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Abstract
This chapter introduces the foundational concepts and techniques for scattering
amplitudes. It is meant to be accessible to readers with only a basic under-
standing of quantum field theory. Topics covered include: the four-dimensional
spinor-helicity formalism and the colour decomposition of Yang–Mills scat-
tering amplitudes; the study of soft and collinear limits of Yang–Mills and
gravity amplitudes; the BCFW recursion relation and generalised unitarity, also
in the superamplitudes formalism of N = 4 supersymmetric Yang–Mills; an
overview of standard and hidden symmetries of the S-matrix of N = 4 super-
symmetric Yang–Mills, such as the conformal, dual conformal and Yangian
symmetries; and a brief excursus on form factors of protected and non-protected
operators in Yang–Mills theory. Several examples and explicit calculations are
also provided.
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1. Introduction

The most remarkable property of scattering amplitudes is their unexpected simplicity. Consider
for example the scattering of 2 → n gluons at tree level. Textbooks usually discuss the case
n = 2, which requires the computation of four Feynman diagrams. They often fail to mention
that, as n grows, life is not so simple, as table 1 shows:

If the result of a calculation as n increases were to grow in complexity in the way the table
above suggests, there would be no surprise. This is not the case. Indeed, there are families of
amplitudes for which all-multiplicity expressions are available. The most famous one is the
infinite sequence of maximally helicity violating gluon amplitudes, or MHV in short, where
all gluons have the same helicity except two, say i and j (in a convention where the momenta of
the n particles are all outgoing). For any n, these amplitudes are expressed by the spectacularly
beautiful Parke–Taylor formula [2, 3]

AMHV
n (1+, . . . , i−, . . . j−, . . . , n+) = ign−2 〈i j〉4

〈12〉〈23〉 . . . 〈n1〉 . (1)

One does not need to understand the meaning of the symbols in (1) (which will be explained
later) to appreciate that Feynman diagrams fail to account for its simplicity, which is effectively
independent of the number of gluons. In a landmark paper [4], Witten related the simplicity of
(1) to the fact that when transformed to Penrose’s twistor space [5, 6], MHV amplitudes have
support on the simplest curve in twistor space—a (complex) line. This result led to remarkable
closed formulae for the tree-level S-matrix of N = 4 super Yang–Mills (SYM) [7–9], and a
novel diagrammatic approach that uses MHV amplitudes as effective vertices [10].
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Table 1. The number of Feynman diagrams that contribute to 2 → n gluon scattering at
tree level [1]. This number grows factorially with n.

n 2 3 4 5 6 7 8 9

# of diagrams 4 25 220 2, 485 34, 300 559, 405 10, 525, 900 224, 449, 225

Two tasks are then ahead. The first is to provide a framework, or choose coordinates, that
makes this simplicity manifest; this is similar to picking polar coordinates to describe circular
motion. The second is to devise methods and find symmetries which can explain this simplic-
ity, at the same time providing new, powerful ways to calculate amplitudes while avoiding
Feynman diagrams. This chapter provides the beginning of an answer to both tasks.

The most economic language to describe the scattering of massless particles is the spinor-
helicity formalism, which we introduce in section 2. It provides a parameterisation of the
momenta and polarisations of massless particles in terms of a set of variables which auto-
matically satisfy the on-shell condition p2 = 0 for lightlike momenta. Section 3 introduces
colour decomposition, which leads to the concept of colour-ordered, or partial amplitudes
in Yang–Mills theory—quantities which depend only on kinematic data but not on colour,
which will be one of the main subjects of the rest of this article. With the aim of deriving
amplitudes without ever looking at a Lagrangian, we discuss in section 4 the possible forms
of the smallest scattering amplitudes of particle of spin s, showing that they can be derived
from symmetry principles alone. Starting from these building blocks, in section 5 we intro-
duce the BCFW recursion relation, one of the most efficient methods to derive the tree-level
S-matrix of Yang–Mills theory and gravity. In section 6 we pause and consider the basic
symmetry of scattering amplitudes—the Poincaré group (translations plus Lorentz)—and the
conformal group, which is an invariance of tree-level Yang–Mills amplitudes. Amplitudes
are singular in soft and collinear limits, with a universal behaviour which is often very use-
ful to constrain their form. The corresponding factorisation theorems are derived at tree level
in Yang–Mills and gravity theories in section 7, using a combination of MHV diagrams and
recursion relations. Section 8 introduces supersymmetry and superamplitudes—objects with
package together amplitudes with a fixed total helicity, and are invariant under supersymmetry
transformations. Here we focus on maximally supersymmetric Yang–Mills theory, and for-
mulate supersymmetric BCFW recursion relations, also deriving MHV superamplitudes as an
example. It has often been said that the scattering amplitudes in N = 4 SYM are the ‘hydrogen
atom’ of four-dimensional relativistic scattering (see e.g. [11]). This is due to the fact that they
are very constrained: superamplitudes in N = 4 SYM enjoy the superconformal symmetry of
the Lagrangian of the theory, as well as certain hidden symmetries of its S-matrix: the dual
superconformal and Yangian symmetries. We review these in section 9, again focusing on the
MHV superamplitude as a simple example. In section 10 we introduce the modern unitarity-
based approach to compute loop amplitudes in theories with and without supersymmetry.
In particular we review the computation of MHV (super)amplitudes both from two-particle
and quadruple cuts, and of the all-plus four-point amplitude at one loop in pure Yang–Mills.
Finally, section 11 serves as a taster of recent applications of on-shell techniques devised for
amplitudes to form factors. These are slightly off-shell quantities, falling in between ampli-
tudes (fully on shell) and correlation functions (fully off shell). In appendix A we outline our
conventions and the Lorentz transformation properties of the spinor variables introduced in
section 2.
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2. Spinor-helicity formalism

2.1. Massless particles and their helicity

Elementary particles carry an internal angular momentum known as spin �S. The projection of

the particle’s spin on the direction of motion is known as its helicity h := �p·�S
|�p | , where �p denotes

the particle three-momentum. If the particle is massless, the helicity is a Lorentz-invariant
quantity3. Moreover, for massless particles of spin s the helicity can only take the extremal
values h = ±s. Scattering states of massless particles are therefore labeled by the on-shell
momentum and helicity: |p, h〉. Let us now take a look at the cases of spin s = 1/2, 1 and 2.

s = 1/2. The momentum-space Dirac equation for positive- and negative-energy solutions,
u(p) and v(p), reads

( �p− m)u(p) = 0, ( �p+ m)v(p) = 0. (2)

Clearly, they coincide in the massless case �pu = 0 = �pv. States of definite helicity are obtained
via the projectors 1

2 (1 ± γ5),

u± =
1
2

(1 ± γ5)u(p), v∓ =
1
2

(1 ± γ5)v(p), (3)

and in the massless case one can identify u±(p) = v∓(p). Hence spin 1/2 states are labeled by
|p,±1/2〉.

s = 1. Gauge fields carry helicities h = ±1 described by polarisation vectors ε(±)
μ (p) that

obey the transversality condition

p · ε(±)(p) = 0, (4)

as well as the relations

ε(±)(p) · ε(±)(p) = 0, ε(+)(p) · ε(−)(p) = −1, (ε(±)
μ (p))∗ = (ε(∓)

μ (p)). (5)

The corresponding on-shell states are labeled as |p,±1〉.
s = 2. Gravitons come in two helicities h = ±2. Their symmetric polarisation tensors

ε(±±)
μν (p) obey pμε(±±)

μν (p) = 0, and can be chosen to be traceless: ε(±±) μ
μ = 0. They can be

represented as direct products of gauge field polarisation vectors:

ε(++)
μν (p) = ε(+)

μ (p)ε(+)
ν (p), ε(−−)

μν (p) = ε(−)
μ (p)ε(−)

ν (p). (6)

This representation automatically entails the above on-shell properties.

2.2. Momenta and polarisations of massless particles

The key property of the spinor-helicity formalism is to provide a representation of momenta
and polarisations using one set of variables that automatically obey the on-shell constraint
p2 = 0 as well as the conditions on the polarisations, e.g. �pu± = 0 for spin-1/2 parti-
cles, or (4) for gluons. These variables ultimately lead to simpler final expression for the

3 This can be understood as follows: for a massive particle a Lorentz boost can be used to go to a frame in which the
helicity is flipped, however no boost can ‘overtake’ a massless particle, which moves at the speed of light.
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amplitudes of fermions, gluons, photons and gravitons. The starting point is to rewrite pμ

as a Weyl bi-spinor:

pμ → pα̇α = σ̄α̇α
μ pμ =

(
p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)
, (7)

where σ̄α̇α
μ = (𝟙,−�σ) and �σ are the Pauli matrices. This relation implements the isomorphism

between the Lorentz group SO(3, 1) and SL(2,C), as discussed in appendix A. The crucial
observation is now that the on-shell condition for a massless particle p2 = 0 is equivalent to
det p = 0, and the rank of the matrix pα̇α is thus equal to one. Hence, the four-momentum can
be written as

pα̇α = λ̃α̇ λα. (8)

This is one of the most important formulae in this article. λα and λ̃α̇ are commuting Weyl
spinors, known as helicity spinors [12–14] (see [15–23] for a precursor formalism). For com-
plexified momenta, λ and λ̃ are independent variables, and importantly (8) is invariant under
a little-group transformation

λ→ zλ, λ̃→ z−1λ̃, z ∈ C
∗. (9)

On the other hand in real Minkowski space the four-momentum is real, which translates into the
condition (λα)∗ = ±λ̃α̇, where the sign is the same as that of the energy p0. That also reduces
the little group to a U(1) (since |z| = 1 in this case), as expected for massless particles [24, 25].
For real momenta, an explicit realisation of the spinors is

λα =
1√

p0 − p3

(
p0 − p3

−p1 − ip2

)
, λ̃α̇ =

1√
p0 − p3

(
p0 − p3

−p1 + ip2

)
. (10)

Since |p0| � |p3|, the quantity
√

p0 + p3 is real (imaginary) for positive (negative) p0.
Spinor indices are raised or lowered with the Levi-Civita tensor:

λα := εαβ λ
β , λ̃α̇ := εα̇β̇ λ̃

β̇ , (11)

which allows us to form two basic Lorentz-invariant quantities

〈i j〉 :=λα
i λ jα, [i j] := λ̃iα̇λ̃

α̇
j , (12)

introducing the NW-SE (SW-NE) contractions for the undotted and dotted Weyl indices and
the handy bracket notation (see appendix A for a discussion of the Lorentz transformation
properties of spinors). Here i and j denote the particles’ labels. We can then write the product
of two momenta pi and pj as

εαβεα̇β̇ pα̇αi pβ̇βj = εαβεα̇β̇ σ̄
α̇α
μ σ̄β̇β

ν pμi pνj = 2 pi · pj, (13)

where εαβεα̇β̇ σ̄
α̇α
μ σ̄β̇β

ν = Tr(σ̄μσν) = 2ημν , and we have defined σμ αα̇ := εαβεα̇β̇ σ̄
β̇β
μ = (𝟙,�σ).

Mandelstam invariants also have a very simple representation in spinor variables:

si j = (pi + pj)2 = 2 pi · pj = 〈i j〉[ ji]. (14)

We have seen that spinor-helicity variables are useful to describe the momenta of massless on-
shell particles as the mass-shell condition is automatically met, but what is their relation to the

6
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helicity of the on-shell states? One quickly sees that they solve the massless Dirac equation and
can be identified with the helicity states u±(p) and v±(p). Indeed, using the chiral representation
of the Dirac matrices γμ, one has

�p = pμ γ
μ =

(
0 pαα̇

pβ̇β 0

)
=

(
0 λαλ̃α̇

λ̃β̇λβ 0

)
. (15)

Now writing

u+(p) = v−(p) =

(
λα

0

)
:= |p〉, u−(p) = v+(p) =

(
0
λ̃α̇

)
:= |p], (16)

using the convenient bra-ket notation |•〉 and | •
]
, we see that the massless Dirac equation

�p|p〉 = �p |p] = 0 is satisfied since 〈λ λ〉 = [λ̃ λ̃] = 0. Hence, the helicity states of massless
spin-1/2 fermions are captured by λ and λ̃. For negative momenta, we will define

| − p〉 := i |p〉, | − p
]

:= i |p]. (17)

Moving on to massless spin-1 states, we can re-express the polarisation vectors ε(±)
μ (p) as bi-

spinors via ε(±)
αα̇ = σμ

αα̇ε
(±)
μ , with

ε(−)
αα̇ =

√
2
λαξ̃α̇
[λξ]

, ε(+)
αα̇ =

√
2
ξαλ̃α̇

〈ξλ〉 . (18)

Here ξ and ξ̃ are arbitrary reference spinors that will drop out of any final expression for a
scattering amplitude. The only condition is that they are not parallel to λ and λ̃, e.g. ξ �= cλ. In
fact the freedom in choosing a reference spinor in the polarisation bi-spinors can be attributed
to gauge transformations, since

ε(+)
αα̇ (ξ + δξ) = ε(+)

αα̇ (ξ) + pαα̇
√

2
〈λ δξ〉
〈λ ξ〉2

. (19)

We also note the completeness relation
∑

h=±(ε(h))μ(ε(h))∗ν = −ημν +
pμqν+pνqμ

p·q , where qαα̇ =

ξαξ̃α̇. Graviton polarisations then follow from (6) as products of the ε(±)
αα̇ .

2.3. Massive particles

We can also introduce on-shell variables for massive momenta [26]. In this case the on-shell
condition det p = p2 = m2 implies that pαα̇ has rank two and can be expressed in terms of a pair
of spinor variables λI and λ̃I with I = 1, 2. The bi-spinor representation of a four-dimensional
massive momentum then becomes

pμσ
μ
αα̇ := pαα̇ = λI

αλ̃α̇ I . (20)

Also note that the on-shell condition becomes

det p = det λ× det λ̃ = m2. (21)

For real momenta, (20) is invariant under SU(2) transformations L acting on the I indices: λI →
λJLJ

I , λ̃I → (L−1)I
J
λ̃J , which are naturally identified with the little group transformations of

massive particles [24, 25].

7
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2.4. Useful formulae

We close this section with two useful formulae for our helicity spinors. The first is the Schouten
identity 〈λ1 λ2〉 λα

3 + 〈λ2 λ3〉 λα
1 + 〈λ3 λ1〉λα

2 = 0, or, contracting with an arbitrary spinor λa,

〈12〉 〈3a〉+ 〈23〉 〈1a〉+ 〈31〉 〈2a〉 = 0, (22)

and similarly for the conjugate spinors. It reflects the fact that there is no completely anti-
symmetric three-tensor Ωαβγ . A second identity descends from momentum conservation∑n

i=1 λ
α
i λ̃α̇

i = 0, from which it follows that
∑n

i=1 〈a i〉 [i b] = 0, for arbitraryλa and λ̃b. Finally
we quote the two useful relations

〈ab〉[bc]〈cd〉[da]
[ab]〈bc〉[cd]〈da〉

}
= Tr

(
1 ∓ γ5

2
�a �b �c �d

)
= 2[(a · b)(c · d) − (a · c)(b · d) + (a · d)(b · c) ∓ iε(abcd)],

(23)

where ε(abcd) := εμνρσaμbνcρdσ .

3. Colour decomposition

We now turn our attention to gauge field theories. Having introduced helicity spinors as efficient
variables to describe the kinematics, we now introduce a formalism that allows to disentangle
the colour degrees of freedom from the kinematic ones. There are two such formalisms for an
efficient colour management: the trace-based and the structure constant based (or DDM) for-
malism. In SU(Nc) gauge theories coupled to matter, one mostly encounters two representations
of the gauge group:

• Adjoint representation: gluons Aa
μ and their superpartners (gluinos and scalars) carry

adjoint indices a − 1, . . . , N2
c − 1.

