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Abstract

1) A large obstacle in food web ecology is the time and e�ort required to adequately

describe the structure of a food web using individual predator guts. Food web models

such as the allometric diet breadth model (ADBM) can be used to circumvent this

problem by predicting the interactions based on easily measured characteristics, such as

the size of organisms. However, diet data such as that which comes from analysis of

predator guts is still required to parameterise these food web models, and collecting and

analysing these data from the field is an expensive and time-consuming task. Therefore,

it is important to know how many predator guts are required to parameterise food web

models to obtain food web structures with high accuracy and precision.

2) Here, we explore seven exceptionally well-characterised food webs and determine the

minimum number of predator guts needed to accurately predict their structure using

the ADBM. We use Bayesian computation to parameterise the ADBM, and true skill

statistics to measure the goodness of fit, and do so while varying the number of predator

guts used in the parameterisation to test the e�ect of sampling e�ort.

3) We found that relatively few, and many fewer than were actually collected, predator

guts can be used to parameterise the ADBM. The lowest number of predator guts was

27% of the number of available predator guts. The number of predator guts required to

accurately characterise food webs increases by ~7 ±2.2 guts for 10 units increase in the

number of trophic links and ~9 ±4.7 guts for a unit increase in the number of species.

4) These results suggest that one need not collect and analyse such a large quantity of

predator guts in order to adequately predict the structure of a food web, thereby

reducing sampling e�ort considerably, while having little e�ect on precision or accuracy

of predictions.

Keywords predator guts · ADBM · food web accuracy · food web prediction · trophic interactions · food

web model · undersampling

1 Introduction

Knowledge about the trophic interactions in a food web is crucial in ecology for purposes ranging from

identifying keystone species (Jord’an 2009), to quantifying robustness of a food web, and to predicting species

extinctions (Dunne, Williams, and Martinez 2002). This has led to the development of numerous food web

models and associated theories (Allesina, Alonso, and Pascual 2008; Cohen, Newman, and Steele 1985; Gravel

et al. 2013; Petchey et al. 2008; Tamaddoni-Nezhad et al. 2013). Along with inferring missing links in an

observed food web, such food web models are also increasingly used for ecological forecasting (Hattab et al.
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2016; Lindegren et al. 2010) and for understanding the underlying mechanism governing trophic interactions

in the wild (O’Gorman et al. 2019; Petchey et al. 2008; Valdovinos et al. 2010; Sentis, Hemptinne, and

Brodeur 2014; Arim et al. 2010).

Although food web models are constructed using prior theory and hypotheses about the factors that

determine trophic interactions, empirical data about interactions are required to parameterise them. For

example, Petchey et al. (2008) and Gupta, Furrer, and Petchey (2022) used presence-absence information

about trophic interactions to parameterise the allometric diet breadth model and thereby predict species

interactions. Such empirical information about interactions can come from a diverse set of methods such as

gut content analysis (Peralta-Maraver, Lopez-Rodriguez, and de Figueroa 2017), stable isotope ratio analysis

of tissues (Layman et al. 2007), experimentation (Warren 1989), DNA metabarcoding of gut contents or

faeces (Roslin and Majaneva 2016) and literature research (Gray et al. 2015b; Cohen and Mulder 2014a;

Goldwasser and Roughgarden 1993a). Nevertheless, each of these sources of information about trophic

interactions has shortcomings that hinder the advancement of the field. For example: stable isotope ratio

analysis of the organism’s tissue does not give direct taxonomically resolved information of the diet of that

organism. Instead, stable isotope ratios provide an approximate trophic position of that species in the food

web (Wada, Mizutani, and Minagawa 1991; Jennings and van der Molen 2015) that can be paired with

mixing models to determine what prey items are most likely fed upon by a predator. However, this results in

uncertainty in the estimates (Kadoya, Osada, and Takimoto 2012; Crawford, Mcdonald, and Bearhop 2008).

Similarly, more recent approaches using DNA metabarcoding may give much higher taxonomic resolution but

present other challenges, such as not providing trait information (e.g. body sizes of prey) directly and an

inability to resolve secondary predation or cannibalism (Pompanon et al. 2012; Nielsen et al. 2018) which

are common in nature. Of course, if metabarcoding reveals species identity then the trait information can

be inferred in a number of ways (Compson et al. 2019; Djemiel et al. 2022; Andriollo, Michaux, and Ruedi

2021). Furthermore, DNA approaches are prone to environmental contamination (e.g. DNA in the water

swallowed along with DNA from an aquatic consumer’s prey cannot be di�erentiated from actual prey) (Kelly

et al. 2014). Construction of food webs via literature review, a common practice in food web research, can

lead to links being assigned between species that do not occur in reality. This can result if the presence of a

link between two species is context dependent, i.e. occur in one environmental context but not in another

(Gray et al. 2015b; Cohen and Mulder 2014b; Goldwasser and Roughgarden 1993b). It is unsurprising, given

the limitations of these proxy or inferential approaches, that gut content analysis based diets have a better

match with real diets when compared to other methods (Nielsen et al. 2018).

