
Enhancing Decision Support

Systems for Airport Slot

Allocation

Sha Wang

A thesis presented for the degree of

Doctor of Philosophy

School of Electronic Engineering and Computer Science

Queen Mary University of London

August 2022

I, Sha Wang, confirm that the research included within this thesis is my

own work or that where it has been carried out in collaboration with, or sup-

ported by others, that this is duly acknowledged below and my contribution

indicated. Previously published material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work

is original, and does not to the best of my knowledge break any UK law,

infringe any third party’s copyright or other Intellectual Property Right, or

contain any confidential material.

I accept that the College has the right to use plagiarism detection soft-

ware to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award

of a degree by this or any other university.

The copyright of this thesis rests with the author and no quotation from

it or information derived from it may be published without the prior written

consent of the author.

Signature: Sha Wang

Date: 23/08/2022

Details of collaboration and publications:

The work reported in this thesis has been supported by the Engineer-

ing and Physical Sciences Research Council (EPSRC) through Programme

Grant EP/M020258/1 ‘Mathematical Models and Algorithms for Allocating

Scarce Airport Resources (OR-MASTER)’.

During the development of this thesis, one publication was produced.

S. Wang, J. H. Drake, J. Fairbrother and J. R. Woodward, ”A Construc-

tive Heuristic Approach for Single Airport Slot Allocation Problems,” 2019

IEEE Symposium Series on Computational Intelligence (SSCI), 2019, pp.

1171-1178, doi: 10.1109/SSCI44817.2019.9002892.

i

Acknowledgement

Undertaking this PhD has been a challenging and rewarding experience for

me, especially during a global pandemic. Without the support and guidance

I received from many people, I would not have been able to complete it.

First, I would like to thank my supervisor, Dr John Woodward, for all

the support and encouragement he gave me for academic research and my

personal development. I would also like to thank Dr John Drake (University

of Leicester) for his constructive guidance and valuable comments on my

research. My PhD would not have been fruitful without his input. In

addition, I would like to thank Prof Edmund Burke for leading the OR-

MASTER project. I gratefully acknowledge the funding received for my

PhD from the Queen Mary University of London.

I would particularly like to thank the researchers from Lancaster Univer-

sity. Prof Konstantinos Zografos has provided me with airport slot request

data to run experiments and offered me strategic and professional insights

into the research topic. My biggest thank you is to Dr Jamie Fairbrother,

with whom I co-authored a paper. A lot of work in this thesis is inspired

by his previous work. My thanks also go to Dr Fotios Katsigiannis and Dr

Robert Shone for giving me valuable feedback.

Moreover, my thanks go to all academics in my research group, especially

Dr Jun Chen, Dr Michal Weiszer, Dr Xinwei Wang and Yujian Gan. I

appreciate their help during the entire time of my PhD. I would like to thank

my previous colleagues, Dr Simon Rawles, Dr Pol Arias and Dr Sachchida

Chaurasia, who made the time in the group pleasant.

I would also like to thank my dear friends, especially the Stringer family,

Dr Yan Yang, Ranulf Doswell, Yueyue Si, Dr Tong Bai, Jianshu Qiao and

people from the QM Chinese Christian fellowship. Thank you for being

there for me through all the ups and downs in life.

Last but not least, I am deeply grateful to my family for their uncon-

ditional love and support. I will always owe my achievements to my loving

and caring family.

ii

Abstract

Due to the growing imbalance between air traffic demand and airport ca-

pacity at congested airports, airlines must secure slots to operate flights at

capacity-constrained airports. In practice, slot allocation is performed by

independent slot coordinators at each airport according to a set of prin-

ciples and regulations. As a result, the current decision-making system is

considered inefficient and does not take adequate account of the complexity

of real-world problems. Therefore, optimisation techniques are needed to

improve airport capacity management and slot allocation.

This thesis aims to contribute to single airport slot allocation research

by providing an in-depth analysis of the slot request data and developing

new models and solution algorithms to deal with large-scale slot allocation

problems. First, we propose a new model considering slot rejections (SASA-

R) based on the maximum acceptable displacement of slots to support the

decision-making of rejecting slots. In addition, we analyse the impact of

changing the current slot allocation rules on slot allocation results. Second,

we propose a two-stage approach that aims to solve large-scale slot allocation

problems. A greedy constructive heuristic is developed to generate feasible

solutions in a short time. This initial feasible solution is then improved by

an adaptive large neighbourhood search heuristic (ALNS). A novel related

destroy operator is designed specifically for this problem. The results show

high-quality solutions can be obtained within a few hours for the problem

instance tested, while a commercial optimisation solver does not return a

feasible solution after several days of computation. Third, we propose a

flexible slot allocation model to allocate slots individually on different days of

the week. This model enhances existing models by enabling coordinators to

explore the trade-off between schedule regularity and flexibility. The results

show that the flexible scheduler can simultaneously reduce the number of

rejected slots and schedule displacement.

Contents

List of Tables iv

List of Figures vii

1 Introduction 1

1.1 Background and Motivations 1

1.2 Research Objectives and Scope 2

1.3 Contributions of this Thesis 3

1.4 Publications . 4

1.5 Structure of the Thesis . 5

2 Background and Related Work 7

2.1 Overview of the Worldwide Airport Slot Guidelines 7

2.1.1 General policies of slot allocation 8

2.1.2 Slot allocation process 8

2.1.3 Slot allocation rules 10

2.2 Single Airport Slot Allocation Problems 13

2.2.1 Constraints . 14

2.2.2 Objectives . 17

2.2.3 Review of existing models 19

2.2.4 Review of existing solution methods 26

2.3 Slot Allocation Problems for Airport Network 33

2.3.1 Constraints . 33

2.3.2 Objectives . 34

2.3.3 Review of existing models 34

2.3.4 Review of existing solution methods 36

2.4 Related Research Area and Solution Methodologies 38

2.4.1 Airport declared capacity modelling 38

i

2.4.2 Integration with other airport operations 38

2.4.3 Multi-Resource Generalised Assignment Problem . . . 39

2.4.4 Heuristic solution methodologies 40

2.5 Future research needs . 45

3 A Data Analysis of Real-world Slot Requests 47

3.1 Introduction of Slot Requests 48

3.2 Statistical Analysis of Airport Attributes 49

3.2.1 Slot demand characteristics 51

3.2.2 Flight operation frequency characteristics 52

3.2.3 Slot priority characteristics 55

3.2.4 Time distribution of operations and turnaround time . 56

3.2.5 Associations between key attributes of slot requests . 57

3.3 Demand-Capacity Imbalance indicators 61

4 Optimising Slot Allocation Considering Slot Rejection and

Schedule Efficiency 65

4.1 A slot allocation model considering slot rejection 66

4.2 Experiments . 73

4.2.1 Data and set-up . 73

4.2.2 Solution metrics . 74

4.2.3 Experiment results . 75

4.3 Sensitivity analysis . 77

4.3.1 Sensitivity to the changes in requested turnaround times 77

4.3.2 Sensitivity to the priority rules 80

4.3.3 Sensitivity to the displacement costs 82

4.4 Discussion of Model Scalability 87

4.5 Conclusions . 88

5 A two-stage solution method for a single airport slot alloca-

tion model 90

5.1 A Two-stage Solution Method 91

5.2 A Greedy Constructive Heuristic 92

5.2.1 Solution construction procedure 93

5.2.2 Request ordering heuristics 93

5.2.3 Greedy allocation algorithm 96

5.2.4 Experiment results . 97

ii

5.2.5 A group-based constructive heuristic 100

5.3 An Adaptive Large Neighbourhood Search Heuristic for solu-

tion improvement . 102

5.3.1 Destroy operators . 102

5.3.2 Repair method . 106

5.3.3 Adaptive heuristics . 107

5.4 Experiments . 109

5.4.1 Data and set-up . 111

5.4.2 Experiment results . 113

5.4.3 Sensitivity analysis to the algorithm parameters . . . 116

5.5 Conclusions . 121

6 A Flexible Scheduler for Single Airport Slot Allocation Prob-

lems 124

6.1 Discussion of Schedule Regularity 125

6.2 A Flexible Scheduler for Single Airport Slot Allocation Prob-

lems . 128

6.3 Experiments . 133

6.3.1 Data and set-up . 133

6.3.2 Non-hierarchical results 134

6.3.3 Hierarchical results . 137

6.3.4 Effects on slot rejections 138

6.3.5 Applying the ALNS heuristic to the flexible scheduler 139

6.4 Conclusions . 140

7 Conclusions 143

7.1 Overview of this research . 143

7.2 Key results . 145

7.3 Future work . 148

A Results for SASA-R model 151

A.1 Results for Airport 1 . 151

A.2 Results for Airport 3 . 153

Bibliography 154

iii

List of Tables

2.1 Constraints for single airport slot allocation problems: (1)Run-

way; (2)Apron; (3)Terminal Passengers; (4)Turnaround time;

(5)Slot preferences; (6)Accessibility 14

2.2 Optimisation objectives for single airport slot allocation prob-

lems: to minimise (1)rejected requests; (2)rejected slots; (3)max-

imum displacement; (4) schedule displacement; (5)displaced

slots; to maximise (6)inter-airline fairness 17

3.1 Example of slot requests provided by airlines 49

3.2 Slot request attribute details 50

3.3 Summary of request data sets from the three real-world airports 51

3.4 Descriptive statistics of operating weeks 53

3.5 Number of requests operating with specific weekly frequencies

and operating days . 58

3.6 ANOVA test significant p-values at 0.05 60

3.7 Percentage of violated capacity constraints of the default sched-

ule . 62

3.8 Declared capacity constraints at the three airports 62

3.9 Proportion of congested time periods of the default schedule . 63

4.1 Non-hierarchical results for Airport 2. Values in parentheses

are the relative change rate to the solution when slot displace-

ment is not constrained . 75

4.2 Sensitivity of non-hierarchical results to changes in the re-

quested turnaround times . 78

4.3 Allocated vs. requested turnaround times 79

iv

4.4 Hierarchical results for Airport 2, without maximum slot dis-

placement thresholds . 80

4.5 Holistic results for Airport 2. Values in parentheses are the

relative change rate to the hierarchical results 81

4.6 Slot coordination results for Airport 2 82

4.7 Holistic results for Airport 2, with the weighted objective

function. Values in parentheses are the relative change rate to

the results without consideration of aircraft size. ‘-’ indicates

the number is compared against zero value 84

4.8 Non-hierarchical results with the linear and squared cost of

displacement. Values in parentheses are the relative change

rate to the results for linear cost of displacement 85

5.1 Mean number of solution metrics generated by the greedy

construction heuristic (with standard deviations in parenthe-

ses), Airport 1 . 99

5.2 Mean number of solution metrics generated by the greedy

construction heuristic (with standard deviations in parenthe-

ses), Airport 2 . 99

5.3 Mean number of solution metrics generated by the greedy

construction heuristic (with standard deviations in parenthe-

ses), Airport 3 . 100

5.4 Solutions generated by the group-based constructive heuristic

for Airport 3. Values in parentheses are the relative change

rate to the results of 2 groups 101

5.5 Results of Gurobi optimiser 111

5.6 Inputs of the ALNS heuristic and baseline values 112

5.7 ALNS heuristic results . 113

5.8 Sensitivity to initial feasible solutions 118

5.9 Solution degradation without each of the four destroy operators119

5.10 Sensitivity to relatedness threshold α 119

5.11 Sensitivity to time window radius r 120

5.12 Sensitivity to the adaptive layer of the ALNS heuristic 120

6.1 Example of how requests are processed under the current

schedule regularity rules (non-flexible) and with schedule flex-

ibility . 125

v

6.2 Number of request pairs with different operating days in a

week and number of operating weeks of the season 127

6.3 Number of request pairs with different operating days in a

week and request types, under different series threshold . . . 128

6.4 Non-hierarchical results for flexible scheduler with different

series thresholds and flexibility ranges γ. γ = 0 indicates

that the schedule is non-flexible. γ=None indicates that the

flexibility range constraints are not considered. Values in

parentheses are the relative reduction rate to the non-flexible

schedule in the first row . 137

6.5 Hierarchical results for flexible scheduler with different flex-

ibility ranges. The series threshold is fixed at 5. Values in

parentheses are the relative reduction rate to the non-flexible

schedule when γ = 0 . 139

6.6 Hierarchical results for flexible scheduler with different flexi-

bility ranges and maximum allowable slot displacement (‘Max.

threshold’). The series threshold is fixed at 5. Values in

parentheses are the relative reduction rate to the non-flexible

schedule when γ = 0 . 142

A.1 Non-hierarchical results for Airport 1 151

A.2 Hierarchical results for Airport 1 151

A.3 Holistic results for Airport 1. Values in parentheses is the

relative reduction rate to the hierarchical allocation results . 152

A.4 Non-hierarchical results with the linear and squared cost of

displacement. Values in parentheses are the relative change

rate to the results for linear cost of displacement 152

A.5 Sensitivity of non-hierarchical results to changes in turnaround

times. The second column indicates the allowable reduction

and increase in turnaround times 152

A.6 Non-hierarchical results for Airport 3 153

A.7 Hierarchical results for Airport 3 153

A.8 Holistic results for Airport 3 153

vi

List of Figures

2.1 Calendar of Coordination Activities 9

3.1 Number of slots requested for each day in the season 52

3.2 Histogram of the number of operating days for flight opera-

tions for the three airports . 53

3.3 Histogram of the number of operating weeks in the season for

flight operations for the three airports 54

3.4 ad hoc slot requests vs. series of slots 54

3.5 Distribution of slot priorities across four categories for the

three airports . 55

3.6 Time distribution of the aggregated number of requested slots

for the three airports . 56

3.7 Requested turnaround time 57

3.8 Requested operation weeks given operating days 59

3.9 Operation weeks by request priorities 60

3.10 Request time of each priority class 61

3.11 Heatmap of requested slots at Airport 1 during the busiest

two weeks of operation. The colour scales indicate the number

of slots requested for each time period. 62

4.1 Example of rolling capacity constraints 73

4.2 Distribution of slot displacement 86

5.1 Illustration example of the relatedness of requests under dif-

ferent relatedness threshold: α = 2 (left), α = 3 (right);

related requests are covered in the same colour 104

5.2 Related destroy operator . 106

5.3 Running time of destroy operators 114

vii

5.4 Request pairs removed by destroy operators 115

5.5 Solver computation time for the application of different de-

stroy operators . 116

5.6 Reduction of schedule displacement in each iteration 116

6.1 The performance of the two-stage solution approach for solv-

ing the non-flexible model and the flexible scheduler for Air-

port 3 . 140

viii

Glossary

ad hoc slot An allocated slot which is not eligible for historic precedence.

vii, 10, 11, 54, 68, 125

airport capacity Maximum number of passengers or aircraft that can be

accommodated in a certain period of time. 1

equivalent seasons Consecutive summer seasons (two summers) or con-

secutive winter seasons (two winters) as opposed to two consecutive

seasons (a summer and a winter season). 8, 9, 11

historic precedence The principle whereby airlines are entitled to a se-

ries of slots that were operated at least 80% of the time during the

period allocated in the previous equivalent season, also known as the

‘grandfather rights’. 9, 10, 11

Level 3 A Level 3 airport is also known as a coordinated airport, where

the demand for flight operations exceeds the airport declared capacity

significantly. 1, 83

schedule displacement The time difference between requested and allo-

cated time of slot. 4, 67, 70, 74, 76, 78, 81, 82, 84, 85, 88, 89

series of slots At least 5 slots allocated for the same or approximately

same time on the same day-of-the-week, distributed regularly in the

same season. vii, 4, 10, 12, 54, 68, 69, 70

slot The permission granted for an airline to use the full range of airport

infrastructure at a coordinated airport at a specific date and time. 1

ix

slot pool The slots available at a Level 3 airport at initial allocation after

unchanged historic slots are allocated, including any newly created

slots. 11, 12, 66, 149

slot coordination The generic term encompassing slot allocation at a Level

3 airport. 7, 8, 38

slot coordinator The organisation or individual responsible for slot allo-

cation at a Level 3 airport. 2, 3, 8, 9, 10, 19, 20, 21, 45, 48, 57,

82

waitlist A list of slot requests with no slot allocated. 10, 45

x

Acronyms

ALNS Adaptive Large Neighbourhood Search. 90, 102

API Application Programming Interface. 74, 110, 133

GAP Generalised Assignment Problem. 39

GP Genetic Programming. 42

IATA International Air Transport Association. 1, 7, 26, 50, 54

ILP Integer Linear Programming. 19, 29

ILS Iterated Local Search. 36

LNS Large Neighbourhood Search. 42, 102

MIP Mixed Integer Programming. 24, 74, 111, 133

MRGAP Multi-Resource Generalised Assignment Problem. 39

SAL Slot preliminary Allocation List. 9

SASA-R Single Airport Slot Allocaiton- with Rejections. 4, 5, 6, 144, 145,

149

SC Slot conference. 10

SHL Slot Historics List. 8, 9

SOSTA Simultaneous Optimisation of the airport SloT Allocation. 35

SSIM Standard Schedules Information Manual. 48

xi

TFI Timing Flexibility Indicator. 13, 24

TILP Truncated Integer Linear Programming. 36

VNS Variable Neighbourhood Search. 36

WASG Worldwide Airport Slot Guidelines. 2, 7

xii

Chapter 1

Introduction

1.1 Background and Motivations

According to a recent report from EUROCONTROL (2022), the number of

global flights in 2050 is expected to reach 16 million annually in the most-

likely scenario. That is a 44% increase compared to 11 million in 2019. The

growth of flights, however, is constrained by the maximum capacity available

at several extremely congested airports. Furthermore, due to the high level

of uncertainty and the COVID-19 pandemic, it is predicted that the total

airport capacity increase by 2040 is only a few flights; as a result, less than

half a million flights will not be accommodated in the most-likely scenario.

Due to the severe imbalance between air traffic demand and airport ca-

pacity at congested airports, the International Air Transport Association

(IATA) introduced ‘slots’ to measure airport runway capacity and allocate

limited airport capacity to competing airlines. Airport slots, or slot, refers

to the permission granted for a planned flight operation to use a Level 3’s

(also known as ‘coordinated’ airports) full range of infrastructure at a spe-

cific time and date (WASG, 2020). Airports are designated as Level 3 if

1

demand exceeds the declared capacity of the airport significantly. Slot allo-

cation is currently practiced at 200 Level 3 airports of the busiest airports

outside the United States, serving over 1.5 billion passengers - 43% of global

traffic each year (IATA, 2019). In Europe, the slot allocation is governed

by Regulation 95/93/EEC (Commission, 1993) and Worldwide Airport Slot

Guidelines (WASG).

Slot allocation is currently performed by independent slot coordinators

at each airport according to a set of principles and regulations. As a re-

sult, the current slot allocation system is considered inefficient and does not

consider all the real-world complexity. There is increasing research on the

reformation of the slot allocation rules, and more attention is being paid

to enhancing the decision-making system for slot allocation by optimisa-

tion techniques. However, research on slot allocation currently suffers from

several main limitations: (1) lack of in-depth analysis of slot request data

and understanding of the difference in slot demand among Level 3 airports;

(2) oversimplified objectives and constraints of slot allocation model that

do not consider the interests of all stakeholders and the real-world com-

plexity; (3) limited research on the impact of changes in regulatory rules

on slot allocation; (4) lack of consideration of the uncertainties involved in

airport declared capacity assessment; (5) lack of capability to deal with slot

allocation at very congested single airports or airport-network level prob-

lems. Therefore, there is enormous room to improve slot allocation results

by developing more intelligent decision-making frameworks.

1.2 Research Objectives and Scope

My research aims to contribute to airport slot allocation research by better

understanding the real-world slot request data and the features of the prob-

2

lem to develop new models and solution algorithms for single airport slot

allocation problems. My research objectives include three aspects:

• To improve the existing mathematical models of single airport slot allo-

cation problems to support slot coordinators to make better decisions,

such as rejecting slot requests, implementing different slot allocation

priority regimes and flexible slot allocation.

• To develop faster solution algorithms for the existing slot allocation

models, such as a constructive heuristic to generate feasible solutions

quickly and speed up the solving time of the optimisation solvers.

• To develop solution algorithms for solving large-scale slot allocation

problems, where exact methods are computationally impractical. In

addition, the solution method should also be easy to adapt to different

models and instances. Finally, to investigate the trade-off between

solving the slot allocation model using exact and heuristic methods.

While the research focuses on single airport slot allocation problems, the

research outcomes are also helpful for solving network-wide airport slot allo-

cation problems. A constructive heuristic, for example, can provide feasible

solutions for each airport in an airport network in a short time.

1.3 Contributions of this Thesis

The main contributions can be summarised as follows:

• An analysis of the real-world airport slot request data, investigating

the underlying properties of the problem being solved and the complex

interactions between the key component of the model (Chapter 3).

3

• Development of a new Single Airport Slot Allocation model with con-

sideration of slot Rejections (SASA-R). This is the first investigation

of slot rejections under different maximum displacement thresholds

(Chapter 4).

• Development of a greedy constructive heuristic which can generate

feasible solutions to the SASA-R model quickly (Chapter 5).

• Development of a self-adaptive improvement heuristic based on the

large neighbourhood search algorithm with a novel related destroy op-

erator. The results show high-quality solutions can be obtained within

a few hours for the tested instance, while a commercial optimisation

solver does not return a feasible solution after three days of computa-

tion (Chapter 5).

• Development of a flexible slot allocation model which allocates a series

of slots individually on different days of the week and the time differ-

ence of slots can be controlled. The model provides a trade-off between

schedule regularity and schedule flexibility. The flexible scheduler can

significantly reduce the number of rejected slots and schedule displace-

ment in lower priority classes (Chapter 6).

1.4 Publications

During the development of this thesis, one publication was produced. It is

related to the work presented in Section 5.2 in Chapter 5.

• S. Wang, J. H. Drake, J. Fairbrother and J. R. Woodward, “A Con-

structive Heuristic Approach for Single Airport Slot Allocation Prob-

lems,” 2019 IEEE Symposium Series on Computational Intelligence

4

(SSCI), 2019, pp. 1171-1178, doi: 10.1109/SSCI44817.2019.9002892.

One manuscript was submitted to Evo*2023 (Evostar 2023). It is related

to the work presented in Section 5.2 in Chapter 5.

• D. Melder, J. H. Drake, S. Wang,“An Evolutionary Hyper-Heuristic

for Airport Slot Allocation”.

Two manuscripts are in preparation for submission to the Transportation

Science journal.

• Chapter 3

D. Melder, S. Wang, J. H. Drake, “An analysis of real-world airport

slot allocation problems”, (2022). Manuscript in preparation.

• Chapter 5

S. Wang, J. H. Drake, J. R. Woodward,“An adaptive large neighbour-

hood search heuristic for solving large-scale slot allocation problems”,

(2022). Manuscript in preparation.

1.5 Structure of the Thesis

The main body of this thesis is organised as follows: Chapter 2 provides

an overview of the latest slot allocation guidelines and reviews existing re-

search on slot allocation problems for both single airport and airport net-

works. In addition, related research areas and solution methodologies are

reviewed. In chapter 3, three real-world slot request data sets are analysed.

The results provide insights into the variation of slot demand at different

coordinated airports. Chapter 4 proposes a new single airport slot alloca-

tion model (SASA-R), which considers slot rejections under the maximum

allowable slot displacement threshold. The model is then used to investigate

5

the possible changes to the current slot allocation rules. Chapter 5 proposes

a two-stage solution method to solve the SASA-R model. It consists of a

greedy constructive heuristic and an adaptive large neighbourhood search

improvement heuristic. Chapter 6 presents a new flexible slot allocation

model (flexible scheduler). The solution obtained from this model can pro-

vide a better trade-off between schedule regularity and flexibility. Finally,

the thesis ends with a summary of key results and future work in Chapter

7.

6

Chapter 2

Background and Related

Work

This chapter provides an overview of the Worldwide Airport Slot Guidelines

(WASG)(WASG, 2020) and a critical review of existing literature on single

airport and airport network-wide slot allocation problems. In addition, we

give a brief review of the related research areas and solution methodolo-

gies. The limitations of the existing literature are discussed throughout this

chapter, and future research needs are summarised at the end.

2.1 Overview of theWorldwide Airport Slot Guide-

lines

The Worldwide Airport Slot Guidelines work as the industry standard for

strategic slot coordination at capacity-constrained airports, also known as

Level 3 airports, where the airport capacity is insufficient to meet the de-

mand of airlines and other air carriers. The latest WASG was published by

the International Air Transport Association (IATA), Airports Council In-

7

ternational, and the Worldwide Airport Coordinators Group in June 2020.

These guidelines are produced jointly by airports, airlines, and slot coordi-

nators and revised regularly to reflect the proven best practice of the slot

coordination procedure. The following sections will discuss slot allocation

policy, process, priority precedence, and other regulatory requirements.

2.1.1 General policies of slot allocation

The prime objective of slot coordination is to ensure the most efficient man-

agement and allocation of airport slots to maximise benefits to air passengers

while considering the interests of airports and airlines. Hence, these guide-

lines are developed to ensure reliable, consistent, and flexible schedules to

meet consumers’ demands. Meanwhile, slots at congested airports should

be allocated openly, fairly, transparently, and non-discriminatory by the in-

dependent slot coordinator appointed for each airport.

2.1.2 Slot allocation process

The strategic slot allocation is conducted twice a year for the summer or

winter scheduling seasons. Due to seasonal travel demands, some airports

are only slot coordinated for the summer or winter scheduling season. The

slot allocation process follows the coordination timetable (Chapter 10 in

WASG (2020)). Fig. 2.1 gives an example of the ‘Calendar of Coordination

Activities’ for the summer scheduling season of 2019. Below are the key

dates and activities of the slot allocation process:

• Slot Historics List (SHL): More than six months before the start of the

upcoming scheduling season, slot coordinators review airlines’ utilisa-

tion of slots in the previous equivalent seasons (e.g., winter to winter)

8

Figure 2.1: Calendar of Coordination Activities

to identify slots that are qualified for the historic precedence for the

next scheduling season.

• Agreed Historics Deadline: Once they receive the SHL messages, air-

lines must confirm their precedence status by the Agreed Historics

Deadline. Any disagreement regarding the status of historic prece-

dence must be resolved with slot coordinators before the Initial Sub-

mission Deadline.

• Confirm coordination parameters and declared capacities: One to two

weeks before the Initial Submission Deadline, airports must provide co-

ordinators with final coordination parameters for the next scheduling

season. Coordination parameters consist of all functional limitations

at the airport (i.e., runway, terminal, and apron capacities), airspace

capacities, and actual utilisation of airport declared capacity of the

busiest week of the previous equivalent seasons.

• Initial Submission Deadline: About five to six months before the start

of the next scheduling season, airlines submit their slot requests for

their planned services to slot coordinators. Descriptions of slot re-

quests will be given in Section 3.1.

• Slot preliminary Allocation List (SAL) Deadline: The initial slot allo-

cation is conducted between the Initial Submission Deadline and the

SAL Deadline. Within this time frame, usually 2 to 3 weeks, slots

9

are allocated at each airport independently. All airlines are informed

about their allocated slots at the same time, about two weeks prior to

the start of the slot conference. If the initial demand for slots exceeds

the capacity limit available for allocation, a ‘No slot’ waitlist is created

to hold rejected slots.

• Slot conference (SC): The initial slot allocation result will be discussed

at the slot conference, which is attended by airline representatives,

slot coordinators, airport representatives and observers. Airports can

request new slots or make adjustments to their allocated slots in order

to improve their schedules. Slots can also be exchanged or transferred

between airlines. In addition, the cancellation of unwanted slots is

encouraged to improve the resource utilisation rate and slot allocation

efficiency.

• Series Return Deadline: Airlines must return a series of slots they do

not intend to operate by this deadline to give coordinators sufficient

time to replace them with other series of slots or slots for ad hoc slot

services on the waitlist.

• Historics Baseline Date: It is the start date used for determining eli-

gibility for historic precedence for the following scheduling season. All

cancellations made after this date are considered slot misuse in the

80% utilisation rate calculation for the historic precedence

2.1.3 Slot allocation rules

The initial slot allocation only concerns slots for series services. Series ser-

vices refer to a regular flight operating for at least five weeks for the same

time on the same day of the week in the same scheduling season. Services

10

shorter than five weeks are regarded as ad hoc slot services and not assigned

any slots in the initial allocation stage.

Precedence rules for slot allocation

According to the latest slot allocation rules (WASG (2020) section 8.1),

when allocating slots, the following slot precedence must be observed.

• Unchanged historic slots: Slot allocation goes first to unchanged his-

torical slots. They have not changed operations from the previous

equivalent seasons or have changes that do not impact the coordina-

tion parameters (e.g., a change in flight number). We refer to these

slots as historic slots herein. In order to qualify for the historic prece-

dence, also known as the ‘grandfather rights’, airlines must use at least

80% of the series of historic slots in the previous equivalent seasons so

that they can have the same slots for the next scheduling season.

• Slot pool: Once all historic slots have been allocated, a slot pool will

be established to hold the remaining available slots for the following:

i) Change-to-historic slots are slots with changes to historical slots

that impact the coordination parameters (e.g., a change in flight time,

aircraft or terminal); ii) New entrants carriers can request for no more

than six slots (for three pairs of arrival and departure flight move-

ments) on any day of the scheduling season. New entrants that are

offered slots within one hour before or after the requested slots but

do not accept this offer by the end of the first day of the slot con-

ference day will no longer be eligible for the new entrants status; iii)

Others are the remaining slots requested by non-new-entrant carriers

for additional slots to the ones they already hold or by carriers who

lost their historical slots.

11

• The 50/50 rule: 50% of the slots in the slot pool must be allocated

to New entrants and the other 50% to Others unless requests in such

class are less than 50%.

It should be emphasised that the latest slot allocation priority rules differ

from those of the previous guidelines, where slots are allocated hierarchically

in the order of Historic, Change-to-historic, New entrants and Others. Ac-

cording to the latest slot allocation rules (WASG (2020) section 8.1), after

allocating all Historic slots, Change-to-historic, New entrants and Others

slots must be allocated holistically and fairly. That is, these three priority

classes should compete for available slots in the slot pool at the same time

and be processed as a single batch.

Apart from the four primary priority classes, several additional criteria

can be used for ‘tie-breaking’ purposes when allocating slots with the same

precedence. Consideration should be given to the following factors in no

particular order: year-round operations, the effective period of operation,

aircraft size, connectivity, operational factors, type of consumer service, and

market.

