1974). The Kraft inequality ensures that for all prefix-free

programs ~ 2-t(p):::;; 1. The Solomonoff-Levin distribution is then given by £..ip

P(x)= Li-t(p)'
U(p)=x

where U is the reference prefix-machine. The sum of all P(x) is actually less

than 1 since not all programs halt and produce output. A surprising result

known as the coding theorem states that K(x) and - log(P(x)) are equal up to

an additive constant (Li and Vitanyi 1993, page 223).

We are interested in how well the universal prior performs in relation to the

actual prior. Let M(x) be the universal prior (either taken as P(x) above or

2-K(x)) and µ(x) denote the actual prior. Let S" denote the expected squared

difference between the probability that the (n+l)th symbol is a Oas given by

the universal prior and the actual prior

It can be shown (after a lengthy proof) that the expected squared error at the

nth prediction converges to zero faster than 1/n, so basically the universal

Designing Similarity Functions-30

prior is a very good approximation to any actual prior (Li and Vitanyi 1993,

page 285).

The combination of Bayes' rule and the universal prior allows us to satisfy the

dictums of both Occam's razor and Epicurus' principle of multiple

explanations. Following Occam's razor, if several programs could generate

the string SO, the shortest one is preferred (that is, accorded the highest prior

probability). Similarly, if the program that generates SO is shorter than the

program that generates Sl, the first would be preferred (that is, predict the

next symbol is O with higher probability than for the symbol 1). Solomonoff's

induction procedure is also in line with the principle of multiple explanations

because all hypotheses compatible with the evidence are retained, with the

probability distribution over hypotheses modified according to the simplicity

of each.

2.2.4 Minimum Information Encoding

The ideas from Kolmogorov complexity and Solomonoff's inference

procedure served as inspiration in the development of two related principles

for inference; Rissanen's minimum description length principle (MDL), and

Wallace's minimum message length principle (MML). Both of these

principles are similar; Baxter and Oliver (1994) provide a description of their

similarities and differences. The approach described here is closest to MDL

and can be considered a computable approximation to Solomonoff's induction

procedure. An intuitive explanation of the principle is as follows.

Minimum Description Length Principle: the best hypothesis to explain a

set of data is the one that minimises the sum of

I) the length in bits of the description of the theory; and

Designing Similarity Functions-31

2) the length in bits of the data when encoded with the help of the

theory.

There are problems to be addressed in the selection of competing hypotheses.

In general, the more complex a hypothesis, the better it fits the observed data.

At one extreme, a complex description of the hypothesis H may describe the

data completely. However, this hypothesis is vulnerable to errors in data

measurement and statistical irregularities of the observed data, meaning it is

unlikely to predict new data well-this is known as oveifitting. At the other

extreme is a trivial hypothesis which does not describe the data at all (and

offers no predictions). The MDL principle provides a way to find a balance

between the simplicity of the hypothesis and its accuracy in describing and

predicting the data.

Like Solomonoff's procedure, the MDL principle can be derived from Bayes'

rule with the help of Kolmogorov complexity. When using Bayes' rule we are

interested in maximising the probability of the hypothesis H given the data D.

First we take the negative log of Bayes' rule

-log2P(H ID)= -log2P(D I H)-log2P(H)+ log 2P(D).

When comparing competing hypotheses, the data will not change, making

log2P(D) a constant factor that can be ignored. We are therefore concerned

with minimising the term - log2P(H ID), which is equivalent to minimising

Substituting in the universal prior rK(..-), we obtain

K(H ID)=K(H)+K(D I H).

Designing Similarity Functions-32

We therefore seek to minimise the length of the shortest encoding of the

hypothesis H and of the data D with the help of hypothesis H.

Because Kolmogorov complexity is incomputable, the K function must be

replaced with some computable approximation for use in practical

applications. A common method is to use a standard encoding such as the log*

code to provide a simple upper approximation.

To outline a simple example of the MDL principle, consider inferring the

distribution of the heights of a group of people. The data consists of some

number of height measurements. A hypothesis consists of a specification of

the type of distribution (such as normal or bimodal) along with any required

parameters (such as mean and standard deviation stated to some precision).

The data can be encoded by assigning short codewords to height

measurements with a high probability (according to the hypothesis), and

longer codewords to height measurements with a low probability. A good

hypothesis will result in a short encoding of the data. Stating the hypothesis

parameters to a higher level of precision may result in a shorter encoding of

the data but a longer encoding of the hypothesis. Since the average heights of

women and men are different, a hypothesis representing a bimodal

distribution may result in a shorter encoding of the data, but the encoding of

the hypothesis requires more parameters than a hypothesis utilising a

unimodal distribution. The MDL method will find a trade-off between these

factors. The hypothesis that results in the shortest total encoding of both the

hypothesis and the data is defined as the best.

The MDL principle has been used successfully in many applications,

particularly in the fields of machine learning and data modelling. Quinlan and

Rivest (1989) describe the use of MDL in constructing decision trees. The

task is to take a training dataset and infer a set of questions that will yield each

Designing Similarity Functions-33

Play

>75

Play DontPlay Dont Play Play

Figure 2. 7: An example decision tree

instance's classification. These questions can be represented as a tree.

Figure 2. 7 shows a decision tree for deciding whether to play golf based on

the weather. Quinlan and Rivest describe a method for encoding decision

trees, and for producing good trees guided by the MDL principle. The MDL

inspired trees were compared to decision trees produced by one of the best

alternative methods and found to be smaller on average with roughly the same

classification accuracy.

Another example application of MDL is in the estimation of linear regression

models. The task is to fit a polynomial to a set of n data points. Although is it

always possible to fit a n -1 degree polynomial exactly to the data, such a

solution provides little general information about the data. Polynomials of

lower degree may provide more information about general features of the data

but fit the data values themselves less accurately. This sort of trade-off is

characteristic of the domains where MDL has found successful application.

Legg (1995) describes a system called LME that uses the MDL principles to

infer linear regression models that best fit the data. Encoding the data with

respect to the model is achieved by encoding the error in the model's

prediction for each data value. The errors are encoded to a set accuracy level

Designing Similarity Functions-34

that determines the accuracy of the model. (A model that makes predictions

more accurate than the error resolution will be longer to encode but will not

give a reduction in the data encoding.) Encoding the model consists of

specifying the number of coefficients, then the coefficients themselves. Each

coefficient has an accuracy level (which determines the number of significant

digits), followed by the coefficient digits. LME and other minimum

information based methods have been evaluated on several regression

problems and have excellent performance (Legg, 1995).

2.3 Conclusions

A major difficulty with applying Occam's razor to the task of induction is in

determining the simplicity of competing hypotheses. Algorithmic complexity

defines the simplicity of any object as the length of the shortest program

describing that object. The description of any type of object can be expressed

within this framework. The defined complexity gives a measure of the

information present in an object independent of description language. While

the complexity of an object is incomputable, there are computable

approximations. The ideas from algorithmic complexity have been used

successfully in inductive inference. The MDL principle is a direct result of

interpreting Bayes' rule within algorithmic complexity, and has been applied

in a range of applications with good results. The success of the MDL method

suggests that a complexity-based approach may also be useful in solving

problems in the design of similarity functions.

Designing Similarity Functions-35

Designing Similarity Functions-36

Chapter 3

Issues and Current Treat01ent

This chapter examines issues related to designing similarity functions and

describes current treatment of these issues by the machine learning

community. Similarity functions form the core of instance-based machine

learning algorithms. This chapter provides an introduction to instance-based

learning and discusses in detail how the issues of similarity function design

are currently dealt with. Because geometric domains provided initial

motivation for this thesis, an example of this type of application is presented

to give a concrete feel for the types of problems facing designers of similarity

functions. This example also highlights the ad hoc treatment these problems

currently receive.

Designing Similarity Functions-31

3.1 Weather Case Retrieval

Large repositories of historical weather data have the potential to assist

weather forecasters and other meteorologists in their decision making. This

weather data is practically unusable without a mechanism for retrieving past

situations that are relevant to the current problem. A weather forecaster is

unlikely to recall the exact date and time of relevant weather situations.

Rather, the forecaster could specify meteorological features of interest and

then have similar situations retrieved from the database. Such a system acts as

a "memory amplifier", which offers fast access to historical situations of

interest. Jones and Roydhouse (1993) describe such a system called MetVUW.

MetVUW combines data such as laser disc video, text descriptions, satellite

images, and numeric information on temperature, humidity, and wind speed.

As well as allowing retrieval by. date and time, MetVUW provides a case

retrieval facility that searches for matches based on high-level meteorological

content. Users of MetVUW enter a graphical query that represents the primary

meteorological features of interest, such as high and low-pressure systems.

Queries are compared to annotations• of the historical situations using a

conventional relational database to quickly build a list of potentially relevant

cases. Each retrieved case then undergoes a knowledge intensive similarity

assessment. Cases that are sufficiently similar are presented to the user.

The following components are considered when comparing cases:

• The shape of high and low-pressure systems are compared in different

ways. For high-pressure systems the orientation of ridges is important.

'Annotations have the same representation as queries, and are semi-automatically extracted

from the raw data offline.

Designing Similarity Functions-38

The shape is represented in a conventional manner as a number of

convergent axes. For low-pressure systems only the size of the system is

relevant.

• Clusters of pressure systems are created and evolve by the splitting and

joining of separate small systems. It is important to match these clusters

in an intelligent manner. Clusters are represented as hierarchies of

enclosure. Query retrieval is based only on the outermost cluster, while

detailed examination considers the internal structure of the tree.

• The change of weather patterns over time is often important. Assuming

changes between sequential images are small enough, it is easy to

identify matching features in successive images. From this information a

causal graph is created, which is used to compare movement of features

over time.

• Spatial relationships between features are another important component,

particularly when one feature has a causal influence over others. For

example, a blocking high can impede eastward progress of a low­

pressure feature to its west.

• There are other important components such as differences in pressure

minima and maxima, and the difference in pressure at the centre and

boundary of a system.

During detailed matching the average positional displacement between

features in the query and corresponding features in the retrieved example is

calculated, along with deviations of individual features from the average

displacement. The average displacement is used to penalise large north/south

translations of the image as a whole, while individual displacements measure

the degree of match in the arrangement of features.

Designing Similarity Functions-39

It is not immediately obvious how to evaluate weather map similarity based

on any of the components above, neither is it clear how to combine the results

of multiple components. Jones and Roydhouse (1993) do not describe how the

individual components of similarity are combined to arrive at an overall

similarity, but that they are experimenting with different methods. The types

of information being considered are very different so the lack of an obvious

overall function is understandable. A general procedure for deriving similarity

measures for these components and combining them could simplify the design

of this and other applications that involve measuring similarity between

complex examples.

3.2 Instance-based Learning

Instance-based learners classify by comparing the unclassified instance to a

database of preclassified instances. The similarity between the new instance

and those in the database is used to predict the new instance's class. The

assumption is that similar instances will have similar classifications. The

important issue is how to define "similar instance" and "similar

classification." Typically an instance-based learner has a similarity function

which determines how alike instances are, and a classification function which

specifies how instance similarities yield a final classification for the new

instance. For example, a simple classification function returns the class of the

single closest training instance. Once an instance has been classified, it is

moved into the database along with its correct classification (for a simple

instance-based learner, this is all the "learning" that occurs). Thus, if an

incorrectly classified instance (or more importantly a similar instance) is re­

presented it is more likely to be classified correctly.

Designing Similarity Functions--40

Instance-based learning has been applied successfully to many domains such

as letter recognition (Fogarty, 1992), identifying zone types in document

images (Inglis and Witten, 1995), predicting word pronunciation (Stanfill and

Waltz, 1986; Cost and Salzberg, 1993; Lowe, 1993), and predicting the folded

structure of proteins (Cost and Salzberg, 1993). Although rarer in the

literature, instance-based learners are also employed in fielded applications.

Jabbour et al. (1988), describe a system called ALFA, the Automated Load

Forecasting Assistant, which predicts the short-term demand for electricity at

Niagara Mohawk Power Corporation. Each instance consists of 12 weather­

related measurements, the time and date measurements were made, and power

demand at that time. The instance database contains hourly entries for the la~t

15 years. ALFA retrieves the most similar instances to the current situation and

uses these along with information about special events such as public holidays

to predict the electric load. This system was so successful that a similar

system was implemented to predict natural gas demand (Jabbour and Meyer,

1989).

A typical approach when dealing with geometric domains (such as comparing

weather maps) is to reduce the image to some number of attribute values and

use these as the basis for comparison. For example, Hastie and Tibshirani

(1995) report success using their instance-based learner to identify land usage

from attributes automatically extracted from satellite photographs. Bankert

and Aha (1995) experiment with several algorithms for automatically

identifying cloud patterns in satellite images. Initially, values for 98 different

attributes are automatically computed from the images. A simple instance­

based algorithm is used to search for the best performing subset of these

attributes, to eliminate redundant or irrelevant attributes. A subset of 9

attributes was found to perform particularly well. With these attributes the

instance-based algorithm gave better accuracy than a decision tree algorithm

and a probabilistic neural network classifier. Good performance can be

Designing Similarity Functions-41

achieved on this type of problem as long as suitable attributes are calculated.

It is often difficult to determine what attributes should be considered, which is

why Bankert and Aha take the approach of computing many different

attributes and determining the irrelevant ones later.

The simplest instance-based learners are nearest neighbour (NN) algorithms

(Fix and Hodges, 1951; 1952). They use a domain-specific distance function

to retrieve the most similar instance from a database and present the class of

this instance as the classification for the new instance. Cover and Hart (1967)

found that in the large sample case, the probability of error of the nearest

neighbour rule is at most twice the Bayes probability of error. This can be

interpreted as meaning that half the classification information in an infinite

sample set is contained in the nearest neighbour.

Standard nearest neighbour algorithms can be generalised to k-nearest

neighbour (k-NN) algorithms (Fix and Hodges 1951; 1952). The k closest

neighbours are retrieved, and whichever class is predominant among them is

given as the class of the new instance. Thus, a standard nearest neighbour

classifier is a k-NN classifier for k = l. If the number of instances in the

database is large, it makes sense to use more than the single nearest neighbour,

but k should be small enough that the chosen instances are close enough to the

unclassified instance to give an accurate estimate of its class. In the degenerate

case where k equals the number of instances in the database, the same class

will be predicted regardless of where the unclassified instance is in the feature

space. Choosing a suitable value of k for a particular dataset must be done

carefully. For instance, k should be much smaller than the number of training

instances in the smallest class. Dasarathy (1990) suggests developing an

explicit method for selecting the optimum neighbourhood size for a particular

training set. Fix and Hodges (1951) showed that when k and the number of

Designing Similarity Functions-42

instances n tend to infinity such that 1/n ➔ 0 , the probability of error

approaches the Bayes probability of error.

While the only requirement of Fix and Hodges (1951; 1952) was that the

distance function be able to specify which of two points is closer to a third,

the particular function can have a large effect on the learning rate. For a

simple example several functions were examined, such as ordinary Euclidean

distance, choosing the maximum difference over all attributes, and attribute

weighted combinations. They conclude that a distance function must be

chosen carefully for the particular domain, to minimise the number of

instances needed to reach the desired performance level.

When Biberman (1994) studied similarity functions in relation to

psychological notions of similarity, he found that many similarity functions

are not sensitive to the domain at all. The similarity between two objects is

usually defined by the objects rather than the domain, and hence is the same

for all domains. In many domains this is not the case. For example, the

similarity of "red" and "green" will be different when classifying apples than

when classifying cucumbers, even though the colour attribute may be of equal

importance overall in both domains. Biberman also notes that many similarity

functions assume the similarity of two equal values is the same for all values.

Humans intuitively take two instances that share some uncommon value as

more similar than two instances that share a common value. For example, we

perceive two identical twins as more similar to each other than two identical

cars. This is because we know that there are many identical cars of a particular

model, but only two identical twins of a particular "model."

Designing a similarity function that is ~ppropriate for a particular domain is

not easy. The issues that must be addressed by the similarity function of

instance-based learning algorithms are:

Designing Similarity Functions-43

• Measures for different attribute types must be combined to determine

overall similarity. Early use of NN algorithms involved numeric

attributes only; however in practical applications attributes may be of

different types. The most common other attribute type in current use is

symbolic.

• Some attributes may be more relevant to discrimination than others, and

these attributes should be given more importance in the distance

function. The weighting scheme must be applied consistently to

different attribute data types to avoid biasing the measure in favour of

particular data types.

• Some instances may be better discriminators than others, and it makes

sense to prefer the prediction of a good discriminator over that of a poor

discriminator. Typically, instances that are near class boundaries are

good discriminators. An instance may be a poor discriminator because it

is well away from a class boundary, or it may be the result of erroneous

data.

• Many real world datasets contain instances with missing attribute

values, and these must be handled sensibly, to allow the most use of the

information that is present.

The following sections discuss these issues in detail and outline the

approaches currently employed in dealing with them.

3.3 Different Attribute Types

In early applications of NN discrimination, datasets consisted primarily of

numeric attributes. Research during this period focused upon how to select the

Designing Similarity Functions-44

number of neighbours for comparison, how to deal with missing values, and

how to avoid problems of attribute scaling. Machine learning as a field began

to develop when researchers wanted to apply this technology to a wider range

of real world problems. It soon became apparent that the representation of

many problems requires more than numeric data. Today machine learning

classification schemes typically deal with attributes of two basic types:

numeric and symbolic; other attribute types are often transformed into these

basic types (Almuallim et. al., 1995). This raises the problems of how to

measure similarity over a different type of attribute (such as symbolic), and

how to meaningfully combine the similarity of several different attributes.

Very little classification research has been directed towards making use of

domain specific knowledge. There may be a few explanations for this. In

some cases there is little or no domain knowledge available. A common

approach when evaluating a machine learning algorithm is to simply run it on

some standard datasets (many of which have little documentation on the

meaning of their attributes). While a good classification algorithm might

perform well with minimum domain knowledge, it is also sensible to utilise

domain information when it is available. Cleary et al. (1996a) promote the

storage of "metadata" alongside datasets to encourage automated domain

customisation, although as yet no machine learning schemes are able to make

use of this metadata. Another explanation for the rarity of classifiers using

domain specific similarity functions is that there is no general method for

tailoring functions to the domain. When a domain specific classifier is

developed it is (by definition) rarely suitable for use on other domains.

This section presents similarity functions from the literature. Often these

functions handle numeric or symbolic attributes only. The following section

discusses research on functions that combine measures for different attribute

types.

Designing Similarity Functions-45

3.3.1 Numeric Distance Functions

Comparing numeric values is relatively easy since there exists a simple

operation that takes two values and returns a distance between them:

subtraction. A variety of functions have been proposed when multiple numeric

attributes are to be considered. Fix and Hodges (1952) experiment with the

following two general distance functions:

n

Euclidean(x, y)= L (x; - Y; r
i=I

n

Maximum(x, y)= max Ix; - Y;I
r=l

where an instance xis a vector of n attribute values xi' ... ,x".

The Euclidean distance function measures the distance between points in a

straight line. A similar distance function measures distance between points as

the sum of distances along each axis (e.g., travelling between two addresses

along city streets):

n

CityBlock(x, y)= I,lx; - Y;I •
i=I

A problem common to all these functions is that they are dependent on the

attribute scale-attributes that have a large range tend to outweigh attributes

that have a small range. An early attempt to reduce the sensitivity to attribute

scales is reported by Devroye (1978). This research develops the notion of

empirical distance, and describes a k-NN algorithm that is independent of

monotone transformations of the domain attributes. Essentially, continuous

attributes are transformed into ordered attributes. The distance is

n

Empirical(x, y)= ~~{t(x;, Y;)},

where f(x;, y;) is the absolute difference in the order of X; and Y;.

Designing Similarity Functions--46

An alternative approach to the problem of attribute scaling is to normalise

attribute values. Aha, Kibler and Albert (1991) describe an instance based

learner called 1B I which uses a general purpose distance function to avoid the

requirement to custom-derive a fun~tion for each domain, allowing the nearest

neighbour technique to be used in practical applications. The similarity

function used by 1B 1 is a Euclidean distance measure, with numeric attributes

normalised to ensure all attributes have equal relevance.

The problem of measuring similarity between ordinary numerical attributes

appears to be fairly well solved, although there are a few different methods

used to combine measures of multiple attributes. Euclidean distance is the

most popular method in this respect. However, similarity measures have not

been reported for more specialised numeric attributes, such as those that are

modulo (such as the distance around the perimeter of a circle, or between

times of the day).

3.3.2 Symbolic Distance Functions

Symbolic attributes are more difficult to deal with than numeric attributes

because there is no natural notion of distance. lB 1 (Aha, Kibler and Albert,

1991) uses a simple function, called the overlap metric, where the similarity

between values is I if they are the same, and O otherwise. For multiple

attributes, the value returned is a count of which attributes have matching

values.

Stanfill and Waltz (1986) describe a measure for symbolic attributes that is

considerably more sophisticated. Their Value Difference Metric (VDM)

assumes that symbols that predict the same class are more similar than

Designing Similarity Functions---47

symbols that predict different classes. This allows a numerical distance

between two symbols to be calculated. Their metric for the similarity of two

instances is

n

VDM(.x, y)= L weight(x;)J(x;, Y;) .
. i=l

Here J(x;, y;) is a numerical measure of the difference between the

predictions of two symbols, given by

J(x;, y;)= L (P(c Ix;)- P(c I y;)f ,
ceC

where C is the set of classes and P(c I X;) is the probability of class c

occurring in the subset of training data where the symbol X; occurs.

weight(x;) is a measure of how predictive symbol X; is;

weight(x;)= L P(c IX;)2 •

Thus, the more skewed a symbol's prediction distribution is, the higher its

weighting. Uniformly distributed symbols with tell us little about the class, so

have low weighting. This weighting is based on individual symbols as

opposed to the more commonly used instance weighting and attribute

weighting. Symbol weighting is often avoided as it makes the similarity

function non-symmetric (Cost and Salzberg 1993). However, Tversky (1977)

believes that in some domains asymmetry is justified. Weighting schemes are

discussed in later sections.

Lee (1994) describes a related similarity function for symbolic attributes.

Where the VDM uses probabilities, Lee's function uses a measure of

information content. The similarity between two symbols is

Designing Similarity Functions-48

In spite of its apparent complexity, the heart of this similarity function is

similar to the VDM. Normalising factors are employed to keep the measure in

the range O to 1, and the central value is subtracted from 1 to convert from

dissimilarity to similarity (both of these modifications are for compatibility

with Lee's functions for other attribute types).

Biberman (1994) proposes an alternative measure for symbolic attributes,

called context similarity. This measure is based on the assumption that

similarity is dependent on context, which consists of the set of instances given

and the domain being considered. Biberman notes that a common failing of

simple symbolic measures such as the overlap metric is that they do not allow

different degrees of similarity between different values. For example, the

colour red is considered equally dissimilar to the colour orange as it is to the

colour blue. Between each pair of values there should be a unique parameter

representing their similarity. How to obtain a value for these parameters is not

discussed. The primary improvement of the VDM beyond the overlap metric is

that it incorporates this idea of variable differences between symbolic values,

their differences calculated from the symbol associations with each class.

Biberman first defines a similarity measure for equal symbolic values. This

will vary from value to value, which implies that the triangle inequality will

not hold. The similarity between two identical infrequent values is taken as

higher than between two identical frequent values. To ensure that the

similarity measure is sensitive to the classification concept, the measure is

scaled by the variance of the value's occurrence rate in the different

Designing Similarity Functions-49

classifications. If the value is irrelevant the occurrence rate should be equal

across classifications. The similarity of two equal attribute values X;, Y; is

where P(x;) is the frequency of occurrence of X;, and var(x;, C) 1s the

variance of P(x;) over all classifications C.

Having defined a measure for equal values, Biberman defines the effect that

two non-equal values have, using the similarity of matching values in other

attributes:

() " s (x., y.)
effect X;' Y; = £- eq J J •

x-=,·· n J • J

The effect function gives an estimate of how well two instances match based

on the number of values that match as well as the degree of similarity of the

matching values themselves. This is incorporated into a measure for non-equal

values with respect to a classification c:

effect(w, z)

effect(w, z)

effect(w, z)

where sx, is the set of instances that have the value X;, and n1, n2 , ~ are the

number of instances in each of the summations. The first summation encodes

the intuition that if two instances belonging to the same class share many

values, the values in which they differ are also similar with respect to the

classification. The second and third summations encode the intuition that if

two instances belong to different classes and share many values, the difference

in classification must be due to the values in which they differ.

Designing Similarity Functions-50

Using the similarity measure defined for equal and non-equal values, the

similarity between two instances over all attributes is defined as

ContextSimilarity(x, y) = (!, s,., ~' y;))',

where r is an odd integer greater than one. Raising the sum to a power

effectively increases the similarity of similar instances, and pushes dissimilar

instances further away. Biberman states that the exact value of r does not

affect his results. Biberman found that a nearest neighbour classifier using his

similarity function performed better than when using a number of other

measures, although not significantly better than Stanfill and Waltz's VDM.

These approaches highlight the inherent difficulty of measuring similarity

between symbolic attributes. The overlap metric is essentially the simplest

method that could be devised without thought as to what similarity means in

symbolic attributes. Stanfill and Waltz and Biberman have constructed

functions that incorporate some intuitive ideas about how similarity between

symbols should be measured. That both Biberman's context similarity and

Stanfill and Waltz's VDM perform quite well suggests that even though their

approaches are quite different, they are capturing some of the right kinds of

information.

3.3.3 Coherent Treatment

Little research has addressed the problems caused by combining several

fundamentally different similarity measures. Wilson and Martinez (1997) and

Ting (1995) describe methods to treat continuous attributes and symbolic

attributes using a single uniform metric. Ting notes that the current practice of

simply combining different attribute measures is analogous to summing

Designing Similarity Functions-51

numbers of different units-the result may be a bigger number but it is almost

meaningless. When additional inconsistent processes are incorporated into the

measure, undesirable effects increase. A similarity measure that combines

incompatible components for continuous and symbolic attributes is bad

enough. Adding in different methods for dealing with missing values for each

will make matters worse.

Ting's (1995) solution is to measure both continuous and symbolic attributes

using the same function. To achieve this, continuous data is transformed to

symbolic form. Several methods for discretisation are considered. The method

employed is Fayyad and !rani's (1993) discretisation, which is based on the

MDL principle. In this method, a cut point is chosen which maximises the

information gain (i.e. the entropy of the resulting sets is minimised). Cut

points are chosen recursively until there is no information gain.

Discretisation turns out to have a couple of benefits. First, if a continuous

attribute is irrelevant or contains high levels of noisy data, discretisation will

place all values into a single set. These attributes are effectively ignored

during classification, and the discretisation process can be viewed as a type of

attribute weighting. This in itself can account for a large increase in

classification accuracy. Second, in domains with a high level of noisy data,

discretisation results in noise reduction. This is because discretisation

increases the granularity of the instance space. Without discretisation, if a

noisy instance is closest to the test instance it will be used in the classification.

After discretisation all instances within the same hypercube as the noisy

instance will be the same distance, and classification is effectively k-NN

(giving fewer noise-induced misclassifications). In Ting's experiments,

discretisation more than doubled the number of cases where the test instance

class was determined by more than one training instance. Third, discretisation

provides a type of local adaptation. In areas of the instance space where there

Designing Similarity Functions-52

~
j
·e
"cij
.!!l
C

1.4 r--r--r--r--r---ir---ir--,--,-------.-------.----,-----,

24hr-
12hr + AM/PM -----

1.2

0.8

0.6

0.4

0.2

"-­--
--,--, ____ , ____________________ _

0 .___.___.___.___.....a...c;._,....__,...._ ___ ,__ ___ .____,.____,.__ ___ .____,

0 2 4 6 8 10 12 14 16 18 20 22 24
Time

Figure 3.1: 1B1 dissimilarity for two representations of time of day

are small clusters of instances, discretisation will create small partitions. In

areas of low instance density the partitions will be larger. This variable

partition sizing also aids classification, particularly in areas of higher instance

density.

The side effects introduced by discretisation during preprocessing result in

increased classification accuracy, but obscure the issue of whether a uniform

metric for continuous and symbolic attributes is beneficial in its own right.

Ting illuminates the issue by examining classification accuracy on two

artificial domains.

Ting's first domain models ultra-violet radiation (UV) as a function of time of

the day. If the time of the day is between 11AM and 3:30PM the level of UV is

high, and at other times it is low. This domain is represented by two datasets:

UV I represents the time of the day as one symbolic attribute (AM or PM) and

Designing Similarity Functions-53

one continuous attribute (the hour rangmg from zero to twelve); UV2

represents the time as a single continuous attribute ranging from zero to

twenty four.

Consider the behaviour of 1B 1 's distance function for the time of day

representations used by the UV 1 and UV2 datasets. Figure 3 .1 depicts the

dissimilarity between the time 0900 (9AM) and other times of the day. As

expected, dissimilarity is at a minimum when the time is 0900. For the 24-

hour representation, dissimilarity varies linearly as the difference in time

increases. Note however that 2100 is regarded as closer to 0900 than 2300,

even though the time interval between 2300 and 0900 is 2 hours smaller than

that from 0900 to 2100. Measuring dissimilarity using the 12-hour

representation is more interesting. During the AM period the function behaves

similarly to the function using 24-hour representation. When the PM period

begins there is a sudden jump in dissimilarity, then a decrease until 9PM when

it rises again. This function would certainly yield an interesting ordering of

neighbours during classification. However these effects will not cause a

difference in classification (for our hypothetical test instance at 9AM) unless

there are no training instances in the interval between 9AM and 12PM.

Figure 3.2 shows 1B 1 's error rate for the UVl and UV2 datasets and for a

modified 1B 1 on the UV2 dataset (labelled UV2*). Each data point is the

average error over I 00 randomly generated training sets. The same test set of

1000 instances was used in all cases. Two-tailed, paired t-tests were carried

out at the 95% confidence level. When the number of training instances is

between 10 and 40 the 24-hour time representation (UV2) gives a

significantly lower error rate than the 12-hour representation (UVl). As

predicted, the artefacts introduced by the 12-hour representation are

detrimental to the classification accuracy when the number of training

Designing Similarity Functions-54

l
a,
tis
cc
g
w

30 r-,---.---,--....------...--.----.------,--....----~-~

25

20

15

10

5

UV1-+­
UV2 -+--­

uv2• -a••·

0 ~-...._ _ ___., ___ _ __._ __ .__....._ _ ___._ ___ _ __,_ _ __,

0 5 10 15 20 25 30 35 40 45 50
Training Instances

Figure 3.2: 1B1 error rate for UVl and UV2 datasets, and modified

IBl error rate for UV2 dataset

instances is low. Interestingly the error rates are about equal for 5 training

instances, primarily because by chance the class boundary lies near the 12-

hour border, and also because the UV-HIGH class is small (IB 1 tends to

overestimate its size). The curve labelled UV2* shows the error rate for a

version of IB 1 which assumes the time of day is modulo in nature (i.e. the

interval between two times x and y is taken as min{x-yl,24-lx- YI}), on the

UV2 dataset. The UV2* error rate remains significantly lower than the UVl

error rate even when there are only two training instances. This simple

experiment suggests that data representation should match the underlying

domain as much as possible, and that the similarity function should also make

use of specific know ledge about the domain.

Designing Similarity Functions-55

Ting compares IBl, IBl*, and IBl-MVDM* on the UVl dataset, and reports

that automatic discretisation significantly degrades classification

performance2• When the data is discretised using the actual cut-points in the

domain, IB 1 * and IB 1-MVDM* perform significantly better than IB 1. Ting

claims this shows that using a single uniform metric is better than using two

separate metrics, but this does not follow. IBl* and IBl-MVDM* perform

better when actual cut-points are given because this is providing information

that can not be discovered from the training data alone. In any case where two

training instances of different class are either side of a concept boundary, the

only conclusion to be drawn is that the boundary lies somewhere between the

two instances-there is no way of knowing exactly where the boundary lies.

In addition, automatic discretisation performs more poorly than IB 1 because

time ordering information is lost in the conversion from a continuous to

symbolic attribute.

In the UV datasets, concept boundaries are orthogonal with respect to the

axes, and an ideal discretisation can exactly represent the concept with no loss

of information. The second artificial domain Ting describes has a non­

orthogonal class boundary. The data consists of two continuous attributes

named X and Y. Where X+Y is greater than 1, instances fall in one class,

otherwise the second class. Ting found that discretisation in this type of

domain will result in inaccurately described concept boundaries. IB 1

performed significantly better than IB 1 * and 1B 1-MVDM* in this domain

(except when noise was introduced).

In summary, discretisation at the outset provides a method for treating

symbolic and continuous attributes with a single uniform metric. However,

2 Ting defines 18 l * as the standard 181 classifier (using the overlap metric) which discretises

continuous data to symbolic. IB1-MVDM* uses the MVDM metric (Cost and Salzberg 1993)

for symbolic attributes.

Designing Similarity Functions-56

the conversion from continuous to symbolic data results in a loss of

information. In noise-free domains this reduces classification accuracy. In

noisy domains accuracy improves because multiple neighbours are considered

more often, allowing noisy instances to be outvoted. This suggests that a

better solution is to improve the noise tolerance by means that do not degrade

performance in noise-free situations.

Wilson and Martinez (1997) extend Stanfill and Waltz's VDM to handle

numeric attributes. The difficulty with applying the VDM to numeric attributes

is that it requires an estimate of the probability of a class given a particular

attribute value. For symbolic attributes, this probability can be estimated with

simple counts. Wilson and Martinez examine two methods for estimating class

probabilities given a numeric attribute value. The first method, IVDM,

discretises a copy of the numeric attribute into equal-width bins. Class

probabilities for each bin are calculated, and these probabilities are

interpolated when a probability for a specific value are required. The second

method, WVDM, slides a "window" along the range of each attribute,

calculating class probabilities at each point from the class frequencies in the

training instances that fall within the window. Wilson and Martinez found that

both methods perform considerably better than Euclidean distance; in addition

IVDM performed better than Ting's (1995) IBl-MVDM*, although WVDM

performed slightly worse than ml-MVDM*. Wilson and Martinez' work is a

principled approach to treating numeric and symbolic attributes coherently

with a common similarity function, however there is no provision for

extending the similarity measure to other attribute types.