Although gut content analysis is viewed as the “gold standard”, acquiring food web data from the gut

contents is extremely time-consuming and expensive (Gray et al. 2015b). It also requires high skill levels in

taxonomic identification, often involving dissection and microscopy techniques (Hyslop 1980). The perception

that this is unavoidably laborious and costly is also in part due to the assumption that many gut contents
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must be collected and analysed in order to be confident that the majority of possible trophic links among

species have been observed. Some studies fail to quantify the e�ort needed, with yield-e�ort curves being

the exception rather than the rule and those that have been quantified often point to the apparent need

for hundreds or thousands of guts to be analysed to fully capture a food web’s structure. Hence, it is of

considerable importance to know the minimum number of predator guts required to parameterise a food web

model with high accuracy and precision: this would enable researchers to allocate resources more e�ectively a

priori. Moreover, a rough rule of thumb of when to stop collecting data from gut contents would provide a

method to adapt the amount of sampling/analysis during the sampling/analysis process itself.

Therefore, the key question we wish to answer is how much diet information, derived from predator gut

data, is required to infer food web structure from a food web model with adequate accuracy and precision? In

other words, how many samples of predator guts should one collect and analyse from the field to parameterise

a food web model? To answer this question, we vary the number of predator gut data that is used to

parameterise the allometric diet breadth model (ADBM) and record how well the model can then predict

the food web produced when all the available predator gut data are used. We do this separately for seven

di�erent food webs, for each calculating the minimum number of predator guts required to adequately infer

food web structure. To get an estimate of how many samples of predator guts need to be collected from the

field to infer structure for a food web with a given number of species or number of trophic links, we also

investigate how this minimum number of predator guts depends upon the number of species and the number

of trophic links in a food web. We expect a positive linear relationship between this minimum number of

predator guts and the number of trophic links and the number of species because a larger number of predator

guts are required to characterise structure of a food web with a high number of species or a high number of

trophic links. Our study provides a guideline on how many predator guts are required to predict food web

structure using a food web model.

2 Materials and Methods

Here we present the empirical food webs, the allometric diet breadth model (ADBM), and the predator

guts used to infer the trophic interactions. We also give a detailed account of using partial predator guts to

parameterise the ADBM using the rejection approximate Bayesian computation (ABC). We assessed model

predictions using the true skill statistic for comparison across the food webs.

2.1 The Empirical Food Webs

Traditionally, food webs describe the trophic links among species (i.e. each of the species is a node in the

food web, and links occur when one species preys on another). However, we consider food webs where nodes

are size classes, i.e. individuals are aggregated into these size classes based on their body size. A feeding

link occurs between two size classes if at least one prey item within a size class was found in the gut of
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another size class of predator, irrespective of the taxonomy of the individuals. We used this approach for

several reasons, such as to take into account the ontogenetic shifts in the diet of a predator (Woodward et al.

2010) and to account for individual-based interactions which would not have been considered if nodes were

aggregated based on taxonomy because a taxonomic group can have a large variation in the body size. This

size-based approach has often been used in strongly size-structured ecosystems that also have considerable

intraspecific size variation and has been instrumental in understanding the commercial exploitation of marine

ecosystems (Jennings and Brander 2010). Second, we also consider more traditional food webs where nodes

are aggregated based on the taxonomy of the individuals. The number of nodes in the size-based food web

and taxonomic-based food web were equal to make them comparable.

We analysed food webs for which predator guts are available at an individual level, with body size data,

and with data that is or that we could make FAIR (Findable Accessible Interoperable Reusable). Our study

food webs are freshwater food webs except for the Celtic Sea food web which is a marine food web. Most of

the food webs are dominated by invertebrates except the Celtic Sea which is dominated by fishes and the

Tadnoll Brook which is dominated by fishes as well as invertebrates. The food webs vary in the number of

nodes, trophic links, connectance and body sizes (Table 1 and S1).