Other requirements for slot allocation

The following requirements for slot allocation must be considered when mod-

elling the slot allocation problems:

• Schedule regularity: A flight operating for at least five weeks in the

scheduling season must be given a series of slots at the same time of the

day. Unless the airline indicates it is acceptable, coordinators should

not offer different slots on different days of the week to the same flight

(see WASG 10.10.2).

12

• Timing flexibility: Airlines must indicate the time range of slots they

are willing to accept by specifying the TFI in their submitted requests.

If the requested slots are unavailable, coordinators must offer slots be-

tween the requested slots and the historical slots or within any timing

flexibility range indicated by the airline.

• Turnaround times: Turnaround operations are the activities conducted

for preparing an inbound aircraft for its next outbound flight. The

requested turnaround time refers to the time difference between a pair

of slots requested for the arrival and departure flights operated by the

same aircraft. Coordinators must not offer inconsistent turnaround

times of the requested turnaround time while respecting minimum

turnaround times and avoiding any increase in turnaround times.

2.2 Single Airport Slot Allocation Problems

The single airport slot allocation problem can be considered as an extension

of the Multi-Resource Generalised Assignment Problem (MRGAP) (Gavish

and Pirkul, 1991), which involves allocating a number of slots to a number of

airlines’ requests, with the aim of either maximising the airlines’ preferences

and/or being fair to all airlines. Meanwhile, various types of constraints

must be satisfied. In this section, we will first review the problem constraints

in Section 2.2.1 and the optimisation objectives in Section 2.2.2. After this,

we will provide a literature review of the single airport slot allocation model

and solution approaches in Section 2.2.3 and Section 2.2.4.

13

2.2.1 Constraints

Table 2.1 provides an overview of the constraints of single airport slot allo-

cation problems considered in the existing literature.

Table 2.1: Constraints for single airport slot allocation problems: (1)Run-
way; (2)Apron; (3)Terminal Passengers; (4)Turnaround time; (5)Slot pref-
erences; (6)Accessibility

Literature (1) (2) (3) (4) (5) (6)

Zografos et al. (2012) ✓ ✓

Zografos and Jiang (2016) ✓ ✓ ✓

Zografos et al. (2018) ✓ ✓ ✓

Ribeiro et al. (2018) ✓ ✓

Ribeiro et al. (2019b) ✓ ✓ ✓ ✓

Ribeiro et al. (2019a) ✓ ✓ ✓ ✓

Zografos and Jiang (2019) ✓ ✓

Wang et al. (2019) ✓ ✓

Androutsopoulos et al. (2020) ✓ ✓

Fairbrother et al. (2020) ✓ ✓ ✓

Fairbrother and Zografos (2021) ✓ ✓

Jiang and Zografos (2021) ✓ ✓

Jorge et al. (2021) ✓ ✓

Katsigiannis and Zografos (2021) ✓ ✓ ✓ ✓ ✓

Katsigiannis et al. (2021) ✓ ✓

(1) Runway capacity

Airport runway capacity represents the primary resource of an airport. The

declared runway capacity describes the number of aircraft movements (land-

ing or take-off) that can be accommodated during a specific period, in other

words, the number of slots available for slot allocation. The declared runway

capacity can be fixed for a day or the entire scheduling season or varying for

periods such as peak hours, weekends or holidays (Ribeiro et al., 2019b). In

addition, there can be individual capacities for different types of movements.

14

However, due to the concentration of slot demand during the most popu-

lar periods, the runway capacity is typically expressed in a rolling capacity

form. For example, there can be limits on the number of slots available for

arrivals per hour, rolling every 15 minutes (e.g., 9:00-10:00, 9:15-10:15, etc.).

(2) Apron capacity

At some airports, the capacity of apron stands has created a bottleneck in the

airport capacity. Katsigiannis and Zografos (2021) and Ribeiro et al. (2019b)

have taken this into account by limiting the number of parked aircraft of a

specific type (light, medium, heavy) at a terminal during a fixed period of

a day or rolling time horizons.

(3) Terminal passenger capacity

Slots available for allocation may be limited by the terminal’s passenger

capacity, which is affected by several factors, including passenger types

(Schengen/Non-Schengen, Domestic/International, etc.) and aircraft move-

ment types (arrival or departure). Katsigiannis and Zografos (2021) consid-

ered the terminal passenger capacity in the form of rolling time horizons of

a day, and Ribeiro et al. (2019b) used a fixed passenger capacity for each

day.

(4) Turnaround times

Minimum turnaround time constraints ensure that an inbound aircraft has

sufficient time to be prepared for its next outbound flight. The minimum

turnaround time for low-cost flights is typically 30 minutes and an hour

and a half for large aircraft and premium airlines. Due to operating costs

and environmental impact, coordinators should avoid offering a pair of slots

15

with an increase in the requested turnaround times. However, only a few

studies considered the upper limit for the turnaround time. Katsigiannis

and Zografos (2021) limits the turnaround time for each pair of flights to

the requested turnaround time. Ribeiro et al. (2018, 2019b) investigated

the trade-off between the schedule displacement and changes in requested

turnaround times. Results suggested that allowing a 5-minute change in

the requested turnaround time can significantly reduce the total schedule

displacement.

(5) Airline slot preferences

Airline slot preference constraints are motivated by improving the accept-

ability and utilisation of slots. In cases where airlines specify the range of

slots they are willing to accept, it is only feasible to offer them slots within

that range. In the absence of airlines’ preferences information, Pellegrini

et al. (2012, 2017) adopted the maximum displacement constraint to limit

the maximum displacement of individual slots. Zografos et al. (2018) simu-

lated airlines’ tolerance for a given maximum displacement and minimised

the number of violated assignments. Katsigiannis and Zografos (2021) con-

structed artificial slot flexibility range parameters for requests with differ-

ent priorities and proposed a membership function that penalises large slot

displacement. Finally, Fairbrother et al. (2020) developed a slot exchange

mechanism which allows airlines to specify preferences in a flexible manner

subject to a displacement budget.

(6) Airport accessibility

The airport accessibility constraints ensure that a minimum number of slots

must be allocated to flights connecting small, remotely located airports with

16

major hub airports. This constraint has only been considered in Zografos

and Jiang (2016).

2.2.2 Objectives

The results of slot allocation are measured by schedule efficiency and sched-

ule fairness. Many previous studies have focused on improving schedule

efficiency through minimising the schedule displacement, while some other

research have simultaneously considered schedule fairness. Only a few pa-

pers in the literature (Zografos et al., 2012; Fairbrother and Zografos, 2021)

considered one objective for the problem, more studies have considered mul-

tiple objectives. Table 2.2 provides an overview of the different objectives

considered in the existing literature.

Table 2.2: Optimisation objectives for single airport slot allocation prob-
lems: to minimise (1)rejected requests; (2)rejected slots; (3)maximum
displacement; (4) schedule displacement; (5)displaced slots; to maximise
(6)inter-airline fairness

(1)/(2) (3) (4) (5) (6)

Zografos et al. (2012) ✓

Zografos and Jiang (2016) ✓ ✓

Zografos et al. (2018) ✓ ✓

Ribeiro et al. (2018) ✓ ✓ ✓ ✓

Ribeiro et al. (2019b) ✓ ✓ ✓

Ribeiro et al. (2019a) ✓ ✓

Zografos and Jiang (2019) ✓ ✓

Androutsopoulos et al. (2020) ✓ ✓

Fairbrother et al. (2020) ✓ ✓

Fairbrother and Zografos (2021) ✓

Jiang and Zografos (2021) ✓ ✓

Jorge et al. (2021) ✓ ✓ ✓ ✓

Katsigiannis et al. (2021) ✓ ✓ ✓

Katsigiannis and Zografos (2021) ✓ ✓ ✓

17

(1) Minimising the number of rejected requests

The number of rejected requests was modelled as a minimisation objective

in Katsigiannis and Zografos (2021) model.

(2) Minimising the number of rejected slots

This objective concerns the number of rejected slots rather than the number

of requests. A request typically consists of a group of slots on different days

of the season. All slots in the same request must be allocated or rejected at

the same time (Ribeiro et al., 2018; Jorge et al., 2021).

(3) Minimising the maximum displacement

The displacement of an individual slot refers to the absolute time differ-

ence between the time of the requested and allocated slots. The maximum

displacement indicates the worst case of displacement across all slots or

requests, as all slots submitted in the same request will have the same dis-

placement. Therefore, minimising the maximum displacement will improve

schedule acceptability and inter-flight fairness.

(4) Minimising the schedule displacement

Schedule displacement is the sum of the displacement of all slots, and it

is the most common metric to quantify schedule efficiency. However, An-

droutsopoulos et al. (2020) argues that large slot displacement should be

penalised over small displacement. Thus, they proposed a squared schedule

displacement cost function, in which the displacement of each slot equals the

square of the absolute time difference between the allocated and requested

slots.

18

(5) Minimising the number of displaced slots

Airlines may be offered displaced slots when their requested slots are not

available. They have a chance to reject the offer or negotiate with slot

coordinators during the slot conference. This objective is motivated by

the consideration of improving slot acceptability to simplify the negotiation

process during the slot conference (Ribeiro et al., 2018).

(6) Maximising schedule fairness

In addition to schedule efficiency, fairness is an essential criterion for slot

allocation outcomes and has recently been extensively studied in the litera-

ture. The inter-flight fairness measures seek to distribute schedule displace-

ment fairly among flights (e.g., to minimise the maximum displacement of

all slots). The inter-airline fairness measures seek to distribute schedule

displacement fairly among airlines based on their demand for slots or con-

tribution to the congestion Jiang and Zografos (2021); Fairbrother et al.

(2020).

In addition to the above objectives, Jorge et al. (2021) proposed several

new objectives according to the additional principles of slot allocation in

the WASG, such as minimising the schedule displacement for long operation

duration services or long-haul flights.

2.2.3 Review of existing models

Single airport slot allocation problems have been modelled as Integer Linear

Programming (ILP) in the literature. To our knowledge, Zografos et al.

(2012) proposed the first model for this problem with a single objective to

minimise the schedule displacement. The model was solved for three small

to medium-sized coordinated airports using an exact method and a row-

19

generation algorithm. Results suggested that the schedule displacement can

be reduced by between 14% and 95% compared to the slot allocation result

made by slot coordinators.

This model was later extended by Zografos and Jiang (2016) to incorpo-

rate schedule fairness objectives. The objectives are to minimise the schedule

displacement and maximise schedule fairness, considering airport accessibil-

ity. First, the schedule displacement is weighted by aircraft seat number

and flight distance. Next, a relative fairness indicator is calculated for each

airline, which is the ratio of the proportion of displacement allocated to this

airline to the number of slots requested by this airline. The fairness objec-

tive is to minimise the variance of relative fairness for all airlines. Finally,

airport accessibility was incorporated to ensure sufficient slots are allocated

to flights connecting a small local airport to a hub airport. Zografos and

Jiang (2019) developed and solved a bi-objective model which minimises the

schedule displacement and the maximum deviation of the fairness indicator

for all airlines from the average. This model was solved hierarchically using

the ϵ-constraint method and a row generation approach developed by Zo-

grafos et al. (2012). Results showed that there is a trade-off between schedule

fairness and schedule displacement. However, the proposed fairness metric

could potentially result in a large displacement to airlines that requested

more slots, thus not considered fair to established airlines. Recently, Jiang

and Zografos (2021) investigated three inter-airline fairness metrics: abso-

lute, relative, and the Gini index. Each fairness metric was combined with

the schedule displacement objective, resulting in three different bi-objective

models. The ϵ-constraint method was used to solve the bi-objectives mod-

els and generate efficient Pareto frontiers for alternative fairness objectives.

After this, a voting mechanism based on the majority rule was used by

20

airlines to decide the preferable Pareto frontier. Then the slot coordinator

selects the preferable acceptable solution on the preferable frontier. Results

suggested that the model with the relative fairness metric yields the best

solution. However, the preferable acceptable solution depends significantly

on the relative weights of schedule displacement and fairness objectives set

by airlines and slot coordinators.

Ribeiro et al. (2018) proposed a novel multi-objective Priority-based Slot

Allocation Model (PSAM) which captured all the primary slot allocation re-

quirements of the guidelines. The model adopted a weighted-based objective

function that considered four factors with decreasing weights: the number

of rejected slots, maximum displacement, total schedule displacement and

the number of displaced slots. A lexicographic approach was employed to

solve the model sequentially for each slot priority. Results showed that

the developed modelling and formulation strengthening approach could pro-

vide optimal solutions for a medium-sized airport examined in a few min-

utes. However, the solving time of the model was considered sensitive to the

weights of the different objectives.

Ribeiro et al. (2019b) extended the previous model to a new model

PSAM-ATR that incorporates apron and terminal capacity and ignores the

number of rejected slots objective. In addition, a weight-based approach is

used to integrate slot priorities. Results suggested that PSAM-ATR can be

solved optimally or near-optimally at a very busy airport (more than 200,000

flight movements per year) in a few hours of computation. Most importantly,

the most significant contribution of this research is that it examined several

potential changes to the current slot allocation rules. The changes include

flexibility in setting the turnaround time, considering the impact of displace-

ment on passengers, slot time flexibility for historical slots, weighted priori-

21

ties, prioritising new-entrant slots over change-to-historic slots, relaxation of

schedule regularity constraints and adjusting the airport’s declared capacity.

Results showed that minor adjustments to the rules could significantly im-

prove airport capacity utilisation and to better meet airlines’ needs. Ribeiro

et al. (2019a) proposed a novel mat-heuristic solution approach based on

large-scale neighbourhood search to solve the model previously presented in

Ribeiro et al. (2019b). The details of this algorithm will be discussed later

in 2.2.4. Results suggested that solutions can be found to be within 2-5% of

the optimum after 30 minutes and within 0-0.03% of the optimum after 10

hours of computation. In contrast, with a commercial solver, the optimality

gap was 5-10% after two days and 0.5-2% after 7 days. The result looks

promising for dealing with the busiest airports such as the tested Lisbon

Airport with over 200,000 annual flight movements.

Jorge et al. (2021) also extended the PSAM to integrate priorities for

year-round operations. Nine optimisation objectives associated with the

WASG additional criteria (see 2.1.3) were formulated and replaced previous

objectives of the PSAM. Due to the computational time limit, the solution

generation aimed at finding a good set of efficient solutions instead of the

Pareto frontier. A decision-making tool was also developed to assist coor-

dinators in comparing and analysing different efficient solutions. Moreover,

solutions can be visualised and ranked by the tool. Different solutions with

the same objective function value can be compared by analysing how slot

requests swap across a pair of such solutions and the corresponding displace-

ment of these requests.

Another stream of literature focuses on investigating the trade-off be-

tween different objectives. Zografos et al. (2018) proposed and solved a bi-

objective model to investigate the trade-off between schedule displacement

22

and maximum displacement. Results suggested that only a small sacrifice of

schedule displacement could reduce the maximum displacement significantly

and improve the schedule acceptability. Another proposed model allows one

to investigate the trade-off between schedule displacement and the num-

ber of violated slot assignments under various declared capacity levels and

values of maximum acceptable slot displacement (simulated as a constant

parameter for all slots). Findings suggested that tolerating 15 to 30 minutes

of slot displacement can substantially benefit the reduction of both violated

slot assignments and schedule displacement. Findings suggested that tol-

erating 15 to 30 minutes of slot displacement can substantially benefit the

reduction of both violated slot assignments and schedule displacement. An-

droutsopoulos et al. (2020) proposed a bi-objective model to examine the

trade-off between the total schedule displacement and the squared maximum

slot displacement. The underlying motivation is to promote airlines’ accept-

ability and utilisation of allocated slots by penalising largely displaced slots.

The solution approach is a hybrid algorithm based on the Feasibility Pump

heuristic(Fischetti et al., 2005) and Large Neighbourhood Search. Also, new

problem instances have been generated based on real slot request data for a

Greek Regional Airport.

Some other research focused on slot allocation with flexibility. Fair-

brother and Zografos (2021) proposed a new model called segmentation

scheduler. By using this model, slots in different segments of the season

are allocated independently. Meanwhile, the range of slot times on different

segments for each request is limited in order to maintain the desired level

of schedule regularity. In addition, the idea of changing the series threshold

was tested. Results suggested that optimal solutions are not sensitive to the

different segmentation methods but are much more sensitive to the number

23

of segments and the flexibility range parameter. Only a small number of

requests received varying slots across segments. Due to the computational

complexity of this flexible slot allocation model, it has only been solved

for a small coordinated airport. Katsigiannis and Zografos (2021) mod-

elled a flexible slot allocation problem using a Mixed Integer Programming

(MIP) which incorporates airlines’ schedule flexibility preferences and dy-

namic allocation of the runway, terminal’s passenger and apron capacity. A

two-stage solution framework was proposed. In the first stage, the model

is solved without the flexibility to minimise lexicographically the number

of rejected requests, maximum displacement and schedule displacement for

each priority group hierarchically. In the second stage, a Timing Flexibility

Indicator (TFI) model was formulated. A weighted objective function was

employed to minimise the number of requests satisfying airlines’ flexibility

preferences. It is reported that the joint consideration of dynamic alloca-

tion of capacity and TFI improved all schedule quality metrics significantly

and are better than when considering them individually. However, by con-

sidering the TFI, higher priority slots are observed to receive an increased

maximum displacement than lower priority slots.

Androutsopoulos and Madas (2019) extended the basic strategic slot al-

location model to incorporate fairness constraints. The model assumes that

of a fair schedule, the total schedule displacement imposed on each airline

should reflect the additional schedule displacement caused by scheduling

flights of this particular airline. In other words, airlines that plan to oper-

ate more flights during peak hours should be assigned higher displacement

weights. The displacement weighting scheme does not only consider the

number of slots requested per airline and provides a pre-specified displace-

ment share of each airline in the model.

24

Fairbrother et al. (2020) proposed a two-stage slot scheduling mechanism

that incorporates schedule efficiency, fairness and airlines’ preferences. The

mechanism consists of first constructing a fair reference schedule and then

adjusting this using airlines’ displacement preferences. A new demand-based

fairness measure was proposed, which requires that the total displacement

allocated to an airline should be proportionate to its number of requested

slots in peak periods rather than simply the number of requests it makes.

Numerical tests demonstrated that the demand-based fairness approach pro-

vides a better trade-off for schedule displacement versus fairness and requires

less computational time when compared to the non-demand-based fairness

approach. In the second stage, airlines propose preferred displacement for

each of its requests subject to constraints that ensure the total preferred

displacement is at least equal to its allocated displacement in the fair refer-

ence schedule, also referred to as displacement budget. This allows airlines

to redistribute the displacement budget from requests that should be priori-

tised to requests that are not a priority. The proposed approach was tested

using real request data and simulated airline displacement preference data.

Results suggested that schedule fairness can be significantly improved with

only small increases in schedule displacement. In addition, the displacement

budget mechanism seems to be effective in terms of schedule improvements

requested by airlines.

Katsigiannis et al. (2021) proposed another multi-objective formulation.

In this model, three previously proposed objectives were considered: sched-

ule displacement, maximum displacement and demand-based fairness. With

the proposed multi-level solution approach, one can explore the trade-offs

between the objectives of the various slot allocation hierarchies and their

impact on non-hierarchy schedules. The authors also proposed a multi-level

25

solution framework. This approach finds a set of solutions rather than a sin-

gle optimal solution for each level (priority class) and solves the correspond-

ing multi-objective model. Once all priority classes are processed, solutions

for each level will be aggregated to complete solutions and dominated solu-

tions will be filtered out. It was found that allowing for small increases of

the objective value for historic and change-to-historic slots could result in a

more efficient overall schedule and significantly improve the objective value

of the new-entrant and other non-new-entrant requests. However, the com-

putational time for the proposed approach was relatively long even when

solving small-sized problems. Hence, specialised heuristics are required for

solving the multi-level, multi-objective problem at larger airports.

To support the assessment of the potential performance of strategic flight

schedules, Lambelho et al. (2020) proposed an machine-learning based ap-

proach which evaluates a schedule with respect to predicted flight delays

and cancellations six months before flight execution. This research provides

a means to rank strategic schedules and an indication on the potential per-

formance of the IATA guidelines-compliant schedules.

2.2.4 Review of existing solution methods

Incorporating slot priorities

The four primary slot priorities considered in the literature are historic,

change-to-historic, new entrants and others. Slots requested for public ser-

vice obligations are considered as a distinct priority class and was given

the highest priority for slot allocation by Katsigiannis and Zografos (2021).

Within each priority class, Jorge et al. (2021) prioritised year-round op-

erations over single-season operations. Ribeiro et al. (2018) explicitly for-

mulated slot displacement constraints for two different types of change-to-

26

historic slots. Zografos et al. (2018); Zografos and Jiang (2019) allocated

historic and change-to-historic slots as a whole due to a lack of slot pri-

ority information. It is worth mentioning that almost all of the research

reviewed in this chapter was conducted before the latest WASG was re-

leased, in which change-to-historic, new-entrants and others are required to

be allocated holistically with equal priority. Thus, the existing slot alloca-

tion models may not reflect the latest priority rules accurately.

Slot priorities can be incorporated by solving the slot allocation model in

a sequential manner or weighted-based manner. By using the sequential ap-

proach, the model is solved lexicographically (Ribeiro et al., 2018; Zografos

et al., 2012, 2018) or hierarchically (Fairbrother et al., 2020; Fairbrother and

Zografos, 2021; Jiang and Zografos, 2021). Both approaches solve a number

of sub-problems formed by each priority class. In the hierarchical approach,

once the sub-problem for the higher priority class has been solved, the de-

cision variables for the higher priority class are fixed and the remaining

capacity for lower priority classes is updated to maintain solution feasibility.

In the lexicographic approach, once the sub-problem for a higher priority

class has been solved, only the optimal objective function value is fixed and

it is added as a constraint to the sub-models for lower priority classes to

ensure that the slot allocation result remains optimal for the higher priority

class. It is possible that there exists more than one optimal solution for

each priority class, therefore fixing the values of decision variables might

constrain the slot allocation for lower priority classes more than necessary.

Lastly, in the weighted-based approach, the objective function of each pri-

ority class is weighted according to its priority (Ribeiro et al., 2019b). The

advantages of this method are: the model only needed to be solved once

rather than multiple times for each priority class considered, and one can

27

easily examine the impact of revising the order of priorities by assigning

higher weights for slots that needed to be prioritised. Experiment results

showed that the weighted-based approach obtained the same solution as the

sequential approach but in a significantly shorter time.

Dealing with more than one objective

Most existing single airport slot allocation models considered more than

one objective. The optimal (or most preferred) solution for these models is

known as the Pareto optimal solution (also called efficient or non-dominated

solution), whose performance cannot be improved without degrading the

performance of at least one of the other objectives. A Pareto frontier (or

efficient frontier) refers to the set of Pareto optimal solutions (Mavrotas,

2009). Three methods have been used in literature to deal with models with

more than one objective.

The first method is the weighted sum method (Marler and Arora, 2010).

It is the simplest way to transform a multi-objective model into a single

objective model. Ribeiro et al. (2018, 2019b,a) used different weighting pa-

rameters to reflect the relative importance of each objective in the objective

function. By modifying the weights, different solutions on the Pareto opti-

mal frontier can be achieved. However, the major drawback of this method

is that the appropriate weights need to consider all stakeholder’s interests

and be consistent with the slot allocation rules.

The second method used is the ϵ-constraint method, which was first

proposed by Haimes (1971). Specifically, this method selects one of the

objectives to optimise and converts the other(s) into model constraints (Zo-

grafos et al., 2018; Zografos and Jiang, 2019; Jiang and Zografos, 2021).

By systematically adjusting the values of the objective functions not be-

28

ing optimised, one can generate or approximate the Pareto frontier of the

multi-objective model Jorge et al. (2021).

The third method is the lexicographic method, which has also been used

to solve slot allocation models for different priority classes. This method

assumes that the objectives can be ranked in the order of importance and

therefore largely depends on the weights of each objective determined by

decision-makers Katsigiannis and Zografos (2021).

Exact Methods

Exact methods are developed to find the optimal solution to an optimisa-

tion problem. The optimality of the solution can be proved. One of the

exact algorithms, ‘Branch-and-Bound’, was proposed as early as the 1960s

by Land and Doig. It has been widely applied to solve NP-hard problems. In

addition, another exact algorithm ‘Cutting Plane’ works by solving the lin-

ear programming relaxation of the given Integer Linear Programming (i.e.,

discarding the integer constraints). The algorithm iteratively adds linear

inequality constraints, called a cut, that leads to an integer solution with-

out excluding any integer feasible points until an optimal integer solution is

found.

Previous research has shown that for small to medium-sized instances,

the exact method can be a very good strategy as it can possibly find op-

timal solutions in an acceptable amount of time. When solving large-scale

problems (e.g., problems with a large number of decision variables or highly

constrained), exact methods become computationally impractical. Zografos

et al. (2012); Zografos and Jiang (2019) proposed an exact solution ap-

proach that first reduces the number of scheduling days by representing

days having exactly the same slot requests as one single day. Next, a row

29

generation procedure was used to only generate capacity and turnaround

time rows when they are violated by the optimal solution for the linear re-

laxation of the model. Fairbrother et al. (2020); Fairbrother and Zografos

(2021) implemented a similar algorithm in which the capacity constraints are

added as lazy constraints via a callback to the optimisation solver. Results

showed that these solution approaches are only effective when applied to

small to medium-sized airports. However, the performance can be further

improved by using the Reduce-and-Split cut generation (Andersen et al.,

2005). Ribeiro et al. (2018) developed new constraints to restrict the fea-

sible region of the linear relaxation. It was reported that by using this

method, the required computation time was reduced significantly.

Heuristics

A heuristic is considered as any solution approach that employs a practi-

cal method to generate sufficiently good solutions in a reasonable amount

of time, but optimality cannot be guaranteed. Therefore, heuristics are of-

ten employed when the model cannot be solved by exact methods in an

acceptable amount of time. Two types of heuristics exist in the literature:

constructive heuristics and improvement heuristics. Constructive heuristics

aim to construct a complete feasible solution, while improvement heuristics

aim at improving the quality of the feasible solution based on perturbation

algorithms (Pearl, 1984).

Several constructive heuristics have been proposed in the current liter-

ature. Some of them are purely based on heuristics, such as the greedy

constructive heuristic proposed by Wang et al. (2019). This work will be

introduced later in Section 5.2). The approach depends on different request

ordering heuristics, by which requests are ordered according to static metrics

30

or dynamic metrics. A greedy allocation algorithm was developed to allocate

slots to each request with the minimum slot displacement. The allocation

algorithm is similar to the one presented in (Fairbrother and Zografos, 2021).

Fairbrother and Zografos (2021) proposed a constructive heuristic and an

improvement heuristic which iteratively modifies a non-flexible solution to

a flexible solution. Both these approaches can produce feasible solutions in

a very short period of time, but the solution quality is not good enough.

However, it could speed up the solving process of the exact solver therefore

significantly reducing the required computation time. Other constructive

heuristics proposed in the literature are based on matheuristic (i.e., mathe-

matical programming with heuristics) (Boschetti et al., 2009). Ribeiro et al.

(2019a) proposed a group-based constructive heuristic. Firstly, requests are

ordered in decreasing order of operating days. Secondly, requests are divided

into a pre-defined number of groups each having roughly the same number

of slots. Then, the model was solved sequentially for each group by using

an exact solver. Results suggested that the effectiveness of this constructive

heuristic is sensitive to the number of groups. There is a trade-off between

the number of groups and the required computation time. Androutsopou-

los et al. (2020) presented a constructive heuristic based on the Feasibility

Pump (FP) heuristic (Fischetti et al., 2005). Instead of ordering requests

first, all unscheduled requests are selected for scheduling by the roulette

wheel selection mechanism. The selection probability of each request is de-

fined by a regret metric and a remaining capacity metric. The underlying

assumption is that the higher the regret cost and less remaining capacity at

the closest feasible time interval, the higher probability of this request being

scheduled earlier. Note that only a pre-defined number of requests (10%)

are scheduled before the FP is applied. The FP aims to extend the par-

31

tial feasible solution to a complete feasible solution by solving a restricted

version of the model and computes high-quality heuristic solutions.

Only a few improvement heuristics have been developed to deal with

large-scale problems. Ribeiro et al. (2019a) developed an improvement

heuristic based on the Large-scale Neighbourhood Search technique. A ‘de-

stroy and repair’ process was implemented to iteratively re-optimise part of

the current solution. The destroy operator selects a subset of requests that

have been scheduled within a time window. The repair operator then solves

the model only for the selected subset of requests by using an exact solver.

Time windows are selected according to a probabilistic distribution which

will be updated after each iteration. Every time a sub-problem cannot be

solved to optimality or improved within a time limit, this sub-problem is

considered to be computationally intensive or reached to optimality. There-

fore, the number of requests (in the currently selected time window) that will

be selected when this time window is next visited will be reduced by a factor.

Meanwhile, the probability corresponding to this time window will also be

reduced according to a parametric function. If a new optimal solution was

found for the sub-problem, the values of all algorithm parameters remain

unchanged. Experimental tests have demonstrated the benefits of using a

large-scale neighbourhood search approach which allows the flexibility to

swap slots in a larger neighbourhood. However, this algorithm involves a

good amount of calibration parameters and only when each parameter is set

to be around its ‘sweet spot’, the algorithm converges in a reasonable time.

Androutsopoulos et al. (2020) proposed another solution approach based on

the large neighbourhood search. The destroy operator removes a random

percentage of requests at each iteration (20%-40%) and the repair operator

applies the FP heuristic described earlier.

32

2.3 Slot Allocation Problems for Airport Network

Slot allocations are currently done individually at each coordinated airport.

Therefore, it does not explicitly consider the inter-dependencies of slots al-

located to each flight at the origin and destination airports. Several studies

have identified and investigated on allocating slots simultaneously for an

airport network.

2.3.1 Constraints

In order to allocate slots simultaneously and coherently at airports in a

network, additional constraints must be taken into account in addition to

those considered for single airport slot allocation problems 2.1.

Route requirements

A problem with slot allocation at each airport independently can arise when

flights connecting two coordinated airports receive no slot or only receive

slots at the origin or destination airports. Therefore, the flight coherency

constraints must be considered to ensure that two coupled slots of the same

flight at the origin and destination airports must be both allocated or none

of them is allocated (Benlic, 2018; Pellegrini et al., 2012, 2017).

