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Abstract

Granular matter consisting of maximally dense random particle packings has

been studied in science and industry. However, understanding the relationship

between particle shape and random packing density has been challenging, so the

question of ”what shape packs with the highest density?” remains unanswered.

While experiments and theory are restricted to investigating a few common shapes,

numerical simulations allow studying the properties of packings of a diverse range of

shapes. This thesis utilises simulations and machine learning methods to investigate

particle geometry’s role in packing behaviour by exploring a high-dimensional shape

space.

The first two parts of the thesis generate disordered packings of monodisperse and

binary mixtures of frictionless dimers in three dimensions by a gravitational pouring

protocol in LAMMPS and analyse their structural properties by packing density,

contact statistics, and several order metrics. The results show that monodisperse

dimers exhibit a non-monotonic behaviour in the packing density with the aspect

ratio α and undergo significant structural rearrangements up to the characteristic

peak at αmax ≈ 1.4− 1.5. This unique density maximum also exists in the binary

case, irrespectively of the variation in shape or mixture composition, accompanied

by similar microscopic rearrangements. The outcomings indicate that the packing

density of binary mixtures is independent of the segregation state by holding an

ideal mixing law.
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The final section of the thesis applies a Random forest regressor to a dataset

of the packing density represented as a function of particle shape obtained by

overlapping spheres to predict novel dense packing shapes. The regression model

is applied to the data represented in the lower-dimensional space by Principal

component analysis (PCA) and Kernel PCA separately. The findings illustrate

that the regressor predicts dense packing shapes, and their novelty depends on the

dimensionality reduction method. While it optimises the trimer that already exists

in the dataset with the highest density for PCA, Kernel one predicts a distinct

shape.
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Chapter 1

Introduction

What are Granular Materials?

Granular materials are composed of solid, macroscopic particles that are large

enough such that their thermal motion fluctuations are negligible. They are

ubiquitous in everyday experience, for example, sand, coffee, rice and bearing balls.

They can be observed in various sizes, from sand grains to icebergs or asteroids.

The fact that they have characteristics reminiscent of solids, liquids, or gases

makes them unique in industrial applications, i.e. they are easily manipulated and

processed to create products such as in the pharmaceutical industry, and agriculture

[1]. They also play an important role in geological processes, e.g. landslides and

erosion, so it is essential to understand the properties of granular matter, which

has been a challenge to statistical physics as an extreme example of a system far

from equilibrium.

1
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Jamming transition

Granular materials exhibit jamming phase transition, which enables them to

change from fluid-like plasticity to solid-like rigidity [2]. Pouring sugar into a cup is

a simple example of a fluid-to-solid transition caused by a density increase. In order

to explore different configurations of granular materials, external driving forces

are needed since thermal fluctuations are negligible, and there is no kinetic energy

due to the dissipative nature of the interactions between grains. For example,

tapping sugar particles in the cup decreases the free volume per particle, increasing

the packing density φ, the fraction of total space covered by the particles, until

reaching a critical state (jammed) with φj. In granular matter, a jammed state

is achieved when the particles are arrested in a static configuration where they

only touch their neighbours and withstand a sufficiently small applied stress [3].

This phase transition, in an athermal ensemble first proposed by S.F. Edwards

and co-workers, analogously to the phase transition in thermal hard spheres [4].

Unlike thermal systems, jamming is governed by two parameters: the available

free volume per particle and the applied shear stress. If the former is large enough

to allow the particles to move or the latter is increased, the system yields and

dilates where jamming and rigidity are lost. This thesis studies the structural

properties of jammed granular particles that are mechanically stable, i.e. there must

be force and torque balance on every particle in the system. Several parameters,

such as particle shape, size distribution, friction, and elasticity, determine the

macroscopic quantities like packing fraction, pressure and contact number. Besides
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granular matter, jammed particle packings have also been investigated to study

soft materials such as colloidal suspensions, compressed emulsions, cells, DNA, and

protein packing [5].

Packing Problem

Jammed particle packings have a long history dating back to finding the densest

packing of equal-sized objects conjectured by Kepler [6, 7]. Kepler conjectured that

the face-centred-cubic (FCC) crystal arrangement of spheres in three dimensions

gives the highest packing density, which is φfcc = π/(3
√

2)) ≈ 0.7405 [6]. This

arrangement was proven as the densest Bravais lattice packing by Gauss [8]. How-

ever, a full mathematical proof of Kepler’s conjecture has remained an unsolved

problem for almost four centuries until Hales announced his proof of Kepler’s

conjecture [9]. While investigating the structure of a liquid, Bernal suggested that

it can be considered a heap of particles, hence started experimental studies of dis-

ordered hard-sphere packings in the 1960s [10, 11]. The packings were obtained by

pouring equally sized spherical particles into a large container, vertically vibrating

the system until achieving maximum densification. They extrapolated the mea-

sured packing fractions to eliminate finite-size effects due to boundary conditions.

These experiments yielded a range of densities for steel balls with a maximum of

φrcp ≈ 0.64, where the packing of φrcp is referred to as the ”random close packing

(RCP)” in the literature [12, 13]. This density coincides with the jamming phase

transition point of the sphere packings, so-called point J, at which crystalline

structures start to form [14]—further increasing the density results in ordered
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packings. Many studies have observed several power-law scalings to point J, such

as for packing fraction, contact number, and pressure; see [5] for more details. The

determination of the order in sphere packings has also been well-studied. Different

parameters have been proposed to measure the order, such as the bond-orientational

order parameter [15] or Minkowski tensors [16, 17]. The densities for disordered

systems are generally found as strongly dependent on the packing protocol and

friction, falling in the range φj ≈ 0.55− 0.64 [5]. Disordered packings of frictional

hard spheres were first investigated by Bernal and Scott in [10, 13], where the lower

bound (φj ≈ 0.55) of the achieved packing densities is referred to as the ”random

loose packing (RLP)”. Besides the packing density, empirical studies were also inter-

ested in the contact number z to investigate the mechanical stability of the packing.

Determination of the contact number is, in general, challenging for experimental

work. Using X-ray tomography to resolve coordinates of a high number of spheres,

Aste et al. observed that the contact number exhibits a monotonic increase from 4

to 7 over the range φj ≈ 0.55 − 0.64 [18–20]. Several numerical algorithms have

been developed to simulate disordered sphere packings and study their properties.

One of the geometrical algorithms, the rate-dependent densification algorithm,

starts with generating points randomly in a cubic lattice with periodic boundary

conditions, where each point is the centre of an inner and an outer sphere, and the

inner one is the actual sphere. The algorithm iteratively eliminates overlappings by

slowly reducing the outer diameter until the inner and outer diameters coincide

[21]. In the Lubachevsky-Stillinger algorithm, the spheres are grown from randomly
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generated points at a fixed rate, and the elastic contacts occur during the evolution

of the spheres [22, 23]. The dynamic algorithms imitate experiments by simulating

spheres exposed to forces and underlying contacts. For example, Silbert et al.

generated packings by pouring spheres under gravity into a rectangular box with

periodic boundary conditions, where molecular dynamics (MD) was used for the

simulations [24]. The numerical simulations are useful for investigating the packing

properties; however, the final states of the packings or the resulting densities have

been observed to be strongly protocol-dependent. For example, the rate-dependent

densification algorithm achieved φj = 0.642− 0.649, a ”drop and roll” procedure

found φj ≈ 0.6, see [25] for more details. By pointing out this result, Torquato et

al. argued that the concept of ”RCP” is not well defined since one should sacrifice

randomness to increase the packing density [26]. Hence, they replaced ”RCP” with

a concept of ”maximally random jammed (MRJ) packing”, based on minimising a

bond-orientational order metric among all jammed states. In terms of theoretical

work of jamming, there have been successful studies, for example, based on replica

theory [27, 28], mean-field theory [29, 30]. Overall, there has been much progress

in understanding the characteristics of jammed sphere packings [5].

Packings of Non-Spherical Particles

Beyond spherical particles, there has been increased attention to investigating

disordered packings of non-spherical particles that, in fact, better represent materials

in nature and are used in industrial applications [2, 46]. In particular, it appeals to

scientists and engineers to understand the effect of the particle shape on the packing
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Table 1-A: Overview of maximal packing fractions φmax obtained for random
packings of a selection of regular shapes. Note that the packings are generated with
different protocols. Tetrahedron attains a maximum packing fraction in disordered
arrangement, which exceeds that for spheres in the FCC crystal (φfcc = 0.7405).
General ellipsoids and lens-shaped particles reach maximal packing fractions close
to this value.

Particle shape φmax simulation φmax experiment φmax theory

Sphere 0.645 [31] 0.64 [10] 0.634 [29], 0.68 [27]

M&M candy 0.665 [32]
Dimer 0.703 [33] 0.707 [34]

Oblate ellipsoid 0.709 [32, 35]
Prolate ellipsoid 0.716 [32]
Spherocylinder 0.725 [36, 37] 0.731 [34]

Lens-shaped particle 0.736 [34]

Tetrahedron 0.7858 [38] 0.76 [39]
Cube 0.67 [40]

Octahedron 0.697 [41] 0.64 [40]
Dodecahedron 0.716 [41] 0.63 [40]
Icosahedron 0.707 [41] 0.59 [40]

General ellipsoid 0.735 [32, 42] 0.74 [43]
Superball 0.674 [44]

Trimer 0.729 [45]

density, thereby identifying the shape that randomly packs with the maximum

density to design new materials. Additional degrees of freedom that arise due to

asphericities hinder the development of a general theory for the packing problem.

Therefore, empirical investigations for the dense disordered packings of non-spherical

shapes have been performed on a case-by-case basis, mostly focusing on shapes like

ellipsoids [32, 35, 42, 43, 47–49], spherocylinders [36, 37, 50–57], dimers [33, 58], and

polyhedral or polygonal shapes [39, 40, 59–67]. Recently, particles constructed by

assembling or bending a specific particle shape, such as trimers [45, 68] (composed of

three overlapping spheres) and curved spherocylinders [69–71] have attracted much

interest. The results have shown that non-spherical shapes can generally achieve
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denser maximal packing densities than spheres; see Table 1-A. Ulam’s conjecture

in the context of ordered packings, recently also formulated for disordered packings

[41], states that the sphere indeed packs the worst among all convex shapes [72].

The densest disordered packing for tetrahedra with φj = 0.7858 has been found

in [38]. General ellipsoids and lens-shaped particles can reach maximal packing

fractions of φj ≈ 0.74. Rotationally symmetric elongated shapes such as ellipsoids,

spherocylinders, and dimers exhibit a non-monotonic behaviour in the packing

density with the aspect ratio α by possessing a peak at α ≈ 1.4 − 1.5. Beyond

the peak, the packing density decreases as the aspect ratio increases. The strong

dependence on packing protocol in the empirical work causes significant variations in

the resulting peak locations and magnitudes even for the same shape. For example,

the results reported for spherocylinders show a large variance [36, 50–54, 56]. Baule

et al. have made considerable progress in analytically estimating packing densities

of axisymmetric particles such as dimers, lens-shaped particles, and spherocylinders

by using the mean-field Edwards approach, where all microscopic jammed states at

a fixed volume of granular systems are assumed as equiprobable and macroscopic

quantities can be calculated by taking averages over them [34]. The predicted

packing densities are an upper bound of the empirical findings [34].

Previous work has reported that packings of convex elongated shapes possess

different mechanical and vibrational properties than sphere packings near jamming

transition [73]. For example, unlike frictionless hard-sphere packings, which are

generally observed as isostatic, frictionless ellipsoids generate hypostatic packings
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over a wide range of aspect ratios [32, 74–78]. Isostaticity means that the total

number of contacts in the system is equal to the number of degrees of freedom,

i.e., the packings are mechanically stable. Hypostatic packings, on the other hand,

possess fewer contacts than required for mechanical stability. One would expect that

those packings are not mechanically stable; however, previous work on ellipsoidal

packings has shown that they actually do not possess zero-frequency modes in

the jammed phase φ > φj [76–78]. Despite some floppy modes (they are not

exactly zero-frequency modes) being induced, the repulsive interactions between

ellipsoids can stabilise them. Note that, like ellipsoidal shape, spherocylinders

also generate hypostatic packings [79, 80]. Compared to convex elongated shapes,

structural properties of jammed packings of dimers have been less investigated.

Unlike the former, dimer packings have been observed as isostatic [58, 73, 77].

Although the packing fraction φj is characterised similarly by the aspect ratio for

both convex elongated shapes and dimers, some other macroscopic properties, such

as the contact number, strongly depend on the microscale geometric features of

the individual particles [77]. In Chapter 3 of this thesis, I explore the structural

properties of disordered packings of monodisperse frictionless symmetric dimers

in three dimensions generated by simulations in LAMMPS, a molecular dynamics

simulation platform [81]. For the simulations, I use soft particles and a pouring

packing protocol, i.e. exposing the particles to a gravitational force which causes

them to pack into jammed disordered phases. In granular material simulations,

a soft particle refers to a grain that can be deformed or overlapped by some
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amount, usually much less than the particle radii. Focusing on several macroscopic

parameters, such as packing fraction, contact number, and order metrics, reveal

significant structural features of the dimer packings on both microscopic and

macroscopic levels.

Most studies of non-spherical particle packings mainly focused on the mono-

phasic case. However, particle aggregates in nature generally have polydispersity

in both shape and size. Previous studies of binary and polydisperse packings of

spherical particles show that the packing density increases due to varying the

size distribution of the particles [82–92]. Non-spherical particle mixtures, on the

other hand, have been less investigated and restricted to a few common shapes.

A universal density maximum at a unique aspect ratio has been observed in

jammed packings of binary spherocylinder mixtures, irrespectively of the mixture

composition [53, 55, 56, 93–96]. Moreover, the mixtures satisfy a remarkable

empirical ideal mixing law, which states that the total packing volume is independent

of the segregation state, i.e. the two subsystems of the single species are in some

sense decoupled [56, 93, 97, 98]. In Chapter 4 of this thesis, I investigate whether

these findings are also valid in disordered packings of binary dimer mixtures. I also

show the microscopic structural properties that accompany these observations.

The shape is an infinitely variable parameter that makes a rigorous systematic

exploration of the densest random packings infeasible. There has been recently

increased interest in making this search possible by using advanced developments
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in computational methods. For example, Jaeger and collaborators used artificial

evolutionary algorithms to map the possible space of the constitutive particle

shapes obtained by glueing or overlapping spherical particles of varying radii

[2, 45, 68, 99]. The evolutionary algorithm starts with a given shape and then

mutates the composite particles until achieving maximal packing density. They

have found maximal packing densities of φmax ≈ 0.73 for trimer-shaped particles.

Machine learning algorithms can be used to explore the high-dimensional shape

space in the packing problem. In Chapter 5 of this thesis, I examine the feasibility

of using machine learning approaches to predict novel dense packing shapes. I

present a framework that applies a Random forest regressor to a dataset from Ref.

[45] of the packing density φj as a function of particle shape, 5-sphere, obtained by

overlapping five spheres to identify new optimal shapes to maximise φj.

1.1 Outline of the thesis

Chapter 2 provides information about the simulation platform, LAMMPS and the

gravitational pouring protocol used to generate disordered packings of monodisperse

symmetric dimers, binary mixtures of dimers, and monodisperse 5-sphere particles.

The simulation parameters for all packings are given.

Chapter 3 is devoted to investigating the structural properties of the disordered

monodisperse dimer packings in three dimensions. I first obtain packing density,

Voronoi volume statistics, and contact and coordination numbers in the analysis.
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Then, I introduce five types of contact configuration and study how their fractions

vary with the aspect ratio. I also calculate orientational order parameter, bond-

orientational order parameters, and radial distribution function. Finally, I determine

the polar and azimuthal angles of the bond vectors between neighbouring particles.

The results show dimers exhibit a non-monotonic behaviour in the packing density

with the aspect ratio α and undergo significant structural rearrangements as α

increases up to αmax. The metrics remain largely unchanged for larger aspect ratios.

Chapter 4 presents the packing properties of dimer-sphere and dimer-dimer

mixtures. I first measure the packing density as a function of both shape and mixture

composition. I then determine both partial and total contact and coordination

numbers. Finally, I calculate fractions of distinct contact configurations for various

mixture compositions. The findings show that a unique density maximum exists in

the binary mixtures, irrespectively of the variation in shape or mixture composition

of the two species. This density maximum is accompanied by similar microscopic

rearrangements of contacts as in monodisperse dimer packings. Moreover, the

binary mixtures hold an ideal mixing law, i.e., the packing density is independent

of the segregation state.

Chapter 5 is devoted to applying machine learning algorithms to a dataset

from Ref. [45] of the packing density as a function of particle shape obtained by

overlapping five spheres to predict novel dense packing shapes. I first introduce

the dataset and reduce the high input dimension by Principal component analysis
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(PCA) and Kernel PCA, respectively. Then, I apply a Random forest regressor to

the reduced data by the two methods separately to predict dense packing shapes.

Finally, I generate LAMMPS simulations for disordered packings of those shapes

and compare the simulation values for packing density and the predicted ones.

The findings illustrate that the regressor predicts dense packing shapes, and their

novelty depends on the dimensionality reduction method.

Chapter 6 presents the conclusions and a brief discussion of the directions for

possible future work.



Chapter 2

Simulation Method

In this thesis, I generate simulations for disordered packings of monodisperse

symmetric dimers, binary mixtures of dimer particles, and monodisperse 5-sphere

particles in three dimensions for the following three sections, respectively. Both

dimers and 5-sphere particles are frictionless and obtained by overlapping spheres.

For dimers, the constituent spheres have the same diameter d and mass m, and

they are defined by the aspect ratio α, which is the length ratio over the width,

see Fig. 2.1. One obtains a 5-sphere particle by placing the constituent spheres in

sequence [45]. The spheres are allowed to overlap and also vary in diameter. The

5-sphere particle shape is defined by fixing the diameter and coordinate of the first

sphere and by the relative coordinates and diameters of the other four spheres, see

Fig. 2.2. Representing a particle shape by overlapping spheres is an efficient way

to detect contacts between particles in simulations. Moreover, this model can be

13
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(a) (b) (c)

Figure 2.1: Dimer shape defined by the aspect ratio: (a) α = 1.05, (b) α = 1.4, (c)
α = 2.

Figure 2.2: 5-sphere particle shape obtained by overlapping five spheres of varying
radii. The shape is defined by fixing the diameter and position of the reference
sphere (coloured in green) and by the relative coordinates and diameters of the
other four spheres under overlapping constraints [45].

easily implemented in molecular dynamics (MD) simulations of jammed particle

packings. In MD simulations, the atoms or molecules are allowed to interact for a

fixed period of time, and their trajectories are determined by numerically solving

Newton’s equations of motion [100].