Designing Similarity Functions-51

3.4 Attribute Importance

When a dataset is created, it is seldom known exactly which attributes are

relevant with respect to the class; indeed some attributes may be irrelevant

altogether. Schemes that attempt to discover the relevance of different

attributes and weight them accordingly are called attribute-weighting

algorithms.

The attribute-weighting scheme employed by Salzberg's (1991) nested

generalised exemplar learner called EACH is simple. Each attribute is assigned

a scale factor. When an incorrect prediction is made, the weights for all

features that match are decreased by an (arbitrary) factor making these

features less important, and those for features that do not match are increased

by the same factor making them more important. Unfortunately, this scheme

suffers from two main problems. In tasks where one class occurs more

frequently than others, attribute weights are biased towards that class to the

exclusion of others. A second problem (which applies specifically to EACH) is

that the distance to EACH' s generalised instances is often zero, which renders

the attribute weighting ineffective.

Aha (1992) describes an addition to the IBn series which handles irrelevant

and novel (that is, the introduction of previously unseen) attributes. IB4

maintains a set of attribute weights for each class. The similarity function used

is:

n

1B 4Similarity(c, x, y)= - L weight: J(x;, Y;),
i=I

where weightci is the weight of attribute i for class c, given by:

Designing Similarity Functions-58

weight. -max --------0.5,0 . . _ (CumulativeWeightc;]

<; WeightNormalizerc,

After an instance has been classified the attribute weights for the class c are

adjusted in the following manner: For each attribute i, if the predicted

classification was correct, increase CumulativeWeightc; proportional to

1- J(x;, y;), otherwise increase CumulativeWeightc; proportional to J(x;, yJ
Increment WeightNormalizer;_.; by the maximum CumulativeWeight

increment. The proportion is set lower for frequently occurring classes than

for less frequently occurring classes to ensure that all classes have their weight

settings adjusted at the same overall rate.

The above attribute-weighting schemes assign global weights to the

attributes-that is, an attribute cannot be regarded as relevant only in some

areas of the domain space. Hastie and Tibshirani (1995) note that the idea of

local adaptation of the distance function has received little research attention.

They describe a method called discriminant adaptive nearest neighbour

(DANN) classification that determines local decision boundaries and then

shrinks the space orthogonal to the boundaries, and elongates the space

parallel to the boundaries. This procedure can be thought of as determining

the relative attribute importances on a local scale. A further enhancement

combines local discriminant information to perform global dimension

reduction.

Wettschereck and Aha (1995) present a comparison of several attribute­

weighting methods. Attribute-weighting schemes are categorised with respect

to the following five dimensions:

Designing Similarity Functions-59

Feedback: Weighting methods that use classification results to continually

adjust attribute weights are called feedback methods. Those

schemes that calculate attribute weights in a one-off procedure are

called ignorant methods. The weighting schemes used by EACH

and m4 are feedback methods, while the weighting used by DANN

is an ignorant method.

Weight Space: Some weighting methods perform feature selection, where

attributes are either used or completely ignored. Other weighting

methods allow continuous attribute weights to determine relative

attribute relevance. Weighting methods are classified as either

binary or continuous respectively.

Representation: This dimension refers to whether the attribute set is

transformed to another representation. The majority of weighting

methods work with the attribute set as given. The DANN classifier

transforms the problem space to remove globally irrelevant

attributes.

Generality: Many weighting schemes assume the relevance of attributes is

constant globally. This assumption is not always valid. The

relevance of attributes may vary with the position in the problem

space. DANN classification adapts locally to the position of the

decision boundaries.

Knowledge: Domain specific knowledge can be used to determine

attribute weights, suggest attribute transformations, and assign

instance-specific weights. Few instance-based learners employ

domain specific knowledge. Domain specific knowledge is often

used in case-based reasoning (e.g., PROTOS, Porter et al., 1990),

both in determining the relevance of particular features and in

defining the case representation itself.

Designing Similarity Functions--60

Wettschereck and Aha compare five instance-based algorithms with respect to

the feedback dimension. Two of the algorithms incorporated feedback

weighting; one that is a slight variant of the IB4 weighting scheme, and a k­

NN classifier using the weight optimising method from VSM (Lowe 1995).

The other three algorithms incorporated ignorant weighting schemes. The first

of these algorithms used the cross-category feature importance, defined as

weight;= LP(c I if.
l'EC

Thus, the weight of attribute i is based on the skew in the conditional

probabilities.

The second algorithm used the VDM metric of Stanfill and Waltz (1986),

described previously. The third ignorant weighting method used the mutual

information between the class and feature values. The mutual information is

the decrease in uncertainty about one variable's value given the value of the

second. The weights are calculated as

~~ () P(x =CAX, =v)
weight;= £-£.ip Xe= CA X; = V log (e -)P(I -)'

veV1 ceC p Xe - C X; - V

where V; is the set of values that attribute i may take, P(x"=c) is the probability

that the class of some training instance is c, and P(x;=v) is the probability that

its value for attribute i is v.

The five algorithms were tested on several datasets chosen to test an

algorithm's ability to handle attributes that were irrelevant, noisy, or

interacted with other attributes. Wettschereck and Aha concluded that: all

methods can tolerate irrelevant attributes unless there are many interacting

attributes; feedback methods are better at isolating a few interacting attributes;

feedback methods appear to learn faster than ignorant methods; and ignorant

methods are sensitive to the data preprocessing.

Designing Similarity Functions--61

These conclusions state more about the particular weighting methods used in

the experiment than the general benefits of feedback versus ignorant

weighting methods. For example, the ignorant methods were found to be

sensitive to preprocessing. All the ignorant methods used in the experiment

were designed only for assigning weights. to symbolic attributes, and datasets

involving numeric attributes had to be discretised. It is only to be expected

that these methods do not perform well on this type of problem. However, one

could design an ignorant weighting scheme that does handle numeric

attributes without discretisation (such as the method used by DANN). The

ignorant methods selected by Wettschereck and Aha do not appear to be well

selected. Feedback methods do have an advantage; since they automatically

adjust to maximise their classification performance, they can overcome

initially inaccurate weight estimates and adapt to statistical differences

between the training and test data: An obvious extension would be to use an

ignorant method to estimate initial weights, and allow a feedback method to

continually refine them.

3.5 Instance Importance

Some instances in the database may be better predictors than others, and

instance-weighting algorithms seek to capitalise on this. One reason for the

difference in predictive accuracy is that some instances may be the result of

erroneous data, or may be atypical of their class. This issue is intertwined with

reducing the memory requirements of instance-based learners, because if a

training instance is sufficiently unimportant it may be removed from the

database altogether.

With the aim of decreasing storage requirements, Aha, Kibler and Albert

(1991) introduce a system called IB2 that saves only misclassified instances.

Designing Similarity Functions---62

The idea is that only instances near concept boundaries are required to

produce correct classifications, and that (since the exact concept is not known)

misclassified instances provide a good indication of where concept boundaries

lie. In a noise-free example domain, IB2 required that only 5% of training

instances be stored with a minimal drop in accuracy. Unfortunately IB2 is

sensitive to noisy data-these are often misclassified and are therefore added

to the instance database, causing further misclassifications. Obviously the

correctness of initial classification alone is not always a good indicator of

instance importance. Another indicator of the predictive ability of an instance

is its performance in the past. IB3 (Aha, Kibler and Albert, 1991) can be

thought of as a simple instance-weighting algorithm that uses past

performance statistics to divide instances into three pools: those that may

currently be used in giving predictions; those that may not be used (but we are

still gathering statistics on); and those that are so poor that they are removed

from the database. For noisy datasets this resulted in a further reduction in

storage requirements, and increased overall classification accuracy.

A similar instance-weighting scheme is used in Cost and Salzberg's (1993)

instance-based learner PEBLS. They introduce the Modified Value Difference

Metric (MVDM), which replaces the symbol weight term of the Stanfill and

Waltz VDM with an instance weighting mechanism:

n

MVDM(x, y)= weightx weight_,. L J(x;, Y;),
i=I

where J(x;, y;) is identical to that of the VDM, and weightx and weighty are

the instance weights for instances x and y based on their past performance.

When a new instance is added to the database, it is given an initial weight the

same as its nearest neighbour. Each time an instance gives an incorrect

prediction its weight is increased, making its area of influence smaller. Thus,

the weighting system does not remove the instance altogether (as IB3 does);

rather the instance signifies a small exception in the concept space.

Designing Similarity Fu.nctions-63

Another indicator of a training instance's predictive value is its distance from

the test instance (this is the fundamental assumption of instance-based

learners). It is only a small extension to assume that in the case of k-NN

algorithms each of the k neighbours should have its vote weighted

proportional to its distance from the current instance. Dudani (1976) proposed

a weighting function where the weight assigned to an instance is proportional

to its distance relative to the nearest and furthest of the k neighbours:

where d J , I ::; j ::; k, are the distances of each instance. Dudani also suggested

two other potential weighting functions; one where the weight of an instance

is given by the reciprocal of its distance, weight J = fa; (di :;c O), and one

based on the rank of the neighbour, weight i = k- j + l. Stanfill and Waltz's

(1986) system MBRtalk used the reciprocal distance weighting function

applied to the ten nearest neighbours retrieved by their VDM metric, and

produced a prediction based on this weighted vote.

Macleod, Luk, and Titterington (1987) pointed out that in Dudani' s weighting

function, the kth neighbour is effectively removed from participating in the

classification, and suggested a generalisation of Dudani's function:

Designing Similarity Functions-64

where a is a positive constant and s=k,k+I, ... (choosing a =0 and s=k

gives Dudani's original function). Their experiments indicated an

improvement in performance for several alternative values of a and s, and

conclude that in some cases a carefully chosen weighted k-NN function can

outperform an unweighted k-NN.

Keller, Gray, and Givens (1985) developed a "fuzzy k-NN" algorithm. Each

training instance is assigned a class-membership vector which may either give

complete membership to their known class and non-membership to all other

classes (the "crisp" method), or partial membership in each class may be

assigned according to the distances from the training instance to the class

means (a "fuzzy" method). In classifying a test instance, a distance weighted

average of the class-membership vectors of the k nearest neighbouring

instances yields a class-membership vector for the test instance. The

membership of the test instance x in class c; is given by

~~ c;-weight.
() - £.J,=1 ~ J

C; X - k ,

Lj=l weightj

-2
where cij is the membership the jth neighbour in class i, and weight j = d j m-1 •

For most of their experiments a value of m=2 was used, although it was

reported that similar performance was obtained with other values. While the

classification for the test instance is taken as that with the highest entry in the

class-membership vector, it is noted that misclassifications are most likely

when this entry is not significantly larger than other elements of the vector.

Lowe (1993) reports a method called variable-kernel similarity metric (VSM)

learning which combines the benefits of looking at the k nearest neighbours

with the smooth weighting decline of a Gaussian kernel. The VSM learner

combines the contribution of the neighbours in the same fashion as the crisp

Designing Similarity Functions--65

method above, with the weighting function determined by a Gaussian kernel

centred at the current instance:

-J/
weight. = e 2112

J '

where d . is the attribute-weighted Euclidean distance to the jth neighbour.
1

The width of the kernel is determined by o , which is a multiple of the

average distance to the M nearest neighbours (e.g., M = ½)

Both r and the attribute weights are determined by optimisation using a cross­

validation method (conjugate gradient descent).

The instance weighting methods presented fall in two categories, those that

use past performance to assign an overall importance to an instance's

predictions (regardless of the current test instance), and those that determine

the importance of each training instance with respect to the instance currently

being classified. These methods are not mutually exclusive-for example, the

VSM learner and PEBLS use weighting schemes of both types. As with

feedback attribute weighting methods, performance-history instance weighting

can adapt to statistical differences between the training and test data.

3.6 Missing Information

In practical datasets, missing values may occur for a number of reasons, such

as malfunctioning measurement equipment, change in experimental design

during data collection, and merging of several similar but not identical

datasets. In some cases the presence of missing values is in itself informative

Designing Similarity Functions-66

(for example, the omission of a value may indicate the attribute is not even

meaningful for the current instance.) Rather than remove attributes or features

that contain missing values, the best should be done with the data that is

available. Dixon (1979) presents the earliest research that attempts to compare

several methods for dealing with missing values.

Dixon first performed the following gedanken experiment to get an intuitive

feeling for how missing data should be handled. Consider the following two

5-dimensional vectors A and B:

A= (1.2 3.7 10.9 6.3 5.9)

B =(I.I 3.5 blank 6.2 5.7)

Our intuition would suggest that the blank value is close to 10.9, since the

other values are close. In addition, we may guess that the blank value is

slightly lower than 10.9, since all the other B components are lower than their

A counterparts. Dixon interprets this in the form of three assumptions:

I) that the data is clustered;

2) that the features are correlated so that one can carry out linear

interpolation across features;

3) that if distances are small along the four dimensions, they will be small

in the fifth.

Aided by these assumptions, Dixon suggested the following six methods of

handling missing values:

I NNFILL: This method is used as a preprocessing stage to fill any missing

values in the training data. If an instance has a missing value for

some attribute, the blank is filled with the corresponding attribute

of the instance's nearest neighbour.

Designing Similarity Functions--67

4NNFILL: Similar to INNFILL-missing values are replaced with the

average value of the instance's 4 nearest neighbours.

DELETE: This is a preprocessing method that deletes any instances or

attributes that contain blanks, attempting to minimise the amount

of good data thrown away. The instance or attribute that contains

the highest percentage of missing values is deleted. This process is

repeated until all missing values are eliminated.

NORMAL: This method is applied when the distance between two instances is

calculated. The distance to a missing value is assumed to be the

same as the average distance between the non-missing values in

other attributes; the distance between two instances is calculated

using the attributes with values given, and then scaled proportional

to the number of attributes with missing values.

AVERAGE: Similar to NORMAL, but the average is calculated over the

particular attribute with the missing value (that is, calculate the

average distance between all pairs of values for that attribute).

ZERO: The distance to any missing value is zero.

Dixon analysed the performance of these methods in a number of example

domains, and found that DELETE and ZERO are both bad strategies. The other

methods performed equally, although Dixon concluded that NORMAL and

AVERAGE appeared to be more consistent than INNFILL and 4NNFILL. Dixon

does not point out that in his experiments NORMAL performs consistently

better than AVERAGE for high levels of missing values, but the situation is

reversed for low levels of missing values. The methods as described by Dixon

apply only to numeric attributes. Aha (1990) examines the behaviour of three

methods for treating missing values that are defined for symbolic attributes

also.

Designing Similarity Functions---68

MAXDIFF: This method treats missing values as maximally different from the

value given. Therefore the similarity of a symbolic value to a

missing value is always 0. The similarity of a (normalised)

numeric value x to a missing value is min{x,1- x}. The motivation

here is that for all possible values y, the similarity of x and y

should be higher than the similarity of x and a missing value.

MODEMEAN: The missing value is replaced with the most probable value

from previously observed values. This method is similar to

Dixon's A VERA GE above.

IGNORE: The attribute containing the missing value is ignored, and the

measure normalised. This method is the same as NORMAL above.

Aha discovered that none of the three strategies is consistently better than the

other two, although in a particular domain there can be a wide difference in

performance. Aha concluded that further investigation is required into

characterising the conditions under which each scheme performs well.

One method often seen in the statistics literature for estimating values for

missing data is the expectation maximisation (EM) algorithm. Dempster,

Laird, and Rubin (1977) first formalised the algorithm, although applications

had been described earlier. The EM algorithm consists of two steps: the

expectation step, where the missing values are estimated using initial guesses

as to the parameters of the distribution of values; and the maximisation step,

where the data (including the estimated values) are used to find maximal­

likelihood estimates of the distribution parameters. The expectation and

maximisation steps are iterated until no significant variations in the

parameters occur. The missing values may then be replaced with the estimates

from the final iteration.

Designing Similarity Functions-69

It is interesting to note the wide range of methods proposed for dealing with

missing values. For example, Dixon's ZERO approach is the opposite of Aha's

MAXDIFF method. It is also interesting that no method appears consistently

better than the others in spite of the differences in approach.

3. 7 Robustness

An area that has received little attention m past research, particularly in

machine learning, concerns the robustness of similarity functions and the

algorithms employing them. We define robustness to mean that the similarity

function should be sensitive to the domain only-the function should not

register differences in similarity where they do not exist in the domain. For

example, consider evaluating the similarity of weather maps based on a single

correspondence of features between the two maps. The similarity can be

plotted as one image undergoes some continuous change in its features. At

some point the feature correspondence considered best may change and this

will cause a sudden change in measured similarity, even though there is no

sudden change in the images themselves. Reasonable behaviour in the case of

smoothly changing objects is for the similarity to also change smoothly.

These ideas extend further than the similarity measure itself. For example, an

application may adapt parameters to the similarity function on the basis of

objects seen so far. In this case, small changes in the attributes of training

objects or their presentation order should not have large effects on the

refinement of the measure. Sensitivity to presentation order is one of the

problems Wettschereck and Dietterich (1995) found when analysing EACH' s

performance.

Designing Similarity Functions-70

Both Ting (1995) and Wilson and Martinez (1997) work with coherent

treatment of different attribute types described in Section 3.3.3 are concerned

with improving the robustness of the learning algorithms. Aha (1992)

describes another case where robustness of an instance-based learner was

improved. IB5 is a modification to m4 that adapts to the introduction of novel

attributes during training. The introduction of novel attributes may be

simulated in IB4 by presenting the attribute values as missing until actual

values appear, but the problem is that during this time IB4 sets the weighting

for this attribute to be very low. However, IB5 only performs weight

modifications when both values are not missing, allowing it to reach a correct

weighting much faster once values begin to appear.

One way to increase robustness is to ensure that domain knowledge is

employed whenever available. The following studies suggest other methods to

improve robustness in a similarity measure.

3.7.1 Smoothness

It is suggested above that smoothness is one ingredient of a robust similarity

function. The following research provides evidence for the importance of

smoothness in a game-playing evaluation function, and the work is relevant to

similarity functions in general. Berliner (1980) describes the development of

an evaluation function for the game of backgammon. Using a single

evaluation function for the entire game did not produce good play because

different tactics are required for various stages of the game. As a solution

Berliner tried having several evaluation functions, each for different stages of

the game. One function would be used for the initial stages, and at some point

the next evaluation function would take over. However, the discontinuities

between the separate functions sometimes caused the program to avoid

Designing Similarity Functions-71

Forced scale --+----+--;.--+----+----+---+--

A

I
I
B

Evaluation

Figure 3.3: Non-smooth evaluation function

making the transition between game phases, essentially attempting to delay

the inevitable.

The primary conclusion drawn by Berliner is the importance of smoothness in

an evaluation function. An evaluation function defines a surface in the feature

hyperspace. If a surface is not smooth it may have a ridge, discontinuity or

sudden step in the surface. Values on either side of such a blemish may be

quantitatively very different, and therefore a small change in the value of one

feature may produce a large change in the value of the evaluation function.

Berliner found that when a program has the ability to manipulate such a

feature, often it does so to its detriment. For example, if the change in

evaluation signals an improvement, the program will attempt to enter that

region of the hyperspace. If the evaluation represents an unfavourable change,

the program will try to avoid crossing the blemish. The program is making

decisions based on characteristics that are not really there.

To illustrate the problems caused by non-smooth evaluation functions,

consider the evaluation functions depicted in Figure 3.3. The upper function

Designing Similarity Functions-72

makes use of the natural scale of the attribute, and the lower evaluation

function internally simplifies this scale (this example could represent the

conversion of some floating-point attribute to integer). On either side of point

A the lower evaluation function sees no difference in goodness, and on either

side of point B the lower evaluation function sees a large difference. The

reality is that for both points there is a small difference either side (as seen in

the upper function). Berliner found that these problems were the cause of poor

performance in his early backgammon programs. By ensuring a smooth

evaluation function, Berliner was able to achieve a significant improvement in

his program's performance (his program BKG9.8 defeated the World

Backgammon Champion in 1979).

Berliner's findings for evaluation functions also apply to similarity measures.

If the similarity measure is not smooth it will suffer problems. Between some

points in the feature space the similarity measure will return a

disproportionately higher similarity than it should, and in others the measure

will return a lower similarity than it should. When asked to judge which of

two objects is most similar to some object, the similarity measure may result

in an incorrect choice being made. An illustration of this exact problem was

given in the discussion of the UV datasets in Section 3.3.3.

3.7.2 Multiple Paths

Yee and Alison's (1993) research into the comparison of DNA sequences

presents another idea for increasing similarity function robustness. Under one

evolutionary model, DNA sequences may undergo any of a set of genetic

mutations, such as insertion or deletion of nucleotides. A number of

successive mutations may completely transform one DNA sequence to

another. Depending on the probabilities for each of the basic mutation

operators, some possible transformation paths are more likely than others. The

Designing Similarity Functions-73

, 1. Start with some reasonable values for the probabilities.

2. Calculate the single optimum alignment using the

dynamic programming algorithm.

3. Recalculate the mutation probabilities from their observed

frequencies in the optimum alignment.

4. Repeat steps 2-3 until the solution converges (typically

after 4-8 iterations).

Figure 3.4: Algorithm to discover mutation probabilities

objective was to discover the parameters (that is, probabilities for each of the

basic mutations) for the evolutionary model that produced two strings.

Yee and Alison initially used the iterative approach shown in Figure 3.4.

Although convergence is guaranteed, the method may get trapped in a local

optimum. The dynamic programming algorithm (DPA) is a well-known

method for finding an optimal alignment between two strings for given

instruction costs. The DPA uses a matrix D, where D .. is the minimum cost to
I}

edit the first i symbols of string A into the first j symbols of string B. Alison

and Yee formulate the DP A in terms of minimum description length, where

the increment in cost for each edit operation is the length to encode the

relevant operation. The DP A result is the message length to encode the

optimum alignment. In MDL terms, this algorithm searches for a hypothesis

that specifies the mutation probabilities along with a specific DNA alignment

that can be used to encode the strings. The obvious null-hypothesis is that the

strings are unrelated (in that case it is best to encode the DNA strings literally

at 2 bits per symbol).

Designing Similarity Functions-74

Yee and Alison define a hypothesis called the r-theory, that the two DNA

sequences are related but in an unspecified manner. The strings are encoded

based on all possible alignments between the two strings. In order to estimate

the mutation probabilities the algorithm in Figure 3.4 is modified. The central

step of the DP A is adapted to store the message length resulting from

encoding all possible paths rather than the shortest message length from a

single path encoding, as follows:

[

D;_1•1_1 + if ~[i]= B[J]then ML(match)else ML(change)]

D;; =logplus Di.J-i +ML(ms8) ,

Di-1.J + ML(insA)

where logplus(log(P}log(Q} ...)=log(P+Q+ ...). The new DPA calculates

the message length to generate strings A and B in an unspecified manner.

The iterative method to estimate probabilities for the change, match and insert

operators is also modified, since the DP A no longer tries to find a single

alignment. From the DP A matrix, weighted averages of the instruction

frequencies are calculated to obtain parameters for the next iteration.

To evaluate the r-theory (the method incorporating all possible transformation

paths) against the single alignment method, Yee and Alison generated many

strings using known parameters and measured the ability of the two methods

to discover the actual parameters. Their results indicate that the r-theory

performs better, particularly at higher mutation levels. The r-theory gives

unbiased estimates of the parameters of the evolutionary process that gave rise

to the two strings A and B. Parameter estimates based on a single alignment

are biased. A possible explanation for the performance difference is that

evolution is a random process, and the probability that it follows the optimum

Designing Similarity Functions-75

path may be small. Considering all possible edit paths appears to be a useful

method for removing biases in the comparison.

3.8 Other Issues

The previous sections discuss issues particularly relevant to this thesis. There

are other points regarding instance-based learners that are worthy of a brief

discussion, although they are not directly related to the problem of measuring

instance similarity. In particular, the issues of storage requirements and

interpretability have not been discussed. These issues are presented in the

following sections for completeness, not as issues to be addressed by this

thesis.

3.8.1 Memory Requirements

One problem with the basic nearest neighbour algorithm is the large storage

requirements-all instances are maintained in the database. Aside from the

disadvantage in its own right, this increases the time taken to find a nearest

neighbour if the distance to every instance in the database is calculated. Edited

nearest neighbour algorithms are selective in which instances are stored in the

database and used in classification with the objective of reducing storage

requirements. In probably the earliest work in this area, Hart (1968) describes

the condensed nearest neighbour rule (CNN). The set of instances kept in the

database are defined to be some subset of the instances such that those left out

would be correctly classified by those in the subset. This subset is generated

by an iterative procedure: instances are either placed in the database if their

class was not predicted by the instances already in the database, or they are

placed in a grab-bag. Repeated passes are made through the grab-bag

Designing Similarity Functions-76

attempting to classify each instance usmg those in the database. Any

incorrectly classified instances are moved to the database, and when an entire

pass is made through the grab-bag without any transfers the process ends.

CNN trades a possible drop in classification performance on new instances for

reduced storage requirements (and the corresponding reduction in

computation time to reach a decision). In a simple letter recognition

experiment with a large training set, the CNN rule required only 5% of the

instances be retained.

Gates (1972) further modifies CNN to produce the reduced nearest neighbour

rule (RNN). The idea here is that each instance in the CNN database is tested to

see whether its removal results in incorrect classifications of those instances

not in the database. In their experiments, the CNN rule required on average

16% of the training instances be retained, and the RNN gave a further

reduction to 12 % .

A reduction in storage requirements can also be a secondary achievement

during instance weighting. We have seen previously that IB3 is able to remove

sufficiently unimportant instances from the database as part of its instance

weighting procedure. A similar reduction is often achieved by methods aimed

at increasing the interpretability of an instance-based learner's results.

3.8.2 Interpretability

Instance-based learners often perform very well at classification tasks­

answering the question "what class does this instance belong to?". They are

not good at answering the question "why does this instance belong to that

class?" (for which decision trees or rules are ideal). Many machine learning

algorithms generalise training data to form simple classification rules. These

systems require more training data in order to learn than instance-based

Designing Similarity Functions-77

learners; however, they have the advantage of being faster during

classification, as well as providing the user with an easily understood

representation of the concept learned (i.e. the rules themselves). It is difficult

for a human to look at an instance database and gain an understanding of the

domain. Instance generalisation is a way of providing more human

interpretable output.

Instance-averaging algorithms perform a simple form of generalisation.

Rather than forming rules or decision trees, multiple instances are combined

together in the database, retaining the primitive form of instances. These

instances may be considered prototypes for their class.

Bradshaw (1986) describes an early instance-averaging system called Nexus.

When a training instance correctly classifies a new instance, a weighted

average is carried out with the new instance. Weights of 1 are initially

assigned to all training instances, and whenever an instance is averaged the

weights increase by 1 (the weights are a therefore measure of how many

instances are represented by the training instance). If the new instance is

incorrectly classified, it is simply added to the database. Instances that are not

useful are removed. NEXUS was applied to speech recognition and obtained an

accuracy about 13% higher than a traditional speech recognition program.

Instance-averaging algorithms such as NEXUS have lower storage

requirements for the instance database and fewer classification errors caused

by noisy data, but it is not clear how they can be extended to handle symbolic

attributes (which cannot be averaged easily).

An alternative approach to providing interpretable output is to combine rules

and instances. A rule of the form "IF (valuel S attribute A S value2) AND

(value3 S attribute B S value4) THEN classification X" defines a

Designing Similarity Functions-78

hyperrectangle in the attribute hyperspace, and any new instance which falls

inside the hyperrectangle is given the same classification.

Salzberg (1991) introduces a system capable of generalising instances to form

hyperrectangles while maintaining the nearest neighbour approach. In the

nested generalised exemplar (NGE) theory, the memory is "seeded" with a

small set of training instances which can be considered point hyperrectangles.

A new example is matched to the nearest neighbouring hyperrectangle in

memory using an instance and attribute weighted Euclidean distance function.

In the case of a tie between hyperrectangles, the smallest is preferred (as it is

the most specific). If the new instance is correctly classified, the

hyperrectangle is extended (generalised) to cover the new instance. When an

instance is incorrectly classified, the second closest hyperrectangle is

examined to see whether it would have given the correct classification, had it

been used. If so, it is generalised to cover the new instance, otherwise the new

instance is added to the database. One benefit of storing generalised instances

as hyperrectangles is that hyperrectangles can be examined by a human to

give an intuitive idea of the concept description (which is hard with traditional

IBL algorithms). In experiments, it was found that their implementation,

called EACH, performed as well as other algorithms, although not markedly

better. EACH required approximately 10% of the instances be stored.

Wettschereck and Dietterich (1995) conducted an analysis of EACH's poor

performance in comparison with k-NN and suggested three improvements:

first, that overlapping hyperrectangles be avoided; second, that if possible the

classifier should be trained on the entire training set in batch mode to avoid

problems caused by presentation order (which indicates the original algorithm

for growing the hyperrectangles was not robust); third, that the attribute

weighting scheme implemented in NGE was poor. They conclude that their

modified algorithm (BNGE) gives superior performance in domains where an

Designing Similarity Functions-19

axis-parallel hyperrectangle bias is appropriate, or interpretability and

memory efficiency are important, but in other domains k-NN is a better

choice.

Wettschereck (1994) further examined the performance of BNGE and

discovered that most misclassification occurs when an instance is not covered

by a hyperrectangle. A hybrid classifier that uses k-NN whenever an instance

does not fall inside a hyperrectangle gave a substantial improvement in

performance while retaining much of the speed and understandable concept

representation of BNGE.

3.9 Conclusions

Specific solutions to many issues pertaining to similarity functions in

instance-based learning have been described. There are several functions for

measuring the similarity between instances represented as numeric attributes.

Other functions have been developed for instances represented as symbolic

attributes. There has been little work on dealing directly with attributes other

than plain numeric and symbolic. Combining functions designed for numeric

attributes with those designed for symbolic attributes causes unwanted biases.

The addition of attribute weighting schemes is intended to counteract these

biases as well as to adapt similarity functions to the particular problem

domain. With the exception of Ting and Wilson and Martinez' work, there

appears to be no research directed at combining measures from multiple

sources coherently, or at allowing domain information to be captured within

the similarity function in a general way.

There are problems with the current treatment of other issues. Dealing with

instances that have information missing is a common requirement for an

Designing Similarity Functions-SO

instance-based learning algorithm. Again, several different methods have been

successfully used in the literature; however, not all of these are applicable for

different attribute types. There is a general ad hoc approach to dealing with

this and other issues. Solutions to different problems are combined without

thought to whether they are compatible. The resulting instance-based learners

often exhibit non-robust behaviour (the EACH learner is a good example of

this). Some research has attempted to address specific cases of non-robustness,

but none have been concerned with producing a robust and general similarity

function from the outset.

These issues are vitally important in fielded applications, where a similarity

function must accurately reflect the characteristics of the domain to give

optimum performance. These problems are also interesting from an academic

point of view-how can these problems be solved within a general

framework. Many of the instance-based algorithms described perform well in

practical and artificial domains. However, comparison is usually made with

other similar algorithms rather than domain specific algorithms. Few of these

solutions have more than empirical justification. Certainly none of the

solutions are related by a common framework. Discovering better ways of

dealing with these issues is an area ripe for research.

Designing Similarity Functions-8 l

Designing Similarity Functions-82

Chapter 4

Similarity Function Design

This chapter presents a framework for the design of similarity functions that

attempts to address the issues identified in the previous chapter. Similarity is

interpreted as the likelihood of transforming one instance to another.

Similarity is determined by calculating the probability of a sequence of basic

transformations; to improve similarity function robustness, all possible

transformation sequences between instances are considered. Algorithmic

complexity theory provides the basis for this approach to measuring

similarity. This chapter presents several examples that illustrate how to

construct similarity functions for simple domains.

Designing Similarity Functions-83

4.1 Complexity as Distance-Probability as

Similarity

The approach we take to computing the distance between two instances is

inspired by algorithmic complexity theory. The central idea is that the

distance between instances can be defined as the complexity of transforming

one instance to another. Kolmogorov complexity gives us a measure of the

amount of information in an object. If the object is a description of a

transformation between two instances, a low Kolmogorov complexity would

imply that the instances are similar. The similarity between instances

decreases as the information needed to describe the transformation increases.

This raises the question of how to describe the transformation between

instances. First, a finite set of transformations that map instances to instances

is defined. A "program" to transform one instance (a) to another (b) is a finite

sequence of transformations starting at a and terminating at b. This procedure

will not enable us to calculate the Kolmogorov complexity (since there may

be more efficient encodings for the transformation), but it will allow us to

calculate an upper bound to it. The set of transformations should be chosen

carefully as this will affect how close an approximation the upper bound is.

Following the usual development in complexity theory, transformation

programs are made prefix-free by appending a termination symbol to each

string. Recall from Chapter 2 that the Kolmogorov complexity of an object is

the length of the shortest string describing it. A Kolmogorov distance between

two instances can be defined as the length of the shortest transformation

program connecting them. This method focuses on a single transformation

(the shortest one), out of many possible transformations. Chapter 3 presented

evidence that this type of approach is likely to make the resulting distance

measure overly sensitive to small changes in the instance space, or to the set

Designing Similarity Functions-84

of basic transformations chosen, and therefore does not solve the robustness

problem well. The distance measure defined below attempts to deal with this

problem by considering all possible transformations between two instances

(and hence we name our distance measure K*).