• Fundamental & anti-fundamental representation: quarks and anti-quarks carry (anti)-
fundamental indices i = 1, . . . , Nc and ī = 1, . . . , Nc.

The SU(Nc) algebra is represented by fundamental generators (Ta)i
j̄ which are Nc × Nc

hermitian, traceless matrices. In our conventions the structure constants take the form

f abc = − i√
2

Tr(Ta[Tb, Tc]), (24)

or [Ta, Tb] = i
√

2 f abcTc, with Tr(TaTb) = δab. Moreover, the SU(Nc) Fierz-type identity

(Ta) j̄1
i1

(Ta) j̄2
i2
= δ j̄2

i1
δ j̄1

i2
− 1

Nc
δ j̄1

i1
δ j̄2

i2
, (25)

is important for the colour decomposition of amplitudes and can be understood as a complete-
ness relation for a basis of Hermitian matrices spanned by {𝟙, Ta}.

3.1. Trace basis

The colour dependence of a given Feynman graph arises from its vertices. The three-gluon ver-
tex carries one structure constant f abc, the four-gluon interaction a product of two f abc, while
the gluon-quark–anti-quark interaction comes with a generator (Ta)i

j̄. In order to work out
the colour dependence of a given Feynman diagram, imagine replacing all structure constants

8
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Figure 1. Possible poles in a colour-ordered Feynman diagram.

appearing in it by the trace formula (24). This transforms the expression to products of Ta gen-
erators with contracted and open indices. Open fundamental indices correspond to quark lines
in the diagram, open adjoint indices to the external gluon states. Contracted adjoint indices
can be used to merge traces and products of generators by repeatedly applying the Fierz-type
identity (25):

(A Ta B) j̄
i (C Ta D)l̄

k = (A D)l̄
i (C B) j̄

k −
1

Nc
(A B) j̄

i (C D)l̄
k. (26)

In the end we will arrive at an expression of traces and strings of Ta’s with only open indices
corresponding to external states of the form

Tr(Ta1 . . .Tan ) . . .Tr(Tb1 . . . Tbm ) (Tc1 . . . Tcp) j̄1
i1
. . . (Td1 . . . Tdp) j̄s

is . (27)

For pure gluon amplitudes, things are even simpler: in pure Yang–Mills theory the inter-
action vertices of SU(Nc) and U(Nc) gauge groups are identical, as f 0bc = 0 by virtue of
(24) where T0 = 𝟙√

Nc
is the U(1) generator (this leads to the photon decoupling theorem

discussed in section 3.4). Hence, the 1
Nc

part of (25) is not active here. In conclusion,
tree-level gluon amplitudes reduce to a single-trace structure and can be brought into the
colour-decomposed form

Atree
n ({ai, hi, pi}) =

∑
σ∈Sn/Zn

Tr(Taσ1 Taσ2 . . . Taσn ) Atree
n (σ1, σ2, . . . , σn). (28)

Here hi denote the helicities and ai the adjoint colour indices of the external states, and we
use the notation σ = {pσ , hσ}. Moreover, Sn/Zn is the set of all non-cyclic permutations of
n elements, which is equivalent to Sn−1. The An are called partial or colour-ordered ampli-
tudes and carry all kinematic information that is now separated from the colour degrees of
freedom. Partial amplitudes An are simpler than the full amplitudes An as they are indi-
vidually gauge invariant and exhibit poles only in channels of cyclically adjacent momenta
(pi + pi+1 + · · ·+ pi+s)2 → 0, see figure 1.

For tree-level gluon-quark–anti-quark amplitudes with a single quark line one has

Atree
n,qq̄({ai, hi, pi}|{i, q

hq1
1 , j̄, q

hq2
2 })

=
∑

σ∈Sn−2

(Taσ1 . . . Taσn−2 ) j̄
i Atree

n,qq̄(σ1, . . . , σn−2|q
hq1
1 , q

hq2
2 ). (29)

9
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Figure 2. Typical colour tree in a structure constant based (DDM) colour expansion.

Increasing the number of quark lines yields a more involved structure as more strings and 1
Nc

factors appear, see [1, 27, 28] for details.
At loop level, pure gluon amplitudes contain also multi-trace contributions arising from the

merging performed using (25). For example, at one loop one has

A1−loop
n ({ai, hi, pi}) = Nc

∑
σ∈Sn/Zn

Tr(Taσ1 Taσ2 . . .Taσn ) A(1)
n;1(σ1, . . . , σn)

+

[n/2]+1∑
i=2

∑
σ∈Sn/Zn

Tr(Taσ1 . . . Taσi−1 ) Tr(Taσi . . . Taσn ) A(1)
n;i (σ1, . . . , σn),

(30)

where the A(1)
n;1 are called the primitive (colour-ordered) amplitudes, and the A(1)

n;c>1 are the
higher primitive amplitudes. The latter can be expressed as linear combinations of the primitive
ones [29]. In the large-Nc limit the single-trace contributions are enhanced. In colour-summed
cross sections, which are of interest in applications, the contribution of the higher primitive
amplitudes is suppressed by 1

N2
c

.

3.2. DDM basis

An alternative basis for the colour decomposition of pure-gluon (or purely adjoint particles)
amplitudes makes use of the structure constants f abc and is due to Del Duca, Dixon and Mal-
toni (DDM) [30]. Consider the colour dependence of an n-gluon tree amplitude. This can be
represented as a sum over tri-valent graphs with vertices linear in f abc, see figure 2. In this
process we artificially ‘blow’ up a four-valent gluon vertex to sums of products of tri-valent
vertices by multiplying it by 1 = q2/q2 where i

q2 is the propagator of the ‘blown up’ leg. One
then uses the Jacobi identity

(31)

10



J. Phys. A: Math. Theor. 55 (2022) 443002 Topical Review

successively in order to shrink branched trees to branchless ones resulting in a ‘half-ladder’
expression. In this way we can completely reduce a coloured amplitude to a half-ladder basis
in colour space:

Atree
n ({ai, hi, pi}) =

∑
σ∈Sn−2

f a1aσ2 e1 f e1aσ3 e2 f e2aσ4 e3 . . . f en−3aσn−1 anAtree
n (1, σ2, . . . , σn−1, n),

(32)

where we now sum over permutations σ of the n − 2 elements {2, 3, . . . , n − 1}. The half-
ladder colour basis fixes two (arbitrary) legs, here 1 and n:

therefore the DDM basis consists of (n − 2)! independent partial amplitudes. This is to be
contrasted with the (n − 1)! partial amplitudes in the trace basis. Hence, there must exist non-
trivial identities between partial amplitudes allowing one to reduce the basis accordingly. These
are known as Kleiss–Kuijf relations [31] and take the form

Atree
n (1, {α}, n, {β}) = (−1)nβ

∑
σ∈α⧢βT

Atree
n (1, σ, n), (33)

where nβ denotes the number of elements in the set β and βT is the set β with reversed ordering.
The shuffle or ordered permutation α ⧢ βT means to merge α and βT while preserving the
individual orderings of α and βT. The Kleiss–Kuijf relations can be proven by rewriting the
DDM basis in terms of the trace basis discussed above.

It turns out that there exists yet another non-trivial identity between partial amplitudes allow-
ing one to further reduce the basis of primitive amplitudes to (n − 3)! independent elements.
This is due to the Bern–Carrasco–Johansson relation [32, 33], discussed in chapter 2 of this
review [34]. It takes the schematic form

Atree
n (σ1, . . . , σn) =

∑
ρ∈Sn−3

K(σ)
ρ Atree

n (1, 2, ρ3, . . . , ρn−1, n), (34)

with kinematic-dependent coefficients K(σ)
ρ . Finally, we note that there is also a generalisation

of the DDM basis to include fundamental matter [35, 36].

3.3. Colour-ordered Feynman rules

One can establish colour-ordered Feynman rules that generate the partial (colour-ordered)
amplitudes by stripping off the colour factors from the usual Feynman rules. This is particularly
easy for the gluon and quark propagators,

(35)

11
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while for the vertices one finds

(36)

3.4. General properties of colour-ordered amplitudes

Colour-ordered amplitudes are gauge invariant and obey general properties which reduce con-
siderably the number of independent structures:

1. Cyclicity:

A(1, 2, . . . , n) = A(2, . . . , n, 1), (37)

which follows from consistency with the definition (28) and cyclicity of the trace.
2. Parity:

[A(1, 2, . . . , n)]∗ = A(1̄, 2̄, . . . , n̄). (38)

Here ī denotes the inversion of the helicity of particle i.
3. Charge conjugation:

A(1q, 2q̄, 3, . . . , n) = −A(1q̄, 2q, 3, . . . , n), (39)

that is, flipping the helicity of a quark line changes the sign of the amplitude. This descends
from the colour-ordered quark–quark–anti-quark vertex above.

4. Reflection:

A(1, 2, . . . , n) = (−1)n A(n, n − 1, . . . , 1). (40)

It follows from the anti-symmetry of the colour-ordered gluon vertices under reflection of all
legs. It also holds in the presence of quark lines but only at tree level.

5. Photon decoupling, or dual Ward identity:∑
σ∈Zn−1

A(σ1, . . . , σn−1, n) = 0, (41)

where σ = {σ1, . . . , σn−1} are cyclic permutations of {1, 2, . . . , n − 1}. It follows from (28)
and the fact that a gluon amplitude with a single photon vanishes since f 0bc = 0.

12
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4. Three-point amplitudes

4.1. From symmetries

Scattering amplitudes are covariant under little group transformations of massless momenta
(9). This is encoded in the following relation [4]:

−1
2

(
λα

i
∂

∂λα
i
− λ̃α̇

i
∂

∂λ̃α̇
i

)
A = hi A, (42)

where hi is the helicity of particle i. It is an immediate consequence of how the wavefunction of
a particle of helicity hi scales under (9). Combined with Lorentz invariance, (42) can be used to
determine the functional form of three-point amplitudes of particles of any spin, without ever
looking at a Lagrangian, as we now show.

We begin by noting that momentum conservation p1 + p2 + p3 = 0 implies pi · pj = 0 for
i, j = 1, 2, 3. In real Minkowski space this means that 〈i j〉 = 0 and [i j] = 0 for all particles:
simply there is no scattering! Life is less constrained in complexified Minkowski space, where
the spinors λ and λ̃ become independent, and two solutions are possible:

〈i j〉 = 0 and [i j] �= 0, or 〈i j〉 �= 0 and [i j] = 0, ∀ i, j. (43)

Looking for instance at the helicity assignment 1−s, 2−s, 3+s, one can immediately see, using
(42), that the answer must have the form

A(1−s, 2−s, 3+s) ∼ [A(1−, 2−, 3+)]s, (44)

where for the amplitude with s = 1 two options arise: A(1−, 2−, 3+) ∼ 〈12〉3/(〈23〉〈31〉) or
A(1−, 2−, 3+) ∼ [23][31]/[12]3. It turns out that nature has chosen the first one, and we will set

A(1−, 2−, 3+) = ig
〈1 2〉3

〈2 3〉〈3 1〉 , (45)

where g is the Yang–Mills coupling constant4. There are several reasons to see why this is
the correct choice. First, an n-point amplitude has dimension 4 − n. With the choice of (45),
the coupling constant g is dimensionless, as the Yang–Mills coupling should be, while the
other option requires a dimensionful coupling. This would also imply that the corresponding
interaction in the Lagrangian is non-local.

The amplitude in (45) is the first in the MHV family (1). We now quote the MHV three-point
amplitude, which is obtained from (45) by replacing 〈ab〉 → −[ab]5:

A(1+, 2+, 3−) = −ig
[1 2]3

[2 3][3 1]
. (46)

Little group scaling also fixes the possible form of the all-minus and all-plus three-point ampli-
tudes: A(1−, 2−, 3−) ∼ 〈12〉〈23〉〈31〉 and A(1+, 2+, 3+) ∼ [12][23][31], but in Yang–Mills
theory the proportionality constant is zero. These amplitudes can be generated in a theory

4 The factor of i comes from the Dyson expansion of the S-matrix, and in our conventions, scattering amplitudes are
the elements of the matrix iT where S = 𝟙+ iT .
5 Flipping the helicity sends λα → λ̃α̇, and a minus sign arises from the different convention in defining the angle and
square brackets as in (12).
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with a higher-dimensional, non-renormalisable interaction of the form Tr F3, where F is the
field strength [37–39].

Conceptually it is very important that we can determine three-point amplitudes just from
symmetry considerations. These amplitudes will be the seeds of the BCFW recursion relation,
discussed in section 5.

4.2. From Feynman diagrams

As a useful exercise in spinor gymnastics, we will now derive (45) from QCD Feynman
rules. Using the colour-ordered three-point vertex in (36) we find (with all momenta taken
as outgoing)

A(1−2−3+) = i
g√
2

[
(p1 − p2)·ε(+)

3 ε(−)
1 ·ε(−)

2 + (p2 − p3)·ε(−)
1 ε(−)

2 ·ε(+)
3

+ (p3 − p1)·ε(−)
2 ε(+)

3 ·ε(−)
1

]
, (47)

where the polarisation vectors are given in (18). Choosing the same reference spinor for the
two negative-helicity gluons we can set ε(−)

1 · ε(−)
2 = 0, and using momentum conservation and

the transversality condition pi · εi = 0 we can write this as

A(1−2−3+) = ig
√

2
[

p2 ·ε(−)
1 ε(−)

2 ·ε(+)
3 − p1 ·ε(−)

2 ε(+)
3 ·ε(−)

1

]
. (48)

One can easily work out the various dot products

ε(−)
2 ·ε(+)

3 = −〈2ξ〉[3ξ]
[2ξ]〈3ξ〉 , ε(−)

1 ·ε(+)
3 = −〈1ξ〉[3ξ]

[1ξ]〈3ξ〉 ,

p2 · ε(−)
1 =

1√
2

〈12〉[2ξ]
[1ξ]

, p1 · ε(−)
2 = − 1√

2

〈12〉[1ξ]
[2ξ]

,

(49)

and therefore,

A(1−2−3+) = −ig〈12〉 [3ξ]
〈3ξ〉

(
〈2ξ〉
[1ξ]

+
〈1ξ〉
[2ξ]

)
= ig〈12〉 [3ξ]

〈3ξ〉
〈ξ|p1 + p2|ξ]

[1ξ][2ξ]

= ig
〈12〉[3ξ]2

[1ξ][2ξ]
.

(50)

Finally we use three-point momentum conservation to simplify

[3ξ]
[1ξ]

=
〈23〉[3ξ]
〈23〉[1ξ]

=
〈12〉
〈23〉 ,

[3ξ]
[2ξ]

=
〈13〉[3ξ]
〈13〉[2ξ]

=
〈12〉
〈31〉 , (51)

thus arriving at the result (45). One could repeat this calculation for the scattering of three
gravitons, this time using the three-point vertex of [40], arriving at a result proportional to[
A(1−, 2−, 3+)

]2
. The expression for the vertex in that paper contains at least 171 terms, which

gives no hints of such a remarkable squaring relation6!