Invertebrates in freshwater food webs were collected using a Hess or Surber sampler, while fishes were

caught with an electrofisher, and anaesthetised using 2-phenoxyethanol. In the case of the Celtic Sea, fishes

were caught using trawling.

The foreguts (i.e. the stomodaeum, which is the part of the gut between the mouth and the midgut) of

the collected invertebrate predators were dissected and examined under a microscope. Regression equations

were used to convert predator and prey lengths to the respective body masses. In the case of highly digested

prey items, previously established regressions based on the width of head capsule were used as an alternative

linear dimension. A more detailed description of these food webs is present in Gilljam et al. (2011).
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Table 1: Information about the empirical size-based food webs.

Common food web
name (Original
Publication)

Location Predation matrix source Body size source General ecosystem Number of nodes Number of links Connectance Body size range
(mg)
(approximate)

Broadstone Stream
(Woodward et al. 2010)

England, UK
51¶05’N 0¶03’E

Woodward (2021) Woodward (2021) Freshwater 28 185 0.24 10≠7 to 102

Celtic Sea (Barnes et al.
2008)

British Isles and
French coastal
shelf 50¶50’N
08¶00’W

Barnes et al. (2016) Barnes et al. (2016) Marine 55 439 0.15 10≠2 to 104

Tadnoll Brook
(Woodward et al. 2010)

England, UK
50¶41’N 02¶19’W

Jones (2022) Jones (2022) Freshwater 59 485 0.14 10≠6 to 105

Afon Hirnant
(Woodward et al. 2010)

Wales, UK,
50¶52’N 03¶34’E

Figueroa (2022a) Figueroa (2022a) Freshwater 77 381 0.06 10≠6 to 102

Coilaco (Figueroa 2007) Chile 39¶17’S
71¶44’W

Figueroa (2022b) Figueroa (2022b) Freshwater 45 123 0.06 10≠6 to 102

Guampoe (Figueroa
2007)

Chile 39¶23’S
71¶410W

Figueroa (2022b) Figueroa (2022b) Freshwater 44 139 0.07 10≠6 to 103

Trancura (Figueroa
2007)

Chile 39¶26’S
71¶32’W

Figueroa (2022b) Figueroa (2022b) Freshwater 35 78 0.06 10≠6 to 101
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2.2 Allometric Diet Breadth Model (ADBM)

The allometric diet breadth model (ADBM) is based on optimal foraging theory, specifically the

contingency foraging model (MacArthur and Pianka 1966). We chose this model because it can

predict species interactions based on an easily measurable trait body size (Petchey et al. 2008). The

ADBM predicts the set of prey types (e.g. species or sizes classes) a consumer should feed upon

to maximise its rate of energy intake. The foraging variables in the model are: energy content of

the prey, handling times of the predator on a prey, space clearance rate (also known as the attack

rate–how fast a predator searches space), and prey densities. Each of these are predicted from

allometric scaling relationship, thus the model requires body sizes and the allometric constants and

exponents in order to make predictions. Further details on the foraging rules defined in the ADBM

and ADBM’s predictive power across di�erent food webs can be found in Petchey et al. (2008).

2.3 Assessment of prediction

The accuracy of the predicted diet of the predators was measured using a widely used accuracy

measure in food web ecology, namely the true skill statistic (TSS) (Gray et al. 2015b; Gravel et al.

2013; Gupta, Furrer, and Petchey 2022). We chose this metric because it takes into account the

true and false predictions of both the presence and absence of links. It is defined as:

TSS = ad ≠ bc

(a + c)(b + d)

where a is the number of observed links that are predicted by the model (true positives), d

is the number of observed absences of links that are correctly predicted (true negatives), b is the

number of false positives, and c is the number of false negatives. The TSS ranges from ≠1 to 1,

where +1 indicates a perfect prediction. A TSS value of zero indicates a performance no better

than random, and less than zero indicates a performance worse than random (Allouche, Tsoar, and

Kadmon 2006).
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Figure 1: Flowchart of the subsampling method implemented to predict full food web from the
food web model using the predator guts.

2.4 Parameterisation using partial predator gut information

From an empirical dataset of predator guts, we take a random sample of gut contents of a specific

size (see below) to create a partial predator guts dataset, and then fit the ADBM to this partial

dataset (Fig. 1).