It is not immediately obvious how the transformation paths should be

combined-adding the lengths of the different transformations is clearly not

correct. The solution is to associate a probability with each sequence. If the

complexity (length) of a program measured in bits is c, the corresponding

probability is z-c. In particular, it is true that in any well-defined distance

measure based on Kolmogorov complexity, the sum of this probability over

all transformations will satisfy the Kraft inequality. This sum can be

interpreted as the probability that a program will be generated by a random

selection of transformations. In terms of the similarity between instances, it is

the probability of reaching an instance after executing a random walk from the

original instance and stopping. After summing over all paths this probability

(similarity) may be transformed into units of complexity (distance) by taking

the logarithm; however in most cases it is convenient to deal directly with

probabilities.

This approach is somewhat different from traditional random walk treatment

(Wax, 1954; Spitzer, 1975). In these models a particle moves stochastically

without stopping. The type of question asked in random walk problems is

"what is the probability of the particle being at point x at time t?" or "what is

the probability that the first visit to point x occurs at time t?", whereas the

question we ask is "what is the probability of stopping at point x, regardless of

the time taken?". As we shall see though, our theory is general enough to

encompass ordinary random walk models.

Designing Similarity Functions-85

This approach may be likened to the Solomonoff-Levin universal prior.

However, the Solomonoff-Levin prior employs a universal Turing machine,

whereas our similarity measure uses a simplified machine that processes a

defined set of basic transformations. In our formulation of transformation

programs it is possible to ensure the transformation machine halts for all

input, and therefore the similarity is computable.

The beauty of this interpretation of similarity is that it is applicable to many

types of instances, be they one-dimensional numbers, points on a plane,

images, or high-level feature descriptions. Because similarities are expressed

in common units of probability, we may use standard methods for

manipulating them.

There are two issues that require further explanation. The first is how to

define a good set of basic transformations. Clearly the set of basic

transformations must be expressive enough to allow any two instances to be

connected by some program. In many cases a reasonable set will be apparent

by looking at the underlying domain. For example, if the instances are integer

numbers the most obvious transformations are to add one and subtract one. To

define a set of basic transformations for other instance types may require more

creative modelling. Changing the set of basic transformations allows the

similarity function to be customised to different types of instance, whether

they are simple numbers, DNA sequences, or weather maps.

The second issue is how to determine the actual length of a transformation

program in bits (or its corresponding probability). One method is to assign

reasonable probabilities to each basic transformation. The actual probabilities

chosen will depend on the domain, however they must sum to less than 1 for

the resulting code to satisfy the Kraft inequality. A special case arises when

they sum to exactly 1-the resulting code is complete and the transformation

Designing Similarity Functions-86

machine will halt for all randomly chosen programs. The probability of an

entire transformation program is the product of the probabilities of each

transformation in the sequence. This method is used in most of the worked

examples, although other methods could be envisaged. For example, the

probability of each basic transformation could be adaptively altered on the

basis of its context. This approach might be employed in DNA sequence

comparison by allowing the probability of a "delete nucleotide" instruction to

be higher if the immediately preceding instruction is also a delete instruction,

effectively giving block deletions a higher probability than many single

deletions. The probabilities assigned to the basic transformations permit

customisation of the similarity measure to the actual domain. For example,

weather map instances may be used in predicting both temperature and

pressure. While the set of basic transformations will be the same for both

domains, the assigned probabilities may well be different.

4.2 Specification of K*

This section presents a formal specification of the transformation-based

similarity measure, before proceeding to worked examples of constructed

similarity functions.

Let I be a (possibly infinite) set of instances and T a set of transformations

that operate on I. Each t e T maps instances to instances: t: I ➔ I . T contains

a distinguished member o (the stop symbol), which for completeness maps

instances to themselves (o (a)= a). Let P be the set of all prefix codes from

T* that are terminated by o. Members of T* (and so of P) uniquely define a

transformation on I:

t(a)= tn (tn_i{. .. t1 (a) ..)) where t = tp••· tn.

Designing Similarity Functions-81

(We denote members of T* with an overbar, and members of T without.

Concatenation of t1, t2 e T * is denoted by t1t2 • Concatenation of t I e T *

with t 2 e T is denoted by t1t 2 • The length of t e T* is denoted by z[t).)

A probability function p is defined on T* which satisfies the following

properties:

0~ p~1~1
pt

(4.1)

That is, 0 $ p(u Ii)::; 1. The probability of transformation u occurring is not

necessarily independent of the previous transformations t.

(4.2)

Thus, from any point in a transformation sequence, the probabilities of the

next possible transformations sum to I .

p(A)= 1. (4.3)

That is, the initial probability (before any transformations take place) is 1.

Theorem 4.4: n = I p(t)::; i.
ieP

That is, the sum of all prefix transformation programs is no greater than 1. We

call Q the halting probability, because it may be thought of as the probability

that the transformation-processing machine halts when its program is supplied

randomly.

Designing Similarity Functions-88

Proof: Let Qk = Pk u Rk, where Pk=~: te P,z[t)~ k }, the set of all prefix

codes with length k or less, and Rk =~:toe P,z[t)=k}, the set of not-yet

terminated codes of length k. Note that Pk and Rk are disjoint. Then

Qk+I = pk+) u Rk+I

= (Pk u ~CT : t e Rk })u ~u : t e R k, u e T, u * CT}

So we see that lim Qk => P.
k-+oo

First, we show by induction that L p[t)= I for all natural numbers k.
IEQk

Base step: L p[t)= p(A)= I.
ieQ 11

Induction step: Assume L p[t)= I for some value k. Then,
ieQk

I pft)= I pft)+ I pft)
ieQ k+I ie Pk+I ie R k+I

= [J;, p(i}+ ,~ p(icr)} ,~ ~ p(iu)
U,.(T

= L,Plt)+ LLP(tu)
iePt ieRtueT

= I pft)+ I pft)
iePt ieRt

= L,Plt)
teQk

=l.

Now, since

the inequality holds.

Designing Similarity Functions-89

◊

The case where Q = 1 requires that lim """'_ p(t)= 0 , that is, the probability
k➔oo .£.Jee Rk

that a randomly chosen program has not been terminated approaches zero as

the length of the program increases. One way to ensure this is to impose an

extra condition on p, for example

O < c < PIJ/,;, I , (4.5)

where c is some small constant. Note that it is not sufficient to simply have

p(ta) . p(ta) 1 . . L r♦) 1
0 < -r) ~ 1. For example, 1f ~) = r♦), we fmd that hm _ P\t = - .

P\t P\t l\t k➔oo reRk e

The probability function P* is defined as the probability of all programs

transforming instance a to instance b:

P*(bla)= LP\t).
ieP
i(u)=h

P* satisfies the following properties:

Theorem 4. 7: 0~ P* (bl a)~ Q ~ 1.

(4.6)

That is, the P* transformation probability (or similarity) from instance a to

instance b is between zero and the halting probability. When no programs

transform a to b, P* (b I a)= 0, and when all (halting) programs transform a

to b, P* (b I a)= Q .

Proof: Theorem 4.4 states that the probability of all possible programs is Q .

Since f: t e P, t(a)= b }c P, the probability P* must be less than or equal to

n.
0

Designing Similarity Functions-90

Theorem 4.8:

That is, from any initial instance a, the sum of transformation probabilities to

all instances equals the halting probability.

Proof: From Theorem 4. 7 we see that ~ P* (b I a)=~ ~ _ -c)= p(t). This
£-b £-b£-1eP.1 a h

is equivalent to ~ _ p(t) which by Theorem 4.4 is Q.
£-1eP

The K* distance function is defined as:

K*(b I a)=-log2(P* (b I a)).

◊

(4.9)

K* is not strictly a distance metric. For example, K* (a I a) is typically non­

zero, and the function (as emphasised by the I notation) is not necessarily

symmetric.

The following properties are provable:

Theorem 4.10: K*(bla)~O.

That is, the K* transformation complexity (or distance) between two instances

is greater than or equal to 0.

Proof: Directly from Theorem 4.7.

◊

Designing Similarity Functions-91

Theorem 4.11: If we make it a condition that the basic transformations are

independent, that is, p(tu)= p(t)p(u) (which is also sufficient to ensure that

.Q = 1), then

P* (c I b)P* (b I a):5 P* (c I a).

After converting from similarity to distance we see that this is actually the

triangle inequality:

Proof:

P* (c I b)P* (b I a):5 P* (c I a)
¢::> -log 2 (P* (c I b))- log 2 (P* (b I a))~ -log 2 (P* (c I a))
¢::> K* (c I b)+ K* (b I a)~ K* (c I a).

P* (c I b)P* (b I a)= L p(ta) L p(u)
io-eP iieP
1(11 }=b ii(b)=,·

=:;; L LP\t)p(u)
io-eP iieP
i(a)=b ii(b)=c

:5 I LP\tU)
iueP iieP
i(a)=b ii(b)=,·

= LP\tU)
riieP

irb~·
:5 I p(tu)

iiieP
rii(a)=c

= P*(cl a).

That is, programs that transform a to b can be concatenated with programs

that transform b to c, to give all programs that transform a to c by including b

as an intermediate stage. All of these new programs are already included in

the calculation of P* (c I a), so it cannot be lower than the product of P* (c I b)

and P* (b I a). If there are no programs that transform a to c that bypass b

Designing Similarity Functions-92

(and the stop probability 1s 1), the two sides are equal, otherwise the

inequality holds.

Theorem 4.12: If, (in addition to the condition required for Theorem 4.11)

each basic transformation t e T has an inverse t· 1 e T such that

t(a)= b H r 1 (b)=a, and p(t)= p(t·1), then

P* (a I b)= P* (b I a).

That is, the similarity function is symmetric.

◊

Proof: First we show by induction that each t e T* has an inverse sequence

Base step: Let t e T* such that z(t)= 1. Then t consists of a single basic

transformation, for which an inverse exists as given.

Induction step: Assume an inverse sequence exists for all u e T* with

l(u)= k . Let t e T* such that z(t)= k +I. Then t = uv with u e T*,

l(u)= k ' Ve T. Let "t· 1 = v· 1u·1• Then

p(t)= p(u)p(v)

= p(u-1)p(v-1)
= p(t·l).

Let a= t(b)= v(u(b)) and c = u(b) (and so a= v(c)). Then, since b = u-1 (c)

and c = v· 1 (a), b =u·1{v·1 (a))= 1·1(a). Thus, 1·1 is an inverse sequence tot.

Designing Similarity Functions-93

If toe P, its prefix inverse sequence is defined as 1·10 (and since <J maps

instances to themselves, 1·10 is also an inverse sequence of to). Then

P*(a lb)= LP\t)
ieP
i(bpu

= LPft·1)

i·'eP
1·1 (u)=h

= P* (b I a).

Effectively, each possible transformation program may be replaced by its

prefix inverse sequence with equal probability, and so the similarity function

is symmetric.

◊

Having defined the K* theory and its properties, the following section

describes its application to some example domains.

4.3 Applications of K* Theory

The examples presented in this section illustrate potential approaches to

developing K* distance functions, and provide a foundation for the K*

instance-based classifier described in Chapter 5. Many of these examples

illustrate methods for dealing with problems identified in the weather ·domain

discussed in Chapter I and Chapter 3. It is important to note that the particular

models for instance transformations used in these examples are by no means

the only (or best) models. These transformation models may be useful in some

domains, while in other domains different models may be more applicable. In

many of the following examples multiple transformation models are

discussed.

Designing Similarity Functions-94

i
◄ ..

I I I I I I I I I I ..
a b

Figure 4.1: Discrete instance positions

4.3.1 Discrete Infinite Space (Integers)

In this example we are interested in determining the similarity between two

integers. Let the set of instances I be the integers (positive and negative).

There are three transformations in the set T: o the end of string marker; and

left and right, which respectively subtract one and add one. The probability of

a string of transformations is the product of the probability of the individual

transformations,

p(t)= ITp(t;), where t = ti,••· t,,.
i

The probability of the stop symbol o is set to the (arbitrary) value s and

) 1-s
p(left) = p (right = - .

2
This probability assignment satisfies the

preconditions for Theorem 4.11 and Theorem 4.12.

The shortest transformation program that transforms a to b and terminates

consists of i right symbols (or left symbols if a>b) followed by the stop

symbol o, where i =lb-al (see Figure 4.1). The probability of the shortest

transformation from a to b is therefore

1-s P(bla)= - s. (Ii

2 I

Designing Similarity Functions-95

As P(b I a) depends only on the absolute difference between a and b, we can

abuse our notation slightly and write P(i).

To generate alternative programs, additional left symbols may be inserted

anywhere in the shortest transformation string, and provided that each has a

corresponding right symbol added, the new transformation string will still

map a to b. Adding k symbol pairs yields (2k + i I valid transformation
k i

strings. Considering all possible mutations to the shortest transformation gives

Pg .. * (i)= (~); s r(2k + i1(~)2k
2 k~ k 1 2

(Pg .. denotes that the domain of Pis all integers.)

The sum on the right hand side has a closed form using the following

generating function identities (from Graham, Knuth and Patashnik, page 203)

~(2k+i') k _ PiCzY h p ()-1-~ £.i 1z - ,.--;- , w ere 2 z - .
k.?O k 1 -v1-4z 2z

Thus,

Designing Similarity Functions-96

Returning to P*:

s
It will prove helpful for later developments to assign c = ---;=== and

✓2s-s2

m = ln(I- s)- ln~ -.J2s - s2), enabling the probability to be re-expressed as

P5_ * (i)= ce-mi. (4.13)

Figure 4.2 shows the probability of an instance at position O transforming to

other positions on the line. When the probability of the stop symbol is set to

-½ , there is a high probability of finishing at position 0. The three most

probable transformation programs are "o" with probability -½ , "left right o "

and "right left o" both with probability ;2 ; the contribution from longer

programs drops off rapidly. Similarly, the probability of finishing at positions

further away from the start position also decreases rapidly. With p(o)= 1~ the

distribution over the final positions becomes more uniform because long

programs are more likely.

The K* distance function is obtained by taking the log of the P* probability

function,

K5_ *(i)= ½1o&(2s-s2)-lo&(s)+i ~o&(l-s)-lo&(1-.J2s-s2)).

Designing Similarity Functions-91

0.6 ,-----,--~--~-......------.--"T"""-----r---..---,----,

0.5

0.1

S=0.01 -
s=0.5 -+-··

-

-

+ +

0 ~--·-a::·•:.;.:··c...·· t'_···_--_--_---.....__ _ ___._ __ .__ _ _._ _ ___._-_--_--_---_-'t,.__--_;;·•=--=-----
-5 -4 -3 -2 -1 0 1 2 3 4 5

Final Instance Position

Figure 4.2: P* probabilities for the discrete line

That is, the distance (in bits) is proportional to the absolute difference between

two instances. Figure 4.3 plots the distance functions corresponding to the

probability functions in Figure 4.2. As mentioned previously, the distance

from position O to itself is non-zero.

The set of transformations chosen above is not determined by the theory.

Other transformation sets (with different distance functions) could be

envisaged, but this formulation seems to capture the idea that all points are

equivalent, and that space is "invariant" under left and right shifts. It is easy to

imagine a situation where the probability of the left and right transformations

should be different, perhaps to provide a distance measure between points in a

slowly flowing river. The probability of randomly arriving at a point

downstream would be higher than arriving at a point upstream. This

Designing Similarity Functions-98

a,

~
"' iii
a

14

12

S=0.01-+­
S=0.5 -+--· "

-

0 '----'--__,_ __ _..__ _ __._ _ ____;.___-'-_ __,_ __ ...,__ _ ____,_ _ __.

-5 -4 -3 -2 -1 0 1 2 3 4 5
Final Instance Position

Figure 4.3: K* distance for the discrete line

asymmetry may be useful for the weather domain, where weather pressure

systems generally move from west to east and not from east to west.

Following the same general development as above, let p(left)= l and

p(right)= r, so that s + l + r = 1. Since the measure will be asymmetric, we

return to the P* (b I a) notation.

P5_ * (b I a)= ((b-a > O)?r: zr-al SL rklk (2k+ lb-a I]
k~O k

=((b-a>O)?r:zr-als 1 (1- ✓1-4rl]lb-al
.JI-4rl 2rl

(J
ib-al

s 1- ✓1-4rl

= .Ji - 4rl 2((b- a > 0)? l : r) '

where E?A:B is a ternary operator that takes the value A if expression E is

true and B otherwise.

Designing Similarity Functions-99

~
C:
a,
7ii
i5

14

12

10

8

6

4

2

' ' ' ' r=I -+­
r=10I --+---

o--~----~------~----~---~
-5 -4 -3 -2 -1 0 1 2 3 4 5

Final Instance Position

Figure 4.4: Asymmetric K* distance function

Figure 4.4 graphs the resulting distance function when the probability of the

right transformation is ten times as high as the left transformation, in

comparison to when the probabilities for these transformations are equal. As

expected, the distance from the starting point to a position to the left is greater

than to the same distance to the right.

In this development it was assumed the transformation probabilities were

constant throughout the length of each program. By setting the probability of

the stop symbol to O for the first N program instructions, and 1 thereafter, it is

possible to obtain the probability of transforming from instance a to instance b

by any program consisting of N displacements. This is the problem commonly

found in random walk texts (Wax, 1954; Spitzer, 1975).

Designing Similarity Functions-100

Let the left and right instructions each have probability of ½ for the first N

instructions and O after. The probability of the stop symbol is O for the first N

instructions and I after that. N must be odd or even as i is odd or even. The

probability of all programs of length N transforming a to b is

Since the most interesting case is when N is large and i<<.N, the formula can

be simplified somewhat. Using Stirling's approximation for logn!,

log(P5 .. * (i,N))= (N +½)logN

-t(N+i+l)lo{:(1+ ~)J
-t(N-i+l)log(: (1-~)J
-t log 2,r - N log 2.

Since i<<N, the series expansion for log(l+x) may be applied, to obtain

log(P5 .. * (i,N))= (N +-½)logN -tlog2,r-Nlog2

-.L(N +i+lflogN-log2+..!:._-~J
2 \ N 2N 2

-.i(N -i+l{logN-log2-..!:._-~ l_
2 N 2N2 I

)

Simplifying this further,

i2
log(P5 .. * (i,N))=-t logN + log2-½log2,r- 2N.

In other words, for large N, the transformation probability is given by the

asymptotic formula

Designing Similarity Functions-IOI

.,
u
C:
OS .;
i5

6 .------,-----...-------r-----,------,------,

5

4

.. __________ _

3

2

--+----------------+---------------1---------------+----------------+--

N=10-+­
N=50 -+--·

0 .__ ___ .,__ ____ ___ _.__ ___ __._ ___ _._ ___ __,

-6 -4 -2 0 2 4 6
Final Instance Position

Figure 4.5: K* distance for set-length programs on the discrete line

-2

-'-
P~ .. * (i,N)= e 2N. (4.14)

The resulting K* distance function is shown in Figure 4.5 for N = 10 and

N = 50. In comparison with Figure 4.3, the function is no longer linear but is

instead proportional to i2. Only even values are sampled because, for the

values of N chosen, finishing an odd number of positions away is impossible.

The similarity function given in Equation 4.13 assumes that programs may be

any length, in contrast to the assumption in Equation 4.14 that programs be

the same length. It is important to choose the appropriate function for the

domain. One can imagine cases where the above function would be more

suitable than Equation 4.13, such as when a constant time interval separates

the instances being compared.

Designing Similarity Functions-102

Take, for example, a domain where plant growth measurements are compared

for fertiliser effectiveness. If the plants are the same age, it is sensible to use

Equation 4.14, whereas if plant ages vary, Equation 4.13 is more appropriate.

In the first case, one expects many measurements in the same region, so a

large difference between two plant measurements is significant. In the second

case, one would not expect the measurements to be similar, due to the varying

ages of the plants. A large measurement difference is not as significant; it may

be due to an age difference between the plants, rather than due to the fertiliser.

4.3.2 Discrete Finite Space

Consider the case where the set of instances is restricted to n integers in the

range 0, ... , n -1 . The same basic transformations may be used; however some

reasonable behaviour must be proposed for transformations at the two edge

positions. Two obvious possibilities come to mind: instances may wrap

around, so an attempt to move past one edge transforms the instance to the

other edge, or instances may "reflect" off an imaginary border. The first case

may be useful when comparing modulo instances, such as the days of the

year. The second case is less useful, because it turns out the resulting measure

is not significantly different from the infinite case. It is also more difficult to

imagine a practical situation where this type of model would apply, but for the

purpose of comparison both possibilities are examined.

4.3.2.1 Wraparound

Take n positions labelled 0, ... , n -1 . Assume that at position 0, possible

transformations are to transform left to position n -1 and right to position I,

and at position n -1 the possible transformations are left to position n - 2

Designing Similarity Functions-I 03

0

b

Figure 4.6: Finite positions using wraparound

and right to position 0, as depicted in Figure 4.6. This situation could be

useful in obtaining a similarity measure between days of the year. The first

day of the year should be equally similar (perhaps with respect to the

probability of rain) to the last day of the year as to the second day of the year.

The possible transformations from instance a to instance b can be mapped

onto the integers by placing "images" of b on the line wherever integer

i mod n = b (see Figure 4.7). Any transformation sequence on the integers

that transform a to either b or one of the images b' also map a to b in

Figure 4.6.

To calculate the probability of transforming from position a to position b, first

assume b ~ a . Then

0 I 11-l O I n-1 0 I 11-l

4 I I I I I I I I I I I I I I I I I I ..
b' a b b'

Figure 4.7: Mapping wraparound onto the integers

Designing Similarity Functions-104

P!3,.*(bla)= Il!3oo *(nk+(b-a))+ Il!3oo *(n(k+I)-(b-a)). (4.15)
k2:0 k2:0

In this equation, the first sum corresponds to the probability of a transforming

to b, as well as to all pseudo-bs to the right. The second sum calculates the

probability of a transforming to all pseudo-bs to the left. P!J .. * (i)= ce-mi is the

probability function over all integers from Equation 4.13.

p!3n * (b I a)= Iice-m(nk+(b-a)) + Iice-m(n(k+l}-(b-a))

k2:0 k2:0

= ce-m(b-a)Le-mnk +ce-m(n-(b-a))Le-mnk

k2:0 k2:0

e-m(b-a} + e-m(n-(b-a))

=c-------
1-e-mn

m(.!!.-(b-a)) -m(.!!.-(b-a))
e 2 +e 2

=c-------
m.!1.. -m.!1.. e 2 -e 2

= c cosh(m(f-(b-a)))_
sinh(m~)

The development is similar for the case where b<a. In the following equation

the transformation from a to b itself is moved from the first sum to the

second.

P!3n * (b I a)= LP!J .. *(n(k +l)+(b-a))+ LP!J .. *(nk-(b-a)).
k2:0 k~

Rearranging this to the same form as Equation 4.15 we find

P5n * (b I a)= LP!3 .. *(kn+ (a-b))+ LP!J .. *((k + l}z-(a-b))
k2:0

cosh(m(t-(a-b)))
=C----'-----'"-.-'-,---"-""-

Sinh(mt)

Designing Similarity Functions- I 05

10 I I

9 ...

8 ~

7 ~

6 ...
Q)
u
C:

~ 5 ~

i5
\

4 ~ '\
',
' \

3 ...

2 ~

1 ~

0
0 2 3 4 5 6 7 8 9

Final Instance Position

Figure 4.8: K* distance for ten positions using wraparound

For both cases, we can write

1) cosh{m{t-lb-aj))
P 5n * \b I a = C • ()

smh mt

As with the infinite discrete example, this function depends only on the

relative instance positions. Figure 4.8 shows the distance function for an

example with ten positions, with the instance initially at position 2. The first

point to note is that the distance drops as the final position increases above

position 7. This is due to transformation paths that wrap left, past the edge

position 0. This effect is more prominent when the stop probability is high

(s = 0.5) because the distance to positions near the original position is

primarily determined by the shortest transformation path. The distance to

"opposite" positions, such as 6, 7, and 8, is slightly reduced due to

transformation paths from both directions contributing almost equally. When

the stop probability is low (s = 0.01), this smoothing effect is greater because

Designing Similarity Functions- I 06

0 I n-1 n-1 I O O I n-1 n-1 I O O I n-1

.. I ~
b' b" a b b" b'

Figure 4.9: Mapping finite positions, with reflection past end points

the bias towards the shortest path is lowered-transformation paths that circle

multiple times have more weight in the distance function.

4.3.2.2 Reflecting

Consider the case where an imaginary reflective boundary is placed at each

edge of the range of positions. The boundary may be placed either halfway

between an end position and where the next position would be, or exactly at

the edge positions. The first of these alternatives is examined in detail, the

second alternative is treated in Appendix A.

Take n positions labelled 0, ... , n -1 . Assume that at position 0, possible

transformations are right to position 1, and left to position 0 (after reflecting

off the boundary mid-way through the transformation). At position n -1 ,

possible transformations are left to position n - 2, and right to position n -1

(after reflecting mid-way through the transformation).

Figure 4.9 shows a mapping onto the integers (similar to the previous

example) that is valid if p{left)= p(right). This condition is required because

the behaviour of the left and right instructions must swap at each reflection.

For example, the shortest program transforming instance a to the closest

image of b to the left in Figure 4.9 is "left left left left left er", while the

corresponding program for Figure 4.6 is "left left right right right er" (a

reflection occurs mid-way through the second instruction).

Designing Similarity Functions-107

To calculate the probability of transforming from position a to position b

P5n * (b I a), first assume b ~a. Then,

P5n * (b I a)= LP5 .. * (2nk + (b-a))+ LP5 .. * (2n(k + 1)-(b- a))
k~O k~O

+ LPs .. * (2nk + (b +a+ 1))+ LPs .. * (2n(k + 1)-(b +a+ 1)}
k~O k~O

where P5 .. * (i)= ce-m; is the probability function over the integers defined in

Equation 4.13.

The first sum incorporates the transformation from a to b and all b' s to the

right. The second sum includes the transformations to all b' s to the left. The

third sum takes the transformations to all b" s to the left of a, and the fourth

sum takes the transformations to all b" s to the right. Following the equation

through,

Psn * (b I a)= Ice-m(2nk+(b-u)) + Ice-m(2n(k+I)-(b-u))

k~ k~O

+ Ice-m(2nk+(b+u+I)) + Ice-m(2n(k+l)-(h+u+1))

k~ k~

= Ce-m(h-u)re-m2nk + Ce-m(2n-(h-u))re-m2nk

k~O k~O

+ ce-m(b+u+I)Le-m2nk + ce-m(2n-(b+u+I))Le-m2nk

k~ k~

e-m(h-u) + e-m(2n-(h-u)) + e-m(b+u+I) + e-m(2n-(b+u+1))

=c------------------I-e-m2n

em(n-(b-u)) + e-m(n-(b-u)) + em(n-(b+u+I)) + e-m(n-(b+u+I))

=c-------------------mn -mn e -e
cosh(m(n - (b- a)))+ cosh(m(n - (b +a+ I))) =c-----------------,.-,-----------'-.

sinh(mn)

The case when b < a is similar, and the following expression holds for both

cases:

Designing Similarity Functions-108

*I)- cosh(m(n-lb-al))+cosh(m(n-(b+a+l)))
p !;In ,b I a - C . {)

smh,mn

Figure 4.10 plots the resulting distance function for a case with ten discrete

positions and stop probability s = O._ 1 . This distance function is dependent on

the absolute instance positions, so plots are shown for instances starting at

positions 0, 2, and 4. Under this transformation model we expect some effects

caused by the edge positions. What we find is that the distance function is

almost linear except near the edge positions. For final positions near edges,

transformation programs that go a few steps further and reflect off the

boundary contribute to the distance measure. For final positions away from

edges more transformations are needed to reflect off a boundary and return so

the contribution from such programs is negligible.

The second alternative has the reflecting boundary placed exactly on the edge

positions. The derivation is fairly straightforward, and is presented in

Appendix A. However, it turns out that a special-case function is required

when the destination position is exactly at one of the edges. Figure 4.11

illustrates the behaviour of this distance function. Other than at edge positions,

the function is similar to that shown in Figure 4.10. However, the distance to

actual edge positions is much higher. Consider a billiard table as a physical

analogy. Assume we can measure the position of a ball to the nearest

centimetre. On average (for randomly sized tables) the size of the interval

containing the edge of the table will be half a centimetre in size. If a ball is

given an initial push of random strength, the ball is approximately half as

likely to stop in the region against the edge of the table as in the adjacent full­

centimetre wide interval.

Designing Similarity Functions-I 09

.,
CJ
C:

"' .;
i5

10

9

8

7

6

5

4

3

2

-----·G. __

start=0 -
start=2 -+--·
Start=4 -El--

o~------------~---------------
0 2 3 4 5 6 7 8 9

Final Instance Position

Figure 4.10: K* distance for ten positions using reflection past end points

.,
CJ
C:

"' .;
i5

10

9

8

7

6

5

4

3

2

a .. _

start=O -
start=2 -+---
start=4 - □--

o-----------------------------
0 2 3 4 5 6 7 8 9

Final Instance Position

Figure 4.11: K* distance for ten positions using reflection at end points

Designing Similarity Functions- I I 0

4.3.3 Continuous Space (Reals)

The function developed for discrete space may be reformulated for real

numbers by making the assumption that underlying the real space is a discrete

space with very small distances between the discrete instances.

Transformation strings between two real numbers will then be very long, so

the first step is to examine the expressions c and m from Equation 4.13 in the

limit as s approaches 0. This gives

-i(ln(l-s)-1n(1-.J2s-.v2))

P * (i)= -' e 5- ~ ,J1.v-s•

Note: The above function can also be derived from Equation 4.14 as follows.

Equation 4.14 is the probability of transforming from a to b (i positions apart)

when all programs involve N transformations. This can be extended to include

programs of all lengths by multiplying Equation 4.14 by the probability of a

program stopping after N transformations, and summing over all lengths.

P5_ * (i)= L,P5_ * (i,N)(l- st s
N

where the sum is over all positive integers that are either odd or even as i is

odd or even. This can be approximated by dividing by 2, and taking the

integral from O to infinity.

Designing Similarity Functions- I I 1

-2 oo I

s f II - N =-- v½e 2N(1-s) dN
..fiii 0

-2

S Joo (i"' Nln{I-.,~ = -- v½e 2N dN
..fiii 0

= S e-i,f-21n(t-.,)

.J-21n(I-s)

0

This can be reformulated as a probability density function where the

probability that an integer between i and i + ~i will be generated is

(4.16)

which can be re-scaled in terms of a real value x where ..L = i.fi;, resulting in
Xu

the probability density function P* over the reals

P. 00 * (x) = - 1 e-rx0 dx •
9t 2x0

(4.17)

In this formulation, x0 functions as a scale length; for example, it is the mean

expected value for x over the distribution P*. For different applications it is

necessary to choose a reasonable value for x0• There are some rough

guidelines about how to do this. For example, if the instances have a

measurement error, x0 should probably not be smaller than the standard

deviation of the errors on the measurement. The next chapter specifies a

technique for choosing x0 values.

Designing Similarity Functions-112

v-x X

Figure 4.12: Continuous space wrapped

4.3.4 Continuous Space, Wrapped

The similarity function developed in Section 4.3.2.1 for modulo attributes

would prove useful for comparing days of the year, because these are

essentially discrete. For continuous modulo attributes, such as time of day or

longitude (which could be stated to any accuracy) we should use a measure

designed for continuous attributes. Consider the space represented by the

perimeter of a circle; this may be treated as a case of one-dimensional

continuous space wrapped. Let the circumference be of length v. Let a and b

be two points on the perimeter of the circle (separated by a distance x in one

direction, and v - x in the other). This situation is represented in Figure 4.12.

Let P91 .. * be a probability function for one-dimensional infinite continuous

space (Equation 4.16). The probability of the shortest path between a and bis

P91)x) = max(P!Jt .. * (x), P91 .. * (v- x)).

Designing Similarity Functions-113

.,
u
C:

"' .;
0

10 ...----,---.-----,---.-----,-----,.-----,-----,.---....,.....--,

9

8

7

6

5

4

3 -----

2

---···-·······--·-·-·-··-··-··-··-··-·---·------.. ___________ _ --...... _______ _

K•x0=0.8 -
K x0=0.8 ----·

K• xO=S.0 -----­
K xO=S.0 ···--···

-------........ _____ _

0 .._ _ _._ __________ __________ __________ __________ __

0 2 3 4 5 6 7 8 9 10
Difference in Instance Position

Figure 4.13: Distance functions for continuous space wrapped

The probability of all paths between a and b, allowing any number of trips

around the entire circumference in either direction is

P91v*(x)= LP91 .. *(vk+x)+ LP91 .. *{v{k+l)-x).
k.?0 k.?O

1 1
Substituting P91 .. * (x) = ce-mx, where c = -- and m = - from the one-

2x0 x0

dimensional continuous probability function of Equation 4.16, the

development is similar to that in Section 4.3.2.1:

Designing Similarity Functions-l 14

P. * ()- "" -m(vk+x) +"" -m(v(k+l}-x)
9!v X - £.J Ce £.J Ce

k~O k~

-mx"" -mvk -m(v-x)"" -mvk = ce £.J e + ce £.J e
k~ k~

e-mx + e-m(v-x)

=c-----
1-e-mv

m(.i:-x) -m(.i:-x) e i +e i

=c------
m.!. -mf e 2 -e

=c cosh(m(t-x))_
sinh(mt)

Taking the log gives the corresponding K* distance function

K 91v * (x) = log2 (sinh(';v))-log2 (cosh(m{t-x)))-log2 (c)

= log2 (sinhb:11))-log 2 (coshb:11 - ;,))+ log2 (2x0)

Figure 4.13 shows a comparison between the K* distance function and the

"shortest path" distance function, K. The circumference of the circle is ten.