6 The reader is not encouraged to try.

14



J. Phys. A: Math. Theor. 55 (2022) 443002 Topical Review

5. BCFW recursion relation

5.1. Derivation of the recursion

It was long believed that amplitudes may be determined from their analytic proper-
ties. The route followed in [41] was to complexify Mandelstam invariants and study
amplitudes as a function of these. Unfortunately, complex analysis in many variables is
complex! The Britto–Cachazo–Feng–Witten (BCFW) recursion relation [42, 43] avoids
this problem by mapping the singularities of tree-level amplitudes into poles in a sin-
gle complex variable z. To see this at work, consider a tree-level n-gluon amplitude
An(p1, . . . , pn), and introduce the following deformation of the spinors of two adjacent particles
1 and n, often indicated as [n1〉:

λ1 → λ̂1(z) = λ1 − zλn, λ̃1 → λ̃1,

λn → λn, λ̃n → ˆ̃λn(z) = λ̃n + zλ̃1,
(52)

with z ∈ C. We denote the shifted, z-dependent quantities by a hat. The corresponding defor-
mation of the momenta,

pα̇α1 → p̂α̇α1 (z) = λ̃α̇
1 (λ1 − zλn)α, pα̇αn → p̂α̇αn (z) = (λ̃n + zλ̃1)α̇ λα

n , (53)

preserves both overall momentum conservation and the on-shell conditions,

p̂1(z) + p̂n(z) = p1 + pn, p̂2
1(z) = 0, p̂2

n(z) = 0, (54)

so that An(z) = An( p̂1(z), p2, . . . , pn−1, p̂n(z)) is a one-parameter family of amplitudes. Note that
p̂1 and p̂2 in (53) are now complex—we are now working in complexified Minkowski space.
This makes the three-point amplitudes of section 4 non-vanishing, which will then become the
seeds of the recursion.

What are the analytic properties of An(z)? It is well known that tree amplitudes have simple
poles in multi-particle channels. This can be seen from the Feynman diagrammatic expansion:
pick all diagrams which have a propagator i/P2, where P is a sum of momenta (which will be
adjacent for colour-ordered amplitudes, or generic in gravity). As P goes on shell, the singular
diagrams in this class combine into the product of an amplitude to the left and one to the right
of this propagator. This implies that the deformed amplitude An(z) has precisely n − 3 simple
poles in z: with Pi :=

∑i−1
j=1 pj, these have the form

i

P̂2
i (z)

:=
i

P2
i − z〈n|Pi|1

] = − 1
〈n|Pi|1]

i
z − zPi

, (55)

where P̂i(z) = p̂1(z) + p2 + · · · pi−1, and

zPi =
P2

i

〈n|Pi|1]
, ∀ i ∈ [3, n − 1]. (56)

It follows that, as z → zPi , the amplitude An(z) factorises as

An(z)
z→zPi−−−→ i

P̂2
i (z)

∑
h=±

AL(1̂(zPi), 2, . . . , i − 1,−P̂−h(zPi))

× AR(P̂h(zPi), i, . . . , n − 1, n̂(zPi )), (57)
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Figure 3. Factorisation of the z-deformed amplitude An(z).

see figure 3. The sum over s in (57) runs over all possible states propagating between AL and
AR, and is theory dependent. For gluons it is a sum over h = {+,−}.

We are only interested in the original amplitude, i.e. An(z = 0), and we can use complex
analysis to construct it from the knowledge of the residues of An(z):

An = An(z = 0) =
1

2πi

∮
C0

dz
z

An(z)

=

n−1∑
i=2

∑
h=±

A−h
L (zPi )

i
P2

i
Ah

R(zPi ) + Res(z = ∞).

(58)

Here C0 is a small circle around z = 0 that only contains the pole around the origin. To obtain
(58) we have deformed this into a large circle at infinity, now encircling all the poles zPi in
the complex plane but with an opposite orientation. If An(z) → 0 as z →∞ we can drop the
boundary term Res(z = ∞). As we shall argue in a moment, this is the case for gauge theories
under certain conditions. With this assumption, we arrive at the celebrated BCFW recursion
relation [43]:

An =
n−1∑
i=3

∑
h=±

Ai

(
1̂(zPi ), 2, . . . ,−P̂−h

i (zPi )
)

× i
P2

i
An+2−i

(
P̂h

i (zPi), i, . . . , n − 1, n̂(zPi )
)
, (59)

with zPi defined in (56) and Pi = p1 + p2 + · · ·+ pi−1. This relation is constructive: the ampli-
tudes appearing on the right-hand side have lower multiplicity than An. Hence, with the seed
three-gluon amplitudes (45) and (46), we can use this relation to construct all n-gluon trees
without using Feynman diagrams! In this derivation we chose to shift two neighbouring legs
1̂ and n̂. In fact, one can also shift non-neighbouring legs or even more than two legs to obtain
alternative recursion relations [44, 45].

An open issue is the vanishing of the boundary term in (58). For this we need that

1
2πi

∮
∞

dz
z

An(z) = 0, (60)
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which in turns requires a large-z falloff of the amplitude as An(z) ∼ z−1. In fact, the
large-z behaviour depends on the helicities of the shifted legs, and one can show that

A(1̂+, n̂−)
z→∞∼ 1

z
, A(1̂+, n̂+)

z→∞∼ 1
z

, A(1̂−, n̂−)
z→∞∼ 1

z
, (61)

yet A(1̂−, n̂+)
z→∞∼ z3, which is then a forbidden

[
n1〉shift. It is straightforward to show the first

relation by analysing the colour-ordered Feynman rules; the other scalings are more technical
to derive [46], see [47] for a pedagogical discussion.

5.2. Gravity and other theories

Can we generalise the BCFW recursion to other massless quantum field theories? If we recap
its derivation, only two ingredients were needed to establish it:

(a) Tree-level amplitudes factorise on simple poles, when the square of the sum of a subset
of external momenta vanishes. Note that for colour-ordered amplitudes we only needed to
consider adjacent channels but this was not essential, factorisation is a completely general
property of unitary theories!

(b) The deformed amplitude An(z) falls off as 1/z at infinity. This depends on the theory and
is related to its ultraviolet behaviour.

So in order to reconstruct tree amplitudes we need to consider all multi-particle channels

Pμ
I :=

∑
i∈I

pμi , with I ∈ {any subset of the momenta p1, . . . , pn}. (62)

Whenever P2
I = 0 we have a pole, and if a two-particle BCFW shift is used the set I must con-

tain only one of the shifted momenta so that P2
I becomes z-dependent. Concretely, the BCFW

recursion for a shift of legs 1 and n as in (52) in gravity takes the form [48, 49]

Mn =
∑

Q

∑
h=±±

ML

(
1̂(zPQ ), Q,−P̂−h

Q (zPQ )
)

× i
P2

Q

MR

(
P̂h

Q(zPQ), Q̄, n̂(zPQ)
)
, (63)

where Q denotes all subsets of momenta in {p2, . . . , pn−1}, Q̄ its complement and PQ =
p1 +

∑
i∈Q Pi. Finally, we note that the BCFW recursion can be generalised to massive theories

[50, 51], to rational parts of one-loop amplitudes in QCD and gravity [52–56], form factors
[57, 58], non-linear sigma models and effective field theories [59–62]. Supersymmetric recur-
sion relations [63, 64] are reviewed in section 8. In the maximally supersymmetric case, that
is in N = 4 SYM theory, a generalisation of the BCFW recursion to loop-level planar ampli-
tudes was achieved using the formalism of on-shell diagrams and positive Grassmannians of
[65]. These important developments connecting to the Amplituhedron approach are reviewed
in chapter 7 of this review [66]. Criteria to construct recursion relations in general field theories
were studied in [67], also making use of multi-line shifts [44, 68].

5.3. The MHV amplitude from the BCFW recursion relation

As an application, we now derive by induction the Parke–Taylor formula (1). We already know
from section 4 that it is true for n = 3. Therefore we only need to prove recursively that the
formula is correct. We will focus on the case where particles n and 1 have negative helicity, and
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choose our
[
n1〉shifts of (52). The MHV amplitude has no multi-particle factorisation. In fact,

only one BCFW diagram contributes, where AL in figure 3 is a three-point MHV amplitude
(46) and AR is an (n − 1)-point MHV amplitude. From (56), the position of the pole is zP =
(p1+p2)2

〈n|P|1] = 〈12〉[21]
〈n2〉[21] =

〈12〉
〈n2〉 . The amplitudes AL and AR are then

AL = AMHV
3 (1̂−, 2+,−P̂+) = −ig

[2(−P̂)]3

[12][(−P̂)1]
,

AR = AMHV
n−1 (P̂−, 3+, 4+, . . . (n − 1)+, n̂−) = ign−3 〈n̂P̂〉3

〈P̂3〉〈34〉 . . . 〈(n − 1)n̂〉
.

(64)

Using (17), the fact that λn and λ̃1 are not shifted in our
[
n1〉shift of (52), as well as

〈n̂P̂〉[P̂2] = 〈n1̂〉 [12] = 〈n1〉 [12], 〈3P̂〉 [P̂1] = 〈32〉 [21], (65)

we find

ÂL
i

(p1 + p2)2
ÂR = −ign−2 〈n1〉3 [12]3

[12][21]〈32〉[21] 〈12〉〈34〉 . . . 〈(n − 1) n〉

= ign−2 〈n1〉4

〈12〉 . . . 〈n1〉 , (66)

in agreement with (1) for the chosen helicities. MHV amplitudes with different helicity assign-
ments can easily be obtained using the same strategy as above.

5.4. What’s special about Yang–Mills MHV amplitudes?

The MHV amplitude (1) derived in the last section is special in many ways. First, it does
not have any multi-particle poles—a fact that follows from the vanishing of the amplitudes7

An(1±, 2+, . . . , n+). Second, it is a holomorphic function of the spinor variables λ. As antici-
pated in the introduction, Witten was able to relate this to the property that MHV amplitudes
have support on a complex line in twistor space [4]. This is easy to show: reintroducing
the momentum conservation delta function (2π)4δ(4)(p) =

∫
d4xeip·x , the amplitude in twistor

space is obtained by performing a half-Fourier transform from spinor variables (λ, λ̃) to twistor
variables (λ, μ): ∫ n∏

i=1

d2λ̃i

(2π)2
ei[μiλ̃i]AMHV

n (2π)4δ(4)
(∑

λiλ̃i

)

= AMHV
n

∫
d4x

n∏
i=1

δ(2)(μα̇
i + xα̇αλiα). (67)

Hence the transformed amplitude vanishes unless the gluon twistor space coordinates (λi, μi)
satisfy μα̇ + xα̇αλα = 0, α̇ = 1, 2, which is the equation of a (complex) line in twistor space.
As shown in [4], amplitudes with q negative-helicity gluons, which we call Nq−2MHV, are
supported on algebraic curves in twistor space of degree q − 1 + L, where L is the number
of loops. The case of disconnected curves leads to the so-called MHV diagram method [10],
while connected prescriptions were developed in [7–9].

7 A proof that An(1±, 2+, . . . , n+) = 0 for n > 3 is provided in section 8.4.
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6. Symmetries of scattering amplitudes

6.1. Poincaré and conformal symmetry

Let us now discuss the symmetry properties of scattering amplitudes. These can be obvious
(Poincaré), less obvious (conformal) or hidden (dual conformal or Yangian), as we will dis-
cuss in the following8. In relativistic quantum field theory, amplitudes are Poincaré invariant
by construction. To see this, we seek a representation of the Poincaré symmetry genera-
tors—translation and Lorentz generators—in spinor-helicity variables [4]. Translations pαα̇

are realised as a multiplicative operator

pαα̇ =

n∑
i=1

λα
i λ̃

α̇
i , (68)

and the corresponding invariance pαα̇ An(λi, λ̃i) = pαα̇ δ(4)(pαα̇) An(λi, λ̃i) = 0 is manifest by
virtue of the total momentum conservation delta function. The Lorentz generators are symmet-
ric bi-spinors, mαβ and mα̇β̇ , realised as first-order differential operators,

mαβ =

n∑
i=1

λi (α ∂i β), mα̇β̇ =

n∑
i=1

λ̃i (α̇ ∂i β̇), (69)

with ∂iα := ∂
∂λαi

, ∂iα̇ := ∂
∂λ̃α̇i

and r(αβ) := 1
2 (rαβ + rβα) denotes symmetrisation. Lorentz invari-

ance of An(λi, λ̃i), that is mαβ An(λi, λ̃i) = mα̇β̇ An(λi, λ̃i) = 0 is manifest, as the spinor brack-
ets 〈i j〉 and [i j] are invariant under mαβ and mα̇β̇ , e.g.

mαβ 〈 jk〉 =
n∑

i=1

λi (α ∂i β) λ
γ
jλk γ = λ j αλk β − λ j βλk α + (α ↔ β) = 0. (70)

Classical Yang–Mills theory is invariant under an additional, less obvious symmetry: confor-
mal symmetry. It originates from the fact that pure Yang–Mills theory and massless QCD
do not carry any dimensionful parameter and are thus invariant under scale transformations
(or dilatations) xμ → κ−1xμ, or, in momentum space pμ → κpμ. The dilatation generator in
spinor-helicity variables acting on n-point amplitudes reads [4]

d =

n∑
i=1

(
1
2
λα

i ∂i α +
1
2
λ̃α̇

i ∂i α̇ + 1

)
, (71)

reflecting the mass dimensions 1/2 of the spinors, i.e. [d,λi] = 1
2 λi and [d, λ̃i] = 1

2 λ̃i.

6.2. Example: the MHV amplitude

As an example, we now wish to check the invariance of the MHV amplitudes AMHV
n =

δ(4)(
∑

i pi)AMHV
n with AMHV

n given in (1). The dilatation operator d in (71) simply measures
the mass dimension of the object it acts on. We note the mass dimensions [δ(4)(p)] = −4,
[〈i j〉4] = 4 and [(〈12〉 . . . 〈n1〉)−1] = −n, hence

dAMHV
n = (−4 + 4 − n + n)AMHV

n = 0, (72)

8 Hidden symmetries are not invariances of the action.
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as required. Relativistic scale-invariant quantum field theories are conformal, i.e. the dilatation
symmetry is accompanied by invariance under so-called special conformal transformations
kαα̇. This symmetry generator is realised in terms of a second-order differential operator in
spinor-helicity variables [4],

kαα̇ =

n∑
i=1

∂i α ∂i α̇. (73)

Checking this symmetry for MHV amplitudes is instructive yet requires a little bit of algebra
[4], see [47] for a pedagogical exposition.

In summary, together with the Poincaré and dilatation generators, the set of operators
{pαα̇, kαα̇, mαβ , mα̇β̇ , d} generate the four-dimensional conformal group SO(2, 4) which leave
tree-level pure Yang–Mills and massless QCD amplitudes invariant.

7. Collinear and soft limits in gauge theory and gravity

7.1. Yang–Mills theory

7.1.1. Collinear limits. Scattering amplitudes in Yang–Mills theories have a universal
behaviour when two (or more) particle momenta become collinear, which in turn can be used
to constrain their form, or check the correctness of a calculation. In the following we discuss
the case of two gluons with momenta p1 and p2 becoming collinear. This is described by set-
ting p1 = zP and p2 = (1 − z)P, where P := p1 + p2 and P2 → 0 in the collinear limit. The
universal behaviour of tree-level amplitudes can then be described as

An(1, . . . , n)
p1‖p2−−−→

∑
h=±

Split−h(1, 2) An−1(Ph, 3, . . . , n). (74)

The splitting amplitudes Split−λ(1, 2) diverge in the collinear limit, and are given by

Split−(1−, 2−) = 0, Split−(1+, 2+) =
1√

z(1 − z)
1

〈12〉 ,

Split+(1+, 2−) =
(1 − z)2

√
z(1 − z)

1
〈12〉 , Split−(1+, 2−) = − z2

√
z(1 − z)

1
[12]

.

(75)

An elegant way to derive this universal behaviour at tree level is based on the MHV diagram
method9 [10], later extended to to loop amplitudes in [69, 70]. While we will not review it
here (see e.g. [71] for details), the basic rules are very easy to explain: MHV amplitudes are
continued off shell and used as vertices; to an internal leg whose momentum P is a sum of
several external momenta, we associate the spinor

λα
̂P
→ Pα̇αξ̃α̇, (76)

where |ξ] is a reference spinor (this is often called an off-shell continuation of the spinor); and
MHV vertices are joined using scalar propagators i/P2. Finally, by counting negative helici-
ties, one can immediately see that MHV diagrams contributing to an NkMHV amplitude must

9 MHV diagrams can also be understood as multi-line BCFW recursion relations, where one shifts the λ̃ spinors of all
the negative-helicity gluons [44].
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contain k + 1 MHV vertices. To make contact with section 5.4, note that this corresponds to a
disconnected curve of degree k + 1 in twistor space—the union of k + 1 complex lines.