Numerical simulations for disordered packings of non-spherical particles have

employed different algorithms. For example, the Lubachevsky-Stillinger algorithm

has been applied to ellipsoids in [32], spherocylinder packings have been obtained
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with a mechanical contraction algorithm in [50, 54, 101], with Monte Carlo method

in [51], and with a digital packing algorithm in [52]. Faure et al. presented a dynamic

algorithm to simulate the sedimentation of dimers in a parallelepipedic container

[33]. Other studies of dimer packings have used a compression/decompression

method followed by energy minimisation [58, 73, 77]. Here, I use a gravitational

pouring protocol in the molecular dynamics platform LAMMPS [81, 100] to generate

disordered packings. In this protocol, N particles are put at random positions above

the packing at a certain height and let settle under gravity into a three-dimensional

box. The lateral (x̂-ŷ-plane) boundary conditions are chosen to be periodic, and

the box of side length ≈ 20d is bounded in the ẑ-direction by a rough surface at the

bottom (implemented by the “fix wall/gran hertz/history” command) and an open

top. The rough surface is constructed by taking a slice from a random packing

of particles of the same diameter d as those in the bulk. During a simulation

run, a gravitational force acts on the particles in the ẑ-direction. The pouring

protocol makes use of LAMMPS’ “fix pour” command, which repeatedly inserts

particles into the simulation box every few timesteps within a specified insertion

region 30− 40d above the bottom and releases them until N particles have been

added overall. In the insertion region, particles are added with random positions

and orientations and without any overlap. Particles are only inserted again after

the previously inserted particles have fallen out of the insertion region under the

gravitational force. This simulation model has been used to generate disordered

packings of monodisperse spheres in [24], where interactions between particles are
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(a) (b) (c)

Figure 2.3: Three configurations for LAMMPS simulations of disordered packings
of 12,000 monodisperse dimers of α = 2 (final configuration on the right).

modelled as spring-dashpots (with Hookean and Hertzian models). Roth et al.

also used this protocol with the Hertzian contact model in LAMMPS to simulate

disordered packings of monodisperse 5-sphere particles [45].

Here, since I model dimers and 5-sphere particles as overlapping spheres, the

interaction between two composite particles can be determined from the pairwise
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interaction of spheres, which is assumed to follow the spring-dashpot model in

LAMMPS as in the studies of sphere packings of [24, 102]. LAMMPS can implement

two models for calculating the contact forces between the spheres; Hookean and

Hertzian. A Hookean model is suitable for symmetric dimers since it does not take

into account relative particle sizes. This model is also convenient for dissipating

residual kinetic energy and hence reaching a static state quickly [24]. In the Hookean

model, when two spheres i and j having positions ri and rj, respectively, are in

contact, they experience a relative normal compression with overlap δ = d− rij,

where rij = ri−rj and rij = |rij|. The resulting force on particle i is Fij = Fn
ij+Ft

ij ,

where Fn,t
ij are the normal and tangential contact forces, respectively, given as [102]:

Fn
ij = Knδ nij −

m

2
γnvn Ft

ij = −Kt∆st −
m

2
γtvt. (2.1)

Here, nij = rij/rij, vn,t are the normal and the tangential components of the

relative velocity of the spheres i and j, and Kn,t and γn,t are the elastic and

viscoelastic constants, respectively. The quantity ∆st denotes the elastic tangential

displacement between the spheres [102]. The corresponding contact force on particle

j is then given by Newton’s third law, i.e. Fji = −Fij. The total force Ftot
i and

torque τ tot
i on sphere i in a gravitational field g = −g ẑ are then given as:

Ftot
i = mg +

∑
i 6=j

Fn
ij +

∑
i 6=j

Ft
ij, (2.2)
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τ tot
i = −1

2

∑
i 6=j

rij × Ft
ij, (2.3)

where the sum runs over all j spheres in contact with sphere i. LAMMPS treats

a composite particle (e.g. dimer or 5-sphere particle) defined by fixed distances

between its constituent spheres as an independent rigid body (implemented by the

“fix rigid/nve/small” command). The total force and torque on each particle rigid

body are computed as the sum of the forces and torques on its constituent spheres

in every time step. The coordinates, velocities, and orientations of the constituent

spheres are then updated so that the particle moves and rotates as a single entity.

Throughout the investigation the basic units are set as d = 1, m = π/6 (the

density of the particle is set to 1, so the mass is equal to the particle volume), and

g = 1. Distances, times, velocities, forces and elastic constants are then measured

in units of d,
√
d/g,

√
gd, mg, mg/d, respectively. For both monodisperse dimer

packings and binary mixtures, I use Kn = 2 × 105mg/d and set γt = 0. In the

monodisperse case, I also simulate harder dimers with a normal spring constant

Kn = 2× 106mg/d and softer ones with Kn = 2× 104mg/d to examine the effect

of particle hardness on the contact number of the dimers at small aspect ratios.

The total number of particles, the aspect ratio α range, material parameter values,

and time step used in the simulations of monodisperse dimer packings and binary

mixtures are given in Tables 2-A and 2-B, respectively. The choice of most of the

material parameter values follows the discussion in [24].

Simulations are run until the system reaches a static equilibrium when the
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Table 2-A: The number of particles, the aspect ratio α range, material parameter
values, and time step ∆t used in the simulations of monodisperse dimer packings.
α = 1 corresponds to sphere packings.

N α Kn (mg/d) Kt/Kn γn

√
g/d ∆t (

√
d/g)

15,000 1, 1.0005-1.1 2× 104 2/7 15 0.003
12,000-15,000 1, 1.0005-2 2× 105 2/7 50 0.001

15,000 1, 1.0005-1.1 2× 106 2/7 150 0.0003

Table 2-B: The number of particles N , the aspect ratio α range, material parameter
values, and time step ∆t used in the simulations of dimer-sphere and dimer-dimer
mixtures. α = 1 corresponds to sphere packings.

mixtures N α Kn (mg/d) Kt/Kn γn

√
g/d ∆t (

√
d/g)

dimer-sphere 12,000-18,000 1, 1.05-2 2× 105 2/7 50 0.001
dimer-dimer 12,000 1.05-2 2× 105 2/7 50 0.001

kinetic energy per particle is less than 10−8mgd for small Kn and up to three

orders of magnitude less for large Kn. For example, when Kn = 2× 105mg/d, the

simulation takes 3− 8× 106∆t to reach equilibrium, which depends on the chosen

aspect ratio and also on the random initial configurations when particles are poured

into the container. I show the configurations at three different time steps for the

simulations of 12, 000 monodisperse dimers of α = 2 in Fig. 2.3.

The Hookean model is unsuitable for the 5-sphere particle packings, which

require determining the interactions between two spheres of unequal radii (ai, aj).

A Hertzian model, on the other hand, takes into account the relative size effect

with radii-dependent prefactors. For the Hertzian model, the overlapping distance

is found as δ = ai + aj − rij, and the normal and tangential forces in Eq. 2.1 are
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Table 2-C: The number of particles N , material parameter values, and time step
∆t used in the simulations of 5-sphere particle packings.

N Kn (mg/d2) Kt/Kn γn (

√
g/d

d ) ∆t (
√
d/g)

6,000 2× 105 2/7 50 0.001

then replaced by

Fn
ij =
√
δ

√
aiaj
ai + aj

(Knδ nij−
meff

2
γnvn) Ft

ij =
√
δ

√
aiaj
ai + aj

(−Kt∆st−
meff

2
γtvt),

(2.4)

where meff is the effective mass of the two spheres of mass mi and mj and calculated

as meff =
mimj

mi+mj
. While the normal push-back force for two particles is a linear

function of the overlapping distance in the Hookean model, it becomes proportional

to the area of overlap of the two particles in the Hertzian one. Thus the elastic

constants Kn, Kt have units of force per area (mg/d2) and the viscoelastic ones γn,

γt are in units of

√
g/d

d
. For a 5-sphere particle, d and m refer to the diameter and

the mass of the largest constituent sphere, respectively and are set as d = 1 and

m = π/6. Note that the density of each constituent sphere is set to 1, so the mass

is equal to the corresponding sphere volume. The number of particles, material

parameter values, and time step for the simulations of 5-sphere particle packings

are given in Table 2-C. These values are chosen to be in line with the packings in

the dataset from Ref. [45], where the pouring protocol in LAMMPS has also been

used to generate them.

All simulations are run on Queen Mary’s Apocrita HPC computers [103].



Chapter 3

Structural Analysis of Disordered

Dimer Packings

3.1 Introduction

Jammed disordered particle packings have been used as a model to understand

the structures of liquid crystals, glasses, self-assembly of nanoparticles, biological

systems, and granular media [25]. While there has been considerable recent progress

in the understanding of jammed sphere packings [28], the effect of particle shape on

the properties of jammed packings has been much less explored [46]. It is well-known

that spheres achieve maximal random packing densities of φj ≈ 0.64 for a wide range

of packing protocols. However, denser packings can also be achieved for specific

protocols; see the discussion in [5]. Recent empirical studies have shown that many

21



Chapter 3. Structural Analysis of Disordered Dimer Packings 22

non-spherical shapes can generally pack denser than spheres. For example, many

polyhedra [38, 41, 61, 63, 67], ellipsoids [32, 43, 48], spherocylinders [36, 50–54, 56],

and dimers [33, 58], as well as irregular shapes such as those composed of a number

of overlapping spheres [45, 68] achieve packing densities φj ≥ 0.7, with the densest

disordered packings so far found for tetrahedra at φj ≈ 0.78 [38]. Rotationally

symmetric elongated shapes such as ellipsoids, spherocylinders, and dimers exhibit

a similar dependence of the packing density on the aspect ratio α. The packing

density increases as soon as the aspect ratio deviates from the sphere value (α = 1)

until reaching a peak at α ≈ 1.4− 1.5, and beyond that, it decreases, following, e.g.,

an approximate scaling behaviour φj ∼ 1/α for spherocylinders [104]. However,

the mechanisms that underlie this non-monotonic behaviour in the packing density

remain unknown.

Although the packing fraction φj is characterised similarly by the aspect ratio

for both convex and non-convex elongated shapes, the contact number variation

with the aspect ratio strongly depends on the microscale geometric features of

the individual particles [77]. Ellipsoids have been observed to generate hypostatic

packings for small aspect ratios [32, 74–78], and such underconstrained packings

have also been found for spherocylinders [79, 80]. On the other hand, dimer

packings are isostatic for all aspect ratios [58, 73, 77]. Schreck et al. have found

key differences between the mechanical and vibrational properties of the packings

of ellipses and dimers, e.g. the isostatic dimer packings do not possess quartic

vibrational modes as found for hypostatic ellipse packings [77]. Shiraishi et al.
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have also observed similar results for two-dimensional dimer packings in [73] and

for three-dimensional dimer packings in [58]. It is crucial to study the packing

properties of dimers to investigate the effect of non-convexity on mechanical and

structural properties of disordered packings since a dimer represents the simplest

case for non-convex shapes and can be defined by a single parameter, the aspect

ratio, which is the ratio of the length over the width.

This chapter presents a structural analysis of dimer packings simulated with

the MD platform LAMMPS using a gravitational pouring protocol. My goal is to

identify structural features that characterise the peak in the packing density by

focusing on details of the contact statistics as well as positional and orientational

order metrics. In this context, it is important to emphasise the role of the packing

protocol. Torquato et al. have shown that the notion of “random close packings” is

not well-defined due to the interplay between the packing density and the degree of

order in sphere packings that arises by tuning the protocol parameters [26]. Jammed

packings of non-spherical particles also exhibit strong protocol dependence even for

the same shape. For example, the results reported for φj of spherocylinders exhibit

a significant variance [36, 50–54, 56]. Here, I use a specific pouring protocol for all

the packings and study the effect of shape variation on the packing properties.

Previous studies of disordered packings of elongated particles obtained inconsis-

tent results regarding ordering effects, which might be due to different protocols and

boundary conditions used. For example, simulations of prolate ellipsoids by pouring
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into a container under gravity found considerable nematic order, whereby the

ellipsoids’ symmetry axes (the semi-major axes) tend to lie within the plane normal

to the gravity direction [47–49]. Buchalter et al. have explained this ordering

effect as a result of the particles’ tendency to minimise the gravitational potential

energy [47]. On the other hand, simulations that compress or inflate the non-

spherical particles from an initial random state, such as the Lubachevsky-Stillinger

algorithm (applied to ellipsoids [32, 74]) or a mechanical contraction algorithm

(applied to spherocylinders [54, 57, 101]) do not find any significant order as is also

observed with other geometric simulation methods [36, 37]. While 3D experiments

of ellipsoids [43] and elongated colloids [105] did not observe any signatures of

order, experiments of asymmetric dumbbells in 2D showed strong orientational

correlations between neighbours due to mutual restrictions on positions [106]. To

my knowledge, the order characteristics of dimers in 3D have not been investigated.

This chapter is structured as follows: In Sec. 3.2, I present the analysis results;

the packing fraction, Voronoi volume statistics, contact and coordination numbers,

contact configurations, and orientational/positional order metrics. Finally, in

Sec. 3.3, I summarize the findings.
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3.2 Structural Analysis

3.2.1 Packing Fraction

Packing fraction is one of the most common macroscopic variables studied for the

properties of granular assemblies. I calculate the packing fraction of the dimer

packings for various aspect ratios. The packing density is determined for the bulk

region shown in Fig. 3.1. The particles within 5− 8d from the container floor are

excluded from the bulk region since they can be highly crystallised. The thickness

of this crystallised region depends on many factors, such as the box dimension

and the pouring height. Excluding the particles within 5 − 8d provides results

that are largely unaffected by the crystallisation. The particles within 5d from the

upper-most particles have also been excluded from the bulk because their Voronoi

volumes can not be decided accurately due to deficiencies in their neighbourhood.

x̂

ẑ

b
u
lk

5
d

5
-8
d

Figure 3.1: The bulk region shown in the x̂-ẑ-plane.
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In order to determine the packing density in the bulk region, I calculate the

Voronoi volume of each dimer in the bulk. The Voronoi volume of a particle contains

all points closer to this particle than any other one in the system; see Appendix A.1

for more details regarding the Voronoi tessellation and volume. A built-in package

(Voro++) in LAMMPS provides the computation of the Voronoi volume of the

individual spheres in the packing using a conventional Voronoi tessellation. The

Voronoi volume Wi of a dimer is then found by summing the Voronoi volumes of

its two constituent spheres. The bulk volume Vb occupied by Nb dimers in the bulk

is calculated as Vb =
Nb∑
i=1

Wi. I then obtain the packing fraction as φj = NbVα/Vb,

where Vα is the volume of a dimer with aspect ratio α. The volume of a dimer Vα

is found by subtracting the overlap volume from the sum of its constituent sphere

volumes. The overlap volume contains two equal spherical caps whose volume can

be calculated exactly; see Appendix B.1. Note that a dimer is considered to be

part of the bulk region only if the centres of both constituent spheres are within

the bulk. All average quantities discussed in the following are calculated for dimers

in the bulk only.

The packing fraction φj of the dimers is plotted as a function of the aspect ratio

α and is shown in Fig. 3.2. As can be seen from Fig. 3.2, the packing fraction

φj has a non-monotonic relationship with α, i.e., it increases as α increases until

reaching a peak at φj = 0.707 for α = αmax = 1.4, beyond that it decreases. These

results are in agreement with previous studies [33, 58] and also show reasonably

good agreement with results from a mean-field calculation [34], shown in Fig. 3.2.
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Figure 3.2: The packing fraction φj as a function of the dimer aspect ratio α.
Simulation values of φj are shown averaged over 10 independent simulation runs
for α ≥ 1.1 (dots), and for a single run for α < 1.1 (diamonds). The standard
deviation for each dot is approximately ±0.0004.

In the mean-field calculations, the non-linear behaviour of the packing density

with the aspect ratio has been explained based on the excluded volume. The

density increases upon deviation of the aspect ratio from 1 due to the additional

orientational degrees of freedom, whereby a particle can be oriented to efficiently

reduce the space left by its neighbours and the change in the ratio of the excluded

volume over the particle volume from the spherical value is slight. For larger aspect

ratios, the density decreases since the excluded volume effects increase whereas

the average number of contacts remains constant. The dependence of the average

contact number on the aspect ratio is deduced by evaluating the probability of

finding stable degenerate configurations, which is then used to predict the density

φ(α). Systematic deviations between the simulations and the mean-field theory

are in particular visible in the behaviour for larger aspect ratios α > 1.5, which
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are likely due to the strong mean-field assumptions. In fact, the mean-field theory

relies on a reduction of higher-order positional correlations to pair correlations and

also neglects orientational correlations between particles. The latter become more

significant for particles of larger aspect ratios, see Sec. 3.2.4.1. Nevertheless, the

mean-field theory has successfully explained the non-linear behaviour of packing

densities of rotationally symmetric elongated particles. I attempt to extend the

mean-field approach to asymmetric dimers (obtained by overlapping two spheres of

varying diameter). However, this is unavailable due to a lack of analytical expression

for the Voronoi boundary between two particles, which is necessary to define two

central quantities in the framework: the Voronoi excluded volume and surface.

The details of the mean-field theory and the Voronoi boundary construction for

asymmetric dimers are provided in Appendix A.2.

3.2.2 Voronoi Volume Statistics

The volume function plays the key role in the description of granular matter

by the Edwards thermodynamics [4]. Voronoi tessellation is a convenient way of

determining the system volume, where Voronoi cell volume distributions characterize

the structural properties of granular assemblies. Theoretical modelling of such

distributions, however, remains challenging. Aste et al. proposed an analytical

model for sphere packings that provides a well-predicted distribution of Voronoi cell

volumes [7, 107]. They found a so-called k-Gamma distribution, with probability

density function f(ρ) ∝ ρk−1 exp(−kρ), where the quantity ρ is the rescaled volume
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ρ =
W −Wmin

W −Wmin

. (3.1)

This model significantly depends on Wmin, the minimum attainable cell volume.

The average volume from the distribution coincides with W , and the variance is

σ2
w =

(W −Wmin)2

k
, (3.2)

so the value of k parameter can be empirically calculated as k = (W −Wmin)2/σ2
w

[7, 107], which is associated with a granular temperature, known as the compactivity.

For sphere packings, the parameter k varies between 11 and 15, which agrees with

the neighbour number contributes to the Voronoi cell of any given sphere. Schaller

et al. extended the k-Gamma model for disordered packings of uniaxial ellipsoidal

particles [108]. They first identified the densest local structures for each aspect

ratio by numerically minimizing the Set Voronoi cell volume around a central

particle and then determined Wmin(α) to validate k-Gamma model predictions. For

the investigated aspect ratio regime, they observed that the model satisfactorily

predicts the full distribution of the Voronoi volumes for ellipsoid packings, where

the best-fit value for k varies between 12 and 17.
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Figure 3.3: Distributions of the rescaled Voronoi cell volumes in disordered sphere
(α = 1) and dimer packings. (a) The simulation data for various α is compared
with two k-Gamma distributions (k = 8 and k = 12). The inset illustrates the same
data on a linear scale. (b) The best-fit k values are presented as a function of α.

Here, I investigate the Voronoi volume distributions by the k-Gamma model

for dimer packings with different aspect ratios and sphere packing. Since the

densest local structures of dimers are unknown, Wmin(α) is determined from the

simulations as the minimum Voronoi cell volume among the dimers in the bulk.

As can be seen from Fig. 3.3(a), for both spheres and dimers, the model curves

satisfactorily reproduce the distributions of the Voronoi volumes. However, the
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data exhibits deviations from the k-Gamma curve at small and large volumes. A

similar behaviour at small volumes of ellipsoids has also been observed due to some

specific packing motifs [108]. Although they found the best-fit value for k generally

increases with elongation of the ellipsoids, such a variation of k with α has not been

detected for the dimers, where it takes values between 7 and 13, see Fig. 3.3(b). I

suspect this difference arises due to the discrepancy in determining Wmin(α).