En-route duration requirements

The en-route duration requirements ensure that the time difference of the

coupled slots assigned to a flight connecting two airports must be no longer

than a given limit (Pellegrini et al., 2012) or fixed to the requested time

(Benlic, 2018). In the model proposed by Pellegrini et al. (2017), the block

time (i.e., the total amount of time a flight takes, from leaving the depar-

ture gate, “off-blocks”, to arriving at the destination gate, “on-blocks”) is

33

required to be within a pre-defined time range.

Airspace sectors capacity

Airspace capacity has only been modelled so far by Pellegrini et al. (2012)

which describes the maximum number of aircraft movements per unit of time

interval (typically an hour). It is motivated by achieving a high level of safety

and contributing to the sustainable development of air transportation.

2.3.2 Objectives

Similar to single airport slot allocation models, schedule displacement is

also the most commonly used objective for problems at the airport network

level. Pellegrini et al. (2012, 2017) proposed a model which aims to first

minimise the number of unaccommodated flights and second to minimise

the schedule displacement cost. The displacement cost penalises both slot

displacement and flight duration increase. Meanwhile, displacing slots is

preferred over the increase in flight duration, and displacing one slot by

two time intervals is more expensive than displacing the two slots for two

arrival movements by one time interval each. In addition, Pellegrini et al.

(2017) proposed two models with schedule fairness objectives. One can be

interpreted as minimising the weighted sum of the average costs paid by

airlines and the cost paid by the most penalised airlines. The second model

takes into account airlines’ size. Specifically, the costs of each airline are

normalised by dividing by the number of airline’s requests.

2.3.3 Review of existing models

Castelli et al. (2011b) proposed a mathematical model which considered

the minimisation of schedule displacement cost and schedule fairness simul-

34

taneously. Pellegrini et al. (2012) proposed a model for the Simultaneous

Slot Allocation Problem (SSAP). The model was tested on three randomly

generated instances that assemble airport networks with various numbers of

airports and flights and a hub and spoke structure. However, the model did

not consider slot priorities and was only tested on a single day using artifi-

cial data. Pellegrini et al. (2017) proposed a multi-objective integer linear

programming model named Simultaneous Optimisation of the airport SloT

Allocation (SOSTA) and solved it exactly for a network of 120 European air-

ports on the busiest day of 2013. It is worth mentioning that several model

variants were proposed and tested. For example, the objective function can

be reformulated to a quadratic displacement cost function. Compared to

the model with linear displacement cost, the number of rejected requests

was not changed, and more requests received slots with less displacement.

Two formulations with inter-airline fairness consideration were proposed.

The fairness is measured by first the maximum request rejection cost for all

airlines and second the maximum total schedule displacement cost for all

airlines. Benlic (2018) extended the single airport slot allocation model by

Zografos et al. (2012) to the network level. The model was solved by a two-

phase heuristic approach. Experiments were conducted on a set of artificial

instances. According to the experimental results, taking into account the

en-route constraints does not significantly affect the schedule displacement

compared to allocating slots at each airport independently. Although the

proposed heuristic gives us some confidence in solving large-scale realistic

network-wide slot allocation problems, the generated instances and the pro-

portional extrapolation of declared capacities are oversimplistic so they do

not resemble a real-world problem precisely.

35

2.3.4 Review of existing solution methods

Exact Methods

Pellegrini et al. (2012) introduced the Truncated Integer Linear Program-

ming (TILP) algorithm to solve the slot allocation model for a single day.

It solves the SSAP model in a predetermined computation time and returns

the optimal or the best solution found. Results suggested that TILP could

not deal with large instances containing a realistic number of flights (about

30,000 in a day). It could only deal with small and medium instances (with

650 and 1,000 flights a day respectively) due to a large amount of computa-

tional time and memory requirements.

The SOSTA model (Pellegrini et al., 2017) was tested on an airport

network with 120 airports and 32,655 slot requests on the busiest day in

2013. The proven optimal solution can be found by using a CPLEX solver in

a few minutes. Sensitivity analysis pointed out that the SOSTA model is not

badly affected by the increasing imbalance between demand and capacity,

and does not significantly suffer from different weights of cost functions.

Heuristics

Castelli et al. (2011a) proposed an ant colony algorithm to allocate slots in

an airport network. Results suggested that the algorithm is able to solve

large instances in a short time. Pellegrini et al. (2012) solved the SSAP

model by using two meta-heuristics: Iterated Local Search (ILS) (Lourenço

et al., 2010) and Variable Neighbourhood Search (VNS) (Hansen and Mlade-

nović, 2001). Both are based on two local search procedures, one aims to

minimise the number of rejected flights, and the other one aims to minimise

the scheduling cost of all accommodated flights. To avoid getting stuck in

36

the same locally optimal solution, the ILS relies on perturbing the current

local optimal and iteratively calling the two local search procedures after

starting from the modified solution. In contrast, the VNS explores distant

neighbourhoods of the current solution, and searches from there to a new one

if and only if an improvement is found. Results suggested that VNS works

best on small and medium-sized instances and ILS is the best performing

for large instances. Benlic (2018) developed a two-phase heuristic solution

approach. In the first phase, a constructive heuristic generates an initial

feasible solution with the aim of maximising the number of accommodated

requests. Requests that result in infeasibility are excluded from considera-

tion in the next phase. In the second phase, an iterative heuristic improves

the initial solution in terms of the total schedule displacement by applying a

destroy and repair procedure. Specifically, the constructive heuristic starts

from a partially infeasible solution that contains requests violating one or

more constraints. Then a set of conflicting requests were randomly selected

and rescheduled to new slots. A tabu search-based algorithm was used in

the rescheduling process to prohibit allocating conflicting requests back to

the previously allocated time for the next few iterations. The improvement

heuristic selects a set of displaced requests on a random basis and itera-

tively reschedules them to random slots to improve the solution quality. It

has been demonstrated that the order in which the requests are allocated

is important as it has a big impact on the overall quality and feasibility of

final solutions.

37

2.4 Related Research Area and Solution Method-

ologies

2.4.1 Airport declared capacity modelling

Airport capacity declarations play a fundamental role in slot coordination.

A thorough demand and capacity analysis is essential to assess the slot ca-

pacity declarations and capacity deliverability and should be undertaken

regularly. An underestimation of the declared capacity can prevent air-

lines from accessing additional capacity and slots at their current airports

or expanding into new markets. Overestimated declared capacity means

more flights are scheduled than an airport can accommodate, which will

contribute to a sharp rise in flight delays. Unfortunately, this process is

lacking at multiple airports today (IATA, 2021). A number of research

have been found focusing on developing analytical modelling to appropri-

ately declare airport capacity, and the trade-offs between over-scheduling

and under-scheduling (Barnhart et al., 2012; Ball et al., 2007; Odoni et al.,

2011). In some studies, airport capacity and slot allocation are examined

under stochastic conditions. Corolli et al. (2014) proposed two stochastic

programming models for the airport network slot allocation problem under

uncertainty. Scala et al. (2021) introduced a novel approach that combines

the optimisation and simulation techniques for solving and evaluating a slot

allocation problem under uncertainty.

2.4.2 Integration with other airport operations

The decision of slot allocation can affect the planning decision for other

airport operations, such as crew scheduling, gate assignment and tactical

slot allocation. Crew scheduling refers to the assignment of airport personnel

38

to maintain a schedule so they can meet organisational goals. Once slots

have been assigned to aircraft or flights, a crew scheduler needs to develop a

schedule such as assigning pilots to specific planes with considerations of the

slot allocation solution, employee preferences and personnel cost, etc (Kohl

and Karisch, 2004; Kasirzadeh et al., 2017). Karsu et al. (2021) formulated a

mixed-integer model for the airport gate assignment problem to minimise the

total walking distance of traveling passengers. Jacquillat and Odoni (2015)

proposed an integrated approach to jointly consider strategic slot allocation

efficiency and slot utilisation at the tactical level. Zeng et al. (2021) proposed

a slot allocation mechanism to reduce the operational delay in the strategic

slot allocation phase. The actual operation delay is estimated based on the

historical operation data.

2.4.3 Multi-Resource Generalised Assignment Problem

The airport slot allocation problem studied in this thesis belongs to the

Generalised Assignment Problem (GAP) which deals with assigning a num-

ber of tasks to a number of agents with minimum cost (Ross and Soland,

1975). Each task can only be assigned to one agent, and multiple tasks are

allowed to be assigned to one agent subject to the resource availability of

the agent in performing their tasks. Ross and Zoltners (1979) and Lourenço

and Serra (1998) studied an extension of this problem which is referred to

as the Multi-Resource Generalised Assignment Problem (MRGAP). It con-

siders different types of resources that are required by each agent to perform

each given task.

The assignment problem is a combinatorial optimisation problem with

NP-hard complexity (Sahni and Gonzalez, 1976; Johnson and Garey, 1979).

Many of the assignment problems including the MRGAP are modelled as

39

Integer Linear Programming (ILP). An ILP problem is a mathematical op-

timisation program in which all constraints and the objective function must

be linear in the decision variables, and all the decision variables can only take

integer values. The GAP has applications in many fields including trans-

portation and routing, scheduling, telecommunication, production planning,

supply chain and logistics, facility location, etc. For a survey of GAP vari-

ations and applications see Öncan (2007). Particularly, aviation-related ap-

plications have been found in airline fleet assignment (Barnhart et al., 2002),

crew pairing (Kasirzadeh et al., 2017) and crew rostering problems (Kohl

and Karisch, 2004).

2.4.4 Heuristic solution methodologies

Meta-heuristics

A meta-heuristic is a class of search strategies designed to guide the search

process of a simple heuristic (Burke et al., 2014). Features that distinguish

a meta-heuristic from a simple heuristic are as follows: (i) the framework of

a meta-heuristic can be easily adapted to different optimisation problems,

by virtue of its general nature, and can still meet the expectations of com-

putation time and solution quality. In contrast, most simple heuristics are

problem-dependent as they need to be designed according to the particu-

larities of the problem; (ii) meta-heuristics have the capability to escape

from a perpetual cycle of local optima, while simple heuristics usually adopt

greedy algorithms which make the locally optimal choice at each step, thus

are likely to get trapped in a local optimal solution (Yang, 2010). A selection

of widely used meta-heuristic algorithms is briefly introduced below.

40

• Tabu Search: Tabu search was first introduced by Glover in 1986 and

is motivated by the idea of modelling human memory processes. The

primary feature of tabu search is to constrain an embedded heuristic

from revisiting recently visited areas of the search space by maintain-

ing a ‘tabu list’. The tabu list may record recently visited solutions

that must be avoided or specific move features that are not allowed

for the next search step. This strategy allows the non-improving solu-

tions to be accepted, thereby escaping from locally optimal solutions.

However, the global optimal solution may not always be found, de-

pending on parameter settings such as the size of the tabu list, size of

the neighbourhood, move operator, etc (Gendreau, 2003). Recently,

tabu-based algorithms have been applied to a network-wide slot al-

location problem by Benlic (2018). More applications of tabu search

in aircraft scheduling and assignment problems can be found in the

following papers (Xu and Bailey, 2001; Atkin et al., 2008; Soykan and

Rabadi, 2016)

• Simulated Annealing: Simulated Annealing (SA) was first applied

in combinatorial optimisation by Kirkpatrick et al. in 1983 and is moti-

vated by the similarity between the annealing process of solid materials

and general combinatorial optimisation problems (Osman, 1995). The

search process starts from a random state and picks a random move

at each step. If the selected move improves the quality of the solution,

then it is always accepted as the new current solution. Otherwise, it

is accepted as the new current solution with some probability of less

than 1. The probability decreases exponentially with the degradation

level of the move, which is the amount by which the solution is wors-

ened (Delahaye et al., 2019). SA-based algorithms have been applied

41

to solve many related problems including the airport gate assignment

problem (Ding et al., 2005; Drexl and Nikulin, 2008), aircrew roster-

ing problem (Lučić and Teodorović, 2007) and railway crew scheduling

problem (Hanafi and Kozan, 2014).

• Large Neighbourhood Search: The meta-heuristic Large Neigh-

bourhood Search (LNS) was first proposed by Shaw (1998). Large

neighbourhood search methods explore a complex neighbourhood by

use of heuristics. The neighbourhood of a solution is typically defined

as the set of solutions that can be reached by first applying the destroy

method and then the repair method (Pisinger and Ropke, 2019). A

destroy method destructs part of the current solution while a repair

method rebuilds the destroyed solution. Diversification and inten-

sification are two critical factors for the destroy methods, they can

be accomplished by using random destroy, worst or critical destroy

(Vaz, 2015; Guimarans et al., 2015), related destroy (Shaw, 1998; Pil-

lac et al., 2013; Praseeratasang et al., 2019) and history-based destroy

methods (Pisinger and Ropke, 2007). The repair methods can be based

on well-performing problem-specific heuristics or approximation algo-

rithms or exact algorithms. Some examples are presented in (Bent

and Van Hentenryck, 2004; Raidl and Puchinger, 2008; Hemmelmayr

et al., 2012; Chen et al., 2018).

Genetic Programming

Genetic Programming (GP) is an evolutionary algorithm-based and domain-

independent methodology to automatically find computer programs that

perform user predefined tasks. GP iteratively transforms a population of

computer programs into a new generation of programs by applying mecha-

42

nisms simulating the evolutionary process of natural selection (Koza, 1992).

It has been successfully applied to solve many combinatorial optimisation

problems with the goal of automating the heuristic design process. Some

previous works employed GP as the hyper-heuristic to evolve local search

heuristics ((Burke et al., 2010b; Drake et al., 2014)). An alternative applica-

tion of GP is to evolve a heuristic function, which provides decision-making

support for a specific construction heuristic (Burke et al., 2007b).

Hyper-heuristics

The development of hyper-heuristics is motivated by the goal of automating

the design of heuristic algorithms to solve complex combinatorial optimi-

sations. Hyper-heuristics can be considered as heuristics that select pre-

defined low-level heuristics or generate new heuristics rather than searching

for solutions directly. No single heuristic performs well in all respects. For

some problem instances, simple heuristics cannot provide feasible solutions

(Ross et al., 2002), or during the solution construction process, the state of

the problem change so the heuristic in use might become less appropriate

than another heuristic for the current problem state (Burke et al., 2007b).

Hence, hyper-heuristic selection approaches are considered good strategies

for intelligently selecting potential combinations or permutations of low-level

heuristics.

According to Burke et al. (2010a), hyper-heuristics can be classified into

two categories: heuristic selection and heuristic generation. Within each

category, hyper-heuristics can be further classified as constructive or im-

provement hyper-heuristics in terms of the low-level heuristics employed.

Recently, there are many successful studies in the literature which imple-

mented hyper-heuristics. However, no previous work in the literature has

43

used hyper-heuristic approaches to solve the airport slot allocation prob-

lem. Examples of selection hyper-heuristics can be found in (Burke et al.,

2007b) which investigated a hyper-heuristic selection framework for exam

and course timetabling problems. More recently, Pour et al. (2018) employed

a choice function hyper-heuristic framework for a maintenance task alloca-

tion problem. Examples based on hyper-heuristic generation can be found

in (Burke et al., 2010b) which employed genetic programming to evolve 2-D

strip packing heuristics. Drake et al. (2014) introduced a hyper-heuristic

generation approach based on genetic programming for the knapsack prob-

lem.

Both simple heuristics and meta-heuristics can be used as high-level

heuristics to select the most suitable low-level heuristic at each decision

point. For example, tabu search can be used as the high-level heuristic to

search for permutations of low-level heuristics in order to avoid repeating

the trivial search. However, Iterated Local Search (ILS) and Variable Neigh-

bourhood Search (VNS) are considered more effective than tabu search in

terms of traversing the search space of heuristics (Burke et al., 2010a). In

addition, early choices in the solution construction process affect later deci-

sions, which means that low-level heuristics selected at the beginning have a

greater impact on the overall quality of the solution (Qu and Burke, 2009).

In summary, given a set of low-level construction heuristics, hyper-heuristics

approaches can be developed based on the following four aspects to (1) ran-

domly select low-level heuristics or generate random lists of low-level heuris-

tics, (2) select the best performing low-level heuristic at each step based on

preliminary evaluation of low-level heuristics, (3) search a space of low-level

heuristics based on meta-heuristics, e.g., tabu search, simulated annealing

algorithm and (4) select low-level heuristics based on learning mechanisms

44

which take into account the historical performances of low-level heuristics

(Chakhlevitch and Cowling, 2008).

2.5 Future research needs

Previous research has shown that airport slot allocation outcomes can be

improved in many aspects. Since the main focus of this study is to enhance

the decision support system for single airport slot allocation, we will discuss

the future research needs on this aspect.

Slot rejection needs to be further investigated. At super congested

airports, slot coordinators may reject some of the requests or put them on

a waitlist when developing the initial slot allocation plan. This waitlist is

then used for replacing any cancelled flights and returned request series. The

current slot allocation regulations lack decision support for request rejection

and slot reallocation. Only a few studies have considered minimising the

number of rejected slots, but no requests were reported to be rejected in

the existing literature. Fairbrother et al. (2020) raised the issue of fair

distribution of rejections to airlines. This is a potential research direction

that needs attention. In chapter 4, we investigate slot rejections due to

unacceptable large slot displacement.

Priority of slot allocation. Incorporating different slot allocation

priority rules affects both the modelling of the problem and the solution

algorithm. The recently reformed regulations have stressed the importance

of holistic slot allocation to further promote airline competition. Future

research needs to provide more insight into this issue Odoni (2021). In

chapter 4, we compare the holistic slot allocation with the hierarchic slot

allocation and discuss the impact of the change of the rules on the slot

allocation results.

45

Heuristics are needed to enhance the capability of existing

slot allocation models. Almost all previous works have addressed the

need to develop faster algorithms for solving the slot allocation problem at

large airports. To our knowledge, Ribeiro et al. (2019a) proposed the only

matheuristic solution method based on the large neighbourhood search to

solve large-scale problems. In chapter 5, we propose a two-stage solution

approach including a greedy constructive heuristic and an adaptive large

neighbourhood search heuristic to enhance the model’s capability to solve

large-scale problems.

Flexible slot allocation needs to be further investigated. To-

ward improving the flexibility and efficiency of slot allocation, more research

should be conducted on slot allocation mechanisms in the future. In chapter

6, we investigate the trade-off between schedule regularity and flexibility by

using a newly proposed model.

46

Chapter 3

A Data Analysis of

Real-world Slot Requests

Real-World slot request data is crucial in the research of slot allocation for

better understanding actual airport slot demand, developing realistic slot

allocation models, and validating proposed models and solution algorithms.

Although significant research attention has been dedicated to solving slot al-

location problems, relatively little work so far has sought to characterise and

understand the underlying properties of the problem being solved. There-

fore, this chapter presents an analysis of the real-world slot request data

from three small and medium-sized coordinated airports.

The remainder of this chapter is as follows, we first introduce the key

components of airlines’ slot requests in Section 3.1. Section 3.2 provides

in-depth data analysis of the airport slot demand patterns, exploring the

relationships across different airports. Finally, in Section 3.3 we study the

demand-capacity imbalance at each airport to better understand the under-

lying properties of the problem being solved.

47

3.1 Introduction of Slot Requests

In this section, we describe the components of a typical slot request provided

by an airline to the slot coordinator. Table 3.1 shows an example of slot

requests submitted by an arbitrary airline for the summer season of an

arbitrary year. Each request is identified by a unique request code, and it

typically includes two groups of slots, each group is for a series of arrival

or departure flight movements. Note that two slots are required per flight

operation, one for take-off and one for landing.

The summer season starts on the last Sunday in March and continues

through to the Saturday of the last weekend in October. The ‘startDate’ and

‘endDate’ indicate the first and last planned operation day. The action code

(column ‘AC’) indicates the type of operation, which also shows the priority

of slot allocation. There are four primary priority classes: Historic (H),

Change-to-historic (CH), New entrants (NE) and Others (OT). The oper-

ating days requested in a week are indicated by a 7 digits sequence ‘Wdays’.

For example, 1234500 represents Monday to Friday. The frequency indicator

‘ReqFreq’ indicates how often the operation will be carried out, for exam-

ple, a 2 indicates once every two weeks. The requested arrival and departure

time (‘ReqArr’ and ‘ReqDep’) is represented by 4 digits in 24-hour format.

The overnight indicator ‘OV’ is a binary variable indicating whether or not

the departure flight takes place on the same day as the arrival. The aircraft

type and its seat number are provided in ‘Aircraft’ and ‘Seats’. Finally,

the origin, previous, next and final destination airport associated with each

request is provided in the last four columns. For further information on

the data contained in a slot request file, interested readers are referred to

the Standard Schedules Information Manual (SSIM) documentation (IATA

et al., 2020).

48

Table 3.1: Example of slot requests provided by airlines

Req code Airline startDate endDate AC Wdays ReqFreq ReqArr ReqDep OV

a1 0001 AIR 1 25MAY 02OCT NE 1000000 2 0800 0830 False

a1 0002 AIR 1 25MAY 01SEP H 1234000 1 1400 1500 False

Req code ArrFlight DepFlight Aircraft Seats Origin Last Next Destination -

a1 0001 5541 5542 319 150 VIE VIE VIE VIE -

a1 0002 4302 4303 738 186 DUS DUS PAD PAD -

A number of attributes can be derived from the original requests to pro-

vide more insights into the characteristics of slot demand at an airport, as

demonstrated in Table 3.2. Firstly, the requested arrival and departure time

(‘ReqArr’ and ‘ReqDep’) are converted to time interval indexes using this

equation: time interval index= hour ∗ 60/ct + minute/ct, where ct is the

length of coordination time interval of the slot coordinated airport. The

index is then rounded down to the nearest integer. Secondly, the number

of operating days in a week ‘NWdays’ is derived directly from the operat-

ing days ‘Wdays’. Thirdly, the start date, end date and frequency together

determine the total number of operating weeks in the season ‘Nweeks’. In

addition, weeks in the season are indexed sequentially from 1 to 30. Thus,

‘startWeek’ indicates the index of the first operation week. Fourthly, ‘Ndays’

indicates the total number of operating days in the season, which equals half

of the total number of slots ‘Nslots’ for a given request. Finally, ‘reqTurn’

represents the requested turnaround time which is the time difference be-

tween the requested departure and arrival time.

3.2 Statistical Analysis of Airport Attributes

In this section, we present a summary of the characteristics of the three

real-world airports (Airport 1, 2, and 3), based on attributes calculated as

described in Section 3.1 above. We analyse the demand patterns throughout

49

Table 3.2: Slot request attribute details

Attributes Example Variable type Descriptions

reqCode 2009-A1-001 string unique request ID

priority H categorical request priority

airline air 001 string airline code

startDate 2009-03-29 date first operation day

endDate 2009-05-29 date last operation day

daySplit 0 binary overnight indicator

ReqFreq 1 integer frequency of operations

reqArr 34 integer arrival slot index

reqDep 38 integer departure slot index

Wdays [0,3,4] list list of operating days

NWdays 3 integer operating days

Nweeks 30 integer number of operating weeks

startWeek 4 integer start week index

Ndays 90 integer total operating days of the season

reqTurn 4 integer requested turnaround time

the season, first aggregated by days, then split by day of the week. We then

examine the frequencies in terms of the number of operating days in a week,

total operation weeks and total operating days. Following this, we look

at the request priorities, presenting the breakdown of requests with regard

to slot precedence. Next, we present and discuss the time distribution of

flight operations throughout the day and the turnaround time distribution.

Finally, we look at the associations between key attributes of slot requests.

Table 3.3 provides an overview of the request data from three real-world

data sets initially presented by Zografos et al. (2012). Although the three

airports can be considered small or medium-sized in terms of the annual

number of flights and passengers, they were all categorised as coordinated

airports by IATA as the demand for slots significantly exceeds the capacity

50

of these airports. In addition to the number of airlines, airlines’ requests

and requested slots, we also show the number of distinct scheduling days.

Zografos et al. (2012) noted that some calendar days have identical sets of

operations, which can be represented by a single day to simplify the model.

However, this case seems to occur very rarely in the three data sets given

that the total scheduling days in the season is 210 days.

Table 3.3: Summary of request data sets from the three real-world airports

Airport Airlines Requests Slots Scheduling days Passengers for the season (million)

1 44 449 15,386 179 1.30

2 80 932 34,714 201 5.41

3 80 1,087 47,676 204 8.74

3.2.1 Slot demand characteristics

Figure 3.1 (left) shows the aggregated number of requested slots on each

day of the season. We observe that slot demand follows a similar trend for

the three airports. The number of requested slots is relatively small at the

beginning of the season, then rises steadily from April to May, and stabilises

at the highest level between June and September before it dropped back to

a lower level. We observe a strong seasonality of slot demand within each

week, corresponding to the peaks in the left figure. In order to further

investigate the patterns in daily demand, the slot demand is split by day

of the week in Fig. 3.1 (right). Interestingly, different patterns can be seen

for the three airports. For example, Airport 3 is most busy on Mondays

whereas Airport 1 is least busy on Mondays. This pattern can be explained

partly by the primary type of travellers at these airports. Business travellers

typically fly early and late in the week, and leisure travellers are typically

flying at or around the weekend.

51

Figure 3.1: Number of slots requested for each day in the season

3.2.2 Flight operation frequency characteristics

We can measure frequency by the following three attributes of a request:

i. ‘NWdays’: Figure 3.2 (a) shows a histogram of the number of op-

erating days for each request, with the y-axis indicating the percentage of

requests. It can be seen that around 95% of flights only run once a week. The

zoomed-in Fig. 3.2(b) shows that the remaining 5% of requests have multiple

requested operating days during a week. For example, 3% of requests are for

daily flights in Airport 3. Note that flights operating on multiple days in a

week are scheduled at the same time on different days. Since airport 3 has a

particularly higher proportion of daily flights, the associations between days

will make it more difficult to meet the schedule regularity requirement when

allocating slots. This motivates us to consider a flexible slot allocation to

allocate slots on different days of the week individually. This idea will be

further investigated in 6.1.

52

(a) Original (b) Zoom in

Figure 3.2: Histogram of the number of operating days for flight operations
for the three airports

ii. ‘Nweeks’: Figure 3.3 shows the distribution of the number of operat-

ing weeks of operations across the season. We observe that Airport 3 has a

larger percentage of requests that span a large number of weeks compared

to Airport 1 and 2, with more than 10% of flights being weekly operations

throughout the season. In contrast, over 20% of flights at Airports 1 and

2 only operate in one week of the season. The descriptive statistics of the

number of the operating week are shown in Table 3.4. We performed a

Mann-Whitney U test (at the 95% confidence interval) for the average value

of ‘Nweeks’. The results indicate that the average number of requested oper-

ating weeks at Airport 3 is statistically greater than the other two airports.

Table 3.4: Descriptive statistics of operating weeks

Nweeks Airport 1 Airport 2 Airport 3

count 449.00 932.00 1087.00
mean 12.69 13.28 16.36
std 10.47 10.37 10.36
min 1.00 1.00 1.00
25% 1.00 3.00 6.00
50% 9.00 10.00 18.00
75% 23.00 24.00 26.00
max 30.00 30.00 30.00

53

Figure 3.3: Histogram of the number of operating weeks in the season for
flight operations for the three airports

Lastly, we look at slots requested for ad hoc slot and series flight op-

erations. Recall the IATA threshold for series services is 5 weeks. Any

requests for less than 5 weeks will be treated as ad hoc slot requests and

thus scheduled individually after the initial slot allocation. Figure 3.4 shows

a bar chart (left) that compares the number of ad hoc slot requests (oper-

ating less than 5 weeks) and series of slots requests (at least 5 weeks). As

demonstrated in Figure 3.4 (right), the number of individual slots belonging

to ad hoc slot requests is insignificant compared to slots in series at all three

airports.

Figure 3.4: ad hoc slot requests vs. series of slots

54

3.2.3 Slot priority characteristics

Figure 3.5 presents the proportional distribution of slot priority groups for

the flight operations at the three airports. Recall that slots are categorised

into four priority classes. We observe that the proportion of all historical

slots (Historic and Change-to-historic slots) for the three airports is similar,

ranging between 41.4% to 45.7%. New entrants account for less than 10%

of requested slots at all three airports. The Others group is the largest

group, containing around 50% of the total number of requested slots at each

airport. When considering a slot allocation problem, the priority order is

typically managed by solving the model in a sequential manner, with the

model solved for several sub-problems of each of the priority classes in order

of priority. As a result, the number of slots requested by the higher priority

groups will constrain the slots available for the lower priority groups later on.

For example, in an airport with a large proportion of historical operations,

competition for new entrants and others will be intense, because there is

limited capacity remaining after all of the historical slots are allocated.

Figure 3.5: Distribution of slot priorities across four categories for the three
airports

55

3.2.4 Time distribution of operations and turnaround time

Figure 3.6 plots the distribution of the aggregated number of requested slots

during the day. This shows that flights are unevenly distributed throughout

the day, as we can observe several arrival or departure peaks at different

times for different airports. We also observe a peak of departures at 4 am

at Airport 3. This can be explained by the fact that some flights arrive late

at night and have to wait until the next morning to depart. Understanding

the time distribution of slots will help us to develop effective methods to de-

compose the overall problem into smaller sub-problems based on particular

time periods.

Figure 3.6: Time distribution of the aggregated number of requested slots
for the three airports

Closer inspection of Fig. 3.6 shows that departures tend to lag approxi-

56

mately one hour behind arrivals in all three airports. The time difference be-

tween a pair of arrival and departure flights is referred to as the turnaround

time, which is usually about 30 minutes for low-cost flights and an hour and

a half for large aircraft and premium airlines, as can be seen in Figure 3.7

(upper). However, some flights require several hours of ground time before

their departure the next day, as shown in Figure 3.7 (bottom). Note that

slot coordinators should respect the minimum turnaround time requirements

and avoid any increase in turnaround time where possible.

Figure 3.7: Requested turnaround time

3.2.5 Associations between key attributes of slot requests

In this section, we provide more analysis of request characteristics. Table 3.5

provides a detailed breakdown of the number of operation days (per week)

requested based on a given frequency of operation. In Airport 1, all requests

that operate for more than one day are operated weekly (i.e. ‘ReqFreq = 1).

In other words, if a request operates on multiple operation days (e.g. Mon,

Tues and Fri) it will use these days every week across the dates requested.