MHV diagrams treat positive and negative helicities on different footing, hence we need
to distinguish two types of collinear limits: those where the number of negative helicities is
unchanged, that is ++→+ and +−→−; and those where this number is reduced by one,
that is −−→− and +−→+. In both cases, the MHV diagrams that contribute in the limit
have the two legs that become collinear attached to the same MHV vertex [10]. In the first
case, corresponding to the second and third splitting amplitudes in (75), the collinear behaviour
descends directly from the single MHV vertex containing the two momenta that are becoming
collinear; while in the second, it arises from an MHV diagram where the two particles going
collinear belong to a three-point MHV vertex, connected to another MHV vertex with the usual
scalar propagator of the MHV diagrammatic approach. As an example we now derive collinear
factorisation in the case +−→+. The relevant MHV diagram is shown in figure 4, and gives

i
〈2 − P̂〉3

〈−P̂ 1〉〈12〉
i

〈12〉[21]
An−1(P̂+, . . .). (77)

Following (76), the spinor λP̂ is given by λP̂ = (p1 + p2)|ξ]/[P̂ξ], where |ξ
]

is the reference
spinor. Using this and (17), we get

〈2 − P̂〉 = i
〈21〉[1ξ]

[P̂ξ]
, 〈1 − P̂〉 = i

〈12〉[2ξ]

[P̂ξ]
, (78)

and hence

An
p1‖p2−−−→ − 1

[12]
[1ξ]3

[P̂ξ]2[2ξ]
An−1(P̂+, . . .). (79)

Replacing λ̃1 →
√

zλ̃P̂, λ̃2 →
√

1 − zλ̃P̂, we arrive at

An
p1‖p2−−−→ − z2

√
z(1 − z)

1
[12]

An−1(P+, . . .), (80)

where P = p1 + p2, thus reproducing the last splitting amplitude in (75).
We conclude by mentioning that collinear behaviour at one loop [72, 73] can also be studied

[70] using quantum MHV diagrams [69, 74–76].

7.1.2. Soft limits. Amplitudes have a universal behaviour also in soft limits, where the momen-
tum of a particle becomes small10. At tree level,

An(1, . . . , a, s, b, . . . , n)
ps→0−−−→ S (0)(a, s, b) An−1(1, . . . , a, b, . . . , n), (81)

where S (0)(a, s, b) is a tree-level soft (or eikonal) factor,

S (0)(a, s+, b) =
〈a b〉

〈a s〉 〈s b〉 , S (0)(a, s−, b) = − [a b]
[a s] [s b]

. (82)

Note the dependence on the helicity of the soft particle (but not on the helicities of the particles
adjacent to it in colour space). The derivation from MHV diagrams is straightforward for the

10 An extensive discussion of soft limits can be found in chapter 11 of this review [77].
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Figure 4. The MHV diagram contributing to the collinear limit −−→−. The grey
(white) amplitudes is (anti)MHV.

first case. The second case, where the gluon becoming soft has negative helicity, is special since
MHV vertices have precisely two negative helicities and a generic MHV vertex would simply
vanish in the limit. Two diagrams have to be considered in this case, shown in figure 5: in the
first one, an MHV three-point vertex with external gluons a and s (s is the leg whose momentum
is becoming soft) is joined to an MHV vertex to which the leg b belongs, maintaining the colour
ordering a, s, b; in the second, s and b belong to a three-point MHV vertex, which is then linked
to a second MHV vertex containing the gluon a. Focusing on the case where particles a and b
have positive helicities as an example, the first diagram gives

i
〈s − P̂A〉3

〈−P̂Aa〉〈as〉
i

〈sa〉[as]
An−1(P̂A, b, . . .) =

[aξ]3

[sξ][sa]
1

[P̂Aξ]2
An−1(P̂A, b, . . .)

→ 1
[sξ]

[aξ]
[sa]

An−1(P̂A, b, . . .),

(83)

while the second evaluates to

i
〈−P̂Bs〉3

〈sb〉〈b − P̂B〉
i

〈sb〉[bs]
An−1(P̂B, b, . . .)

= − [bξ]3

[sξ][sb]
1

[P̂Bξ]2
An−1(a+, P̂B, . . .)

→− 1
[sξ]

[bξ]
[sb]

An−1(a+, P̂B, . . .),

(84)

where |ξ
]

is the usual MHV-diagram reference spinor, and

|P̂A〉 =
(pa + ps)|ξ]

[P̂Aξ]
, |P̂B〉 =

(pb + ps)|ξ]

[P̂Bξ]
. (85)
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Figure 5. The two MHV diagrams contributing to the soft limit ps → 0 for the helicities
(a+, s−, b+).

We also used (17), and

〈sP̂A〉 =
〈sa〉[aξ]

[P̂Aξ]
, 〈aP̂A〉 =

〈as〉[sξ]

[P̂Aξ]
, 〈sP̂B〉 =

〈sb〉[bξ]

[P̂Bξ]
,

〈bP̂B〉 =
〈bs〉[sξ]

[P̂Bξ]
. (86)

Summing the contributions in (83) and (84), and taking the soft limit (with P̂A → pa, P̂B → pb)
we obtain

An(a, s−, b, . . .)
ps→0−−−→ − [ab]

[as][sb]
An−1(a, b, . . .), (87)

in agreement with S (0)(a, s−, b) in (82). Similar derivations can be carried out for the other
possible helicities of particles a and b.

7.1.3. Soft limits from recursion relations. There is an alternative, powerful way to derive soft
theorems from the BCFW recursion relation. It was originally proposed in [78], where it was
found that not only the leading but also the subleading soft behaviour of graviton amplitudes
is universal. A similar approach was devised in Yang–Mills theory in [79], as we now briefly
review. Choosing to shift the momenta of particles s and b, a single diagram contributes in the
soft limit, which is identical to that on the left-hand side of figure 5 now to be interpreted as
a BCFW diagram. For concreteness we carry out the computation for the case that legs a and
s carry helicity +1, however the result is independent of the helicity of particle a, hence we

will drop its helicity label. With the shifts λ̂s = λs + zλb, ˆ̃λb = λ̃b − zλ̃s, the recursive diagram
evaluates to

An(a, s+, b, . . .) →−i
[as]3

[−P̂Aa][s − P̂A]

i
(pa + ps)2

An−1(z∗), (88)

and z∗ = −〈as〉/〈ab〉 is the position of the pole for this BCFW diagram. The internal momen-

tum evaluated at this pole can be written as P̂A = λa

[
λ̃a + λ̃s(〈sb〉/〈ab〉)

]
(after using the

Schouten identity), and using this one quickly arrives at

An(a+, s+, b, . . .)
ps→0−−−→ 〈ab〉

〈as〉〈sb〉An−1(z∗), (89)
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where An−1(z∗) = An−1({λa, λ̃a +
〈sb〉
〈ab〉 λ̃s}, {λb, λ̃b +

〈as〉
〈ab〉 λ̃s}, . . .). To leading order in the soft

limit, one simply replaces An−1(z∗) → An−1(a, b, . . .) thus reproducing the soft factor in (82).
One can also be more ambitious and keep subleading terms in the limit. Rescaling the soft
momentum as ps → δps to keep track of terms, one finds that

An(a, s+, b, . . .)
ps→0−−−→

(
1
δ2
S (0) +

1
δ
S (1)

)
An−1(a, b, . . .) +O(δ), (90)

where the subleading soft factor S (1) is

S (1) =
1

〈as〉 λ̃s
∂

∂λ̃a
+

1
〈sb〉 λ̃s

∂

∂λ̃b
. (91)

7.2. Gravity

7.2.1. Collinear limits. Unlike Yang–Mills amplitudes, gravity amplitudes in real Minkowski
space are non-singular in collinear limits, more precisely they only have phase singularities,
which become simple poles in complex Minkowski space. Concretely [80], if we send pi → zP
and pj → (1 − z)P as P2 = (pi + pj)2 → 0, we have

Mn(ihi , j h j , . . .)
pi‖pj−−−→

∑
h=±±

SplitGR
−h (ihi , j h j)Mn−1(Ph, . . .) + Rn, (92)

where h and σ denote the helicities of the gravitons. The remainder Rn is free of phase singu-
larities/poles and the splitting amplitudes are given by

SplitGR
−−(i++, j++) = − 1

z(1 − z)
[i j]
〈i j〉 , SplitGR

++(i−−, j++) = − z3

(1 − z)
[i j]
〈i j〉 ,

SplitGR
++(i++, j++) = 0,

(93)

where the missing cases can be obtained from parity, or simply vanish. The ratio of spinor
brackets appearing in the splitting amplitudes is manifestly a phase in real Minkowski space,
but in complex Minkowski space the brackets are independent and if the collinear limit is taken
as 〈i j〉 → 0, the ratio becomes singular.

The gravity splitting amplitudes can be derived easily using the fact that the three-graviton
amplitudes are simply squares of the corresponding three-gluon amplitudes leading to a simple
relation between graviton and gluon splitting amplitudes [80]

SplitGR
±±(i2hi , j 2h j) = si j

[
Split±(ihi , j h j)

]2
, (94)

where the Yang–Mills splitting amplitudes are given in (75).

7.2.2. Soft limits. As already mentioned in section 7.1.3, the leading [81], subleading and sub-
subleading [78] soft limits of gravity amplitudes are universal11. These can be obtained using
the four-dimensional BCFW recursion relation [78], with the result

Mn
ps→0−−−→

(
1
δ
S (0)

grav(q) + S (1)
grav(q) + δ S (2)

grav(q)

)
Mn−1 +O(δ2), (95)

11 The sub-subleading soft factor quoted here is for Einstein–Hilbert theory. In general it can receive additional, theory-
dependent corrections [82].
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where, for a positive-helicity soft graviton s+,

S (0)
grav(s+) =

∑
a

[sa]
〈sa〉

〈xa〉
〈xs〉

〈ya〉
〈ys〉 ,

S (1)
grav(s+) =

1
2

∑
a

[sa]
〈sa〉

(
〈xa〉
〈xs〉 +

〈ya〉
〈ys〉

)
λ̃α̇

s
∂

∂λ̃α̇
a

.

S (2)
grav(s+) =

1
2

∑
a

[sa]
〈sa〉 λ̃

α̇
s λ̃

β̇
s

∂2

∂λ̃α̇
a∂λ̃

β̇
a

.

(96)

The sum over a is over the remaining n − 1 particles, and |x〉 and |y〉 are reference spinors.
The soft factors for the case where s has negative helicity can be found by conjugation. S (0) is
the famous Weinberg soft factor [81], and we also quote below expressions for the soft factors
valid in any dimension in terms of polarisation tensors:

S (0) =
∑

a

kμa εμν(s)kνa
ka · ps

, S (1) = −i
∑

a

kμa εμν(s)Jνρ
a ksρ

ka · ps
,

S (2) = −1
2

∑
a

εμν(s)ksρJμρ
a ksσJνσ

s

ka · ps
,

(97)

where Jμνa = Lμν
a +Σμν

a , and Lμν
a = i

(
kμa

∂
∂kaν

− kνa
∂

∂kaμ

)
, Σμν

a = i
(
εμa

∂
∂εaν

− ενa
∂

∂εaμ

)
. We also

mention that soft theorems beyond leading order can be elegantly derived from gauge invari-
ance [83, 84]. Finally, it is interesting to note that double soft limits are also universal, and
corresponding theorems can be established, with the simultaneous and consecutive limits
leading to different types of universal behaviour [85, 86].

8. Supersymmetric amplitudes

8.1. Generalities

The spectrum of maximally supersymmetric N = 4 SYM theory contains the following
states12:

• Two gluons G±(p) with helicities 1,−1,
• Four Weyl fermions ψA with helicity +1/2, transforming in the fundamental of the R-

symmetry group SU(4)R, and four Weyl fermions ψ̄A with helicity −1/2 in the anti-
fundamental representation, with A = 1, . . . , 4, and

• Six real scalar fields (corresponding to particles of zero helicity)φ[AB] in the antisymmetric
tensor representation of the R-symmetry group (A, B = 1, . . . , 4).

One can then combine the states into an on-shell superfield [88]

Φ(η, p) :=G+(p) + ηAψA(p) +
ηAηB

2!
φ[AB](p) + εABCD

ηAηBηC

3!
ψ̄D(p)

+ η1η2η3η4G−(p), (98)

12 See e.g. [87] for a review.
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where the ηA are four auxiliary Graßmann variables. For each particle, the coordinates (λ, λ̃, η)
parameterise an on-shell superspace [89]. The supersymmetry generators qA and q̄A satisfy the
algebra {qA

α, q̄Bα̇} = λαλ̃α̇ δ
A
B, and have a natural realisation on this superspace as qA

α = λαη
A,

q̄Aα̇ = λ̃α̇
∂

∂ηA , or, for n particles,

qA
α =

n∑
i=1

λiαη
A
i , q̄Aα̇ =

n∑
i=1

λ̃iα̇
∂

∂ηA
i
. (99)

The next step is to combine all amplitudes with a given number of particles n and fixed total
helicity into a superamplitude13 A. This superamplitude can then be expanded in powers of the
ηA

i s, with each coefficient of the expansion being a component amplitude. A term containing
ki powers of ηi corresponds to an amplitude where the ith particle has helicity hi = 1 − ki/2,
with the total helicity being

∑n
i=1hi. In other words, to get an amplitude with helicity hi for

particle i we need to pick the term containing 2 − 2hi powers of ηi in the superamplitude.
Superamplitudes are invariant under the q and q̄ supersymmetries, in addition to being

invariant under translations. The latter symmetry is implemented by pulling out a δ-function of
total momentum conservation δ(4)(p), with p :=

∑n
i=1λiλ̃i, and similarly we can realise the q-

supersymmetry manifestly via a δ-function of supermomentum conservation14. Summarising,
we will set

An := δ(4)(p)δ(8)(q) An, (100)

where q =
∑n

i=1ηiλi is the total supermomentum. It is then easily checked that invariance
under q̄ supersymmetry implies that q̄An = 0 on the support of the two δ-functions.

8.2. MHV and NMHV superamplitudes

Our first example is the MHV superamplitude. Its elegant expression was given in [88]:

AMHV
n (1, . . . , n) = i gn−2 δ(4)(p) δ(8)(q)

〈12〉〈23〉 . . . 〈n1〉 . (101)

From this it is easy to extract component amplitudes as outlined in the previous section. For
instance, the MHV amplitude with negative helicity gluons i− and j− can be extracted as the
coefficient of η4

i η
4
j in the expansion of (101), leading to15

AMHV
n (1+, . . . , i−, . . . , j−, . . . , n+) = ign−2 〈i j〉4

〈12〉〈23〉 · · · 〈n1〉 .

Recall that we derived this for neighboring {i, j} = {n, 1} in section 5.3.
Next we consider the NMHV superamplitudes. These have the form [90, 91]

ANMHV
n = AMHV

n

i+n−1∑
u,v=i+2

Riuv, (102)

13 Not to be confused with the complete amplitudes of section 3, traditionally denoted in the same way.
14 The three-point case is special and will be discussed in (104).
15 A useful formula is δ(8)(λ1η1 + λ2η2 + · · · ) = 〈12〉4

∏4
A=1η

A
1 η

A
2 + · · · .
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where the functions Rrst are defined as

(103)

and Ξrst := 〈r|xrsxst|θtr〉+ 〈r|xrtxts|θsr〉. Here we have introduced the so-called dual, or
region (super)momenta16 xi and θi, defined λiλ̃i := xi − xi+1, λiηi := θi − θi+1, so that xi j =∑ j−1

k=iλkλ̃k, θi j =
∑ j−1

k=1λkηk, with xn+1 = x1, θn+1 = θ1. We also showed a convenient dia-
grammatic notation for the invariants introduced in [92]. In section 9.3 we will prove that the
NMHV is dual superconformal covariant.