To fit the ADBM to the partial predator guts dataset, we used the rejection approximate

Bayesian computation method we previously developed in Gupta, Furrer, and Petchey (2022). In

brief, we accept a parameter value from a prior distribution which would have resulted in a predicted

food that has su�cient similarity to the observed food web. The true skill statistic was computed

between the diets predicted by the ADBM, and those observed in the sampled predator guts. We

repeated this process n (= 100) times for every i number of guts, where i lies between 1 and the total
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number of predator guts in the pool. Pseudocode for the procedure is provided in the Supplementary

information (hereafter SI).

2.5 Computing the minimum number of predator guts

Using the TSS of the model predicted food webs for di�erent number of predator guts, we computed

the number of predator guts that resulted in the mean TSS equal to the 95% of the mean TSS

achieved by the model using all the predator guts available in the pool for a food web. We chose the

proportion 95% because the food webs predicted using the mentioned proportion was very similar

to the food web predicted using all the predator guts. We term this number of predator guts the

“minimum number of predator guts”. We further tested the dependence of the minimum number of

predator guts on the maximum number of predator guts, number of trophic links and number of

species by fitting linear regressions in Fig. 2 (h) and Fig. 3 (a, b) separately.

2.6 Standardising sampling level of the food webs

Since the seven food webs have di�erent levels of sampling e�ort, with the Broadstone Stream

food web being the most sampled among all, and every other food web being considerably less well

sampled (SI Fig. S3 and S6), we wished to attempt to compensate for this in our analyses. To do

this we used the R vegan package to account for the undersampling with respect to the Broadstone

Stream food web. We fitted the link accumulation curves using the fitspecaccum function to a set

of nonlinear regression models suggested in Dengler (2009) and used the AIC criteria for model

selection. We then extrapolated the link accumulation curves for all the food webs except the

Broadstone Stream and computed the number of predator guts that would have resulted in the

gradient of the link accumulation curve equal to the gradient of that of the Broadstone Stream when

all the predator guts were used (Fig. S4, S5, S7 and S8). We also calculated the corrected number

of trophic links corresponding to the corrected number of predator guts. For each food web, we then

calculated an undersampling factor, equal to the ratio of the corrected number of predator guts to

the number of predator guts in the pool. Using the undersampling factor, we further calculated the

corrected minimum number of predator guts, which was the product of the undersampling factor

and the minimum number of predator guts. We further tested the dependence of the corrected

9
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Figure 2: (a, b, c, d, e, f, g) Accuracy of the predicted size-based food webs measured using the
true skill statistic, predicted by the ADBM parameterised using predator guts. The line and the
shaded grey region represent the mean and the prediction interval corresponding to 100 independent
samples respectively. The red lines represent the minimum number of predator guts required to
achieve a TSS of 95% of the maximum TSS. (h) Minimum number of predator guts plotted against
the maximum number of predator guts. Solid blue line is a linear regression (t = 9.327, df = 5, P =
0.0002) and light blue region represents 95% confidence intervals.

minimum number of predator guts on the number of trophic links and number of species by fitting

linear regressions in Fig. 3 (c, d) separately.

3 Results

We first present how the accuracy of the food web model in predicting trophic interactions in

size-based food webs varies with an increasing number of predator guts provided to the food web

model. We then show how the minimum number of predator guts varies with the number of trophic

links and the number of species. The results for a similar analysis performed with taxonomic-based

food webs are presented in the SI Section S1 (hereafter SI S1).

The true skill statistics of the food webs predicted by the ADBM using incomplete predator

guts improved quickly for lower number of predator guts (Fig. 2 (a-g), S1 (a-g)). Furthermore,

the width of the prediction interval of the true skill statistics decreased with increasing number of

predator guts, with the mean TSS asymptoting to the maximum mean TSS achieved by the ADBM
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when all the predator guts were used. Although the maximum TSS varied among the food webs,

the qualitative increase in the TSS was the same.

For the Broadstone Stream food web, with only 381 predator guts, which is 38% of the total

predator guts, the ADBM predicted the food web’s structure with the mean TSS of 0.74. This was

equivalent to 95% of the mean TSS (0.78) achieved using complete predator guts (Fig. 2(a)). I.e.

the main characteristics of the food web could be captured with about 1/3 of the e�ort used in the

original study. In case of the Tadnoll Brook food web, only 27% of the total predator guts (n =

183) was needed to accurately describe the food web structure (Fig. 2(c)). However, to accurately

characterise the Trancura food web, 75% of the total number of predator guts were required (Fig.

2(g)) which is proportionally high as compared to other food webs. Fig. 2(h) summarises the

minimum number of predator guts required to describe the structure of food web given the maximum

number of predator guts that were actually processed to describe the structure.