Next, we look at the association between the operation days and op-

57

Table 3.5: Number of requests operating with specific weekly frequencies
and operating days

Airport 1 Airport 2 Airport 3

Frequency

Operating days 1 2 3 1 2 3 1 2 3

1 393 14 23 808 1 66 956 7 60

2 4 0 0 17 0 0 21 0 0

3 3 0 0 7 0 0 4 0 0

4 2 0 0 1 0 0 4 0 0

5 1 0 0 2 0 0 1 0 0

6 2 0 0 3 0 0 0 0 0

7 7 0 0 18 0 0 34 0 0

eration weeks. As demonstrated in Figure 3.8, we observe that flights op-

erating on multiple days in a week tend to operate for long periods with

more frequent operations (every week). Requests that operate on a single

day per week have a large range of request lengths. However, when requests

have multiple operation days, a smaller range (with longer request weeks) is

present. Specifically, the distributions of operation weeks when an operation

has only one operation day will likely differ from the distribution when an

operation has seven operating days. We calculate the Spearman correlation

coefficients between these two variables for each airport. The result sup-

ports that the operation length and requested operation days are positively

correlated.

58

Figure 3.8: Requested operation weeks given operating days

Lastly, we look at the request characteristics of different priorities. Fig-

ure 3.9 shows the distribution of the operation weeks by priorities. Since

the operation weeks do not follow the normal distribution, we performed

Levene’s test to test the equality of variances. If the assumption of equal

variances is violated, we then perform Welch’s ANOVA to test if the mean

values for each priority group are significantly different. Otherwise, the One-

way ANOVA test is performed. Lastly, we perform the Games-Howell test

after Welch’s ANOVA or Tukey’s posthoc test after the One-way ANOVA

to tell exactly which group means are different. Table 3.6 presents the sta-

tistical significance test results.

59

Figure 3.9: Operation weeks by request priorities

Table 3.6: ANOVA test significant p-values at 0.05

Levene’s test Welch’s ANOVA One-way ANOVA Games-Howell Tukey ’s

Airport 1 0.4870 - 0.0030
H-OT: 0.0061

CH-OT: 0.0396

Airport 2 0.0110 0.0000 -

H-OT: 0.0010

CH-OT: 0.0010

NE-OT: 0.0283

Airport 3 0.0000 0.0000 -

H-OT: 0.0010

CH-OT: 0.0010

NE-OT: 0.0010

From the above table, we observe that the p-values from the ANOVA

test are less than 0.05 for all three airports, which means that the requested

operation weeks are significant differences between the four priority groups.

For Airport 1, the average operation length of Historical and Change-to-

historic are significantly larger than Others. For Airports 2 and 3, the

average operation length of Others is significantly lower than the other three

priority groups. Similar analyses have been conducted to analyse the slot

time distribution of different priority groups, as presented in Fig. 3.10. The

results showed that there is no significant difference in the requested time

of different priority groups.

60

Figure 3.10: Request time of each priority class

3.3 Demand-Capacity Imbalance indicators

The imbalance between demand and capacity is considered an important

factor determining how difficult it is to find a feasible solution for a given slot

allocation problem instance. One way of measuring the demand-capacity

imbalance is to look at the violated capacity constraints when all flight

operations are allocated to their preferred slots. In this case, the resulting

solution (referred to as the default schedule) is expected to be infeasible.

However, it can provide some insight into where the main bottlenecks of the

problem instance lie. Table 3.7 shows the percentage of violated constraints

of the default schedule for the three airports. The higher the percentage, the

further an initial infeasible solution is from being feasible. We can see that

the violated constraints for arrivals in a rolling 60-minute period (column

‘Arr./60min’) are much higher than that of departures at all three airports.

This is because the capacity limits for arrivals are much tighter than those

on departures, as can be seen in Table 3.8. It is evident from the default

schedule that capacity constraints are redundant during non-peak periods

since only a small percentage of them are violated.

61

Table 3.7: Percentage of violated capacity constraints of the default schedule

Airport Total/15min Arr./60min Dep./60min Arr./10min Dep./10min

1 1.48 5.17 2.29 - -

2 3.99 7.58 0.94 - -

3 8.97 7.84 4.09 0.23 0.43

Table 3.8: Declared capacity constraints at the three airports

Airport Total/15min Arr./60min Dep./60min Arr./10min Dep./10min

1 3 4 6 - -

2 5 8 12 - -

3 5 10 12 5 5

Figure 3.11: Heatmap of requested slots at Airport 1 during the busiest two
weeks of operation. The colour scales indicate the number of slots requested
for each time period.

62

Another way of measuring the demand-capacity imbalance is to look at

congested time periods in which the slot demand exceeds the capacity. Slot

requests made for congested periods are expected to be rescheduled or re-

jected if there are no available slots close enough to the requested slots. In

Fig. 3.11, we plot a heat map of slot demand for the busiest 2 weeks. Each

square represents a time period defined by the time interval (x-axis) and

the day of the season (y-axis). The colour of the squares shows the number

of slots in that time period. In this example, congested time periods are

those with values greater than 3 (declared capacity for each time period).

Table 3.9 compares the percentage of congested time periods of the entire

season for the three airports. Note that we calculate the congested periods

for arrivals and departures separately since they have individual declared

capacities. We observe that the numbers are much higher in Airport 3 than

in the other two airports. Most of the time periods are unsaturated, indicat-

ing that the capacity constraints are redundant during these periods. The

result motivated us to add capacity constraints as lazy constraints through

a callback of the exact solver.

Table 3.9: Proportion of congested time periods of the default schedule

Airport % of Arrival congested % of Departure congested

1 10.80 5.17
2 14.36 4.98
3 22.15 18.03

The difficulty of solving the slot allocation problem for a single airport is

determined by a number of factors. Obviously, the number of slot requests

is one of the factors of problem complexity. However, in cases where the

number of requests is equal, insufficient airport declared capacity and severe

imbalance between slot demand and airport capacities are also thought to

significantly increase the difficulty of solving the problem.

63

To conclude, in this chapter we have explored slot allocation data for

three real-world airports, identifying underlying structural properties that

have not previously been discussed in the literature. We have examined the

distribution of flights in a scheduling season, on a weekly and daily basis. We

observed that the three airports have different flight operation features, dif-

ferent peak hours and congestion levels. Through the analysis conducted on

schedule-coordinated airports, we identify three relationships that capture

detailed slot demand patterns. The relationships that have been identified

are operation length and operation frequency given the number of operation

days, and operation week based on operation length. The data analysis re-

sults demonstrate the difference in slot demand patterns at different airports,

which should be taken into account when developing mathematical models

and solution algorithms for the slot allocation problem. Due to the lack

of real-world request data, this analysis also provides a basis for algorithm

development and the generation of artificial data sets.

64

Chapter 4

Optimising Slot Allocation

Considering Slot Rejection

and Schedule Efficiency

We propose a new model for the single airport slot allocation problem in

this chapter. This model allows us to investigate slot rejections under differ-

ent maximum allowable displacement thresholds. Meanwhile, the proposed

model can be used to analyse possible changes to the current slot allocation

rules to provide insights into how these rules affect slot allocation and can

be modified in the future.

The remainder of this chapter is structured as follows: Section 4.1 intro-

duces the model formulations. Next, Section 4.2 presents the experimental

results of solving the model for one of the coordinated airports and dis-

cusses the experiment results. Next, we perform sensitivity analysis in Sec-

tion 4.3 to examine the sensitivity of the optimal solutions to the changes

in requested turnaround times, alternative displacement cost functions, and

changes in the slot allocation priority rules. Finally, summaries and conclu-

65

sions of this study are presented in Section 4.5.

4.1 A slot allocation model considering slot rejec-

tion

Slot rejections have been considered in the literature (Ribeiro et al., 2018;

Jorge et al., 2021), and the number of rejected requests or slots has been

modelled as an objective to be firstly minimised in corresponding models.

However, no slot rejections were reported in previous experiments. The

reason may be that the capacity of the airport under study is sufficient to

meet the demand for slots, or available slots can always be found regardless

of slot displacement constraints. This motivates us to further investigate

slot rejections under different maximum allowable displacement thresholds.

Specifically, the motivation is twofold. First, even at airports where the

capacity is sufficient to meet the demand for slots, airlines may receive slots

distant in time from their desired slots and, therefore, unlikely to accept

or utilise those allocated slots. This will have a significant effect on slot

allocation at extremely congested airports. For example, in Amsterdam’s

Schiphol airport, the number of wait-listed slots (i.e., rejected in the initial

slot allocation stage and may be reconsidered later) represented approxi-

mately 16% of the initially requested slots in the summer season of 2017

(Odoni, 2021). Therefore, we investigate slot rejections affected by different

maximum acceptable displacement thresholds. Second, the 50/50 priority

rules may require the consideration of slot rejections. For example, when

new entrants or Others request more than 50% of the slots in the slot pool,

some requests have to be rejected.

Therefore, we propose a new model for the single airport slot allocation

66

problems, called SASA-R, which considers slot rejections under different

maximum allowable displacement thresholds. The model proposed in this

chapter is built upon the model proposed by Zografos et al. (2012); Ribeiro

et al. (2018). It takes as input the airport declared capacities (see Table 3.8)

and slot requests from airlines (see detailed description in Table 3.1). It then

produces a schedule that first minimises the total number of rejected slots

and second the schedule displacement of all slots. The model formulations

are presented as follows:

Notations used in the model

T = {0, ..., T − 1}: set of time intervals equal in length, indexed by t. T is

the total number of time intervals of a day

D = {0, ..., D− 1}: set of days, indexed by d. D is the total number of days

of the summer or winter scheduling season

Marr ⊂M: set of arrival requests, indexed by i

Mdep ⊂M: set of departure requests, indexed by j

P ⊂ Marr ×Mdep: set of paired requests, indexed by (i, j) such that j is

the departure that follows the arrival i operated by the same aircraft

M =Marr ∪Mdep: set of all requests, indexed by m

C ={Arr., Dep., Total}: set of flight movement types, indexed by c

L: set of time lengths associated with the declared capacity, indexed by l

(e.g., 15 minutes, 1 hour)

The set T consists of indexes of time intervals of a day. The length of

each time interval equals the airport coordination time interval, typically 5,

10 or 15 minutes and the corresponding number of time intervals on each

day is 288, 144, or 96 respectively. Note that slots allocated to airlines are

67

represented by time interval indexes. The set D consists of indexes of all

days of the scheduling season. We now clarify the definition of a request

used in this chapter. In general, a slot request or request refers to the

request initially submitted by airlines, which usually includes two groups of

slots for paired arrival and departure flights. These two groups are defined

as two separate requests and the initial submitted request is referred to as a

request pair (a pair of requests, or paired requests). Note that the request

pair (i, j) ∈ P, are included as two separate requests in the set M, such

that each m ∈ M represents an arrival or departure request. Within each

request, slots requested for the same time on the same day of the week for at

least 5 weeks form a series of slots. If the number of weeks is less than 5,

the request is treated as ad hoc slot request. Recall that WASG requires

that all series of slots must be processed together. Moreover, a request may

include multiple series of slots for the same time on different days of the

week, they must also be processed at the same time. Lastly, the types of

flight movements and the time duration over which the capacity constraints

apply are represented in sets C and L.

Parameters used in the model

Bd
m: equals to 1 if request m has requests on day d, and 0 otherwise

Tmin
i,j : minimum turnaround time for the request pair (i, j) ∈ P

Tmax
i,j : maximum turnaround time for the request pair (i, j) ∈ P

Carr
dtl : arrival capacity for time interval t, day d and time duration l

Cdep
dtl : departure capacity for time interval t, day d and time duration l

Ctotal
dtl : total capacity (arrival and departure) for time interval t, day d and

time duration l

ϕm: maximum allowable slot displacement for request m, 0 < ϕm < T

68

τm: requested slot of request m, τm ∈ T

Note that the turnaround time parameters: Tmin
i,j , Tmax

i,j are not explicitly

provided by airlines but are considered in this model to ensure a reliable

turnaround time for each pair of flight movements. The impact of changing

the turnaround times parameters will be studied in Section 4.3.1.

Decision variables

xtm =

1, if request m is allocated with slot(s) at t

0, otherwise

zm =

1, if request m is rejected

0, otherwise

First, the decision variables xtm are binary variables that capture whether

a request m is allocated with an individual slot or a series of slots at t or

not. Note that t is a time interval index, corresponding to a 15 minutes

time interval. The variables xtm ensure that all slots requested in m are

handled together. The second binary decision variable zm indicates whether

a request m is rejected or not. If m is rejected, it means no slots are assigned

to this request. The paired arrival and departure request (i, j) ∈ P should

always be rejected or scheduled at the same time. The logical relationship

between these decision variables will be defined in the constraints section.

Objective function

minw1

∑
m∈M

∑
d∈D

Bd
mzm + w2

∑
m∈M

∑
d∈D

∑
t∈Tm

Bd
mf t

mxtm (4.1)

The objective function 4.1 of the model consists of two objectives. The

69

first objective is the total number of rejected slots. We use the number

of rejected slots instead of rejected requests because slots requested in the

same request are either all allocated or none are, so rejecting requests with

fewer slots is preferable to rejecting requests with more slots. The second

objective is the schedule displacement of all accommodated requests, ex-

cluding rejected requests. Specifically, the displacement of a slot, or slot

displacement, is the absolute difference between the requested and allocated

slot, denoted by Eq. (4.6). The schedule displacement of a request is its

slot displacement multiplied by its total number of operating days of the

season. Note that every slot in the same request will have the same slot

displacement. For example, suppose a request for a series of slots at 11 am

on ten different days is allocated with a series of slots at 9 am, the slot

displacement would be 2 hours, and the displacement of this request would

be 20 hours. Note that displacement can also be presented in time intervals.

The two objectives are scaled into a single objective function 4.1, using

the weighted sum method (Marler and Arora, 2010). The number of rejected

slots and schedule displacement is multiplied by two user-supplied weights

w1 and w2. Based on existing literature (Ribeiro et al., 2018; Jorge et al.,

2021) and our communication with airlines, we consider that minimising the

number of rejected slots is more important than minimising the schedule

displacement. Therefore, we set the weights w1 to 108 and w2 to 1 to ensure

that the number of rejected slots is minimised first. The value of weights

is determined by some preliminary experiments to see the magnitude of the

value of the two objective functions.

Constraints

Tm = {t ∈ T |τm − ϕm ≤ t ≤ τm + ϕm} (4.2)

70

∑
t∈Tm

xtm ≤ 1,∀m ∈M (4.3)

1−
∑
t∈Tm

xtm = zm, ∀m ∈M (4.4)

zi = zj , ∀(i, j) ∈ P (4.5)

f t
m = |t− τm| (4.6)

(1− zm)Tmin
i,j ≤

∑
t∈Tj

txtj −
∑
t∈Ti

txti ≤ Tmax
i,j , ∀(i, j) ∈ P (4.7a)

(1− zm)Tmin
i,j ≤

∑
t∈Tj

(T + t)xtj −
∑
t∈Ti

txti ≤ Tmax
i,j , ∀(i, j) ∈ P (4.7b)

∑
i∈Marr

t+Lc−1∑
t

xti ≤ Carr
dt ,∀d ∈ D, t ∈ T |t < T − Lc + 1 (4.8)

∑
j∈Mdep

t+Lc−1∑
t

xtj ≤ Cdep
dt ,∀d ∈ D, t ∈ T |t < T − Lc + 1 (4.9)

∑
m∈M

t+Lc−1∑
t

xtm ≤ Ctotal
dt ,∀d ∈ D, t ∈ T |t < T − Lc + 1 (4.10)

Equation 4.2 defines the range of time intervals that is available to re-

quest m, denoted by Tm. This ensures that the maximum slot displacement

of m is no greater than ϕm, as m can only be scheduled no earlier than

τm − ϕm and no later than τm + ϕm, where τm is the requested slot of m,

71

τm ∈ T . ϕm is a non-negative parameter that can take different values for

different requests, or take the same value for all requests as the schedule-

wide maximum allowable displacement threshold. Constraints 4.3 ensure

that for each request, at most one time interval within the time window

Tm can be allocated to this request. Therefore, requests are allowed to be

rejected when
∑

t∈Tm
xtm = 0. If m is rejected, zm equals 1, therefore con-

straints 4.4 are satisfied, and vice versa. Constraints 4.5 ensure that a pair

of arrival and departure requests are accommodated or rejected at the same

time. Eq. (4.6) defines the slot displacement of m, which is the absolute dif-

ference between the allocated slot t and the requested slot τm. Constraints

4.7a ensure that the slot allocated to a departure request j must be at least

Tmin
i,j time intervals later than the slot allocated to its paired arrival request

i, and no more than Tmax
i,j intervals. If the departure flight is on the next day

of its arrival, constraints 4.7a can be replaced by 4.7b. Note that the term

1 − zm ensures if paired requests are rejected, turnaround time constraints

are still satisfied. Constraints 4.8 to 4.10 are rolling capacity constraints

for arrival, departure and both types of flight movements respectively. The

formulation of these capacity constraints is similar to the ones presented in

Ribeiro et al. (2018). Figure 4.1 illustrates how the rolling capacity con-

straints are checked. We plot two arbitrary days of the season. The x-axis

denotes the set of time intervals on a day. The y-axis represents the num-

ber of arrival movements. A bar’s height indicates the arrival movements

that have been scheduled into the corresponding time interval. Suppose the

capacity for arrival movements in any 4 consecutive time intervals is 3, that

is for any following time period: 0 to 3, 1 to 4, ..., 4 to 7, a maximum of

3 arrival movements can be scheduled. All constraints are satisfied on the

first day. For the other day, the capacity constraints are violated by 2 in

72

time periods 1 to 4 and 2 to 5.

Figure 4.1: Example of rolling capacity constraints

4.2 Experiments

4.2.1 Data and set-up

The proposed model has been applied to all three airports. We only provide

the results for Airport 2 in detail in this chapter. Results for the other two

airports are presented in the Appendix A.1 and discussed in Section 4.4.

We first solve the SASA-R model without consideration of slot priorities,

and the resulting solution is referred to as the non-hierarchical solution.

We will incorporate slot priorities by solving the model hierarchically and

holistically in Section 4.3.2.

Regarding the model parameters, the declared capacity for Airport 2 is

presented in Table 3.8. The minimum turnaround time parameter is set

to be the minimum value of the requested turnaround time and 1 hour.

This allows for some flexibility in shortening the unnecessary turnaround

time. The maximum turnaround time parameter is set to the requested

turnaround time, which means that the assigned turnaround time must be no

longer than the requested turnaround time. Sensitivity analysis of changes

in requested turnaround times will be discussed later in Section 4.3.1.

73

All integer linear programs in this chapter are solved using Gurobi 9.0.2

on a computer with an Intel Core i5-8365U processor. Models are imple-

mented using Python and Gurobi’s Python API (gurobipy). A branch-and-

cut method proposed by Fairbrother et al. (2020) was used to speed up

the solution time of the model. Since the capacity constraints are only ac-

tive during specific congested time periods of the season, they are added as

lazy constraints through a callback function of Gurobi (the Gurobi Lazy-

Constraints parameter is set to value 1). The rest of the Gurobi solver

parameters have been left at their default settings, such as the TimeLimit

parameter is Infinity and the Relative MIP optimality gap is 0.0001.

4.2.2 Solution metrics

In addition to the optimisation objectives: the number of rejected slots

and schedule displacement, we propose more schedule efficiency metrics to

compare different solutions:

(1) The number of rejected requests is denoted by ‘RejReqs’ and calcu-

lated by 4.11

∑
m∈M

zm (4.11)

(2) The maximum slot displacement is denoted by ‘MaxDisp’ and calcu-

lated by 4.12. Note that m may be rejected or allocated with its requested

slot. In both cases, the displacement of m will be zero

max
m∈M

∑
t∈Tm

f t
mxtm (4.12)

(3) The number of displaced requests is denoted by ‘DispReqs’ and cal-

culated by 4.13. ym indicates whether request m is displaced or not

74

ym =

1, if

∑
t∈Tm

f t
mxtm > 0 allocated slot is earlier or later than τm

0, if
∑

t∈Tm
f t
mxtm = 0 m is rejected or allocated with requested slots at τm

∑
m∈M

ym (4.13)

(4) The number of displaced slots is denoted by ‘DispSlots’ and calcu-

lated by 4.14

∑
m∈M

∑
d∈D

Bd
mym (4.14)

(5) The displacement per displaced slot is denoted by ‘Disp/Slot’ and

calculated by 4.15

∑
m∈M

∑
d∈D

∑
t∈Tm

Bd
mf t

mxtm/
∑
m∈M

∑
d∈D

Bd
mym (4.15)

4.2.3 Experiment results

In this section, we discuss the non-hierarchical results of solving the SASA-

R model for Airport 2. We first do not limit the maximum slot displacement

by setting ϕm = None, ∀m ∈ M. Next, we solve the model with various

thresholds of maximum slot displacement.

Table 4.1: Non-hierarchical results for Airport 2. Values in parentheses
are the relative change rate to the solution when slot displacement is not
constrained

Threshold RejSlots RejReqs SchedDisp MaxDisp DispReqs DispSlots Disp/Slot (min) Time (sec)

None 0 0 12,930 4h30m 510 4,998 38.8 1081

3h 0 0 13,000 (0.5%) 3h 518 4,987 39.1 (0.7%) 555

2h30m 0 0 13,072 (1.0%) 2h30m 512 5,043 38.9 (0.1%) 393

2h 0 0 13,099 (1.2%) 2h 504 4,991 39.4 (1.4%) 351

1h30m 0 0 13,597 (5.1%) 1h30m 553 5,381 37.9 (-2.4%) 161

1h 18 2 17,842 (37.9%) 1h 558 7,451 35.9 (-7.5%) 87

30m 456 52 14,066 (8.7%) 30m 612 9,199 22.9 (-40.9%) 13

0 3,318 342 0 0 0 0 - 1

75

The first column in Table 4.1 shows the pre-defined thresholds to the

maximum slot displacement. Column ‘MaxDisp’ shows the maximum slot

displacement in the optimal solutions. The number of rejected slots and

schedule displacement is presented in columns ‘RejSlots’ and ‘SchedDisp’,

respectively. Slot rejections occur when the maximum slot displacement is

limited to one hour and 18 slots (of a pair of requests) are not assigned.

When the threshold is reduced to 30 minutes, 456 slots (of 52 requests)

are rejected. As expected, schedule displacement increases as the threshold

decreases, but only significantly when the threshold is sufficiently low (1

hour 30 minutes). A trade-off exists between the schedule displacement

and the maximum slot displacement threshold. For example, the schedule

displacement is 37.9% larger with a maximum 1-hour slot displacement than

without it. With regards to the displacement per slot, it increased slightly

before decreasing significantly as the threshold decreased. The reason for the

increase is that allowing a small number of slots to be largely displaced can

benefit the minimisation of the schedule displacement. However, when the

threshold is too low, there are fewer available slots for each request. Thus,

more slots have to be rejected. The displacement per slot is therefore reduced

because it only takes into account accommodated requests. Furthermore, we

noticed that the displacement per slot was at its lowest level at 38 minutes

without rejecting any slots and dropped significantly due to slot rejections.

Therefore, tightening the maximum displacement threshold will not reduce

the average slot displacement, only if some slots are rejected. For example,

when the threshold is 30 minutes, the average slot displacement dropped to

23 minutes due to 456 slots (1.3% of total requested slots) being rejected.

Lastly, the experiment demonstrated that lower maximum slot displacement

thresholds lead to less computation time as the search space is reduced by

76

restricting the range of slots for each request.

4.3 Sensitivity analysis

In this section, we perform sensitivity analysis to analyse how changes in

turnaround times, displacement cost functions and slot allocation priority

rules affect schedule efficiency.

4.3.1 Sensitivity to the changes in requested turnaround times

We now investigate the sensitivity of the optimal solutions to the changes

in the requested turnaround times (the time difference between the pair of

requested slots). Six scenarios are tested. Scenario A requires that the re-

quested turnaround time of each pair of requests must be strictly respected.

This is a scenario that resembles the WASG rules, which state that an

increase in the requested turnaround time should be avoided as much as

possible due to operating costs and environmental impact. Scenario B is

the default assumption in the model and experiments in this chapter. The

minimum turnaround time parameter is set to the minimum value of the

requested turnaround time and 1 hour to allow flexibility in reducing the

long requested turnaround time. Meanwhile, an increase to the requested

turnaround time is not permitted. Scenario C allows a 15 minutes increase

of the requested turnaround time. Scenario D and E consider a flexible

minimum turnaround time, similar to scenario B, and permit a 15-minute

and 30-minute expansion of the requested turnaround times, respectively.

Lastly, scenario F only considers the minimum turnaround time constraints

with flexibility.

Results are shown in Table 4.2. The second column indicates the al-

lowable reduction and increases in the requested turnaround times. The

77

Table 4.2: Sensitivity of non-hierarchical results to changes in the requested
turnaround times

Scenarios Changes SchedDisp DispReqs DispSlots Disp/Slot (min) Time (sec)

MaxDisp threshold = 2h, RejSlots=0

A 0,0 13,788 540 5,200 39.8 250

B flexible, 0 13,099 (-5%) 504 4,991 39.4 (-1%) 230

C 0, +15 min 11,928 (-13%) 538 5,230 34.2 (-14%) 172

D flexible, +15 min 11,447 (-17%) 510 5,121 33.5 (-16%) 173

E flexible, +30min 10,631 (-23%) 447 4,450 35.8 (-10%) 110

F flexible, none 9,539 (-31%) 402 3,795 37.7 (-5%) 45

MaxDisp threshold = 1h, RejSlots= 18

A 0,0 18,726 594 7,924 35.4 90

B flexible, 0 17,842 (-5%) 558 7,451 35.9 (1%) 83

C 0, +15 min 16,166 (-14%) 560 7,868 30.8 (-13%) 27

D flexible, +15 min 15,980 (-15%) 542 7,926 30.2 (-15%) 20

E flexible, +30min 14,125 (-25%) 482 6,910 30.7 (-14%) 14

F flexible, none 12,750 (-30%) 413 5,815 32.9 (-7%) 11

maximum slot displacement threshold is set to 1 and 2 hours. Results show

that the number of rejected slots did not change as the turnaround time

parameters changed. However, the results demonstrate a trade-off between

changes in the requested turnaround times and schedule displacement. We

observe that schedule displacement can be reduced by 5% to 31% with small

to large changes in the requested turnaround time. Note that even slight

flexibility (e.g., scenario C allows a 15-minute increase in turnaround time)

can lead to a 13% improvement in the schedule displacement and a 14%

reduction in the average slot displacement. Moreover, allowing changes to

the requested turnaround time tends to shorten the computation time sig-

nificantly, as indicated in the last column. Results suggest that forcing the

allocated turnaround time to be exactly the same as the requested might

be unnecessary. A small degree of turnaround time flexibility can improve

schedule efficiency and reduce the computation time of finding the optimal

solutions.

78

Finally, we analyse the allocated turnaround times when the maximum

allowable turnaround time is not limited (scenario F), as done in several

papers (Zografos et al., 2012; Fairbrother et al., 2020). Table 4.3 compares

the results under scenario F and the coordinated schedule created by airport

coordinators. In the coordinated schedule, 97% of request pairs received

pairs of slots with the same turnaround time as they requested. However,

one request pair was given 11 hours less time for a turnaround than requested

by the coordinator. Another pair of requests received 45 minutes more time

for turnarounds. When the maximum turnaround time is not limited, 17%

fewer request pairs received slots with the same turnaround time as they

requested. Meanwhile, the increase in requested turnaround times is more

significant as the maximum displacement threshold increases (up to 2 hours

and 45 minutes). In addition, the range of changes in turnaround times is

smaller than in the coordinated schedule. The reason for this is, on the one

hand, restricted by the maximum slot displacement thresholds and, on the

other hand, driven by the objective of minimising the schedule displacement.

In summary, it is necessary to limit the maximum allowable turnaround

times. Otherwise, the increase in the requested turnaround time will be

significant. However, restricting the allocated turnaround time to be the

same as the requested one may be unnecessary.

Table 4.3: Allocated vs. requested turnaround times

% of requests with
no changes in re-
quested turnaround
times

max. reducing max. increase

coordinated 97% 11 hours 15 minutes 45 minutes

scenario F (maxDisp=2
hour)

81% 1 hour 2 hours 45 minutes

scenario F (maxDisp=1
hour)

80% 1 hour 1 hour 45 minutes

79

4.3.2 Sensitivity to the priority rules

We now solve the SASA-R model according to the previous WASG priority

rules. The result is referred to as the hierarchical results. In this manner,

slots are allocated sequentially from the highest to the lowest priorities in the

order of Historics, Change-to-historics, New-entrants and Others. Specifi-

cally, the model is firstly solved for Historics requests. Once the optimal

solution for the higher priority class is found, the values of decision variables

are fixed, the capacities are updated, and we continue to solve the model

for the next highest priority class until all priority classes are processed.

We do not limit the maximum slot displacement for any priority group in

the hierarchical allocation. The results are shown in Table 4.4. No slots

were rejected in this case. The maximum slot displacement comes from the

Others at 4 hours and 15 minutes. These results will be compared with the

holistic results introduced in the following.

Table 4.4: Hierarchical results for Airport 2, without maximum slot dis-
placement thresholds

Threshold SchedDisp MaxDisp DispReqs DispSlots Disp./slot (min) Time (sec)

H – 0 0 0 0 0

CH – 548 45m 42 357 23

NE – 492 15m 8 492 15

OT – 17,681 4h15m 388 6,107 43

All 18,721 4h15m 438 6,956 40 100

We now perform the holistic allocation as suggested in the latest WASG

regulations. After allocating all the Histotic slots, the remaining slots are al-

located holistically. That is, the Change-to-historic, New entrants and Oth-

ers are processed simultaneously as a single batch. In order to compare the

results of the holistic and hierarchical allocation, we set the maximum dis-

placement thresholds for each priority class in the holistic allocation model

to the maximum slot displacement in the hierarchical results. The results

80

of holistic allocation are reported in Table 4.5.

Several observations can be made. First, the total schedule displacement

achieved by the holistic allocation is 21% less than that of the hierarchical

allocation. Same reduction rate for the displaced slots. The average slot

displacement remained at the same level. Second, as expected, the holis-

tic allocation would reduce the schedule displacement of the New-entrants

by 71% and Others by 36%, but increase that of the Change-to-historics

significantly by 483%. This is due to assigning New-entrants and Others

slots equal priority with Change-to-historics slots. Lastly, we observe that

the maximum displacement in the holistic results is 15 minutes less than

that of the hierarchical allocation. This reduction stems from the Others.

However, the displacement per slot increased by 14%, showing that fewer

Others slots are displaced but with a larger displacement of individual slots.

