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Abstract

Trajectory prediction of the other road users in the vicinity of an autonomous ve-

hicle is important for safe navigation in dense tra�c. Once an autonomous vehicle

anticipates how the other road actors will react in the near future, path planning is

a lot more simpler and safer. Moreover, the knowledge of future movement of other

road actors allows control of sudden jerks in the planned ego vehicle’s path and thus

makes travel smoother. This trajectory prediction stage can be used at any level,

from restricted driver assistance to full vehicle autonomy.

In this thesis two novel trajectory prediction models have been developed. In the

first model, the spatio-temporal features that form the basis of behaviour predic-

tion were captured using a Convolutional Long Short Term Memory (Conv-LSTM)

neural network architecture consisting of three modules: 1) Interaction Learning to

capture the motion of and interaction with surrounding cars, 2) Temporal Learning

to identify the dependency on past movements and 3) Motion Learning to convert

the extracted features from these two modules into future positions. In addition,

a novel feedback scheme was introduced in which the current predicted positions

of each car are leveraged to update future motion, encapsulating the e↵ect of the

surrounding cars. In the second model a conventional Long Short Term Memory

(LSTM) cell based encoder-decoder architecture was developed which uses not only

the historical observations but also the associated map features. Moreover, unlike

existing architectures, the proposed method incorporates and updates the surround-

ing vehicle information in both the encoder and decoder, making use of dynamically

predicted new data for accurate prediction in longer time horizons. This seamlessly

performs four tasks: first, it encodes a feature given the past observations, second,

it estimates future maneuvers given the encoded state, third, it predicts the future

motion given the estimated maneuvers and the initially encoded states, and fourth,

it estimates future trajectory given the encoded state and the predicted maneuvers

and motions.

Both the developed models were evaluated extensively on two publicly avail-

able datasets which include both multi-lane highway and signalled intersections,

to benchmark the prediction accuracy with the state-of-the-art models. Later, the

conventional encoder-decoder model was also evaluated with a newly collected “Ra-
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diate” dataset which includes two intersections, the Kingussie T-junction and the

Edinburgh four-way junction, both without tra�c signals. The accuracy of the pre-

dicted trajectories on the benchmark datasets are comparable with state-of-the-art

methods. Moreover, evaluation on the latter dataset (“Radiate”) made it possible

to understand better the e↵ect of inter-vehicle interactions on future motion without

any influence from mandatory tra�c signals.
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v = (ẋ, ẏ) Vehicle motion

d Distance from the lane

j Distance from the junction

Input/Output

Dt Decoder Input at t

m [Ps, P l, P r]

Ot Encoder Input at t

C Number of Columns in each OGM

F Prediction sequence length

GridLen Physical length of each OGM in real world (feet)

GridWid Physical width of each OGM in real world (feet)

h Input sequence length

OGMn
t Occupancy Grid Map at time t for vehicle n

P l Probability of left maneuver

P r Probability of right maneuver

P s Probability of straight maneuver

R Number of Rows in each OGM

t Current time

Vehicles

Len Physical Length of the vehicle in feet

N Number of vehicles in the scene

ns Considered SVs during prediction

Wid Physical Width of the vehicle in feet

20



List of Publications

• S. Mukherjee, A. M. Wallace and S. Wang, “Predicting Vehicle Behavior

Using Automotive Radar and Recurrent Neural Networks” in IEEE Open

Journal of Intelligent Transportation Systems, vol. 2, pp. 254-268, 2021,

doi: 10.1109/OJITS.2021.3105920.

• S. Mukherjee, S. Wang and A. M. Wallace, “Interacting Vehicle Trajectory

Prediction with Convolutional Recurrent Neural Networks” 2020 IEEE Inter-

national Conference on Robotics and Automation (ICRA), 2020, pp. 4336-

4342, doi: 10.1109/ICRA40945.2020.9196807.

• M. Sheeny, E. D. Pellegrin, S. Mukherjee, A. Ahrabian, S. Wang, A. M.

Wallace, (2021, May). RADIATE: A radar dataset for automotive perception

in bad weather. In 2021 IEEE International Conference on Robotics and

Automation (ICRA) (pp. 1-7). IEEE.

• A. M. Wallace, S. Mukherjee, B. Toh, A. Ahrabian, “Combining automo-

tive radar and LiDAR for surface detection in adverse conditions”, IET Radar,

Sonar and Navigation, vol. 15, no. 4, pp. 359-369, 2021, doi:10.1049/rsn2.12042

21



Chapter 1

Introduction

According to the World Health Organization (WHO) [171], approximately 1.35 mil-

lion people die each year due to road accidents, approximately 3,287 deaths per

day. In addition, another 20 to 50 million people su↵er non-fatal injuries per year,

many su↵ering a permanent disability. To reduce these injuries and fatalities various

improvements have been made to consumer vehicles including multiple airbags, anti-

lock brakes, crumple zones, seat-belt pre-tensioners, traction control, rigid passenger

cabins, and advanced driver assistance systems including lane departure warnings,

fatigue detection, forward collision warning systems and blind spot monitors, to

name a few. Despite these advanced driving assisting features the fatality rate is

still high and in over 90% of cases it is due to human error [129], [154], [155]. Aware

of the fatality rates and the contribution of human error, researchers have tried to

develop self-driving or autonomous cars in which the human driver is not necessary,

including computational sensing and an automated control system.