The minimum number of predator guts was not significantly related to the number of trophic

links (Fig. 3 (a), S2 (a)) and the number of species (Fig. 3 (b), S2 (b)) for size-based as well as

taxonomic-based food webs. The corrected minimum number of predator guts was significantly

related to the corrected number of trophic links (Fig. 3 (c), S2 (c)) but not significantly related to

the number of species (Fig. 3 (d)) in size-based food webs. In case of taxonomic-based food webs,

there was a significant relationship between the corrected minimum number of predator guts and the

number of species (Fig. S2 (d)). Correcting for the undersampling in the food webs improved the fit

between the minimum number of predator guts and the number of trophic links from R2 = 0.08

(Fig. 3 (a)) to R2 = 0.64 (Fig. 3 (c)) in the size-based food webs and from R2 = 0.566 (Fig. S2 (a))

to R2 = 0.9099 (Fig. S2 (c)) in the taxonomic-based food webs.

4 Discussion

We have demonstrated how a food web model can be used to predict the full structure of a food

web when incomplete data about its trophic interactions is available, which is true in most real

food webs. This can help inform how many predator guts to collect and analyse to infer trophic

interactions for an ecosystem with a given number of species. A future development could be to
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Figure 3: (a, b) Minimum number of predator guts (i.e the amount of predator guts used in order
to ensure 95% of the maximum TSS) plotted against number of trophic links (L) and number of
species respectively. (c, d) Corrected minimum number of predator guts (i.e. the minimum number
of predator guts which takes into account the undersampling level of the food webs) plotted against
corrected number of trophic links (L) and number of species (S) respectively. Solid lines are linear
regression ((a) t = 0.665, df = 5, P = 0.535; (c) t = 3.001, df = 5, P = 0.03; (d) t = 1.879, df = 5,
P = 0.119) and grey region represents 95% confidence intervals.

make the same assessment using other food web models, and to also use food web data other than

predator guts to parameterise those models.

Our study provides a ballpark figure of the minimum number of predator guts that need to be

sampled to predict the structure of a food web with a given number of species using a food web

model. For instance, Fig. 3 (d) and S2 (d) can be used as a rough estimate of how many predator

guts need to be collected to predict food web structure using a food web model for a given number

of species. This could lead to a reduction in the number of predator guts that would be collected

(Ings et al. 2009; Woodward et al. 2010), thereby saving considerable time and resources. For

instance, characterisation of the Broadstone Stream food web required around 1000 predator guts in

12



A preprint - December 9, 2022

Woodward et al. (2010), however the model can accurately predict the food web’s structure with

only around one third of the predator guts (Fig. 2 (a)).

We expected positive relationships between the minimum number of predator guts and the

number of trophic links and between the minimum number of predator guts and the number of

species respectively. However, we did not observe such relationships (Fig. 3 (a, b)). We suspect

this is due to the possibility that the seven food webs have very di�erent amounts of predator gut

samples (Fig. S3), with the Broadstone Stream food web being the most sampled among all the

food webs. Taking into account the undersampling resulted in a better fit between the corrected

minimum number of predator guts and the corrected number of trophic links and the number

of species respectively (Fig. 3 (c, d)). It improved the linear model fit but did not result in a

statistically significant relationship. This could be due to heterogeneity in the predator guts across

the food webs and heterogeneity among the food webs. First, if fewer number of prey items are

present in a predator gut, then more number of predator guts would need to be collected on an

average to quantify the diet of that predator. Second, a food web which has a high proportion of

generalist species would require a high number of predator guts on average to characterise the food

web structure as compared to characterising the structure of a food web which has a high proportion

of specialist species. Therefore, to average out the e�ect of these confounding variables and thereby

have a much better understanding of how the minimum number of predator guts varies with the

number of species, future studies should replicate our analysis with other food webs where individual

based predator gut data are available.

How general is our rule of thumb across di�erent ecosystem types? We suspect our rule will

better apply to food webs where trophic interactions are size-structured as compared to otherwise.

For example: our rule of thumb might better apply to aquatic ecosystem when compared to terrestrial

ecosystem as Potapov et al. (2019) have shown that the relationship between the body size and

trophic level of customers was present in aquatic consumers and absent in terrestrial consumers.