In summary, holistic allocation tends to reduce the schedule displacement,

displaced slots and potentially the maximum displacement. However, the re-

quired computation time for holistic allocation also increased. It is expected

that for large-scale airports, the time required for holistic allocation would

be significantly longer than the hierarchical allocation as the latter divides

the problem into smaller problems. For example, it takes more than 40

hours to solve the model holistically than hierarchically for a larger instance

Table A.8.

Table 4.5: Holistic results for Airport 2. Values in parentheses are the
relative change rate to the hierarchical results

Threshold SchedDisp MaxDisp DispReqs DispSlots Disp./slot (min) Time (sec)

H 0 0 0 0 0 0

CH 45m 3,193 (483%) 45m 143 1,924 (439%) 25 (8%)

NE 15m 142 (-71%) 15m 14 142 (-71%) 15 (0%)

OT 4h15m 11,393 (-36%) 4h 320 3,450 (-44%) 50 (14%)

All 14,728 (-21%) 4h 477 5,516 (-21%) 40 (0%) 133

81

In Table 4.6, we present the slot allocation results produced by the air-

port slot coordinator, which is referred to as the coordinated schedule. It

should be noted that the coordinated schedule does not satisfy all the capac-

ity constraints considered in the SASA-R model. Therefore, we are unable

to compare the results directly. However, we can still conclude that the slot

allocation results obtained by the optimisation-based model are significantly

better than the coordination results in terms of schedule displacement, max-

imum slot displacement and average slot displacement. However, displaced

requests and slots are lower in the coordinated results than in the model

results. Possible reasons for this could be that, in practice, coordinators

usually process slot requests one at a time according to their priorities, thus

not considering the complete set of requests simultaneously. Therefore, a

request that is processed in the early stage is more likely to have zero or

minimal displacement. Whereas later processed requests will have to be

allocated with slots that are distant from their desired slots.

Table 4.6: Slot coordination results for Airport 2

SchedDisp MaxDisp DisReqs DisSlots Disp./slot (min)

H 100 30m 2 50 30

CH 3,397 3h15m 44 636 80

NE 1,462 3h15m 16 320 68

OT 27,734 21h45m 255 3,494 120

All 32,693 21h45m 317 4,500 110

4.3.3 Sensitivity to the displacement costs

In this section, we investigate two alternative objective functions with differ-

ent costs of displacement. The first one concerns weighting the displacement

of the individual slot by the relative number of seats of the aircraft that uses

the slot. The second one employs a squared displacement cost in the objec-

82

tive function.

Weighted objective function

With severe congestion, Level 3 airports have seen airlines using more air-

craft with a larger seating capacity to increase the number of passengers

served per flight movement. The current slot allocation regulations do not

consider the size of the aircraft or the number of passengers as a primary cri-

terion of slot allocation. However, previous studies (Jorge et al., 2021; Odoni,

2021) have paid attention to this issue. To further investigate this, we pro-

posed another weighted objective function in which each slot is weighted by

the relative number of seats of the aircraft using that slot. The weight for

each slot request m, denoted by αm, is calculated by dividing the number of

seats in the aircraft associated with m by the number of seats in the largest

aircraft at that airport (see 4.16, sm denotes the number of seats of the

aircraft associated with request m). The new weighted objective function is

denoted by 4.17, which incorporates both the aircraft size (estimating the

number of passengers) and the duration of the operation. Note that this is

already considered in the objective function. The number of operating days∑
d∈D Bd

m can be seen as a weight to the displacement of each individual

slot.

αm = sm/max
m∈M

sm (4.16)

minw1

∑
m∈M

∑
d∈D

αmBd
mzm + w2

∑
m∈M

∑
d∈D

∑
t∈Tm

αmBd
mf t

mxtm (4.17)

83

∑
m∈M

∑
d∈D

smBd
mzm (4.18)

In Table 4.7, we report the results of solving the SASA-R model with the

new weighted objective function 4.17 and constraints 4.2 to 4.10. Aircraft are

divided into 5 groups according to their number of seats. The first column

shows the estimated total number of passengers that could not be served

due to slot rejections, which is calculated by 4.18. As expected, when using

the weighted objective function, the number of passengers affected by slot

rejections is 12,900. This number is only 27% of that without consideration

of aircraft size. However, the schedule displacement increased by 6% and

the displaced slots increased by 8%. Although the displacement allocated to

smaller aircraft increases, with a particular increase for the smallest aircraft

with no more than 100 seats, the average slot displacement for all requests

remains the same.

Table 4.7: Holistic results for Airport 2, with the weighted objective func-
tion. Values in parentheses are the relative change rate to the results without
consideration of aircraft size. ‘-’ indicates the number is compared against
zero value

Seats RejPassengers RejSlots SchedDisp DispSlots Disp./slot (min)

100 4,440 (-) 120 (-) 4,222 (91%) 2,206 (147%) 29 (-22%)

101 - 160 5,220 (-40%) 36 (-40%) 4,576 (6%) 1,592 (7%) 43 (0%)

161 - 200 3,240 (-70%) 18 (-70%) 8,856 (-2%) 3,508 (-8%) 38 (6%)

201 -300 0 (-) 0 (-) 2,225 (-25%) 847 (-34%) 39 (11%)

301 + 0 (-100%) 0 (-100%) 208 (-43%) 99 (-38%) 32 (-6%)

Total 12,900 (-73%) 174 (-8%) 20,087 (6%) 8,252 (8%) 37 (0%)

A squared displacement cost

We next study the cost of slot displacement. The current literature assumes

that the cost of allocating a slot to a request is equal to the time differ-

84

ence between the requested slot and the allocated slot. However, the larger

the difference, the more costly for airlines to adjust their flight schedule to

utilise that slot. Therefore, we consider using a squared displacement cost

to penalise the large displacement of individual slots. The squared cost of

displacement is calculated by 4.19.

f t
m = |t− τm|2 (4.19)

We first solve the model with the default linear cost of displacement 4.6

and then replace this with the squared cost of displacement 4.19. Finally, we

compare the results with the coordinated schedule in Table 4.8. In order to

get comparable results, no maximum slot displacement constraints are con-

sidered. Results suggest that using the squared cost of displacement would

result in a 31% increase in the schedule displacement and a 121% increase

in the number of displaced slots. However, both the maximum slot displace-

ment and the average slot displacement dropped greatly by more than two

hours and 16 minutes. In the coordination results, 39% fewer requests did

not receive their requested slots, but the schedule displacement and the aver-

age slot displacement are significantly worse than the optimisation solution.

These results again demonstrate the benefit of using optimisation-based slot

allocation approaches.

Table 4.8: Non-hierarchical results with the linear and squared cost of dis-
placement. Values in parentheses are the relative change rate to the results
for linear cost of displacement

Cost of displacement SchedDisp MaxDisp DisReqs DisSlots Disp./slot (min)

1 Linear 12,930 4h30m 510 4,998 39

2 Squared 16,891 (31%) 2h15m 662 (30%) 11,047 (121%) 23(-41%)

3 Coordinated 32,693 (153%) 18h 312 (-39%) 4,570 (-9%) 107 (174%)

85

Figure 4.2: Distribution of slot displacement

Fig. 4.2 shows the distribution of slot displacement. A negative (posi-

tive) value on the x-axis indicates the allocated slot is earlier (later) than

the requested slot. For requests that received their requested slots, the slot

displacement would be zero, so not plotted in the figure. The first obser-

vation is that with the squared cost of displacement, the variance of slot

displacement has significantly reduced compared to the results of the lin-

ear cost of displacement. 78% requests have zero displacements, and 95%

requests received slots within 30 minutes of their requested slots, whereas

the corresponding percentages are 82% and 92.6% in the linear cost of dis-

placement results. The displacement of slots is more widely dispersed in

the coordination results, ranging from 18 hours earlier to 4 hours later than

the requested slots. Note that the schedule developed by the coordinators

does not satisfy all the capacity and turnaround time constraints considered

in the optimisation model. Another observation is that there are slightly

more requests allocated with slots later than their requested slots than with

slots earlier than their requested slots. It is worth investigating different

displacement costs for allocating slots earlier or later than the requested

86

slot.

4.4 Discussion of Model Scalability

Appendix A.1 presents the results of solving the SASA-R model for Airport

1 (small) and Airport 3 (medium-sized airport). Regarding the slot alloca-

tion sensitivity to the changes in requested turnaround time (Table A.5),

slot allocation priority rules (Table A.2) and displacement cost functions

(Table A.4), similar conclusions can be drawn for Airport 1 as the results

discussed in the previous section. Due to the small problem size for Airport

1, the time to solve the model exactly was insignificant in all experiments.

For Airport 3, the largest instance tested, results demonstrated that the

exact solver takes a significantly longer time to find the optimal solution

when the model is solved hierarchically (Table A.7). The results of holistic

allocation in Table A.8 show that the solver terminated after 41 hours due

to being out of memory and returned the best-known solution with an op-

timality gap of about 6%. Recall that Airport 3 has 37% more requested

slots than Airport 2 (Table 3.3). In addition, the proportions of congested

arrival and departure time periods at Airport 3 are 1.5 to 3.6 times more

as Airport 2 (Table 3.9). Moreover, the time interval for slot allocation is

15 minutes for Airport 2 and 5 minutes for Airport 3, which increases the

number of decision variables and constraints significantly. As a result, the

model cannot be solved in a short time for Airport 3. This motivated us to

develop more effective algorithms to improve the scalability of the model.

87

4.5 Conclusions

In this chapter, we proposed a new model (SASA-R) for the single airport

slot allocation problem considering slot rejections and displacement penal-

ties. Unlike previous models, the maximum slot displacement is modelled

as a constraint rather than a minimisation objective. As a result, the max-

imum displacement of each slot can be limited individually to guarantee

the worst case of slot displacement is acceptable. Meanwhile, the model

allows us to investigate slot rejections under different maximum allowable

displacement thresholds. To our knowledge, this is the first analysis of slot

rejections in the literature. However, due to the computational complexity

of the model, it can only be solved for the two small airports we studied.

For the medium-sized airport, the model can only be solved with a low max-

imum displacement threshold in an acceptable amount of time. Therefore,

we develop a heuristic solution algorithm in the next chapter to solve this

model for a medium-sized airport.

Sensitivity analysis was performed to analyse the impact of possible

changes to the current WASG rules. Results suggest that allowing a small

change in the requested turnaround time can significantly reduce the sched-

ule displacement and the average slot displacement and reduce the compu-

tation time of solving the model. In addition, results demonstrated that it

is necessary to limit the maximum allowable turnaround time. It is worth

considering using different turnaround time parameters for different requests

according to the factors that affect the aircraft turnaround operations, such

as aircraft type, route, airline service level, etc.

Regarding priorities of slot allocation, we found that holistic allocation

can lead to better schedule displacement, maximum displacement and the

number of displaced slots compared to the hierarchical allocation. However,

88

the results of change-to-historic are much more degraded due to having equal

priority with New entrants and Others. Results also show that New entrants

cannot always benefit from the holistic allocation due to the different priority

distribution at different airports.

Lastly, we tested two new objective functions. One involves weight-

ing the objectives by the relative number of aircraft seats associated with

each request. Results show that by using the weighted-based objectives,

the estimated number of passengers associated with slot rejections can be

considerably reduced. The other objective function uses a squared cost of

displacement to penalise large slot displacement. Results suggest that the

variance of slot displacement is significantly reduced compared to the linear

cost of displacement results. Given the same maximum displacement thresh-

old, the squared cost of displacement leads to a 40% reduction in average

slot displacement and a 30% increase in the schedule displacement.

89

Chapter 5

A two-stage solution method

for a single airport slot

allocation model

Previous experiments have demonstrated that existing slot allocation models

can only be solved for small to medium-sized airports. This chapter proposes

a two-stage solution approach that aims to tackle large-scale problems. It is

developed to solve the single airport slot allocation model proposed in Sec-

tion 4.1. We first introduce the general framework of the two-stage solution

method in Section 5.1. Next, Section 5.2 presents the greedy constructive

heuristic, which is developed to generate feasible solutions. In Section 5.3,

we introduce an adaptive large neighbourhood search heuristic (ALNS) to

improve the initial feasible solution by iteratively applying a so-called ‘de-

stroy and repair’ method. The experiment results and sensitivity analysis

results are reported in Section 5.4. Lastly, the conclusions about the solution

algorithm are presented in Section 5.4.

90

5.1 A Two-stage Solution Method

We introduce the general framework of the two-stage solution approach in

Algorithm 3, which includes a greedy constructive heuristic and an improve-

ment heuristic based on the large neighbourhood search. The algorithm

takes a list of slot requests and airport coordination parameters as inputs

and returns the best solution that can be found as output. In the first stage,

the constructive heuristic generates an initial feasible solution x0. After this,

the global best solution xbest and the current solution x are initialised with

x0. In the second stage, the improvement heuristic iteratively destroys and

repairs the incumbent solution x (line 4). In each iteration (lines 3-12), one

of the four destroy operators is chosen according to a probability based on

their historical performance. The selected destroy operator destroy(.) re-

moves a variable number of requests from the schedule. The repair method

repair(.) then attempts to improve the solution over the set of removed

requests while fixing the value of decision variables for the other requests

and returns a new complete solution x∗. Next, the new solution’s cost (the

objective function value) is evaluated. If a new global best solution is found,

xbest is updated (lines 5-7). The new solution x∗ is only accepted as the new

current solution for the next iteration if the solution acceptance criteria are

satisfied. Otherwise, x∗ is rejected, which means that the current solution is

retained. Note that since the partial solution is repaired by an exact method,

the new solution obtained is at least as good as the current solution. The

iteration process terminates when the stopping criteria are satisfied (e.g.,

the limit of computation time, the maximum number of iterations or the

algorithm converged) and the best solution will be returned.

91

Algorithm 1 General Solution Framework

Input: set of requests, airport coordination parameters
Output: best solution xbest
1: x0 ← An initial feasible solution generated by Algorithm 2
2: incumbent solution x, xbest ← x0
3: while stopping criterion is not met do
4: x∗ ← repair(destroy(x))
5: if cost(x∗) < cost(xbest) then
6: xbest ← x∗

7: end if
8: if solution acceptance criteria is met then
9: x← x∗

10: end if
11: end while
12: return xbest

5.2 A Greedy Constructive Heuristic

Due to the complexity of slot allocation constraints, it is difficult to construct

a feasible solution to the problem. First, schedule regularity must be main-

tained by allocating a series of slots simultaneously rather than individually.

Second, declared runway capacities for a rolling time period significantly

increase the number of capacity constraints. Third, there is also interde-

pendence between paired arrival and departure slots due to the turnaround

time constraints. Fourth, requests must be assigned slots on the same day

as they are made. All these constraints result in a significant interaction

among decision variables and make this problem highly constrained. In this

section, we present a greedy constructive heuristic that aims to generate so-

lutions that satisfy all the constraints in a short time while considering the

solution quality. We introduce the solution construction procedure in Sec-

tion 5.2.1 and describe the four request ordering heuristics in Section 5.2.2

and the greedy allocation algorithm in Section 5.2.3.

92

5.2.1 Solution construction procedure

The greedy constructive heuristic starts with an empty solution and gradu-

ally constructs a complete feasible solution by allocating slots to each request

one at a time. Algorithm 1 presents the framework of the greedy construc-

tive heuristic. The algorithm takes a list of requests and airport coordination

parameters as inputs and returns a schedule that satisfies all constraints as

an output. The solution is constructed by using a request ordering heuris-

tic first and then a greedy allocation algorithm. Specifically, two types of

ordering heuristics are used, a detailed description will be given in 5.2.2.

If the ordering heuristic employed is static ordering, then it is executed at

the beginning (line 2), before the allocation of any slot. If requests are or-

dered by a dynamic ordering heuristic, it is executed at the beginning of

each iteration to provide a changing order of requests based on information

from the current solution (line 4). Note that lines 2 and 4 are only active

when the corresponding ordering heuristic is employed. Given the order of

requests, the constructive heuristic iteratively schedules requests one at a

time until all requests have been considered (lines 3-9). Within each itera-

tion, the first request m in the ordered request list is selected and passed to

the greedy allocation algorithm. Note that there are two possible outcomes

of the greedy allocation algorithm: a request may receive a series of slots

or no slot is allocated. Once all requests have been processed, a complete

solution will be returned and rejected requests will not be considered again

by the constructive heuristic.

5.2.2 Request ordering heuristics

Intuitively thinking, scheduling requests according to a specific order can

lead to a better initial feasible solution than a random order. Therefore,

93

Algorithm 2 Framework of the constructive heuristic

Input: a list of requests, coordination parameters
Output: initial feasible solution x0
1: initialising an empty solution x← ∅
2: call the static ordering heuristic (list of requests)
3: while list of requests is not empty do
4: call the dynamic ordering heuristic (list of requests, x)
5: m← first request in the sorted list of requests
6: remove m from the list
7: call Algorithm 3 to find slots for m (m,x)
8: update current solution x and remaining capacities
9: end while

10: x0 ← x

the assumption of the request ordering heuristics is that requests that are

more difficult to find feasible slots should be scheduled first with the hope

that the easier requests can fit around the difficult ones and maintain the

feasibility at the same time (Burke et al., 2014). Two types of request or-

dering heuristics are developed. A static ordering heuristic generates an

order of requests based on the request’s attributes, whereas a dynamic or-

dering heuristic produces an order of requests based on the current solution

information, therefore the order changes during the solution construction

procedure. As both ordering heuristics involve random factors, the con-

structive heuristic is stochastic. Next, we introduce each of the ordering

heuristics.

Static ordering heuristics

Most days first (MD) orders requests in a non-increasing order by the total

number of days each request is made for. This is similar to the current

practice of airport slot coordinators. Requests with the same number of

operating days are ordered randomly.

94

Dynamic ordering heuristics

Most conflicts first (MC) orders requests in a non-increasing order by the

number of conflicts each request has with the current solution. Specifically,

for each request m, requesting slot t on a set of days Dm, we calculate

the number of conflicts. It equals the total number of movements that have

already been scheduled within the time window from t to t+1 hour, summed

by Dm, in the current solution. All requests start with zero conflict with

the initial empty solution. Hence, MC is designed to start with a pre-

selected request. This request is randomly selected from requests with the

most number of days. Requests with the same value of the conflict metric are

ordered randomly. The order of requests produced by MC is changing as the

conflict metrics are updated every time a new request has been scheduled

and the current solution is updated. Note that conflict metrics are only

calculated for requests that have not been allocated slots.

Least remaining capacity first (LR) orders requests in a non-decreasing

order by the remaining capacity left for each request. The remaining ca-

pacity of any time period of a day refers to how many more movements

can be accommodated in that time period without breaking any capacity

constraints. For each request m, requesting slot t on a set of days Dm, the

remaining capacity metric is calculated by summing the remaining capaci-

ties of the time period t to t + 1 hour for all days in Dm. The remaining

capacity for each time period of the season is updated when a new request

has been processed. Similar to MC, this heuristic starts with a randomly

selected request with the most number of days.

Largest displacement first (LD) orders requests in a non-increasing order

by the best slot displacement of scheduling it to the current solution. The

best slot displacement is the absolute time difference between the requested

95

slot and the closest available slot in the current solution. If the requested

slot for a request is available, then the best slot displacement will be zero.

Requests with the largest displacement will be scheduled first. This heuristic

also starts with a randomly selected request with the most number of days.

Note that the above ordering heuristics can be combined or used indi-

vidually. For example, we can use the Most days first as the first ordering

criteria and Most conflict first as the second criteria. The performance of

different ordering heuristics will be discussed in Section 5.2.4 after the in-

troduction of the greedy allocation algorithm.

5.2.3 Greedy allocation algorithm

The greedy allocation algorithm takes a request which is determined by the

ordering heuristics as input. Then it allocates a series of slots with the min-

imum slot displacement to this request or rejects it. The pseudo-code of the

greedy allocation algorithm is given in Algorithm 2. At the beginning of the

algorithm, several variables are initialised to hold key information (line 2).

Given a request m, requesting for a series of slots at τ , the greedy allocation

algorithm first checks time intervals no earlier than τ in the order of τ , τ+1,

τ+2, ..., until the last time interval of the day T , or when the maximum al-

lowable displacement is met. The first feasible slot that can be found would

have the best displacement by far and this slot and the corresponding slot

displacement will be stored in variables t′ and forward = |t′ − τ | for later

comparison. After searching forward (lines 1-13), the algorithm checks time

intervals earlier than τ in the order of τ -1, τ -2, ..., until the first time interval

of the day, or the maximum allowable displacement is reached. Similarly,

the first feasible slot that can be found is stored in t′′, and the corresponding

displacement is recorded by backward = |t′′− τ | (lines 14-25). After search-

96

ing forward and backward, if no feasible slots can be found on both sides,

this request will be rejected and the paired request (arrival or departure

request) will also be rejected and removed from the solution (lines 26-28).

Otherwise, the displacement of allocating slots t′ and t′′ to this request are

compared. The one with the smaller slot displacement will be assigned to

the request. If they have the same displacement, any one of them can be

allocated to the request (lines 30-33).

5.2.4 Experiment results

The greedy constructive heuristic was applied to solve the SASA-R model

proposed in 4.1. We evaluate the performance of different ordering heuristics

on the quality of the initial feasible solution obtained. All ordering heuristics

were tested on each of the three airports, and 101 runs with distinct seeds

were carried out. Results for the three airports are shown in Table 5.1,Ta-

ble 5.2 and Table 5.3 respectively. The following are the conclusions:

• The greedy constructive heuristic is able to produce feasible solutions

in less than 1 minute for all three airports. These feasible solutions

can also be useful to initialise the optimisation solver to accelerate the

speed of solving.

• There is no specific ordering heuristic that performs better than oth-

ers in all three instances. However, the random ordering performed

significantly worse than other manually designed ordering heuristics,

demonstrating that the order of requests to be processed has a signif-

icant impact on the solution quality.

• Our hypothesis that requests that are more difficult to schedule should

be handled first is experimentally supported. Results show that re-

97

Algorithm 3 Greedy allocation algorithm

Input: request m (requested slot time at τ), incumbent solution x
Output: solution x0
1: t← τ
2: t′ ← None, t′′ ← None, forward←∞, backward←∞
3: while t ≤ q (last time interval of a day) do
4: if turnaround constraints are met when m is scheduled at t then
5: if capacity constraints are met when m is scheduled at t then
6: t′ ← t
7: forward← |t′ − τ |
8: break
9: else t← t+ 1

10: end if
11: else t← t+ 1
12: end if
13: end while
14: t← τ − 1
15: while t ≥ 0 do
16: if turnaround constraints are met when m is scheduled at t then
17: if capacity constraints are met when m is scheduled at t then
18: t′′ ← t
19: backward← |t′′ − τ |
20: break
21: else t← t− 1
22: end if
23: else t← t− 1
24: end if
25: end while
26: if t′ is None and t′′ is None then
27: reject request m
28: reject the paired request j
29: else
30: if forward ≤ backward then
31: allocate slot series at t′ to m
32: else allocate slot series at t′′ to m
33: end if
34: end if
35: updates the current solution x0 and the remaining capacity

quests with the most number of operating days of the season should

be scheduled first in general. However, using MD alone leads to a

98

larger deviation of the solution, since requests with the same number

of operating days are scheduled randomly.

• The standard deviation of all solution metrics tends to be reduced

when MD is used as the first ordering criterion and another ordering

heuristic as the second ordering criterion.

• As expected, LD takes the longest time to construct a feasible solu-

tion, as it calculates the best displacement of each request when it is

considered. Surprisingly, this heuristic only provided the best solution

for Airport 1. This indicates that the LD heuristic might be too greedy

as it makes decisions purely based on what the best displacement of

each request at the time is.

Table 5.1: Mean number of solution metrics generated by the greedy con-
struction heuristic (with standard deviations in parentheses), Airport 1

1st criteria 2nd criteria SchedDisp MaxDisp DispSlots Time (sec)

MD - 8,902 (205) 13 (1) 2,521 (57) 1

MD MC 8,897 (53) 12 (0) 2,665 (22) 2

MD LR 8,884 (55.1) 12 (0) 2,660 (23) 3

MD LD 8,604 (0) 12 (0) 2,611 (0) 10

random - 19,923 (4,689) 16 (4.8) 3,949 (446) 2

Table 5.2: Mean number of solution metrics generated by the greedy con-
struction heuristic (with standard deviations in parentheses), Airport 2

1st criteria 2nd criteria SchedDisp MaxDisp DispSlots Time (sec)

MD - 19,050 (140) 21 (0) 4,387 (19) 3

MD MC 19,031 (19) 21 (0) 4,425 (0) 6

MD LR 19,039 (20) 21 (0) 4,425 (0) 9

MD LD 19,033 (92) 21 (0) 4,447 (14) 9

random - 48,600 (10,341) 26 (7) 8,262 (663) 3

99

Table 5.3: Mean number of solution metrics generated by the greedy con-
struction heuristic (with standard deviations in parentheses), Airport 3

1st criteria 2nd criteria SchedDisp MaxDisp DispSlots Time (sec)

MD - 135,443 (2,870) 106 (3) 11,406 (100) 27

MD MC 126,719 (0) 100 (0) 10,986 (0) 22

MD LR 126,719 (0) 100 (0) 10,986 (0) 36

MD LD 133,682 (1,403) 106 (0) 11,676 (101) 47

random - 316,086 (47,642) 103 (12) 16,083 (629) 17

5.2.5 A group-based constructive heuristic

This section replicates the group-based constructive heuristic proposed by

Ribeiro et al. (2019a). The assumptions of this method are the same as

the greedy constructive heuristic, which is that requests with more number

of operating days should be prioritised for slot allocation because they are

more constrained by the schedule regularity requirements. Thus, requests

are first ordered in a non-increasing order by the number of days (same as

the Most days first ordering heuristic). Next, all requests are divided into

a pre-defined number of groups, each group has an equal number of slots.

The problem is then divided into several sub-problems, which are solved

sequentially in the order of the number of days by using an optimisation

solver. For details of this method, readers are referred to Ribeiro et al.

(2019a). All integer linear programs in this chapter are solved using Gurobi

9.0.2 on a computer with an Intel Core i5-8365U processor.

We tested this approach using the largest data set we have, and we pro-

vide the solver with a feasible solution obtained by the greedy constructive

heuristic. Results are shown in Table 5.4. We also compare these results

with the best solution obtained by the greedy constructive heuristic (line

‘Greedy CH’). As we can see, when requests are divided into two groups,

the number of slots in each group is very large. The solver returned a solu-

tion with an optimality gap of 2.73% after 37 hours of computation. From

100

2 to 3 groups, the required computation time was reduced to 51 minutes,

with a 5.5% increase in the schedule displacement. However, if the number

of groups is too high, the schedule displacement increases significantly. The

greedy constructive heuristic is equivalent to dividing the problem into n

groups (n is the number of requests). Although it can generate feasible so-

lutions in a couple of seconds, the schedule displacement is 50% larger than

the result from the 2 groups.

The results suggest that the group-based approach can generate better

solutions than the greedy constructive heuristic. The best trade-off between

the computation time and solution quality can be achieved when the number

of groups parameter is around the “sweet spot”. In this case, dividing

requests into four groups seems to achieve the best trade-off. The greedy

constructive heuristic can generate feasible solutions much quicker but the

solution quality is not very good. While the goal of the constructive heuristic

is not to reach optimality, it is worth leveraging the structure of the problem

to obtain a good initial solution as the starting point for the improvement

heuristic.

Table 5.4: Solutions generated by the group-based constructive heuristic for
Airport 3. Values in parentheses are the relative change rate to the results
of 2 groups

#groups MaxDisp SchedDisp Opt.Gap(%) DispSlots Run time

2 - 75,447 2.73% - 37 hours

3 51 79,571 (5.5%) 0 11,131 51 min

4 51 87,738 (15.4%) 0 10,929 18 min

5 77 92,350 (19.3%) 0 10,797 14 min

6 97 98,941 (25.4%) 0 10,912 9 min

7 100 102,521 (27.4%) 0 10,719 8 min

Greedy CH 100 126,719 (50.0%) - 10,986 22 sec

101

5.3 An Adaptive Large Neighbourhood Search Heuris-

tic for solution improvement

The slot allocation problem by its nature is a highly constrained combinato-

rial optimisation problem, and it is the kind of problem which can be easily

decomposed into a set of sub-problems, each consisting of a subset of slot

requests. Moreover, it is very difficult to explicitly define the neighbourhood

structure of a feasible solution. The features of this problem are considered

to be well suited for the Large Neighbourhood Search (LNS) heuristic, in

which the neighbourhood structure is typically defined by a destroy and

repair method. Hence, we developed a self-adaptive improvement heuris-

tic based on the LNS heuristic, called the Adaptive Large Neighbourhood

Search (ALNS) heuristic. Specifically, the ALNS heuristic explores a large

neighbourhood of the current solution by iteratively removing a set of re-

quests from the current schedule (known as the destroy phase) and later

in the repair phase, the removed requests are rescheduled with the aim of

improving the solution quality.

5.3.1 Destroy operators

The performance of the ALNS heuristic significantly depends on the destroy

operators. The underlying goal of them is to choose a set of requests that

their solution is most likely to be improved. Four destroy operators are

developed in the ALNS heuristic. Two of them, random and worst destroy

operators, are widely used in the literature. The time window operator

was used by Ribeiro et al. (2019a) and we modified it. The related destroy

operator is a novel one which is tailored to this problem. Each destroy

operator will be described in the following.

102

• random destroy operator: in order to prevent the search algorithm

from getting stuck in a locally optimal region, the search is diversified

by using the random destroy operator. In every iteration, the random

destroy operator selects a variable number of requests that include qr%

of total requested slots at random so that the neighbouring size of the

current solution can be controlled by the percentage parameter qr. In

our tests, qr is set to a random number between 10% and 20%.

• worst destroy operator: it selects a variable number of requests that

include qw % of the total requested slots with the largest schedule

displacement in the current solution. In our tests, qw is set to a random

number between 10% and 20%.

• time window destroy operator: this operator selects the set of re-

quests currently located in a certain time window. Each time window

is determined by two variables: centre time point o and radius r. For

example, the time window associated with o = 11 and r = 1 hour is a

2-hour time window from 10 to 12. The time window destroy operator

selects the centre time point randomly from a fixed set of time points

that are separated by 1 hour from each other (e.g., 9:00, 10:00, ...).

The radius r is an algorithm parameter that controls the size of the

time window. Recall that requests are unevenly distributed across the

day, when the time window locates in peak periods, a large number of

requests would be chosen by this operator, leading to a very large part

of the solution being destroyed. In this case, the benefit of the LNS

heuristic is eliminated. Therefore, the number of selected requests is

controlled by another algorithm parameter qtw to avoid an unneces-

sarily large number of requests in that time window being destroyed.