8.3. Supersymmetric BCFW recursion relation

We now discuss how to supersymmetrise the BCFW recursion relation of section 5.1 [63, 64].
As in the non-supersymmetric case, we construct amplitudes recursively starting from two
three-point superamplitudes: the first one has the total MHV helicity, and is given by (101) for
n = 3, while the three-point MHV superamplitude is [63, 64]

AMHV
3 = −i g δ(4)(p1 + p2 + p3)

δ(4)(η1[23] + η2[31] + η3[12])
[12] [23] [31]

. (104)

It was shown in [63] that, despite its slightly unusual supersymmetric delta function, the
MHV superamplitude is invariant under supersymmetry, as well as covariant under the dual
superconformal symmetry of [90].

Similarly to the discussion of section 4.1, three-point superamplitudes can be determined
from symmetry considerations alone up to an overall normalisation. For instance, the form
of the three-point MHV superamplitude can be fixed by requiring that it depends only on the
holomorphic spinors λ1,λ2,λ3 and satisfies the relations ĥi AMHV

3 = AMHV
3 , i = 1, 2, 3, where

ĥi :=
1
2

(
−λα

i
∂

∂λα
i
+ λ̃α̇

i
∂

∂λ̃α̇
i

+ ηA
i

∂

∂ηA
i

)
, (105)

which express the fact that the on-shell superfield (98) has helicity +1.

8.3.1. Derivation. We now derive the supersymmetric recursion relation. We begin by observ-
ing that in order to maintain supersymmetry we must accompany the momentum shifts by a
supermomentum shift. The following (super)shifts

ˆ̃
λ1(z) := λ̃1 + zλ̃2, λ̂2(z) = λ2 − zλ1, η̂1(z) = η1 + zη2, (106)

manifestly preserve (super)momentum conservations and the on-shell conditions. As in the
non-supersymmetric case, we define a one-parameter family of superamplitudes,

An(z) :=An({λ1, ˆ̃λ1, η̂1}, {λ̂2, λ̃2, η2}, . . .), (107)

16 See section 9.2 for a discussion of such quantities in the context of dual superconformal invariance.
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where the dots denote the unshifted (super)momenta of the remaining n − 2 particles. The
derivation of the recursion relation parallels that of its non-supersymmetric cousin, with the
result [63, 64]

An =
∑

P

∫
d4ηP̂ AL(zP)

i
P2

AR(zP), (108)

where ηP̂ is the Graßmann coordinate associated to the internal particle with momentum P̂.
The sum is over all diagrams where such that the shifted momenta belong to different super-
amplitudes. The two superamplitudes in (108) are computed on the solution zP of P̂2(z) = 0,
with P̂(z) :=P + zλ1λ̃2. Note that in (108) the total helicities of AL and AR must sum to the
total helicity of A.

The derivation of (108) rests on the important fact that An(z) → 0 as z →∞ [63, 64].
Specifically, we will now show that

AN=4
n (z)

z→∞∼ 1
z

, AN=8
n (z)

z→∞∼ 1
z2
. (109)

To do so, we note that in the maximally supersymmetric N = 4 SYM or N = 8 supergravity
theories, we have enough supersymmetry transformations to set to zero two of the ηA vari-
ables in the superamplitude An(λ1, λ̃1, η1;λ2, λ̃2, η2; . . . ;λn, λ̃n, ηn), for instance η1 and η2.
We can then determine the 2N parameters ζα̇B in a generic q̄ supersymmetry transformation
q̄ζ := ζα̇B q̄B

α̇, with B = 1, . . . ,N , in such a way that eq̄ζ ηA
1 = eq̄ζ ηA

2 = 0, that is q̄ζη
A
1,2 = −ηA

1,2.
The solution is

ζA
α̇ =

1
[12]

(
−λ̃1α̇η

A
2 + λ̃2α̇η

A
1

)
, (110)

and the action on the remaining n − 2 Graßmann variables ηi is

eq̄ζ ηi := η′i = ηi − η1
[i 2]
[1 2]

+ η2
[i 1]
[1 2]

. (111)

As we have seen in section 8.1, supersymmetry invariance of a superamplitude implies that
δ(4)(p)δ(2N )(q) [q̄B

β̇
An] = 0, hence eq̄ζAn = An on the support of the delta functions. Acting with

the q̄ operator explicitly, we get

An(λ1, λ̃1, 0;λ2, λ̃2, 0;λ3, λ̃3, η′3; . . .) = An(λ1, λ̃1, η1;λ2, λ̃2, η2;λ3, λ̃3, η3; . . .), (112)

with η′i defined as in (111) (for all i = 3, . . . , n). We can now use (112) to prove that our
superamplitudes An(z) defined in (107) have the large-z behaviour advertised in (109). The
key observation is that the supersymmetry transformation that sets η1(z) and η2 to zero is
z-independent: indeed, using (106) and (110) we see that

ζA
α̇ =

−ˆ̃
λ1α̇η

A
2 + λ̃2α̇η̂

A
1

[12]
=

−λ̃1α̇η
A
2 + λ̃2α̇η

A
1

[12]
. (113)

As a result An(z) = An(λ1, ˆ̃λ1, 0; λ̂2, λ̃2, 0; . . . ;λi, λ̃i, η′i ; . . . ;λn, λ̃n, η′n), where crucially none

of the η′i contain z: the only z-dependence occurs through ˆ̃
λ1 and λ̂2. The large-z behaviour of

An(z) is then identical to that of a gluon (or graviton) amplitude where particles 1 and 2 have
positive helicity. Such amplitudes fall off as 1/z at large z for Yang–Mills theory [43], or 1/z2

in gravity [46], thus proving (109).
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Figure 6. BCFW diagram for the n-point MHV recursion. In the derivation we use a
[12〉 shift.

8.3.2. Application to MHV superamplitudes. We now use the supersymmetric recursion rela-
tion of [63, 64] to derive the MHV superamplitude (101). With the supershifts in (106), there
is a single recursive diagram to consider, shown in figure 6. The right-hand side is always a
three-point MHV superamplitude, whereas that on the left-hand side is an (n − 1)-point MHV
superamplitude. We will assume that the latter has the form given in (101), and then derive it
for n points using the recursion. Starting from n = 4 this gives of course a derivation of the
superamplitude at any n. The building blocks in the supersymmetric recursion (108) are then

AL = ign−3 δ(4)

(
n∑

i=4

pi + p̂1 + P̂

)
δ(8)
(∑n

i=4qi + λ1η̂1 + ηP̂λP̂

)
〈1P̂〉〈P̂4〉 . . . 〈n1〉

, (114)

AR = −ig
δ(4)( p̂2 + p3 − P̂) δ(4)(η−P̂[23] + η2[3 −P̂] + η3[−P̂ 2])

[−P̂ 2][23][3 −P̂]
.

Using the identity

δ(8)

(
η̂1λ1 +

n∑
i=4

ηiλi + ηP̂λP̂

)
δ(4)(η−P̂[23] + η2[3 −P̂] + η3[−P̂ 2])

= δ(8)

(∑
i∈L,R

η̂iλ̂i

)
δ(4)(η−P̂[23] + η2[3 −P̂] + η3[−P̂ 2]), (115)

and (super)momentum conservation
∑

i η̂iλ̂i =
∑

iηiλi,
∑

i p̂i =
∑

i pi, we arrive at the result
An = δ(4)

(∑
i∈L,R pi

)
δ(8)
(∑

i∈L,R ηiλi

)
An, where

An =
ign−2

P2
23

1

〈45〉 . . . 〈n1〉[23] 〈1P̂〉〈P̂4〉[−P̂2][3 − P̂]

×
∫

d4ηP̂ δ
(4)(η−P̂[23] + η2[3P̂] + η3[P̂2]). (116)
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It is straightforward to see that 〈1P̂〉〈P̂4〉[−P̂2][3 − P̂] = −〈1|2|3]〈4|3|2] = −〈12〉〈34〉[23]2,
finally obtaining

An =
ign−2

〈12〉〈23〉 . . . 〈n1〉 . (117)

We also note that the supersymmetric recursion relation was solved in closed form in [93].

8.4. Vanishing Yang–Mills amplitudes

n-gluon amplitudes with n > 3 where all or all but one of the gluons have the same helicity are
zero at tree level in any theory17. Intriguingly, one can derive this fact using supersymmetry:
at tree level N = 4 SYM has the same gluon amplitudes of pure Yang–Mills; because of the
δ(8) of supermomentum conservation, the first non-vanishing amplitudes must have at least two
negative-helicity gluons (providing each four powers of η), except for the three-point case (104)
which is quartic in η. Pleasingly, supersymmetry can be used to make powerful statements on
non-supersymmetric amplitudes!

9. Superconformal, dual superconformal and Yangian symmetries

As mentioned in the introduction, scattering amplitudes inN = 4 SYM are remarkably simple.
Thanks to the finiteness of the theory [95] they are ultraviolet finite, and furthermore they
are constrained by several symmetries. Some of these are symmetries of the Lagrangian—the
standard superconformal symmetry group—but in addition there are symmetries which are
visible only in the S-matrix of the theory: the dual superconformal and Yangian symmetries.
In the next sections we present a snapshot of these symmetries, and describe some of their
consequences on the S-matrix of N = 4 SYM.

9.1. Superconformal symmetry

We introduced the supersymmetry generators qA
α and q̄Aα̇ of N = 4 SYM in (99), where we

saw that they leave the superamplitude invariant by virtue of the supermomentum conserving
delta function δ(8)(q) of (100). In the presence of conformal symmetry, the commutator of a
special conformal and the supersymmetry generators introduces a set of new Graßmann-odd
generators known as superconformal generators, s and s̄:

[kαα̇, qβ A] = δβα s̄A
α̇, s̄A

α̇ = ηA ∂̃α̇,

[kαα̇, q̄β̇
A] = δβ̇α̇ sα A, sα A = ∂α ∂A. (118)

The complete N = 4 superconformal symmetry algebra finally takes the form

{qα A, q̄α̇
B} = δA

B pαα̇, {sα A, s̄B
α̇} = δA

B kαα̇

{qα A, sβ B} = mα
β δ

A
B + δαβ rA

B +
1
2
δαβ δ

A
B (d + c)

{q̄α̇
A, s̄B

β̇
} = mα̇

β̇ δ
A
B − δα̇

β̇
rB

A +
1
2
δα̇
β̇
δB

A (d − c)

[pαα̇, sβ A] = δαβ q̄α̇
A, [pαα̇, s̄A

β̇
] = δα̇

β̇
qαA,

(119)

17 And to all loops in the presence of supersymmetry, see e.g. [94] for a proof.
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with the central charge c = 1 + 1
2 (λα∂α̇ − λ̃α̇∂α̇ − ηA∂A) = 1 − h as well as an additional

global su(4) R-symmetry generator rA
B

rA
B = ηA ∂B − 1

4
δA

B ηC ∂C, ∂A :=
∂

∂ηA
, (120)

which acts as an internal rotation in ηA-space. This superalgebra is known as psu(2, 2|4).

9.2. Dual superconformal symmetry

Remarkably, the N = 4 SYM theory enjoys an additional hidden invariance known as dual
superconformal symmetry. To make this symmetry manifest, one has to parameterise the
momenta and supermomenta of the scattered particles in terms of dual momenta xi and super-
momenta θi. These are defined as

piαα̇ = λiαλ̃iα̇ = (xi − xi+1)αα̇, ηA
i λiα = θA

iα − θA
i+1α, (121)

and we require that xn+1 = x1 and θn+1 = θ1. Note that one can make consistent assignments
for the region momenta only for planar diagrams. An advantage of this parameterisation is
that momentum conservation is automatic: the only constraint on the xis is the on-shell condi-
tions (xi − xi+1)2 = 0, while the fermionic variables θi must also satisfy the on-shell condition
(θi − θi+1)λi = 0. Momentum and supermomentum conservation are then implemented with
the delta functions δ(4)(x1 − xn+1)δ(8)(θ1 − θn+1).

Without spoiling momentum and supermomentum conservation, we can then act with inver-
sions on the dual momenta and supermomenta [90]:

xαβ̇ → I[xαβ̇] =
xβα̇
x2

:= x−1
βα̇, θAα → I[θAα] = (x−1)α̇βθA

β . (122)

This transformation makes sense since dual momenta, unlike the momenta, are unconstrained.
It is also important that dual conformal inversions do not change the lightlike nature of a
momentum—this is indeed one of the claims to fame of the conformal group: ( xμ

x2 − yμ

y2 )2 = 0

if (x − y)2 = 0. Note that (122) implies that

I[(xi j)αβ̇] = −(x−1
j xi jx

−1
i )βα̇, (123)

with xi j := xi − x j, and in particular I[xii+1] = −x−1
i+1xii+1x−1

i . In order to determine what is
I[λα], we note that we want to preserve the constraint λβ(xii+1)βα̇ = 0. It then follows that
(x−1

i+1xii+1x−1
i )αβ̇ I[λβ] = 0, which can be solved by choosing

λβ
i → I[λβ

i ] = (x−1
i )β̇αλiα. (124)

This also implies that

〈i i + 1〉 → 〈i i + 1〉
x2

i
, (125)

as it can be seen after using xii+1|i〉 = 0. The transformation of λ̃i under an inversion can be
found by noticing that from λiλ̃i = xii+1 it follows that λ̃α̇

i = xα̇βii+1λi+1β/〈ii + 1〉. Using then
(123)–(125) one quickly arrives at

λ̃α̇
i → I[λ̃α̇

i ] = λ̃iβ̇(x−1
i+1)β̇α. (126)
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Special conformal transformations are then obtained by performing an inversion followed by
a translation and another inversion. Combined with supersymmetry, this covers all supercon-
formal transformations.

The dual supersymmetries are either manifest or related to ordinary special superconfor-
mal symmetry [90], which is an invariance of the N = 4 theory. Hence the invariance of the
S-matrix under the full dual superconformal symmetry only requires that we prove invari-
ance under dual inversions. This was achieved in [63], by constructing the supersymmetric
BCFW recursion relation reviewed in section 8.3. In a nutshell, the proof relies on the fact that
the building blocks of each recursive diagram respect dual superconformal symmetry, hence
guaranteeing the covariance of the final answer.

Finally, we mention that the first strong hint of dual conformal symmetry was observed at
loop level rather than at tree level [96], as we now outline. It is well known that all one-loop
amplitudes in the maximally supersymmetric theory can be written in terms of box integrals
[97], such as the one shown in figure 7. A box integral can be defined as

I(x1, . . . , x4) =

∫
d4x5

(2π)4

1
x2

51x2
52x2

53x2
54

, (127)

where we have introduced dual momenta as p1 := x1 − x2, . . . , p4 := x4 − x1, and the momenta
of the internal legs are x51, . . . , x54. The advantage of this expression is that the loop measure
is simply d4x5, and there is no need to pick a particular internal leg as the integration variable.
Note that we have written the integration measure in four dimensions; this is allowed only
when the integral does not require (infrared) regularisation, which is the case when all the pi

are massive18, otherwise we can simply replace d4x5 → dDx5 with D = 4 − 2ε, and choose
ε < 0. Leaving momentarily this fact aside, let us study the transformation properties of (127)
under dual conformal symmetry. Under the inversion (122), we simply have

x2
i j →

x2
i j

x2
i x2

j

, (128)

so that introducing x′5 = (x5)−1, and using x2
5′i′ =

x2
5i

x2
5 x2

i
as well as d4x′5 = d4x5

(x2
5)4 , we find that

I(x′1, . . . , x′4) = (x2
1 . . . x2

4)I(x1, . . . , x4). (129)

Hence the box integrals are covariant under inversions, and since integrals are invariant under
translations of the dual momenta, it follows that all box integrals, if evaluated strictly in four
dimensions, are dual conformal covariant [96].