3.2.3 Contact and coordination numbers

The contact number z, defined as the average number of contacts per particle,

plays an essential role in the mechanical stability or rigidity of jammed particle

packings [109]. Isostatic conjecture estimates a minimum value of z below which

the system loses rigidity [110]. To satisfy the isostatic condition, the total number

of interparticle contacts should equal the total number of degrees of freedom

in packings of frictionless particles. This property implies that z = 2df , where

df denotes the degrees of freedom of a particle (z = 6 for spheres, z = 10 for

rotationally symmetric shapes such as spheroids, z = 12 for fully asymmetric

shapes). Packings with z smaller or larger than the isostatic value are referred to

as hypostatic and hyperstatic, respectively. Previous studies have shown that the

isostaticity in general holds for sphere packings [5]. For rotationally symmetric

shapes, the isostatic conjecture would predict a discontinuous jump in z from 6 to

10 as soon as the shape deviates from the sphere. However, such a discontinuity

has not been observed for packings of convex elongated shapes. They instead
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have been generally found hypostatic with a smooth increase from the spherical

isostatic z value [32, 50, 54, 74]. Nonetheless, it has been shown that the convex

curvature of some contacts allows these hypostatic packings to be mechanically

stable [74, 80, 111]. Unlike convex elongated shapes, dimer packings are observed

as isostatic [58, 73, 77].

Here, I determine z for the dimer packings. I refer z to the average number of

contact points of a dimer. I also present the coordination number cn as the average

number of neighbours of a dimer, whereby a neighbour is defined as another dimer

with which at least one contact point is shared. While z = cn for smooth convex

shapes like spheres, ellipsoids, and spherocylinders, z ≥ cn for concave shapes like

dimers, since two particles can share more than one contact point. In general, two

dimers A and B share a contact point if the separation vector of two spheres i and

j, with sphere i in dimer A and sphere j in dimer B, satisfies rij ≤ d, which can

be detected with high numerical precision. Two dimers can thus share up to four

different contact points. Due to the soft interaction potential, the contact “point”

is strictly a small overlap region, which creates some complications at small dimer

aspect ratios. I introduce these problems in the following.

The behaviour of cn as a function of α and the associated distributions of cn

for a set of aspect ratios are shown in Fig. 3.4(a). A smooth increase of cn(α)

is observed for α > 1 with a maximum at cn = 8.34 for α = 1.5 followed by a

slight decay. The qualitative behaviour is in line with the results of [58], where



Chapter 3. Structural Analysis of Disordered Dimer Packings 33

(a)

1.0 1.2 1.4 1.6 1.8 2.0

α

6.0

6.5

7.0

7.5

8.0

8.5

cn

2 6 10 14cn

0.0

0.1

0.2

0.3

P
(c
n)

α= 2
α= 1.8
α= 1.6
α= 1.4
α= 1.2
α= 1.1
α= 1.05

αmax

(b)

1.0 1.2 1.4 1.6 1.8 2.0

α

6.0

7.0

8.0

9.0

10.0

11.0

z

4 8 12 16
z

0.0

0.1

0.2

P
(z
)

α= 2
α= 1.8
α= 1.6
α= 1.4
α= 1.2
α= 1.1
α= 1.05

αmax

Figure 3.4: (a) The coordination number cn vs. α and distributions P (cn) for
various aspect ratios (inset). (b) The contact number z vs. α and distributions P (z)
(inset). The values of cn and z are shown averaged over 10 independent simulation
runs for α ≥ 1.1 and α = 1 (dots), and for a single run for 1 < α < 1.1 (diamonds).

dimer packings were generated using an energy minimization protocol, although

the values of cn here are consistently larger over the range of aspect ratios. The

distributions P (cn) are approximately symmetric and Gaussian (Fig. 3.4(a,inset)).

On the other hand, the contact number z does not exhibit such a smooth
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increase, see Fig. 3.4(b). I first establish the baseline for sphere packings at α = 1

with the simulation protocol and find that z = 6.14 for spheres. This value is

slightly above the isostatic value of z = 6. This difference is due to the gravitational

packing protocol and the interaction potential with non-zero softness. The studies

of sphere packings [24, 33] using a similar protocol also found comparable values

for z. The smallest aspect ratio found for dimer packings with a reliable contact

number is α = 1.05, for which z = 10.39. For larger aspect ratios, z decreases

slightly, but then remains unchanged at z = 10.28 for α > 1.2. The difference

with the isostatic value z = 2df = 10 is approximately of the same magnitude as

the difference for spheres using the packing protocol. By comparison, the studies

in [58, 73, 77] find that dimers are almost exactly isostatic, which is thus in line

with my findings. The observation of a constant z for all aspect ratios of dimers

is an important difference with the behaviour of convex elongated shapes such

as spheroids and spherocylinders, which are hypostatic (z < 2df) at small aspect

ratios and show a smooth increase upon shape deformation from the sphere like

the coordination number cn here.

I observe that for very small aspect ratios α ∈ (1, 1.05) the calculation of z is

unreliable, since the particle model used here leads to incorrect contact detections:

the overlap regions due to the particle softness can extend far enough into the

dimer as to create a contact with an interior sphere as illustrated in Fig. 3.5.

Shiraishi et al. also observed such problematic contact configurations for dimers
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(a) (b)

Figure 3.5: Illustrations of “double” and “cusp” contacts shown in 2D as discussed
in [73]. (a) Double contact: the yellow sphere is embedded into the red dimer
so deeply that it contacts both red spheres. (b) Cusp contact: the yellow sphere
contacts both red spheres by covering the cusp point (black point) of the red dimer.

in [58, 73], where they are separated into “double” and “cusp” contacts, see Fig. 3.5.

They investigated the contact number of dimer packings using a compression

protocol with soft particle interactions for various packing densities φ. For large

enough values of the excess packing density ∆φ = φ − φj, where φj denotes the

packing density at jamming onset, “double” and “cusp” contacts were observed. In

their analysis, these contacts could thus be avoided by setting an upper limit for

∆φ at each aspect ratio studied and they observed that this upper limit approaches

zero as α→ 1. Here, I find that the occurrence of these configurations depends on

the stiffness value Kn of the particles as shown in Fig. 3.6, where it can be seen that

the threshold aspect ratio, at which double and cusp contacts occur, is shifted to

smaller aspect ratios for larger Kn. For any value of Kn, double and cusp contacts

will occur at sufficiently small aspect ratios and thus the contact number very close

to the sphere shape can not be reliably established. For Kn = 2× 105, double and

cusp contacts do not occur for α ≥ 1.05, which is thus the lower limit of α used in

the contact number analysis.
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Figure 3.6: The fraction of double (solid lines) and cusp contacts (dashed lines) in
the dimer packings for small α and three normal spring constants Kn.

In order to better understand the packing microstructure, I define five distinct

contact configurations according to the number of contact points that are shared

by two neighbouring dimers, as illustrated in Table 3-A. Excluding the regime

α ∈ [1, 1.05), I display how the fraction of each configuration type changes as

a function of α in Fig. 3.7. Even though the average number of contacts z is

approximately constant over this range of α, the underlying contact configurations

change significantly with α. Most notably, the two most common contact configu-

rations, Type 1 and Type 2, increase and decrease, respectively, as α increases up

to around αmax and remain approximately unchanged for α > αmax. The remaining

contact configurations confirm this trend, showing the strongest variations in the

regime α < αmax. Overall, contact configurations, in which spheres of neighbouring

dimers only have one contact point (Type 1 and Type 3) increase, while those with

multiple contact points (Types 2,4,5) decrease as the packing becomes denser up
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Table 3-A: Five distinct contact configurations of two dimers. We show illustrations
for aspect ratios α = 1.2 and α = 2. The total number of contact points for each
type is: one (Type 1), two (Type 2,3), three (Type 4), four (Type 5).

α Type 1 Type 2 Type 3 Type 4 Type 5

1.2

2

to the packing density peak at αmax. This trend is somewhat counter-intuitive,

since the Type 2,4,5 configurations correspond to more optimal local arrangements

between two dimers, which locally reduce the packing density. Similar results for

the fractions of these five configuration types have been found for packings of shapes

composed of four overlapping spheres [112].

I re-assign the problematic double and cusp contacts to infer the microscopic

properties of the small aspect ratio regime. For example, a double contact as in

Fig. 3.5(a), which creates two overlaps of sphere pairs and is thus counted as two

contact points, could be counted as only one, effectively ignoring the incorrect

overlap with the interior sphere. This can be done likewise for other contact

configurations, which require a careful consideration of the relative position and

orientation of the overlapping dimer pair, see the full discussion in Appendix B.4.
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Figure 3.7: The fractions of the five contact configuration types of Table 3-A for
packings of dimers with different α. Each data point is shown averaged over 10
independent simulation runs.

Re-assigning contacts in this way leads to a rapid but smooth decrease of z to

the corresponding value of spheres z ≈ 6 as α → 1 (Fig. B5), but also exhibits

seemingly unphysical behaviour, such as sharp peaks in the fractions of the Type

1–5 contact configurations around α ≈ 1.05, i.e., at the aspect ratio where double

and cusp contacts start to occur (Fig. B6).

3.2.4 Order metrics

I employ several order metrics to measure global and local ordering in the dimer

packings at various aspect ratios. The nematic orientational order parameter and

the orientational pair correlation function are used to evaluate orientational ordering.

Translational ordering is investigated with bond orientational order parameters, the

radial distribution function and bond angle distributions. All calculations are made

for the particles within the bulk volume so as to discard the crystallized region
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observed at the bottom of the container.

3.2.4.1 Metrics for orientational order

The nematic orientational order parameter S has traditionally been applied to

identify different ordered phases of liquid crystals by characterising the average

molecular orientation [113]. S is defined as:

S = 〈P2(cos β)〉 ≈ 1

Nb

Nb∑
i

P2(cos βi) (3.3)

where P2(x) = 1
2

(3x2 − 1) is the second Legendre polynomial and βi the angle

between the orientation of dimer i and the so-called director, which specifies the

average orientation of the particles. The dimer orientation is described by the unit

vector u(i) measured along the dimer’s long axis, see Fig. 3.8.

I apply this parameter to the dimer packings to quantify the global orientational

order. When all u(i) are randomly oriented, S = 0, while if all u(i) are oriented in a

plane normal to the director, S = −0.5, which corresponds to a perfect oblate phase.

When all u(i) are aligned with the director, the packings have perfect nematic order

with S = 1.

In order to determine the director and S, I first evaluate the tensor Ω defined

as:

Ωkl =
1

Nb

Nb∑
i

(
3

2
u

(i)
k u

(i)
l −

1

2
δkl

)
(3.4)
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Figure 3.8: Orientation of dimer particles in the packings, u(i) is unit vector of
dimer i along its long axis describes its orientation. The director is found aligned
with ẑ-axis for all aspect ratios.

Denoting by λmax the eigenvalue of Ω with the largest absolute value, I identify

the director as the eigenvector corresponding to λmax. For all aspect ratios, I find

that the director is aligned with the ẑ-axis (gravity direction). S is then obtained

directly as:

S = λmax. (3.5)

I also determine the orientational pair correlation function S2 in order to

quantify local ordered structures at a radial distance r from a reference particle.

S2 is calculated as:

S2(r) = 〈P2(cos βij)δ(r − |ri − rj|)〉 ≈

Nb∑
i=1

∑
j∈ni(r)

P2(cos βij(r))

Nb∑
i=1

|ni(r)|
(3.6)
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Figure 3.9: The nematic orientational order parameter S vs. the aspect ratio α.
Values of S are shown averaged over 10 independent simulation runs for α ≥ 1.1
(dots), and for a single run for α < 1.1 (diamonds). Inset: the orientational pair
correlation function S2 vs. r/d for various aspect ratios.

where cos βij = u(i) · u(j) and ni(r) denotes the set of particles in a spherical shell

of width ∆(r) = 0.025d at a distance r from the centre of dimer i in the bulk. The

expression |ni(r)| refers to the size (cardinality) of the set ni(r). I should note that

the spherical shell considered in S2 can extend into the boundary region beyond

the bulk and thus include particles in partially crystallized regions, although the

effect on the average should be small. In general, due to the non-periodic boundary

conditions in the ẑ-direction the packings are not rotationally invariant and thus

the restriction to a radial coordinate is only an approximation.

I present the dependence of S and S2(r) on the aspect ratio α in Fig. 3.9. S

changes rapidly as α increases from the sphere value, reaching its minimum at

around αmax at which the densest packing is achieved and remaining approximately

constant for α > αmax, in line with the behaviour of cn and the different contact

types. Interestingly, the behaviour of S(α) as α→ 1 appears almost singular, but
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the range of values is not sufficient to identify a clear power-law. The minimum

of S at ≈ −0.16 indicates slight oblate ordering, where the dimers’ long axes are

oriented close to the horizontal plane normal to the direction of gravity. This

ordering is thus in agreement with that observed in simulation studies of prolate

ellipsoids using also pouring under gravity, where the packing density is found as

a non-monotonic function of the aspect ratio [47–49]. In order to compare the

magnitude of the orientational ordering with these studies, I also calculate the

order parameter χ used in [47–49], which is defined in Eq. (B.3). Note that in

[47], χ smoothly increases with the aspect ratio up to α ≈ 1.5 that achieves the

densest packings, and it decreases for larger aspect ratios, whereas in [48, 49], it

monotonically increases upon further elongation over the observed range of aspect

ratios. I find a maximum of χ ≈ 0.32 for αmax = 1.4 at which the maximum in

the packing density occurs. By comparison, in [47] the maximum is χ ≈ 0.4 for

α ≈ 1.5, while [48] and [49] find χ ≈ 0.25 and χ ≈ 0.5, respectively, for α ≈ 1.5.

The plot of S2 in Fig. 3.9(inset) demonstrates how orientational correlations

become more long-range for larger aspect ratios. For small α, correlations decay

rapidly within the first coordination shell, while for large α oscillations in S2 are

visible over the whole range of r/d, which is here limited by r/d = 5, i.e., the width

of the boundary region on top of the bulk region that restricts the maximum radius

of the spherical shell used in Eq. (3.6).
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3.2.4.2 Bond orientational order parameters

The bond-orientational order metrics ql and Ql introduced by Steinhardt et al.

[15] have most commonly been used to quantify translational order in disordered

packings of spherical particles [26, 114–121]. While Ql is widely accepted as a well-

defined parameter to measure global ordering in a packing, it has been suggested

that the local order parameter ql needs more caution to reliably identify local

crystalline structures in these systems [16, 122]. It was assumed that higher values

of q6 are associated with higher degrees of order [123] and averages 〈q6〉 have been

used to quantify the overall degree of order for disordered sphere packings [118].

However, it has been found that some local configurations of disordered sphere

packings that are clearly non-crystalline have exhibited the same values of q6 as hcp

or fcc crystals [16]. Therefore, in this analysis, I use recently introduced local order

parameters defined by Eslami et al. [124] to improve the accuracy of determining

local translational order in the dimer packings.

Steinhardt et al. [15] associated with every bond joining a particle and its

neighbours a set of spherical harmonics:

qlm(i) =
1

|NN(i)|
∑

j∈NN(i)

Ylm(θij, φij) (3.7)

where the Ylm are spherical harmonics and θij, φij denote the polar and azimuthal

angles which define the orientation of the vector (bond) pointing from the reference

particle i to another particle j, see Fig. 3.10. NN(i) contains the set of neighbour
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Figure 3.10: Parametrization of the separation vector (bond vector) rij = rj − ri
connecting the reference particle i (red) with j (yellow). The definitions of the
polar and azimuthal angles, θij and φij, respectively, are indicated.

indices for particle i, which are defined as those particles j that have at least one

contact with i.

The local orientational order parameter ql(i) of particle i is then defined as the

following rotational invariant combination of qlm:

ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2. (3.8)

Moreover, the global orientational order parameter Ql is defined as

Ql =

(
4π

2l + 1

l∑
m=−l

|Qlm|2
)1/2

, (3.9)
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where

Qlm =
1

Nb

Nb∑
i=1

qlm(i). (3.10)

Previous investigations of disordered sphere packings have shown that the choice

of neighbourhood definition in Eq. 3.7 can significantly influence the numerical

values and the qualitative trend of ql(i) [122]. Several different criteria were used

for NN(i), for example all neighbours within 1.2d in [15], Voronoi neighbours in

[114, 123]. Recently, Eslami et al. introduced the local order parameters ¯̃ql(i) to

improve the determination of liquid and different crystallized phases [124]. Note

that the liquid phase is related to structural disorder only. Starting from the qlm of

Eq. (3.7), where the neighbours in the first coordination shell are counted, I first

determine

q̃l(i) =
1

|NN(i)|
∑

j∈NN(i)

l∑
m=−l

q̂lm(i)q̂∗lm(j), (3.11)

where q̂∗lm(j) is the complex conjugate of q̂lm(j) and q̂lm(i) is defined as follows:

q̂lm(i) =
qlm(i)(

l∑
m=−l

|qlm(i)|2
)1/2

(3.12)

Then the order parameters ¯̃ql(i) are obtained by averaging over the first coordination

shell of particle i:

¯̃ql(i) =
1

1 + |NN(i)|

q̃l(i) +
∑

j∈NN(i)

q̃l(j)

 . (3.13)
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The advantage of ¯̃ql(i) over ql is that they can distinguish the liquid phase and

different crystalline phases in a more accurate way [124]. They indicate in fact the

correlation between the order in the first and the second coordination shell of a

reference particle [124]. It has been observed that ¯̃q6(i) is large ≈ 1 for crystalline

phases, while ¯̃q6(i) assumes values close to zero for disordered (liquid) phases, which

thus allows to easily discriminate between such phases. On the other hand, the

values of ¯̃q4(i) are sensitive to the crystal type, so ¯̃q4(i) is able to distinguish bcc,

fcc, and hcp crystals.

The pairs (q̃4,q̃6) for each dimer in the bulk region of the packing are displayed in

Fig. 3.11 for various aspect ratios. By comparing these results to empirical data for

liquid, bcc, hcp, and fcc phases of Lennard-Jones particles from [124], I observe that

the distributions at large aspect ratios (α > 1.4) are quite clearly in a liquid phase

where −0.05 < q̃4 < 0.3 and 0 < q̃6 < 0.4. As the aspect ratio decreases, the region

occupied by q̃4 and q̃6 expands and approaches the region occupied by the bcc/hcp

crystal phases indicating the presence of a large proportion of dimers exhibiting

some local translational order intermediate between a liquid and bcc/hcp crystalline

order. The distributions of q̃4 and q̃6 with respect to the particle positions for a

few aspect ratios are displayed in Fig. 3.12 and Fig. 3.13, respectively. For both q̃4

and q̃6, the local clusters with high values are homogeneously distributed along the

bulk region in the packing.

To quantify global translational ordering, I calculate the averages 〈q̃4〉, 〈q̃6〉 and
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 3.11: The local order parameters q̃4 and q̃6 for the packings of (a) α = 1.0005,
(b) α = 1.025, (c) α = 1.05, (d) α = 1.1, (e) α = 1.2, (f) α = 1.4, (g) α = 1.6,
(h) α = 1.8, (i) α = 2. Every data point corresponds to a dimer in the bulk
region of the packing. The sketched regions for bcc, hcp, fcc, and liquid phases of
Lennard-Jones particles are taken from [124].
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(a) (b) (c)
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-0.1

0.4

Figure 3.12: The local order parameter q̃4 distributions along the packing for (a)
α = 1.05, (b) α = 1.4, (c) α = 2. The excluded particles from the bulk are also
shown here, exhibiting high crystallization at small aspect ratios.

(a) (b) (c)

0.3

0

0.6

Figure 3.13: The local order parameter q̃6 distributions along the packing for (a)
α = 1.05, (b) α = 1.4, (c) α = 2. The excluded particles from the bulk are also
shown here, exhibiting high crystallization at small aspect ratios.

compare their values with the global order parameters Q4, Q6 for different aspect

ratios, see Fig. 3.14. While Q4 is close to zero for all aspect ratios, there is a slight

increase in Q6 for α < 1.4 implying some global ordering at small aspect ratios.