103

• related destroy operator: The goal of this operator is to identify a set

of interrelated requests by certain criteria to give a higher opportunity

for the interchange of slots. We consider two requests to be related

if the scheduling of one request may affect the scheduling of another

request. For example, the pair of arrival and departure requests are

related due to turnaround time constraints. The following part of this

section provides a detailed description of this operator.

Two requests are defined as directly or 1st-degree related if their oper-

ating days coincide and the slots they are allocated are close in time. Let

ti be the slot time assigned to request i in the current solution, and Di be

the set of operating days of i. According to the definition, two requests a

and b are 1st-degree related if Da ∩Db ̸= ∅ and |ta − tb| <= α, where α is a

pre-defined threshold, called relatedness threshold, that measures how close

in time is considered as related.

Figure 5.1: Illustration example of the relatedness of requests under different
relatedness threshold: α = 2 (left), α = 3 (right); related requests are
covered in the same colour

To make this clear, we use an example in Figure 5.1 to illustrate the

relatedness between six requests A to E. Each line segment represents a

request, including a series of slots (slots are represented by dots). The

horizontal and vertical coordinates of each dot are time interval and day

104

index. In the left figure, the relatedness threshold α is set to two-time

intervals. Under this scenario, request A and C are directly related, and

request B is not directly related to A or C as the days associated with

them are not coincide, and are thus unlikely to affect each other’s schedule.

Similarly, requests E and F, F and G are 1st-degree related. When we

increase the relatedness threshold to three-time intervals, as shown in the

right figure, requests C and E become related as their slot time difference

falls below the relatedness threshold.

It is worth noting that even if two requests do not directly relate, they can

still affect each other’s schedule by a third request that is directly related

to both of them. This is similar to the degrees of connection in a social

media network. Specifically, for an arbitrary request, requests which are

directly related to its 1st-degree relations are defined as 2nd-degree related

(e.g., requests E and G in the left figure). Similarly, its 3rd-degree related

requests are those directly related to its 2nd-degree relations (e.g., requests

C and G in the right figure). Note that the pair of arrival and departure

requests are always defined as 1st-degree related.

Fig. 5.2 illustrate how the related destroy operator works. It takes two

parameters as inputs, the relatedness threshold parameter α and the degree

of relatedness k (e.g., 1st-degree, 2nd-degree, etc), and it returns a set of

requests for the destroy and repair procedure. The operator first selects an

initial request m0 randomly. Next, the operator identifies requests that are

directly related to the initial request, denoted byM1st
0 . The operator returns

M1st
0 when k is 1st-degree. If k is set to 2nd-degree, the operator continues to

identify requests that are 2nd-degree related to the initial request (1st-degree

related to any requests inM1st
0), denoted byM2nd

0 , and all requests within

2nd-degree relations to m0 will be returned, which is the set of requests

105

M1st
0 ∪M2nd

0 .

Figure 5.2: Related destroy operator

Finally, it is worth emphasising that the time window destroy operator

selects a group of requests merely based on their scheduled time but does

not necessarily consider if they are constrained by common constraints. For

example, two requests from the same time window but on different days of

the season are unlikely to exchange slots. In contrast, the related destroy op-

erator only selects a set of related requests, thus the free capacities released

by one request are more likely to benefit other related requests.

5.3.2 Repair method

The repair method takes as inputs the set of requests selected by one of

the destroy operators and returns a complete solution as output. Let MR

be the set of requests selected by the destroy operator, andMS be the set

of remaining requests, MS ∪MS = M. The partial solution to MS and

MR are denoted by x(MS) and x(MR) respectively. The repair method

106

aims to solve the model formed by the set of removed requests MR and

the remaining capacities C\CMR
by using the Gurobi optimiser. Note that

the full set of requests is still included in the model to maintain global

feasibility. The solver returns the optimal solution for the set of removed

requests x∗(MR) or the best solution can be found in the given time limit.

The complete solution x(M) is constructed by concatenating the partial

solution x(MS) and x∗(MR).

5.3.3 Adaptive heuristics

We now introduce the framework and the adaptive layer of the ALNS heuris-

tic. It extends the large neighbourhood search by allowing multiple destroy

and repair methods to be used within the same search. All four destroy

operators introduced earlier in Section 5.3.1 are used, and we use an exact

method for repairing. The framework of the ALNS heuristic is described

in Algorithm 4. Line 1-6 presents the algorithm initialising. The current

solution is initialised with a given initial feasible solution, which can be gen-

erated by the greedy constructive heuristic or the group-based constructive

heuristic. Then we create a list of destroy operators, and each one’s score is

stored in the score list ω. Next, an empty set V is created to record the set

of requests that have been selected by the destroy operators. Based on this

information, the percentage of requests that have been considered can be

obtained, denoted by the request coverage rate ρ. In lines 7-23, the current

solution is iteratively destroyed by one of the destroy operators and repaired

by using an optimisation solver. At each iteration, one destroy operator j is

selected by a roulette wheel mechanism (more detail will be given in the fol-

lowing). Then the operator j identifies a subset of requests for improvement.

Request coverage information V and ρ are updated accordingly. Next, we

107

initialise the optimisation solver by setting the initial feasible solution to the

current solution. In addition, the free capacities released from the destroyed

requests are updated to ensure global feasibility. The solver then solves the

restricted version of the model in a given amount of time. It returns the op-

timal solution or the best solution that can be found within that time limit.

If the solver-returned solution is better than the current solution over the

removed and repaired set of requests, it means a better solution is obtained

as the schedule of the remaining requests is fixed. This improved solution

will be accepted immediately as the new current solution. The score associ-

ated with this destroy operator will be increased as a reward. If the current

solution cannot be improved, it will remain the starting point of the next

iteration. Note that the reason for this could be the current solution is local

optimum or more computation time is required. However, it can also indi-

cate that the applied destroy operator is not effective at that point during

the search process. Therefore, the score associated with this destroy opera-

tor will be decreased according to the score updating mechanism explained

next.

Different destroy operators are selected by a roulette wheel mechanism.

If we have k operators with scores ωj , j = 1, 2, ...k, then operator j is selected

with probability ωj/
∑k

j=1 ωj . In the ALNS heuristic, each destroy operator

j is assigned the same score in the beginning (wj = 100, ∀j ∈ 1, 2, 3, 4), so

they have the same probability of being selected. The scores are adjusted

dynamically as the search progresses according to their historical perfor-

mance. The mechanism to update the score is simple. Every time operator

j leads to a new global best solution, j is rewarded and its score will in-

crease by 5%, therefore having a higher probability of being chosen in the

next iteration. If the solution is not improved by using operator j, there will

108

be a penalty and the score of j will decrease by 5%. Therefore, the ALNS

heuristic adapts to the state of the search and the instance at hand.

Finally, it is important to mention the strategies that we used to further

diversify the search procedure and to avoid the same part of the solution

being considered repetitively. First, the worst destroy operator is forbidden

from being applied in two consecutive iterations. Second, the percentage

of requests that have been selected by destroy operators is tracked during

the search procedure. When this percentage is low, we want to prioritise

exploring new areas of solution space. Hence, the related operator first

selects a request that has not been visited and starting from that request,

a set of related requests are removed. When the request coverage rate has

reached the pre-defined level (e.g., 98%), the related destroy operator selects

the initial request from all requests with probability. The more times a

request has been selected, the less probability it will be chosen again.

5.4 Experiments

This section presents the experiment results of solving the single airport

slot allocation model (Eq. (4.1) to Eq. (4.10)) using the two-stage solution

method. The minimum allowable turnaround time parameter is set to 1

hour or the requested turnaround time if it is less than 1 hour. We permit

15 minutes increase in the requested turnaround time. The model has been

solved for the largest instance we have. Since the focus of this chapter is on

heuristic solution algorithms that are capable of solving large-scale problems,

we do not consider request priorities in the experiments. This makes the

problem even harder to solve since all requests need to be scheduled at the

same time. The priority of slot allocation can be easily addressed by solving

the problem of each priority class hierarchically or holistically. Therefore,

109

Algorithm 4 ALNS heuristic framework

Input: initial feasible solution x0, algorithm parameters (see Table 5.6)
Output: best solution xbest
1: initialising the current solution: x← x0
2: initialising a list of destroy operators: des. = [1, 2, ..., j]
3: initialising scores for destroy operators: ω = [w1, w2, ..., wj]
4: set of visited requests: V ← ∅
5: percentage of visited requests: ρ← 0
6: iteration index i← 0
7: while the stopping criteria is not met do
8: select one destroy operator j according to ωj ,V, ρ
9: MR ← j(x)

10: V ← V ∪MR

11: update ρ
12: MS ←M\MR

13: update remaining capacity for C\CMS

14: solver initial solution ← current solution x
15: x∗(MR)← solver
16: if cost(x∗(MR)) < cost(x(MR)) then
17: x′ ← x∗(MR) ∪ x(MS)
18: update the current solution x← x′

19: reward destroy operator j: wi+1
j ← wi

j ∗ µ+

20: else penalise destroy operator j: wi+1
j ← wi

j ∗ µ−

21: end if
22: i← i+ 1
23: end while
24: xbest ← x

the priority of slot allocation can be disregarded with no loss of generality.

All integer linear programs in this chapter are solved using Gurobi 9.0.2

on a computer with an Intel Core i5-8365U processor. Models are imple-

mented using Python and Gurobi’s Python API (gurobipy). A branch-and-

cut method proposed by Fairbrother et al. (2020) was used to speed up

the solution time of the model. Since the capacity constraints are only ac-

tive during certain congested time periods of the season, they are added as

lazy constraints through a callback function of Gurobi (the Gurobi Lazy-

Constraints parameter is set to value 1). The rest of the Gurobi solver

110

parameters have been left at their default settings, such as the TimeLimit

parameter is Infinity and the Relative MIP optimality gap is 0.0001.

Table 5.5 presents the results from solving the model using the Gurobi

Optimiser. As expected, ignoring the priority constraints increases the com-

putational time significantly, as all requests are scheduled at the same time.

For small instances (Airports 1 and 2), the model can be solved to optimality

in a couple of minutes. For Airport 3, Gurobi Optimiser runs out of memory

after a few days of computation. It could not find a feasible solution and

only provided the lower bound of solutions. As a result of this, we developed

the ALNS heuristic to solve this instance.

Table 5.5: Results of Gurobi optimiser

Airport Gap(%) Time SchedDisp Rows Columns

1 0.0 133 seconds 6,073 3,084 98,698
2 0.0 18 minutes 12,930 6,342 202,945
3 best bound 3 days 53,850 7,830 751,681

5.4.1 Data and set-up

The solution approach is implemented with the baseline inputs reported

in Table 5.6. The initial feasible solution was generated by the greedy con-

structive heuristic with the most days first ordering heuristic. Note that this

method is stochastic as requests with the same number of days are scheduled

in random order. In order to focus on the performance of the improvement

heuristic, we set the random seed to 1 in order to get the same solution each

time for the initial feasible solution. The solution quality is measured by the

schedule displacement, which is 132,785 time intervals (equivalent to 11,065

hours). Note that we do not know the optimal solution to this problem,

we only know the lower bound of the schedule displacement at 53,850-time

intervals, so this will be used to benchmark the solution obtained by using

111

heuristic methods. The random and worst destroy operators remove roughly

10% to 20% of the total requested slots at each iteration, the percentage is

set to be a random number between this range. Note that slots from the

same requests and paired requests must be removed together so the per-

centage is approximated. Next, the relatedness threshold α for the related

operator is set to 1 hour. The degree of relation is set to within the 2nd

degree based on some preliminary experimental results. The request cover-

age rate ρ is set to 0.98, which means that the related destroy operator will

prioritise selecting requests that have not been considered until 98% of all

requests have been considered at least once. Lastly, considering that some

areas of the solution can be very difficult to improve, we limit the Gurobi

optimiser solving time to 10 minutes in each iteration. The solver returns

the best solution that can be found within the given time.

Table 5.6: Inputs of the ALNS heuristic and baseline values

Parameters Symbols Baseline values

greedy CH initial feasible solution x0 SchedDisp = 137,285

random destroy % slots to be selected qr rand(0.10, 0.20)

worst destroy % slots to be selected qw rand(0.10, 0.20)

related destroy relatedness threshold α 1 hour

related destroy degree of relatedness k within 2nd-degree

related destroy request coverage rate ρ 0.98

time window destroy time window radius r 30 minutes

solver repair time limit tl 10 minutes

We perform 10 runs of the ALNS heuristic on each instance, given the

same initial feasible solution. The algorithm terminates when the conver-

gence criteria are satisfied. It is the relative reduction in the schedule dis-

placement in the last 10 iterations calculated by Eq. (5.1), where i is the

current iteration number. obj(x)i is the schedule displacement in the ith

112

iteration. ϵi (5.1) is the convergence value in the ith iteration. The conver-

gence criterion is not applied until the tenth iteration and the number of

iterations was found to be adequate for the algorithm to converge.

ϵi =
obj(x)i−9 − obj(x)i

obj(x)i−9
< 0.001 (5.1)

5.4.2 Experiment results

Table 5.7 reports the average iterations, average schedule displacement (in

the number of time intervals), average gap to the lower bound and the range

of this gap over 10 runs. The ALNS heuristic yields solutions within 6.5%

to the lower bound in about four hours, with the gap ranging from 6.43%

to 6.61%. This shows the algorithm is able to provide high-quality solutions

much faster than using the exact method. The improvement heuristic shows

significant variability in early iterations. For example, after 1 hour, the range

of gap to the lower bound is 17.97% to 42.33%. This is due to the random

selection of requests and the impact of the request coverage strategy. Recall

that when less than 98% of requests have been selected by destroy operators,

the related destroy operator only selects the initial request from requests that

have not been considered. Once the request coverage rate is above 98%, all

Table 5.7: ALNS heuristic results

Run time Ave. Iterations Ave. SchedDisp Gap (%) Gap Range (%)

30m 4 87,600 62.79 27.89-70.28

1h 22 67,340 25.05 17.97-42.33

1h 30m 30 63,011 17.01 10.55-26.63

2h 45 61,416 14.05 12.36-16.58

2h 30m 76 59,078 9.71 8.96-10.34

3h 86 57,802 7.34 6.66-7.72

3h 30m 95 57,396 6.58 6.41-7.52

4 h 104 57,337 6.48 6.43-7.03

113

requests will be selected according to probability. The more times a request

has been selected, the less probability it will be chosen again. The schedule

displacement tends to stabilise after two and a half hours and the algorithm

converged within four hours.

We now compare the performance of the four destroy operators. The

box plot Fig. 5.3 shows the computation time for each destroy operator.

On average, the related destroy takes about 10 seconds to identify a set

of related requests (within 2nd-degree relation). The other operators only

take less than one second. The number of request pairs that are selected

by each operator in each iteration is presented in Fig. 5.4. Recall that the

random and worst operators select 10% to 20% of total requested slots in

each iteration, however, the average number of request pairs removed by

the worst destroy operator is significantly lower than the random operator,

indicating that requests experiencing large displacement tend to have more

slots requested in them. The related destroy operator selects the largest

number of request pairs but a large variance was observed, due to the re-

quest relatedness structure. The time window operator selects the smallest

number of paired requests given the time window size of 1 hour.

Figure 5.3: Running time of destroy operators

114

Figure 5.4: Request pairs removed by destroy operators

Fig. 5.5 shows the computation time to repair the partial solutions when

different destroy operators are applied in each iteration. Note that the solv-

ing time limit for the solver is set to 10 minutes (600 seconds). The worst

destroy operator results in the longest computation time for the solver to

repair, averaging about 3 minutes. The related destroy operator causes the

second longest time, about 80 seconds on average. However, a significant

time variation can be observed for both the worst and related destroy oper-

ators. Based on these results, it appears that requests with large schedule

displacements or those that are interrelated are harder to improve. Finally,

we compare the improvement of schedule displacement in each iteration

in Fig. 5.6a. Results show that the worst destroy operator can lead to a

significant improvement of the schedule displacement in a single iteration.

However, large improvements tend to occur in early iterations. Fig. 5.6b

shows the zoomed-in part of Fig. 5.6a with the y-axis limited to o to -5000

time intervals. The median value of the improvements for worst destroy is

316, 166 and 146 for the related and time window destroy operators and

only 61 for the random operator.

115

Figure 5.5: Solver computation time for the application of different destroy
operators

Figure 5.6: Reduction of schedule displacement in each iteration

(a) Original (b) Zoom in

In summary, the two-stage solution method can provide high-quality

solutions within 6.5% to the lower bound of the optimal solution in about

four hours. In contrast, the Gurobi optimiser only returns a lower bound

after three days of computations, even with a warm-start feasible solution

obtained from the greedy constructive heuristic.

5.4.3 Sensitivity analysis to the algorithm parameters

The sensitivity tests aim to investigate the solution approach’s effective-

ness, test its sensibility to input parameters, and assess its computational

116

tractability. Parameters in this section are varied one at a time while the

rest are set to their baseline values (see Table 5.6).

Sensitivity to initial feasible solutions. We first analyse the sensi-

tivity of the ALNS heuristic to the quality of the initial solution (‘starting

point’). We know from results in Table 5.4 that the greedy constructive

heuristic yields much worse feasible solutions than the group-based con-

structive heuristic. However, the former only takes a few seconds to gen-

erate feasible solutions, and the latter takes much longer time, depending

on the number of groups. The baseline initial feasible solution is yielded by

the greedy constructive heuristic with the most days first request ordering

heuristic in 30 seconds. For better initial solutions, we choose the solutions

obtained from the group-based constructive heuristics when the number of

groups is 3, 5 and 6. The results are shown in Table 5.8. Column ‘Initial

Gap’ shows the gap between the initial feasible solution to the lower bound

and ‘Time’ indicates the computation time to get the feasible solutions. Not

as expected, the worse starting point leads to a better best solution and the

algorithm seems to converge more quickly when starting with a better ini-

tial solution. This indicates that the group-based constructive heuristic may

lead to a locally optimal solution since it divides the problem into several

small problems and solves each of them exactly. Moreover, the group-based

constructive heuristic takes longer time than the greedy constructive heuris-

tic to generate feasible solutions. Therefore, it is more advantageous to use

the greedy heuristic for construction because this problem seems to favour a

greater emphasis on solution improvement over construction (Burke et al.,

2007a).

117

Table 5.8: Sensitivity to initial feasible solutions

Initial Sol. Initial Gap (%) Time Ave. Gap (%) Gap Range (%) Convergence time

Greedy CH (baseline) 155.94 30 sec 6.48 6.43-7.03 4.00(3.89-4.85)

G =6 87.73 9 min 10.43 8.95-11.92 3.69 (2.82-4.56)

G= 5 71.49 14 min 14.67 8.95-20.40 2.04 (1.98-2.10)

G= 3 47.92 51 min 8.29 7.31-10.73 2.24 (1.11-3.66)

Solution degradation without each of the four destroy opera-

tors. We now examine the impact of removing one destroy operator at a

time on the performance of the ALNS heuristic. Table 5.9 reports the aver-

age gap between the best solution and the lower bound and the gap range

when each destroy operator is removed from use.

Firstly, the algorithm’s coverage speed does not change much without the

random destroy operator. However, the best solutions obtained are slightly

worse than using all four operators. In addition, early iterations show a sig-

nificant variation in solutions. Secondly, without the worst destroy operator,

the algorithm converges much quicker in 2 hours, but the best solution is

6% worse than when all four destroy operators are used. It shows that the

algorithm converges in local optima quickly and struggles to improve the

solution without removing the worst parts of the solution. Thirdly, with-

out the related destroy operator, the algorithm’s coverage speed remains

the same, but the best solution is degraded by 5%. Lastly, the solution

degradation without the time window destroy operator is significant, result-

ing in a 24.60% gap between the best solution and the lower bound. The

results demonstrate the advantages of using four different operators within

the ALNS heuristics. The four destroy operators complement each other

and work with different neighbourhood structures to diversify and intensify

the search at the same time.

118

Table 5.9: Solution degradation without each of the four destroy operators

Run time
w/o random w/o worst w/o related w/o time window

Gap (%) Range (%) Gap (%) Range (%) Gap (%) Range (%) Gap (%) Range (%)

30 min 70.09 51.96-88.21 62.42 51.72-71.44 62.06 59.57-91.93 79.74 69.82-86.90

1 hour 68.67 37.52-78.48 30.06 15.12-54.50 43.55 30.47-55.21 48.16 36.61-53.33

1 h 30 min 42.22 21.88-66.55 22.34 16.99-33.53 24.80 14.48-32.36 31.92 26.62-36.61

2 h 27.22 18.50-34.51 12.63 10.84-13.61 21.42 15.68-29.99 25.49 22.65-29.20

2 h 30 min 23.68 17.06-33.11 - - 18.90 13.14-25.94 24.64 22.37-28.39

3 h 16.37 12.33-23.61 - - 15.59 15.43-16.51 24.60 23.91-25.20

3h 30m 11.58 9.58-13.04 - - 14.14 13.80-14.29 - -

4h 7.92 7.31-8.52 - - 11.70 11.32-12.01 - -

Sensitivity to the relatedness threshold α. α is a parameter of the

related destroy operator, describing the time difference between a pair of

directly related requests. The larger the value of α, the larger set of requests

would be considered interrelated. A large value of α results in a very large

neighbourhood to search, and the solution is time costly to be improved. If

α is too small, a small group of requests will be removed, resulting in limited

flexibility to swap slots across time intervals. Table 5.10 presents the results

with α varies from 30 minutes to 90 minutes. Results suggest that the value

of α affects the algorithm’s convergence speed because the larger the value

of α, the larger the neighbourhood size; thus more computationally intensive

the model is at each iteration. In our test, α = 1 hour achieved the best

trade-off between the best solution quality and the algorithm’s convergence

time.

Table 5.10: Sensitivity to relatedness threshold α

α Ave. SchedDisp Gap(%) Gap Range (%) Convergence time

30 min 57,741 7.23 7.15-7.34 4.5 hours

1 hour (baseline) 57,337 6.48 6.43-7.03 4.0 hours

90 min 57,494 6.77 6.73-7.99 5.4 hours

Sensitivity to time window radius r. r is a parameter of the time

window destroy operator, determining the size of the time window. The

119

larger the value of r, the bigger the time window and the larger the number

of requests selected for improvement. Table 5.11 presents the results with r

varies from 30 minutes to 60 minutes, and the corresponding time window

is 1 hour, 1.5 hours and 2 hours. Results suggest that the value of r mainly

affects the algorithm’s convergence speed but does not significantly affect

the best solution quality.

Table 5.11: Sensitivity to time window radius r

r Ave. SchedDisp Gap(%) Gap Range (%) Convergence time

30 min (baseline) 57,337 6.48 6.43-7.03 4.00 hours

45 min 57,507 6.97 6.66-8.65 4.51 hours

60 min 57,494 6.55 6.39-6.76 5.23 hours

Sensitivity to the adaptive layer of the ALNS. Finally, we assess

the solution algorithm performance with and without the adaptive layer,

which involves the probabilistic selection of the four destroy operators ac-

cording to their past success in solution improvement. Results in Table 5.12

show that when the four destroy operators are selected randomly in each it-

eration, the algorithm takes a significantly longer time to converge, but the

ultimate solution quality does change much from the results of the ALNS

heuristic. The results validate the benefit of using multiple competing de-

stroy operators and choosing them by probabilities based on their historical

performance.

Table 5.12: Sensitivity to the adaptive layer of the ALNS heuristic

Ave. SchedDisp Gap(%) Gap Range (%) Convergence time

Adaptive LNS 57,337 6.48 6.43-7.03 4.00 hours

LNS 57,501 6.78 6.46-7.05 5.17 hours

The major findings from the sensitivity analysis are: First, the initial

solution to the ALNS heuristic as the starting point can impact the perfor-

120

mance of the algorithm. A better quality feasible solution does not guarantee

that a better final solution will be achieved by improvement heuristics. In

our problem, better results are achieved by using the greedy constructive

heuristic. And the group-based constructive heuristic can lead to local op-

tima solutions and make it more difficult to improve by the ALNS heuristic.

Second, the results demonstrate the benefit of using the four different de-

stroy operators within the same search as they complement each other and

lead to the best solutions together. Third, results validate the adaptive LNS

can speed up the algorithm’s convergence speed significantly. Finally, there

seems to exist a ‘best’ value for the relatedness parameter of the related

destroy operator that will lead to the best solutions. In contrast, the time

window size of the time window destroy operators mainly affect the speed

of algorithm convergence.

5.5 Conclusions

In this chapter, we proposed an original two-stage solution method based

on the large neighbourhood search heuristic with a self-adaptive mechanism.

Results suggest that the two-stage solution method can produce high-quality

solutions within 6.5% to the lower bound in about four hours for a medium-

sized airport. The exact method could only return a lower bound of the

optimal solution after 3 days of computation with a warm-start solution

produced by the greedy constructive heuristic.

The greedy constructive heuristic can generate feasible solutions for all

three airports tested in less than one minute. The hypothesis of the request

ordering heuristic that requests that are most difficult to find feasible slots

should be scheduled first is experimentally supported. Although the initial

solution quality is much worse than the solutions yielded from the group-

121

based constructive heuristic, it can lead to a better best solution together

with the improvement heuristic. This indicates that the greedy constructive

heuristic may not lead to many local optima.

Sensitivity analysis results also demonstrated the benefit of using four

different operators within the ALNS heuristics. The four destroy operators

complement each other and work with different neighbourhood structures

to diversify and intensify the search simultaneously. Moreover, it is advan-

tageous to use a self-adaptive heuristic as a hyper-heuristic to select which

destroy operator as a lower heuristic to use.

In summary, the effectiveness of this algorithm benefits from the neigh-

bourhood structure defined within the LNS heuristic. The algorithm takes

advantage of the features of the problem itself and uses the relatedness be-

tween the decision variables to determine the neighbourhood structure. In

addition, the algorithm only involves a small number of parameters, and

only the relatedness parameters affect the best solution quality. Results

also show that the ALNS heuristic can provide high-quality solutions even

with various parameter settings and low-quality initial solutions.

The ALNS can be further improved from the following aspects: the first

is to incorporate heuristic repair operators to accelerate the repairing phase.

Several meta-heuristics can be used at the top level of ALNS to help the

heuristic escape a local minimum. The second is to improve the adaptive

heuristic by considering more complex reward and penalise mechanisms for

each operator or each pair of destroy and repair operators based on how

efficiently they improve the solution quality in each iteration.

We are motivated by the positive results of the ALNS heuristic to test

its scalability and apply it on large instances to enhance the capability of

existing models. More experiments need to be done to investigate if certain

122

problem features affect the algorithm’s ability to find good solutions.

123

Chapter 6

A Flexible Scheduler for

Single Airport Slot

Allocation Problems

Allocating slots at the same time of the day to a regular flight helps airlines

to create a regular schedule. However, it may lead to more slot rejections

at very congested airports and a larger schedule displacement, ultimately

affecting capacity utilisation negatively. This chapter investigates the pos-

sible ways that can provide flexibility to slot allocation while maintaining

schedule regularity. An introduction is first given to the current schedule

regularity rules in Section 6.1. Afterward, a novel single airport slot alloca-

tion model, called flexible scheduler, is proposed in Fig. 6.1. The model is

then tested on real-world data to investigate the trade-off between schedule

regularity and flexibility. We also tested the idea of changing the series

threshold as another way to improve schedule flexibility in Section 6.3. In

Section 6.4, we discuss the experiment results and make some conclusions

about the proposed flexible slot allocation approach.

124

Table 6.1: Example of how requests are processed under the current schedule
regularity rules (non-flexible) and with schedule flexibility

Schedule Request Time Days in the week Week index Ad hoc/series Slots

non-flexible A 10:45 Mon - Sun 2,3 ad hoc 14

B 10:45 Mon 1,2,3,4,5 series 5

C 10:45 Mon, Fri 1,2,...,8 series 16

flexible C-01 10:45 Mon 1,2,...,8 series 8

C-02 10:45 Fri 1,2,...,8 series 8

6.1 Discussion of Schedule Regularity

According to the latest WSAG guidelines WASG (2020), requests are treated

as ad hoc slot or series based on the operation duration associated with

them. If the operation duration is less than five weeks (known as the series

threshold), slots are allocated on an individual basis. Otherwise, slots are

allocated in series. To make it more clear, we explain this through an ex-

ample presented in Table 6.1. Request A, which can be a request for arrival

or departure flights, is made for a group of slots at 10:45 on every day of

the 2nd and 3rd week of the season, and it comprises a total of 14 slots.

Since the number of weeks of request A is less than five weeks, it may not

be assigned slots at the same time on different days. Request B is made for

slots on a series of Mondays for five weeks, consisting of a total of 5 slots.

Despite having fewer individual slots than request A, request B is qualified

to receive a series of slots at the same time as it is made for a longer oper-

ation duration. Request C involves slots on two days of the week and eight

weeks of the season, including a total of 16 slots. It is also treated as a series

request, therefore it must be assigned a series of slots at the same time.

As we can see, allocating a series of slots at the same time of the day to a

request can arise a problem called slot blocking, which has been identified in

previous studies (Fairbrother et al., 2020; EUROPE, 2022). This means that

125

if one slot in a series of slots is not available, the entire series of slots cannot

be allocated to that request, and this potentially increases the schedule

displacement. Therefore, there is a need to investigate flexible slot allocation

approaches to mitigate the blocking problem and improve schedule efficiency.

In spite of the fact that flexible allocation does not fully comply with the

current schedule regularity rules, we can obtain valuable insights into the

trade-off between schedule regularity and schedule flexibility.

Several approaches have been proposed in light of schedule flexibility in

the literature (Ribeiro et al., 2019b; Fairbrother et al., 2020; Odoni, 2021).

The first method is to allocate slots to requests on different days indepen-

dently. The problem with this approach is that the allocated slot on one day

may be hours apart from the slot allocated on another day, and the times

may also change frequently. Considering that passengers have regular travel

needs and airlines need to develop regular flight schedules, frequent changes

in slot times should be avoided. Therefore, it is important to restrict the

changes in slot times to maintain a desired level of schedule regularity. The

second method is to segment the entire season into several time periods,

and then a request can be assigned different slots on different segments of

the scheduling season. The third method is to increase the series threshold

so that fewer requests have to be assigned slots in series. The rationale

behind this is that requests with a shorter operation duration may block

requests with a longer operation duration, so the schedule displacement can

be increased. In addition, airlines may request a longer operation duration

than they intend to operate in order to be eligible to get a series of slots

at the same time. Test results of previous studies showed that the schedule

displacement is not significantly sensitive to changes in the series threshold

and the segmentation methods. Allocating slots for each day of the season

126

independently will make the problem too large to solve, and the schedule

regularity is also difficult to maintain. This motivates the flexible slot allo-

cation approach proposed in this chapter, which will be introduced in the

next section.