When the scale length x0 is set to 0.8, the K* function is determined almost

entirely by the shortest programs, and hence behaves like the K function. For

small differences in instance positions the function is almost linear. When the

final instance position is opposite the initial position, both the shortest

"anticlockwise" program and the shortest "clockwise" program have similar

contributions, resulting in a smoothing of the curve. When x0 is set to 5,

programs that transform the instance around the entire circumference are more

likely and the distance function makes little distinction between the possible

final positions.

4.3.5 Continuous Space, Clipped

Clipping boundaries are another interesting problem. We define a clipping

boundary as a point on the line beyond which we are uncertain as to an

Designing Similarity Functions-I IS

30

.. ..

Figure 4.14: Two weather maps taken 24 hours apart

instance's exact position. This type of situation might occur when a

measurement for some feature is beyond the capabilities of the measuring

apparatus (such as an off-scale pressure reading). In the case of weather maps,

clipping occurs as features move off the image borders. For example, the

lower right of the second map of Figure 4.14 contains a low-pressure system

not visible in the first map; the low-pressure system is still present in the first

map, but it has been clipped so its position cannot be determined exactly.

Although the precise position of an instance beyond the clipping boundary is

unknown, we can ask questions like how likely the instance is to move from a

known position to somewhere past the clipping boundary, and where past the

boundary the instance is most likely to be. This problem is also related to that

of missing values as discussed in Chapter 3-missing values could be viewed

in this context as cases where the clipping region covers the entire instance

space. Section 4.3.10 deals with the problem of missing values further.

As a ~imple example, consider the probability that a point to one side of a

clipping boundary will transform to the other side of the clipping boundary.

This situation is represented in Figure 4.15. Let instance a be at distance d0

Designing Similarity Functions-116

do

------------ - - - - - - -+
a

Figure 4.15: A clipping boundary on the line

from the clipping boundary. The probability of a transforming to any point

beyond the clipping boundary is

00

P*(?la)= f P91 .. *(x)dx,
do

where '?' denotes the clipping region, and P91 .. * is a probability function for

one-dimensional infinite continuous space. Substituting in the function from

Equation 4.16,

-Jo/
=.Le /x,, 2 •

It is possible to calculate the single instance position that corresponds to this

probability:

1 -xi 1 -do/
--e lxt, = -e /xo
2x0 2

1 -xi -Jo/
⇒ -e lxt, = e /x,_,

Xo

⇒ - xi = ln(xo)-do/
/xo /xo

⇒ x = d0 - x0 ln(x0).

Designing Similarity Functions-111

That is, the probability of a moving to any point beyond the clipping border is

the same as the probability of a moving to a point x away.

If is known that an instance has transformed to beyond the clipping boundary,

its expected position past the boundary is

.. f xe -,½" dx
-Jn/

Jn X e /xn
0

= - (x + Xo)e / xn
-x+Jn/] 00

Jn

4.3.6 Continuous Space, Splitting Points

A problem often faced in complex domains occurs when there are multiple

features of the same basic type that may differ in number between the two

objects being compared. One domain where this type of problem arises is

weather map comparison; the number of high-pressure and low-pressure

systems may be different in the maps being compared. Another domain is

when determining likely evolutionary paths of plant populations-a

description of the current state would include multiple populations of plant

species (each with their own size, locality, and physical characteristics). The

task is to determine which initial configurations of parent populations are

most likely to give rise to the current distribution. The number of populations

in the current state will probably be more than in the proposed initial state due

to speciation. A natural way to deal with this type of problem is to introduce a

"split" transformation. In this section we consider simple examples where

instances consist of points on the real line.

Designing Similarity Functions- l l 8

XJ xi

◄ I I

Figure 4.16: One Point Transforming to Two Points

4.3.6.1 Transforming One Instance to Two

As a simplification of this problem, consider the probability of one instance

on the real line transforming to two instances at different positions.

Let the initial instance be x, and the two final instances be x1 and x2, as shown

in Figure 4.16. One way to model this situation is to allow x to split into two

instances at some point during the transformation, with one of the new

instances transforming to each of x1 and xr This can be treated as three

separate sub-transformations, with the behaviour of the basic transformations

changing during the course of the transformation:

1) A transformation sequence taking_x to some intermediate position y and

which is terminated by the stop transformation. This first occurrence of

the stop instruction results in x splitting in two, and further

transformations affect only one of the parts. (Under this model there

will be only one split transformation.) The probability of this

transformation is P!R_ * ~x- YI), where P!R_ * is a probability function for

one-dimensional infinite continuous space.

2) A transformation sequence taking the first of the instances at y to x 1 and

which is terminated by the stop transformation. This second occurrence

of the stop instruction results in further transformations affecting the

Designing Similarity Functions-119

second instance. The probability of transforming the first instance from

y to x 1 is P91_ * ~x, - YI).

3) A transformation sequence taking the other instance to x2, terminated by

the stop transformation (which signals the end of transformations). The

probability of transforming the second instance from y to x2 is

P91 .. * ~X2 - YI).

In order to consider all transformation paths, we must also integrate over all

possible intermediate split positions,

00

P* (x,, x2 Ix)= J P91 .. * (Ix- Yl)P91 .. * (jx1 - yj)P91 .. * (jx2 - Yl)dy •

The first case to consider is where both of the final instances are to one side of

the initial instance. To deal with the absolute values above the integral is split

into parts; this is simplified by assuming assume that the initial instance x is at

. . n * () -nu 1 1 0. Subst1tutmg r 91.. x = ce , where c = -- and m = - from the one-
2x0 x0

dimensional continuous probability function of Equation 4.17 gives

0

P* (x, ,X2 IO)= J cem)'ce-m(xi-y)ce-m(xz-y)dy

.IC1

+ f ce-m_,·ce-m(x1-.'->ce-m(xz-Yldy

0

;c,

+ J ce-m>"ce-m(y-xi>ce-m(xz-y)dy

.IC1

Carrying out the integrations yields

Designing Similarity Functions-120

' 3
P*(xi,X210)= 3c· e-m(x,-x2)+~(e-=2 -e-m(x,+x2))

m m
3 3

+ C { -mx2 -m(2x2-x1))+ C -m(2x2-x1) -,e -e -e
m m

~1
-e Xo I·

I

A similar function is obtained for cases where x1 > x2 • The upper right

quadrant of Figure 4.17 shows the contours of equal dissimilarity for the

corresponding distance function, with scale factor x0 set to 1. Notice that

dissimilarity is largely dependent upon whichever of the two final instances is

furthermost. The function has the same value when x1 = x = 0 as when

x1 = x2 • In the former case, significant contributing programs involve x

splitting almost immediately, when very little transformation is required for

one part to reach x1• In the latter case, programs with high probability involve

x transforming near to x2 before splitting, leaving the new instances near x1 and

xr Both cases involve one instance transforming the distance from x to xr

Consider the case where x1 and x2 are on opposite sides of x. Again, it is

assumed that x is at 0, and that x1 > x2 • Following a similar development to

above,

Designing Similarity Functions-121

x,

P* (xi' X2 IO)= J cemyce-m(x,-y)ce-m(xz-y)dy

0

+ I cemyce-m(y-x,)ce-m(xz-y)dy

x,

Xz I -m,· -m{r-x1} -m(x,-,·)d + ce · ce · ce - · y

0

00

+ I ce-myce-m(y-x,)ce-m(_,·-xz)dy.

Xz

Carrying through the integration gives

3

P*(x X IO)=~e-m(xz-2xi)

" 2 3m
3

+ ~ (e-m(xz-X1) _ e-m(xz-2x1))

m

1 (~ =-- 3e Xo -e
12x0

,,, -, ,,~~,, I
)

The upper left quadrant of Figure 4.17 shows contours of equal dissimilarity

for the corresponding distance function, with scale factor x11 set to 1. In

contrast to the upper right quadrant, dissimilarity is primarily dependent on

the total distance between x1 and x2• Major contributing programs in this case

involve the original instance x splitting almost immediately, leaving two

distances to be transformed over, from x to x1 and from x to xi- The total

distance is independent of the exact position of x between x1 and x2, although

Designing Similarity Functions-122

Figure 4.17: Contours of equal dissimilarity (combined function)

if the distances are small in relation to the scale factor x0 , dissimilarity is

slightly lower when both distances are approximately equal.

The functions developed above (along with those for the cases when x2<0)

may be combined piecewise to give the final similarity function,

P* (x1 , x2 I x). Contours of equal dissimilarity for the corresponding distance

function are shown in Figure 4.17. The positions of instances x1 and x2 may be

Designing Similarity Functions-123

swapped without changing the similarity, and their positions may be reflected

about x without changing the similarity.

4.3.6.2 Transforming One Instance to Three

The above results are applicable to the problem of where one instance x

transforms to three instances, x" x2, and x3• Instead of allowing only one split

transformation to occur, two splits are required (or alternatively, a single

ternary split, which we will not consider for simplicity). The original instance

x first transforms to an intermediate position y and splits. Now one instance

must transform to one of the final positions, and the other instance must

transform to the other two final positions. There are three combinations to

consider, one for each final destination of the instance that undergoes a single

split transformation. The destination in each case is specified by an instruction

with probability ½ . The transformation probability for two instances at

position y transforming to x,, x2, and x3 is

f P* (x1 I y)P* (x2 , x3 I y)+ f P* (x2 I y)P* (xi' x3 I y)+ f P* (x3 I y)P* (x2 , x1 I y),

where P* (x I y) is a probability function for an instance y transforming to an

instance x (from Equation 4.17), and P* (x1, x2 I y) is a probability function for

an instance y transforming to two instances x, and x2 (developed in

Section 4.3.6. l).

As in Section 4.3.6.1, all possible initial split positions must be considered, so

the probability function is

Designing Similarity Functions-124

..
P* (xi' x2 , x3 I x) = J ½ P* (y I x)P* (x1 I y)P* (x2 , x3 I y)dy

..
+ f ½ P* (y I x)P* (x2 I y)P* (xi' x3 I y)dy

..
+ f ½P* (y I x)P* (x3 I y)P* (x2 ,x1 I y)dy.

We will leave the function at this point, although it is not difficult to carry out

the integrations piecewise as in the previous section. In principle this approach

can be used to derive similarity functions transforming one instance to higher

numbers of instances.

4.3.6.3 Transforming n Instances to m Instances

Given a series of probability functions for transforming one instance to

multiple instances, it is possible to formulate a similarity measure for an

arbitrary number of instances to some higher number of instances. As

indicated by the developments above, it is impossible to derive a single

analytical expression for the similarity function, so instead an algorithm is

outlined. Assume n original instances x1 , ••• , xn , and m final instances

y 1 , ••• , y m , where n < m. The calculation has two steps.

1) Determine the set of all possible instance mappings, where each of the

initial instances maps to at least one final instance (and each final instance has

only one initial instance mapping to it). The number of such mappings is

given by the recursive function

mappings(!, m) = 1

mappings(n,m)= ~t''(7)mappings(n -1, m - i).

Designing Similarity Functions-125

2) Sum the transformation probabilities for each possible instance mapping.

For a given mapping, let Mi be the number of final instances that initial

instance xi maps to, and y i, ••• , y M; be those final instances. The

transformation probability for the mapping is

1 n

. ()TIP*(yp••·•YM, Ix;},
mappmgs n, m i=l

where P* (yp••·• YM; I xJ is a probability function for one instance

transforming to Mi instances as described in the previous section.

This example illustrates one potential method for treating different numbers of

instances. These models utilise a new instance transformation-the "split"

operation. For domains such as the weather it also makes sense to introduce a

"merge" transformation. With both split and merge transformations, the next

step is to model multiple merge/split operations. For example, two high­

pressure systems may merge as their paths cross, and split as the paths

diverge. These types of problems are more complicated, but can be handled

within the general framework.

4.3. 7 Symbolic Space (Independent Symbols)

One advantage of the K* approach is that both numeric attributes and

symbolic attributes can be handled within the same framework. To deal with

symbolic attributes consider a set S of instances that occur with probabilities

P,, , a e S ; the transformations allowed on instances are the transmutation of

any instance to any other instance. In this example, it is assumed that the

probability of transmuting to an instance is independent of the current

instance. The probability of not transforming an instance (the end of string

Designing Similarity Functions-126

instruction) is assigned probability sand the probability of a transformation to

instance a to be (1- s) pa (regardless of the current instance).

The probability of the shortest string that transforms symbol a to symbol b,

where a::/: b is

P(b I a)= (1- s)p,,s.

The probability of all programs allowing one intermediate transformation to

another symbol, c, is

P1(bla)= l(I-s)pc(l-s)p,,s
ceS

= (1- s)(1- s)p,,s.

Summing over all possible intermediate transformations gives

P5 *(b I a)= (1-s)p,,s l(I-sf
k2'0

=(1-s)p,,s(/)J 1- 1-s

= (1-s)p,,.

In the special case where a = b , there is also the shorter transformation string

which simply consists of the stop symbol. The final symbolic probability

function is given by

P5 *(bla)={ (1-s)p,,
s+(l-s)p,,

if a ::t: b

if a= b.
(4.18)

The probability s here is analogous to the probability s (and the equivalent x0)

in the developments above. That is, some reasonable value must be chosen for

s depending on the data being modelled. When s = I , this function behaves the

same as the overlap metric for symbolic values discussed in Chapter 3.

Designing Similarity Functions-127

4.3.8 Symbolic Space (Non-independent Symbols)

The following development assumes that the probability of transforming to an

instance is not independent of the current instance. This is the case for many

real domains; for example, if instances represent traffic light colours, the

probability of transforming to red depends on whether the light is currently

green or amber. Let S be the set of instances. Define P(b I a) as the

probability of instance a transmuting directly to instance b, where a, be S

(this is called the one-step probability). Basic transformation instructions

include the stop symbol cr (with probability s), and the symbols required to

specify changes between instances (denoted as "a➔b", and assigned

probability (1- s)P(b I a)).

A transformation program consists of a number of change instructions

terminated by the stop symbol. For example, if S = {a., p, x}, the following

programs specify a transformation from instance a. to instance p :

"a. ➔ Pa",

with probability (1- s)P(p I a)s ;

"a. ➔ a.a ➔ XX ➔ Pcr",

with probability (1- s)P(a I a)(1- s)P(x I a.)(1- s)P(p I x)s.

The possible programs can partitioned by their length, and P" (b I a) defined

as the probability of all programs with length n that transform instance a to

instance b. Thus,

Designing Similarity Functions-128

I () {o if a :t= b
P \b I a =

s if a= b

P2 (b I a)= (1- s)P(b I a)s
P3(bla)= L(1-s)P(cla)P2 (blc)

ceS

pn (b I a)= L (1- S)P(c I a)pn-l (b I c)
ceS

The P* function that considers all programs of all lengths is

Ps*(bla)= Lpk(bla).
k~O

This can be expressed using matrix notation. Let I denote the identity matrix.

Let all P(b I a) form the elements of a matrix P; that is, element Puh = P(b I a)

(and similarly P * uh = Ps * (b I a)), then

P* = sI(1-sYPk
k~O

= sl + s L (1- s Y pk

= sl + s(l-s)PL(l-s y-1 pH

= sl+(l-s)PP*

P * -(1- s J:»P* = sl

(I - (1- s)P)P* = sl

P* = (I - (1- s)> t sl.

(4.19)

Element P * uh is the probability of symbol a transforming to symbol b,

considering all possible transformation paths.

It turns out that this result is a good general tool for problems with a finite

number of instances. For example, the results obtained in Section 4.3.2 can be

duplicated by inserting appropriate transformation probabilities into the initial

matrix P. For the simple examples in Section 4.3.2, reasonable probabilities

Designing Similarity Functions- l 29

are obvious; however, choosing probabilities for other domains may be more

difficult. One common situation is where the set of instances is found in

association with another set of instances (for example, a "class" attribute that

the similarity function should be sensitive to). The following method is one

way to choose transformation probabilities.

Assume a set of classes C is found in association with the instances. It is

possible to calculate the frequency of each class c e C given instance s e S,

Pcs (c Is), and also the frequency. of each instance given a class, Psc (s I c).

One way to define the probability of instance a transmuting to instance b is as

the probability of a transforming to some class c and then transforming from c

to b, summed over all classes:

P(b I a)= LP(c I a)P(b I c). (4.20)
,1:C

This method is analogous to the method for assigning symbol similarities used

by Stanfill and Waltz (1986) in the Value Difference Metric. The benefit of

this type of method for assigning basic transformation probabilities is that the

resulting function is sensitive to the distribution of the classes. For example,

assume the set of instances contains the alphabetic characters and we wish to

assign basic transformation probabilities specifying the likelihood of one letter

transforming to another in the context of English text. In the Brown corpus

(Francis and Kucera, 1982), characters occur with the frequencies shown in

Figure 4.18. However, using these frequencies in conjunction with the

similarity function of Section 4.3.7 is not a good solution, because the

characters are not independent in their usage.

Designing Similarity Functions-130

0.178 space 0.103 E 0.076 T 0.066 A 0.062 0

0.060 I 0.058 N 0.054 S 0.050R 0.045 H

0.034 L 0.033 D 0.026 C 0.022 U 0.021 M

0.019 F 0.017 P 0.016 G 0.015 W 0.014 Y

0.013 B 0.008 V 0.005 K 0.002 X 0.0012

0.001 Q 0.001 J

Figure 4.18: Ranked character frequencies from the Brown corpus

If the "class" instances are taken as the characters that appear immediately

following occurrences of the current character, transformation probabilities

can be assigned using Equation 4.20. The results for some characters are

shown in Table 4.1 (the full table is provided in Appendix B). These are the

one-step probabilities that form the matrix P in Equation 4.19-that is, they

do not consider multiple letter transformations, or the possibility of not

transforming at all. The letter 'A' is most likely to transform to (in order), a

space character, the vowels 'E', 'A', 'I', 'O', the consonant 'N', and the vowel

'U'. The letter 'B' is most likely to transform to the space character, the

consonants 'H', 'R', 'T', and 'L'. It is relatively unlikely that a 'B' will

transform to a 'B', primarily because the letter occurs infrequently (as seen in

Figure 4.18). Similarly, the space character is often the most likely character

to transform to. Interestingly, there are half a dozen characters that the letter

'D' is more likely to transform to than the space character, presumably

because the characters that 'D' precede are rarely preceded by the space

character (for example, the letter 'D' is often the last letter of a word, whereas

the space character never is). In this simple example the assigned probabilities

have extracted information about the grouping of vowels and consonants

based only on the characters they precede.

Designing Similarity Functions-131

:A E I B C D
' 0.190 sp 0.178 E 0. 197 sp 0.133 sp 0.191 sp 0.138 E
r 0.132 E 0.121 sp 0.142 I 0.090H 0.135 T 0.091 S

i 0.131 A 0.085 A 0.125 A 0.071 R 0.065 H 0.087 T
! 0.113 I 0.075 0 0.116 E 0.069 T 0.059 R 0.074 D
: 0.093 0 0.070N 0.094 0 0.066 L 0.057 C 0.072N

0.055 N 0.067 I 0.058 N 0.059 0 0.051 S 0.067 R
I 0.040 u 0.058 S 0.038 U 0.059 E 0.046E 0.063 sp
i o.037 s 0.052 T 0.037 R 0.052 A 0.041 N 0.061 H
i 0.034R 0.044 R 0.031 S 0.043 S 0.041 I 0.042 0
, 0.030T 0.044 D 0.026T 0.037 N 0.039 A 0.041 L

0.030 L 0.030 L 0.021 L 0.037 C 0.038 L 0.036 Y
, 0.016 D 0.027 U 0.019 H 0.036 B 0.0360 0.033 F

0.015 P 0.023 Y 0.018 C 0.035 I 0.027W 0.033 A
i 0.015 C 0.023 H 0.011 P 0.034M 0.026M 0.025 M
'0.011 H 0.021 F 0.011 M 0.031 D 0.023 P 0.025 G
j 0.0IOG 0.018 G 0.Ql1 D 0.029 P 0.023 D 0.0201
: 0.010 F 0.015 P 0.009 F 0.021 F 0.021 F 0.018 C
I 0.010 B 0.014 M 0.008 W 0.019 V 0.019 G 0.016 W
i 0.009M 0.011 C 0.008 G 0.018 W 0.018 B 0.014 P
I 0.001 Y 0.009W 0.007 B 0.018 U 0.014 U 0.012 B
! 0.006W 0.007 B 0.006 Y 0.018 G 0.012 V 0.011 V
: 0.004 K 0.005 K 0.004 K 0.007 K 0.008 Y 0.009 U
i 0.001 X 0.002 V 0.003 V 0.006Y 0.005 K 0.009 K
i 0.001 V 0.001 X 0.001 2 0.004 Q 0.0031 0.001 2
[0.0002 0.0002 0.001 X 0.0041 0.001 2 0.001 X
I 0.000 Q 0.OOOQ 0.0011 0.002 2 0.001 X 0.001 Q
. 0.0001 0.0001 0.OOOQ 0.001 X 0.001 Q 0.0011

Table 4.1: Ranked one-step character transformation probabilities

Table 4.2 shows the corresponding P* probabilities obtained from

Equation 4.19 when the stop probability is 0.2 (the full matrix is given in

Appendix B). Because the P* matrix includes programs that stop before

making any transformations, the probability of a character transforming to

itself is much higher than in Table 4.1. The lower the stop probability, the

more the transformation distributions will resemble the distribution in

Figure 4.18.

This method for assigning one-step probabilities could also be used in ordered

domains (that is, each instance has definite neighbours to which it may

transform), but the transformation probabilities are unknown. Given an

Designing Similarity Functions-132

A E I B C D
0.266A 0.296 E 0.264 I 0.214 B 0.226 C 0.234 D
0.146 sp 0.131 sp 0.148 sp 0.133 sp 0.144 sp 0.118 sp

, 0.089 E 0.057 A 0.086 E 0.074 E 0.073 T 0.089 E
: 0.059 I 0.056 T 0.065 A 0.061 T 0.071 E 0.064T
'0.057 0 0.053 0 0.057 0 0.049 A 0.047 A 0.050 S

0.050T 0.050 I 0.050T 0.049 0 0.044 0 0.049N
· 0.046 N 0.049 N 0.047 N 0.045 H 0.043 I 0.046A

0.039 S 0.044 S 0.038 S 0.045 R 0.043 N 0.045 0
0.037 R 0.039 R 0.037R 0.043 I 0.043 S 0.044R

: 0.028 H 0.031 H 0.029 H 0.043 N 0.042 R 0.040 H
0.026 L 0.028 D 0.024L 0.041 S 0.040 H 0.039 I
0.022 D 0.026 L 0.021 D 0.033 L 0.028 L 0.029 L
0.022 U 0.019 U 0.021 U 0.026 D 0.025 D 0.019 C

: 0.018 C 0.018 C 0.018 C 0.023 C 0.018 M 0.018 F
i 0.014 F 0.016 F 0.014M 0.019 M 0.016 F 0.018 M
'0.014 M 0.015 M 0.013 F 0.017 U 0.016 U 0.016 Y

0.013 P 0.013G 0.012 P 0.016 F 0.015 P 0.015 G
0.011 G 0.013 P 0.QllG 0.016 P 0.015 W 0.015 U
0.010 W 0.013 Y 0.QllW -0.013 G 0.013 G 0.013 P

: 0.010 Y 0.011 W 0.0IOY 0.013 W 0.Qll B 0.013 W
I 0.009 B 0.009 B 0.009B 0.010 Y 0.010 Y 0.010 B

0.005 V 0.005 V 0.005 V 0.009 V 0.008 V 0.007 V
0.004 K 0.004 K 0.004 K 0.005 K 0.004 K 0.005 K

! 0.001 J 0.001 J 0.001 J 0.002 J 0.001 J 0.001 J
0.001 Q 0.001 Q 0.001 Q 0.001 Q 0.001 Q 0.001 Q
0.001 X 0.001 X 0.001 X 0.001 X 0.001 X 0.001 X
0.001 Z 0.001 Z 0.001 Z 0.001 Z 0.001 Z 0.001 Z

Table 4.2: Ranked P* character transformation probabilities

instance s; with neighbours si-i and si+i, the association of classes with s;,

Pcs {c I si) is calculated as above. The association of instances with classes

Psc (s I c) is calculated only for the neighbouring instances si-J and si+I. The

transformation probability can then be calculated using Equation 4.20.

4.3.9 Multiple Attributes

To compute a distance between instances with more than one attribute is

conceptually straightforward. The set of transformations on the combined

attributes can be taken as the union of the transformations for the individual

Designing Similarity Functions-133

attributes. Two potential methods for modelling transformation strings are

immediately obvious.

The first method (called the additive method) is to sequentially transform the

first attribute, then the second attribute and so on until all attributes are

transformed. The resulting probability for the total string is the product of the

probabilities of the individual strings, so the distance is the sum of the

distances for the individual attributes. Removing the restriction of

transforming the attributes in order and considering all attribute orderings

produces the same result, because the transformation programs must then be

prefixed with an instruction specifying the attribute transformation order.

However, the restriction of transforming an entire attribute at one time is

arbitrary.

The second method (called the merge method) allows transformations on any

attribute in any order-the probability of transforming from instance a to

instance b is the probability of stopping at b when taking an unconstrained

random walk along all attributes, starting at a. The merge method is more

difficult to calculate because a single similarity function must be derived for

all the attributes, rather than combining the results of the individual attribute

similarity functions. The next section considers examples of this nature.

4.3.9.1 Two Symbolic Attributes

This example extends the model used for independent symbols in

Section 4.3.7 to two attributes. Consider two sets of symbols, S1 and S2 with

their associated occurrence frequencies. An instance is represented as a pair of

symbols (a,b), with a e S 1 and be S2 .

Designing Similarity Functions-134

Additive Method

The following similarity function is obtained directly from Section 4.3.7:

(1- S)pa (1- S)pb

Ps2 * ((a,b)1 (c,d))=
((1- S)pa + S)(1- S)pb

(1- S)pa ((1- S)pb + S)

((1-s)pa +s)((l-s)pb +s)

if a -:t: c,b -:t: d

if a= c,b -:t: d

ifa-:t:c,b=d

if a =c,b =d.

In this example the probability of the stop instruction is the same for both

attributes. This need not be the case-if one attribute is more likely to

undergo transformations, the probability of its stop instruction could be

lowered.

Merge Method

The probability of the end of string instruction is s. Let the probability of a

transformation of the first attribute to symbol a equal c1 pa, and the

probability of the second attribute transforming to symbol b equal c2 pb. In

this example, c1 = c2 = l- s (in any case, c1 and c2 should sum to (1- s)). The
2

probability of transforming from (c,d) to (a,b) by any program involving n

symbol transformations on the first attribute and m symbol transformations on

the second attribute is

P,,""((a,b)1 (c,d))= (n :m J(1 ;s J(1; s r P.P,s (n >0,m >0)

Ps2°·m((a,b)l(c,d))=(l-slm pbs (a=c,m>O)
2)

P,,"·0 ((a,b)1 (c,d))= (1 ;s J" p 0 s (n >0,b=d)

Ps/·0 ((a,b)1 (c,d))= s. (a= c,b =d)

Designing Similarity Functions-135

Consider the case where a -::;; c and b -::;; d . The probability of transforming

from (c,d) to (a,b) by any program involving N total symbol transformations

lS

N-1

P82 N ((a,b)1 (c,d))= Ils2 n.N-n ((a,b)1 (c,d))
n=I

The probability when considering programs of all possible lengths (which

must include at least two symbol transformations in this case) is

P82 * ((a,b)1 (c,d))= LPs2 N ((a,b)1 (c,d))

= ~((1-,r-2(1 ;·)"}.p,s
= (1- S)2 pap b

l+s

The case where a = c and b -::;; d requires the addition of transformation

programs do not transform the first attribute. In this case the total

transformation probability is

Designing Similarity Functions-136

(I-s)2 PaPb ~(1-sJm =...;.__;...._...a;;.....;.;...+~ -- PbS
l+s m>O 2

{1-s)2 PaPb (I-s)pbs
=-----+----

1+ s l+s
_ ((I-s)pa +s)(I-s)pb

.I+s

The development for the case where a ,:;:. c and b = d yields a similar result.

When both a = c and b = d , the program consisting of only the stop

instruction must also be included; in this case the final probability function is

The probability functions produced by the additive and merge methods are

very similar; the functions are identical when s is O or 1. For other values of s,

the shortest program that transforms between two identical instances is

assigned higher probability by the merge method than the additive method (s

versus s2, respectively). The probability of all other programs is reduced

accordingly.

4.3.9.2 Integers in Two Dimensions

Let the set of instances have two integer dimensions. Let i be the number of

horizontal positions to be transformed through, and j be the number of vertical

positions to be transformed through. Assume for simplicity that both of these

are positive. In the following sections, similarity functions are derived for

both combination methods.

Designing Similarity Functions-137

Additive Met hod

Assuming the probability of the stop instruction is the same for both

attributes, the additive similarity function may be obtained directly from

Equation 4.13

P52_ * (i, j)= ce-m;ce-mj

= c2e-m(i+j)_
(4.21)

Since the core of this function is simply i + j , this function is analogous to the

city block metric described in Chapter 3.

Merge Method

The merged set of transformations contains five members: left and right,

which operate on the horizontal dimension, up and down, which operate on

the vertical dimension, and the stop symbol cr. Let k be a number of additional

right instructions, beyond the minimum needed to get to i-there must also be

k additional left instructions to ensure we still finish at i. Let l be a number of

additional up instructions (similar to k above).

Let numright = i + k, numleft = k, numup = j + l, numdown = l . For a given

number of these instructions, there are

(numleft + numright + numup + numdown)! _ (i + 2k + j + 21)!
numleft!numright!numup!numdown! (i + k)!k!(j + l)!l!

possible programs.

If the probability of the stop symbol is s and the probabilities assigned to each

of the other symbols is 1;·• , the expression for the sum of the probabilities of

all programs stopping at (i, j) is

p *. . (1-s)(;+;) (i+2k+j+21)! (l-s)(it+2i)

52- (z,J)= 4 s~~(i+k)!k!(j+l)!l! 4

Designing Similarity Functions-138

The double sum may be reformulated by summing diagonally. Let t = k + l,

then the expression is

-s v+1+ t. -s (1 J
(i+j) / /· . 2)' (1](2,)

4 s~~(i+(t-l))!(t-l)!(j+l)!l! 4 (4.22)

Another way of interpreting the problem is in terms of the number of

displacements N. The only possible program that stops after O displacements

is "cr." For N=l, one program terminates at each of (-1,0), (1,0), (0,-1),

(0,1). The number of programs that terminate at position (i, j) after N

displacements is

(N +i+ j)IN +i-j) I,
2 1 2 1

and the expression for the sum of the probabilities of all programs stopping at

(i,j) is

(4.23)

N-(i+ j)
Note: Equation 4.22 and Equation 4.23 are identical. If t = 2 ,

Equation 4.23 becomes

(l-s](i+j)sL(2t+_i+ !J2t+i~ jYl-s]2
'

4 ,~o t + z + J I t + l 1l 4
(4.24)

Considering only the inner sum in Equation 4.22 and the two binomials in

Equation 4.24,

Designing Similarity Functions- l 39

0

To proceed with Equation 4.23, we first derive an expression for the

probability of transforming to (i,j) when all programs contain N

transformations-that is, the probability assigned to the stop symbol is zero

for the first N instructions and I afterwards. This gives

Note that N here must be odd or even as i + j is odd or even.

Using Stirling's approximation for log(n!), we have

log(P~2 .. * (i, j,N))= (2N + I)log N -log21l -Nlog4

-t(N + i + j + I)lo{: (I + i; j) J
-t(N-i- j+l)lo{ ~ (1- i;j)J
-t(N +i- j +!)log(~ (1 + i ~j) J
-½(N-i+ j+l)lo{ ~ (1- i~j))

Designing Similarity Functions-140

Using the series expansion for Iog(l + x), we obtain

log(P!32 .. *(i,j,N))== (2N +1)1ogN-:-log21Z -Nlog4

--t(N +i+ j+l)(logN-log2+ i+ j -(i+ jr J
N 2N

-- -z-1+ og - o0 -------I (N . . 1)(1 N 1 2 i + j (i + j)2 J
2 o N 2N2

- .L (N + i - j + 1)(log N - log 2 + i - j - (i - j)2 J
2 N 2N2

- .L (N - i + j + 1)(log N - log 2 - i - j - (i - j)2 1.
2 N 2N2 I

)

This may be further simplified, to obtain

log(P5,_ * (i, j, N))~ lo{; tr J
·2 ·2
l + J

N
;2+/

P *{· . N)-~ -N-
n2 \l,], ~ e . .,.. N1Z

This similarity function is the two dimensional equivalent to that of

Equation 4.14. To find the similarity function when the probability of the stop

instruction is constant, we use the above result in a procedure like that in

Section 4.3.3.

P!32 .. * (i, j)= L,P!32 .. * (i, j, N)(I - st s
N

;2+j2

= I,~e-N-(I-st s,
N Ntr

where the sum is over all positive integers that are either odd or even as i + j

is odd or even. This can be approximated by dividing the sum over all integers

by two and taking the integral from O to infinity.

Designing Similarity Functions-141

·" ·2

2 ~
P * 1i 1·) = .l ""'-e N (1- s)N s

~2- ~' 2"";;N1t

00 ;2+ j2

=-; f ~ e-N-(I-st dN (4.25)
0

= ~' BesselK(o,2.Ji 2 + j2 .J-log(l-s)),

where BesselK is the modified Bessel function of the second kind of order 0

(Thomas and Finney, 1988). The central term includes the Euclidean distance

function, and so the contours of equal distance will have circular symmetry.

Tables of Bessel functions can be computed from series, although in practice

an approximation based on Euclidean distance may be more appropriate.