In line with the observations in Fig. 3.11, both 〈q̃4〉 and 〈q̃6〉 are non-zero and

monotonically decreasing as α increases, whereby 〈q̃6〉 varies over a larger range

than 〈q̃4〉. Both averages are considerably larger than the corresponding averages

of a fluid phase, which were determined as 〈q̃4〉 ≈ 0.06 and 〈q̃6〉 ≈ 0.2. Overall,
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αmax

Figure 3.14: The global bond orientational order parameters Q4, Q6 and the
averages 〈q̃4〉 and 〈q̃6〉 vs. α. By comparison, 〈q̃4〉 ≈ 0.06 and 〈q̃6〉 ≈ 0.2 for the
liquid phase of Lennard-Jones particles [124].

the results indicate that at large aspect ratios the packing is more translationally

disordered than at small aspect ratios.

3.2.4.3 Radial distribution function

I calculate the radial distribution function g(r) to further examine the translational

correlations between the dimers. The radial distribution function of the bulk dimers

is determined as

g(r) =

Nb∑
i=1

|ni(r)|

NbιVshell(r)
, (3.14)

where ni(r) denotes the set of particles in a spherical shell of width ∆(r) = 0.025d

at a distance r from the centre of dimer i in the bulk, ι is the particle number

density, and Vshell(r) is the volume of the shell. As discussed for the orientational
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correlation function S2(r), Eq. (3.6), the restriction to a radial coordinate is only

an approximation due to the fact the packings are not rotationally invariant. As

before the spherical shell can extend into the boundary region beyond the bulk.

I plot g(r) as a function of r/d for various aspect ratios in Fig. 3.15. As can

be seen, for small aspect ratios, g(r) exhibits the characteristic shape of sphere

packings with a main peak at r/d = 1 and a split second-peak at r/d ≈ 1.7 and

r/d ≈ 2 [14, 19, 24, 36, 50, 101, 117, 125]. For larger aspect ratios, these sharp

peaks broaden and reduce in height. These results are consistent with the variation

of bond orientational correlations with the aspect ratio discussed above, where

elongation in the dimers results in a reduction of translational correlations.
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g
(r
)

Figure 3.15: The radial distribution function g(r) of the dimer packings, Eq. (3.14),
for different α. Inset: enlargement of the regime r/d ∈ [1.125, 3].

3.2.4.4 Bond angle distribution

Here, I measure the probability for a dimer to have a contact at a particular

direction relative to its long axis. For each dimer pair i, j, I determine the polar
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angle θij and the azimuthal angle φij of the bond vector rij = rj−ri in the reference

frame of particle i, see Fig. 3.10.

Figure 3.16: PDFs of the polar and azimuthal angles θij, φij of the bond vectors rij
for all neighbour pairs i, j and different aspect ratios.

The probability density functions (PDFs) of θij and φij are shown for various
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aspect ratios in Fig. 3.16. It can be clearly seen from Fig. 3.16 that at small aspect

ratios dimers have primarily contacts at θij = 90◦. As the aspect ratio increases,

the band around 90◦ widens and finally disappears at α = 2. For small aspect

ratios, there are also symmetric secondary peaks visible at θij = 30◦ and θij = 150◦,

with all contacts occurring within the range θij ∈ [30◦, 150◦] up to α ≈ 1.4.

Figure 3.17: PDFs of the polar and azimuthal angles θij, φij of the bond vectors rij
for all neighbour pairs i, j with a specific contact type. Aspect ratio: α = 1.05.

I further refine the PDFs of θij, φij according to the contact configuration

type between neighbouring dimers to get a better insight into the origin of these

structures, see Figs. 3.17–3.19. For aspect ratio α = 1.05 (Fig. 3.17), it can be

seen that for Type 2—5 only configurations with θij ≈ 90◦ are possible due to the
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geometric constraint of these configuration types. The structure observed in the

overall bond diagram at very small aspect ratios (Fig. 3.16a,b) is thus primarily

due to Type 1 configurations and the peak at θij ≈ 90◦.

Figure 3.18: PDFs of the polar and azimuthal angles θij, φij of the bond vectors rij
for all neighbour pairs i, j with a specific contact type. Aspect ratio: α = αmax = 1.4.

For larger aspect ratios α = αmax = 1.4 and α = 2, the bands for Type 2—4

widen due to the increase in possible relative orientations that still satisfy the

contact constraint (see Figs. 3.18,3.19). This excludes Type 5 configurations which

are available only in a narrow width of possible polar angles by definition. As

expected, Type 1 configurations with only a single contact point between neighbours,

which thus least constrains the relative orientations, exhibit a wide band of possible
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polar angles at all aspect ratios, see Figs. 3.17(a),3.18(a),3.19(a). Interestingly, this

band still exhibits some structure, with a main peak at θij = 90◦ and symmetric

secondary peaks at θij = 30◦ and θij = 150◦ for both α = 1.05 and α = 1.4, which

disappear for α = 2.

Figure 3.19: PDFs of the polar and azimuthal angles θij, φij of the bond vectors rij
for all neighbour pairs i, j with a specific contact type. Aspect ratio: α = 2.

3.3 Conclusions

In this chapter, I have identified the structural features that accompany the

formation of the peak in the packing density of elongated non-spherical particles.

The results have shown that (i) the coordination number cn; (ii) the fractions of
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Type 1–4 contact configurations; and (iii) the nematic order parameter S undergo

rapid changes upon deforming spheres into dimers with aspect ratios up to α ≈ αmax,

while further elongation of the dimers leaves these metrics largely unchanged. This

observation highlights that the peak in the packing density of Fig. 3.2 arises due

to microscopic re-arrangements up to α ≈ αmax and subsequent excluded volume

effects: the contact configurations remain statistically unchanged for α > αmax, but

since the particles are longer the packing can sustain more empty space while being

mechanically stable, in line with the phenomenological description of spherocylinder

packings using the random contact equation, which predicts a decay φj ∼ 1/α [104].

I have also studied the distributions of Voronoi volume for the dimer packings

and shown that they can be scaled using a shifted k-Gamma probability distribution

akin to sphere packings. Unlike other metrics measured in this study, the shape

parameter k has not exhibited a general trend in the aspect ratio variation. In

this study, I have also shown that the mean-field theory can not be extended

to asymmetric dimers since it is unavailable to provide an analytically tractable

expression for the VB between two particles.

An important result of this chapter is that using the particle model (overlapping

spheres) to generate dimers has some problematic contact configurations. Although

sphere-to-sphere interactions are easy to detect, this model does not allow to resolve

the contact configurations at very small aspect ratios when interactions are not

truly hard. Therefore, this difficulty in the simulations has hindered examining the



Chapter 3. Structural Analysis of Disordered Dimer Packings 56

analytical predictions from effective medium theory on the contact number scaling

for very small shape deformations [126]. The problematic double and cusp contacts

should generally occur for shapes composed of overlapping (soft) spheres as used,

e.g., in the optimisation studies of [45, 68], which also might prevent a detailed

analysis of the contact properties of such simulated packings.

The investigation of ordering effects in the dimer packings highlights the compe-

tition between orientational and translational correlations between particles due

to the growth in the aspect ratio. While the translational correlations are more

significant for small aspect ratios, the elongation induces the dimers to have more

orientationally ordered local structures (with slight global oblate ordering) but

less translational order akin to those in a liquid. Dimers at large aspect ratios

thus exhibit structures that resemble a liquid crystal in terms of these metrics. I

should emphasize that the structural features identified here might be specific to the

gravitational packing protocol used and might not occur in dimer packings obtained

with other packing methods, such as energy minimization from a random initial

configuration [58]. Nevertheless, due to the simplicity of the protocol, which is also

relevant in many real-world scenarios, I expect these results would be significant

in understanding the packing density and structural properties of granular matter

composed of non-spherical particles.



Chapter 4

Disordered Packings of Binary

Mixtures of Dimer Particles

4.1 Introduction

Jammed particle packings have been studied to understand the structures of

amorphous materials such as powders, reinforcing fibres, granular matter and

glasses [127]. Most studies mainly focused on monodisperse packings of spherical

and non-spherical particles for which a plethora of experimental and theoretical

results are available [5, 25, 28, 46]. Elongated non-spherical particles such as

ellipsoids [32, 43, 47, 48], spherocylinders [36, 50–54, 56], and dimers [33, 34, 58]

exhibit a non-monotonic variation of the packing density upon deviation from the

spherical shape, with a maximum at specific aspect ratios, which has also been

57
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observed for dimers in Chapter 3. Although these shapes are more complicated

than spherical particles due to the additional rotational degrees of freedom, they

do not fully represent natural materials yet since polydispersity in both shape and

size is inevitable for particle aggregates in nature.

In fact, numerous studies of binary and polydisperse packings of spherical

particles demonstrate that changing the size distribution of the particles improves

the packing density [82–92]. Investigations of non-spherical particle mixtures, on

the other hand, are less common and restricted in a few common shapes. Studies of

jammed packings of spherocylinder–sphere mixtures with the same diameter report

a density maximum occurring at the same aspect ratio of the spherocylinders as

in monodisperse packings, regardless of the relative volume fraction of the two

species [55, 56, 93]. The density maximum is also present under different conditions,

such as when spherocylinders and spheres have equal volume or different diameters

[53, 94, 95]. Binary mixtures of two species of spherocylinders with the same

diameter but different aspect ratios exhibit likewise a density maximum at a unique

aspect ratio of one species, when the shape of the second component is kept fixed

[53, 95, 96]. This unique aspect ratio is irrespective of the fixed aspect ratio of the

second component and agrees with the value at which the packing density of the

monodisperse spherocylinder packing is maximal.

Non-spherical particle mixtures also satisfy a remarkable empirical ideal mixing

law, which states that the inverse packing density is a linear superposition of the
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inverse packing densities of pure (single species) phases weighted by their relative

volume fraction [56, 93, 97, 98]. For example, the total packing density φj of

spherocylinder–sphere mixtures is then given by

φ−1
j = X1φ

−1
1 + (1−X1)φ−1

2 , (4.1)

where X1 denotes the relative volume fraction of spherocylinders with a monodis-

perse packing density of φ1 and likewise φ2 is the packing density of monodisperse

spheres with volume fraction 1 − X1. For binary mixtures the ideal mixing law

establishes a linear dependence of φ−1
j on the relative volume fraction of one species.

Clearly, since the relative volume fraction is fixed by the setup, the packing den-

sity of the mixture is then fully determined by the packing densities of the pure

phases and thus independent of the segregation state. This independence implies

further that particle orientations are completely uncorrelated showing an interesting

similarity with a plastic crystal [56].

All these results provide a new route to optimise the packing densities of

granular materials by mixing non-spherical particles, which are relevant in industrial

applications. For example, the prediction of the spherocylinder aspect ratio that

maximises the packing density of a binary mixture has been used in metallurgy,

transportation, agricultural, and chemical industries [37]. Furthermore, the ideality

observed in binary mixtures of spherocylinders is relevant to designing materials that

are free of the ”Brazil-nut effect”, which occupy a constant volume irrespectively
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of particle dispersion [56]. This effect occurs as a result of component segregation,

where the larger particles are found at the top of a granular material containing

a mixture of variously sized particles upon shaking, vibrating or shearing. For

example, one commonly observes that the larger particles reach the top when

opening a box of breakfast cereal, which is undesirable. Understanding the effect of

shape and size on mixing and segregation is of great interest to food manufacturing

and pharmaceuticals [128]. Therefore, it is a fundamental question whether the

universal density maxima and the ideality in mixing exist also for binary mixtures

of elongated non-convex particles. In this chapter, I focus on investigating the

properties of disordered packings of both dimer-sphere and dimer-dimer mixtures

generated by using the gravitational pouring protocol in LAMMPS. I take into

account the combined effect of shape and size by using the same diameter for

both components in the packings. In addition to the packing density, I also aim

to investigate the contact statistics of the mixtures. In Chapter 3, I have shown

that the emergence of the density maximum is associated with microstructural

re-arrangements that are manifest in the contact statistics of local configurations.

Here, I examine whether such re-arrangements are also relevant in the behaviour of

the packing density of binary dimer mixtures.

This chapter is organized as follows. In Section 4.2 and Section 4.3, I present

results on my analysis of the packing density, contact and coordination numbers,

and contact configurations for dimer-sphere and dimer-dimer mixtures, respectively.

Finally, I conclude in Section 4.4 with a discussion of the findings.
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4.2 Dimer-Sphere Mixtures

4.2.1 Packing Density

I calculate the total packing density of the dimer-sphere mixtures for various relative

dimer volume fractions, Xd which is defined as:

Xd =
NdVd

NdVd +NsVs

=
φd

φj

(4.2)

where φi is the volume fraction of one of the two components i ≡ d(dimers) and

i ≡ s(spheres), φj = φd + φs is the total packing density, Ni and Vi are the number

of particles and the volume of one particle of component i, respectively. An example

for disordered solid of dimer-sphere mixtures is displayed in Fig. 4.1.

Figure 4.1: A disordered solid of mixtures of dimers (coloured in blue) with α = 1.4
and spheres (coloured in red) for the relative dimer volume fraction Xd = 0.5.

For the density calculation of binary mixtures, I use the same definition as

in Sec. 3.2 for a bulk region, i.e., excluding the particles within 5 − 8d from the
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container floor and the ones within 5d from the upper-most particles, see Fig. 4.2.

Then, I measure the Voronoi volume of each particle in the bulk. As in Sec. 3.2,

the Voronoi volume Wl of a dimer l is found by summing the Voronoi volumes of

its two constituent spheres, where the Voronoi volume Wj of a sphere j is provided

by LAMMPS. The total bulk volume occupied by Ns spheres and Nd dimers in

the bulk is calculated as Vb =
Ns∑
j=1

Wj +
Nd∑
l=1

Wl. I obtain the total packing density

as φj = (NsVs + NdVd)/Vb. All average quantities discussed in the following are

calculated for the bulk particles only. For both dimer–sphere and dimer–dimer

mixtures, I run ten independent simulations and average all data points in the

following plots over them.

ẑ

x̂

5-
8d

5d
bu
lk

Figure 4.2: The bulk region shown in the x̂-ẑ-plane.

I plot the total packing density of the mixture as a function of the dimer aspect

ratio α in Fig. 4.3(a) for different relative dimer volume fractions. There are two

limiting cases: pure sphere and pure dimer packings are obtained when Xd = 0

and Xd = 1, respectively. It can be seen from Fig. 4.3(a) that φj exhibits a
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non-monotonic behaviour with the dimer aspect ratio by yielding a maximum at

α ≈ 1.4, as in the case of monodisperse dimer packings [33, 34, 58], independently

of the relative volume fraction. Moreover, the packing density monotonically grows

upon the increase in the relative amount of dimers up to the absolute maximum

(φj = 0.707) that has been achieved in the study of monodisperse dimer packings

in Chapter 3. The appearance of a unique maximum is also in agreement with

previous studies of packings of spherocylinder-sphere mixtures with the same

diameter condition for various compositions [55, 56, 93] and have been explained

by the competition between local caging (a short spherocylinder can be oriented to

minimize the space left by its contacting neighbours) and excluded volume effects.

Other studies simulated the packings of spherocylinder–sphere mixtures only for

one fixed spherocylinder volume fraction and with different diameters, they still

found a maximum in the packing density at one unique rod aspect ratio [53, 94, 95].

In order to investigate the validity of the ideal mixing law Eq. (4.1) in the

dimer-sphere mixtures, I plot the inverse packing density as a function of the dimer

volume fraction Xd for several aspect ratios. As shown in Fig. 4.3(b), the different

curves are indeed well described by a linear relationship; see Appendix C.1 for the

statistical analysis of the consistency of the mixing law with the data. This linearity

suggests that the packing density of the mixture is independent of the segregation

state, i.e., a completely mixed packing has the same volume as one consisting of

two separate phases, each composed of only dimers or spheres, respectively, as

discussed in detail in [56].
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Figure 4.3: (a) The packing density φj of binary mixtures of dimer and sphere as
a function of the dimer aspect ratio α. Each data point is shown averaged over 10
independent simulation runs, with a standard deviation approximately ±0.0004, (b)
The inverse packing density φ−1

j of the mixtures as a function of the relative dimer
volume fraction Xd for several dimer aspect ratios. Solid lines are obtained by the
ideal mixing law Eq. 4.1 without any fit parameter: the lines are fully specified
by the packing densities of pure monodisperse sphere and dimer packings (when
Xd = 0 and Xd = 1, respectively).

4.2.2 Contact and coordination numbers

I measure the contact number z and the coordination number cn for the mixtures

of dimers and spheres. Considering different pair interactions, I define four types

of contact numbers: dimer-to-dimer zdd, dimer-to-sphere zds, sphere-to-sphere zss,

and sphere-to-dimer zsd, which denote the average number of contact points of the

former component with the latter one. The contact number of dimer particles zd

and the contact number of spheres zs are found as, respectively:

zd = zdd + zds (4.3)

zs = zsd + zss. (4.4)
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The overall contact number z is then defined as:

z =
zdNd + zsNs

Nd +Ns

. (4.5)

Similarly, there are four types of coordination number: dimer-to-dimer cndd, dimer-

to-sphere cnds, sphere-to-sphere cnss, and sphere-to-dimer cnsd, which denote the

average number of neighbours of the former component with the latter one. The

coordination number of dimer particles cnd and the coordination number of spheres

cns are found as, respectively:

cnd = cndd + cnds (4.6)

cns = cnsd + cnss. (4.7)

The overall coordination number cn is then defined as:

cn =
cndNd + cnsNs

Nd +Ns

. (4.8)

In Fig. 4.4(a), I show the overall contact number z as a function of the relative

dimer volume fraction Xd. As can be seen, for all aspect ratios, z monotonically

increases from the contact number of monodisperse sphere packings, 6.14 to that

of pure dimer ones, 10.28 as Xd grows. The overall coordination number cn of

the mixtures is also strongly dependent on the relative dimer volume fraction,
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Figure 4.4: (a) The overall contact number z, (b) The overall coordination number
cn of dimer–sphere mixtures vs the relative dimer volume fraction Xd for various
dimer aspect ratios.

as displayed in Fig. 4.4(b). The variation of cn with the aspect ratio becomes

noticeable and approaches that for monodisperse dimer packings as Xd increases.
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Figure 4.5: (a) The contact number of spheres zs (b) The contact number of dimers
zd of binary mixtures vs the relative dimer volume fraction Xd for several dimer
aspect ratios.

The contact numbers of spheres and dimers, zs and zd are calculated separately

and shown in Fig. 4.5 as a function of Xd. Both zs and zd vary approximately

linearly with Xd exhibiting a positive slope for α ≤ 1.8 and a negative slope for

α = 2. When α = 2, zs < 6 for large dimer volume fractions, indicating that the

spheres have fewer contacts than required for mechanical stability in this regime.
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Figure 4.6: (a) The coordination number of spheres cns, (b) The coordination
number of dimers cnd of binary mixtures vs the relative dimer volume fraction Xd

for several dimer aspect ratios.