Before we introduce the model formulation, we provide some analysis

results of the request data of the instance under consideration. Table 6.2

shows the number of paired requests that fall into each group of the number

of operating days in a week and the number of operating weeks. We observe

that nearly 95% of requests are made for only one day in a week. However,

requests with a large number of operating weeks, between 26 to 30, tend to

have slots requested for multiple days in a week (i.e., 17 paired requests are

made for every single day of the week for at least 26 weeks, each involving

more than 180 slots), and they are most restricted by the schedule regu-

larity constraints. Therefore, we believe that schedule efficiency will likely

be improved if requests for multiple operating days in a week have more

flexibility in their schedules.

Table 6.2: Number of request pairs with different operating days in a week
and number of operating weeks of the season

number of operating days in a week

No. weeks 1 2 3 4 5 6 7

[1,5] 293 0 0 0 0 0 0
[6,10] 172 1 2 0 0 0 1
[11,15] 45 3 3 0 0 1 0
[16,20] 92 4 0 0 0 0 0
[21,25] 170 0 0 0 0 0 0
[26,30] 103 9 2 1 2 2 17

Table 6.3 shows the number of request pairs that fall into each group

of operating days in a week and request types (ad hoc or series), given

different series threshold. At the current threshold of five weeks, 652 paired

requests are made for series operations and they must be allocated slots in

127

Table 6.3: Number of request pairs with different operating days in a week
and request types, under different series threshold

number of operating days in a week

series threshold 1 2 3 4 5 6 7 total
< 5 ad hoc 271 0 0 0 0 0 0 271
≥ 5 series 604 17 7 1 2 3 18 652
< 10 ad hoc 445 1 1 1 448
≥ 10 series 430 16 6 1 2 3 17 475
< 15 ad hoc 497 4 5 1 507
≥ 15 series 378 13 2 1 2 3 17 416
< 20 ad hoc 581 8 5 0 0 1 1 596
≥ 20 series 294 9 2 1 2 2 17 327
< 25 ad hoc 684 8 5 697
≥ 25 series 191 9 2 1 2 2 17 224
< 30 ad hoc 839 10 5 1 1 856
≥ 30 series 10 7 2 1 2 2 7 31

series. The higher the threshold, the more requests are treated as ad hoc so

are allocated individual slots. However, even when the series threshold is 30

weeks, there are still 31 request pairs that have to be allocated slots in series,

out of which 21 are for multiple days in a week. This result motivates us to

test the idea of increasing the series threshold and providing more schedule

flexibility to requests for multiple operating days in a week.

6.2 A Flexible Scheduler for Single Airport Slot

Allocation Problems

In this section, we present a new slot allocation model called the flexible

scheduler. By using this model, a request can be allocated with slots at

different times on different days of the week, subject to the range of slot time

difference being no greater than a pre-defined flexibility range parameter.

We can consider again the request C in Table 6.1, which contains two series

of slots C-01 and C-02, each compromising 8 slots on a series of Mondays

and Fridays respectively. The flexible scheduler schedules C-01 and C-02

128

individually and makes sure that the time difference between slots for C-01

and C-02 does not exceed the flexibility range. As far as we know, none

of the previous studies has considered this, so we test this idea of schedule

flexibility in this research.

We now introduce the formulations of the flexible scheduler. The flexible

scheduler is extended from the model proposed in Section 4.1 (hereafter

referred to as the non-flexible model). To avoid repetition, we use the same

notation as in the non-flexible model. Following are the additional notations

used to define the flexible scheduler.

Additional notations and parameters used in the model

K: set of days of the week {0, 1, 2, 3, 4, 5, 6}, index by k

Dm: set of days of request m, e.g., {0,1,...,90}

Km: set of days of the week on which request m is applied, Km ⊂ K

Dk
m: set of days on the kth day of the week, Dk

m ⊂ Dm

γ: flexibility range parameter, γ > 0

The flexible scheduler distinguishes which days of the week are associ-

ated with each request. Hence, a number of sets are used to achieve this.

The set K consists of integers from 0 to 6, representing Monday to Sunday

respectively. Next, the set Km indicates on which days of the week a re-

quest m has requested slots (e.g., Km = {0, 6} indicates m is made for slots

on Monday and Sunday). The set Dm is the set of days of the season on

which the request m is applied. Dk
m is a subset of Dm, corresponding to the

series of slots on the kth day of the week, if request m is made for that day

of the week. Lastly, γ is a model parameter that represents the maximum

allowable range of slot times difference between different days of the week.

129

γ is non-negative.

Decision variables

xktm =

1, if request m is assigned slots at t, on the kth day of the week

0, otherwise

zkm =

1, if request m is rejected, on the kth day of the week

0, otherwise

The binary decision variable xktm captures whether a request m is allo-

cated with slots at t, on the kth day of the week or not. Note that the number

of decision variables associated with each request m equals the number of

operating days of m, ranging from 1 to 7. The second decision variable zkm

is also binary, which indicates whether request m is rejected on the kth day

of the week or not. It is important to note that a decision to satisfy or reject

is applied to each series of slots on the same day of the week rather than to

all series of slots together. Furthermore, the paired arrival and departure

slots are always allocated or rejected at the same time.

Objective function

minw1

∑
m∈M

∑
k∈km

|Dk
m|zkm + w2

∑
m∈M

∑
k∈km

∑
t∈Tm

|Dk
m|fkt

mxktm (6.1)

The objective 6.1 of the flexible scheduler is to first minimise the total

number of rejected slots, and second the total schedule displacement. This

objective function has the same form as the objective function of the non-

flexible model (detailed description is provided in Section 4.1).

130

Constraints

Tm = {t ∈ T |τm − ϕm ≤ t ≤ τm + ϕm} (6.2)

∑
t∈Tm

xktm ≤ 1,∀m ∈M,∀k ∈ km (6.3)

1−
∑
t∈Tm

xktm = zkm, ∀m ∈M,∀k ∈ km (6.4)

zki = zkj ,∀(i, j) ∈ P,∀k ∈ km (6.5)

fkt
m = |t− τm|, ∀m ∈M, ∀k ∈ km (6.6)

(1− zki)T
min
i,j ≤

∑
t∈Tj

txktj −
∑
t∈Ti

txkti ≤ Tmax
i,j ,∀k ∈ km,∀(i, j) ∈ P (6.7a)

(1−zkj)Tmin
i,j ≤

∑
t∈Tj

(T+t)xktj −
∑
t∈Ti

txkti ≤ Tmax
i,j ,∀k ∈ km,∀(i, j) ∈ P (6.7b)

∑
i∈Marr

t+Lc−1∑
t

xkti ≤ Carr
dt , ∀d ∈ D,∀k ∈ km, t ∈ T |t < T − Lc + 1 (6.8)

∑
j∈Mdep

t+Lc−1∑
t

xktj ≤ Cdep
dt , ∀d ∈ D,∀k ∈ km, t ∈ T |t < T − Lc + 1 (6.9)

131

∑
m∈M

t+Lc−1∑
t

xktm ≤ Ctotal
dt ,∀d ∈ D,∀k ∈ km, t ∈ T |t < T − Lc + 1 (6.10)

|
∑
t∈Tm

txk
′t

m −
∑
t∈Tm

txk
′′t

m | ≤ γ+M(2−
∑
t∈Tm

xk
′t

m −
∑
t∈Tm

xk
′′t

m), ∀m ∈M,∀k′, k′′ ∈ km

(6.11)

Constraints 6.2 through 6.10 are similar to the constraints used in the

non-flexible model. For simplicity, we do not repeat the description of each

constraint here. The main difference is that the flexible scheduler creates

constraints for each series of slots on the same day of the week, whereas the

non-flexible model creates constraints for each request, which may include

multiple series of slots on different days of the week. The flexibility range

constraint 6.11 is new. It ensures that the difference of slot times allocated

to a request m is no greater than a pre-defined flexibility range γ. Suppose

k′ and k′′ are two arbitrary days of the week that request m is requested for,

the two corresponding series of slots are denoted by mk′ and mk′′ . There are

three possible outcomes ofmk′ andmk′′ in a flexible schedule and constraints

6.11 need to hold true in all cases. The first outcome is that both series of

slots are scheduled, then the left-hand side of 6.11 equals the absolute time

difference of the slots allocated to the two series, and the right-hand side

is γ. Therefore, the range of changes in slot times can be restricted by the

flexibility range parameter. Note that this constraint applies to any two

series of slots of the same request. The second possible outcome is that

mk′ and mk′′ are both rejected. In this case, 6.11 becomes 0 ≤ γ + 2M ,

where M is a positive number. Since the right-hand side is non-negative,

this inequality holds true. The third outcome is that one series of slots is

132

scheduled and the other one is rejected. In this case, no flexibility range

constraints need to be applied. To achieve this, M needs to be sufficiently

large to satisfy 6.11. Since in this case, the left-hand side is the slot time

for the scheduled series of slots, M is therefore set to the last time interval

of the day.

6.3 Experiments

6.3.1 Data and set-up

All integer linear programs in this section are solved using Gurobi 9.0.2

on a computer with an Intel Core i5-8365U processor. Models are imple-

mented using Python and Gurobi’s Python API (gurobipy). A branch-and-

cut method proposed by Fairbrother et al. (2020) was used to speed up

the solution time for the flexible scheduler. Since the capacity constraints

are only active during certain congested time periods of the season, they

are added as lazy constraints through a callback to the solver (the Gurobi

LazyConstraints parameter is set to value 1). The rest of the Gurobi solver

parameters have been left at their default settings, such as the TimeLimit

parameter is Infinity and the Relative MIP optimality gap is 1e-4. In addi-

tion, the greedy constructive heuristic proposed in Section 5.2 can still be

used to generate initial feasible solutions to the flexible scheduler. However,

the initial solution is non-flexible.

The proposed flexible scheduler is solved for Airport 2 by the optimisa-

tion solver and for Airport 3 by using the two-stage approach introduced in

Chapter 5. The tests are designed to evaluate the effectiveness of the flexible

scheduler, assess its computational tractability, and identify its sensitivity

to input parameters, in particular, the series threshold and the flexibility

133

range parameter. We solved the model both non-hierarchically and hier-

archically, which incorporates slot priorities. In order to promote schedule

flexibility, we set the minimum turnaround time parameter to the minimum

of 1 hour and the initial requested turnaround time, as was done in Zo-

grafos et al. (2012); Fairbrother et al. (2020). The maximum turnaround

time parameter is set to 15 minutes more than the requested turnaround

time. According to our previous studies, this can lead to a 15% of reduction

in the total schedule displacement as demonstrated in Table 4.2 (scenario

D).

6.3.2 Non-hierarchical results

In this section, we analyse the results of solving the flexible scheduler non-

hierarchically, which means that all requests are scheduled at the same time

regardless of their priorities. The problem then becomes larger to solve.

The greedy constructive heuristic developed for the non-flexible model is

modified to generate feasible but non-flexible solutions. These solutions can

be used as the warm-start solution to speed up the solving process of the

exact solver. The maximum allowable displacement is not set at this stage

but will be incorporated later.

We combine changing the series threshold and the flexibility range in the

tests. The series threshold is set to 5 weeks (the current practice) and 10

weeks. The tested flexibility ranges are 0, 15, 30, 45, and 60 minutes. We

also solved the model without considering the flexibility range constraints,

the results correspond to γ=none.

In Table 6.4 we present the results in terms of schedule displacement

(SchedDisp) in the number of time intervals, maximum slot displacement

(MaxDisp) in minutes, number of displaced slots (DisSlots), and the com-

134

putation time required by the exact solver with a warm-start solution. In

addition, we compare solutions by two schedule flexibility metrics. The max-

imum range metric Eq. (6.12) measures the biggest time difference between

any two series of slots of the same request, on different days of the week.

The second metric Eq. (6.13) is the average difference in slot times. Note

that this metric is calculated only based on requests with multiple operating

days in a week, as they are the only requests scheduled with flexibility (the

divisor of Eq. (6.13)). The dividend is the sum of the slot time difference

between any two series of slots of such requests.

max
m∈M

|
∑
t∈Tm

txk
′t

m −
∑
t∈Tm

txk
′′t

m |,∀k′, k′′ ∈ km (6.12)

∑
m∈M

∑
k′,k′′∈km

|
∑
t∈Tm

txk
′t

m −
∑
t∈Tm

txk
′′t

m |/|M|,∀m ∈M||km| > 1 (6.13)

We first study the impact of changing the flexibility range on sched-

ule efficiency and regularity. As the flexibility range increases, the optimal

schedule displacement decreased by up to 3.6% when the maximum degree

of flexibility is allowed. With a flexibility range of 15 minutes, the schedule

displacement can be reduced by 2%. In terms of the maximum range, it is al-

ways equal to the value of the flexibility range parameter indicating that the

schedule flexibility constraints are tight. When the flexibility range is not

restricted, the maximum range can be 150 minutes. For the average range,

we observe that it is significantly less than the maximum range, showing

that only a small percentage of requests received slots at different times on

different days of the week. This also demonstrates that the schedule regular-

ity only slightly deteriorated by using the flexible scheduler, even when the

135

maximum degree of flexibility is permitted (average range at 13.18 minutes).

The maximum slot displacement and the number of displaced slots are not

sensitive to the flexibility ranges.

Next, we study the effect of changing the series threshold. Moving from

5 to 10 weeks means that more requests are not assigned slots in series.

As a result, the optimal schedule displacement can be reduced slightly by

about 2.5% under the same level of flexibility. This small reduction makes

sense in the light of Table 6.2 which shows that only three pairs of requests

moved from series to ad hoc group when the series threshold changed from

5 to 10 weeks. The maximum range without flexibility range constraints is

30 minutes less compared to when series threshold is 5. Interestingly, both

the number of displaced slots and the average range decreased as the series

threshold increased. These results suggest that longer requests (operation

duration above 10 weeks) tend to benefit from the increase of the series

threshold because shorter requests (operation duration less than 10 weeks)

are scheduled flexibly so the slot blocking issue caused by shorter requests

are mitigated to some extent. Finally, we observe that the computation time

for solving the flexible scheduler is very sensitive to the series threshold. We

expect this model to be very difficult to solve if the series threshold is high

and slots on every single day of the season are allocated individually.

Overall, the benefit of using the flexible scheduler appears to be more

significant than increasing the series threshold. We believe the benefit of

using the flexible scheduler will be more pronounced at airports with a larger

number of requests consisting of multiple series of slots on different days of

the week. As the flexible scheduler does not greatly increase the problem

size and is, therefore, more efficient than increasing the series threshold to

improve schedule flexibility.

136

Table 6.4: Non-hierarchical results for flexible scheduler with different series
thresholds and flexibility ranges γ. γ = 0 indicates that the schedule is
non-flexible. γ=None indicates that the flexibility range constraints are not
considered. Values in parentheses are the relative reduction rate to the
non-flexible schedule in the first row

series
threshold

γ (minutes) SchedDisp (intervals) MaxDisp DispSlots Max.range (min) Ave.range (min) Time (sec)

5 0 11,307 3h45m 5,019 - - 740

5 15 11,084 (-2.0%) 3h45m 5,144 (2.5%) 15 2.95 861

5 30 11,049 (-2.3%) 3h45m 5,144 (2.5%) 30 5.00 876

5 45 11,012 (-2.6%) 3h45m 5,053 (0.7%) 45 7.27 653

5 60 10,983 (-2.9%) 3h45m 5,055 (0.7%) 60 7.73 707

5 none 10,897 (-3.6%) 3h45m 5,046 (0.5%) 150 13.18 997

10 0 10,926 (-3.4%) 3h30m 4,736 (-5.6%) - - 4,844

10 15 10,747 (-4.9%) 5h15m 4,165 (-17.0%) 15 2.83 6,780

10 30 10,705 (-5.3%) 4h 4,752 (-5.3%) 30 3.00 3,724

10 45 10,688 (-5.5%) 4h 4,736 (-5.6%) 45 3.50 4,288

10 60 10,669 (-5.6%) 4h 4,731 (-5.7%) 60 3.67 6,488

10 none 10,635 (-5.9%) 3h45m 4,867 (-3.0%) 120 4.33 4,189

6.3.3 Hierarchical results

In this section, we solve the flexible scheduler hierarchically for the four

primary priority classes in the order of Historics (H), Changes-to-historic

(CH), New entrants (NE) and Others (OT). The results are presented in

Table 6.5. The schedule of the Historics is unchanged across all tests since

there is no displacement of historical requests. When a 15-minute flexibil-

ity range is permitted, the schedule displacement of Changes-to-historic is

reduced by 3.5% compared to the non-flexible schedule. For New entrants,

the schedule displacement and displaced slots both decreased by more than

70% compared to the non-flexible solution. This indicates that the flexi-

ble schedule of Changes-to-historic requests had a significant impact on the

lower priority groups, especially on the New entrants. Further increase in

the flexibility range does not affect the schedule of Changes-to-historic and

New entrants, so the results for flexibility ranges above 15 minutes are not

reported. The schedule displacement of Others can be reduced by 9.2% to

14.5% as the flexibility range further increases but the reduction becomes

137

less significant. The maximum slot displacement remains unchanged until

the flexibility range is increased to 1 hour, and it is reduced by 30 min-

utes. The average range shows that very few Changes-to-historic and New

entrants requests received various slots, even though they are allowed to be

scheduled with flexibility. The Others have seen much more flexibility but

the average range is still less than 30 minutes. The conclusion is that the

impact of the proposed flexible scheduling approach is more significant when

solving the model hierarchically. Even allowing a small level of flexibility

for the higher priority class will greatly reduce the schedule displacement

of requests with lower priorities. Therefore, by using the proposed flexible

scheduler, New entrants and Others requests can benefit the most and the

schedule regularity can also be maintained to the desired level by changing

the values of the flexibility range parameter.

6.3.4 Effects on slot rejections

In this experiment, we examine whether the number of rejected slots can be

reduced by using the flexible scheduler. The model is solved hierarchically

with the maximum allowable slot displacement at 45 minutes and 1 hour.

Results are shown in Table 6.6. Without schedule flexibility, 562 slots and

1,136 slots of the Others were rejected with the maximum allowable slot

displacement at 1 hour and 45 minutes respectively. By using the flexible

scheduler, 409 slots (12.8% less) were rejected and the schedule displacement

was also reduced by 35%. Note that the same requests were rejected in

the non-flexible and the flexible solution, but the number of rejected slots

was reduced. This is because the flexible scheduler allows a series of slots

for different days of the week to be rejected independently. However, the

reduction in slot rejections as a result of flexible scheduling tends to diminish

138

as the maximum slot displacement threshold gets tighter (6.5% fewer slots

were rejected compared to the non-flexible solution when the maximum

allowable slot displacement is 45 minutes). Another observation is that the

number of rejected slots is mainly determined by the maximum allowable slot

displacement and it is not very sensitive to the flexibility range parameter.

Any flexibility range above 45 minutes will not affect the number of rejected

slots. This suggests that by using the flexible scheduler, the slot rejections

can be reduced with little sacrifice to the schedule regularity.

Table 6.5: Hierarchical results for flexible scheduler with different flexibility
ranges. The series threshold is fixed at 5. Values in parentheses are the
relative reduction rate to the non-flexible schedule when γ = 0

γ SchedDisp MaxDisp DispSlots Max.range(min) Ave.range (min) Time (sec)

H 0 0 0 - -

CH 510 45m 334 - -

NE 255 15m 255 - -

OT 17,699 4h15m 5,968 - -

All 0 18,464 4h15m 6,557 - - 176

H 0 0 0 0 0

CH 492 (-3.5%) 45m 379 (13.5%) 15 1.5

NE 75 (-70.6%) 15m 75 (-70.6%) 15 1.9

OT 16,069 (-9.2%) 4h15m 5,203 (-12.8%) 15 7.3

All 15 16,636 (-9.9%) 4h15m 5,657 (-13.7%) - - 311

OT 15,733 (-11.1%) 4h15m 5,077 (-14.9%) 30 10.5

All 30 16,300 (-11.7%) 4h15m 5,531 (-15.7%) - - 172

OT 15,374 (-13.1%) 4h15m 4,799 (-19.6%) 45 14.8

All 45 15,941 (-13.7%) 4h15m 5,253 (-19.9%) - - 167

OT 15,267 (-13.7%) 3h45m 4,808 (-19.4%) 60 19.1

All 60 15,834 (-14.2%) 3h45m 5,262 (-19.7%) - - 165

OT 15,130 (-14.5%) 3h45m 4,746 (-20.5%) 180 21.8

All None 15,697 (-15.0%) 3h45m 5,200 (-20.7%) - - 156

6.3.5 Applying the ALNS heuristic to the flexible scheduler

The experiments are designed to test the capability of the proposed two-

stage solution approach proposed in Chapter 5 to solve the flexible slot

allocation model. Due to time constraints, the experiment is still in progress.

Preliminary results show that the flexible scheduler model can be solved

139

by using the two-stage approach. Figure 6.1 compares the performance of

the solution algorithm for solving the non-flexible model and the flexible

scheduler for Airport 3. With regard to solution quality, flexible scheduling

obtained solutions with 1.3% (3,635 minutes) displacement than the non-

flexible model with a 30-minute flexible range. In terms of computational

time, the two-stage algorithm converges in less time (1 to 1.5 hours) when

applied to the flexible scheduler than the non-flexible model.

Figure 6.1: The performance of the two-stage solution approach for solving
the non-flexible model and the flexible scheduler for Airport 3

6.4 Conclusions

In this chapter, we have investigated two ways to improve schedule flexibility.

First, a new slot allocation model was proposed to allow multiple series of

slots, in the same request, for different days of the week to be allocated or

rejected individually. Meanwhile, the time difference between these series of

slots can be limited by the flexibility range parameter to maintain the desired

level of schedule regularity. Therefore, this model can provide a trade-

off between schedule regularity and flexibility. Since the flexible scheduler

140

is more computationally complex than the non-flexible model proposed in

Chapter 4, we used a modified version of the greedy constructive heuristic to

generate initial feasible solutions to the flexible scheduler to improve solution

times.

Experiment results showed that the flexible scheduler can reduce the

number of rejected slots and the schedule displacement simultaneously. When

the problem is solved hierarchically, the benefit of using the flexible scheduler

is more significant, especially for requests with lower priorities such as the

New entrants and Others (70% and 10% reduction of schedule displacement

with 15 minutes flexibility range). Note that the schedule flexibility only

applies to multiple series of slots on different days of the week, and requests

with a longer operation duration tend to have multiple series of slots in a

week, therefore the flexible scheduler gives more flexibility to requests with

a long operation duration. This is different from the method of increasing

the series threshold, which gives more slot allocation flexibility to requests

with a shorter operation duration. These results also indicate that the flex-

ible scheduler would likely be more useful for airports with more full-season

requests such as very congested airports. Finally, we observe that even when

given the flexibility of slot allocation, a high level of schedule regularity still

can be achieved due to the objective to minimise the schedule displacement

of all slots.

With regard to the flexibility range, we used a uniform range for all

requests. However, the flexible scheduler allows one to specify this param-

eter for different priority groups, requests and flight types. For example,

considering passengers’ behaviours, departure flights should be more regu-

larly scheduled than arrival flights, then departure requests should be given

smaller flexibility ranges compared to arrival requests.

141

Table 6.6: Hierarchical results for flexible scheduler with different flexibility
ranges and maximum allowable slot displacement (‘Max. threshold’). The
series threshold is fixed at 5. Values in parentheses are the relative reduction
rate to the non-flexible schedule when γ = 0

Max. threshold γ SchedDisp MaxDisp DispSlots RejSlots

H 0 0 0 0

CH 510 45m 318

NE 255 15m 255

OT 17,009 1h 7,721 562

1 hour All 0 17,774 1h 8,294 562

H 0 0 0 0

CH 492 (-3.5%) 45m 379 (19.2%) 0

NE 75 (-70.6%) 15m 75 (-70.6%) 0

OT 10,974 (-35.8%) 1h 4,851 (-37.2%) 490 (-12.8%)

1 hour All 45min 11,541 (-35.1%) 1h 5,305 (-36.0%) 490 (-12.8%)

OT 11,405 (-33.3%) 1h 4,928 (-36.2%) 490 (-12.8%)

1 hour All 1h 11,972 (-32.6%) 1h 5,382 (-35.1%) 490 (-12.8%)

OT 10,915 (-36.2%) 1h 4,720 (-38.9%) 490 (-12.8%)

1 hour All 1h15m 11,482 (-35.4%) 1h 5,174 (-37.6%) 490 (-12.8%)

OT 10,718 (-37.2%) 1h 4,664 (-39.6%) 490 (-12.8%)

1 hour All None 11,285 (-36.5%) 1h 5,118 (-38.3%) 490 (-12.8%)

H 0 0 0 0

CH 525 45m 316 0

NE 255 15m 255 0

OT 10,945 45m 5,688 1,136

45min All 0 11,725 45m 6,259 1,136

H 0 0 0 0

CH 492 (-3.5%) 45m 379 (19.2%) 0

NE 75 (-70.6%) 15m 75 (-70.6%) 0

OT 6,995 (-36.1%) 45m 4,102 (-27.9%) 1,062 (-6.5%)

45min All 45m 7,562(-35.5%) 45m 4,556 (-27.0%) 1,062 (-6.5%)

OT 6,934 (-36.6%) 45m 3,885 (-31.7%) 1,062 (-6.5%)

45min All 1h15m 7,501 (-36.0%) 45m 4,339(-30.7%) 1,062 (-6.5%)

OT 7,105 (-35.1%) 45m 3,991 (-29.8%) 1,062 (-6.5%)

45min All None 7,672 (-34.6%) 45m 4,445 (-29.0%) 1,062 (-6.5%)

142

Chapter 7

Conclusions

This chapter summarises the research in this thesis and highlights the key

results derived from the experiments and analysis. Our final contribution

is a discussion of the limitations of this study and suggestions for future

directions.

7.1 Overview of this research

The main objective of this research is to enhance the decision support sys-

tems for airport slot allocation from an operational research point of view.

My research mainly focuses on tackling single airport slot allocation prob-

lems with new models and solution algorithms. Three different areas were

the focus of this research.

First, chapter 4 proposes a new model (SASA-R), which enhances exist-

ing models by considering slot rejections under different maximum displace-

ment thresholds. The model is then used to investigate slot rejections and

possible changes to the current slot allocation rules. The research findings

help us better understand how these rules affect slot allocation and can be

changed in the future.

143

Second, we introduced a two-stage solution approach for solving the

SASA-R model in Chapter 5. A greedy constructive heuristic was devel-

oped, which is able to generate feasible solutions in less than one minute

for a medium-sized airport. These feasible solutions can also be used to

accelerate the solving process of optimisation solvers. We then proposed an

adaptive large neighbourhood search heuristic to improve the quality of the

initial feasible solution. It iteratively changes a large part of the solution by

applying the so-called destroy and repair method. Four destroy operators

are used and selected based on past success, and the repair method is an

exact method that optimises a partial solution in each iteration.

Third, this thesis contributes to flexible slot allocation research. Chapter

6 investigates two possible ways to provide flexibility to slot allocation while

maintaining schedule regularity. A flexible scheduler was developed, which

allows a series of slots to be allocated individually on different days of the

week. The flexibility range can be limited to maintain the desired level of

schedule regularity. Therefore, the model helps us better understand the

trade-off between schedule regularity and flexibility.

In addition, we presented a review of the latest slot allocation regula-

tions and related literature and highlighted some future research needs in

Chapter 2. Finally, a data analysis report is presented in Chapter 3, which

helps us better understand the real-world slot request data and slot demand

variations between airports. The results can provide references for develop-

ing mathematical models, solution algorithms, and insights on generating

artificial request data sets from real-world data due to a lack of data avail-

ability. Our research findings will assist authorities in improving the existing

slot allocation rules, and airport coordinators in improving the efficiency of

airport slot allocation, especially in large airports, and ultimately improve

144

the utilisation of airport slots and passenger interests.

7.2 Key results

The following summarises the key results in the order of chapters of this

thesis.

Better understanding of slot demand pattern at different slot

coordinated airports. An in-depth analysis of the slot request data has

identified a number of key attributes that can be used to define the underly-

ing relationships between different properties in the data set of the demand

for slots present in the data. The results demonstrate the difference in slot

demand patterns at different airports, which should be taken into account

when developing mathematical models and solution algorithms for the slot

allocation problem. Due to the lack of real-world request data, this anal-

ysis also provides a basis for algorithm development and the generation of

artificial data sets.

Better model for slot allocation considering slot rejections. Us-

ing the SASA-R model proposed in Chapter 4, the number of rejected slots

can be minimised subject to different maximum allowable displacements.

Slots can also be weighted based on the number of seats and operation du-

ration of the aircraft using that slot. Therefore, requests associated with

the highest number of passengers and the longest operating period will be

more expensive to reject.

Better understanding of the maximum displacement. In con-

trast to many other models, the maximum slot displacement is modelled as

a constraint rather than a minimisation objective in the SASA-R model. As

a result, it reduces the number of decision variables and limits the worst

case of slot displacement across all slots. Results demonstrated that when

145

the maximum displacement threshold is set low, the computation time for

solving the model is significantly reduced. In addition, the maximum dis-

placement threshold can be set individually for each slot, according to slot

priorities, movement types (arrival or departure), flight distance or airlines’

preferences.

Better understanding of the turnaround time constraints. Re-

sults in 4.3.1 suggest that restricting the allocated turnaround time to be

the same as the requested turnaround time may be unnecessary. A small

degree of change in turnaround time can improve schedule efficiency and

reduce the computation time of finding the optimal solutions. However, it

is necessary to limit the extension of the requested turnaround time. It is

worth considering different feasible turnaround times for different flight pairs

according to factors that affect the aircraft turnaround operations, such as

aircraft type, route, airline service level, etc.

Schedule efficiency can be improved with holistic slot alloca-

tion, but the impact of the ‘equal priorities’ change on each prior-

ity class needs more investigation. Holistic slot allocation can improve

the overall slot allocation efficiency compared to hierarchical allocation, re-

ducing total schedule displacement, maximum displacement and the number

of displaced slots. However, the slot allocation of Change-to-historic is much

more degraded due to having equal priority with New entrants and Others.