Carrying out a series expansion, we find that for large x,

Besse/Kio x)- ILe-x (1- I + 9 - 75 + 3675 + of~)~
~ ' "I/"'[; Bx 128x2 1024x1 32768x4 \x5 ~

r;; -x
= -v-:r;e '

and so Equation 4.25 may be approximated as

P *{· ·)- J -2.J;2+/.J-tog(l-.1')
2 l..,Z, J - s ,--=====--e

~ - ✓,r..f;2+/.J-tog(l-.,)

Figure 4.19 compares the contours of equal distance for the distance functions

obtained from Equations 4.21 and 4.25 (that is, after we take the log) when

the stop probability is set to 0.1. The additive method (shown on the left)

results in distances similar to the city block distance, while the merge method

gives distances similar to Euclidean distance. However, both of these

functions are now measured as probabilities (for similarity), or bits (for

distance).

4.3.9.3 One Integer Dimension and One Symbolic Dimension

In this example, instances have one symbolic attribute (values of which come

from the set S) and one integer attribute (values of which are from the set I).

Designing Similarity Functions-142

~

Figure 4.19: Contours of equal distance for additive and merge combination

Instances are represented as an ordered pair (a,b) where a e S and be I. Let

the two instances being compared be (a, b) and (c, d). Let i = lb - di.

Additive Met hod

Assume the probability of the stop instruction is the same for both attributes.

Simple combination of the probability functions from Equation 4.13 and

Equation 4.17 gives

if a ':F-C

P8~ .. * ((a,b)1 (c,d))=

if a= C.

Merge Method

In the merged transformation set, the left and right instructions are each

assigned probability 1~"' • The probability of transforming to a symbol a e S is

set to 1;"' p . First we take the case where a * c . The probability of all
- u

Designing Similarity Functions-143

programs with k extra left/right pairs, and j transformations of the symbolic

attribute is

(
2k . . r J2k+i(Jj k. +i+J 1-s 1-s

Ps5oo ·1 ((a,b)l(c,d))= . . . - - PuS-
k+i,k,J J 4 2

Summing over all possible lengths of programs gives

The inner sum can be dealt with by the following generating function identity

(from Graham, Knuth and Patashnik, page 199)

~(n+ /) j = 1
~ 12 1 •
j~O n) (1 - z r+

Thus

PS5oo*((a,b)l(c,d))=I l ~ PuS - -1 (2k+ ·rl J2k+i ((2 J2k+i+l J
k~O k 4 I+ s

-PSL - -
_ (2k + irl-s J2k+i(2 J2k+i+I

a k~o k 4 I +s

-psI -(
2k + il 1-s Jik+i

u k~ k 4

2 1-s +i 1-s
(Ji (2k ·r J2k

= Pus l+s 2(1+s) ~ k 2(1+s)

-P.f ~· J~(2ktr~· r

Designing Similarity Functions-144

Each of the sums can be dealt with in the same manner as the one-dimensional

discrete case in Section 4.3.1, to obtain

Ps~-*((a,b)l(c,d))=pu✓s(l+s-2✓sJ; - 2pus [2-.J3+2s-s2 Y_
1-s J3+2s-s 2 1-s I

)

When a = c, there are additional programs that do not undergo any

transformations on the symbolic attribute. The probability function in this case

is

These examples illustrate the relative difficulty of developing similarity

functions using the merge method. Conceptually, the merge method seems a

better way of combining attributes than the additive method, because instances

are not restricted to completely transforming along each attribute before

beginning transformation on another. However, the choice of method for

modelling multiple attributes is also dependent on the domain. As is shown in

Chapter 5, there are domains for which the additive method is a better choice.

Designing Similarity Functions-145

In addition, unless the instances are simple, the development of a similarity

function using the merge method may be difficult.

4.3.l0Missing Values

An issue to be dealt with in many datasets is instances where one or more

attribute values are missing. As discussed in Chapter 3, approaches in the

literature vary widely on how to deal with this problem. In some cases, the

distance to the missing attribute is taken to be the maximum possible, in some

it is the minimum possible, and in others the entire instance is ignored (Aha,

1990; Dixon, 1979).

One intuitive way to deal with this is to assume that missing values can be

treated as if they were drawn at random from among the instances in the

database. This fits within the probability-based similarity method, by setting

the probability of transforming to a missing value to be the mean probability

of transforming to each (specified) attribute value in the database. That is,

P*(?la)= L P*(bla),
b N

where '?' represents the unknown value, and the sum is over all N specified

instances in the database. The effective distance to a missing value is

(roughly) the expected distance to a random instance of that attribute.

For instance-based classification, missing values in a test instance can be

ignored since the test instance missing value will produce a constant value

across all training instances-predictions can be made on just the remaining

attributes. With this method the probability for missing values is therefore

only needed for missing values in training instances. This method (and others)

for treating missing values is evaluated in Chapter 5.

Designing Similarity Functions-146

4.4 Conclusions

This chapter presented the idea of interpreting similarity between instances as

the probability of transforming between them; transformations are modelled

as sequences of smaller basic transformations that can be customised for

different instance representations. In order to calculate the probability of a

transformation sequence, probabilities are assigned to the basic

transformations. The probabilities should be chosen according to what

constitutes an important difference in the comparison domain. Adjusting these

probabilities is a natural way of setting the relevance of attributes-if a

transformation on some dimension is relatively unimportant it should be given

a high probability of occurring.

The design framework meets the basic requirements set out in Chapter 1.

Different instance types are treated consistently-the only difference between

instance types is the set of basic transformations. With appropriate basic

transformations we can measure similarity between differing numbers of

instances. Missing information may also be treated intuitively within the

framework. Domain information is captured within the similarity functions,

both in the set of basic transformations and the probabilities assigned to them.

Several similarity functions for simple domains have been developed and

discussed. The example similarity functions demonstrate that the difficulties

identified in Chapter 1 can be handled within the framework. In the next

chapter these examples are combined into a practical implementation that can

be applied to real-world problems.

Designing Similarity Functions-147

Designing Similarity Functions-148

Chapter 5

K* Application: An Instance-

based Learner

This chapter deals with the construction of the K* instance-based learner, a

machine learning scheme that makes use of K* theory in its distance measure.

The K* learner is used to test our claims of coherent attribute treatment and

missing value handling, and the ability to capture domain information within

the function. We evaluate the K* learner on artificial and real-world datasets,

and compare its performance against other machine learning schemes.

Designing Similarity Functions-149

5.1 Implementation

The implementation of an instance-based learner that determines similarity

based on the K* theory requires solving. two specific problems. The first is

how to employ the similarity function in making predictions about the test

instance. The second is how to select values for the free parameters in the

similarity functions of the previous chapter. These can be handled within the

K* framework, and are discussed in detail below.

5.1.1 Category Prediction

The usual task for an instance-based learner is to predict the category of test

instances. A nearest neighbour learner returns the category of the nearest

training instance as its prediction-an analogous treatment in this

implementation would be to return the category of the training instance most

likely to be transformed to. However, following the K* philosophy of

considering all possible paths, we calculate the probability of an instance a

being in category c by summing the probabilities from a to each training

instance t that is a member of c:

P* (c I a)= I,P* (t I a). (5.2)
tee

The probabilities are calculated for each category; the relative probabilities

obtained give an estimate of the category distribution in the area of instance

space represented by a. Most other techniques return a single category as the

classification result, so for ease of comparison we choose the category with

the highest probability as the classification of the new instance. Alternatives to

this include choosing a class at random using the relative probabilities, or

returning a normalised probability distribution as the result.

Designing Similarity Functions-ISO

5.1.2 Simple Numeric Prediction

Instance-based learners are frequently used to predict numeric values. The K*

learner's prediction of numeric attributes is simply based on the expected

value for the attribute after the test instance has transformed to one of the

training instances. The predicted value of attribute x for instance a is

ax = L/ x P* (t I a).

Additionally, the predicted variance of the value ax is

Vax= It/ P*(t I a)-(Irx P*(t I a)r
t t)

(5.3)

This method assumes the predicted attribute is a standard numeric attribute­

that is, the attribute is not (for example) modulo in nature. For example, if the

predicted attribute is modulo in the range zero to ten, with the bulk of similar

training instances having values one and ten, the method above would return

an expected value of around five rather than zero. However, custom methods

for predicting modulo and other types of attributes could be derived. For

example, one method to obtain a predicted distribution over a modulo

attribute is to calculate the sum of transformation probabilities to each training

instance (including transformation of the predicted attribute).

5.1.3 Choosing Values for the Free Parameters

For each attribute of a test instance, values must be chosen for the free

parameters of the similarity function. If the similarity function combines

attributes with the merge method, the free parameters will depend on the

particular function. If the similarity function uses the additive method of

Designing Similarity Functions-151

attribute combination, the free parameters are x0 (for each numeric attribute)

and s (for each symbolic attribute). In this section we consider only the

additive method of attribute combination. One approach to setting the free

parameter values is to determine global values (that is, use the same values for

every test instance) using a method such as cross-validation on the training

data. However, the best setting for these parameters is likely to vary

depending on position in the instance space, so we calculate the parameters for

every test instance.

The behaviour of the distance measure as the parameters x0 and s change is

interesting. Consider the probability function for symbolic attributes from

Section 4.3.7 ass changes. With a value of s close to 1, training instances with

a symbol different to the current one have a low transformation probability,

while instances with the same symbol have a high transformation probability.

Thus, the distance function exhibits nearest neighbour behaviour. As s

approaches 0, the transformation probability directly reflects the probability

distribution of the symbols, favouring symbols that occur more frequently.

This behaviour is similar to the default rule for many learning schemes, which

is simply to predict whichever classification is most likely (regardless of the

new instance's attribute values). As s changes, the behaviour of the function

varies smoothly between these two extremes. The similarity function for real

valued attributes exhibits the same properties. When x 0 is small, the

probability function decreases quickly with increasing distance, functioning

like a nearest neighbour measure. Conversely, if x 0 is large almost all the

instances will have the same transformation probability and will be weighted

equally.

Designing Similarity Functions-152

5.1.3.1 "Sphere of Influence" Approach

In both these cases the number of instances that are effectively included

within the probability distribution vary from 1, when the distribution is

nearest neighbour, to the total number of instances N, when all instances are

weighted equally. If more than one neighbour is nearest, the minimum will be

greater than 1. The effective number of instances E can be computed for any

function P* using the following expression:

(5.1)

E ranges from n0 , the number of training instances at the smallest distance

from instance a, to the total number of training instances N.

The K* algorithm chooses a value for x 0 (ors) by selecting a number between

n0 and N and inverting the expression above. Selecting n0 gives a nearest

neighbour algorithm; choosing N gives equally weighted instances. For

convenience the number is specified using the "blend parameter" b, which

varies from b = 0% (for no) and b = I 00% (for N), with intermediate values

interpolated linearly.

We think of the blend parameter as a "sphere of influence", specifying how

many of a's neighbours should be considered important (although there is not

a harsh cut off at the edge of the sphere-more a smooth decrease in each

instance's relative contribution).

An iterative root finder is used to compute x 0 (ors), with the results cached,

so that whenever an instance value reappears the pre-calculated parameters

can be used. The x 0 (and s) parameters are calculated for each dimension

Designing Similarity Functions-153

Class B

attribute y

ct ___ b----.--,-:a-.-:-==>- Class A

attribute x

Figure 5.1: Blend sensitivity to other attributes

independently (that is, substituting the probability function for a single

attribute into Equation 5.1), but using the same blend parameter, which gives

equal weight to each attribute. The size of the final sphere of influence is

computed from the combined attribute distance measure. This is usually much

smaller than the size specified at the single attribute level (on the order of bJ ,

where dis the number of attributes).

The drawback to setting the parameters for each attribute independently is that

the settings can be affected by instances that are dissimilar on other attributes.

Assume that in the situation shown in Figure 5.1 each class contains equal

numbers of training instances, and that they are uniformly distributed within

the regions marked. The dashed lines surrounding instances a and b indicate

the surrounding x-attribute interval that contains 25% of the training

instances. The x-attribute is effectively assigned low importance when

classifying instance b and high importance when classifying instance a, even

Designing Similarity Functions-154

though in both cases the x-attribute is less relevant than the y-attribute in

determining the class. However, to employ the probability function for all

attributes in Equation 5.1 would be prohibitively slow due to the additional

computation required, and because it would require the free parameters for the

other attributes to be initialised by some method.

5.1.3.2 Automatic Determination

The sphere of influence method for setting the free parameters effectively

gives each attribute equal relevance. However, performance on many domains

can be significantly improved if irrelevant attributes are either ignored

entirely, or given lower weight in the similarity function. In general, irrelevant

attributes should be assigned a large sphere of influence, while relevant

attributes should be assigned a small sphere of influence. Assuming a

categorical class attribute, the entropy of the predicted class distribution for

each attribute can be calculated with respect to the free parameter (x 0 or s

depending on the attribute type) from the training attribute values.

Ent(a) = -IP* (c I a)log(P* (c I a)),
C

where P* (c I a) is the predicted probability of class c for test instance a,

calculated using only the current attribute of interest. The parameter value

could then be chosen to minimise the entropy of the prediction. However, this

will usually reduce the sphere of influence to include only the single nearest

neighbour (even if the attribute is irrelevant(This is clearly not the best plan,

even for relevant attributes. For example, if many surrounding neighbours

~ This problem is analogous to that of overfitting in decision tree construction. It is (barring

identical instances with different classes) always possible to construct a decision tree that

correctly classifies all training instances, by ensuring that each leaf node corresponds to one

training instance. Such a tree typically performs poorly on new instances.

Designing Similarity Functions-155

belong to a different class than the nearest neighbour, it makes sense to give

their predictions higher weight, in case the single nearest neighbour contains

erroneous data. In theory the same entropy curve can be computed if classes

were randomly assigned to attribute values. The proposal is that the

parameters should be set to maximise the entropy difference between the two

curves. That is, set the parameters so that the entropy is maximally different to

the expected entropy for an irrelevant attribute.

In terms of implementation, the expected entropy for random class assignment

is approximated by averaging the entropy calculated from a number of

random permutations of the class attribute. We use 5 permutations-a higher

number yields a more accurate approximation but increases classification

time. The entropy difference optimisation is computed for each attribute

independently (for the same performance reasons as stated in

Section 5.1.3.1)-again the procedure may be sensitive to instances that are

dissimilar on attributes other than the one being optimised, as well as losing

information about the relative importance of attributes. This problem is

particularly noticeable with symbolic attributes where, if the attribute is even

marginally correlated with the class, the optimisation attempts to weight the

attribute as high as possible. This would not be a problem if the attribute is the

only predictor attribute. The independent optimisation is unable to determine

the relative importance of the attributes. To alleviate this problem, attributes

that do not yield an entropy difference higher than a threshold have their

parameters set so that the attribute is effectively rendered irrelevant.

5.2 Evaluation

In this section the behaviour of the K* classifier is empirically studied with

regard to the issues discussed in Chapter 3. In particular, we examine our

Designing Similarity Functions-156

claims of the coherent treatment of different attribute types and multiple

attributes, making use of instances with missing information, and ease of

customisation to the domain. In addition, we evaluate the automatic method

for selecting one-step symbolic probabilities described in Section 4.3.8, and

the automatic method for selecting stop parameters described in

Section 5.1.3.2. Finally, the K* classifier is compared with standard machine

learning schemes on a variety of datasets.

Any instance-based learner with an adequate similarity function will

eventually reach the optimal error rate (Fix and Hodges 1951), so in most of

the following experiments we are primarily interested in examining the

learning rate (that is, the change in classifier performance as number of

training instances increases). A scheme that learns faster will have an

advantage over other schemes when the number of training instances is

limited. Alternatively, a fast learning scheme may employ an editing function

to minimise storage requirements and classification time, while maintaining

the same accuracy as other schemes.

5.2.1 Experimental Methodology

This section describes the features and performance measures common to the

following experiments. In many of the experiments, artificial domains are

employed. Artificial domains are useful because they can be designed

specifically to test a particular hypothesis in isolation. Where artificial datasets

are used, the number of test instances is 500. Each data point is the result of

50 trials, with randomly chosen test and training instances for each trial.

When two data points are stated to be significantly different, this means that a

two-tailed, paired t-test, indicates the results to be different at the 95%

confidence level. The default settings for the K* classifier are to use additive

Designing Similarity Functions-157

attribute combination (since the merge method requires a similarity function

derived for each particular combination of attribute types) and a manual blend

parameter setting of 20%. Except where explicitly stated, these settings are

used in all experiments.

Classifier performance is evaluated with respect to error rate and entropy gain.

The error rate of a trial is expressed as a percentage of test instances that were

not correctly classified. When a test instance produces multiple classifications,

it is counted as incorrect (even if the correct class was one of the predictions).

Although commonly used in the literature, error rate is a coarse measure of

classifier performance, as it is based only on the single prediction offered for a

test instance. Since the K* classifier can produce a class distribution as a

prediction, we can use this to provide a better measure of how much

information the classifier is extracting from the domain.

5.2.1.1 Entropy Gain Measure

The entropy gam measure is effectively a measure of how much less

information is required to encode the test instance classes when using the

scheme's predictions as opposed to encoding the classes using a naive method.

This measure has been applied to machine learning schemes that produce rules

(Cleary et al., 1996b). This section describes a comparable measure for

instance-based learners (or any machine learning scheme that infers a

probability distribution over the classes for each instance).

The number of bits required to encode the category of an instance with class c

with respect to a probability distribution P is -log 2 (P(c)). One naive method

for obtaining a class probability distribution is simply to count the number of

instances of each class that appear in the training data. However, if a class

Designing Similarity Functions-158

does not appear in the training data, it is assigned a probability of 0, which

requires an infinite number of bits to encode. This is called the zero frequency

problem, discussed further in Witten and Bell (1991). To circumvent this, the

counts for each possible class start from 1. If there are N training instances

and n possible classes (each of which occurs!, times in the training data), the

probability assigned to class c is:

p . 'c)= fc + 1 .
na,ve~ N +n

This probability is independent of the test instances. The associated entropy is

entropy nuive (c)= -log2 (Pnuive (c)).

The zero frequency problem can also occur with the probability distribution

provided by the classifier. To counter this, the scheme's probability

distribution is combined with the naive distribution so that the relative

probabilities assigned by the scheme are preserved. Two weights a and ~

control the blending. a and ~ are initially assigned probabilities of -; . After

each prediction, a is incremented by P* (c I a), and ~ is incremented by

Pnuive (c). Thus, if the scheme is consistently providing more accurate

predictions than the naive method, a>> /3 and so a will dominate the

weighting below. The modified predicted probability for the class of instance

a is calculated as

P'(c I a)= a P*(c I a)+ /3 P naive(c),
a+/3

where P* (c I a) is the probability distribution predicted by K* as given in

Equation 5.2. The corresponding entropy is

entropy K* (c I a)= -log2 (P'(c I a)).

Designing Similarity Functions-159

Where a standard k-NN learner is used, the P* probability distribution is

replaced by one that assigns probabilities according to the distribution of

classes among the k nearest neighbours. Thus, a 1-NN learner always assigns a

(pre-modification) probability of 1 to its predicted class.

The entropy gain measure is defined as the difference between entropy n"iv, and

entropy K*' averaged over all test instances. Although an absolute difference

between entropynuivc- and entropyK. intuitively makes more sense, we use the

average, to permit comparison over varying numbers of test instances (which

is required for domains with a fixed total number of instances). A negative

entropy gain implies the classifier performed no better than predicting the

class based solely on the class distribution in the training data. A positive

entropy gain implies the classifier has successfully captured domain

information when making its predictions. It is possible for a scheme to

achieve a high error rate in a domain, and at the same time perform well with

regards to the entropy gain. For example, when a classifier provides multiple

classifications for an instance, these are typically regarded as incorrect when

calculating error rates. Allocating equal probability to multiple classes can

improve the entropy gain measure if the scheme has managed to effectively

determine which classes are unlikely. Similarly, if a scheme would have

produced the actual class as a "second choice", the error rate would increase,

but the entropy gain measure would not necessarily decrease, particularly if

the scheme has successfully determined which classes are unlikely. For some

problems there will be a simple correspondence between these two

measures-if one scheme has a lower error rate than another scheme, it will

typically also have a higher entropy gain (Cleary et al., 1996b).

Designing Similarity Functions-160

5.2.2 Coherent Treatment of Different Attributes

In this section we examine whether the K* learner treats different types of

attributes consistently. The method taken is to select a domain and represent it

using different types of attributes. Assuming the different representations

contain the same information, classification performance on the different

datasets should be the same. In this section we only consider domains with

one predictor attribute (methods for combining attributes are evaluated in

Section 5.2.3).

5.2.2.1 Ultra-violet Domain

Ting (1995) describes a domain where the time of the day is used to predict

the level of ultra-violet radiation. If the time is between 11AM and 3:30PM, the

level of UV is high, otherwise it is low. The first dataset, UVl, represents the

time of the day as two attributes: a symbolic AM/PM indicator; and a real­

valued time in the range [0,12). The second dataset, UV2, represents the time

of the day as a single real value in the range [0,24). Chapter 3 showed that

these representations do not contain the same information-for example, UV2

implicitly contains information about the relationship between 11 :59AM and

12:00PM that UV 1 does not. Two new datasets are defined for this

experiment. UV3, which differs from UV2 by representing the time as an

integer hour rather than a real. Information about the minute within the hour

present in UV2 is not contained in UV3. The second dataset, UV4, represents

the time as a symbolic type, with one symbol for each hour of the day. UV 4

does not contain hour-ordering information present in UV3.

Designing Similarity Functions-161

The following four methods of classification are examined:

REAL: The UV2 dataset is classified using the similarity function for

wrapped space developed in Section 4.3.4. This provides the

classification with the information that the time of day is modulo.

INTEGER: The UV3 dataset is classified using the similarity function for

wrapped space developed in Section 4.3.4 (effectively the same as

that derived in Section 4.3.2.1).

INDEPENDENT: The UV 4 dataset is classified using the similarity function for

independent symbols developed in Section 4.3.7.

NON-INDEPENDENT: The UV4 dataset is classified using the similarity

function for non-independent symbols developed in Section 4.3.8.

The one-step transformation probabilities for symbols are set so

that each hour has an equal probability of transforming to each of

its neighbouring hours. For example, the "13th hour" symbol may

transform to the "12th hour" symbol or the "14th hour" symbol

each with probability of 0.5. The assigned probabilities also reflect

the modulo nature of the symbols-the "1st hour" symbol may

transform to either the "2nd hour" or the "24th hour" symbol and

similarly for transformations from the "24th hour" symbol.

Figure 5.2 shows the learning rate for these four classifiers. REAL performs

better than the other methods particularly as the number of training instances

increases. The differences are consistently significant above 55 training

instances and are often significant below. REAL is able to locate the exact

location of the class boundary at 3:30PM as the number of training instances

increases. The other methods are unable to distinguish between instances half

an hour either side of the boundary so the lower bound on the error rate is

2.1 %, regardless of which class is chosen; INTEGER and NON-INDEPENDENT

Designing Similarity Functions-162

50

45 Iii

40

35

30
~
~ .,

25 a:
g
w 20

15

10

5

0
0

·-a __

···-.s a.

10 20 30 40 50
Training Instances

REAL_
INTEGER -+--·

INDEPENDENT ·El···
NONINDEPENDENT -M-

60 70

Figure 5.2: Learning rate on UV domain

80

approach this error rate, while real continues to slowly improve its

performance.

INDEPENDENT performs significantly poorer than the other methods for all

levels of training instances except for the 5 training instances sample,

primarily because INDEPENDENT has no indication of inter-hour relationships.

Test instances for which there are no training instances with the same hour are

often misclassified; their predictions are based on whichever hour has a

majority (which is likely to have class UVLOW). The performance of

INDEPENDENT should gradually approach that of INTEGER and NON­

INDEPENDENT as the probability of having at least one training instance in

each hour period increases.

Figure 5.3 shows the corresponding entropy gain graph. INDEPENDENT

performs significantly poorer than the other methods. REAL performs

Designing Similarity Functions-163

0.45 ..----~--~--........... ----.----.------.---""""T"---,

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

__.-.JI,-··-~---,..-~--~ l/-~-=----k.,,,_-
l

...• ···J;}··--·-13'···

.. ·····l:l·

--•-----~------e-----~-----&-----~-----•------&-----e-----&----­

REAL-+-­
INTEGER -+--·

INDEPENDENT ·B··
NONINDEPENDENT -M··-·

----------r;:1·
r:j.

0 ... ··_. ···•····································•··

-0.05 ------~-----~---'---~------
0 10 20 30 40 50 60 70 80

Training Instances

Figure 5.3: Entropy gain on UV domain

significantly better than INTEGER above 2 training instances, and significantly

better than NON-INDEPENDENT above 20 training instances. Although the

error rates for INTEGER and NON-INDEPENDENT are not significantly different,

the corresponding entropy gain results are significantly different above ten

training instances (but converge as training levels increase).

The performance differences observed between REAL and the other methods,

and between INDEPENDENT and the other methods are expected, and are due

to the domain representations implicitly containing different types of

information. INTEGER and NON-INDEPENDENT have few significant

differences in performance; small differences are likely due to implementation

details. Their similar performance confirms that different attribute types are

treated coherently. In addition, the large performance difference between

REAL and INDEPENDENT highlight the importance of making use of domain

information wherever possible.

Designing Similarity Functions-I 64

5.2.3 Multiple Attributes

The objective of this section is to examine whether multiple attributes are

combined coherently. Our approach is to apply transformations to the domain

attributes and see whether this has an effect on performance. For example, in

some domains it may make sense to perform a "rotation" operation on the

attributes with no change in performance.

5.2.3.1 Rotating Linear Decision Boundaries

This simple two-class problem contains linear concept boundaries at an angle

that can be varied. Figure 5.4 shows 100 example instances where the concept

boundaries are at a 0° angle relative to the x-axis. For each trial, the test and

training datasets are rotated about the origin by various angles.

Two methods from Section 4.3.9 for combining attributes are examined: the

simple additive method (which corresponds to transforming each attribute

sequentially); and the merge method (which allows transformations on each

attribute to be intermingled). The merge results do not use the exact function

derived in Section 4.3.9 but an approximation that shares the essential

characteristic of being based on the Euclidean distance between attribute

values.

The results for ten training instances are shown in Figure 5.5. The first

noticeable feature is that the merge method error rate is constant, regardless of

the concept boundary angle. The additive method error rate varies

significantly from the lowest point at 0° and 90° rotation to the highest point

around 40° rotation. From 25° to 60° rotation, the additive method performs

Designing Similarity Functions-165

5

4

3

2
+

+

"' ·x 0 .,
>,

-1

-2
0

-3

-4 +

+
-5

-5 -4

+

0

0

0

+

+
+

-3

+

0

-2

0
0 •

+ +

+

-1

+
+

+

+

0
xaxis

+
+

+

··········-o·················

+

+
+

+

+ +

2

+

+

+

+
+

+

+

+
+

3

+

+ ······o·······

+

+

+

4

+

5

BLACK o
WHITE +

Figure 5.4: 100 example instances for the linear boundary domain, 0° incline

40

39

38

37

l
36

.,
iii 35 a: ...
g
w 34

33

32

31

30
0 10 20 30 40 50

Degrees Rotation
60 70

ADDITIVE -+­
MERGE -+--·

90

Figure 5.5: Error rates on rotated datasets with ten training instances

Designing Similarity Functions-166

significantly poorer than the merge method. From 0° to I 0°, and from 75° to

90° rotation, the additive method performs significantly better than the merge

method. The conclusion is that the additive method is sensitive to dataset

rotation.

To understand these results, consider how the similarity function changes for

areas around each instance. Figure 5.6 shows a contour of constant similarity

around a training instance using the two methods-the contour is circular for

merge combination, and diamond shaped for additive combination. Now

consider the decision boundaries formed by pairs of training instances.

Figure 5.7 shows the decision boundaries for pairs of training instances; the

additive method on the left, the merge method on the right. The boundary

between the training instances represents the points at which the similarity to

both instances is equal. When the two instances are aligned horizontally, both

methods produce the same decision boundary. When the alignment of the two

instances is 15°, the additive method produces a predominantly vertical

boundary (with a short section at -45°).

An interesting effect occurs when the instances are aligned at 45° . The black

areas indicate regions where the decision boundary has widened (that is, the

distance to both instances is equal), and classification is impossible. Thus, to

exactly represent a concept boundary at 45° requires multiple pairs of training

instances. (Due to rotational symmetry of the additive method, the figures will

still be correct when rotated by 90° .) These effects produce a bias in the

additive method toward domains with axis-parallel concept boundaries, and

against domains with concept boundaries approaching 45°, and hence explain

the curve seen in Figure 5.5.

Designing Similarity Functions-167

X

Figure 5.6: Contours of equal similarity for additive and merge combination

0 X 0 X

X
0

Figure 5. 7: Decision boundaries for additive and merge combination

Designing Similarity Functions-168

The entropy gain results for ten training instances (Figure 5.8) are much as we

would expect given the error rate results. ADDITIVE performs significantly

better than MERGE from 0° to 30° rotation and from 60° to 90° rotation.

ADDITIVE performs significantly worse than MERGE from 40° to 45°

rotation.

A more interesting result is obtained when we plot the entropy gain over a

range of training instances, as shown in Figure 5. 9. ADDmVE-0 corresponds

to the additive method classifying the unrotated dataset; ADDITIVE-45 is the

additive method classifying the dataset rotated 45° ; and MERGE shows the

results of the merge method (which showed no significant differences with

dataset rotation) classifying the unrotated dataset. ADDITIVE-0 has a

significantly higher entropy gain than ADDITIVE-45 for all the levels shown

(although the results converge with increasing training instances), reflecting

the bias of the additive method towards axis-parallel concept boundaries.

Initially, the entropy gain for MERGE is almost indistinguishable from the

entropy gain of ADDITIVE-45. As the number of training instances increases

MERGE achieves significantly better entropy gain than ADDITIVE-45,

approaching that of ADDITIVE-0.

These results suggest that the additive method's bias toward axis-parallel

concept boundaries is mainly beneficial when the number of training instances

is low. Under these conditions, the distance from the actual to the estimated

concept boundary for the ADDITIVE is often bounded, while for MERGE the

distance is not bounded. As training instances are added, the estimated

boundary position is refined to the point where the bounds are not

significantly different.

Designing Similarity Functions-169

.,
u
C:

~ .s
cii
C.

!!
;§.
C:
iii
C)
>-
~
i:
w

.,
u
C:

~ .s
cii
C.

I
C:
"ii
C)
>-
~
i:
w

0.1

ADDITIVE -
MERGE-+--·

0.08

0.06

0.04

0.02

0--------------------------------' 0

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1
0

10 20 30 40 50 60 70 80
Degrees Rotation

Figure 5.8: Entropy gain with ten training instances

.......

10 20 30 40 50
Training Instances

ADDITIVE-0 -
ADDITIVE-45 -+-··

MERGE ·O··

60 70

Figure 5.9: Entropy gain with increasing training instances

Designing Similarity Functions- l 10

90

80

So, which of the two combination methods is better? The results above show

that it depends on the domain. If domain concept can be effectively

partitioned into independent sub-concepts, the attributes relevant to different

sub-concepts should probably be combined with the additive method. For

example, say the task is to predict a person's age group at death, with

attributes "number of cigarettes smoked per day" and "CC rating of the

person's car." The relevant sub-concepts are "age of people who die driving

powerful cars" (who tend to be young, inexperienced drivers) and "people

who die as a result of smoking" (who tend to be older). The number of

cigarettes smoked per day has no effect on whether or not a person is likely to

die while driving a powerful car, and similarly the car CC rating is not a good

indicator to whether a person might die as a result of smoking. Any concept

boundaries will be axis-parallel, and so the additive method for combining

attributes would prove a better choice. There may be some domains where it

is reasonable to use a hybrid method, within groups of attributes the merge

method may be used, and the results between groups combined with the

additive method.

The domain transformation used in this example, rotation, is not applicable to

all domains. For example, rotation cannot sensibly be applied to two symbolic

attributes. The next section examines a domain where multiple symbolic

attributes are combined.

5.2.3.2 Ultra-violet Domain

In this experiment, the transformation applied to the UV domain is to split one

symbolic attribute into two separate attributes. The original dataset used is the

UV4 dataset described in Section 5.2.2.1; that is, the time of the day is

represented as a single symbolic attribute with one symbol for each hour of

the day. The modified dataset, called UV5, contains the time of the day

Designing Similarity Functions-171

represented as one symbolic attribute containing an AMIPM indicator, and one

symbolic attribute containing the hour, numbered from O to 11. In the

previous section, dataset rotation did not alter the domain information implicit

in the representation-this is not true for this example. The UV5

representation gives an implied similarity between (for example) 6AM and

6PM, and an implied similarity between 6AM and 1 OAM. There is also a large

implied dissimilarity between 11AM and OPM. Basic transformation

probabilities must be chosen carefully, to ensure the results are not biased by

these differences. The classification methods used are:

UV4-lNDEPENDENT: The UV4 dataset is classified using the similarity

measure for independent symbols developed in Section 4.3.7.

UV5-lNDEPENDENT: The UV5 dataset is classified using the similarity

measure for independent symbols developed in Section 4.3.7.

Attributes are combined using the additive method

UV4-NON-INDEPENDENT: The UV4 dataset is classified using the

similarity measure for non-independent symbols developed in

Section 4.3.8. One-step probabilities are assigned as follows: each

hour has equal probability of transforming to either the preceding

hour, the following hour, or 12 hours distant (corresponding to an

AM/PM switch).