Usually one encounters box integrals where at least one of the external momenta is mass-
less, in which case they are infrared divergent and have an anomaly (computed in [102]); these
integrals are usually called ‘pseudo-conformal’. Dual conformal symmetry is then anomalous
at loop level [90, 103], and the anomaly of the amplitudes turns out to be closely related
to that of the polygonal lightlike Wilson loop [104, 105] dual to the amplitude [106–108].
Using this anomaly one can find useful constraints on supercoefficients in the expansion of
superamplitudes in an integral basis [102, 109]. We also mention that pseudo-conformality of
the integrals has been used to write the four-point MHV amplitude up to five [110], six and
seven loops [111], following the remarkable direct calculations at three [112] and four loops
[113, 114]. We will come back to loop amplitudes in section 10.

18 The corresponding so-called ‘four-mass’ box has been evaluated in [98], see also [99–101] for more recent calcu-
lations of the same quantity.
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Figure 7. A one-loop box function. Here p1 := x1 − x2, . . . , p4 := x4 − x1.

9.3. Dual superconformal covariance of the MHV and NMHV superamplitudes

We begin by showing that the tree-level MHV superamplitude (101) is covariant under dual
conformal symmetry [91]. As explained earlier, it is sufficient to consider dual inversions.
Using (125), we see that

∏n
i=1〈ii + 1〉 →

∏n
i=1x2

i 〈ii + 1〉. One then observes that the combi-
nation of delta functions δ(4)(xi − xn+1)δ(8)(θ1 − θn+1) is invariant under inversions. Hence the
MHV superamplitude transforms covariantly under inversions:

AMHV
n (1, 2, . . . , n) →AMHV

n (1, 2, . . . , n)
n∏

k=1

x2
k . (130)

Next we discuss the NMHV superamplitudes, whose explicit expression is shown in (102). To
prove that they transform covariantly, we need to show that the R-functions in (103) are dual
superconformal invariant. It is convenient to define the four-bracket

〈i, j − 1, j, k〉 := 〈i|xi jx jk|k − 1〉〈 j − 1j〉, (131)

whose usefulness arises from the fact that it is a dual conformal invariant. An elegant way to
see this is to introduce momentum twistors [115, 116]

ZÂ
i =

(
λα

i

μα̇
i

)
, μα̇

i = xα̇αi λiα, (132)

on which conformal transformations act linearly—they are realised as SL(4) transformations
on the index Â. The four-bracket (131) can then be recast as

〈i, j − 1, j, k〉 = εÂB̂ĈD̂ZÂ
i ZB̂

j−1ZĈ
j ZD̂

k , (133)
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which is manifestly invariant under SL(4) transformations. To address dual superconformal
transformations, it is then convenient to introduce supertwistor variables

ZM
i =

(
ZÂ

i

χA
i

)
, χA

i = θA α
i λiα. (134)

These transform in the fundamental representation of the supergroup SL(4|4), whose projective
real section PSU(2, 2|4) is precisely the (dual) superconformal group of N = 4 SYM. Given
five arbitrary superstwistors Za, . . . ,Ze, it is straightforward to show that

[a, b, c, d, e] =
δ(4)(〈a, b, c, d〉χe + cyclic)

〈a, b, c, d〉〈b, c, d, e〉〈c, d, e, a〉〈d, e, a, b〉〈e, a, b, c〉 (135)

is an SL(4|4) invariant19. This is useful since one can prove that Rrst = [s − 1, s, t − 1, t, r]
[116], from which dual superconformal invariance of the R-functions follows.

9.4. Yangian symmetry

The generators of the dual superconformal symmetry algebra {P, K, S, S̄, Q, Q̄} are most natu-
rally written in an extended superspace given by the set of variables {λα, λ̃α̇, ηA, xαα̇, θαA} that
are subject to the constraints of (121). Explicitly, the dual superconformal generators K and S
take the form

Kαα̇ =

n∑
i=1

[
xαβ̇i xα̇βi

∂

∂xββ̇i

+ xα̇βi θαB
i

∂

∂θβB
i

+ xα̇βi λα
i

∂

∂λβ
i

+ xαβ̇i+1λ̃
α̇
i

∂

∂λ̃β̇
i

+ λ̃α̇
i θ

αB
i+1

∂

∂ηB
i

]
,

SA
α =

n∑
i=1

[
−θB

iαθ
βA
i

∂

∂θβB
i

+ xiα
β̇θβA

i
∂

∂xββ̇i

+ λiαθ
γA
i

∂

∂λγ
i

+ xi+1 α
β̇ηA

i
∂

∂λ̃β̇
i

− θB
i+1 αη

A
i

∂

∂ηB
i

]
,

(136)

and can be shown to commute with the constraints (121). An interesting question is what
algebraic structure emerges if one commutes the superconformal and dual superconformal gen-
erators with one another, i.e. studies the closure of the two algebras. It turns out that this induces
an infinite-dimensional symmetry algebra known as the Yangian Y[psu(2, 2|4)] [117]. A Yan-
gian algebra Y(g) built upon a simple Lie algebra g is a deformation of the loop algebra realised
by generators J(n)

a with levels n ∈ N [118, 119]. The level-zero and level-one generators obey
the commutation relations

[J(0)
a , J(0)

b } = f c
ab J(0)

c , [J(0)
a , J(1)

b } = f c
ab J(1)

c , (137)

where [., .} denotes a graded commutator. The higher-level generators follow from commu-
tators of the level-one generators. In addition, there are Serre relations [118, 119] which
generalise the usual Jacobi identities. The co-products of the level-zero and level-one Yangian
generators express the action on two-particle states, and read

Δ(J(0)
a ) = J(0)

a ⊗ 𝟙+ 𝟙⊗ J(0)
a ,

Δ(J(1)
a ) = J(1)

a ⊗ 𝟙+ 𝟙⊗ J(1)
a + fa

bc J(0)
b ⊗ J(0)

c .
(138)

19 Note that (135) is invariant under ZM
i → ζiZM

i , in other words these are projective coordinates in super twistor
space. This transformation is related to little group scaling of the spinor-helicity variables.
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In the last term above, the adjoint indices of the structure constant are raised and lowered
with the group metric Tr(J(0)

R a J(0)
R b) with J(0)

R,a in the defining representation of g. The level-one
generators are then given by

J(1)
a =

n∑
i=1

J(1)
ia + fa

cb
∑

i�1< j�n

J(0)
ib J(0)

jc . (139)

In the problem at hand, the level-zero generators J(0)
a coincide with the generators of the super-

conformal algebra psu(2, 2|4) of (119). Interestingly, the dual superconformal generators K
and S of (136) can be identified with the level-one Yangian generators of Y[psu(2, 2|4)]. In
order to see this one solves the constraints (121) via

xαα̇i = xαα̇1 −
∑
j<i

λα
j λ̃

α̇
j , θαA

i = θαA
1 −

∑
j<i

λα
j η

A
j for 2 � i � n + 1, (140)

eliminating xαα̇i and θαA
i , and expresses the dual superconformal generators in the original

superspace variables {λα
i , λ̃α̇

i , ηA
i } to discover that some of the generators become trivial,

namely P and Q, while others overlap with the original superconformal ones, namely S̄ and Q̄.
The non-trivial generators turn out to be K and S. One can show that S is explicitly given, up
to a term ΔS that trivially annihilates the amplitudes, by

SA
α +ΔSA

α = −1
2

∑
i< j

[
mγ

iαqA
jγ −

1
2

(di + ci)qA
jα + pβ̇iαs̄A

jβ + qB
iαrA

jB − (i ↔ j)

]
, (141)

and indeed takes the form (139), with the ‘densities’ J(0)
ia appearing quadratically along with a

trivial evaluation representation J(1)
ia = 0. A similar structure emerges for K [117].

The Yangian is a hidden symmetry of tree-level superamplitudes, that is for any genera-
tor J ∈ Y(psu(2, 2|4)) one finds J A = 0 up to contact terms related to collinear kinematic
configurations [120]. In fact the Yangian symmetry also constrains the structure of planar loop
integrands, however infrared divergences break the symmetry at the integrated level [121–123].
Being an infinite-dimensional symmetry algebra, the Yangian points to a hidden integrability
of planar N = 4 SYM, see [124] for a review.

Finally, the Yangian generators have a particularly simple form when re-expressed in the
supertwistor variables of (134):

J(0)M
N =

∑
i

ZM
i

∂

∂ZN
i

,

J(1)M
N =

∑
i> j

[
ZM

i ZO
j

∂

∂ZO
i

∂

∂ZN
j

− (i ↔ j)

]
. (142)

Written in these variables the Yangian symmetry of the scattering amplitudes can be made
most manifest.

10. Loops from unitarity cuts

10.1. Basic ideas

The fundamental tenet of the modern amplitudes programme [97, 125–127] is to use gauge-
invariant quantities such as amplitudes or form factors as input in computations, avoiding the
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use of Feynman diagrams. In previous sections we have shown how this can be achieved at
tree level, and the next question is how to extend this approach to loop amplitudes. As we will
now review, we can efficiently recycle tree-level amplitudes to obtain loops from trees20.

If we are tasked to stay away from Feynman rules we have to go back to more fundamental
principles of QFT—the relevant ones for us are locality and unitarity. These tell us that at tree
level the only allowed singularities are simple poles arising from propagator factors i

p2−m2+iε ,
and the residue at such poles is the product of smaller scattering amplitudes. These facts under-
pin tree-level factorisation theorems discussed in section 5.1, which in turn lead to the BCFW
recursion relations.

Unitarity is the statement of conservation of probability, it means that if we scatter some-
thing the probability that something happens is one:

S†S = 1. (143)

Now writing the S-matrix as a trivial (forward) piece plus a part that describes the non-trivial
scattering as S = 1 + iT we find

T†T = −i(T − T†). (144)

The formal matrix product on the left-hand side implies a summation over all possible inter-
mediate (helicity) states and an on-shell phase-space integration

∫
d4 pi δ(p2

i − m2
i ) for each

intermediate particle. Taking matrix element of (144) between external states, one obtains a
product of amplitudes that equals the imaginary part (or discontinuity) of the full amplitude,
from which one can in principle obtain the amplitude from a dispersion integral of the form∫

ds′ ImA(s′)
s−s′ where s is some Mandelstam variable. This is conceptually deep and beautiful, but

unfortunately not of much practical use in particular if we consider a process with more than
four particles21.

10.2. General structure of one-loop amplitudes

From now on we will focus on planar one-loop amplitudes in gauge theories. At one-loop,
using (30), these can be written in terms of a single primitive amplitude A(1)

n;1 (and for brevity
we will henceforth call it A(1)

n ). It is well known [97] that also the non-planar contributions
can be expressed as linear combinations of the A(1)

n , giving a further reason to focus on the
computation of the planar parts.

Of utmost importance is the fact that one-loop amplitudes can be decomposed in terms of
scalar Feynman integrals which contain transcendental functions such as logarithms and dilog-
arithms, i.e. functions that contain discontinuities, and rational parts. In general the answer will
contain ultraviolet (UV) and infrared (IR) divergences which we regulate using dimensional
regularisation. From now on we consider massless gauge theories, which implies that tadpoles
are absent. In this case one can write the following ansatz for a general one-loop amplitude:

A(1)
n =

∑
i

aiI4,i +
∑

j

b jI3, j +
∑

k

ckI2,k + Rn, (145)

20 A different incarnation of this can be recognised in the Feynman tree theorem [128, 129], see [70] for a discussion
and comparison of this theorem to the unitarity approach.
21 We also mention important applications of unitarity to the study of black hole scattering in general relativity
[130–144], and in theories of modified gravity with higher-derivative interactions [145–149]. See chapters 13 and
14 of this review [150, 151] for more details.
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where we have introduced the scalar Feynman integrals

In,i =

∫
dD�

(2π)D

1
�2(�− Ki,1)2 . . . (�− Ki,n−1)2

, (146)

where the Ki, j correspond to appropriate sums of subsets of external momenta pi. In the pres-
ence of colour ordering, only adjacent momentum labels appear in the set. The I4,i and I3,i are
called boxes and triangles, which are UV finite but contain IR divergences, and the I2,i are UV-
divergent bubble integrals. We can motivate the ansatz (145) as follows. Had we started from
a gedanken Feynman integral computation of a one-loop n-gluon amplitude, we would have
found many more and much more complicated integrals, the most complicated one being an
n-gon ∫

dD�

(2π)D

Pn(�)
�2(�− p1)2(�− p1 − p2)2 . . . (�+ pn)2

, (147)

where Pn(�) is a polynomial of degree n in the loop momenta, coming from the n momentum-
dependent three-gluon vertices. Such an integral is usually called a tensor integral. Thanks to
a theorem by Passarino and Veltman (PV) [152], all such higher-point and tensor integrals can
be PV-reduced to only scalar bubbles, triangles and boxes. Since all these integrals have been
evaluated and are tabulated, the remaining non-trivial task is to find the coefficients ai, bj and
ck.

Before moving to concrete examples, we now discuss how one can put unitarity to work to
determine these coefficients algebraically without ever performing any integrals, following the
groundbreaking work of [97, 125].

10.3. Unitarity at one loop: two-particle cuts

The main idea is to compute the discontinuities (or imaginary parts) of the left-hand side and
the right-hand side of (145):

Disc(si... j)A(1)
n =

∑
i

aiDisc(si... j)I4,i +
∑

j

b jDisc(si... j)I3, j

+
∑

k

ckDisc(si... j)I2,k, (148)

in all (two- or multi-particle) kinematic channels, with si... j = (pi + pi+1 + · · ·+ pj)2. The left-
hand side of (144) is then evaluated as a product of two tree amplitudes convoluted with a
two-particle phase-space integral corresponding to two internal on-shell states, and we have to
sum over all internal helicities. This procedure is usually called a two-particle cut because two
off-shell propagators are put on shell:

i
�2

1,2 + iε
→ 2πδ(�2

1,2), (149)

and the discontinuity of the one-loop amplitude in the channel si... j is then given by

Disc(si... j)A
(1)
n =

∑
h1,h2

∫
dD�1

(2π)D−2
δ(�2

1)δ(�2
2) Atree(−�−h2

2 , i . . . j, �h1
1 )

× Atree(−�−h1
1 , j + 1, . . . , i − 1, �h2

2 ),

(150)

37



J. Phys. A: Math. Theor. 55 (2022) 443002 Topical Review

Figure 8. A cut diagram evaluating the discontinuity in the si... j-channel.

with �2 = �1 + pi + pi+1 + · · ·+ pj (see figure 8). One could perform this phase-space inte-
gral to obtain the discontinuity of the amplitude in this channel, however a more useful
approach, advocated in [125], is to observe that if we uplift this integral to a full Feynman
integral by undoing (149), we obtain a Feynman integral

∑
h1,h2

∫
dD�1

(2π)D

i
�2

1

i
(�2

2)
Atree(−�−h2

2 , i . . . j, �h1
1 )

× Atree(−�−h1
1 , j + 1, . . . , i − 1, �h2

2 ),

(151)

that has the correct discontinuity of the amplitude in this particular channel. Hence the inte-
grand thus produced must be part of the complete answer, and by going through all kinematic
channels we have enough constraints to fix the integrand for the amplitude. The key advantage
is that we can simplify the cut integrand (150) as much as possible using on-shell conditions
and powerful spinor-helicity techniques before lifting it back to a full Feynman loop integrand
(151). Once we have combined the information from all cuts, we can PV-reduce the resulting
integrand (which is an algebraic process) and read off the coefficients ai, b j and ck.