Results also show that New entrants cannot always benefit from the holistic

allocation due to the fact that slot priority distribution varies at different

airports. More research is needed to investigate how exactly the holistic

allocation regime can be implemented to deliver better competition for air-

lines.

There is a way to reduce the variance of slot displacement at

146

the expense of a large number of displaced slots. To penalise the

large displacement of individual slots, a squared cost of displacement is

employed in the objective function. Results suggested that the variance of

slot displacement can be significantly reduced. However, under the same

level of maximum displacement, the squared cost of displacement leads to a

40% reduction in average slot displacement, a 30% increase in the schedule

displacement, and a 120% increase in the number of displaced slots.

Model capability can be improved by a two-stage solution ap-

proach based on an adaptive large neighbourhood search heuristic.

Chapter 5 proposes a two-stage solution method based on the large neigh-

bourhood search heuristic with a self-adaptive mechanism. Results suggest

that this solution method can produce high-quality solutions within 6.5%

to the lower bound in about four hours for a medium-sized airport. The

exact method could only return a lower bound of the optimal solution after

3 days of computation with a warm-start solution produced by the greedy

constructive heuristic. Preliminary experiment results also demonstrated

that the two-stage approach is effective to solve the flexible slot allocation

model.

Feasible solutions can be generated quickly by the greedy con-

structive heuristic. The greedy constructive heuristic can generate feasi-

ble solutions for all three airports tested in less than one minute. Further-

more, feasible solutions can significantly speed up the solving time required

by the optimisation solver.

Better understanding of the trade-off between solution con-

struction and improvement. Experiment results show that a better

quality feasible solution does not guarantee that a better final solution will

be achieved by improvement heuristics, as constructive heuristics may lead

147

to the locally optimal solution.

We believe the adaptive LNS heuristic is able to adapt to var-

ious instance characteristics. The effectiveness of the adaptive LNS

heuristic benefits from the neighbourhood structure defined by the four com-

plementary destroy operators and the adaptive heuristic. The destroy oper-

ator takes advantage of problem features and inter-dependency between slot

requests. In addition, the algorithm only involves a small number of param-

eters, and only the relatedness parameters affect the best solution quality.

Therefore, we believe the ALNS heuristic can adapt to the search state and

the instance at hand.

Flexible slot allocation model to analyse the trade-off between

schedule regularity and flexibility. A flexible slot allocation model was

proposed to schedule multiple series of slots, in the same request, individu-

ally for different days of the week. The time difference between slots can be

restricted to a preferred level. Therefore, the model can provide a trade-off

between schedule regularity and flexibility. We believe that the model can

make a more significant impact when it is solved for a very congested airport

with more full-season requests and when slot priorities are incorporated.

7.3 Future work

Our research has also identified some limitations with existing research,

which can be improved in future research or lead to new research directions.

Fairness of slot rejections. An area that was not discussed in this

thesis is the fairness of slot allocation. This issue has been the subject of a

lot of previous research. However, none of them addressed the fairness of slot

rejections. It is vital to have a decision support system for slot rejections,

particularly at very congested airports. The issue of fair distribution of

148

rejections to airlines is a potential research direction that needs attention.

Testing for more airports. Due to a lack of data availability, the

proposed model and algorithm have not been applied at some of the largest

schedule-coordinated airports in the world. Testing the scalability of the

proposed model and solution methods on larger instances represents an

important avenue for future research. There is ongoing work to generate

artificial slot request data to test the solution algorithm’s effectiveness.

Solution algorithms for the flexible slot allocation model. There

is ongoing work on solving the flexible slot allocation model using the two-

stage method proposed in Chapter 5. A constructive heuristic is needed for

generating feasible solutions with schedule flexibility.

Enhance the capability of existing models. There are currently

many models proposed for the single airport slot allocation problem. Some of

them have multiple objectives or multi-level solution frameworks. However,

due to a lack of effective solution algorithms, these models have only been

solved for small airports. Therefore, effective solution approaches need to

be developed urgently to enhance the capability of existing models.

Improvements of the ALNS heuristic. There is ongoing work to

develop heuristic repair operators. For example, in each iteration, the set

of removed requests can be ordered by different request ordering heuristics

used in the greedy constructive heuristic. Next, selected requests for re-

moval can be reinserted into the schedule by a greedy insertion algorithm

or probabilistic allocation algorithm. Several meta-heuristics can be used at

the top level of ALNS to help the heuristic escape a local minimum.

Incorporating more slot allocation criteria. The SASA-R model

does not formulate the 50/50 rules of slot allocation, which requires that

50% of the slots in the slot pool must be allocated to New entrants and the

149

other 50% to Others unless requests in such class are less than 50%. These

constraints will affect the slot allocation result, especially slot rejections at

very congested airports.

Heuristic search for network-wide slot allocation problems. One

potential future research direction is to develop heuristic approaches to solve

network-wide slot allocation problems. Although some researchers have been

working on this area, more sophisticated approaches are required to cope

with the huge problem size, flight duration constraints, flight pairing con-

straints and coherence, and objectives for network-wide slot allocation.

150

Appendix A

Results for SASA-R model

A.1 Results for Airport 1

Table A.1: Non-hierarchical results for Airport 1

Threshold RejSlots RejReqs SchedDisp MaxDisp DispReqs DispSlots Disp/Slot(min) Time(sec)

None 0 0 6,073 2h45m 259 2748 33 133

2h 0 0 6,083 2h 269 3189 29 92

1h30m 0 0 6,175 1h30m 255 2864 32 26

1h 0 0 6,374 1h 282 3466 28 19

30m 126 66 9,577 30m 304 5903 24 6

0 1,858 82 0 0 0 0 - 0.56

Table A.2: Hierarchical results for Airport 1

Threshold SchedDisp MaxDisp DispReqs DispSlots Disp./slot (min) Time(sec)

H – 205 45m 22 141 22

CH – 694 1h 16 300 35

NE – 676 1h 12 252 40

OT – 13,243 3h45m 133 3,518 57

All 14,818 3h45m 183 4,211 53 12

151

Table A.3: Holistic results for Airport 1. Values in parentheses is the relative
reduction rate to the hierarchical allocation results

Threshold SchedDisp MaxDisp DispReqs DispSlots Disp./slot (min) Time(sec)

H 45m 205 30m 20 148 (5%) 21 (-4%)

CH 1h 1,774 (155%) 1h 52 700 (133%) 38(8%)

NE 1h 500 (-26%) 45m 12 252 (0%) 30 (-25%)

OT 3h45m 6,728 (-49%) 3h15m 138 2,715 (-23%) 37 (-35%)

All 9,207 (-38%) 3h15m 222 3,815 (-9%) 36(-32%) 30

Table A.4: Non-hierarchical results with the linear and squared cost of dis-
placement. Values in parentheses are the relative change rate to the results
for linear cost of displacement

Displacement cost SchedDisp DisReqs DisSlots Disp./slot (min)

1 Linear 6,374 282 3,466 28

2 Squared 7,228 (13%) 321 (14%) 5,146 (48%) 21 (-25%)

Table A.5: Sensitivity of non-hierarchical results to changes in turnaround
times. The second column indicates the allowable reduction and increase in
turnaround times

Scenario Changes in turnaround times SchedDisp DispReqs DispSlots Disp/Slot (min) Time (sec)

MaxDisp threshold = 2h, RejSlots=0

A 0,0 6,352 280 2,980 32 43

B flexible, 0 6,092 (-4%) 266 3,171 (6%) 29 (-9%) 64

C 0, +15min 5,313 (-16%) 255 2,803 (-6%) 28 (-13%) 43

D flexible, +15min 5,192 (-18%) 254 2,787 (-6%) 28 (-13%) 32

E flexible, +30min 4,905 (-23%) 229 2,498 (-16%) 29 (-9%) 26

F flexible, none 4,674 (-26%) 220 2,402 (-19%) 29 (-9%) 13

MaxDisp threshold = 1h, RejSlots= 0

A 0,0 6,626 296 3,688 27 41

B flexible, 0 6,374 (-4%) 282 3,466 (-6%) 28 (4%) 19

C 0, +15min 5,569 (-16%) 235 3,086 (-16%) 27 (0%) 14

D flexible, +15min 5,392 (-19%) 252 2,919 (-21%) 28 (4%) 9

E flexible, +30min 5,110 (-23%) 239 2,682 (-27%) 29 (7%) 13

F flexible, none 4,932 (-26%) 227 2,544 (-31%) 29 (7%) 6

152

A.2 Results for Airport 3

Table A.6: Non-hierarchical results for Airport 3

Threshold RejSlots RejReqs SchedDisp MaxDisp DispReqs DispSlots Disp/Slot (min) Time (sec)

30m 325 42 67,159 30m 920 19,997 3.358 2866

15m 1,243 148 37,889 15m 827 17,930 2.113 353

0 6,963 668 0 0 0 0 - 3.26

Table A.7: Hierarchical results for Airport 3

Threshold SchedDisp MaxDisp DispReqs DispSlots Disp./slot (min) Time

H – 23 5m 1 23 5

CH – 999 15m 40 667 7

NE – 2,650 30m 29 995 13

OT – 122,600 4h45m 527 13,039 141

All 126,272 4h45m 597 14,724 9 50 min

Table A.8: Holistic results for Airport 3

Threshold SchedDisp MaxDisp DispReqs DispSlots Disp./slot (min) Time

H 5m 23 5min 1 23 5

CH 15m 8,288 (730%) 15min 230 4,496 (574%) 9 (29%)

NE 30m 3,105 (17%) 30min 44 1,277 (23%) 12 (-8%)

OT 4h45m 65,445 (-47%) 4h 496 9,954 (-24%) 33 (-77%)

All - 76,8611(-31%) 4h 771 15,750 (7%) 24 (167%) 41h

1 The Gurobi solver terminated after 41 hours due to out of memory. This is the best known solution which
has an optimality gap of 5.96%.

153

Bibliography

Andersen, K., Cornuéjols, G., and Li, Y. (2005). Reduce-and-split cuts:

Improving the performance of mixed-integer gomory cuts. Management

Science, 51(11):1720–1732.

Androutsopoulos, K. N. and Madas, M. A. (2019). Being fair or efficient? a

fairness-driven modeling extension to the strategic airport slot scheduling

problem. Transportation Research Part E: Logistics and Transportation

Review, 130:37–60.

Androutsopoulos, K. N., Manousakis, E. G., and Madas, M. A. (2020). Mod-

eling and solving a bi-objective airport slot scheduling problem. European

Journal of Operational Research, 284(1):135–151.

Atkin, J. A., Burke, E. K., Greenwood, J. S., and Reeson, D. (2008). A meta-

heuristic approach to aircraft departure scheduling at london heathrow

airport. In Computer-aided Systems in Public Transport, pages 235–252.

Springer.

Ball, M., Barnhart, C., Nemhauser, G., and Odoni, A. (2007). Air trans-

portation: Irregular operations and control. Handbooks in operations re-

search and management science, 14:1–67.

Barnhart, C., Fearing, D., Odoni, A., and Vaze, V. (2012). Demand and

154

capacity management in air transportation. EURO Journal on Trans-

portation and Logistics, 1(1-2):135–155.

Barnhart, C., Kniker, T. S., and Lohatepanont, M. (2002). Itinerary-based

airline fleet assignment. Transportation Science, 36(2):199–217.

Benlic, U. (2018). Heuristic search for allocation of slots at network level.

Transportation Research Part C: Emerging Technologies, 86:488–509.

Bent, R. and Van Hentenryck, P. (2004). A two-stage hybrid local search for

the vehicle routing problem with time windows. Transportation Science,

38(4):515–530.

Boschetti, M. A., Maniezzo, V., Roffilli, M., and Bolufé Röhler, A. (2009).

Matheuristics: Optimization, simulation and control. In International

workshop on hybrid metaheuristics, pages 171–177. Springer.

Burke, E. K., Burke, E. K., Kendall, G., and Kendall, G. (2014). Search

methodologies: introductory tutorials in optimization and decision support

techniques. Springer.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Woodward,

J. R. (2010a). A classification of hyper-heuristic approaches. In Handbook

of metaheuristics, pages 449–468. Springer.

Burke, E. K., Hyde, M., Kendall, G., and Woodward, J. (2010b). A ge-

netic programming hyper-heuristic approach for evolving 2-d strip packing

heuristics. IEEE Transactions on Evolutionary Computation, 14(6):942–

958.

Burke, E. K., Kendal, G., McCollum, B., and McMullan, P. (2007a). Con-

structive versus improvement heuristics: an investigation of examination

155

timetabling. In 3rd Multidisciplinary international scheduling conference:

theory and applications, pages 28–31. Citeseer.

Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., and Qu, R. (2007b).

A graph-based hyper-heuristic for educational timetabling problems. Eu-

ropean Journal of Operational Research, 176(1):177–192.

Castelli, L., Pellegrini, P., and Pesenti, R. (2011a). Ant colony optimization

for allocating airport slots. In 2nd International Conference on Models

and Technologies for ITS. Katolieke Universiteit Leuven.

Castelli, L., Pellegrini, P., Pesenti, R., et al. (2011b). Airport slot alloca-

tion in europe: economic efficiency and fairness. International journal of

revenue management, 6(1-2):28–44.

Chakhlevitch, K. and Cowling, P. (2008). Hyperheuristics: recent develop-

ments. In Adaptive and multilevel metaheuristics, pages 3–29. Springer.

Chen, S., Chen, R., Wang, G.-G., Gao, J., and Sangaiah, A. K. (2018). An

adaptive large neighborhood search heuristic for dynamic vehicle routing

problems. Computers & Electrical Engineering, 67:596–607.

Commission, E. (1993). Regulation (eec) no 95/93 of the european par-

liament and of the council of 18 january 1993 on common rules for the

allocation of slots at community airports.

Corolli, L., Lulli, G., and Ntaimo, L. (2014). The time slot allocation prob-

lem under uncertain capacity. Transportation Research Part C: Emerging

Technologies, 46:16–29.

Delahaye, D., Chaimatanan, S., and Mongeau, M. (2019). Simulated anneal-

ing: From basics to applications. In Handbook of metaheuristics, pages

1–35. Springer.

156

Ding, H., Lim, A., Rodrigues, B., and Zhu, Y. (2005). The over-constrained

airport gate assignment problem. Computers & Operations Research,

32(7):1867–1880.

Drake, J. H., Hyde, M., Ibrahim, K., and Ozcan, E. (2014). A genetic

programming hyper-heuristic for the multidimensional knapsack problem.

Kybernetes, 43(9/10):1500–1511.

Drexl, A. and Nikulin, Y. (2008). Multicriteria airport gate assignment and

pareto simulated annealing. IIE Transactions, 40(4):385–397.

EUROCONTROL (2022). Eurocontrol aviation outlook 2050.

https://www.eurocontrol.int/sites/default/files/2022-04/

eurocontrol-aviation-outlook-2050-main-report.pdf.

EUROPE, A. C. I. (2022). Airport slot allocation position paper.

https://www.aci-europe.org/downloads/resources/ACI%20EUROPE%

20Slots%20Position%20Paper%20with%20Preface%20March%202022_

final%201.pdf.

Fairbrother, J. and Zografos, K. G. (2021). Optimal scheduling of slots

with season segmentation. European Journal of Operational Research,

291(3):961–982.

Fairbrother, J., Zografos, K. G., and Glazebrook, K. D. (2020). A slot-

scheduling mechanism at congested airports that incorporates efficiency,

fairness, and airline preferences. Transportation Science, 54(1):115–138.

Fischetti, M., Glover, F., and Lodi, A. (2005). The feasibility pump. Math-

ematical Programming, 104(1):91–104.

Gavish, B. and Pirkul, H. (1991). Algorithms for the multi-resource gener-

alized assignment problem. Management science, 37(6):695–713.

157

https://www.eurocontrol.int/sites/default/files/2022-04/eurocontrol-aviation-outlook-2050-main-report.pdf
https://www.eurocontrol.int/sites/default/files/2022-04/eurocontrol-aviation-outlook-2050-main-report.pdf
https://www.aci-europe.org/downloads/resources/ACI%20EUROPE%20Slots%20Position%20Paper%20with%20Preface%20March%202022_final%201.pdf
https://www.aci-europe.org/downloads/resources/ACI%20EUROPE%20Slots%20Position%20Paper%20with%20Preface%20March%202022_final%201.pdf
https://www.aci-europe.org/downloads/resources/ACI%20EUROPE%20Slots%20Position%20Paper%20with%20Preface%20March%202022_final%201.pdf

Gendreau, M. (2003). An introduction to tabu search. In Handbook of

metaheuristics, pages 37–54. Springer.

Glover, F. (1989). Tabu search part i. ORSA Journal on computing,

1(3):190–206.

Guimarans, D., Arias, P., and Mota, M. M. (2015). Large neighbourhood

search and simulation for disruption management in the airline industry.

In Applied Simulation and Optimization, pages 169–201. Springer.

Haimes, Y. (1971). On a bicriterion formulation of the problems of inte-

grated system identification and system optimization. IEEE transactions

on systems, man, and cybernetics, 1(3):296–297.

Hanafi, R. and Kozan, E. (2014). A hybrid constructive heuristic and sim-

ulated annealing for railway crew scheduling. Computers & Industrial

Engineering, 70:11–19.

Hansen, P. and Mladenović, N. (2001). Variable neighbourhood search:

Principles and applications. European journal of operational research,

130(3):449–467.

Hemmelmayr, V. C., Cordeau, J.-F., and Crainic, T. G. (2012). An adap-

tive large neighborhood search heuristic for two-echelon vehicle rout-

ing problems arising in city logistics. Computers & operations research,

39(12):3215–3228.

IATA (2019). Worldwide airport slots. https://www.iata.org/policy/

slots/Pages/index.aspx.

IATA (2021). Worldwide airport slots fact sheet. https:

//www.iata.org/en/iata-repository/pressroom/fact-sheets/

fact-sheet---airport-slots/.

158

https://www.iata.org/policy/slots/Pages/index.aspx
https://www.iata.org/policy/slots/Pages/index.aspx
https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---airport-slots/
https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---airport-slots/
https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---airport-slots/

IATA, ACI, and WWACG (2020). Worldwide Airport Slot Guidelines

(WAGS). Technical report.

Jacquillat, A. and Odoni, A. R. (2015). An integrated scheduling and op-

erations approach to airport congestion mitigation. Operations Research,

63(6):1390–1410.

Jiang, Y. and Zografos, K. G. (2021). A decision making framework for

incorporating fairness in allocating slots at capacity-constrained airports.

Transportation Research Part C: Emerging Technologies, 126:103039.

Johnson, D. S. and Garey, M. R. (1979). Computers and intractability: A

guide to the theory of NP-completeness. WH Freeman.

Jorge, D., Ribeiro, N. A., and Antunes, A. P. (2021). Towards a decision-

support tool for airport slot allocation: Application to guarulhos (sao

paulo, brazil). Journal of Air Transport Management, 93:102048.

Karsu, Ö., Azizoğlu, M., and Alanlı, K. (2021). Exact and heuristic solution

approaches for the airport gate assignment problem. Omega, 103:102422.

Kasirzadeh, A., Saddoune, M., and Soumis, F. (2017). Airline crew schedul-

ing: models, algorithms, and data sets. EURO Journal on Transportation

and Logistics, 6(2):111–137.

Katsigiannis, F. A. and Zografos, K. G. (2021). Optimising airport slot al-

location considering flight-scheduling flexibility and total airport capacity

constraints. Transportation Research Part B: Methodological, 146:50–87.

Katsigiannis, F. A., Zografos, K. G., and Fairbrother, J. (2021). Modelling

and solving the airport slot-scheduling problem with multi-objective,

multi-level considerations. Transportation Research Part C: Emerging

Technologies, 124:102914.

159

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by

simulated annealing. science, 220(4598):671–680.

Kohl, N. and Karisch, S. E. (2004). Airline crew rostering: Problem

types, modeling, and optimization. Annals of Operations Research, 127(1-

4):223–257.

Koza, J. R. (1992). Genetic programming: on the programming of computers

by means of natural selection, volume 1. MIT press.

Lambelho, M., Mitici, M., Pickup, S., and Marsden, A. (2020). Assessing

strategic flight schedules at an airport using machine learning-based flight

delay and cancellation predictions. Journal of Air Transport Management,

82:101737.

Land, A. H. and Doig, A. G. (2010). An automatic method for solving

discrete programming problems. In 50 Years of Integer Programming

1958-2008, pages 105–132. Springer.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2010). Iterated local search:

Framework and applications. In Handbook of metaheuristics, pages 363–

397. Springer.

Lourenço, H. R. and Serra, D. (1998). Adaptive approach heuristics for the

generalized assignment problem. Universitat Pompeu Fabra.

Lučić, P. and Teodorović, D. (2007). Metaheuristics approach to the aircrew

rostering problem. Annals of Operations Research, 155(1):311–338.

Marler, R. T. and Arora, J. S. (2010). The weighted sum method for multi-

objective optimization: new insights. Structural and multidisciplinary

optimization, 41(6):853–862.

160

Mavrotas, G. (2009). Effective implementation of the ε-constraint method

in multi-objective mathematical programming problems. Applied mathe-

matics and computation, 213(2):455–465.

Odoni, A., Morisset, T., Drotleff, W., and Zock, A. (2011). Benchmark-

ing airport airside performance: Fra vs. ewr. Proceedings of the 9th

USA/Europe Air Traffic Management Research and Development Sem-

inar, ATM 2011.

Odoni, A. R. (2021). A review of certain aspects of the slot allocation process

at level 3 airports under regulation 95/93.

Öncan, T. (2007). A survey of the generalized assignment problem and

its applications. INFOR: Information Systems and Operational Research,

45(3):123–141.

Osman, I. H. (1995). Heuristics for the generalised assignment problem:

simulated annealing and tabu search approaches. Operations-Research-

Spektrum, 17(4):211–225.

Pearl, J. (1984). Heuristics: intelligent search strategies for computer prob-

lem solving. Addison-Wesley Longman Publishing Co., Inc.

Pellegrini, P., Bolić, T., Castelli, L., and Pesenti, R. (2017). Sosta: An

effective model for the simultaneous optimisation of airport slot alloca-

tion. Transportation Research Part E: Logistics and Transportation Re-

view, 99:34–53.

Pellegrini, P., Castelli, L., and Pesenti, R. (2012). Metaheuristic algorithms

for the simultaneous slot allocation problem. IET Intelligent Transport

Systems, 6(4):453–462.

161

Pillac, V., Gueret, C., and Medaglia, A. L. (2013). A parallel matheuristic

for the technician routing and scheduling problem. Optimization Letters,

7(7):1525–1535.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing

problems. Computers & operations research, 34(8):2403–2435.

Pisinger, D. and Ropke, S. (2019). Large neighborhood search. In Handbook

of metaheuristics, pages 99–127. Springer.

Pour, S. M., Drake, J. H., and Burke, E. K. (2018). A choice function

hyper-heuristic framework for the allocation of maintenance tasks in dan-

ish railways. Computers & Operations Research, 93:15–26.

Praseeratasang, N., Pitakaso, R., Sethanan, K., Kosacka-Olejnik, M., Kaew-

man, S., and Theeraviriya, C. (2019). Adaptive large neighborhood

search to solve multi-level scheduling and assignment problems in broiler

farms. Journal of Open Innovation: Technology, Market, and Complexity,

5(3):37.

Qu, R. and Burke, E. K. (2009). Hybridizations within a graph-based hyper-

heuristic framework for university timetabling problems. Journal of the

Operational Research Society, 60(9):1273–1285.

Raidl, G. R. and Puchinger, J. (2008). Combining (integer) linear program-

ming techniques and metaheuristics for combinatorial optimization. In

Hybrid metaheuristics, pages 31–62. Springer.

Ribeiro, N. A., Jacquillat, A., and Antunes, A. P. (2019a). A large-scale

neighborhood search approach to airport slot allocation. Transportation

Science, 53(6):1772–1797.

162

Ribeiro, N. A., Jacquillat, A., Antunes, A. P., and Odoni, A. (2019b). Im-

proving slot allocation at level 3 airports. Transportation Research Part

A: Policy and Practice, 127:32–54.

Ribeiro, N. A., Jacquillat, A., Antunes, A. P., Odoni, A. R., and Pita, J. P.

(2018). An optimization approach for airport slot allocation under iata

guidelines. Transportation Research Part B: Methodological, 112:132–156.

Ross, G. T. and Soland, R. M. (1975). A branch and bound algorithm for

the generalized assignment problem. Mathematical programming, 8(1):91–

103.

Ross, G. T. and Zoltners, A. A. (1979). Weighted assignment models and

their application. Management Science, 25(7):683–696.

Ross, P., Schulenburg, S., Maŕın-Bläzquez, J. G., and Hart, E. (2002).

Hyper-heuristics: learning to combine simple heuristics in bin-packing

problems. In Proceedings of the 4th Annual Conference on Genetic and

Evolutionary Computation, pages 942–948. Morgan Kaufmann Publishers

Inc.

Sahni, S. and Gonzalez, T. (1976). P-complete approximation problems.

Journal of the ACM (JACM), 23(3):555–565.

Scala, P., Mota, M. M., Wu, C.-L., and Delahaye, D. (2021). An

optimization–simulation closed-loop feedback framework for modeling the

airport capacity management problem under uncertainty. Transportation

Research Part C: Emerging Technologies, 124:102937.

Shaw, P. (1998). Using constraint programming and local search methods to

solve vehicle routing problems. In International conference on principles

and practice of constraint programming, pages 417–431. Springer.

163

Soykan, B. and Rabadi, G. (2016). A tabu search algorithm for the mul-

tiple runway aircraft scheduling problem. In Heuristics, Metaheuristics

and Approximate Methods in Planning and Scheduling, pages 165–186.

Springer.

Vaz, M. (2015). Large neighborhood search for the vehicle routing problem

with time windows and deterministic and stochastic travel and service

times. PhD thesis, uniwien.

Wang, S., Drake, J. H., Fairbrother, J., and Woodward, J. R. (2019). A

constructive heuristic approach for single airport slot allocation problems.

In 2019 IEEE Symposium Series on Computational Intelligence (SSCI),

pages 1171–1178. IEEE.

WASG (2020). Wasg edition 1 - english ver-

sion (pdf) official version. https://www.iata.org/

contentassets/4ede2aabfcc14a55919e468054d714fe/

wasg-edition-1-english-version.pdf.

Xu, J. and Bailey, G. (2001). The airport gate assignment problem: math-

ematical model and a tabu search algorithm. In Proceedings of the 34th

annual Hawaii international conference on system sciences, pages 10–pp.

IEEE.

Yang, X.-S. (2010). Engineering optimization: an introduction with meta-

heuristic applications. John Wiley & Sons.

Zeng, W., Ren, Y., Wei, W., and Yang, Z. (2021). A data-driven flight

schedule optimization model considering the uncertainty of operational

displacement. Computers & Operations Research, 133:105328.

164

https://www.iata.org/contentassets/4ede2aabfcc14a55919e468054d714fe/wasg-edition-1-english-version.pdf
https://www.iata.org/contentassets/4ede2aabfcc14a55919e468054d714fe/wasg-edition-1-english-version.pdf
https://www.iata.org/contentassets/4ede2aabfcc14a55919e468054d714fe/wasg-edition-1-english-version.pdf

Zografos, K. and Jiang, Y. (2016). Modelling and solving the airport slot

scheduling problem with efficiency, fairness, and accessibility considera-

tions.

Zografos, K. G., Androutsopoulos, K. N., and Madas, M. A. (2018). Mind-

ing the gap: Optimizing airport schedule displacement and acceptability.

Transportation Research Part A: Policy and Practice, 114:203–221.

Zografos, K. G. and Jiang, Y. (2019). A bi-objective efficiency-fairness model

for scheduling slots at congested airports. Transportation Research Part

C: Emerging Technologies, 102:336 – 350.

Zografos, K. G., Salouras, Y., and Madas, M. A. (2012). Dealing with the ef-

ficient allocation of scarce resources at congested airports. Transportation

Research Part C, 21:244–256.

165

	List of Tables
	List of Figures
	Introduction
	Background and Motivations
	Research Objectives and Scope
	Contributions of this Thesis
	Publications
	Structure of the Thesis

	Background and Related Work
	Overview of the Worldwide Airport Slot Guidelines
	General policies of slot allocation
	Slot allocation process
	Slot allocation rules

	Single Airport Slot Allocation Problems
	Constraints
	Objectives
	Review of existing models
	Review of existing solution methods

	Slot Allocation Problems for Airport Network
	Constraints
	Objectives
	Review of existing models
	Review of existing solution methods

	Related Research Area and Solution Methodologies
	Airport declared capacity modelling
	Integration with other airport operations
	Multi-Resource Generalised Assignment Problem
	Heuristic solution methodologies

	Future research needs

	A Data Analysis of Real-world Slot Requests
	Introduction of Slot Requests
	Statistical Analysis of Airport Attributes
	Slot demand characteristics
	Flight operation frequency characteristics
	Slot priority characteristics
	Time distribution of operations and turnaround time
	Associations between key attributes of slot requests

	Demand-Capacity Imbalance indicators

	Optimising Slot Allocation Considering Slot Rejection and Schedule Efficiency
	A slot allocation model considering slot rejection
	Experiments
	Data and set-up
	Solution metrics
	Experiment results

	Sensitivity analysis
	Sensitivity to the changes in requested turnaround times
	Sensitivity to the priority rules
	Sensitivity to the displacement costs

	Discussion of Model Scalability
	Conclusions

	A two-stage solution method for a single airport slot allocation model
	A Two-stage Solution Method
	A Greedy Constructive Heuristic
	Solution construction procedure
	Request ordering heuristics
	Greedy allocation algorithm
	Experiment results
	A group-based constructive heuristic

	An Adaptive Large Neighbourhood Search Heuristic for solution improvement
	Destroy operators
	Repair method
	Adaptive heuristics

	Experiments
	Data and set-up
	Experiment results
	Sensitivity analysis to the algorithm parameters

	Conclusions

	A Flexible Scheduler for Single Airport Slot Allocation Problems
	Discussion of Schedule Regularity
	A Flexible Scheduler for Single Airport Slot Allocation Problems
	Experiments
	Data and set-up
	Non-hierarchical results
	Hierarchical results
	Effects on slot rejections
	Applying the ALNS heuristic to the flexible scheduler

	Conclusions

	Conclusions
	Overview of this research
	Key results
	Future work

	Results for SASA-R model
	Results for Airport 1
	Results for Airport 3

	Bibliography