UV5-NON-INDEPENDENT: The UV5 dataset is classified using the

similarity measure for non-independent symbols developed in

Section 4.3.8. One-step probabilities are assigned as follows: the

AM or PM symbol has transformation probability O to itself, and 1

to the other symbol; and the hour symbol has equal probability of

transforming to the preceding hour or the following hour (in this

case there are only 12 hour symbols). The attributes are combined

using the additive method

Designing Similarity Functions-172

45

40

35

30

~ 25
~
ca
a:
g 20
w

15

10

5

0
0 10 20 30 40 50

Training Instances

UV4-INDEPENDENT -
UV5-INDEPENDENT -+--·

UV4-NON-INDEPENDENT ·B···
UV5-NON-INDEPENDENT -~---

60 70

Figure 5.10: Learning rate on UV domain

80

Figure 5. IO shows the learning rates for the above methods. UV4-

INDEPENDENT and UV5-INDEPENDENT are significantly different for 2

training instances, and above 40 training instances. UV4-NON-INDEPENDENT

and UV5-NON-INDEPENDENT are not significantly different. The important

result is that, although the representations of the domain are different and

contain different implicit similarity information, once these differences are

adjusted for, there is no significant performance difference between the single

attribute representation and two attribute representation. The contributions of

each attribute in the two-attribute representation are combined coherently.

Designing Similarity Functions-173

5.2.4 Missing Values

In this section the K* classifier is evaluated on datasets containing missing

values. The objective is to show that our method for utilising instances with

missing values performs better than discarding such instances, and that this

method performs comparably to other methods.

The following methods for dealing with instances containing missing values

are examined:

DELETE: Ignore any training instance containing missing values; this is

similar to DELETE (Dixon, 1979). This method is implemented in

the K* classifier by setting the probability of transforming to a

missing value to 0; instances containing missing values contribute

nothing to the sum in Equation 5.2.

MAxDIFF: Assume the probability of transforming to a missing value is the

same as transforming to the furthest value for that attribute. This

method is similar to MAXDIFF (Aha, 1990).

NORMAL: Assume the probability of transforming to a missing value is the

same as the average transformation probability over the other

attributes. This is similar to NORMAL (Dixon, 1979), and IGNORE

(Aha, 1990).

AVERAGE: Assume the probability of transforming to a missing value is the

same as the average transformation probability over the other

instance values, as described in Section 4.3.10. This method is

most similar to AVERAGE (Dixon, 1979) and MODEMEAN (Aha,

1990).

These methods are all run-time methods (that is, the similarity to a missing

value can be easily computed during classification), as opposed to the

Designing Similarity Functions-114

~
§
]i
a,
ll.

3 ,---.---~--"'T"""----r-----,------,---~---

2.5 ,-

2 ..

1.5 ,-

1 ..

0.5
0

0

CID0

0 IE

0 -
0 0

virginica o
versicolor +

setosa 0

GGGG O O O 0

0 0 0

-◊ 0

0 0

GOO 0

.0 0 GOO O 0

0 +
+ + + 0

+ +++ +oo
+ ++++ •

+ +++++++
++ + + +

+ ++
+ + + ++

.

.

.

.

-

0 ~--..._ ___ ___ ___ ___ __ __._ __ __._ __ ___,

0 2 3 4 5 6 7 8
Petal Length

Figure 5.11: Fishers original iris dataset, shown for two attributes

preprocessing methods for filling in missing values described by Dixon

(1979).

5.2.4.1 Pseudo-iris Domain

Fisher's well known iris dataset contains measurements taken from 50

examples of each of three species of iris: setosa, versicolor, and virginica.

There are four predictor attributes: sepal width, sepal length, petal width, and

petal length. The classes can be almost completely differentiated by the petal

attributes, as seen in Figure 5.11.

Before attempting classification, consider the behaviour of the different

methods for dealing with missing values on this dataset. An instance with a

missing value may be viewed as a line (rather than a point), along which we

Designing Similarity Functions-175

3
vil'!;linica 0

vers1color +
setosa □

2.5 ... a b 0 -0 0 - 0 0 0 0

0 0 0 - 0 0

2 ... - 0 0

- 0
0

-◊ 00 0 0 0

~ 0 +

§ + + + 0

1.5 ... + +++ +oo
]i + + +++ 0
G)
0.. + -++++++

+ + + +
c+ ++

1 ... +++ -+

□
0.5 ... □

□ a;:c □
a;:c □

□□□□a;:c □

□ □□
0

0 2 3 4 5 6 7 8
Petal Length

Figure 5.12: Two instances with missing petal width values

are unsure of its position. Figure 5.12 shows the addition of two instances

with missing petal width values. The clusters in the data suggest that instance

a has a petal width value between O and 0.5, and that instance b has a petal

width value between 1 and 1.5. The ideal method for dealing with missing

values would return a distance between instances that reflects this expectation.

The first method, DELETE, sets the similarity to instances containing missing

values to be 0. MAXDIFF behaves as though the instances have petal width

values of either 2.5 or 0.1, whichever is the furthest from the other instance

being compared-this method effectively "pushes away" instances with

missing values to be used as a last resort.

The behaviour of NORMAL is more interesting. By assuming the similarity to

a missing value is the same as the average similarity along the other attributes,

the overall similarity reflects our earlier intuition about what the missing

Designing Similarity Functions-116

35

30

25

l 20
s
ca
a:
~

g 15 w

10

5

0
0 5 10 15 20 25

Training Instances
30

DELETE-+­
MAXDIFF -+--·
NORMAL ·B···

AVERAGE -M­
ORACLE__

35

Figure 5.13: Pseudo-iris dataset with 20% missing data

40

values should be. The similarity from instance c to instance a will be about the

same as if a had a petal width of 0.5. The similarity from instance c to

instance b will be about the same as if b had a petal width of 1.5. NORMAL is

therefore expected to perform well on this dataset.

The behaviour of AVERAGE is only dependent on the attribute containing the

missing value. The average petal width value is about 0.7 different from

instance e's petal width. In this case the similarity from instance c to instance

b will be about the same as if b had a petal width of 1.8. The similarity from

instance c to instance a will be about the same as if a had a petal width of 0.4.

AVERAGE is not expected to perform as well as NORMAL on this dataset.

To test these theories a pseudo-iris dataset generator was constructed that

produces datasets similar to the original iris dataset (only the petal length and

Designing Similarity Functions-111

petal width attributes are generated). The benefit of using artificial data is that

we can create more than the 150 instances in the original dataset.

Figure 5.13 shows the learning rate when 20% of the predictor values are

missing, over a variety of training set sizes. The line labelled ORACLE shows

the error rate when the training sets do not contain any missing values, and is

included for comparison purposes. The baseline accuracy is 33%. Initially

there is a wide difference in classification error rate between the different

methods, but by the time the number of training instances reaches 40, the

error rates are within 1 % of each other. The difference between AVERAGE and

NORMAL is not significant. MAXDIFF and DELETE perform significantly worse

than the other methods when the number of training instances is lower than

20, and below 15 training instances DELETE performs worse than MAXDIFF.

These results are consistent with our predictions above.

Figure 5.14 shows the error rate for increasing levels of missing values when

the number of training instances is 60. DELETE performs significantly worse

than MAXDIFF above 60% missing values, because DELETE often discards so

many training instances that most test instances are misclassified or

unclassified (which occurs when all training instances are discarded).

MAxDIFF performs significantly worse than NORMAL, AVERAGE and ORACLE

when there are more than 45% missing values. AVERAGE tends to perform

better than NORMAL, although the differences are not significant.

Figure 5.15 shows the error rate for 20 training instances as the level of

missing values increases. The differentiation between methods begins at lower

levels of missing values than in Figure 5.14. The quantity of "good" training

information is about the same, since the error rates in these regions are similar

Designing Similarity Functions-l 78

,e
l!....
Q)

1ii a: -g
w

~
.l!l
<II a: -e w

30 ,------.--------,------.-----~----------

25

20

15

10

DELETE -
MAXDIFF -+--­
NORMAL ·B···

AVERAGE~-­
ORACLE,_ __

0 L.-----'----------'-------'--------'-----__._ ____ __.
10 20 30 40 50 60 70

Missing Values {%)

Figure 5.14: Pseudo-iris dataset---60 training instances

60 .--------,,------.-----~----...... -------,----~

50

40

30

20

DELETE-+­
MAXDIFF -+--·
NORMAL ·B··

AVERAGE ··M·····
ORACLE....,_ __

__ ,.. _______ .,, _______ -+ ______ _

___ ,.,------ ... -~···•·············

10 ~=~-=.::;;~;;;;~:~;:~:;;;;;~-:::~::~~~:::~::::::
0 .__ ____ .___ ___ ____. ____,L ____ __._ ____ __._ ___ _...j

10 20 30 40 50 60 70
Missing Values (%)

Figure 5.15: Pseudo-iris dataset-20 training instances

Designing Similarity Functions-l 19

m u
C:

~
.5
a;
Q.

en e
C: ·.;

C!)

>-
Q.

e
c
w

1.3 ,-----..-----...------.-----,------.-------,

1.1

0.9

0.8

0.7

0.6

0.5
10 20

········,c __

················x.
-------... -------""-------.... ___ _

X.

30 40 50
Missing Values (%)

·• ...
X.

DELETE-+­
MAXDIFF -+--·
NORMAL ·B··

AVERAGE ··><·····
ORACLE..,,..._

60

Figure 5.16: Entropy gain for 60 training instances

',
...... '.,

70

for both graphs. MAXDIFF and DELETE are significantly different from the

other three methods when more than 20% of values are missing. DELETE

performs significantly worse than MAXDIFF when more than 40% of values

are missing. The AVERAGE error rate is significantly higher than NORMAL

when more than 55% of values are missing.

The entropy gain results contain some interesting differences. Figure 5 .16

shows the entropy gain for increasing levels of missing values in 60 training

instances. The results for DELETE, MAXDIFF, ORACLE, and NORMAL are as

expected based on the error rates for these methods. However, the striking

difference is that AVERAGE performs significantly worse than all these

methods over most of the range shown. The explanation is somewhat

complicated.

Designing Similarity Functions-180

One can imagine the procedure of choosing a value to substitute for an

instance's missing value as translating the instance to a new position in the

instance hyperspace, moving along the axis of the attribute containing the

missing value. MAXDIFF effectively moves instances to the furthest surface of

the bounding hypercube. Instances containing multiple missing values are

moved to corners of the hypercube. Thus, these instances only contribute

significantly to classification when there are few instances contained within

the hypercube. AVERAGE moves instances in a similar manner to MAXDIFF;

however, rather than moving them to the bounding hypercube, instances are

moved to a hypercube defined by the mean similarity to the test instance for

each attribute. The ranking of the class probabilities are determined primarily

by the instances inside this hypercube because the instances on the surf ace of

the hypercube will have approximately the same class distribution as occurs

globally. Thus, the error rate (which only depends on the most likely predicted

class) is not degraded. However, the instances on the surface of the hypercube

effectively add noise to the predicted class distribution, producing a

significant decrease in entropy gain. This effect is magnified as the proportion

of missing values increases, causing the entropy gain to tend towards 0.

The conclusion to be drawn from this experiment is that most sensible

methods for dealing with instances containing missing values perform

significantly better than discarding the instances. When the proportion of

missing values is high or the number of training instances is low, NORMAL

performs better than other methods, followed by AVERAGE. The reason for

NORMAL's good performance is the assumption that the similarity along each

attribute is roughly the same. In this domain, petal length is strongly

correlated with petal width. The next experiment examines the various

methods in a domain where there is no such correlation.

Designing Similarity Functions-181

4 ,----------.--------r--------.-----,0:----i

3

2

+

+ + +
1 + +

0

;.. +
0

0
0

0 0
+ 0 +

+ +
···········♦····•················· +

···········o···· oo· ··o···:·--- 0 +

8
:+

o.
0 +

+

+
+

+

0 0 0

0

0

0

··•··
0

+ .. +

+ +

0

+

0

0 '

0

o o

0

: + +

+

+

0

+

+

0

0

+
+

+

0 '---~.,__ _ __. ___ + ____ _____ o'-'--------'

0 2 3 4
X Coordinate

white o
black +

Figure 5.17: 100 example instances from the Checkerboard domain

5.2.4.2 Checkerboard Domain

In this domain, instances have two real valued predictor attributes, an x

coordinate and a y coordinate. An instance is classified as either white or

black depending on its position. The arrangement of white and black instances

is like a quarter of a checkerboard, as shown in Figure 5.17. Instances are

uniformly distributed, so the baseline error rate is 50%.

Figure 5.18 shows the learning rate when 20% of the values are missing.

Because the classes are not as easily separable as in the iris domain, learning

is much slower. All the methods for dealing with missing values perform

significantly worse than ORACLE over the range of training instances shown.

Designing Similarity Functions-182

The greatest difference from the results obtained in the iris domain is that

NORMAL performs significantly worse than the other methods. This poor

performance is due to a lack of clustering in the domain. Because instances

are uniformly distributed throughout the predictor space, the assumption that

differences in predictor values will be similar is incorrect.

These results are confirmed when we examine the error rate for 300 training

instances as the number of missing values increases, as shown in Figure 5.19.

Again, NORMAL is significantly poorer than the other methods through the

range of missing value levels. AVERAGE performs significantly poorer than

MAXDIFF and DELETE until the 70% missing value level. Above 70%,

AVERAGE performs significantly better than these two.

When the number of training instances is lower, the results are different.

Figure 5.20 shows the results for 50 training instances. NORMAL performs

significantly worse than the other methods when the level of missing values is

below 50%. Above 65%, there is no significant difference between it and

AVERAGE. DELETE and MAXDIFF perform almost identically until the

proportion of missing values is so high that DELETE has little or no training

data left for classification. At this point, the methods only exhibit marginally

smaller error rates than the baseline. (DELETE performs worse than the

baseline).

The entropy gains for 50 training instances are shown in Figure 5.21. In

contrast to the iris domain, AVERAGE performs significantly better than the

other methods--entropy gain tends towards zero, rather than being negative.

While the error rates for AVERAGE and NORMAL converge in Figure 5.20,

Designing Similarity Functions-183

l
!!
m
a:
g
w

45

40

35

30

25

20

15

10

5
0 50 100

-e--------a

150
Training Instances

·· ...
·---13---------e_

200

DELETE -
MAXDIFF -+--·
NORMAL -a-­

AVERAGE -M·-·
ORACLE...,._ __

250

Figure 5.18: Checkerboard dataset-20% missing data

300

50 .------.-------T----,------.-------T----~----,
45

40

35

30

25

20

15

10

DELETE -
MAXDIFF -+--·
NORMAL -B··

AVERAGE ··M·····
ORACLE_.. __ _a-------a-·

El"

••• El·

.Er

5 ·-·-·-·•-·-·-·~----•-.A.----·--.6.-•-·-· ·-·-·-· .. -·-·-· ·-·-·-•·-·-·-·,A-. ____ ~ __ ,_._...,._. ____ .,.. ______ ., _______ _

o...._ _____________ ____ ________ ..._ ___ _.

10 20 30 40 50 60 70 80
Missing Values {%)

Figure 5.19: Checkerboard dataset-300 training instances

Designing Similarity Functions-184

NORMAL performs significantly worse than AVERAGE for the whole range

shown. Above 40% missing values, NORMAL, MAXDIFF and DELETE have

negative entropy gains.

The results of these experiments are quite different from those obtained in the

previous section. In this domain, NORMAL performs considerably worse than

the other methods, particularly when the level of missing values is low enough

to obtain results better than the baseline error rate. This poor performance is

because NORMAL's assumption of correlated predictor attributes is not true of

this domain.

In summary, these experiments show that most methods for handling missing

values are capable of performing better than discarding the instances

altogether. However, some methods are based on assumptions that may not

necessarily be true of the domain. AVERAGE is a good "middle of the road"

method that is able to perform well under a range of conditions. However,

additional knowledge about the domain can provide assistance as to which

method might be more suitable. If it is known that attributes are correlated,

NORMAL is likely to be a better choice. NORMAL could potentially be

improved by incorporating the inter-attribute correlation in the missing value

similarity calculation. AVERAGE is independent of the other attributes-its

performance may be improved by considering the training instance classes.

For example, the similarity to a training instance's missing value would

become the expected similarity to the values of other training instances with

the same class.

Designing Similarity Functions-185

60 ,------,------,----T"""-----r----.-----...,...----,

55

50

45

40

Ji!
35 .. ·

30

. .e······.e·· ·······.x····

• .El

········><······

··········~···············X"··'·''·····"·····

DELETE -
MAXDIFF -+--·
NORMAL -a-•

AVERAGE ••!I(••···

ORACLE....,...._

25 ·-·-·-··-·-·-• -----..... -- ~.-·-·-•·-·-·-·•-·-·-•-A-.............. -·-·-·...6-·-·-·-•-·-·-· _._., __ . ____ ..iDi. _____ _

20_ ____ ________ _._ ____ _____ ___ ___ _

10 20 30 40 50 60 70 80
Missing Values (%)

Figure 5.20: Checkerboard dataset-Error rate for 50 training instances

0.25 .------.----...,...-----r-----,------.-----..------,

0.2 ·-·-.-... ~
....... a,A-•-·---•A.-........._ ______ ., -·-•.6..., ,-"' ,.. ____ -•·- -·-·

0.15

0.1

0.05

0 ······························

-0.05

-0.1

-0.15

·····"···············~ .•.. ·········!K ..•

DELETE -
MAXDIFF -+--·
NORMAL ·B··

AVERAGE -N·····
ORACLE,...._

-0.2_ ____________ ..__ ____ ________ ..._ ___ ~

10 20 30 40 50 60 70 80
Missing Values (%)

Figure 5.21: Entropy gain for 50 training instances

Designing Similarity Functions-186

5.2.S Automatic Assignment of Symbolic One-step

Probabilities

The aim of this section is to establish under what circumstances the non­

independent symbolic measure developed in Section 4.3.8, using automatic

one-step probability assignment, performs better than the measure for

independent symbols developed in Section 4.3.7. As seen in Section 5.2.2.1,

one-step probabilities may be manually assigned to improve performance;

here we wish to examine the automated method for assigning one-step

probabilities.

5.2.5.1 Discretised Pseudo-iris Domain

This experiment utilises the pseudo-iris dataset generator from

Section 5.2.4.1, but the petal length and petal width attributes are discretised

to form symbolic attributes. The discretisation method divides the range of

values for an attribute into a number of equal sized partitions. The resulting

symbols should be assigned similarities that are related to their original

ordering. The following two methods are compared:

INDEPENDENT: The dataset is classified using the similarity function for

independent symbols developed in Section 4.3.7.

NON-INDEPENDENT: The dataset is classified using the similarity function for

non-independent symbols developed in Section 4.3.8. The one­

step transformation probabilities are automatically assigned using

the method given in Equation 4.18.

Figure 5.22 shows the learning rate for the two methods when each attribute is

divided into 5 bins. The INDEPENDENT measure generally performs

Designing Similarity Functions-IS?

significantly better than the NON-INDEPENDENT measure when the number of

training instances is above 15. This is a result of two factors. First,

INDEPENDENT performs well because there are few symbols per attribute­

relatively few training instances are required to obtain coverage of at least one

training instance per test point in the instance space. INDEPENDENT is

primarily expected to perform poorly when no training instances exactly

match each test instance. Second, there are too few symbols per attribute for

customised symbol similarities to be significantly advantageous.

The equivalent entropy gain curve is shown in Figure 5.23. In contrast to the

error rate results, NON-INDEPENDENT performs significantly better than

INDEPENDENT when there are more than 60 or less than 20 training instances.

As the number of training instances increases, the automatic method for

setting one-step probabilities is able to more accurately represent the probable

class distributions throughout the instance space, but not enough to result in

changes to the predicted class.

Figure 5.24 shows the learning rate when each attribute is divided into 15

partitions. In contrast to the previous experiment, INDEPENDENT performs

significantly poorer than NON-INDEPENDENT at all levels of training instances

shown. This is partially because many areas of the instance space contain no

training instances; when there is a symbol mismatch on one attribute,

INDEPENDENT takes the most probable other symbol as closest, often resulting

in misclassification. NON-INDEPENDENT is able to piece together relationships

between symbols so its learning rate is faster.

Designing Similarity Functions- l 88

g
LU

30 r----.-----.---,-----.----,r----.---,----r---~---,

25

20

15

10

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

\

INDEPENDENT -+­
NON-INDEPENDENT -+---

5-----------~---'--~----------....._ _ __.
0 10 20 30 40 50 60 70 80 90 100

Training Instances

Figure 5.22: Error rate for pseudo-iris domain-5 bins per attribute

1.1 ..--------.------,-----.----r---..--------.-----...---r----.-----,

0.9

0.8

0.7 ' ' ' +

' '
' ' ' ' ' '

/
I

,
,

---+---

INDEPENDENT -+­
NON-INDEPENDENT -+---

0.6 .__ ____. __ ___._ __ _._ ___ __ .._ _ ___. __ __._ _________ __.

0 10 20 30 40 50 60 70 80 90 100
Training Instances

Figure 5.23: Entropy gain for pseudo-iris domain-5 bins per attribute

Designing Similarity Functions-189

~
~
a:
~

g
w

35

30

25

20

15

10

5

.
.
. .

\
'·--, ______ _

INDEPENDENT -
NON-INDEPENDENT -+--·

~----.......... ___ ..,. ___ "4----+-·-·""---............ ---+----+... ___ ..,. ___ -+---➔----.... --.

0 ...__ _ _._ __ .__ _ _.__ _______~---------------
0 10 20 30 40 50 60 70 80 90 100

Training Instances

Figure 5.24: Error rate for pseudo-iris domain-15 bins per attribute

These experiments indicate that the automated method for assigning symbol

transformation probabilities can significantly outperform the class-blind

measure for symbolic attributes in domains with many symbols for each

attribute. This domain is relatively simple, so the next section considers a

more complex real-world domain.

5.2.5.2 Phoneme Domain

The objective in the phoneme domain is to predict the correct pronunciation

of English words, given a database of correct pronunciations. This task has

been examined with artificial neural nets (Sejnowski and Rosenberg, 1987)

and nearest neighbour methods (Stanfill and Waltz, 1986). Predictor attributes

include: the current letter for which pronunciation is to be predicted; the three

Designing Similarity Functions-190

80

75

70

65

l 60
!!
"' a: -g 55
w

50

45

40

35
0 500 1000 1500

Training Instances

INDEPENDENT -
NON-INDEPENDENT -+--·

2000 2500

Figure 5.25: Leaming rate for the phoneme domain

preceding letters in the word; and the three succeeding letters in the word.

These attributes are labelled "en", "en -1 ", "en - 2 ", "en - 3 ", "en + 1 ",

"en + 2 ", and "en + 3 " respectively. There are 27 symbols per attribute, and

59 possible classes. Each n-letter word is represented in the database by n

instances, one for each letter to be pronounced. 1000 of the most commonly

used English words were used in the dataset-those that are not used in

training are used in testing. The total number of instances is 5603. Figure 5.25

shows the learning rate for the independent symbolic metric and the non­

independent metric using automatic one-step probability assignment. Each

data point is the result of ten trials.

In this domain, NON-INDEPENDENT performs significantly better than

INDEPENDENT at all the levels of training instances shown, largely due to the

high number of symbols per attribute. There are insufficient training instances

Designing Similarity Functions-191

to fill the instance space, so INDEPENDENT performs poorly. NON­

INDEPENDENT builds class-based inter-symbol similarities, allowing it to

perform much better when there are mismatches between test and training

instances.

5.2.6 Automatic Stop Parameter Setting

This section evaluates the automatic method for setting values for the stop

parameter as described in Section 5.1.3.2. In particular, its performance is

compared against the manual blend setting method from Section 5.1.3.1.

5.2.6.1 Phoneme Domain

Figure 5.26 shows the learning rate on the phoneme domain for automatic

blend setting, in comparison with the default manual blend value of 20%.

Results labelled IND use the independent symbol similarity function, and those

labelled NON-IND use the non-independent symbol similarity function with

automatic one-step probability assignment (the learning rates for manual

blend are therefore the same as those obtained in Section 5.1.3.2). In this

domain, the automatic blend setting method improves the initial learning rate

significantly. After 500 training instances, the error rate is approximately 15%

lower than each corresponding error rate using the manual blend setting. If the

attributes are ranked according to_ the average stop probability assigned, the

(descending) order is "en ", "en -1 ", "en + 1 ", "en - 2 ", "en + 2 ", "en - 3 ",

and "en + 3 . " Thus, the importance of each character position is proportional

to how near it is to the character being pronounced, with a slight bias towards

preceding characters.

Designing Similarity Functions-192

l
J!!
"' a:
e w

80 ,------r------r--------,,--------,,--------.

GI

75

70

65

60

55

50

45

40

35
······· .. " ··•··

30

25
0 500

IND Blend=20 -
NON-IND Blend=20 --+--·

IND Blend=Auto ·B··
NON-IND Blend=Auto

·····,c K .. .
··s··········s••········B• ..

···-e-••····

. ···><······· ····')(••················• ,.

1000 1500 2000 2500
Training Instances

Figure 5.26: Phoneme domain-auto versus manual blend

5.2.6.2 Checkerboard Domain

Figure 5.27 shows the learning rate on the checkerboard domain. In contrast

to the results from the last section, the automatic method performs

significantly worse than manually setting the blend parameter to its default.

Because the blend value is determined for each attribute independently, the

blend optimisation effectively sees training instances projected onto one

attribute at a time, and the class distribution is uniform with respect to each

attribute. Only by considering both attributes at once is the clustering

apparent. This domain will prove difficult for any machine learning scheme

that attempts optimisation based on a single attribute at a time-for example,

c4.5 rarely achieves better than a 50% error rate in this domain.

Designing Similarity Functions-193

~
Q)

'" a:
e
ui

70

60

50

40

30

20

10

Blend=20 -
Blend=Auto -+--·

--- ... ----------➔-------------+-------------+--------------+-------------+------------

0 .__ __ _.__ ____ __ _._ ____ __ _._ ___ ~--~

50 100 150 200 250
Training Instances

300 350 400

Figure 5.27: Checkerboard domain-auto versus manual blend

In summary, the automatic blend parameter setting method is able to

determine attribute importance in domains where the class distributions appear

non-random with respect to individual attributes. However, in domains where

the relevance of attributes is only readily apparent when training instances are

projected onto multiple attributes (as in the checkerboard domain), the

automatic method for setting blend parameters performs poorly.

5.2. 7 Capturing Domain Information

The objective of this section is to show that customising the similarity

function to the domain can give increased performance. There are two types

of domain information that should be treated separately-information about

the underlying reality of which the instances are representations (which is

independent of concept boundaries), and information about the location of

Designing Similarity Functions- l 94

class boundaries. Often the task for machine learning algorithms is to infer the

location of class boundaries from the training data-providing this

information explicitly could be interpreted as "cheating." However, it is

perfectly acceptable to provide information about the instance representations.

To illustrate these differences we first examine the UV domain.

5.2.7.1 Ultra-violet Domain

In Chapter 3 it was shown that 1B 1 learned the ultra-violet domain concepts

significantly faster when its similarity function was modified to reflect the

modulo nature of the time of day. In this experiment these effects are further

examined, using the UV4 dataset as described in Section 5.2.2.1. That is, the

time of day is represented as a single symbolic attribute, with one symbol for

each hour of the day. The following similarity functions are used.

INDEPENDENT: Classification employs the similarity measure for

AUTO:

independent symbols developed in Section 4.3.7. In the context of

the ultra-violet domain, this similarity function assumes there is

no special relationship between one hour and any other hour.

Classification employs the similarity measure for non-independent

symbols developed in Section 4.3.8. The one-step transformation

probabilities are automatically assigned using the method given in

Equation 4.18. That is, there are special inter-hour relationships,

but they must be inferred from the training instances.

MANUAL}: Uses the same similarity measure as AUTO. One-step probabilities

are assigned as follows: each hour has equal probability of

transforming to the preceding hour, as the following hour (with

hour O following hour 23). This similarity function embodies the

Designing Similarity Functions- l 95

0.5 .---"""T""-----...---"""T""-----,,----.-----,---r----i--""T'""--,

0.4

0.3

. ..X ······X· .. ······X···• ;>(........................... •····->1·····•· .. ,t····· ;>(......... ., x * >< ·>t• .. ···-·><

,,,, _...,..,.,,,"' + .. --+----+----➔-----+----

.--··[3 -e-/~>tt.:::,;:<;~~~-:-:: .. □•· · ·!3·· ··,[3-- •• -Et· ···El·· ··El···· □···· !3····

.a····l!I --"'
□· . ,,.,,.--

/

0.2 ,,/.,.-

//l

0.1 ;I;;'.) ,/

l: l

INDEPENDENT -+­
AUTO -+--·

MANUAL1 · □-­
MANUAL2 .,.

I! /
X: l

:+
0 ... ;

-0.1__......._ _ ___, ______ _ ___, _____ _._ _ __. __ _._ _ __. ___ _ _..

0 10 20 30 40 50 60 70 80 90 100
Training Instances

Figure 5.28: Entropy gain for various similarity functions on UV 4 dataset

domain knowledge about the ordering of hours, but no

information about the domain concepts.

MANUAL2: Uses the same similarity measure as AUTO. The hours are treated

as three groups, hours 16-10, hours 11-14, and hour 15. Within

each group, one-step probabilities are assigned as follows: each

hour has equal probability of transforming to the preceding hour

as the following hour (except where this would cross between

groups, in which case the transformation returns the instance to

itself). This similarity function is therefore provided with

information relating to the domain concepts.

Figure 5.28 shows the entropy gain results for a range of training instances.

MANUAL2 performs significantly better than the other functions for the entire

range shown. This is to be expected, since the similarity function has been

Designing Similarity Functions-196

given concept boundary information. INDEPENDENT performs significantly

worse than the other functions for the entire range shown. We would not

initially expect INDEPENDENT to perform significantly worse than the other

methods once the number of training instances is large enough to ensure at

least one training instance for each ~our. However, this is not what we find­

INDEPENDENT's entropy gain converges to around 0.2 bits per instance. This

effect is due to the default blend value of 20%. Since each hour constitutes

approximately 4% of instances, a large pr<?portion of the prediction is derived

from instances with an hour different to the current test instance.

INDEPENDENT weights each of these other hours equally-however the

majority will be UV-LOW instances. With a blend value of 20%, this bias

toward the UV-LOW class results in misclassification of all UV-HIGH

instances. A similar bias provides a bound on the performance of MANUALl­

the effect is not as prominent since MANUAL! has hour ordering information.

When the blend value is 5%, predictions are primarily based on instances with

the same hour as the test instance-INDEPENDENT converges to 0.32 bits per

instance and MANUAL 1 converges to 0.42 bits per instance; both are closer to

the limit of 0.44 bits per instance obtained by MANUAL2. MANUALl performs

significantly better than AUTO below 30 training instances, and significantly

worse above 45 training instances. AUTO learns some of the concept-specific

inter-hour relationships that MANUAL2 is provided with manually. Error rate

results (not shown) show no significantly different trends from the entropy

gain results.

Customisation of the similarity function to include domain information clearly

improves the learning rate, particularly when the number of training instances

Designing Similarity Functions-191

1s limited. The following experiment describes an interesting real-world

domain that permitted domain customisation4•

5.2. 7.2 Wasp Domain

Predictor attributes in this domain consist of various measurements taken from

wasp nests, such as the width, height, and depth of the nest, the type of nest

site, the direction of the nest entrance, and the number of layers in the nest.

The task is to predict which of two species of wasp (the common wasp

Vespula vulgaris, and the German wasp Vespula germanica) constructed the

nest. The dataset contains 226 instances and 12 predictor attributes. 167 of the

instances are for the species Vespula vulgaris, so the baseline error rate is

26%. It turns out that differentiating the two species given these predictor

attributes is actually very difficult (Donovan et al., 1992). However, some

differences between species have been identified. For example, German wasps

showed no preference for direction of nest entrances while common wasps'

nests were more numerous in locations exposed to morning sun. The bias is

not significant enough to alter the default prediction. The nest entrance

direction attribute is interesting in that it consists of 9 possible values: North,

Northeast, East, Southeast, South, Southwest, West, Northwest, and Upwards

Gudged as when the vertical angle of the entrance was above 45°). There are

obvious relationships between the symbols that could be captured within a

custom similarity function. In the following experiment we classify the wasp

4 Finding a real-world domain suitable for customisation is not an easy task, as this requires

a dataset with three properties: that there is information in the data for a ML scheme to

exploit; that there are attributes better suited to a custom metric; and that those attributes are

actually relevant. The relative scarcity of these datasets may indicate an unintentional bias

towards creating datasets with only simple numeric and symbolic attributes.

Designing Similarity Functions-198

dataset using only the direction attribute for prediction. The following

similarity functions are examined.

INDEPENDENT: Classification uses the similarity measure for

AUTO:

independent symbols developed in Section 4.3.7. This similarity

function assumes there is no special relationship between one

direction and any other direction.

Classification uses the similarity measure for non-independent

symbols developed in Section 4.3.8. One-step transformation

probabilities are automatically assigned using the method given in

Equation 4.20--that is, there are inter-direction relationships, but

they must be inferred from the training instances.

MANUAL: Classification uses the same similarity measure as AUTO. One-step

probabilities are assigned as follows. The eight primary directions

are taken as modulo, with an equal transformation probability

from a primary direction to its neighbours. In addition, we assume

a direction may transform to the "Upwards" direction with half

this probability. These assumptions (which constitute domain

knowledge) assign one-step probabilities of 0.4 to each of the

former transformations, and 0.2 to the latter transformation. The

one-step probability from the "Upwards" direction to the eight

primary directions is assumed to be equal (that is, 0.125). This

similarity function embodies intuitive domain knowledge about

the ordering of the compass directions.

Designing Similarity Functions-199

0.03 .-------.----......... ---.-------.------,----.----,

0.025

0.02

I
j O.Q15

~
C.

-~
:8.
C: ·.;

(!)

0.01

~ 0.005

~
w

•..•• •El• •••••. -S-·······

IND-+­
NON-IND -+-··
MANUAL ·B··

-O.Q1_ __ __._ ___ _.__ ___ ,__ __ __._ ____ ____ ~

20 40 60 80 100 120 140
Training Instances

Figure 5.29: Entropy gain for various similarity functions on wasp domain

For this experiment the dataset is randomly split into a training set with a

specified number of instances, and a test set containing the remaining

instances. For each level of training data, results are averaged over 50 trials.