A comment on the rational terms Rn in (145) is in order. In [97, 125] it was shown that
such terms vanish at one loop in supersymmetric theories, and in computing unitarity cuts
it is enough to use tree amplitudes valid strictly in four dimensions. This allows us to use
powerful spinor-helicity techniques. However, if we work in pure Yang–Mills or QCD we
obtain only part of the answer—the four-dimensional cut-constructible pieces, missing further
rational terms. In order to get these we must perform unitarity cuts in D = 4 − 2ε dimensions
[153, 154], which requires amplitudes where at least the cut legs are in D dimensions. External
momenta can be kept in four dimensions if, as we do, we use the four-dimensional helicity
scheme [155, 156]. We will return to this in section 10.7.

10.4. Example: four-gluon amplitude in N=4 SYM from two-particle cuts

We will now illustrate the previous discussion by computing the one-loop four-gluon amplitude
A(1)(1−2−3+4+) from two-particle cuts. There are two channels to consider, namely the s-
channel and the t-channel, corresponding to the Mandelstam invariants s = (p1 + p2)2 and t =
(p2 + p3)2. In the s-channel, the internal states can only be gluons, and the amplitudes entering
the cut are (see figure 9)22:

22 In this section we drop powers of g, which can easily be reinstated at the end.
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A((−�2)+, 1−, 2−, �+1 ) = i
〈12〉4

〈−�21〉〈12〉〈2�1〉〈�1 − �2〉
,

A(−�−1 , 3+, 4+, �−2 ) = i
〈�2 − �1〉4

〈−�13〉〈34〉〈4�2〉〈�2 − �1〉
.

(152)

Multiplying the product of these two amplitudes with i
�2

1

i
�2

2
we find the cut integrand

Disc(s)A(1)(1−2−3+4+)

= Atree
4 ×

∫
dD�1

(2π)D

i
�2

1�
2
2

〈23〉〈41〉〈�1�2〉2

〈�21〉〈2�1〉〈�13〉〈4�2〉

∣∣∣∣
s−cut

,
(153)

where we have pulled out the tree amplitude i 〈12〉4
〈12〉〈23〉〈34〉〈41〉 and used our conventionλ−p = iλp.

By rationalising two of the denominator factors using 〈2�1〉[�12] = (�1 + p2)2 and 〈�13〉[3�1] =
−(�1 − p3)2 we can further massage the integrand to find

Atree
4 × i

�2
1�

2
2(�1 + p2)2(�1 − p3)2

〈23〉〈41〉〈�2

=�2−p1−p2︷ ︸︸ ︷
�1〉[�1 2][3

=�2+p3+p4︷ ︸︸ ︷
�1]〈�1 �2〉

〈�21〉〈4�2〉

= Atree
4 × i

�2
1�

2
2(�1 + p2)2(�1 − p3)2

(−〈23〉〈41〉[12][34])

= istAtree
4 × 1

�2
1�

2
2(�1 + p2)2(�1 − p3)2

,

(154)

from which we see that istAtree
4 is the coefficient of the zero-mass box function [157]

I0m
4 (s, t) =

∫
dD�

(2π)D

1
�2(�+ p1 + p2)2(�+ p2)2(�− p3)2

= −i
2cΓ
st

{
− 1
ε2

[
(−s)−ε + (−t)−ε

]
+

1
2

log2
( s

t

)
+

π2

2

}
,

(155)

with

cΓ =
Γ(1 + ε)Γ(1 − ε)2

(4π)2−εΓ(1 − 2ε)
. (156)

Since we have only considered the s-channel cut, we know that istAtree
4 I0m(s, t) must be part

of the full answer but we can only trust terms that have discontinuities in s. To complete the
computation we need to consider also the t-channel, also shown in figure 9. Initially, this looks
more complicated because on both sides of the cuts the external legs are one positive and one
negative helicity gluon and this allows all possible states of N = 4 SYM to appear as internal
states: h = −1,−1/2, 0, 1/2, 1, with multiplicities 1, 4, 6, 4, 1.
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Figure 9. The s- and t-channel cut diagrams contributing to the one-loop MHV ampli-
tude in N = 4 SYM.

The corresponding tree amplitudes entering the cut are

A((−�2)−h, 2−, 3+, �h
1) = i

〈−�22〉2+2h〈�12〉2−2h

〈−�22〉〈23〉〈3�1〉〈�1 − �2〉
,

A(−�−h
1 , 4+, 1−, �h

2) = i
〈−�11〉2+2h〈�21〉2−2h

〈−�14〉〈41〉〈1�2〉〈�2 − �1〉
,

(157)

and the t-channel cut is given by the product of these amplitudes and summing over h. Focusing
on the product of numerators, the sum with the correct multiplicities gives

∑
h

(
4

2 + 2h

)
〈−�22〉2+2h〈�12〉2−2h〈−�11〉2+2h〈�21〉2−2h

=
(
〈�12〉〈�21〉 − 〈�11〉〈�22〉

)4
= 〈12〉4〈�1�2〉4.

(158)

The numerator is then the same as in the s-channel and denominator factors are obtained from
a cyclic relabelling of the external legs. Thus from the t-channel cut we get

istAtree
4 × 1

�2
1�

2
2(�1 + p3)2(�1 − p4)2

, (159)

which is proportional to the integrand of the box function I0m
4 (s, t) up to a trivial shift of the

loop momentum. Summarising, the unique answer consistent with both cuts is

A(1)
4 (1−, 2−, 3+, 4+) = ist Atree

4 (1−, 2−, 3+, 4+) I0m
4 (s, t). (160)

One remarkable outcome of this computation is that it does not lead to any bubble or triangle
integrals, and is consistent with the general fact that one-loop amplitudes in N = 4 SYM only
contain boxes [97, 125]. This can be linked to the improved power-counting behaviour of this
theory, and in fact is a property of all one-loop amplitudes in the theory. It can also be related to
dual (pseudo)conformal symmetry of the box functions [96], as anticipated in section 9.2. Also
note that N = 4 SYM is UV-finite to all orders, and hence bubble integrals must be absent.

In the expression of one-loop amplitudes involving massless particles one encounters IR
divergences which are known to be universal. For colour-ordered one-loop amplitudes, these
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take the form [158, 159]

−Atree
n × cΓ

n∑
i=1

(−si,i+1)−ε

ε2
. (161)

One can see this in our four-point example by noticing that a factor of st in the coefficient
cancels the 1/(st) factor in I0m of (155). It is also known [160–162] that IR divergences are
governed by Sudakov form factors, we will return to this in section 11.2.

10.5. Generalised unitarity

A key observation in our discussion so far is that any one-loop amplitude of massless particles
can be expressed in terms of a linear combination of a complete basis of scalar integrals func-
tions: bubbles, triangles and boxes. Performing a two-particle unitarity cut as above amounts
to picking two internal propagators with momenta �1 and �2 and putting them on-shell. In this
factorisation limit we obtained a product of two tree amplitudes providing the cut integrand,
while at the level of the ansatz in terms of integral functions this selects a particular set of inte-
gral functions that have these two propagators in common. This picks a unique bubble, which
only has two propagators, but allows in general a number of triangles and boxes. Consider-
ing all possible two-particle cuts gives us sufficient constraints to fix all the coefficients of the
integral functions, but the information is entangled between the various cut constraints.

A natural question is then if we can find a procedure, or rather projection, that directly
selects a particular integral function and allows us to tackle individual integral coefficients
directly. The loop momentum �μ1 has four independent components and the two-particle cut
only constrains two via δ(�2

1) = δ(�2
2) = 0; in principle we can impose up to two additional

constraints δ(�2
3) = 0 and/or δ(�2

4) = 0. Such generalised cuts [126, 127] are called triple cuts
and quadruple cuts, respectively, where the latter is also known as a maximal cut or leading
singularity.

In the case of a triple cut, the integrand is a product of three tree amplitudes [126],∑
h�1 ,h�2 ,h�3

A(−�1, i, . . . , j − 1, �2) × A(−�2, j, . . . , k − 1, �3)

× A(−�3, k, . . . i − 1, �1),

(162)

with �2 = �1 − pi − . . .− pj−1 and �3 = �1 + pk + . . .+ pi−1 and �2
1,2,3 = 0, where a sum over

internal helicity states is implied. Such a cut will select a unique triangle and a number of
boxes that share the same three propagators. Notice that this cut does not detect contributions
from bubbles, since they have only two propagators. Furthermore, there is a one-dimensional
phase-space integration left.

We now consider a quadruple, or maximal cut, shown in figure 10. Cutting four momenta
collapses the loop integration to a sum over a set of solutions that in general is two dimen-
sional. Indeed the cut conditions �2

1,2,3,4 = 0, with �2 = �1 − pi − . . .− pj−1, �3 = �2 − pj −
. . .− pk−1 and �4 = �1 + pl + . . .+ pi−1, are equivalent to

�2
1 = 0, �2

2 − �2
1 = 0, �2

3 − �2
1 = 0, �2

4 − �2
1 = 0. (163)

This is one quadratic equation and three linear ones, hence there are two solutions.
Consider now our ansatz (145). The quadruple cut of the left-hand side is a product of four

tree amplitudes, shown in figure 10. As for the right-hand side, the quadruple cut picks a unique
box function, times its coefficient. After integration, the quadruple cut of a scalar box, with all
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Figure 10. Generic quadruple cut of a one-loop amplitude.

four propagators replaced by delta functions, simply gives 1 times a Jacobian. However this
Jacobian appears on both sides and can then be dropped. Thus we arrive at the important result
that the box coefficient is equal to [127]

ai, j,k,l =
1
2

∑
A(−�1, i, . . . , j − 1, �2) × A(−�2, j, . . . , k − 1, �3)

× A(−�3, k, . . . , l − 1, �4) × A(−�4, l, . . . , i − 1, �1),
(164)

where the sum is over the solution set of (163) and the helicities of the four cut legs, and the
factor of 1/2 is due to the averaging over the two solutions. As mentioned in section 10.4,
bubble and triangle integrals are absent in N = 4 SYM, hence one-loop amplitudes in this
theory are completely determined by quadruple cuts.

10.6. Example: one-loop MHV superamplitude in N=4 SYM from quadruple cuts

The simplest application of generalised unitarity is to the computation of the one-loop MHV
amplitude in N = 4 SYM, which we will now perform using superamplitudes [91]. It is easy
to see that the only non-vanishing quadruple cut has the ‘two-mass easy’ configuration shown
in figure 11, where two massless legs sit on opposite three-point MHV superamplitudes, while
the remaining two are MHV. The two solutions to the cut equations can be found e.g. in the
appendix of [163]. The first one is

�1 =
|1〉〈s|Q
〈1s〉 , �2 =

|1〉〈s|P
〈s1〉 , �3 =

|s〉〈1|P
〈s1〉 , �4 =

|s〉〈1|Q
〈1s〉 , (165)

while the second can be obtained by exchanging |•〉 ↔ |•
]
. Note that in (165) one has

λ�1 ∼λ�2 ∼ λ1, λ�3 ∼λ�4 ∼ λs. (166)
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Figure 11. Quadruple cut diagram contributing to a one-loop MHV amplitude. The white
amplitudes are MHV while the grey ones MHV.

In the case at hand only the first solution contributes since the two three-point ampli-
tudes are MHV, and hence vanish when evaluated on the second solution, which has
λ̃�1 ∼ λ̃�2 ∼ λ̃1 and λ̃�3 ∼ λ̃�4 ∼ λ̃s.

The supercoefficient corresponding to the quadruple cut in figure 11 is then

C(1, P, s, Q) =
1
2

∫ 4∏
i=1

d4η�i

AMHV
3 (−�1, 1, �2)AMHV(−�2, 2, . . . , s − 1, �3)AMHV

3 (−�3, s, �4)

×AMHV(−�4, s + 1, . . . , n, �1),

(167)

where the spinors are evaluated on the solutions in (165), and the integral over the four inter-
nal Graßmann variables elegantly takes care of the state sums. We also set P :=

∑s−1
i=2 pi and

Q :=
∑n

i=s+1 pi. The relevant amplitudes are:

AMHV
3 (−�1, 1, �2) = −i

δ(4)(η−�1 [1 �2] + η1[�2 − �1] + η�2 [−�1 1])
[1 �2][l2 − �1][−�1 1]

,

AMHV
3 (−�3, s, �4) = −i

δ(4)(η−�3 [s �4] + ηs[�4 − �3] + η�4 [−�3 s])
[s �4][�4 − �3][−�3 s]

,

AMHV(−�2, 2, . . . , s − 1, �3) = i
δ(8)
(
λ�3η�3 − λ�2η�2 +

∑s−1
i=2λiηi

)
〈−�2 2〉 . . . 〈s − 1 �3〉〈�3 − �2〉

,

AMHV(−�4, s + 1, . . . , n, �1) = i
δ(8)
(
−λ�4η�4 + λ�1η�1 +

∑n
i=s+1λiηi

)
〈−�4 s + 1〉 . . . 〈n �1〉〈�1 − �4〉

.

(168)

Next we perform the Graßmann integrations. This task is simplified by noticing that by super-
momentum conservation, we expect to find a result proportional to δ(8)(

∑n
i=1λiηi); we can then

simply replace, for instance, the δ(8) in the last amplitude in (168) by this overall supermomen-
tum conservation delta function. Then the integration over η�1 and η�4 must be done using the
δ(4) in the two MHV superamplitudes, giving a factor of [1�2]4[�3s]4; integrating over η�2 and
η�3 using the remaining δ(8) gives a factor of 〈�2�3〉4.
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The quadruple-cut integrand can then be simplified by using momentum conservation and
(166). Factoring out AMHV(1, . . . , n), one easily arrives at the result

C(1, P, s, Q) = −1
2
AMHV

n [s�3]〈�3�2〉[�21]〈1s〉 = −1
2
AMHV

n Tr+(s�3�21). (169)

The evaluation of the last trace can be carried out using (165). One finds

Tr+(s�3�21) = 〈s|P|1] 〈1|P|s] = P2Q2 − (P + p1)2(Q + ps)2, (170)

so that in conclusion

C(1, P, s, Q) =
1
2
AMHV

n

[
(P + p1)2(Q + ps)2 − P2Q2

]
. (171)

This is the coefficient of the two-mass easy box function23

I2me(p, q, P, Q)

=

∫
dD �

(2π)D

1
�2(�− p)2(�− p− P)2(�+ Q)2

= −i
2cΓ

st − P2Q2

{
− 1
ε2

[
(−s)−ε + (−t)−ε − (−P2)−ε − (−Q2)−ε

]
+ Li2

(
1 − P2

s

)
+ Li2

(
1 − P2

t

)
Li2

(
1 − Q2

s

)
+ Li2

(
1 − Q2

t

)

− Li2

(
1 − P2Q2

st

)
+

1
2

log2
(s

t

)}
,

(172)

where for generality we relabeled p1 → p, ps → q and set s = (P + p)2 and t = (P + q)2. Note
that the last factor in (171) cancels a corresponding one in the expression for I2me.

10.7. Supersymmetric decomposition and rational terms

As discussed earlier, one-loop amplitudes in supersymmetric theories are special in that the
only rational terms that appear are tied to terms which have discontinuities in four dimensions,
allowing for the use of spinor-helicity methods.

In non-supersymmetric theories, amplitudes can still be reconstructed from their cuts, but
this requires us to work in 4 − 2ε dimensions, with ε �= 0 [153, 154]. While this is important
conceptually, it also implies that we have to work with gluon amplitudes in away from four
dimensions and the elegance of the spinor-helicity formalism.