Similarly, while dimers of α = 2 have more contacts than in the monodisperse

case (zd > 10.28), shorter dimers lose some of their contacts in the dimer–sphere

mixtures. This decrease in zd is more dramatic for small aspect ratios in low

dimer concentration regimes. Overall, it can be seen that the isostatic condition

is generally violated for the individual components in the disordered packings of

dimer–sphere mixtures. While one species is hyperstatic, the other one is always

hypostatic. I also calculate the coordination numbers of spheres and dimers (cns,

cnd) separately and display them as a function of Xd in Fig. 4.6. The dependence on

Xd is also approximately linear with similar trends as for the contact numbers, but

the change in slope from positive to negative occurs now already for α > 1.4. The

validity of a linear relationship of zs, zd, cns, and cnd as a function of Xd highlights

that also the component-wise contact and neighbour numbers satisfy a simple

superposition principle for mixing and are fully specified by the corresponding

numbers of monodisperse packings.



Chapter 4. Disordered Packings of Binary Mixtures of Dimer Particles 68

(a)

0.2 0.4 0.6 0.8

relative dimer volume fraction, Xd

0

2

4

6

8 zss,α = 1.2,
zss,α = 1.4,
zss,α = 1.6,
zss,α = 1.8,
zss,α = 2,

zsd
zsd
zsd
zsd
zsd

(b)

0.2 0.4 0.6 0.8

relative dimer volume fraction, Xd

0

2

4

6

8

10

zds,α = 1.2,
zds,α = 1.4,
zds,α = 1.6,
zds,α = 1.8,
zds,α = 2,

zdd
zdd
zdd
zdd
zdd

(c)

0.2 0.4 0.6 0.8

relative dimer volume fraction, Xd

0

2

4

6

cnss,α = 1.2,
cnss,α = 1.4,
cnss,α = 1.6,
cnss,α = 1.8,
cnss,α = 2,

cnsd
cnsd
cnsd
cnsd
cnsd

(d)

0.2 0.4 0.6 0.8

relative dimer volume fraction, Xd

0

2

4

6

8

cnds,α = 1.2,
cnds,α = 1.4,
cnds,α = 1.6,
cnds,α = 1.8,
cnds,α = 2,

cndd
cndd
cndd
cndd
cndd

Figure 4.7: The partial contact numbers for binary mixtures (a) sphere-to-sphere
zss and sphere-to-dimer zsd, (b) dimer-to-dimer zdd and dimer-to-sphere zds vs the
relative dimer volume fraction Xd, The partial coordination numbers (c) sphere-to-
sphere cnss and sphere-to-dimer cnsd, (d) dimer-to-sphere cnds and dimer-to-dimer
cndd vs the relative dimer volume fraction Xd for various dimer aspect ratios.

The partial contact and coordination numbers calculated for each combination of

pair components are plotted with Xd in Fig. 4.7. Interestingly, both the contact and

coordination numbers measured for the interaction between the same components

exhibit a slight dependence on the aspect ratio for all volume fractions. On the

other hand, the contacts between different species strongly depend on the dimer

aspect ratio. The growth rate of zsd and cnsd with Xd is considerably higher for

small aspect ratios, while the decline in zds and cnds is more significant for larger

ones. These results imply that the variations of the contact and coordination

numbers of spheres and dimers with the aspect ratio for the same Xd, displayed
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in Fig. 4.5 and Fig. 4.6, are primarily due to the interactions between different

components.

4.2.3 Contact configurations

In order to better understand changes in the microstructure of the packing due

to shape variations and mixing, I investigate five distinct contact configurations,

defined in Chapter 3 for monodisperse dimer packings according to the number

of contact points shared by two neighbouring particles, see Table 4-A. I count

the number of contact types occurring in the mixture per component pair and

calculate the fractions of these contacts as shown in Fig. 4.8. Here, the Type

1sd,ds fraction refers to the fraction of Type 1 contacts among all contacts between

dimers and spheres, i.e., the fractions of Type 1sd,ds and Type 2sd,ds add up to 1.

Likewise, the fractions of the five different types of dimer–dimer contacts add up

to 1. Fig. 4.8 shows that these fractions change initially upon increasing the dimer

aspect ratio α up to the region at which the density peak occurs (α ≈ 1.4), but

remain approximately unchanged for α > 1.4. Moreover, it can be seen that the

fraction of Type 1 contacts increases, while that of Type 2 contacts decreases as the

mixture packs more dense for increasing α, which is somewhat counterintuitive, since

Type 2 configurations are locally more compact, see Table 4-A. These observations

are analogous to the monodisperse case, which further supports the qualitative

picture that the peak in the packing density arises due to the interplay of structural

rearrangements for small α and subsequent excluded volume effects with unchanged
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Table 4-A: Two distinct contact configurations of sphere and dimer (sd,ds) and five
distinct contact configurations of two neighbouring dimers (dd). Illustrations are
shown for aspect ratio α = 2. The total number of contact points for each type is:
one (Type 1), two (Type 2,3), three (Type 4), four (Type 5).

Pair Type 1 Type 2 Type 3 Type 4 Type 5

sd,ds

dd

structure.

Surprisingly, all the different fractions in Fig. 4.8 show almost no variations with

a change of Xd. Indeed the fractions for the dimer–dimer contact configurations

are almost identical to the monodisperse case. I believe that this is not a simple

consequence of the normalization of these fractions. In fact, it could have been

expected that the fraction of Type 1 dimer–dimer configurations is different when

there are a lot of dimers available as contacts than if there are few, but this is not

the case.
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Figure 4.8: The fractions of the contact configuration types of Table 4-A between
the components of binary mixtures, contact pairs are indicated by lower indices:
sphere-to-dimer, dimer-to-sphere and dimer-to-dimer (sd, ds, dd) for different dimer
volume fractions (a) Xd = 0.3, (b) Xd = 0.5, (c) Xd = 0.7.

4.3 Dimer–Dimer Mixtures

4.3.1 Packing Density

I measure the bulk packing density φj of the binary dimer mixtures for various

mixture compositions. The two species of dimers (dimer 1 and dimer 2) have

different aspect ratios, α1 and α2, respectively. The relative volume fraction of

dimer 1, X1 is defined as:

X1 =
N1V1

N1V1 +N2V2

, (4.9)
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Figure 4.9: The mixing packing density map of binary dimer mixtures for different
aspect ratios of the first and the second component, α1 and α2, respectively is shown
for three volume fractions of the first component (a) X2 = 0.3, (b) X2 = 0.5, (c)
X2 = 0.7. Note that figures (a) and (c) contain the same information and each data
point is averaged over 10 independent simulation runs, with a standard deviation
approximately ±0.0004. (d) The inverse packing density φ−1

j of mixtures of dimer 1
with α1 = 1.4 and dimer 2 with various aspect ratios α2 as a function of X2. Solid
lines are obtained by the ideal mixing law Eq. 4.1 without any fit parameter: the
lines are fully specified by the packing densities of pure monodisperse dimer 1 and
dimer 2 packings (when X2 = 0 and X2 = 1, respectively).

where Ni and Vi (i=1,2) are the number of particles and the volume of the i-th

component, respectively. I follow the same steps as in Sec. 4.2 for the packing

density calculation. The mixture packing density variation with α1 and α2 is shown

in a heat map for three different X2 values in Fig. 4.9(a–c). For all fixed aspect

ratios of one component (e.g. α1), φj exhibits a non-monotonic relationship with
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the aspect ratio of the second species α2: it increases up to a peak at α2 ≈ 1.4 and

subsequently decays, whereby the peak always occurs at α2 ≈ 1.4 (the aspect ratio

at which the maximum packing density of the monodisperse dimer packing has been

found in Chapter 3). This behaviour is irrespective of the relative volume fractions

of the two components. As in the case of dimer–sphere mixtures, the packing

density of binary dimer mixtures never exceeds the maximum density observed for

monodisperse dimer packings at φj = 0.707 in Chapter 3. These results agree with

the findings of disordered packings of binary spherocylinders [53, 95, 96]. They

observed a universal density maxima at one unique spherocylinder aspect ratio

(1.35-1.5) of one species regardless of the shape of the second component in the

system. I also plot the inverse packing density of the mixtures of dimer 1 with

α1 = 1.4 and dimer 2 with various aspect ratios α2 as a function of X2 and compare

them with the results from the ideal mixing law Eq. (4.1) in Fig. 4.9(d). As can be

seen, the curves exhibit a linear relationship with the volume fraction when α2 < 2.

However, the inverse density curve is slightly concave-upward, exhibiting systematic

deviations from the ideal mixing law for α2 = 2. A statistical analysis confirming

the validity of the mixing law for α2 < 2 can be found in Appendix C.1. For α2 = 2,

a perfect fit of the data can be obtained using a fourth-order polynomial instead of

a linear curve, see Fig. C1(b).
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4.3.2 Contact and coordination numbers

For the contact and coordination number analysis, I focus on the mixtures of

dimer 1 with α1 = 1.4 and dimer 2 with various aspect ratios, α2. I use the same

definitions for partial contact and coordination numbers of the two components

as in Sec. 4.2. I also measure the overall contact and coordination numbers of the

mixtures. For all calculations, I consider only bulk particles.
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Figure 4.10: The overall contact number z and the overall coordination number cn
of the mixtures of dimer 1 with α1 = 1.4 and dimer 2 with different aspect ratios
α2 vs the relative volume fraction of the second component X2.
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Figure 4.11: The contact number of each dimer species vs X2. Different α2 are
shown and α1 = 1.4. (a) z1, (b) z2.
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Figure 4.12: The coordination number of each dimer species vs X2. Different α2

are shown and α1 = 1.4. (a) cn1, (b) cn2.

The overall contact number z and the overall coordination number cn are shown

as a function of the relative volume fraction of the second species in Fig. 4.10. As

can be seen, the coordination number cn is sensitive to both changes in α2 and

X2, while z is essentially constant with z = 10.3, the same value of monodisperse

dimer packings as found in Chapter 3. Therefore, disordered packings of binary

dimer mixtures also satisfy the isostatic condition regardless of the relative volume

fraction of the components. In this context, I should mention that previous studies

of bidisperse and polydisperse sphere packings also found a constant mean contact

number, irrespectively of the particle size distribution and the relative amount of

different components [129–133]. Although the size effect is the only parameter in

the sphere case whereas I consider the joint effect of shape and size in the packings

when α2 is varied, a constant mean contact number seems a generic result of mixing

two components having the same isostatic value for their disordered monodisperse

packings.

I calculate the contact and coordination numbers of the two components (z1,
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z2, cn1 and cn2) separately and display them as a function of X2 in Fig. 4.11 and

Fig. 4.12, respectively. All these numbers satisfy an approximate linear relationship

as in the case of dimer–sphere mixtures. Fig. 4.11 shows that the contact number

of the longer dimer species is always hyperstatic with a higher coordination number

than in the monodisperse case (X2 = 0), while the shorter dimer species is always

hypostatic. Both contact and coordination numbers exhibit a crossover from

positive to negative slopes for α > 1.2. Comparing with the dimer–sphere case

(Fig. 4.5b), it can be seen that dimers mixed with spheres need one to two fewer

contacts at each aspect ratio than dimers mixed with another dimer species. On

the other hand, the coordination numbers of the dimers are very similar (compare

Fig. 4.6b and Fig. 4.12b) indicating that the extra contacts arise from multiple

contacts between neighbouring dimer pairs. The coordination number cn2 exhibits

an intersection of the α2 > 1.4 curves for X2 = 0.9, whose origin is not clear.

For binary sphere packings, individual contact numbers of large and small

particles have been observed as a combined result of two factors: geometrical and

statistical [132]. The contacts of large and small spheres increase as the volume

fraction of the former component decreases, governed by geometrical and statistical

effects, respectively. To investigate those effects on binary dimer mixtures, I display

the variations of the partial contact and coordination numbers with the relative

volume fraction of components in Fig. 4.13. Although the number of contacts

between the longer dimer species decreases statistically as their volume fraction

decreases, their contact number still rises due to the interaction with the shorter ones
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Figure 4.13: The partial contact numbers in the mixtures of dimer 1 with α1 = 1.4
and dimer 2 with various α2 (a) z11, dimer 1-to-dimer 1 and z12, dimer 1-to-dimer
2, (b) z21, dimer 2-to-dimer 1, and z22, dimer 2-to-dimer 2 vs X2. The four types
of coordination number measured in the mixtures (c) cn11, dimer 1-to-dimer 1 and
cn12, dimer 1-to-dimer 2, (d) cn21, dimer 2-to-dimer 1 and cn22, dimer 2-to-dimer 2
vs X2.

(geometrical effect). On the other hand, the statistical effect is more significant

for the increase in the contact number of shorter dimer species as the volume

fraction of the longer dimers decreases. Both partial contact and coordination

numbers measured for the interaction between the same components exhibit an

approximately linear relationship with the mixture composition, which is not the

case for binary sphere packings [132]. As in the case of dimer–sphere mixtures, the

dependence of the contact and coordination numbers of the two dimer species on

the aspect ratio (α2) for the same relative volume fraction (X2) is primarily due to
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the interaction between different species.
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Figure 4.14: The fractions of the five contact configuration types of Table 4-A as
a function of α2 for each component of the binary dimer mixtures with α1 = 1.4:
the notation Type 12 refers to the fraction of Type 1 contacts on dimer 2, etc. (a)
X2 = 0.3, (b) X2 = 0.5, (c) X2 = 0.7.

4.3.3 Contact configurations

I also determine the fractions of the five contact configuration types of Table 4-

A for each component (dimer 1 and 2) and display them as a function of the

aspect ratio of the second component α2 for three different volume fractions in

Fig. 4.14. Comparing with the dimer–sphere case, the fractions of the dimer

2 contact configurations are very close to those of the dimers in dimer–sphere
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mixtures and thus also to those of monodisperse dimer packings. However, a slight

dependence on X2 can be observed, particularly for small α2. The Type 1/Type

2 fractions of the dimer 1 contact configurations are considerably smaller/larger

than those of spheres, but always larger/smaller than those of dimer 2. The

curves become slightly flattened when X2 decreases, i.e., there are in particular

more Type 1 and fewer Type 2 configurations for small α2, which is expected for

the dimer 1 fractions, since they need to approach constants when X2 → 0, but

why those of dimer 2 change likewise is unclear. Overall, as in the dimer–sphere

and monodisperse dimer case, it can be seen that the fractions show the most

considerable variation in the regime α2 < 1.4 and remain approximately unchanged

for α2 ≥ 1.4.

4.4 Conclusions

In this study, I have shown that the packing densities of dimer–sphere and dimer–

dimer mixtures exhibit a non-monotonic variation in the packing density as the

aspect ratio of one species changes while keeping the shape of the second component

fixed, confirming previous results of spherocylinder–sphere and ellipsoid–sphere

mixtures. The findings also confirm the validity of the ideal mixing law Eq. (4.1)

for both types of mixtures, highlighting the independence of the packing density

on the segregation state. Somewhat surprising is the observation that the packing

density of dimer–sphere and dimer–dimer mixtures is always below the maximum

packing density of monodisperse dimers (with α = 1.4), while bidisperse spheres of
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different diameters, e.g., pack denser than monodisperse spheres. However, this

behaviour follows from the ideal mixing law since the packing densities of the pure

sphere or dimer phases are below the maximum and thus the total packing density

as well, see Eq. (4.1). Another manifestation of this ideal mixing property is evident

in the linear behaviour of the component-wise contact and coordination numbers,

which is not observed for the corresponding total contact and coordination numbers.

The analysis of the contact configurations confirms the qualitative picture that

the peak in the packing density arises due to the competition of locally optimal

rearrangements and excluded volume effects, which is here manifest in the significant

variation of the configuration statistics as the dimer is elongated until the maximal

packing density is achieved at α = 1.4.

In future work, it would be interesting to understand further what kind of

observables exhibit similar ideal mixing properties in the mixture. The large

parameter space complicates any systematic analysis of mixtures of non-spherical

particles. In this study, using the same diameter for spheres that constitute the

dimers leads to considering the combined effect of shape and size on the properties

of mixtures. Disentangling the effect of shape and size variation as attempted, e.g.

in [96] could shed further valuable insight.



Chapter 5

Optimisation of Packing Density

by Machine Learning Algorithms

5.1 Introduction

Finding optimum arrangements of particles of a given shape has been a long-standing

problem in science since the time of Kepler [6, 134]. It has great importance also in

industrial applications of granular materials. For example, there has recently been

increased attention to designing new materials by exploiting the complex structures

that result from assemblies of particles [2, 46, 61]. The fact that shape is an

infinitely variable parameter makes a rigorous systematic exploration of the densest

random packings infeasible. Jaeger and collaborators approached this problem by

employing a more general shape representation and artificial evolutionary algorithms

81
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to optimise packing densities [2, 45, 68, 99]. They have found maximal packing

densities of φmax ≈ 0.73 for trimer-shaped particles.

The difficulties in searching for dense packing shapes arising from the shape

space’s high-dimensionality can be circumvented by using machine learning meth-

ods. Recent developments in algorithms and computational power have made it

available to produce large datasets. Machine learning methods have been then

applied to large datasets of especially high-dimensional input data for several tasks

such as classification, regression, and dimensionality reduction. There has been

recently increased attention to employing machine learning algorithms in materials

science, especially for tasks where experiments have limitations [135]. For example,

experiments require high resources, equipment, and human intuition to discover

new materials. Recent developments in computational methods, such as Monte

Carlo simulations and molecular dynamics, led researchers to explore design space

more efficiently. The combination of experiments and simulations has produced

enormous data, making it available to use machine learning algorithms to predict

new materials [135], which cuts the time and cost of designing. In the context of

granular matter, they have been employed to identify flow defects [136], to reveal

correlations between particle size distributions and the mechanical properties [137],

and to characterise permeability [138].

In this study, I investigate the feasibility of using machine learning approaches to

predict novel particle shapes that achieve high densities when randomly packed. I
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use a dataset from Ref. [45] including 5800 distinct particle shapes (each composed

of five overlapping spheres) and their corresponding packing densities, i.e. (Xi, φi)

pairs where X represents a shape vector, as training data. I present a framework

that applies a Random forest regressor to the dataset and finds an optimal shape

to maximise φj. In order to facilitate optimising the regression function that

yields predictions of new dense packing shapes, the high input dimension of the

dataset is first reduced by two different dimensionality reduction methods, Principal

component analysis (PCA) and Kernel PCA. Then, the regression model is applied

separately to the data represented in the two-dimensional space by PCA and Kernel

PCA. Discretizing the plane of the two principal components is used to find new

maxima. The validity of predicted shapes is tested with simulations generated by

a gravitational pouring protocol in LAMMPS. I also explore the results without

the dimensionality reduction, i.e., by fitting a regression function to the dataset

in the original high-dimensional input space, and using a gradient-free method,

Constrained Optimisation By Linear Approximation (COBYLA) to optimise the

regression function.

This chapter is organised as follows. I describe the dataset in detail in Section 5.2.

In Section 5.3 and Section 5.4, I explain the dimensionality reduction methods:

PCA and Kernel PCA, and the Random Forest regression method, respectively.

In Section 5.5, I explain the predictive framework, which is a combination of

dimensionality reduction, regression, and optimisation, and present the results. I

describe the model without the dimensionality reduction step and show the shape
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it predicts in Section 5.6. Finally, I summarise the findings and discuss the future

work in Section 5.7.