Due to the large number of common wasps in relation to the relevance of the

nest entrance direction, the error rate for the three similarity functions is never

better than the default accuracy-the only significant difference between the

methods is that AUTO performs worse than the other methods below 80

training instances (due to the relative lack of training data, as discussed in

Section 5.2.5). However, the entropy gain for these similarity functions

(Figure 5.29) shows some interesting differences. As with the error rate, AUTO

performs significantly worse than the other methods below 80 training

instances. MANUAL performs significantly better than both INDEPENDENT and

AUTO above 30 training instances (except between 80 and 90 training

instances, and 140 training instances, where the difference is not significant).

Designing Similarity Functions-200

The domain knowledge captured within MANUAL results in improved

performance in this domain.

There are several conclusions to be drawn from these experiments. Domain

customisation provides the most benefit when the quantity of training is

relatively low. There are two reasons for this. First, discontinuities in the

similarity function are more likely to cause classification errors when training

data is limited (because the average distance between a test instance and the

nearest training instances is increased). Second, as the quantity of training

data increases, some domain information can be learned (for example, by the

automatic method for one-step probability assignment). The benefits of

domain customisation are more visible when there are relatively few non­

customisable attributes (simply because the contribution from the customised

attributes is lower).

5.2.7.3 Varying Numbers of Features

The previous experiments have been dealing with instances that can be

represented naturally as a fixed number of attributes. In tasks such as

comparing multiple high and low pressure systems of weather maps, the

number of features can vary between instances. In this experiment instances

have between one and three numeric features, each in the range 0-10. The

class of an instance is determined by taking the average of the feature values

and converting the result to one of ten symbolic bins. To represent these

instances with a constant number of attributes (which is required by typical

instance-based learners), missing values are added to instances until each

instance contains three predictor attributes. The following classifiers are

examined.

Designing Similarity Functions-20 l

NORMAL: Classification uses the similarity measure for numeric attributes

developed in Section 4.3.3. This similarity function assumes there

is no special relationship between attributes.

MULTIREAL: Classification uses the similarity measure for multiple

attributes developed in Section 4.3.9. This function considers

possible mappings between attributes.

IBI K=l: Classification uses the ml instance-based learner (Aha, Kibler and

Albert, 1991), with predictions obtained from the single nearest

neighbour.

1B 1 K=3: Classification uses the m I instance-based learner, with predictions

obtained by voting among the three nearest neighbours.

1B I K=5: Classification uses them I instance-based learner, with predictions

obtained by voting among the five nearest neighbours.

The number of training instances for this experiment varies from 2 to I 00, and

the number of test instances is 500. The entropy gain results are presented in

Figure 5.30. The benefits of using an appropriate similarity function for this

domain are clear-above ten training instances MUL TIREAL performs

significantly better than the other methods. MULTIREAL is not sensitive to

either the position of attribute values in the representation or to the number of

attribute values present. 1B 1 employing a single neighbour for prediction

performs very poorly; in order to make a correct prediction, there must

usually be an exact match to the current test instance. As more neighbours are

considered, m I 's performance improves, but remains significant! y worse than

NORMAL when more than ten training instances are present. This experiment

illustrates the potential for K* theory to allow instance-based learning to be

applied to domains that don't naturally lend themselves to the usual instance

representation of a fixed number of either symbolic or numeric attributes.

Designing Similarity Functions-202

2.5 .------,----r------r----r--~---r------r---T----,,-----,

2

1.5

0.5

NORMAL --+--
MULTI REAL ---><--­

IB1 k=1 ···-M···
IB1 k=3 ······El······
IB1 k=5 -·-•·-·

-1 .._ _ _._ ___ _ __._ ___ _ ___._ ____ _ __. __ _._ _ ___, ____ _.

0 10 20 30 40 50 60 70 80 90
Training Instances

Figure 5.30: Entropy gain for various classifiers with varying

numbers of attributes.

5.2.8 Comparison with Other Machine Learning Schemes

100

This section evaluates the K* classifier in relation to other machine learning

schemes. The purpose is not to show that K* has superior performance to all

other machine learning schemes, but that it performs well under typical

circumstances. The following schemes are employed: a state of the art

decision tree learner C4.5 (Quinlan and Rivest, 1989); and the instance-based

learners ml (Aha, Kibler and Albert, 1991) and PEBLS (Cost and Salzberg,

1993). 1B 1 is perhaps the simplest practical instance-based learner; it employs

the simple distance function described in Chapter 3, treats missing values as

maximally different from the current value. 1B 1 bases predictions on a

Designing Similarity Functions-203

Dataset (abbr) Size ! Missin Classes i Binary: Symbolic 1 Numeric
Breast-cancer (BC) 286 9: 2' 3 61 0i

Chess (CH) 3196 0 2' 35: 1 0

Glass (GL) 214: oi 7 0 o: 91

Glass2 (G2) 163 1 o: 2: 0; 0 9

Heart disease (HD) 303 7: 5 1 0 12.
Hepatitis (HE) 155. 167 i 2 o· 0: 191
Horse colic (HO) 368 1927 I 2 2 13 7:
Hypothyroid (HY) 3163 5329 i 2 18 0 7

1 Iris (IR) 150 0'
I

3 0 0 4
! Labor (LA) 57 326: 2 3 5 8
Lymphography (LY) 148: o: 4· 9 6, 3i

Mushroom (MU) 8124 i 2480, 2 4, 18 · oi
Sick euthyroid (SE) 3163 5329: 2 18' 0 7'

i Soybean (SO) 47: 0 4 13 8: 0,

I Vote (VO) 435 392' 2' 16 0 o'
Vote no h s (Vl) 435: 381 2: 15 0 0,

Table 5.1: Dataset characteristics

majority vote among the k nearest neighbours (values of k=l, k=3, k=5, and

k=7 were used, labelled as INN, 3NN, 5NN, and 7NN respectively). C4.5 and

PEBLS on the other hand are more sophisticated schemes-C4.5 can build

complex decision trees involving many attributes, and PEBLS employs a

sophisticated distance function for symbolic attributes in its classification. K*

results are obtained with default settings; that is, the blend value is 20%, and

symbolic attributes use the simple function that assumes independent symbols.

In addition, results are obtained for two different K* settings: K*(n) differs

from standard K* by employing the symbolic function for non-independent

symbols with automatic one-step probability assignment; and K*(e) differs

from standard K* in that it uses automatic blend setting.

Many of the datasets used are commonly seen in the machine learning

literature. The datasets are the same as those used by Holte (1993), and were

originally taken from the UCI Machine Learning Database Repository.

Table 5.1 lists the datasets and their characteristics. "Size" shows the total

number of instances. "Classes" lists the number of possible classes. "Binary",

Designing Similarity Functions-204

I

'

Data K* i C4.5 I INN 3NN 5NN 7NN PEBLS i K*(n) K*(e) I
BC 27.05 ! 30.10+ 30.93+ : 29.03+ : 26.80 27.13 32.95+ ! 28.70+ 30.43+ i
CH 4.15 0.77- IO.IO+ 5.41+ 5.10+ 5.44+ 2.98- 4.29+ 4.66+
G2 16.73 27.42+ 22.84+ 23.49+ 24.95+ 26.62+ : 23.78+ i 16.73 31.20+
GL , 26.63 33.04+ : 31.51+ : 36.16+ 40.93+ 40.88+ i 39.45+ ! 26.63 38.90+
HD 25.09 27.92+ : 23.57 i 19.84- 19.18- 19.65- . 22.80- • 25.17 28.23+
HE 19.70 35.25+ 18.94 ! 17.0fr 16.75- 16.98- 19.92 19.70 20.15
HO 23.42 23.26 : 21.92- ; 18.5fr 18.18- 18.21- : 21.73- 23.17 22.66
HY 2.20 8.99+ ! 2.96+ 2.82+ 2.88+: 2.95+ 3.37+ 2.17 2.67+
IR 5.73 6.27 5.02- 4.78- 4.08- 4.08- 5.88 5.73 6.27
LA 9.05 ; 29.68+ 24.21+ 20.00+ 41.05+ 22.74+ 9.26 9.05 16.84+ !

LY 1 17.20 i 24.72+ 20.32+ 19.12+ 18.40 18.24 17.44 17.52 24.24+ I
MU ' 0.00 i 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 i ' '

SE 5.70 j 24.65+ 7.78+ 7.54+ ! 7.33+ 7.29+ 6.51+ 5.78+ 8.29+:

so 0.00 i 2.00+: 0.00 0.00 i 0.00 1.50 0.00 7.00+ 0.00 I I

VO 6.73 7.49 7.27 6.62 ! 6.76 I 6.81 ! 5.51- 6.73 6.57
Vl 9.19 ! 15.81+ 11.84+ 9.86+ ! 9.70 9.65 11.49+ • 9.19 11.62+ !

Table 5.2: Error rates for UCI datasets

"Symbolic", and "Numeric" indicate the numbers of each type of predictor

attributes. "Missing" shows the number of unknown attribute values. The

datasets were partitioned into two-thirds training, one-third test instances. 25

different partitions were made for each dataset. Schemes were run on all 25

partitions and the results averaged. These experiments were obtained using the

WEKA machine learning workbench (Holmes, Donkin and Witten, I 994).

Table 5.2 shows the error rates each scheme achieved for the datasets. Error

rates postfixed by '+' are significantly higher (i.e. worse than) than the error

rate obtained by K*. Error rates postfixed by '-' are significantly lower than

the error rate obtained by K*. The best error rates are shown in bold.

Overall, the K* classifier performs well in comparison to the other schemes

used. For example, K* performs significantly better than the decision tree

methods for 11 of the 16 datasets. Only once did C4.5 perform significantly

better than K*. K* also performs comparably to the instance-based learners

lNN and PEBLS. K* has significantly lower error rates than lNN for 9 of the

Designing Similarity Functions-205

Data K* I C4.5 lNN 3NN 5NN 7NN PEBLS! K*(n) K*(e)
BC 0.08 '-0.04- i-0.02- 0.05- 0.08 0.08 -0.05- 0.07- 0.00-
CH 0.53 0.93+ ' 0.50- 0.54+ 0.52- 0.49- 0.66+ ' 0.53 0.61+
G2 0.41 0.11- 0.24- 0.30- 0.29- 0.27- 0.23- 0.41 I 0.12-

GL 1.08 0.64- 0.74- 0.96- 0.96- 0.95- 0.44- 1.08 0.68-
HD 0.34 0.19- ' 0.29- 0.41+ ' 0.44+ , 0.45+ 0.31- ' 0.34 0.25-
HE 0.15 0.011- I 0.11 0.17 0.18+ 0.18+ 0.11 0.15 0.04-
HO 0.23 0.23 0.21 0.29+ 0.30+ 0.29+ 0.22 0.23 0.22
HY 0.15 0.16+ 0.10- 0.11- 0.11- 0.11- ! 0.11- 0.15 i 0.12-
IR 1.21 l.16 1.20 1.22 1.24+ 1.24+ l.17- 1.21 1.20
LA : 0.55 0.12- 0.24- 0.35- 0.28- 0.24- 0.51 0.55 0.39-
LY 0.62 0.29- 0.47- 0.58- 0.56- 0.54- 0.55- 0.61 ! 0.39-
MU 0.74 1.00+ 0.74 0.74 0.74 0.74 0.74 0.74 i 0.74

SE 0.19 0.16- 0.11- 0.13- 0.14- 0.13- 0.16- 0.18- 0.09-
so 1.80 1.62- 1.80 1.79 1.74- l.59- 1.80 l.79 1.80
VO 0.58 0.71+ 0.50- 0.58 0.58 0.57- 0.59 0.58 0.57
Vl 0.51 0.46- 0.45- 0.49- 0.50- 0.50- 0.45- 0.51 0.45-

Table 5.3: Entropy gains for UCI datasets

datasets, and significantly higher error rates for 2 datasets. K* has

significantly lower error rates than PEBLS for 6 datasets, and significantly

higher error rates for 4 datasets. The primary explanation for the better overall

performance of K* over these instance-based learners is that INN and PEBLS

make predictions based on the single nearest neighbour, while K* incorporates

all training instances. Increasing the number of neighbours considered

(bringing the learners closer to the k* philosophy) increases their

perf ormance-IB 1 using voting among the 5 nearest neighbours performs

almost as well as K*.

Table 5.3 shows the entropy gain results for each of the schemes. Entropy

gain results postfixed by '+' are significantly higher (i.e. better than) than the

corresponding K* result. Entropy gain results postfixed by '-' are significantly

lower than the corresponding K* result. The best entropy gain results are

shown in bold. In general, a positive score signifies that the scheme has

managed to extract significant domain information in making its predictions.

Designing Similarity Functions-206

K* performs significantly better than the other schemes for the majority of

datasets, with some caveats. The entropy gain calculation is different for the

instance-based learners and the decision tree learners-a different method is

used to combine each scheme's predicted distribution with the naive

distribution when dealing with the zero-frequency problem. The entropy gain

figures are similar in practice, but care should be exercised when making

conclusions about performance differences between instance-based and

decision tree schemes. As with the results in Table 5.2, much of K*'s good

performance is due to weighting all neighbours into its predictions.

When examining the entropy gain figures for individual datasets, one

interesting feature is that the results for the BC dataset are often negative or

close to zero. This indicates that there is little information to be learned from

the predictor attributes (indeed, the baseline error rate for this dataset is 30%,

similar to all the schemes' error rates). A similar comment may be made about

the HE dataset, where the entropy gain figures are very small.

K*(e) performs poorly on many of the other datasets. One cause is that

individual attributes are often poor predictors. K*(e) sets the stop parameter

for attributes independently, and if an individual attribute is a poor predictor,

it is effectively discarded by the parameter optimisation. Poor performance

can also arise when this is not the case, particularly for enumerated attributes.

Often the optimisation assigns high relevance to all attributes that have some

relevance because the optimiser cannot determine whether other attributes

may be more relevant. This problem occurs on the VO dataset, where there

are many attributes that are reasonable predictors. One attribute is an excellent

predictor, but its weight is not set higher than the other attributes.

K*(n) does not perform significantly better than K* in spite of using a more

advanced metric for symbolic attributes. K*(n) has a slightly lower error rate

Designing Similarity Functions-201

than K* on two datasets, but significantly higher on four datasets. However,

according to the findings of Section 5.2.5, K*(n) is only expected to perform

better than K* on datasets with many symbolic attributes and with multiple

symbols per attribute. Most of the domains contain predominantly numeric

and binary attributes. Examining Table 5.1, the datasets K*(n) is most likely

to perform on well are BC, HO, LA, LY, MU, and SO. K*(n) does achieve

lower error rates than K* for the BC and HO datasets (although the difference

is not significant for BC). K*(n) achieves significantly higher entropy gains

than K* on all these datasets except LA and SO-on the SO dataset K*(n)

performed significantly poorer than K*. The reason why K*(n) did not

perform as well as expected in LA and SO is that these datasets contain few

instances. As identified in Section 5.2.5, learning accurate one-step

probabilities requires sufficient training data.

In summary, K* performs well in comparison to other machine learning

schemes. However, on the datasets tested, the automatic method for setting the

blend parameter described in Section 5.1.3.2 does not perform as well as

expected, primarily because the parameters are set for each attribute

independently. The advanced metric for symbolic attributes can improve the

performance of the classifier on datasets where there are large symbolic

attributes, provided there is sufficient training data. A heuristic method for

selecting the appropriate metric for symbolic attributes could take these

factors into consideration.

5.3 Conclusions

This chapter described the practical implementation of an instance-based

learner using similarity functions developed within the proposed framework.

The basic similarity functions employed were those developed as examples in

Designing Similarity Functions-208

Chapter 4. The instance-based learner required two additional problems to be

solved.

The first of these problems was how to choose appropriate values for the free

parameters of the similarity functio~. Ideally these parameters should be set to

reflect the relative importance of attributes to the classification domain. The

first approach to setting these parameters effectively assumed that each

attribute has approximately equal relevance, and the second approach

attempted to automatically determine each attribute's relevance by examining

the entropy of the predicted class distribution. Both methods currently set the

parameters for each attribute independently; it turns out that this approach

causes problems during classification.

The second problem was how to use the similarities between test and training

instances to provide a prediction. This problem is treated following the K*

philosophy by incorporating transformations to all training instances.

Instances are effectively weighted by their transformation probability. A

predicted probability distribution can be calculated for categorical attributes,

and the expected value calculated for numeric attributes.

In empirical evaluation, it was shown that the K* classifier meets the

objectives set out in Chapter I: different attribute types are themselves treated

coherently and can be combined avoiding biases; missing values can be

handled intelligently; domain information can be used to customise the

similarity function; and the scheme performs well in comparison to other

methods.

Although different attribute types are not always directly comparable due to

the different information they are capable of representing, it is possible to

place some attribute types "on an even playing field." In these cases the

Designing Similarity Functions-209

different attribute types have shown similar performance, indicating our

treatment is consistent. Both the additive and merge methods for combining

attributes (as described in Chapter 4) appear to work well-the choice of

method should depend on the domain characteristics. The additive method

introduces biases that may or may not be appropriate to the domain, while the

merge method appears to avoid introducing biases. We use the additive

method in practice because it greatly simplifies the similarity function.

Missing values may be treated within the framework by several methods, each

reflecting different assumptions about the domain. None of these methods is

consistently better over all domains, although domain characteristics have

been identified to assist in the choice of a suitable method. Some knowledge

of the domain can also assist in customising the similarity function. We have

shown that customisation gives improved performance, particularly when

training data is limited. Finally, the K* classifier using default similarity

functions has been shown to perform well in comparison to other machine

learning schemes with regard to classification accuracy. Memory usage, while

not specifically addressed, is typical of instance-based learners. Classification

speed depends on the similarity function employed-for functions with an

analytic form, classification time increases linearly with the number of

instances and the number of attributes. For more complex similarity functions,

such as that used in Section 5.2.7.3, classification time can increase

exponentially with the number of attributes.

Designing Similarity Functions-210

Chapter 6

Conclusions

This thesis proposed a method for designing similarity functions that included

natural solutions to several difficulties identified in previous systems. The

chief difficulty was that of measuring similarity for vastly different types of

objects. Another problem lies in tailoring the similarity function to the domain

characteristics. There are other problems to be faced, such as dealing with

objects that are missing information. The design framework should be able to

encompass all these problems.

The design framework (called K*) proposed in Chapter 4, centres around

treating object similarity as the probability of transforming from one object to

another. An alternative view is that object dissimilarity can be regarded as the

complexity of such transformations. Transformations between objects are

taken to consist of sequences of smaller, basic transformations. The set of

basic transformations chosen will depend on the type of objects undergoing

Designing Similarity Functions-211

comparison, but often a reasonable set can be determined intuitively. Each

basic transformation is assigned a probability dependent on the domain, and

so a probability can be calculated for any transformation sequence as a whole.

There are usually many possible transformations between two objects. The

decision to choose any one transformation path (such as that with the highest

probability) would be arbitrary, and would introduce more problems (such as

how to decide between multiple transformation paths that have the same

probability). The K* approach considers all possible transformation paths

(with their corresponding probability), rather than just the most likely path,

combining the philosophies of both Occam's razor and Epicurus' principle of

multiple explanations. Considering all possible transformation paths can be

likened to the Solomonoff-Levin universal prior. This view of similarity as

transformation probability is general and can be applied to any type of object

by changing the set of basic transformations.

Several properties are typically held by traditional similarity functions, and

these may also hold for similarity functions designed within the K*

framework under certain conditions. Similarity functions are typically

symmetric, although Tversky (1977) argues from a psychological perspective

that human notions of similarity are often not symmetric. K* similarity

functions are not necessarily symmetric, however it has been shown that the

functions may be made symmetric by imposing conditions on the basic

transformations. Similarly, the triangle inequality can be shown to hold given

similar conditions. Whether these properties are desirable depends on the

domain for which the similarity function is intended. A third property

distinguishing K* dissimilarity functions from traditional dissimilarity

functions is that the dissimilarity between an object and itself is typically non­

zero. The dissimilarity an object has to itself varies in accordance with the

intuitive notion of self-similarity described by Tversky.

Designing Similarity Functions-212

In Chapter 4 several example similarity functions were developed. These

examples illustrate potential approaches to dealing with common problems for

similarity functions, and show that the framework satisfies the basic objectives

identified in Chapter 1: the design framework handles different object types

consistently, including multiple objects; the framework can handle missing

information; the framework permits similarity from several sources to be

combined coherently; the resulting functions are smooth with respect to small

changes in the instances.

Chapter 5 built on the results of Chapter 4 to implement an instance-based

learner employing K* similarity. Several specific problems were solved by

following the K* design philosophy where possible. One area of difficulty

was to find methods for setting the free parameters for the similarity function.

Two methods were implemented, but both were limited by practical

considerations. The K* classifier was evaluated along several dimensions to

examine the behaviour of the similarity function in more detail.

Experimentation supported the conclusion that different attribute types are

treated consistently and that domain customisation of the similarity function

can improve classifier performance. It was anticipated that the simple method

for combining similarity from multiple attributes could introduce biases

during classification (which may or may not be beneficial depending on the

domain). Domain characteristics were identified that suggest which method

for treating missing information is likely to be most appropriate. The K*

classifier was found to perform well in relation other machine learning

schemes.

Designing Similarity Functions-213

6.1 Conclusions

A little domain information can go a long way. We have seen in the case of

the K* learner that domain information may be used to choose an appropriate

method for treating missing values and for combining similarity measures

from multiple attributes. Domain information is also beneficial when choosing

the basic method for measuring similarity for individual attributes. There are

often many methods for modelling transformations between instances, and

domain information is crucial for deciding which models are appropriate.

Failure to correctly adapt the similarity function to the domain will lead to a

loss in performance. However, in comparison with most general-purpose

similarity functions, the advantages of domain customisation are primarily

apparent when training data is limited (since this is when discontinuities in the

general-purpose similarity function are more likely to cause incorrect

classification). This finding is consistent with the findings of Fix and Hodges

(1951) that any reasonable similarity function will eventually converge to the

optimal error rate as training data increases. Domain customisation may not be

worthwhile in domains where ample training data is available and storage

requirements are not an issue.

These comments generalise to applications other than the K* learner. If

sensitivity to the domain characteristics is paramount, the similarity function

must capture as much domain information as possible. The design framework

that this thesis proposed is the only method that I am aware of that permits

such domain customisation of similarity functions.

Perhaps of more importance to machine learning as a field is the potential for

instance-based learning to be extended to domains that require more complex

instance representations than a fixed collection of numeric and symbolic

Designing Similarity Functions-214

attributes. For example, in Chapter 5 the K* classifier was applied to a domain

with varying numbers of attributes, and shown to perform significantly better

than a traditional machine learning algorithm. In these domains, decision tree

and rule inducing schemes must either· be custom developed (generally with

no guiding principles to ensure robustness), or transform the instances to the

learner's native representation (potentially losing information in the process).

This thesis provides a framework for constructing instance-based learners for

such domains.

6.2 Future Work

This thesis has uncovered several issues that deserve further investigation. The

central objective of this thesis is the proposal of a design framework for

similarity functions and the demonstration of its feasibility with a practical

implementation. Issues not directly related to this objective have been

relegated to future work, and these may be primarily categorised as

improvements to the K* classifier, and developing further applications

incorporating K* based similarity.

The K* classifier was not designed to be the best machine learning scheme­

its purpose is to provide a test-bed for different similarity functions. It turns

out that the K* classifier does perform very well; however, there are a number

of improvements that could be made to yield even better performance. The

first is to implement a method for automatically setting the blend parameters

for multiple attributes simultaneously, perhaps using methods such as

conjugate gradient descent. The current automatic method sets the blend

parameter for each attribute independently so the relative importance of

attributes cannot be determined. Other, cheaper heuristic methods for setting

Designing Similarity Functions-215

attribute weights (such as those described in Section 3.4) could provide easy

performance improvements over the basic K* classifier.

The K* classifier implements a variety of basic measures for different

attribute types. The experiments in Chapter 5 identified possible criteria for

selecting one measure over another, and these could be incorporated into a

heuristic method for automatically choosing appropriate metrics for attributes.

Similar heuristics could choose an appropriate method for missing value

handling.

A further enhancement to the K* classifier is to implement an editing

mechanism to reduce storage requirements. For example, a method similar to

that used by IB3 would involve each training instance having a record of how

important it has been in classification. The importance updating procedure

could be dependent on the relative probability of the instance's contribution

towards a test instance, along with whether it supported the correct decision.

The importance would be maintained as a "probability that this instance

supports the correct classification."

Another area for future research is to carry out further work in geometric

domains. This would involve developing more similarity functions for

specific geometric applications-incorporating all these results together for a

practical geometric application is a large task, and outside the scope of this

thesis. However, we have shown that the framework can handle all the types

of problems encountered in geometric domains.

Designing Similarity Functions-216

Appendix A

The following similarity function development models a finite number of

instance positions as having a reflective barrier placed at each edge position.

0 I n-1 I O I n-1 I O I n-1

4 I ..
b' b" a b b" b'

Figure A.I: Mapping finite positions using reflection at edge positions

Assume that at position O the possible transformations are to transform right

to position 1 and left to position 1 (having reflected immediately upon starting

the transformation). At position n -1 the possible transformations are left to

position n - 2 and right to position n - 2 (having reflected immediately upon

starting the transformation). The mapping that can be carried out on the

integers (again assuming p(left)=p(right)) is shown in Figure A. 1.

We want to calculate the probability of transforming from position a to

position b P5n * (b I a). First assume b ~ a and O < b < n-1, then

Pn *(bla)= LP .. *(2(n-I)+(b-a))+ LP .. *(2(n-IXk+I)-(b-a))
k~ k~O

+ LP .. *(2(n-I)+(b+a))+ LP .. *(2(n-IXk+I)-(b+a))
k~ k~

Designing Similarity Functions-217

where P 500 * (i) = ce -mi is the probability function over all integers as defined

in Equation 4.13.

The first sum incorporates the transformation from a to bas well as all b' s to

the right. The second sum takes the transformations to all b' s to the left. The

third sum takes the transformations to all b" s to the left of a, and the fourth

sum takes the transformations to all b" s to the right. Note that if b were at

position O or position n -1 , each transformation would be included in the

sums twice. For example, the probabilities for programs finishing one position

to the left of a (i.e. b = 0) would be counted once by the first sum of the

equation, and once by the third sum.

pn * (b I a)= L, ce-m(2(n-l)k+(b-a)) + L, ce -m(2(n-l }{k+I }-(b-a))

k~O k~O

+ L, ce -m(2(n-l)l:+(h+a)) + L, ce-m(2(n-l Xk+l }-{b+a))

k~ k~O

= ce -m(b-a) L, e -m2(n-l)I: + ce -m(2(n-l }-(b-a)) L, e -m 2(n-l)k

k~ k~

+ ce-m(b+a)L e-m2(n-l)k + ce-m(2(n-l}-{h+a)) L, e-m2(n-l)k

k~O k~

e-m(b-a) + e-m(2(n-l}-(h-a)) + e-m(h+a) + e-m(2(n-i}-{b+a))

=c-----------,--.--------1_ e-m2(n-1)

em((n-1}-(h-u)) + e-m((n-1}-(b-u)) + em((n-l}-(b+a)) + e-m((n-1}-(b+u))

=c---------,--.----,--.--------em(n-1) _ e-m(n-1)

= c cosh(m((n -1)- (b- a)))+ cosh{m((n -1)- (b +a)))
sinh(m{n-1))

Similarly, we find the following form will also hold for the case when b < a

1) cosh{m{(n-1)-lb-al))+cosh{m((n-1)-(b+ a)))
~ * ,b I a = c------------'------------

5n sinh{m{n-1))

Designing Similarity Functions-2 l 8

0 I n-1 I O l n-1 I O I n-1

.. I .,
b" a b b"

Figure A.2: Mapping when b=n-1

When b = 0 or b = n -1, the first two terms of the previous equation are

sufficient to include the transformations to all images of b. Figure A.2 depicts

the situation when b ~ a (i.e. b = n -1).

The expression encompassing the transformation probability from a to b and

all its images is

Substituting in our equation for P 5 .. ,

p5n * (b I a)= Ice-m(2(n-l)k+(h-a)) + Ice-m(2(n-1Xk+l)-(h-a))

k~O k~

= ce-m(h-a)L e-m2(n-l)k + ce-m(2(n-l}-(h-a))L e-m2(n-l)k

k~ k~

e -m(h-a) + e -m(2(n-l }-(h-a))

=c------,---,----1_ e-m2(n-1)

em((n-1)-(h-a)) + e-m((n-1)-(h-a))

=c---......,...--......,...--em(n-1) _ e-m(n-1)

cosh(m((n -1)- (b - a))) = C----'----'-''----""---'--~

sinh(m(n-1))

Again a similar development for the b<a (i.e. b = 0) case allows us to use the

following expression for both:

1) cosh(m((n-1)-lb-al))
P *,bla =c-----~..,......~

5n sinh(m(n- 1))

Designing Similarity Functions-219

Designing Similarity Functions-220

AppendixB

The following tables show one-step transformation probabilities obtained

from the Brown corpus, as described in Section 4.3.8. Each column gives the

letter transformed from, and each row gives the letter transformed to (the sum

of each column is 1).