A crucial simplification comes from the following observation, known as the supersymmet-
ric decomposition of one-loop gluon amplitudes in pure Yang–Mills: a one-loop amplitudeAg

with gluons running in the loop can be re-written as [97, 125]

A(1)
g = (A(1)

g + 4A(1)
f + 3A(1)

s )︸ ︷︷ ︸
A(1)
N=4

− 4(A(1)
f + A(1)

s )︸ ︷︷ ︸
A(1)
N=1

+ A(1)
s , (173)

23 We mention that there is an alternative expression for this function containing only four polylogarithms [69], related
to this one by an application of Mantel’s nine-dilogarithm identity [164].
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Figure 12. Quadruple cut diagram contributing to the all-plus one-loop amplitude. The
internal loop is a real scalar field.

where A(1)
f (A(1)

s ) is an amplitude with the same external particles as before but with a Weyl
fermion (complex scalar) in the adjoint of the gauge group circulating in the loop. This decom-
position is powerful since we recognise that the first two terms on the right-hand side of (173)
come from an N =4 multiplet and (minus four times) a chiral N =1 multiplet, respectively;
therefore, they are four-dimensional cut-constructible—an observation that simplifies their cal-
culation considerably. The last term in (173), A(1)

s , is the contribution due to a complex scalar
in the loop, which in D dimensions is much easier to compute than having a gluon in the loop.

An instructive example is all-plus four-point amplitude in pure Yang–Mills
A(1)(1+2+3+4+) produced by gluons running in the loop. Using (173) we can immedi-
ately relate this to the situation where a scalar is running in the loop since the first two
contributions in (173) vanish for this helicity configuration in any supersymmetric theory.
Thus, the entire contribution comes from the last term in (173) (figure 12).

In order to compute it, we can perform a D-dimensional quadruple cut [165], by gluing four
three-point amplitudes involving two scalars of mass μ2 and one gluon. Such amplitudes have
the form

A(�1, p+1 , �2) = A(�1, p+1 , �2) =
〈ξ|�1|p1]
〈ξp1〉

, (174)

where �1 + �2 + p1 = 0 and |ξ〉 is an arbitrary reference spinor. The D-dimensional quadruple
cut integrand is then given by

〈ξ1|�1|1
]

〈ξ11〉
〈ξ2|�2|2

]
〈ξ22〉

〈ξ3|�3|3
]

〈ξ33〉
〈ξ4|�4|4

]
〈ξ44〉 , (175)

which, using the D-dimensional on-shell condition (�(D)
i )2 = 0 = (�(4)

i )2 − μ2 and momen-
tum conservation, evaluates to μ4 [12][34]

〈12〉〈34〉 . We also have used here the standard trick that a

massless scalar in D dimensions can be viewed as a massive scalar in D = 4 with mass μ2

coming from the loop momentum components in the extra (−2ε) dimensions, which we have to
integrate over.
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Finally, it can also be seen [165] that two-particle and three-particle cuts do not give any
new contributions, and hence we arrive at the result (after replacing the four delta functions by
propagators):

A(1)(1+2+3+4+) = 2
[12][34]
〈12〉〈34〉 I0m

4 [μ4], (176)

where I0m
4 [μ4] = − i

(4π)2
1
6 +O(ε) is the scalar box integral with an insertion of μ4 [154], and

the factor of two comes from the two real scalars running in the loop.

10.8. Beyond unitarity and higher loops

In the discussion above we only gave a flavour of the power of unitarity methods at one loop.
In recent years these methods have been extended in many fruitful directions, in particular gen-
eralised unitarity has been adapted to the computation of higher-loop amplitudes in essentially
any theory as long as all internal propagators are massless. These include analytic approaches,
and several numerical implementations for amplitudes in QCD up to two loops. In parallel,
tremendous progress has been made in the evaluation of the required two- and higher-loop
Feynman integrals, and some of this progress is reviewed in detail in chapters 3 [166] and 4
[167] of this review.

Furthermore, for highly symmetric theories such as N = 4 supersymmetric Yang–Mills,
even more advanced methods have been developed. These employ bootstrap ideas that com-
pletely avoid the (separate) determination of coefficients of the basis of integral functions and
the problem of evaluating the integrals themselves. These are reviewed in chapter 5 [168] of
this review, and are based on a vastly improved understanding of the mathematical properties
of complete amplitudes and the relevant function spaces, and include: transcendental func-
tions and their associated symbols, the relation between singularities of amplitudes and cluster
algebras, and the Steinmann relations. Recently, these developments have been exploited in
[169] for an unprecedented eight-loop computation of form factors (see section 11 for more
on form factors). Readers interested in these exciting topics are invited to consult chapter 5 of
this review [168].

11. BPS and non-BPS form factors. Applications to Higgs amplitudes

11.1. General properties

Form factors appear in several important contexts in gauge theory. The form factor of (gauge-
invariant) O(x) between the vacuum and an n-particle state is defined as

FO(1, . . . , n; q) :=
∫

d4 x e−iq·x〈1 . . . n|O(x)|0〉

= (2π)4 δ(4)

(
q −

n∑
i=1

pi

)
〈1 . . . n|O(0)|0〉,

(177)

where the momentum conserving δ-function follows from translation invariance. All legs are
on shell except that corresponding to the operator, since in general q2 �= 0, hence form factors
fall in between correlators (fully off shell) and amplitudes (fully on shell).

In addition to conceptual reasons, form factors are important because of their role in sev-
eral contexts. Notable examples include the form factor of the electromagnetic current, which
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computes the electron g − 2, and that of the hadronic electromagnetic current with an external
hadronic state, which appears in the study of deep inelastic scattering and e+e− → hadrons.

Form factors also play a prominent role in the study of scattering processes in QCD involv-
ing the Higgs boson and many gluons. At one loop, the coupling of the Higgs to the gluons
is induced by a quark loop, with the top giving the most important contribution. These gluon-
fusion processes can be described using an effective field theory approach, with the quark loop
traded for a set of local interactions of increasing dimension. The leading interaction in the limit
mH � mt, where mH and mt are the masses of the Higgs and the top quark, is the dimension-
5 operator L5∼H Tr(F2), where H denotes the Higgs boson and F the gluon field strength
[170–172]. It follows that the amplitude of a Higgs and a n gluons in the limit of infinite top
mass is the form factor 〈g1 . . . gn|Tr(F2)|0〉 of the operator Tr(F2).

Form factors share some of the beautiful properties of amplitudes, including their simplicity.
For instance, at tree level one has [38]

〈1+, . . . , i−, . . . , j−, . . . n+| Tr(F2
SD) |0〉 ∼ 〈i j〉4

〈12〉〈23〉 . . . 〈n1〉 , (178)

with q = p1 + · · · pn, and where FSD denotes the self-dual part of the field strength. It follows
from the discussion above that this is the leading Higgs plus multi-gluon MHV amplitude at
tree level. A systematic study of form factors was initiated in [57], and quickly extended to
supersymmetric form factors [58]. Among the various results, they satisfy BCFW recursion
relations [57], also at loop level [173], can be computed using (generalised) unitarity, and
are invariant under a form of dual conformal symmetry [174], which is broken at loop level.
Analytic non-supersymmetric form factors were recently computed at one loop [175] using
dimensional reconstruction [176–179].

A recent line of research has investigated supersymmetric form factors and possible patterns
or similarities with non-supersymmetric, phenomenologically relevant ones. While supersym-
metrising the state is straightforward, some thoughts have to be devoted to which operators
it may be worthwhile to consider. In this respect, one can observe that the operator Tr(F2

SD)
discussed earlier is the first term in the on-shell Lagrangian of N = 4 SYM, which has the
schematic form

Lon−shell ∼ Tr(F2
SD) + g Tr(ψψφ) + g2 Tr([φ,φ]2). (179)

It is a descendant of the half-BPS operator Tr(X2), with X being any of the (complex) scalars
in N = 4 SYM, and is obtained by acting on it with four supersymmetry charges. Both Tr(X2)
and Lon−shell belong to the chiral part of the stress-tensor multiplet T2 [180] and, because they
are protected, their form factors are free of UV divergences. Such form factors were studied
vigorously in several works [58, 181–185]. This study was later extended to non-protected
operators [186–189] such as the Konishi multiplet.

Form factors are a source of many surprises, and we would like to list some of the most unex-
pected ones. To begin with, it was found at two loops [181] and later confirmed at higher loops
[169, 184, 185], that the form factor of the stress–tensor multiplet in N = 4 SYM with three
external particles is maximally transcendental, similarly to amplitudes24. Even more surpris-
ingly, it was found in [181] that the two-loop remainder is identical to the maximally transcen-
dental part of that of the form factor 〈g+g+g±|Tr F2

SD|0〉 [190] in QCD—the first occurrence
of the principle of maximal transcendentality [191] in a kinematic-dependent quantity. These

24 The precise statement is for certain finite remainders [112] of the form factors obtained by subtracting universal
infrared-divergent terms.
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connections do not stop at protected operators: the maximally transcendental part of the remain-
der of the minimal form factor of the operator Tr(X[Y, Z]), that is 〈X̄ȲZ̄|Tr(X[Y, Z])|0〉 is
identical to that of 〈X̄X̄X̄|Tr(X3)|0〉 [186]; and finally, this equality extends to the form factor
of the operator Tr (F3

SD) [187–189], which describes higher-derivative corrections to the Higgs
effective theory [192–196]. In [197] a proof of the principle of maximal transcendentality for
two-loop form factors involving Tr (F2) and Tr (F3) was presented. As a result, it seems that
the maximally transcendental part of Higgs plus multi-gluon processes could be equivalently
computed in N = 4 SYM!

We also mention the intriguing connections between the (infrared-finite) remainder func-
tions of the three-point form factor 〈X̄X̄X̄|Tr(X3)|0〉 and the remainder for the six-point MHV
amplitude [169, 181, 184, 185], which recently have been explained by an antipodal dual-
ity that relates the discontinuities of the form factor to the derivatives of the amplitude. The
remainder functions for these two quantities can be expressed in terms of three dimension-
less variables, (u, v,w), representing ratios of Mandelstam variables satisfying u + v + w = 1
in the former case, and unconstrained dual-conformal invariant cross-ratios in the latter. This
remarkable duality then connects the form factor remainder function and the parity-even part
of the amplitude remainder function on the surface u + v + w = 1.

Finally, form factors found an application in [198, 199] to the study of the complete one-
loop dilatation operator of N = 4 SYM [200–202], with the Yangian invariance of the latter
[203] being a direct consequence [204] of that of the N = 4 SYM S-matrix [117]. We also
mention recent applications in effective field theories of the standard model, e.g. in classifying
marginal operators and studying the mixing problem [205–209].

11.2. Example: one-loop Sudakov form factor

To have a taste of form factors, we now compute that of the on-shell Lagrangian (179) with
an external state of two positive-helicity gluons, known as the Sudakov form factor. Only
the field-strength part of Lon−shell contributes, and at tree level we can normalise the opera-
tor to have Ftree

Tr(F2)
(1+2+) = [12]2. This form factor depends on a single kinematic invariant

s = (p1 + p2)2, and at one loop we only have a cut in this channel. This gives

F(1)
Tr(F2)

(1+2+)|s−cut

= Ftree
Tr(F2)(−�+1 − �+2 )A(0)

4 (�−1 , 1+, 2+, �−2 )

= 2[−�1 − �2]2 × i
〈�2�1〉3

〈�11〉〈12〉〈2�2〉
=

2i(�1 + �2)2〈�2�1〉[�2�1]
〈12〉〈2 �2〉[�2︸ ︷︷ ︸

�2=−�1−p1−p2

�1]〈�11〉

=
−2i(p1 + p2)3

〈12〉2(�1 + p1)2
=

−2is[12]2

(�1 + p1)2
.

(180)

In order to obtain the uplifted integrand, following the strategy described in section 10.4, we
have to multiply this by i

�2
1

i
�2

2
, and further integrating we find 2is[12]2 × I1m

3 (s), where the one-

mass triangle is given by

I1m
3 (s) =

∫
d4−2ε�

(2π)4−2ε

1
�2(�+ p1)2(�+ p1 + p2)2

= −i
cΓ
ε2

(−s)−1−ε. (181)
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In conclusion, we find that

F(1)
Tr(F2)

(1+2+)/Ftree
Tr(F2)(1

+2+) = −2cΓ
ε2

(−s)−ε. (182)

Note that the Sudakov form factor is equal to twice the IR-divergent term of the contribution of
a given two-particle invariant si,i+1 to the one-loop amplitude computed in (161). Interestingly
this relation holds for general one-loop amplitudes (see for instance [210] for a unitarity-based
proof), and also beyond one loop [161, 162].
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Appendix A. Conventions and Lorentz transformations of spinor variables

Conventions. Spinor indices are raised and lowered using the Levi-Civita tensor as

λα = εαβλβ , λα = εαβλ
β ,

λ̃α̇ = εα̇β̇λ̃β̇ , λ̃α̇ = εα̇β̇ λ̃
β̇ ,

(A.1)

with εαγ εγβ = δαβ , and εα̇γ̇ εγ̇β̇ = δα̇
β̇
. We also define

σμαα̇ = (𝟙,�σ), σ̄α̇α
μ = (𝟙,−�σ), (A.2)

where �σ are the Pauli matrices. They are related as

σμ αα̇ = εαβ εα̇β̇ σ̄
β̇β
μ . (A.3)

We also note the completeness relations

σμ αα̇ σ
μ

ββ̇
= 2 εαβ εα̇β̇ , σ̄α̇α

μ σ̄μβ̇β = 2 εαβ εα̇β̇ , (A.4)
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and the normalisation condition

Tr (σ̄μσν) = 2 ημν , (A.5)

with ημν = (1,−1,−1,−1).
Transformations under the Lorentz group. The complexified four-dimensional Lorentz

group SO(3, 1) is locally isomorphic to SL(2,C) × SL(2,C), with the isomorphism being
realised as in (7). Its representations are then labeled as (m, n), where m, n ∈ 1

2Z. In real
Minkowski space, the second SL(2,C) has to be identified with the complex conjugate of the
first25. Our helicity spinors λ and λ̃ then transform in the (1/2, 0) and (0, 1/2) representations,
respectively, that is

λα → M β
α λβ , λ̃α̇ → (M∗) β̇

α̇ λ̃β̇ = λ̃β̇ (M†)β̇α̇, (A.6)

and the momentum pαα̇ in the (1/2, 1/2), i.e.

pαα̇ → M β
α pββ̇ (M∗) β̇

α̇ = (MpM†)αα̇. (A.7)

Here M ∈ SL(2,C), so that det M = 1. The Levi-Civita symbols εαβ and εα̇β̇ are invariant ten-

sors: for instance, εαβ → M α′
α M β′

β εα′β′ = det M εαβ = εαβ. We can write this transformation
in matrix form as MεMT = ε, with a similar relation M∗εM† = ε for εα̇β̇ . It is also important

to work out the transformations of λα := εαβλβ and λ̃α̇ := εα̇β̇ λ̃β̇ . Calling ε and ε̃ the matrices
whose elements are εαβ and εαβ ,

λα → εαβM γ
β εγδλ

δ = (ε̃Mελ)α =
(
ε̃ε(MT)−1λ

)α
= λβ(M−1) α

β , (A.8)

where we used Mε = ε(MT)−1. Similarly λ̃α̇ := εα̇β̇λ̃β̇ transforms as

λ̃α̇ → εα̇β̇(M∗) γ̇

β̇
εγ̇ρ̇ λ̃

ρ̇ = (ε̃ε(M†)−1λ̃)α̇ = ((M†)−1)α̇
β̇
λ̃β̇ , (A.9)

where we used M∗ε(M∗)T = ε, from which it follows that M∗ε = ε(M†)−1, and we also called
ε and ε̃ the matrices with elements εα̇β̇ and εα̇β̇ . Summarising, we have that

λα → M β
α λβ , λ̃α̇ → λ̃β̇ (M†)β̇α̇,

λα → λβ(M−1) α
β , λ̃α̇ → ((M†)−1)α̇

β̇
λ̃β̇ .

(A.10)

As a result, the brackets 〈i j〉 :=λα
i λ jα and [i j] := λ̃iα̇λ̃

jα̇ are manifestly Lorentz invariant.
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