5.2 Dataset

In this study, I present a framework to predict novel dense packing shapes by

applying a Random forest regression model to the dataset from Ref. [45]. Roth

et al. used an evolutionary algorithm, Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) [139], that performs mutations to given shapes until maximal

packing densities are achieved. In this algorithm, a population of 40 different

particle shapes (each composed of n overlapping spheres) undergoing evolution are

represented as a multivariate Gaussian distribution. Representing a compound

particle is based on so called blueprint rules that use ordered lists of bearings to

specify where to place each sphere [68, 99]. It starts with placing a sphere at the

origin. Each bearing is taken from the list and used to draw a ray from the centre

of the previous sphere placed along the direction it specifies. Then, another sphere

is slid along this ray from infinity towards the origin and placed at the point where

it is in contact with the previously built shape. The constituent spheres are placed

with this process in sequence. In [68, 99], since the spheres are only allowed to

touch, three parameters describe a constituent sphere: two angles that define a

bearing relative to the previous sphere placed and a diameter. Roth et al. extended

these rules by adding a fourth parameter that specifies the degree of overlapping

between a sphere and the previous sphere placed. The boundaries on the CMA-ES
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search were imposed by fixing a range of all the variables. At each generation in

the evolution, 40 disordered packings, one for each particle shape, were simulated

by a pouring protocol in LAMMPS in parallel. The packing densities are calculated

and ranked to produce the next generation of particle shapes, mutated to explore

shape space for potentially higher packing densities. The optimiser converges on an

asymptotic value for the packing density over a large number of generations. For

particle shapes consisting of n = 5 overlapping spheres, the asymptotic solution

of packing density has been obtained over 145 generations, where trimer-shaped

particles have been observed to achieve the highest packing fraction of φmax ≈ 0.73

[45], see Fig. 5.1. The dataset I use for the predictive framework consists of the shape

Figure 5.1: The trimer shape that achieved the highest packing fraction of φmax =
0.7367 in the 5-sphere dataset from Ref. [45].

information of those 5800 (40 shapes that undergo evolution over 145 generations)

distinct particle shapes and their corresponding packing densities, i.e. (Xi, φi) pairs.

Note that a 5-sphere particle shape in the dataset is represented in a vector X

that contains the diameters and the spatial coordinates of its constituent spheres,

i.e., X = (x1, y1, z1, d1, x2, y2, z2, d2, ..., x5, y5, z5, d5), where da is the diameter of

constituent sphere a, so there are in total 20 dimensions. It is possible to characterise

a 5-sphere particle shape by only 13 dimensions since there are seven redundant
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variables. Fixing the coordinate origin to the centre of the first sphere and measuring

the diameters of the other four spheres relative to that of the first sphere reduces

four degrees of freedom. There are also reductions due to global rotations of the

shape, i.e. the second sphere is aligned along one axis, which reduces two degrees

of freedom, and the third sphere of all shapes is oriented in the same plane, which

reduces one more degree of freedom, see Fig. 5.2. Hence, it can be then expressed as

X̂ = (x2− x1, d1− d2, x3− x1, y3− y1, d1− d3, x4− x1, y4− y1, z4− z1, d1− d4, x5−

x1, y5 − y1, z5 − z1, d1 − d5), where the diameter of the first sphere, d1 is fixed and

corresponds to the largest diameter.

(a) x̂

1

2

(b)
x̂

ŷ

2

1 3

(c) x̂

ŷ

ẑ

1

2

3

4

Figure 5.2: Reduction of three degrees of freedom in the description of a 5-sphere
particle shape due to global rotations, (a) the second sphere (2) is aligned along x̂
axis, (b) the third sphere (3) is oriented in the x̂-ŷ-plane, (c) all the coordinates of
sphere 4 (x4, y4, z4) are needed, which is also valid for sphere 5.

5.3 Dimensionality Reduction Methods

Applying machine learning algorithms to high-dimensional datasets has been chal-

lenging because the amount of training data needed for a reliable analysis grows

exponentially as the number of features increases. Moreover, data analysis tools are
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best illustrated in low-dimensional spaces, so interpreting the high-dimensional data

by those tools is very difficult. A common approach to overcome the curse of dimen-

sionality is to reduce the data to a low-dimensional space before applying machine

learning algorithms. The reduced data should represent sufficient information for a

reliable model. There are two types of dimensionality reduction: feature selection

and feature extraction. While the former uses a subset of the original features, the

latter transforms the original ones via a function (linear or non-linear) to produce

a new feature set. Principal Component Analysis (PCA) and Kernel Principal

Component Analysis (Kernel PCA) are standard feature extraction methods, which

are explained in the following.

5.3.1 Principal Component Analysis

Principal component analysis (PCA) is the most commonly used linear method

for dimensionality reduction and feature extraction [140, 141]. PCA transforms

the data to a new coordinate system in which the new components are orthogonal

to each other and capture as much variance as possible [142]. PCA procedure is

explained in the following steps:

1. Given a dataset {Xi}, where i = 1, 2, ..., H, H is the number of samples and

each Xi is a D-dimensional vector, to project the data onto an f -dimensional

subspace, where f < D, firstly the centred covariance matrix C of the dataset
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is determined as:

C =
1

H

H∑
i=1

(Xi − X̄)(Xi − X̄)T, (5.1)

where X̄ is the mean vector, which is D-dimensional vector where each value

represents the sample mean of a feature column in the dataset as:

X̄ =
1

H

H∑
i=1

Xi. (5.2)

2. Then, the eigenvectors and eigenvalues of the covariance matrix C are calcu-

lated from

CU = λU. (5.3)

The magnitude of an eigenvalue λe corresponding to an eigenvector Ue equals

the amount of variance in the direction of Ue, where e = 1, 2, ..., D. The

eigenvalues {λ1, λ2, ..., λD} are sorted in decreasing magnitude, and the top

f eigenvectors that contain most of the information are chosen to reduce the

dimension.

3. A D × f dimensional transformation matrix G is formed from the top f

eigenvectors. The projected dataset {X′i} on the eigenvector basis are called

principal components and X′i is obtained as:

X′i = XiG. (5.4)
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4. Note that Xi can be approximated from the reduced data as:

X̃i = X′iG
T. (5.5)

PCA can only capture linear structures in the data. For a more complicated dataset,

using PCA might not be suitable. Kernel PCA, on the other hand, allows one to

extract nonlinear structures [143]. Kernel PCA first maps the data into some feature

space F via a (usually nonlinear) function ψ and then performs linear PCA on the

mapped data. As the feature space, F might be very high dimensional, Kernel PCA

employs kernel methods instead of carrying out the mapping ψ explicitly [144].

5.3.2 Kernel Principal Component Analysis

5.3.2.1 Feature Extraction

Kernel Principal Component Analysis starts with projecting each data point Xi

in the original D-dimensional feature space to a point ψ(Xi) in M -dimensional

feature space F , where usually M � D. The projected new features are assumed

to have zero mean:

1

H

H∑
i=1

ψ(Xi) = 0. (5.6)

The covariance matrix of the projected features, CF is M ×M and determined as:

CF =
1

H

H∑
i=1

ψ(Xi)ψ(Xi)
T. (5.7)
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Then, its eigenvalues and eigenvectors are given by:

CFV = λV, (5.8)

where the eigenvectors V can be expressed with coefficients {hi}, where i =

1, 2, ..., H as:

V =
1

H

H∑
i=1

hiψ(Xi). (5.9)

By substituting CF and V from Eq. 5.7 and Eq. 5.9, respectively in Eq. 5.8, one

obtains the following equation

1

H

H∑
i=1

ψ(Xi)ψ(Xi)
T

H∑
j=1

hjψ(Xj) = λ
H∑
i=1

hiψ(Xi). (5.10)

The ”kernel trick” is used by defining a function K that calculates the dot product

in F as:

K(Xi,Xj) = ψ(Xi)
Tψ(Xj). (5.11)

Multiplying both sides of Eq. 5.10 with ψ(xl)
T and using the kernel function results

in the following equation

1

H

H∑
i=1

K(Xl,Xi)
H∑
j=1

hjK(Xi,Xj) = λ

H∑
i=1

hiK(Xl,Xi). (5.12)
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It can be expressed with matrix notation as:

K2h = HλKh, (5.13)

where

Kij = K(Xi,Xj) (5.14)

and h denotes the column vector with entries h1, ..., hH . As K is symmetric, it has

a set of eigenvectors which spans the whole space, so all solutions h of Eq. 5.13 can

be found from

Kh = Hλh. (5.15)

Note that K is positive semi-definite, so its eigenvalues are non-negative, and give

the solutions Hλ of Eq. 5.13. To diagonalize K, let λ1 ≤ λ2 ≤ ... ≤ λH denote the

eigenvalues, and h1, ...,hH the corresponding complete set of eigenvectors, with

λp being the first nonzero eigenvalue. Since the vectors V in F are needed to be

normalized, h1, ...,hH are also normalized, i.e.

Ve ·Ve = 1 =
H∑

i,j=1

heih
e
j(ψ(Xi)

Tψ(Xj)) (5.16)

for all e = p, ..., H. To extract principal components, one needs to compute

projections on the eigenvectors Ve in F (e = p, ..., H). For a test point X, with an
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image ψ(X) in F ,

PCe(X) = Ve · ψ(X) =
H∑
i=1

heiK(Xi,X) (5.17)

are called its kernel principal components. To reduce the dimension of the original

dataset {Xi} to a low-dimensional space (f < D), the top f principal components

corresponding to the highest eigenvalues are chosen.

If the projected features ψ(Xi) do not have zero mean, the kernel matrix K can

be centred by using the following equation:

K̃ = K− 1HK−K1H + 1HK1H , (5.18)

where 1H is the H ×H matrix with all elements equal to 1/H. The advantage of

kernel methods is that there is no need to compute ψ(Xi) explicitly. The kernel

matrix can be directly obtained from the training data set {Xi}. The standard

steps of Kernel PCA dimensionality reduction can be summarized as:

1. Construct the kernel matrix K from the dataset by using a kernel function,

Eq. 5.14.

2. Compute the centralized kernel matrix K̃ from Eq. 5.18.

3. Use Eq. 5.15 to find h (substitute K with K̃).

4. Calculate the kernel principal components by using Eq. 5.17 and choose the
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top f principal components to reduce the input dimension of the data.

The results of Kernel PCA strongly depend on the choice of the kernel function.

The Radial Basis Function (RBF) or Gaussian kernel, one of the most widely used

kernels, is defined as:

K(x,y) = exp
(
−η‖x− y‖2

)
. (5.19)

It measures the similarity between two vectors based on their Euclidean distance.

The parameter η plays a significant role in this similarity, for example the kernel is

very sensitive to noise in the data for small η values.

5.3.2.2 Reconstruction of Pre-Images

Producing principal components PCe(X) using Kernel PCA is generally used for

feature extraction and data visualization. To reconstruct the ψ(X) of a vector

X from its projections PCe(X) onto the first f principal components in F , a

projection operator Tf has been defined in [145] as:

Tfψ(X) =

f∑
e=1

PCe(X)Ve. (5.20)

If f is large enough, then Tfψ(X) ≈ ψ(X). Most of the time, however, one is

interested in reconstruction in the original input space I rather than in F . Since it

is difficult to obtain the exact pre-image X, one aims to find an approximation X̃

such that

ψ(X̃) ≈ Tfψ(X). (5.21)
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A good approximation can be achieved by minimizing

ε(X̃) = ‖ψ(X̃)− Tfψ(X)‖2. (5.22)

The techniques proposed to solve this nonlinear optimization problem often employ

gradient descent or nonlinear iteration methods [145, 146]. However, they have

some drawbacks, such as being computationally inefficient and having numerical

issues. To find X̃, Bakir et al. developed a technique that learns a pre-image map

from the lower-dimensional space to the original input space, i.e. Ξj : Rf → I,

where j = 1, 2, ..., D, by solving the learning problem:

Ξj = arg min
Ξj

H∑
i=1

L(Xi,Ξ(Tfψ(Xi))) + Λ∆(Ξ), (5.23)

where L(x,y) = ‖x − y‖2, ∆ is a regularizer and Λ ≥ 0 [146]. Considering

the learning problem (5.23) as a regression problem for the H points with a

kernel K yield a pre-image mapping Ξj(Tfψ(X)) =
H∑
i=1

ojiK(Tfψ(X), Tfψ(Xi)),

then coefficients {oji} can be calculated by using kernel ridge regression, see [146]

for more details. To find pre-image X́ of a new data on the first f principal

components PCe(X́), where e = 1, 2, ..., f , the learned pre-image mapping from the

training dataset can be used, i.e. Ξj(Tfψ(X́)) =
H∑
i=1

ojiK(Tfψ(X́), Tfψ(Xi)), where

Tfψ(X́) =
f∑
e=1

PCe(X́)Ve.
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5.4 Random Forests

Random Forests is one of the most commonly used methods in machine learning

for classification and regression tasks [147]. A random forest is an ensemble of de-

correlated decision trees. A decision tree has a flowchart-like structure that learns

simple decision rules from the input data features to predict the value of a target

variable. The model is called a classification or regression tree when the outcome

takes a discrete set of values or continuous ones, respectively. A tree’s decision

nodes (features) have branches representing the values for the feature tested, and

leaf nodes represent a decision on class labels or numerical values. As the tree goes

deeper, decision rules become more complex, and the model gains higher accuracy.

However, the deeper trees usually result in overfitting their training datasets, i.e.

have low bias but high variance. Breiman et al. introduced a bootstrap aggregating

or bagging technique, which is an ensemble of trees to reduce the variance [148].

It repeatedly trains a classification or regression tree on a random sample with

replacement of the training set. Then, predictions for a new, unseen sample are

made by averaging the predictions from all the individual trees on the sample

for the regression and allowing the trees to vote for the most popular label for

the classification. Ho et al. improved the bootstrapping method by letting trees

grow in a random subset of the features [149, 150] and used the ”Random Forest”

term for the first time in [149]. Other attempts have been shown to improve the

bagging method, such as by using additional randomization [151]. Breiman et

al. provided a substantial definition of Random Forests in [152]. The trees are
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decorrelated by a learning process through random selection of input features in

Random Forests. The nonlinear and non-overfitting nature gives power to Random

Forest by exhibiting good performance in machine learning tasks. One drawback of

Random Forests for regression tasks is the lack of extrapolation since it can only

predict the values between the minimum and maximum of the training dataset.

The algorithm for a Random Forest regression model is summarized as follows:

Algorithm 1 Random Forest for Regression

1. For b = 1, ..., B
• Generate a random sample Z∗ with replacement of the training dataset.
• A Random Forest tree Tb to the sample Z∗ is grown by recursively

repeating the following steps on the non-leaf branches until the maximum
depth of the tree is reached.

– Choose lb features at random from the t features.
– Pick the best feature among the lb for splitting.
– Divide the dataset into subsets based on values of the selected

feature.
• Calculate the average of the subset for the leaf node, i.e. when there is

no need for further splitting.

2. Prediction for a new point x′ is made: µ(x′) = 1
B

B∑
b=1

Tb(x
′)

5.5 Predictive Framework

In this section, I introduce a framework including dimensionality reduction, regres-

sion and optimisation of the regression function to predict novel dense packing

shapes. The dimensionality reduction step is employed to facilitate the optimisation

step, which is challenging in a high-dimensional shape representation due to the

difficulty of converging to a global maximum and implementing constraints to obtain

physical shapes only; see Section 5.6 for further information. Moreover, representing
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the data in lower dimensional space makes data visualisation and interpretation

easier. The steps in the framework that uses the 5-sphere dataset from Ref.[45]

(X1, φ1), ..., (X5800, φ5800) based on the 20-dimensional shape representation X as a

training data can summarised as:

1. Applying dimensionality reduction on the dataset {Xi}, where i = 1, 2, ..., 5800

to obtain two-dimensional input data, the principal components, {PCi} for

the regression.

2. Fitting a regression function to the training data (PC1, φ1), ..., (PC5800, φ5800).

3. Optimising the packing density that the regressor predicts.

4. Applying the inverse dimensionality reduction to identify the shapes corre-

sponding to the maximal densities.

5. Testing the optimal shapes with the same simulation algorithm as the training

data.

5.5.1 Implementation of the framework in Python

PCA and Kernel PCA

I use standard PCA and Kernel PCA classes implemented by the Scikit-learn

[153] package in Python for dimensionality reduction of the 5-sphere dataset {Xi},

where i = 1, 2, ..., 5800, 5800 is the number of samples and each Xi is a 20-

dimensional vector as described in Section 5.2. Before running PCA and Kernel
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Table 5-A: Performance of Kernel PCA with the RBF kernel by varying the η
parameter.

η
0.002 0.02 0.2 2 20 200

Average MSE 2.14 1.77 2.1 2.25 2.39 2.4

PCA, the dataset is standardised to prevent any bias for some variables. For Kernel

PCA, I use the RBF kernel and determine the parameter η with GridSearchCV,

which is a hyperparameter optimisation technique implemented in Python. The

computer compares the performance for different values for a hyperparameter with

k-fold cross validation and a scorer. For the parameter η, I define a scorer that

calculates the mean squared error (MSE) of the reconstruction of the original input

data from the reduced one and uses 3-fold cross-validation. The average MSE of

three folds for each η value is displayed in Table 5-A. The minimum mean MSE

is considered the best score, so η = 0.02 is chosen for the Kernel PCA model.

I compare the principal components, {PCi}, where i = 1, 2, ..., 5800 and each

PCi is a two-dimensional vector, extracted from the two methods in the following.

Random Forest Regressor

The dataset (PC1, φ1), ..., (PC5800, φ5800) based on the two-dimensional shape

representation PC is trained on a Random Forest regressor in Scikit-learn. Note

that the regression is applied separately to the reduced data by PCA and Kernel

PCA. I use 100 decision trees for training, determined with GridSearchCV by using

a 3-fold cross-validation and the coefficient of determination as a scorer. I select

mean-squared error as its objective or function, which needs to be minimized and
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is equal to variance reduction as a feature selection criteria. Since there are only

two features, the maximum number of features (lb) when searching for the best

split is chosen as 2. The trees go deeper until all leaves contain two samples.

Optimisation

In order to find the maximal densities, I first discretise the plane of the principal

components (PC1,PC2) and then allow the Random forest regressor to predict

the packing densities for the regular grid points on the plane. Discretising is done

for different grid spacings to observe the predicted density as a function of the

grid size. For each grid size, the grid point corresponding to the maximum is

transformed back to the original high dimensional space (20-dimensional shape

representation) to visualize the shape. For PCA, the mapping from the reduced

data to the original input space is achieved by the transformation matrix in Eq. 5.5.

Scikit-learn uses a learned pre-image mapping as described in Section 5.3.2.2 for

the inverse transformation in Kernel PCA. Finally, the validation of the predicted

shapes is tested by generating simulations for disordered packings with the pouring

protocol in LAMMPS.

5.5.2 Principal Components

In PCA, explained variance for each eigenvector is the ratio of related eigenvalue

and sum of eigenvalues of all eigenvectors, i.e. λe
λ1+λ2+...+λD

, where e = 1, 2, ..., D.

The explained variance ratio then represents the variance captured by a particular

eigenvector. I display the individual and cumulative explained variance with the
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number of reduced dimensions (principal components) for the 5-sphere dataset in

Fig. 5.3(a). As can be seen from Fig. 5.3(a), PCA captures all the information

already with 16 dimensions, so it predicts that four variables are redundant. How-

ever, it does not detect global rotations, which reduce three more variables. The

first two principal components contain 44 % of the information. The explained

variance ratio can also be calculated for Kernel PCA, although the interpretation of

it is not as straightforward as for PCA. As can be shown in Fig. 5.3(b), there are in

total 5800 (the number of samples in the dataset) principal components for Kernel

PCA, and the first two principal components capture 35 % of the information in

feature space.
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Figure 5.3: Explained variance ratio vs. the number of reduced dimensions for the
5-sphere dataset from Ref. [45], individual and cumulative explained variance for
(a) PCA, (b) Kernel PCA.