In our study, we have worked only with the ADBM, which is a model based on size rules. We

expect to get a similar result (i.e. minimum number of predator guts for a food web) for di�erent food

web models based on size rules such as those by Gravel et al. (2013) and Vagnon et al. (2021). For

a given food web, however, some food web models might be better at predicting structure compared

to others, so we suggest extending our approach to a range of models and their performance when

13
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parameterised with limited data (Williams and Martinez 2000; Gravel et al. 2013; Allesina, Alonso,

and Pascual 2008; Cattin et al. 2004). For example, future research could study how well di�erent

food web models’ prediction accuracy vary with di�erent amount of predator guts. This could also

help in making decisions about which food web model to chose from for a given set of predator guts.

We suspect the relationship (i.e shape of the curve) between the TSS of the predicted food web and

the number of predator guts might vary within food web models because of the di�erence on the set

of rules used to define those models and how well those rules explain the food web structure. For

example: a food web model based on body size trait would require less amount of data to predict a

size-structured food web as compared to a food web model based on trait other than body size.

In all the seven food webs, the ADBM was able to infer the trophic interactions using incomplete

predator guts. Why was the ADBM able to do so? Because the ADBM was constructed using set of

foraging rules based on body sizes, partial diet information from the predator guts was su�cient

to constrain the possible model parameter values of the ADBM that best explained the predators’

diets. Although in theory the ADBM can predict trophic interactions using only body sizes of

organisms as it is based on a set of foraging rules, it still requires some diet data to constrain the

posterior parameter space thereby making more accurate predictions (Petchey et al. 2008). Also,

to characterise trophic interactions which are rare in nature one would require more predator guts

to observe those interactions as compared to characterising trophic interactions which are more

frequent in nature. The model is able to predict these rare interactions using a relatively lower

number of predator guts which one might have inferred directly from the predator guts only after

collecting a large number of gut content samples.

Most observed food webs constructed using available data are not completely characterised

due to undersampling (Jordano 2016) which can result in several biased parameters and network

patterns (Chaco� et al. 2012). In such cases, food web model such as the ADBM can be used to

compensate for those missing links, as our study has depicted that the full food web can be predicted

using relatively fewer empirical data such as predator guts. It would be useful to estimate the extent

of undersampling of other published food webs relative to our well characterised food webs. To do

this one could collect a number of predator guts that were sampled in as many published food webs

as possible and assess how many more or less were sampled compared to the number in our well

characterised food webs. This will inform about how many studies have been likely underreporting
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links and when a food web model could be e�ciently used to capture the food web properties that

would have not been captured otherwise.

Like any food web model, the food web model used (the ADBM) cannot explain all the

interactions in any observed food web. The foraging rules it encodes are based on body size and

have particular structure and assumptions; not all of these are met by all observed interactions

(Petchey et al. 2008). For example, the ADBM can only predict diets that are contiguous with

respect to the size of prey. I.e. it cannot predict that a predator will consume an organism of size 1

and 3, and not organism of size 2. Hence, if the observed diets are not contiguous when prey are

ordered by their size, the estimation process could lead to a lower value of the TSS (Gupta, Furrer,

and Petchey 2022).

Furthermore, the observed data may be missing links, e.g. links that rarely occur. Some of

these food webs are undersampled (Fig. S3, S6) suggesting those food webs might be missing these

rare trophic links, and the false positives from a model might be a correctly predicted link. A future

prospect could be to incorporate other sources of presence-absence data such as stable isotope ratio

(Layman et al. 2007), DNA metabarcoding (Roslin and Majaneva 2016), literature review (Gray et

al. 2015b; Cohen and Mulder 2014a; Goldwasser and Roughgarden 1993a) and experimentation

(Warren 1989) to complement trophic links that may have been missed by the gut content method.

In our study, we have not considered any uncertainty involved in analysing the predator guts

(Baker, Buckland, and Sheaves 2014). For example, there are sometimes loose tissues that are

not identifiable and cannot be assigned to a specific prey item with certainty. There are factors

such as sample size of consumers, mechanical prey handling, di�erential digestion and evacuation

rates of di�erent prey types and volumes, and the ingestion order that in combination result in an

unquantifiable error which is di�cult to interpret in the predator diet (Hyslop 1980; Rindorf and

Lewy 2004; Baker, Buckland, and Sheaves 2014). Therefore, the next step could be to incorporate

these di�erent factors of uncertainty in parameterising the model and to understand how these a�ect

the accuracy of the predicted food webs.

We have provided a rule of thumb on how many predator guts one should collect from the field

to predict the structure of a food web for a given number of species. This could lead to a reduction

in the number of predator guts that would have been collected otherwise thereby saving considerable
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time and resources. We have also demonstrated how a food web model can be used to predict the

full structure of a food web when only partial information of trophic interactions is available.
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