Designing Similarity Functions-221

,-
i A B :c ·D IE ·F G H : I

IA 0.131 0.052 : 0.039 0.033 0.085 : 0.035 0.040 0.016 . 0.125

iB 0.010 0.036 0.018 0.012 0.007 , 0.014 , 0.014 0.025 0.007
·c 0.015 0.037 I 0.057 0.018 0.011 0.028 ; 0.030 0.037 : 0.018

D 0.016 0.031 : 0.023 0.074 : 0.044 0.056 : 0.051 0.044 : 0.011

E 0.132 0.059 i 0.046 , 0.138 0.178 1 0.113 0.112 0.054 0.116
F 0.010 0.021 i 0.021 I 0.033 0.021 0.036 0.026 0.023 0.009
G 0.010 0.018 I 0.019 0.025 0.018 0.022 0.025 , 0.021 0.008
H 0.011 0.090 ! 0.065 0.061 0.023 0.053 0.058 0.133 0.019
I 0.113 0.035 I o.041 0.020 0.067 i 0.029 0.029 0.025 0.142

J 0.000 0.004 I 0.003 0.001 , 0.000 ! 0.002 , 0.002 0.002 0.001
K 0.004 0.007 i 0.005 0.009 j 0.005 ' 0.007 ! 0.007 O.Qll : 0.004

'L 0.030 I 0.066 0.038 0.041 ! 0.030 : 0.039 . 0.035 0.050 0.021
IM 0.009 i 0.034 0.026 I 0.025 ; 0.014 i 0.025 0.023 i 0.042 0.011
!N 0.055 ! 0.037 0.041 j 0.072 j 0.070 ' 0.057 i 0.054 . 0.047 : 0.058

10 0.093 0.059 . 0.036 I 0.042 I 0.015 0.064 ; 0.048 0.018 i 0.094
IP 0.015 0.029 i 0.023 i 0.014 0.015 0.020 0.019 i 0.025 0.01 I I

IQ 0.000 I 0.004 : 0.001 i 0.001 i 0.000 0.001 I 0.001 i 0.000 ! 0.000
iR 0.034 ! 0.071 I 0.059 , 0.067 1 0.044 0.060 i 0.056 ! 0.087 0.037

0.037 i 0.043 . 0.058 i 0.074
;

s : 0.051 0.091 0.070 : 0.057 0.031
:T 0.030 : 0.069 ! 0.135 i 0.087 ; 0.052 : 0.084 i 0.126 i 0.079 ! 0.026
!u 0.040 0.018 '0.014 0.009 0.027 0.012 ' 0.015 0.010 i 0.038
iv 0.001 · 0.019 '0.012 : 0.011 0.002 ! 0.008 0.011 i 0.030 ! 0.003
:w 0.006 0.018 0.027 I 0.016 0.009 ; 0.017 0.021 ! 0.027 0.008

X 0.001 0.001 0.001 i 0.001 0.001 0.001 , 0.001 ; 0.002 0.001
,Y 0.007 0.006 0.008 i 0.036 0.023 0.028 1 0.023 0.012 0.006
·z 0.000 0.002 i 0.001 ! 0.001 0.000 0.001 1 0.001 0.002 I 0.001
,s 0.190 . 0.133 i 0.191 : 0.063 0.121 0.116 · 0.101 0.120 i 0.197

Table B.1: One Step Probabilities from the Brown Corpus, A-I

Designing Similarity Functions-222

J K L ; N :M !0 p ;Q ;R
,A 0.014 0.043 · 0.058 '0.028 0.063 I 0.098 i 0.058 I 0,033 0.044

B 0.038 0.017 0.025 0.020 0.008 '. 0.012 I 0.022 0.063 0.018
C 0.049 I 0.022 0.028 0.032 0.oI8 0.oI5 ! 0.036 0.036 0.030
D 0.033 : 0.056 0.039 I 0.039 0.040 0.022 '. 0.027 0.036 0.043
E 0.026 0.099 1 0.090 0.068 0.124 i 0.124 1 0.090 ; 0.010 . 0.089
F 0.031 0.024 0.022 0.023 0.oI9 : 0.020 j 0.023 i 0.028 0.023
G 0.020 0.022 0.016 '0.Ql8 : 0.015 0.012 : 0.019 i 0.022 0.oI8

:u 0.083 0.094 0.066 i 0.089 i 0.036 0.013 0.067 : 0.024 . 0.077

: I 0.030 0.041 0.036 : 0.030 i 0.060 0.090 0.041 0.004 0.044

!J 0.009 0.001 i 0.002 i 0.003 , 0.001 ; 0.002 0.002 0.019 0.002
'K 0.005 0.011 I 0.001 0.008 0.005 j 0.003 ; 0.005 0.001 0.008

L 0.043 0.044 ; 0.069 i 0.044 0.035 ! 0.022 i 0.042 0.037 0.045
M 0.041 0.030 j 0.027 ! 0.041 0.oI5 : 0,013 i 0.030 0.036 0.029
N 0.037 0.056 ! 0.060 ; 0.043 ; 0.135 ; 0.037 0.033 0.023 0.062

0 0.104 0.037 0.040 i 0.039 i 0.039 I 0.154 i 0.060 0.279 0.039
·p 0.030 0.017 , 0.021 ! 0.024 : 0.009 • 0.016 ; 0.033 I 0.028 0.oI8 I

Q 0.013 0.000 : 0.001 0.002 0.000 0.004 ; 0.002 · 0.038 0.001
R 0.068 0.075 0.067 0.071 0.054 0.032 0.055 0.037 I 0.070

s 0.056 0.070 0.052 . 0.056 I 0.060 0.038 i 0.044 0.083 0.061
T 0.081 0.079 0.070 , 0.071 i 0.051 0.037 ; 0.078 0.067 0.071
u 0.005 0.014 0.017 : 0.015 : 0.022 0.029 0.027 0.001 0.015
V 0.oI5 0.021 I 0.013 i 0.oI8 0.006 i 0.001 0.013 0.001 0.016
w 0.020 i 0.019 : 0.018 : 0.023 ; 0.010 I 0.006 . 0.019 I 0.001 : 0.018

,x 0.001 : 0.001 0.001 i 0.003 I 0.001 . 0.001 0.002 1 0.001 j 0.001
'Y 0.008 i 0.022 : 0.014 ; 0.014 · 0.019 I 0.009 0.009 : 0.001 i 0.017
;Z 0.001 • 0.002 i 0.001 : 0.001 j 0.001 . 0.000 0.001 i 0.000 · 0.001

s 0.140 i 0.082 0.139 . 0.175 0.154 i 0.190 0.162 : 0.091 i 0.138

Table B.2: One Step Probabilities from the Brown Corpus, J-R

Designing Similarity Functions-223

s ,T u •V !W X :y z ' s

A 0.046 I 0.026 0.119 ! 0.009 0.024 : 0.060 0.034 I 0.026 ! 0.071

iB 0.010 : 0.012 0.010 • 0.030 [0.015 i 0.008 ! 0.006 0.026 0.009
IC 0.024 I 0.045 j 0.016 : 0.039 I 0.045 : 0.021 : 0.014 I 0.035 i 0.028

;D 0.055 · 0.037 0.014 : 0.043 0.033 i 0.027 ! 0.083 I 0.039 0.012

iE 0.110 0.070 0.124 0.030 0.058 ' 0.076 ! 0.164 • 0.050 0.070

IF 0.026 : 0.021 . 0.010 0.020 0.021 0.015 • 0.037 0.019 0.013

]G 0.021 0.027 0.010 0.021 0:022 0.011 0.026 0.019 0.009

H 0.047 . 0.047 0.020 0.165 0.079 0.042 ; 0.038 1 0.126 0.030

I 0.035 0.020
I

0.101 0.021 0.031 0.046 . 0.024 • 0.062 0.066

J 0.001 0.001 ! 0.000 0.002 0.002 : 0.001 0.001 : 0.002 0.001

i K 0.007 0.006 i 0.003 0.014 I 0.007 i 0.004 i 0.008 : 0.010 \ 0.002

IL 0.033 0.031 j 0.026 0.056 i 0.039 0.028 : 0.033 : 0.053 0.027
'M 0.022 0.020 1 0.014 0.047 0.031 · 0.037 I 0.021 ! 0.040 ' 0.021

: 0.057
:

N 0.065 0.039 0.044 0.037 0.048 0.078 0.043 0.051

0 0.044 0.030 0.081 0.007 0.023 1 0.046 1 0.042 ! 0.017 0.067
p 0.014 0.017 0.020 0.026 0.021 0.024 1 0.011 1 0.024 0.015 I

Q 0.001 0.001 0.000 i 0.000 0.000 I 0.001 0.000 0.000 0.000

R 0.057 0.047 0.034 0.098 0.060 i 0.045 I 0.061 0.082 i 0.039

s 0.088 0.065 0.035 , 0.052 0.051 0.072 · 0.105 0.048 i 0.041

iT 0.092 0.219 ' 0.030 I o.083 0.154 ' 0.053 : 0.088 0.074 0.065

lu 0.015 0.009 1 0.045 0.009 0.010 : 0.029 i 0.009 1 0.011 1 0.027

V 0.008 0.009 [0.003 j 0.040 0.016 0.008 i 0.004 ; 0.028 I 0.005

w 0.015 0.031 ! 0.007 • 0.030 0.035 1 0.014 i 0.011 ! 0.026 I 0.015

X 0.002 0.001 I 0.002 l 0.002 0.001 0.009 i 0.001 i 0.001 0.002
y 0.028 0.016 I 0.006 • 0.007 0.011 0.013 · 0.046 I 0.010 , 0.004

I Z 0.001 0.001 i 0.000] 0.003 0.001 0.001 I 0.001 0.008 ! 0.001

I s 0.135 ! 0.151 i 0.211 ' 0.104 0.173 1 0.265 0.053 ! 0.119 0.311

Table B.3: One Step Probabilities from the Brown Corpus, S-space

Designing Similarity Functions-224

The following tables show the P* transformation probabilities obtained from

the Brown corpus, when the stop probability is 0.2.

A B ;c D :E •F 1G H : I
A 0.266 0.049 0.047 0.046 j 0.057 '0.047 0.047 0.042 0.065
B 0.009 0.214 0.011 0.010 i 0.009 0.010 0.010 0.013 0.009
C 0.018 0.023 0.226 0.019 : 0.018 i 0.021 0.021 0.023 0.018
D 0.022 0.026 0.025 0.234 , 0.028 I 0.031 0.030 0.029 0.021
E 0.089 0.074 1 0.071 I 0.089 j 0.296 '0.084 0.084 i 0.072 0.086

iF 0.014 0.016 I 0.016 ! 0.Ql8 0.016 0.218 0.017 l 0.016 0.013
:G 0.011 0.013 ; 0.013 : 0.Ql5 0.013 0.014 0.215 ; 0.014 0.011
.H 0.028 0.045 i 0.040 j 0.040 0.031 0.038 0.039 i 0.254 0.029
j I 0.059 0.043 . 0.043 ' 0.039 0.050 0.041 0.041 , 0.039 0.264

i
'J 0.001 0.002 i 0.001 i 0.001 0.001 0.001 0.001 ! 0.001 0.001
,K 0.004 0.005 0.004 ! 0.005 0.004 0.005 0.005 : 0.006 0.004
!L 0.026 0.033 0.028 0.029 0.026 0.028 0.028 ' 0.031 I 0.024
:M 0.014 0.019 0.018 0.Ql8 0.Ql5 0.018 0.017 0.021 I 0.014
:N 0.046 I o.043 0.043 0.049 0.049 0.047 0.046 0.045 I o.047

0 0.057 ! 0.049 0.044 0.045 0.053 0.049 0.046 0.040 , 0.057

iP 0.013 '0.016 j 0.015 0.013 0.013 0.014 0.014 ' 0.015 I 0.012
;Q 0.001 I 0.001 i 0.001 0.001 0.001 0.001 I 0.001 0.001 I 0.001

iR 0.037 '0.045 0.042 0.044 0.039 0.042 I o.042 0.048 . 0.037
!5 0.039 I 0.041 0.043 0.050 0.044 0.047 1 0.047 0.044 0.038

T 0.050 l 0.061 0.073 0.064 0.056 0.063 0.071 0.064 0.050
·u 0.022 ; 0.017 , 0.016 0.Ql5 0.019 0.016 0.016 0.015 0.021

V 0.005 ! 0.009 ~ 0.008 0.007 1 0.005 0.007 0.007 : 0.011 0.005
w 0.010 0.013 , 0.015 0.013 , 0.011 0.013 0.014 : 0.015 0.011

X 0.001 • 0.001 j 0.001 0.001 0.001 0.001 0.001 0.001 · 0.001
y 0.010 i 0.010 i 0.010 0.016 0.013 0.014 0.013 0.011 0.010

z 0.001 ! 0.001 : 0.001 0.001 0.001 i 0.001 0.001 0.001 0.001
' ! s 0.146 ' 0.133 ! 0.144 . 0.118 ' 0.131 I 0.129 0.126 0.129 0.148

Table B.4: P* Probabilities from the Brown Corpus, A-I

Designing Similarity Functions-225

J . K .L M N 0 p Q ·R
:A 0.042 0.047 0.051 0.045 0.053 0.061 0.051 . 0.047 0.048

B 0.015 0.011 . 0.012 I 0.012 0.009 0.010 0.012 0.019 0.0ll
C 0.025 0.020 ; 0.021 i 0.022 0.019 0.018 0.022 0.022 0.021
D 0.027 0.031 0.028 ; 0.028 · 0.028 : 0.024 0.025 0.027 0.028
E 0.068 : 0.081 0.080 0.075 i 0.087 , 0.087 : 0.079 0.066 : 0.079
F 0.017 0.016 0.016 0.016 i 0.Ql5 0.Ql5 ! 0.016 0.017 ! 0.016
G 0.014 0.014 0.013 0.013 , 0.013 0.012 I 0.013 0.014 I 0.013
H 0.044 0.046 0.040 0.045 I 0.034 0.029 , 0.040 0.032 : 0.042
I 0.041 0.043 0.043 0.041 0.048 0.055 : 0.044 0.038 ~ 0.044

J 0.202 0.001 0.001 0.001 : 0.001 0.001 0.001 0.004 I 0.001
K 0.004 0.205 0.005 ; 0.005 0.004 0.004 0.004 0.004 • 0.005
L 0.029 0.029 0.233 I 0.029 0.027 0.025 0.029 0.028 0.029
M 0.021 0.019 0.018 i 0.221 0.016 i 0.015 0.019 0.019 0.018
N 0.042 0.046 0.047 ! 0.044 , 0.260 . 0.043 0.042 0.039 0.047
0 0.056 0.044 0.045 0.045 : 0.046 0.268 I 0.049 : 0.088 i 0.045
p 0.016 0.013 0.014 0.Ql5 0.012 , 0.013 0.216 0.015 : 0.014
Q 0.003 0.001 0.001 I 0.00.1 , 0.001 i 0.001 I 0.001 0.207 0.001

0.044 0.045 i 0.044 I 0.044 : 0.041 : 0.036 i
, 0.038 , 0.244 ;R ! 0.041

Is 0.044 ! 0.046 ! 0.043
'

0.044 ! 0.044 0.040 ' 0.041 i 0.048 i 0.045

!T 0.063 : 0.063 ; 0.061 i 0.061 , 0.056 0.052 0.062 0.059 0.061
u 0.014 i 0.016 ! 0.017 0.016 : 0.018 0.020 1 0.Ql8 I 0.014 0.016

:v 0.008 I 0.009 I 0.008 i 0.009 ; 0.006 , 0.005 ; 0.008 ! 0.005 i 0.008
iw 0.014 . 0.013 0.013 ! 0.014 '0.0ll '0.010 0.013 0.010 I 0.013

X 0.001 I 0.001 j 0.001 : 0.002 i 0.001 0.001 '. 0.001 0.001 0.001
!y 0.010 0.013 , 0.011 ' 0.011 1 0.012 : 0.010 0.010 i 0.009 ! 0.012
;z 0.001 I 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
' 0.135 0.123 , 0.134 0.141 : 0.137 : 0.146 . 0.139 0.127 : 0.134 i s

Table B.5: P* Probabilities from the Brown Corpus, J-R

Designing Similarity Functions-226

A
B
C
D
E
F

• G
H
I

,J
K
L

,M
jN
lo

p

jQ
IR

s
iT
u
V

~w
X
y

z

s .T
0.048 · 0.044
0.010 0.010

u ,v
0.064 : 0.040
0.009 : 0.014

W · X
0.044 · 0.052
0.011 , 0.009

y z
0.046 0.044
0.009 0.013

s
0.055 1

0.009 I

0.020 i 0.025 0.018 : 0.024 0.024 : 0.020 0.018 0.023 0.021 1

0.031 0.028 0.022 1 0.029 1 0.027 : 0.025 0.036 0.028 0.022
0.084 0.075 0.087 . 0.067 0.073 0.077 0.094 0.072 0.076
0.017 0.016 ! 0.014 i 0.016 0.016 0.015 0.019 0.016 0.014
0.014 0.015 0.012 i 0.014 0.014 0.012 0.015 0.014 : 0.01 I
0.037 0.037 0.030 0.060 0.043 0.035 0.035 0.052 0.033 1

0.043 0.039 0.057 . 0.038 0.041 , 0.046 0.040 0.046 0.050 I

0.001 0.001 0.001 0.001 0.001 i 0.001 0.001 0.001 0.001
0.005 . 0.004 • 0.004 0.006 I 0.005 0.004 0.005 0.005 0.004
0.027 · 0.027 i 0.025 i 0.032 i 0.029 0.026 0.027 i 0.031 0.026
0.017 0.017 i 0.015 i 0.022 ! 0.019 , 0.019 I 0.017 0.021 i 0.017
0.048 0.043 I 0.047 I 0.044 , 0.043 0.045 0.051 0.044 • 0.045 '
0.046 i 0.043 : 0.055 ! 0.037 0.041 0.047 0.045 0.040 0.051
0.013 i 0.014 0.014 0.015 , 0.014 : 0.014 0.012 0.015 0.013
0.001 : 0.001 i 0.001 i 0.001 I 0.001 j 0.001 0.001 ; 0.001 0.001
0.042 I 0.040 I 0.037 j 0.050 j 0.043 ! 0.039 0.043 i 0.047 0.038
0.249 I 0.046 0.039 0.044 0.043 1 0.046 0.053 ! 0.043 0.040 1

0.065 . 0.289 i 0.051 ; 0.065 i 0.077 i 0.057 0.064 0.062 0.058
0.016 ! 0.015 0.222 ' 0.015 • 0.015 0.019 0.015 0.015 0.019 '
0.007 1 0.007 0.005 0.213 0.008 0.006 1 0.006 0.011 0.006
0.012 · 0.016 0.011 . 0.016 0.216 ' 0.012 0.012 · 0.015 0.012
0.001 i 0.001 0.001 1 0.001 0.001 0.202 0.001 i 0.001 j 0.001
0.014 ! 0.012 0.010 0.010 0.011 0.011

1
0.217 t 0.011 : 0.009 I

0.001 0.001 , 0.001 0.001 0.001 0.001 I 0.001 , 0.202 ' 0.001
:~P _ _c___o._1_33 __ 0._13_6_1

_ o_._15_0~i_0_.1_2_6~j_o_.1_4_0 __ 0_.1_5_8~1 _o_.1_16_~i _o._13_0_,_i o_._36_8~1

Table B.6: P* Probabilities from the Brown Corpus, S-space

Designing Similarity Functions-227

Designing Similarity Functions-228

Bibliography

Aha, D.W. (1990), A Study of Instance-Based Algorithms for Supervised

Leaming Tasks, PhD Thesis, Department of Information and

Computer Science, University of California, Irvine, Technical Report

90-42.

Aha, D.W. (1992), Tolerating Noise, Irrelevant and Novel Attributes in

Instance-Based Learning Algorithms, International Journal of Man

Machine Studies, vol. 36, pp. 267-287.

Aha, D.W., D. Kibler and M.K. Albert (1991), Instance-Based Leaming

Algorithms, Machine Leaming, vol. 6, pp. 37-66.

Allison, L. and C.N. Yee (1990), Minimum Message Length Encoding and

the Comparison of Macromolecules, Bulletin of Mathematical Biology,

vol. 52,no.3,pp.431-453.

Almuallim, H., Y. Akiba and S. Kaneda (1995), On Handling Tree-Structured

Attributes in Decision Tree Learning, in Proceedings of the Twelfth

International Conference on Machine Leaming, pp.12-20, Tahoe

City, CA: Morgan Kaufmann

Bankert, R.L. and D.W. Aha (1995), Automated Identification of Cloud

Patterns in Satellite Imagery, to appear in Proceedings of the

A Framework for Similarity Function Design-229

Fourteenth Conference on Weather Analysis and Forecasting, Dallas,

TX: American Meteorological Society.

Baxter, R.A. and J.J. Oliver (1994), MDL and MML: Similarities and

Differences (Introduction to Minimum Encoding Inference-Part III),

Technical Report 207, Department of Computer Science, Monash

University, Australia.

Berliner, H.J. (1980), Backgammon Computer Program Beats World

Champion, Artificial Intelligence, vol. 14, pp. 205-220.

Biberman, Y. (1994), A Context Similarity Measure, in Proceedings of the

Seventh European Conference on Machine Leaming, pp. 49-63.

Catania, Italy: Springer-Verlag.

Bradshaw, G.L. (1986), Learning by Disjunctive Spanning, in T.M. Mitchell,

J.G. Carbonell and R.S. Michalski (Eds), Machine Leaming: A guide

to current research, Boston, MA: Kluwer Academic Publishers.

Chaitin, G.J. (1969), On the Length of Programs for Computing Finite Binary

Sequences: Statistical Considerations, Journal of the ACM, vol. 16, pp.

145-159.

Cleary, J., G. Holmes, S.J. Cunningham and I.H. Witten (1996a), MetaData

for Database Mining, Proceedings of the IEEE Metadata Conference,

Silver Spring, MD, April 16-18.

Cleary, J., S. Legg and I.H. Witten (1996b), An MDL Estimate of the

Significance of Rules, Proceedings of the Information, Statistics and

Induction in Science Conference, pp. 43-53, Melbourne, Australia,

World Scientific.

A Framework for Similarity Function Design-230

Cost, S. and S. Salzberg (1993), A Weighted Nearest Neighbor Algorithm for

Learning with Symbolic Features, Machine Leaming, vol. 10, pp. 57-

78.

Cover, T. and P. Hart (1967), Nearest Neighbor Pattern Classification, IEEE

Transactions on Information Theory, vol. 13, pp. 21-27.

Dasarathy, B.V. (Ed) (1990), Nearest Neighbor (NN) Norms: NN Pattern

Classification Techniques, IEEE Computer Society Press.

Dempster, A.P., N.M. Laird, and D.B. Rubin (1977), Maximum Likelihood

from Incomplete Data via the EM Algorithm, Journal of the Royal

Statistical Society, vol. 39. no. 1, pp.l-38.

Devroye, L.P. (1978), A Universal K-Nearest Neighbor Procedure in

Discrimination, in Proceedings of the Conference on Pattern

Recognition and Image Processing, IEEE Computer Society Press,

Los Alamitos, Calif., pp. 142-147.

Dixon, J.K. (1979), Pattern Recognition with Partly Missing Data, IEEE

Transactions on Systems, Man, and Cybernetics, vol. 9, no.10, pp.

617-621.

Donovan, B.J., A.M.E. Howie, N.C. Schroeder, A.R. Wallace, and P.E.C

Read (1992), Comparative characteristics of nests of Vespula

germanica (F.) and Vespula vulgaris (L.) (Hymenoptera: Vespinae)

from Christchurch City, New Zealand, New Zealand Journal of

Zoology, vol. 19, pp. 61-71.

Dudani, S.A. (1976), The Distance-Weighted Nearest Neighbor Rule, IEEE

Transactions on Systems, Man, and Cybernetics, vol. 6, no. 4, pp.

325-327.

A Framework for Similarity Function Design-231

Fayyad, U.M. and K.B. Irani (1992), On the Handling of Continuous-Valued

Attributes in Decision Tree Generation, Machine Leaming, vol. 8, pp.

87-102.

Fayyad, U.M. and K.B. Irani (1993), Multi-Interval Discretization of

Continuous-Valued Attributes for Classification Learning, in

Proceedings of the Thirteenth International Joint Conference on

Artificial Intelligence, pp. 1022-1027, Morgan-Kaufmann.

Fix, E. and J.L. Hodges (1951), Discriminatory Analysis: Nonparametric

Discrimination: Consistency Properties, from Project 21-49-004,

Report Number 4, USAF School of Aviation Medicine, Randolph

Field, Texas, pp. 261-279.

Fix, E. and J.L. Hodges (1952), Discriminatory Analysis: Nonparametric

Discrimination: Small Sample Performance, from Project 2 /-49-004,

Report Number 11, USAF School of Aviation Medicine, Randolph

Field, Texas, pp. 280-322.

Fogarty, T.C. (1992), First Nearest Neighbor Classification on Frey and

Slate's Letter Recognition Problem, Machine Leaming, vol. 9, pp.

387-388.

Francis, W.N and H. Kucera (1982), Frequency Analysis of English Usage:

Lexicon and Grammar, Houghton Mifflin, Boston.

Fukunaga, K. and T.E. Flick (1984), An Optimal Global Nearest Neighbor

Metric, IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 6, no. 3, pp. 314-318.

Gates, G.W. (1972), The Reduce Nearest Neighbor Rule, IEEE Transactions

on Information Theory, vol. 13, no. 3, pp. 431-433.

A Framework for Similarity Function Design-232

Graham, R.L., D.E. Knuth, and 0. Patashnik (1994), Concrete Mathematics,

Addison Wesley, New York.

Hart, P.E. (1968), The Condensed Nearest Neighbor Rule, IEEE Transactions

on Information Theory, vol. 14, no. 3, pp. 515-516.

Hastie, T. and R. Tibshirani (1995), Discriminant Adaptive Nearest Neighbor

Classification, in Proceedings of the First International Conference on

Knowledge Discovery and Data Mining, pp. 142-149, AAAI Press.

Holmes, G., A. Donkin, and I.H. Witten (1994), WEKA: A Machine Learning

Workbench, in Proceedings of the Second Australia and New Zealand

Conference on Intelligent Information Systems, Brisbane, Australia.

Holte, R.C. (1993), Very Simple Classification Rules Perform Well on Most

Commonly Used Datasets, Machine Leaming, vol. 11, pp. 63-91.

Inglis, S. and I. Witten (1995), Document Zone Classification, in Proceedings

of DICTA-95, pp. 631-636, University of Queensland, Australia.

Jabbour, K., J.F.V. Riveros, D. Landsbergen, and W. Meyer (1988), ALFA:

Automated Load Forecasting Assistant, IEEE Transactions on Power

Systems, vol. 3, no. 3, pp. 908-913.

Jabbour, K. and W. Meyer (1989), GAuLF: Gas Automated Load Forecaster,

in Proceedings of the 32nd Midwest Symposium on Circuits and

Systems, Champaign, pp. 20-23.

Jones, E.K. and A. Roydhouse (1993), Intelligent Retrieval of Historical

Meteorological Data, Technical Report CS-TR-93/8, Victoria

University of Wellington.

A Framework for Similarity Function Design-233

Keller, J.M, M.R. Gray and J.A. Givens (1985), A Fuzzy k-Nearest Neighbor

Algorithm, IEEE Transactions on Systems, Man, and Cybernetics, vol.

15,no.4,pp. 580-585.

Kolmogorov, AN. (1965), Three Approaches to the Quantitative Definition

of Information, Problems of Information Transmission, vol. 1, no. 1,

pp. 1-7.

Lee, C. (1994), An Instance-Based Learning Method for Databases: An

Information Theoretic Approach, in Proceedings of the Seventh

European Conference on Machine Leaming, pp. 387-390. Catania,

Italy: Springer-Verlag.

Legg, S. (1995), Minimum Information Estimation of Linear Regression

Models, 420 Report, Department of Computer Science, University of

Waikato, New Zealand.

Levin, L.A. (1974), Laws of Information Conservation (Non-growth) and

Aspects of the Foundation of Probability Theory, Problems of

Information Transmission, vol. 10, no. 3, pp. 206-210.

Li, M. and P. Vitanyi (1992), Inductive Reasoning and Kolmogorov

Complexity, Journal of Computer and System Sciences, vol. 44, pp

343-384.

Li, M. and P. Vitanyi (1993), Introduction to Kolmogorov Complexi'ty and its

Applications, Springer-Verlag, New York.

Lowe, D.G. (1995), Similarity Metric Learning for a Variable-Kernel

Classifier, Neural Computation, vol. 7, no. 1, pp. 72-85.

A Framework for Similarity Function Design-234

Macleod, J.E., A. Luk and D.M. Titterington (1987), A Re-Examination of

the Distance-Weighted k-Nearest Neighbor Classification Rule, IEEE

Transactions on Systems, Man, and Cybernetics, vol. 17, no. 4, pp.

689-696.

Mehta, M., J. Rissanen and R. Agrawal (1995), MDL-based Decision Tree

Pruning, in Proceedings of the First International Conference on

Knowledge Discovery and Data Mining, pp. 216-221, AAAI Press.

Oates, W.J. (Ed) (1957), The Stoic and Epicurean Philosophers: The

Complete Extant Writings of Epicurus, Epictetus, Lucretius, Marcus

Aurelius, Random House, New York.

Oliver, J.J. and R.A. Baxter (1994), MML and Bayesianism: Similarities and

Differences (Introduction to Minimum Encoding Inference-Part II,

Technical Report 206, Department of Computer Science, Monash

University, Australia.

Oliver, J.J. and D. Hand (1994), Introduction to Minimum Encoding

Inference-Part I, Technical Report 205, Department of Computer

Science, Monash University, Australia.

Porter, B.W., R Bareiss and R.C. Holte (1990), Concept Leaming and

Heuristic Classification in Weak-Theory Domains, Artificial

Intelligence, vol. 45, pp. 229-263.

Quinlan, J.R. and R.L. Rivest (1989), Inferring Decision Trees Using the

Minimum Description Length Principle, Information and

Computation, vol. 80, pp. 227-248.

Rachlin, J., S. Kasif, S. Salzberg and D.W. Aha (1994), Towards a Better

Understanding of Memory-Based Reasoning Systems, in Proceedings

A Framework for Similarity Function Design-235

of the Eleventh International Conference on Machine Leaming, pp.

242-250. Morgan-Kaufmann.

Riesbeck, C. and R. Schank (1989), Inside Case-Based Reasoning, Hillsdale,

N.J., L. Erlbaum.

Rissanen, J. (1989), Stochastic Complexity in Statistical Inquiry, World

Scientific.

Rosch, E. (1975), Cognitive Reference Points, Cognitive Psychology, vol. 7,

pp. 532-547.

Salzberg, S. (1991), A Nearest Hyperrectangle Learning Method, Machine

Leaming, vol. 6, pp. 251-276.

Sejnowski, T.J and C.R. Rosenberg (1987), Parallel Networks that Learn to

Pronounce English Text, Complex Systems, vol. 1, pp. 145-168.

Short, R.D. and K. Fukunaga (1981), The Optimal Distance Measure for

Nearest Neighbor Classification, IEEE Transactions on Information

Theory,vol.21,no. 5,pp.622-627.

Solomonoff, R.J. (1964), A Formal Theory of Inductive Inference, Part 1 and

Part 2, Information and Control, vol. 7, pp. 1-22, 224-254.

Spitzer, F. (1975), Principles of Random Walk, Springer-Verlag, New York.

Stanfill, C. and D. Waltz (1986), Toward Memory-Based Reasoning,

Communications of the ACM, vol. 29, no. 12, pp. 1213-1228.

Thomas, G.B. and R.L. Finney (1988), Calculus and Analytical Geometry, 7th

edition, Addison-Wesley, Reading, Massachusetts.

A Framework/or Similarity Function Design-236

Ting, K.M. (1995), Common Issues in Instance-Based and Naive Bayesian

Classifiers, PhD Thesis, Basser Department of Computer Science,

University of Sydney.

Tversky, A. (1977), Features of Similarity, Psychological Review, vol. 84, no.

4, pp. 327-352.

Wilson, D.R. and T.R. Martinez (1997), Improved Heterogeneous Distance

Functions, Journal of Artificial Intelligence Research, vol. 6, pp. 1-34.

Valiant, L.G. (1984), A Theory of the Learnable, Communications of the

ACM, vol. 27, no. 11, pp. 1134-1143.

Wax, N. (Ed) (1954), Selected Papers on Noise and Stochastic Processes,

Dover Publications, New York.

Wettschereck, D. (1994), A Hybrid Nearest-Neighbor and Nearest

Hyperrectangle Algorithm, in Proceedings of the Seventh European

Conference on Machine Leaming, pp. 323-335. Catania, Italy:

Springer-Verlag.

Wettschereck, D. and D.W. Aha (1995), Weighting Features, in Proceedings

of the First International Conference on Case-Based Reasoning,

Lisbon, Portugal: Springer-Verlag.

Wettschereck, D. and T.G. Dietterich (1995), An Experimental Comparison of

the Nearest-Neighbor and Nearest-Hyperrectangle Algorithms,

Machine Leaming, vol. 19, pp. 5-27.

Witten, I.H. and T.C. Bell (1991), The zero-frequency problem: estimating

the probabilities of novel events in adaptive text compression, IEEE

Transactions on Information Theory, vol. 37, no. 4, pp. 1085-94.

A Framework for Similarity Function Design-231

Yee, C.N. and L. Allison (1993), Reconstruction of Strings Past, Computer

Applications in the Biosciences, vol. 9, no. 1, pp. 1-7.

Zhang, J. (1992), Selecting Typical Instances in Instance-Based Learning, in

Proceedings of the Ninth International Workshop on Machine

Leaming, pp. 470-479. Morgan Kaufmann.

A Framework for Similarity Function Design-238

	1083_2R
	1084_2R
	1085_1L
	1085_2R
	1086_1L
	1086_2R
	1087_1L
	1087_2R
	1088_1L
	1088_2R
	1089_1L
	1089_2R
	1090_1L
	1090_2R
	1091_1L
	1091_2R
	1092_1L
	1092_2R
	1093_1L
	1093_2R
	1094_1L
	1094_2R
	1095_1L
	1095_2R
	1096_1L
	1096_2R
	1097_1L
	1097_2R
	1098_1L
	1098_2R
	1099_1L
	1099_2R
	1100_1L
	1100_2R
	1101_1L
	1101_2R
	1102_1L
	1102_2R
	1103_1L
	1103_2R
	1104_1L
	1104_2R
	1105_1L
	1105_2R
	1106_1L
	1106_2R
	1107_1L
	1107_2R
	1108_1L
	1108_2R
	1109_1L
	1109_2R
	1110_1L
	1110_2R
	1111_1L
	1111_2R
	1112_1L
	1112_2R
	1113_1L
	1113_2R
	1114_1L
	1114_2R
	1115_1L
	1115_2R
	1116_1L
	1116_2R
	1117_1L
	1117_2R
	1118_1L
	1118_2R
	1119_1L
	1119_2R
	1120_1L
	1120_2R
	1121_1L
	1121_2R
	1122_1L
	1122_2R
	1123_1L
	1123_2R
	1124_1L
	1124_2R
	1125_1L
	1125_2R
	1126_1L
	1126_2R
	1127_1L
	1127_2R
	1128_1L
	1128_2R
	1129_1L
	1129_2R
	1130_1L
	1130_2R
	1131_1L
	1131_2R
	1132_1L
	1132_2R
	1133_1L
	1133_2R
	1134_1L
	1134_2R
	1135_1L
	1135_2R
	1136_1L
	1136_2R
	1137_1L
	1137_2R
	1138_1L
	1138_2R
	1139_1L
	1139_2R
	1140_1L
	1140_2R
	1141_1L
	1141_2R
	1142_1L
	1142_2R
	1143_1L
	1143_2R
	1144_1L
	1144_2R
	1145_1L
	1145_2R
	1146_1L
	1146_2R
	1147_1L
	1147_2R
	1148_1L
	1148_2R
	1149_1L
	1149_2R
	1150_1L
	1150_2R
	1151_1L
	1151_2R
	1152_1L
	1152_2R
	1153_1L
	1153_2R
	1154_1L
	1154_2R
	1155_1L
	1155_2R
	1156_1L
	1156_2R
	1157_1L
	1157_2R
	1158_1L
	1158_2R
	1159_1L
	1159_2R
	1160_1L
	1160_2R
	1161_1L
	1161_2R
	1162_1L
	1162_2R
	1163_1L
	1163_2R
	1164_1L
	1164_2R
	1167_1L
	1167_2R
	1168_1L
	1168_2R
	1169_1L
	1169_2R
	1170_1L
	1170_2R
	1171_1L
	1171_2R
	1172_1L
	1172_2R
	1173_1L
	1173_2R
	1174_1L
	1174_2R
	1175_1L
	1175_2R
	1176_1L
	1176_2R
	1177_1L
	1177_2R
	1178_1L
	1178_2R
	1179_1L
	1179_2R
	1180_1L
	1180_2R
	1181_1L
	1181_2R
	1182_1L
	1182_2R
	1183_1L
	1183_2R
	1184_1L
	1184_2R
	1185_1L
	1185_2R
	1186_1L
	1186_2R
	1187_1L
	1187_2R
	1188_1L
	1188_2R
	1189_1L
	1189_2R
	1190_1L
	1190_2R
	1191_1L
	1191_2R
	1192_1L
	1192_2R
	1193_1L
	1193_2R
	1194_1L
	1194_2R
	1195_1L
	1195_2R
	1196_1L
	1196_2R
	1197_1L
	1197_2R
	1198_1L
	1198_2R
	1199_1L
	1199_2R
	1200_1L
	1200_2R
	1201_1L
	1201_2R
	1202_1L
	1202_2R
	1203_1L
	1203_2R
	1204_1L
	1204_2R
	1205_1L
	1205_2R
	1206_1L
	1206_2R
	1207_1L
	1207_2R
	1208_1L
	1208_2R
	1209_1L
	1209_2R
	1210_1L
	1210_2R
	1211_1L
	1211_2R
	1212_1L