The first two principal components (PC1,PC2) of 5800 samples obtained by

PCA are shown in Fig. 5.4(a). Furthermore, the packing density corresponding to

the first principal component for each sample is displayed in Fig. 5.4(b). As can be

seen, a classification between high and low-density regions is unclear for the PCA
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results. On the other hand, Kernel PCA provides a good separation of samples

Figure 5.4: (a) The first two principal components (PC1,PC2) of 5800 samples
obtained by PCA, (b) The corresponding packing density φj vs. the first principal
component PC1.

Figure 5.5: (a) The first two principal components (PC1,PC2) of 5800 samples
obtained by Kernel PCA, (b) The corresponding packing density φj vs. the first
principal component PC1. Two classes with high and low densities, coloured in
red and blue, respectively, are observed.

with high (red coloured) and low (blue coloured) packing densities, see Fig. 5.5(a),

so the pairs of principal components for the two groups can be easily distinguished.

Moreover, compared to PCA, Kernel PCA produces results that can better fit a
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Figure 5.6: The corresponding packing densities φj vs. the first two principal
components (PC1,PC2) of 5800 samples obtained by Kernel PCA. The two classes
with high and low densities, coloured in red and blue, respectively, can be clearly
seen.

regression model, as can be seen in Fig. 5.4(b) and Fig. 5.5(b). The two classes

with high and low densities can be clearly seen in Fig. 5.6. In PCA, the principal

components are linear combinations of all the variables. For Kernel PCA, on the

other hand, they are obscure since the non-linear mapping function is not known.

5.5.3 Predicted Shapes

I run a Random forest regressor on the reduced dataset {PCi}, where {i =

1, 2..., 5800} and each PCi is a two-dimensional vector with the two principal com-
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(a) (b)

(c) (d)

Figure 5.7: Predicted packing densities φj for regular grid points on the plane of
the principal components found by PCA, where PC1 ∈ [−12, 12], PC2 ∈ [−12, 12],
(a) Grid size=1, (b) Grid size=0.5 (c) Grid size=0.05, (d) Grid size=0.001. The
star indicates the point corresponding to the densest packing shape predicted for
each grid size.

ponents, PC1 and PC2. The model is applied separately to the two reduced datasets

by PCA and Kernel PCA. The regressor is allowed to predict packing densities for

regular grid points on the plane of the principal components, where PC1 ∈ [−12, 12],

PC2 ∈ [−12, 12] for PCA and PC1 ∈ [−0.8, 0.8], PC2 ∈ [−0.8, 0.8] for Kernel PCA.

To see the dependence of the predicted maximal density on the grid spacing, I use

different step lengths, see Fig. 5.7 and Fig. 5.8. For each grid spacing, I find the
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(a) (b)

(c) (d)

Figure 5.8: Predicted packing densities φj for regular grid points on the plane
of the principal components found by Kernel PCA, where PC1 ∈ [−0.8, 0.8],
PC2 ∈ [−0.8, 0.8], (a) Grid size=0.1, (b) Grid size=0.05 (c) Grid size=0.005, (d)
Grid size=0.0001. The star indicates the point corresponding to the densest packing
shape predicted for each grid size.

grid point corresponding to the maximal density and identify the particle shape

representing that point in the original high-dimensional space. To construct the

particle shape from the two-dimensional space, while PCA uses a transformation

matrix in Eq. 5.5, Kernel PCA employs a learned pre-image mapping by solving the

problem Eq. 5.23. Since the data is standardised at the beginning, the pre-images

obtained after transformation are needed to scale back to the coordinates and
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diameters. The predicted densities for different grid spacings and the shapes that

correspond to the maximal densities are shown in Fig. 5.7 and Fig. 5.8 for the

regression models applied to the reduced data by PCA and Kernel PCA, respec-

tively. For both models, the grid point corresponding to the predicted maximal

density approaches the point ((-1.366, 0.442) for the PCA data, (-0.196, 0.1365)

for the Kernel PCA data) with φmax = 0.7367 as the grid size decreases. For the

model using the PCA data, the regressor predicts the trimer shape, the densest

packing shape found in the dataset, with slight variations in the grid spacing, see

Fig. 5.7. On the other hand, novel shapes are predicted for the model using the

Kernel PCA data, see Fig. 5.8.

5.5.4 Validation of the Predicted Shapes

To test the validation of the predicted shapes, I generate simulations for disordered

packings of those shapes in LAMMPS. For the simulations, I use the same packing-

generation protocol in Chapter 3 for disordered dimer packings. Note that Roth et

al. also used the same protocol to generate simulations for the 5-sphere particle

packings in the dataset. I calibrate simulation parameters by ensuring to achieve

the same packing density for the trimer shape, the densest packing shape in the

dataset. Then, I use the same material parameters in the simulations to generate

packings for the predicted shapes. The number of particles and material parameters

can be found in Chapter 2. As in Section 3.2, I determine a bulk region by excluding

the particles within 5− 8d from the container floor and 5d from the upper-most
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particles, where d is the diameter of the largest sphere of a 5-sphere particle, to

calculate the packing density. The Voronoi volume Wi of a 5-sphere particle i is

found by summing the Voronoi volumes of its five constituent spheres. I determine

the bulk volume Vb occupied by Nb 5-sphere particles in the bulk by summing

their individual volumes, i.e. Vb =
Nb∑
i=1

Wi. I then obtain the packing density as

φj = NbVfs/Vb, where Vfs is the volume of a 5-sphere particle, calculated by using

the Monte Carlo method; see Appendix D.1. Note that the Voro++ package in

LAMMPS uses the radical tessellation, also called the power diagram, for Voronoi

volume calculations when spheres in the packing have different diameters [81]. The

bisecting plane in the conventional Voronoi tessellation is replaced by the radical

one, which collects all the points having the same power for the two spheres [154].

The power of a point with respect to a sphere is the square of the length of a line

segment from that point to its tangent point with the sphere. A point is then

counted inside the associated Voronoi volume of the sphere, which minimises its

power. This tessellation causes an error in the packing density calculations due to

incorrect Voronoi volumes of the particles that cross the boundaries of the bulk

region; however, this error should be small since the number of bulk particles is

high. The correct Voronoi cell of a given particle collects all points closer to that

particle’s surface than to the surface of any other in the packings; see Appendix A.1

for the VB construction between two spheres of unequal radii.

Plotting the densities as a function of the grid size, I compare the maximal

packing densities predicted by the Random forest regressor and the simulation
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Figure 5.9: The predicted packing densities and the simulation results for the
optimal shapes obtained by the Random Forest (RF) regressor applied to the
reduced data vs. Grid size. The simulation values are averaged over 5 realizations.
The results are shown for the data reduced by (a) PCA, (b) Kernel PCA. The
green data point indicates the maximal packing density (φmax = 0.7367) in the
dataset achieved for the trimer shape. While the regressor improves the density by
varying the trimer shape slightly for the PCA data, novel dense packing shapes are
predicted for the Kernel PCA one.

results for the predicted shapes in Fig. 5.9. As can be seen from Fig. 5.9(a)

and Fig. 5.9(b), the dependence of the predicted densities on the grid size is

similar for the two models applied to the data reduced by PCA and Kernel PCA,

respectively. For both reduced data, the regressor predictions increase and approach

the maximum in the dataset (φmax = 0.7367) as the grid size decreases. On the

other hand, the predicted shapes and their packing densities calculated from the

simulations are different for the two regression models. The simulation values follow

a similar trend to the predictions with the grid size for the data obtained by Kernel

PCA, whereas they exhibit slight improvements as the grid size increases for the

PCA data. While the regressor predicts the trimer shape as the optimal one for

the PCA data, with slight variations in the grid size, novel shapes are found for

the Kernel one, see Figs. 5.9(a,b). Moreover, the changes in the predicted shape
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with the grid size are more dramatic for the regression model applied to the Kernel

PCA data. Overall, the results highlight that the predicted shapes for both models

achieve higher packing densities in the simulations than the predicted values and

the maximum in the dataset (φmax = 0.7367). For example, the trimer shapes

can reach maximal densities as high as φj ≈ 0.75, and the predicted shape for

the smallest grid size by the regressor for the Kernel PCA data packs the densest

with φj ≈ 0.742. The predicted densities always stay below the simulation values

because the Random forest regressor can not extrapolate, i.e. it can not predict

values greater than the maximum in the training dataset.

5.6 Regression and Optimisation in the

High-Dimensional Shape Space

I explore the results without the dimensionality reduction step, i.e., applying

a Random regressor to the training data in the high-dimensional shape space,

(X̂1, φ1), ..., (X̂5800, φ5800), and optimising the regression function. Note that the

optimisation of the regression function requires a gradient-free method since the

Random forest regression is non-parametric. Moreover, since the optimisation

is performed in the high-dimensional shape space, the method should also allow

implementing constraints to obtain physical shapes only. When considering the

space of shapes composed of five overlapping spheres, valid ones are constrained to

the range of values for which two spheres placed consecutively overlap, imposing
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non-linear constraints; see the blueprint rules to obtain a 5-sphere shape explained

in Section 5.2. Like the dataset, the centre of the first sphere is placed in the origin,

and its diameter is fixed. The diameters of the other four constituent spheres

are constrained to range from zero to the diameter of the first one. Hence, to

reduce the number of constraints for the optimisation, I use 13-dimensional shape

representation X̂, rather than the 20-dimensional vector X since it contains the

same information. Note that the 13-dimensional shape representation X̂ is obtained

by hand.

The dataset (X̂1, φ1), ..., (X̂5800, φ5800) based on 13-dimensional shape represen-

tation, X̂ = (x2 − x1, d1 − d2, x3 − x1, y3 − y1, d1 − d3, x4 − x1, y4 − y1, z4 − z1, d1 −

d4, x5 − x1, y5 − y1, z5 − z1, d1 − d5) is trained on a Random Forest regressor in

Scikit-learn. I use 100 decision trees for training and set the maximum number of

features lb = 13, determined with GridSearchCV by using a 3-fold cross-validation

and the coefficient of determination as a scorer. I select mean-squared error as its

objective or function. The trees go deeper until all leaves contain two samples. The

optimisation is also performed in Python, by using the Constrained Optimization

BY Linear Approximation (COBYLA) algorithm built-in SciPy [155] to find a

maximal density. This method is gradient-free and also allows the implementation

of constraints required to obtain valid shapes, but is not guaranteed to converge to

a global maximum. The resulting densest packing shape that corresponds to the

maximum is displayed in Fig. 5.10. The density is measured from the LAMMPS

simulations for this shape as φj = 0.741 with an error bar of ≈ 0.0004, higher than
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Figure 5.10: The optimal shape obtained by the regression and optimisation
performed in the high-dimensional shape space. The Constrained Optimization
BY Linear Approximation (COBYLA) algorithm built-in SciPy is used for the
optimisation. The density of this shape is determined from the simulations as
φj = 0.741, with an error bar of ≈ 0.0004.

the predicted density value 0.729.

5.7 Conclusions

In this chapter, I have examined the applicability of machine learning algorithms

to predict novel dense packing shapes. I have developed a predictive framework

by applying a Random Forest regressor to the dataset of 5-sphere particle packing

densities. The input dimension is reduced before running the regressor to facilitate

the optimisation of the regression function and to better visualise the results. Two

different dimensionality reduction methods have been employed here, PCA and

Kernel PCA. Reducing the data to two dimensions, Kernel PCA has shown better

performance in classifying the data into high and low packing densities. The

regressor has been applied to the two reduced data separately, resulting in different

predicted shapes. The packing densities are estimated from simulations for the

disordered packings of those shapes to test their validity. The results show that the

Random Forest regressor predicts dense packing shapes, although the predictions
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of the regressor are not highly accurate. Interestingly, the novelty of predicted

shapes has been observed as strongly dependent on the dimensionality reduction

methods. While the regressor applied to the PCA data slightly changes the trimer

shape, the densest packing shape in the dataset, to maximise the packing density

φj, it predicts novel shapes for the Kernel PCA data. This result is because PCA

and Kernel PCA use different ways to reconstruct the pre-images from the reduced

data.

I have also performed the regression and optimisation in the high-dimensional

shape space. The optimal shape found by this method packs more efficiently than

the densest packing shape in the dataset; however, its packing density does not

reach as high as the densities of the shapes obtained by the framework consisting of

the dimensionality reduction step. This result might imply that the dimensionality

reduction aids in searching for a global maximum. To further understand this,

observing the prediction variations with the number of reduced dimensions might

be tempting. I have found empirically that the optimisation in the reduced space

does not require any additional constraint, e.g. the overlap constraint, and always

leads to overlapping particle shapes.

In this study, I have used only one regression method, which has some drawbacks,

i.e. it can not predict values greater than the maximum in the training dataset. To

find more distinct shapes, applying different regression methods and comparing

the predictions would be tempting. The training dataset used here is itself the



Chapter 5. Optimisation of Packing Density by Machine Learning Algorithms 112

output of an optimisation algorithm, so the shapes in the dataset are not uniformly

distributed in the shape space and are already clustered in the region of high values

of the packing densities. Nevertheless, the machine learning approach performed

here has considerably improved the packing densities found in [45]. To further verify

and investigate the dense packing shapes found in this study, it would be interesting

to employ other simulation methods using the gravitational packing protocol and

also experiments to produce disordered packings of these shapes. Overall, using

machine learning algorithms in conjunction with simulations can help explore dense

packing shape space and also shed light on understanding the relationship between

particle shape and packing density.



Chapter 6

Conclusions and future work

This thesis investigates the shape effect on the structural properties of disordered

particle packings based on a particle representation model of overlapping spheres.

I have generated disordered packings of frictionless symmetric dimers simulated

by the gravitational pouring protocol in LAMMPS and studied their properties

at the microscopic and macroscopic levels. I also have examined whether machine

learning algorithms can be applied to identify novel dense packing shapes. The key

contributions of this thesis are summarised as follows:

1. The characteristic peak of the packing density at αmax ≈ 1.4− 1.5 observed

previously for rotationally symmetric elongated shapes by numerical, experi-

mental and theoretical work has been validated for dimer packings. Investi-

gating the contact number and several order metrics has revealed that the

formation of this peak is accompanied by significant microscopic rearrange-
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ments between neighbouring dimers, increasing nematic order and decreasing

local translational order. The results imply that the fall in the packing density

for larger aspect ratios ( α > αmax) is due to the increased excluded volume

effects.

2. Investigations of binary mixtures of dimers are in line with the findings for

binary mixtures of spherocylinders. They possess a universal peak in the

packing density at a unique aspect ratio, irrespectively of the variation in

shape or mixture composition. They also satisfy a remarkable empirical ideal

mixing law, which states that the total packing volume is independent of the

segregation state. The microscopic rearrangements observed up to αmax for

the mixtures of dimers highlight the qualitative explanation of the density

maxima that manifest competition between local caging and excluded volume

effects.

3. Two dimensionality reduction methods, PCA and Kernel PCA, and a Random

Forest regressor have been applied to the 5-sphere particle packing dataset to

identify new shapes of maximal packing densities. The results have shown

that the regressor has found optimal shapes, and the novelty of predicted

shapes depends on the dimensionality reduction method. The simulation

values are higher than the predicted densities by the regressor.



Chapter 6. Conclusions and future work 115

Future Work

In this thesis, I have used a specific packing protocol for the simulations, so the

results on ordering in the dimer packings might be due to gravity. Therefore, it

is necessary to investigate ordering for packings generated with other simulation

methods or experiments. In the context of order, it should be noted that the results

strongly depend on the metrics. The order metrics measured here, such as bond

orientational order parameters and radial distribution function, have been chiefly

used for quantifying order in spherical particle packings. Hence, devising incisive

order metrics for packings of non-spherical particles is essential.

In this study, I have investigated only the effect of the particle shape on the

dense packings, so I have not considered the effect of friction on the dimer packings.

It is also crucial to study disordered packings of frictional dimers in the future.

Previous work on sphere packings showed that introducing friction results in lower

densities, and it reduces the contact number required for mechanical stability, i.e.,

z = df + 1. These results also hold for packings of elongated shapes where a

frictional contact can constrain both the translational and rotational degrees of

freedom of a particle at the contact point. Delaney et al. extended the concept of

the random loose packing limit (”RLP”) defined for spheres to disordered packings

of ellipsoidal particles simulated by settling the particles into a viscous liquid [48].

Their findings highlighted that this settling technique causes particles to have a

high orientational ordering, and introducing the friction causes a decrease in this
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ordering, but a considerable amount still remains. Hence, they discussed that the

applicability of sedimentation or pouring techniques is problematic in the definition

of ”RLP” of non-spherical particles. Investigation of the effect of the friction on the

disordered packings of dimer particles with metrics measured in this thesis can shed

light on understanding the microscopic structures of the loose packings of elongated

shapes, and hence the concept of ”RLP”. I expect the microscopic rearrangements

between neighbouring particles observed at small aspect ratios would vanish due to

the reduction of the contact number to satisfy mechanical stability, and the slight

oblate ordering would decrease in the presence of friction. The dependence of the

packing density on the aspect ratio would not be significant for small aspect ratio

regime. However, the packing density still would decrease for large aspect ratios

due to the excluded volume effects. For binary mixtures, investigating individual

shape and size effects would be interesting.

In Chapter 5, most particles in the dataset used for regression have been found

in the same class (trimer-shaped) of high packing densities, which are already

optimised. When using PCA to reconstruct the shape from the reduced data, the

Random Forest regressor has identified dense packing shapes near the trimer-shaped

class. Hence, the results are dependent on the methods as well as the quality of

the training dataset. It would be interesting to produce a more extensive dataset

of distinct particle shapes with a wide range of packing densities, which can then

be used to explore shape space by applying different regression methods.



Appendix A

Voronoi Boundary Construction

for Asymmetric Dimers

The complexity that arises due to particle geometry in granular matter leads to

a lack of a unified theoretical framework to predict packing densities. A mean-

field theory has been developed to estimate packing densities of both spheres and

anisotropic particles with rotational symmetry in [29, 30, 34]. The results for dimers,

spherocylinders, and lens-shaped particles have shown a good agreement with the

highest densities obtained by empirical studies [34]. The authors have discussed

that this framework can be suitable for other shapes such as tetrahedra, trimers

and irregular polyhedra. Here, I investigate whether the mean-field approach can

be extended to more general shapes, focusing on asymmetric dimers.

The theory relies on a statistical mechanics framework proposed by S.F. Edwards
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to treat granular materials [5]. He postulated that all microscopic jammed states

at a fixed total volume of granular systems are equally probable, and macroscopic

observables can be calculated by taking averages over them [4]. Moreover, the

volume is the crucial macroscopic quantity in granular matter, analogous to the

energy in thermal systems [5]. A volume function is then necessary to define the

total volume as a function of the positions and orientations of particles in the

granular system [3]. Voronoi tessellation is a convenient way to partition the total

volume V of into non-overlapping cells associated with each particle in the system

[156, 157].

A.1 The Voronoi Volume

The Voronoi volume of a particle i, Wi contains all points closer to this particle than

any other one. The packing density of N monodisperse particles can be calculated

as φ = NV0/V , where V0 is the particle volume and V =
N∑
i=1

Wi. The determination

of Wi requires finding the Voronoi boundary between two particles i and j, which

is defined as the hypersurface consisting of all points that are equidistant to the

particles’ surfaces [5, 34, 158, 159]. Fixing the coordinate system at the centre

of mass of particle i and assuming its orientation is also fixed, the VB can be

parametrized in terms of a given direction ĉ [29, 30, 34]. A point on the VB between

particle i and j along this direction is found at sĉ, where s depends on their relative

position rij and orientation t̂ij : s = s(rij, t̂ij ; ĉ). The value of s is measured as half

the minimal distance to the surfaces of both particles along the direction ĉ. For
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(a)

first coordination 

      shell

       second 

coordination shell

(b)

Figure A1: (a) Voronoi tessellation in a packing of monodisperse spheres (illustrated
in 2D for simplicity). The Voronoi Boundary (VB) is the flat plane perpendicular to
the vector that separates the spheres’ centres at half the distance. The VBs between
the reference particle (red) and the particles in the first and second coordination
shell are indicated with dashed lines (pink and green, respectively), (b) The VB
becomes curved when the spheres have different radii.

equal radii spheres, the VB can be obtained between two points at the centres of

the spheres, so s then follows the equation (sĉ)2 = (sĉ− rij)
2 and can be calculated

as:

s =
rij

2ĉ · r̂ij
, (A.1)

where rij = |rij|. Hence, the VB between two spheres of equal radii is the flat

plane perpendicular to the vector rij that separates the spheres’ centres at half

the distance, see Fig. A1(a). It becomes a curved surface when the spheres have

different radii ai and aj as shown in Fig. A1(b), and s can be calculated from the

equation s− ai =
√

(sĉ− rij)2 − aj as in [160]:

s =
1

2

r2
ij − (ai − aj)2

ĉ · rij − (ai − aj)
. (A.2)
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ĉli

Figure A2: The volume of a Voronoi cell (coloured grey) associated with the
reference particle (red) contains all points closer to the surface of that particle than
to the surface of any other one. The minimum among all VBs in a given direction
ĉ gives the cell boundary li(ĉ). The contribution of the pink particle to the VB is
smaller than that of the green particles, so it defines the boundary in that direction.

A.2 The Mean-field Theory

Song et al. obtained the exact mathematical formula for the Voronoi volume, Wi

in three dimensions by the orientational integral [29]

Wi =
1

3

∮
dĉ li(ĉ)3, (A.3)

li(ĉ) = min
j:s>0

s(rij, t̂ij, ĉ), (A.4)

where li(ĉ), the boundary of the Voronoi cell, is found by a global minimization of

the VB in the direction ĉ over all other N − 1 particles in the packing (see Fig. A2).

Since this process requires precise knowledge of the microscopic configurations of

all particles, the determination of Wi remains challenging. The mean-field theory

avoids this difficulty by presenting a coarse-grained Voronoi volume W , which is
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the ensemble average of Wi over all particles in the packing as [34]:

W =

〈
1

3

∮
dĉ li(ĉ)3

〉
i

=
1

3

∮
dĉ 〈li(ĉ)3〉i =

1

3

∮
dĉ

∫ ∞
c∗(ĉ)

dc c3p(c), (A.5)

where p(c) represents the probability density to find the VB at c in the direction ĉ,

and c∗(ĉ), the minimum value of the VB along ĉ, corresponds to the particle’s hard

core boundary in the direction ĉ. For example, for spheres of radius Rs, c
∗(ĉ) = Rs.

Substituting the cumulative distribution function P (c), where p(c) = − d
dc
P (c), in

Eq. A.5 and applying integration by parts results in:

W (z) =

∫
dcP (c, z), (A.6)

where P (c, z) depends on the average contact number z, and can be interpreted as

the probability to find N − 1 particles outside a volume Υ centred at c, i.e. they

do not contribute a shorter VB [34]. Taking into account both contact and bulk

particle contributions to P (c, z) leads to the following self-consistent equation:

W (z) =

∫
dc exp

{
− V ∗(c)

W − V0

− σ(z)S∗(c),

}
(A.7)

where V ∗(c) and S∗(c) are referred to as the Voronoi excluded volume and surface

by extending Onsager’s hard-core excluded volume concept to disordered particle

packings, see Fig. A3. The surface density σ(z) for a packing with an average

contact number z measures the available surface for contacts, and it is found
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c

V*(c)

S*(c)

2Rs

Figure A3: The VB of the reference sphere (red) in a given direction at the value
c is related to the volume V ∗(c) (grey volume) and the surface S∗(c) (orange line)
excluded by Υ for bulk and contacting particles, respectively. V ∗(c) and S∗(c)
take into account the overlap between Υ and the hard-core excluded volume and
boundary, respectively [5].

from the simulations of the local contact configurations. Determining W (z) from

Eq. A.7 simplifies the packing density calculation as a function of z to φ = V0/W (z)

[29, 30, 34]. Since both V ∗(c) and S∗(c) follow an exclusion condition on the

Voronoi boundary (VB) between two particles, it is essential to find the analytical

expression for the VB between two particles to solve Eq. A.7 [158]. However, it is

challenging to obtain that for non-spherical particles [157].

Baule et al. provided an analytical expression for the VB by decomposing

rotationally symmetric non-spherical particles into overlapping and intersecting

spheres of equal-radii [34]. In this approach, the VB between two particles consists

of segments constructed by considering the interaction between a constituent sphere

on each of the two objects. In order to determine the cell boundary in a given

direction, one needs to identify the correct pair of spheres. The method for the



Appendix A. Voronoi Boundary Construction for Asymmetric Dimers 123

ẑ

̂

ĉ

Figure A4: The VB between two symmetric dimers of a given relative position
and orientation consists of the VBs (dashed lines) between particular spheres on
each of the two particles. There are four sphere interactions, and the separation
lines (indicated in red) determine the correct pair to construct the VB in a given
direction ĉ. For example, the green part in the VB is due to the interaction between
the two upper spheres [34].

identification depends on the density of overlapping or intersecting spheres defining

the particle shape. For dimers, for instance, there are four different VBs between

the points at the centre of each constituent sphere, and the correct one in a

given direction depends on the relative orientation of the dimers, see Fig. A4. A

spherocylinder consists of many spheres, so the VB is then determined by the

interaction between four points and two lines.

Here, I apply this approach to asymmetric dimers obtained by overlapping

two spheres of unequal radii. Three parameters define an asymmetric dimer: the

radius of the large sphere (1) a1, the radius of the small sphere (2) a2, and the

distance between the centres of the two spheres, b, see Fig. A5. The centre of the

coordinate system is set to the centre of sphere 1 of the reference dimer i, and
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ẑ

2

1

b

Figure A5: An asymmetric dimer is obtained by overlapping two spheres of unequal
radii (a1 and a2), with a separation of the two sphere centres b.

its orientation is fixed along the direction ẑ as shown in Fig. A5. The VB is then

parametrized in terms of a given direction ĉ from sphere 1. Four different sphere

interactions generate the VB between two asymmetric dimers i and j, so there are

four candidate VBs for the direction ĉ. The four values for the VB are calculated

by separation vectors between the points at the sphere centres for each pair, which

are given as:

r11, r12 = r11 + b̂t, r21 = r11 − bẑ, r22 = r11 − bẑ + b̂t, (A.8)

where the subscript 11 denotes sphere 1 of dimer i and sphere 1 of dimer j (indicated

blue in Fig A6), and t̂ is the relative orientation of dimer j. The VB sĉ11 = s11ĉ is

due to the interaction between sphere 1 of dimer i and sphere 1 of dimer j. Since

the two spheres have the same radius, the value of s11 follows Eq. A.1 and can be
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found as:

s11 =
r11

2ĉ · r̂11

. (A.9)

Taking into account the different radii a1 and a2, s12 can be calculated directly

from Eq. A.2:

s12 =
1

2

r2
12 − (a1 − a2)2

ĉ · r12 − (a1 − a2)
. (A.10)

The equation (s22ĉ− bẑ)2 = ((s22ĉ− bẑ)− r22)2 gives the value of s22 as:

s22 =
1

2

r22

ĉ · r̂22

+
bẑ · r̂22

ĉ · r̂22

. (A.11)

Although obtaining the values of s11, s12, and s22 is straightforward, s21 can not

be determined since it requires a solution for the equation
√

(s21ĉ− bẑ)2 − a2 =√
(s21ĉ− bẑ− r21)2 − a1. For symmetric dimers, the separation lines can identify

the correct interaction for the VB by tessellating space into four areas, see Fig. A4.

However, such an identification is not possible for the asymmetric case. Although

the VB can be constructed intuitively, as seen in Fig. A6, an analytical expression

for that is not available due to s21 can not be determined in the parametrisation,

and the separation curves do not identify the correct pair. Therefore, the mean-field

theory can not be extended to asymmetric dimers. In terms of numerical aspect,

Schaller et al. have developed an algorithm to compute the Set Voronoi diagram for

more general shapes, which is based on the discretisation of the particles’ bounding

surfaces [159].
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ĉ
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Figure A6: The VB between asymmetric dimers consists of both flat (blue) and
curved (green) surfaces depending on the interacting pair of spheres. The separation
lines (indicated red) to identify the correct pair for the VB in the direction ĉ become
curved for the asymmetric ones. There is no analytical solution to determine the
VB.
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Appendix of Chapter 3

B.1 Calculation of the dimer volume

The overlap volume of the two constituent spheres of a dimer contains two equal

spherical caps which lie above/below the plane through the cusp points at the

dimer’s centre, see Fig. B1. The volume of a spherical cap Vcap of height h is found

as:

Vcap =
1

3
πh2(3Rs − h) (B.1)

where Rs is the sphere radius. The dimer volume Vα is then calculated by subtracting

the overlap volume from the sum of its constituent sphere volumes Vsphere = 4
3
π R3

s

as:

Vα = 2Vsphere − 2Vcap (B.2)
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Rs

hRs-h

Figure B1: The overlap volume of a dimer contains two equal spherical caps of
height h (coloured in yellow).

B.2 Algorithm for the identification of double

and cusp contacts

Double and cusp contacts are identified by checking if there is any overlap between

the circle enclosing the cusp on the dimer surface and a contacting sphere of its

neighbouring dimer, see Fig. B2(a). This circle with centre cc, radius Rc and unit

normal w and a sphere with centre cs, radius Rs are shown in Fig. B2(b). The

next steps are followed for the identification:

1. The distance dcs = |w · (cc − cs)| between the plane of the circle and the

sphere’s centre is calculated to check if the plane cuts the sphere or not. If

dcs > Rs then there is no intersection, so the plane passes above/below the

sphere entirely.

2. If there is an intersection, i.e., dcs < Rs, it will be between the original

circle and a new one formed where this plane meets the sphere, with centre

cp = cs + dcsw.
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3. If dcs = Rs then this is the sole point of intersection with the plane, otherwise

a new circle with radius Rp occurs as displayed in Fig. B2(c), where Rp =√
R2

s − d2
cs. Then, the problem has been reduced to a circle-circle interaction.

4. If |cp− cc| < Rc +Rp, then there is overlap between the circle and the sphere,

so the contact is identified as a cusp contact. If there is no overlap, then the

contact is either a double contact or a Type 2 configuration.

5. To distinguish a double and a Type 2 configuration, two vectors v1 and v2

from the contacting sphere’s centre to the centres of the constituting spheres of

the reference dimer are determined as illustrated in Fig. B3. The projections

of these two vectors onto the unit normal w of the circle enclosing cusp are

determined and the directions of these projections are checked. If both of

them have the same direction, the contact is identified as a double contact,

otherwise it is regarded as a Type 2 configuration.
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(a)

1

2

(b)

cc

cs
Rs

ŵRc

(c)

cc cp

Rc Rp

Figure B2: Detecting double and cusp contacts. (a) First, it is checked if there
is any overlap between the black circle (dashed) enclosing cusp located on the
yellow dimer’s surface and the contacting sphere of the red dimer. If there is an
overlap between the circle and the sphere, it is identified as a cusp contact. (b)
3D Visualization of the circle and sphere interaction, it is determined if the plane
of the circle cuts the sphere or not. (c) If the plane of the circle cuts the sphere,
it forms a new circle (red) and then it is checked if there is overlap between the
original circle and the new red circle.
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(a)

ŵ

v2 v1

(b)

v2 v1

ŵ

Figure B3: Two vectors v1 and v2 from the contacting red sphere’s centre to
the centres of the constituting spheres of the yellow dimer are determined. The
projections of these two vectors onto the unit normal w of the circle enclosing cusp
are determined and the directions of these projections are checked. (a) If both of
them have the same direction, it is identified as a double contact (b) otherwise it is
regarded as Type 2 configuration.

B.3 The order parameter χ

In [47] the following order parameter has been introduced to measure the orienta-

tional order of prolate ellipsoids

χ =
3

2

{
1

Nb

Nb∑
i

cos 2
(
βi −

π

2

)
− 1

3

}
, (B.3)

where βi is the angle between the semi-major (long) axis of particle i and the ẑ-axis

(gravity direction). The parameter χ of Eq. (B.3) takes values in the interval [−2, 1]:

when all particles are randomly oriented, χ = 0, while if all particles’ long axes are

oriented in the horizontal plane normal to the gravity direction χ = 1. When the

long axes of particles are oriented along the gravity direction we have χ = −2. A

plot of χ as a function of α for our dimer packing data is shown in Fig. B4.
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Figure B4: The orientational order parameter χ vs. α. Values of χ are shown
averaged over 10 independent simulation runs for α ≥ 1.1 (dots), and for a single
run for α < 1.1 (diamonds).

B.4 Mapping between different contact configu-

ration types

I introduce a heuristic method to re-assign configurations with double and cusp

contacts to one of the Type 1, 2, and 4 configurations. The precise mapping depends

on the number and the location of double and cusp contacts as summarized in

Table B-I. In general, double contacts are mapped to one contact point and cusp

contacts to two. For Type 3 configurations, no double or cusp contacts have been

found. For Type 5 configurations, two cusp contacts do occur, which leave the

configuration as Type 5 after the mapping.

With this mapping, I count a smaller number of contact points and thus the

average number of contacts z decreases. In fact, a rapid but smooth decrease of
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Table B-I: Two-dimensional illustrations of configurations with double and cusp
contacts. These configurations are re-assigned to Type 1, 2, and 4 as indicated in
the table.

Configuration
type Re-assigned configuration type

Type 1 Type 2 Type 4

Type 2

1

2

A double contact
is counted as one
contact point: two
contact points are
reduced to one.

Type 4

1

2

Two overlapping
double contacts
are counted as one
contact point: three
contact points are
reduced to one.

1

2

One double and
one cusp contact
(cusp 2 overlaps
with the red sphere)
are counted as two
contact points: three
contact points are
reduced to two.

Type 5

1

2

Two overlapping
double contacts
are counted as one
contact point: four
contact points are
reduced to one.

2

1

Two distinct double
contacts are counted
as two contact
points: four contact
points are reduced
to two.

1

2

One double contact
(cusp 1 is not covered
by one of the yel-
low spheres) and one
cusp contact (cusp
1 overlaps with the
other yellow sphere)
are counted as three
contact points: four
contact points are
reduced to three.
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z is observed as α→ 1, whereby z approaches the corresponding value of spheres

(Fig. B5). Resolving the contact counting by Type 1–5 configurations, as expected,

the fraction of Type 1 configurations now increases for α < 1.05, while the fractions

of Type 2,4,5 configurations decreases in the same regime (Fig. B6). In fact, the

adjusted counting of contact points leads to sharp peaks at α ≈ 1.05, i.e., at

the aspect ratio at which double and cusp contacts start to occur, that appear

unphysical.

0.001 0.01 0.05 0.1

1

2

3

4

z−
z s

α− 1

Kn = 2×104, zs = 6.45

Kn = 2×105, zs = 6.14

Kn = 2×106, zs = 6.06

Figure B5: A double-logarithmic plot of z − zs vs. α− 1 for three different normal
spring constants Kn. I define zs as the contact number of the corresponding sphere
packing, which approaches the isostatic value zs = 6 as the particle hardness
increases.
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Figure B6: The fractions of the contact configurations of Type 1–5 vs. the aspect
ratio α. For α ≥ 1.05 the data shown is the same as in Fig. 3.7, but in the regime
α < 1.05 (dashed lines) the contact counting has been adjusted by re-assigning
configurations with double and cusp contacts to Type 1, 2, and 4 configurations as
summarized in Table B-I.
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Appendix of Chapter 4

C.1 Statistical analysis of the consistency of the

ideal mixing law with the binary dimer mix-

tures data

To evaluate whether the agreement of the mixing law Eq. 4.1 with the data of

dimer–sphere and dimer–dimer mixtures is statistically significant, I have fitted a

linear line to the data by ordinary least squares regression and then checked whether

the mixing law falls within the 99% confidence interval around the best-fit slope. I

have shown the results for dimer–sphere and dimer–dimer mixtures in Figs. C1(a,b),

respectively. As can be seen, the ideal mixing law is consistent with a linear fit

since it falls within the 99% confidence interval for all aspect ratios in dimer–sphere
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mixtures and for α2 < 2 in dimer–dimer mixtures. For the mixtures with α2 = 2,

since there are clearly systematic deviations from the linear behaviour, which is

visible in Fig. 4.9(d), the linear regression fit is not valid anymore. Therefore, I

have fitted a polynomial model, which shows that contributions up to degree 4 are

statistically significant. This polynomial fit almost perfectly agrees with the data

as shown in Figs. C1(b), thus highlighting the onset of nonlinear behaviour for a

sufficiently large difference between the volumes of the two components.

0.00 0.25 0.50 0.75 1.00
relative dimer volume fraction, Xd
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Figure C1: Statistical analysis of the mixing law’s consistency with the binary
mixtures’ data. (a) The inverse packing density φ−1

j of the dimer–sphere mixtures
as a function of the relative dimer volume fraction Xd for several dimer aspect
ratios (same data as shown in Fig. 4.3(b)). Solid lines are obtained from Eq. (4.1),
and dashed lines are fitted to the data points with linear regression. Each shaded
region shows the 99% confidence interval for the regression slope. (b) The inverse
packing density φ−1

j of mixtures of dimer 1 with α1 = 1.4 and dimer 2 with various
aspect ratios α2 as a function of X2 (same data as shown in Fig. 4.9(d)). Solid
lines are obtained from Eq. (4.1), and dashed lines are fitted to the data points
with linear regression for α2 < 2 (including the 99% confidence interval) and with
a fourth-order polynomial for α2 = 2.
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Appendix of Chapter 5

D.1 Calculation of the 5-sphere particle volume

In order to calculate the volume Vfs of a 5-sphere particle, I use the Monte Carlo

integration. The particle is placed into a box by ensuring that all constituent

spheres are inside it, and a large number of points Nbox is randomly generated in

the box. The distance dps between a point and the centre of an individual sphere is

calculated to determine how many points are in the molecule. If dps ≤ ai is satisfied

for any sphere, where i = 1, ..., 5 and ai is the radius of sphere i, then the point is

counted in the molecule. Finally, the volume box Vbox is multiplied by the ratio

of the number of points inside the molecule, Nin to the total number of points to

determine the volume of the molecule, i.e. Vfs = VboxNin/Nbox. To determine Nbox,

I set a criterion that keeps generating points until the variance is less than 10−6.
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Appendix E

Presentations at conferences

During my PhD, I have presented my work on ”Structural analysis of disordered

dimer packings” (Chapter 3) at:

• SEPnet Student-Led Soft Matter Conference, online, United Kingdom, 2020.

Title: ”Structural analysis of randomly packed dimer particles”.
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Appendix F

Author’s publications

The following research works have been completed in collaboration with Dr. Adrian

Baule.

• Kurban, E. and Baule, A. Structural analysis of disordered dimer packings.

Soft Matter 17, 8877-8890 (2021). This work has been represented in Chapter

3 of this thesis.

• Kurban, E. and Baule, A. Disordered packings of binary mixtures of dimer

particles. This paper is submitted to ”Journal of Physics Communications”

and is under review. This work has been represented in Chapter 4 of this

thesis.
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