The processing loop employed in autonomous vehicle navigation includes six

di↵erent progressive stages, sensing, perception, localization, prediction, planning

and action. Of these stages, prediction is the main focus of this thesis. Given a

detailed map of the scene including road actors and infrastructure, the prediction

module should understand the surrounding environment and anticipate how this

will evolve, notably predicting the future movement of road actors. For example, if

“A pedestrian is waiting at the crosswalk, gazing towards the road”, there is a high

chance that they are waiting to cross the road once it is safe, whereas if “A pedestrian

is waiting at the the crosswalk with headphones on and looking at his/her mobile

phone”, this means that the pedestrian is not aware of the vehicles on the road and

there is a high chance that he/she may start crossing the road without considering

if it is safe.” Similar abnormal behaviours can also be expected from minors such as

“suddenly jumping from the footpath and running onto the zebra crossing instead

of waiting until it is safe ”. In the case of a vehicle, an observation that “A vehicle

is travelling on a multi-lane highway with its ego lane occupied and the adjacent
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overtaking lane empty with a positive relative speed with respect to the forward

vehicle” makes it likely that the vehicle will perform a lane change manoeuvre to

overtake the forward slow moving vehicle. Alternatively, if “a vehicle is slowing

down near a junction and moving towards the outside lane”, it is likely the vehicle

will perform a turn manoeuvre at the junction. The prediction module should not

only predict the future motion semantics but also estimate the future trajectories of

other vehicles as any specific manoeuvre can be performed with di↵erent control of

the drive and steering functions leading to di↵erent trajectories.

Once the future movements of all the other road actors are predicted, planning

the future path for the ego vehicle is simpler, safer and comfortable. Since the ego

vehicle already has a prediction of where the other road actors will be in the near

future, it can avoid them using advanced obstacle avoidance techniques while plan-

ning its own path. In addition, this advance knowledge of how the scene will evolve

makes it possible to reduce the requirement for emergency braking or acceleration,

thus making the planned trajectory much smoother. This should make the journey

more comfortable and reduce fuel consumption.

1.1 Problem Definition

The problem addressed in this thesis is how to predict the future movement of

other surrounding vehicles in the vicinity. This prediction includes motion semantics

and the future trajectories. The prediction should correspond with observations of

the behaviour of human drivers, based on their previous experience, training and

external factors. Prediction is di�cult as human behaviour is very diverse and there

is no obvious, universal model.

This is a well researched topic, but in most of the previous work, only multi lane

highways and signalled intersections have been considered. In these cases tra�c

infrastructures play a very important role, biasing the prediction of future trajecto-

ries. For example at any tra�c light intersection the movement of all the vehicles

is heavily dependent on the tra�c light phase which makes it harder to understand

and analyze the impact of surrounding vehicle interaction on future movement. In

this work, a newly collected dataset at two di↵erent un-signalled intersections has

also been used along with the publicly available benchmark datasets to evaluate the

developed models. The test vehicle used to collect this new dataset and bird’s-eye

views of both the intersections are shown in Figures 1.1 and 1.2 respectively.

Moreover, in most of the previous research the vehicle trajectory prediction has

only been performed for the next 5 secs from the current time instance. In some

cases, for example, an overtaking manoeuvre on a single or dual carriage way, or a

long deceleration on a major road approaching a turn onto a minor road, predicting
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the future behaviour for only 5 secs might not be enough to plan the autonomous

ego vehicle’s future path safely. For long term prediction it is crucial to keep the

scene information up to date for the entire prediction horizon. To address this, it is

necessary to use the recently predicted positions of all the vehicles when predicting

the next frame. This is absent in most recently developed models for behaviour

prediction that rely only on the observed vehicle movements in past frames.

1.2 State of the Art

Vehicle behaviour prediction is well researched. Initially, predcitions were based

on kinematic models such as constant velocity (CV), constant acceleration (CA),

constant turn rate and acceleration (CTRA) etc. All these models are both e�cient

and accurate but only during the short term. Due to the lack of context, notably

the relative position and velocity of the surrounding vehicles, these are inaccurate in

the longer term. Consequently, there was a move towards interaction based models

such as the Modified Social Force Model (MSFM) and Intelligent Driver Model to

capture and utilize the e↵ect of surrounding vehicles on the target vehicle’s future

behaviour. However, with the growing number of surrounding vehicles in any dense

scenario, developing such complex interactive models can be very challenging. In

order to overcome this, various learning based approaches were developed. Instead

of creating hand crafted inter-vehicle interaction models, researchers tried to use

recorded vehicle movement data to teach a model how a vehicle behaves in real

world tra�c. Initially only the target vehicle’s past movements were used, but

as stated above, behaviour is heavily dependent on the surrounding vehicles, so

researchers started to use both these factors to improve the prediction accuracy.

The basic work flow of these types of model is a two stage process. In the first

stage both the target and surrounding vehicles’ past movements are passed to the

model to let it understand how the current scene has evolved during the past time

frame; this is often called the observation sequence. In the next stage the model uses

that understanding to predict how the target vehicle will behave in the future time

frame; this is often called the prediction sequence. These types of models work well,

but again better within the short term prediction horizon. This is because only the

context of the observation sequence is used, and the future, short term updates are

neglected in predicting the longer term movement. The entire prediction horizon is

computed without using the knowledge of the how the scene may evolve in the near

future.

In another paradigm, researchers have further sub divided behaviour in the pre-

diction stage into a sequential, manoeuvre-trajectory process. First, a future ma-

noeuvre such as left lane change, right lane change, straight on, left turn, right turn,
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(a) Kingussie (T) junction (b) Edinburgh (four-way) junction

Figure 1.1: Bird’s-eye view of two di↵erent unsignalized single-lane intersections

where intersection specific vehicle trajectory data was collected by parking the test

vehicle shown in Figure 1.2, at a safe locations near the junctions. The yellow dotted

circles indicate the exact intersection locations.

is predicted, then this is used for future trajectory prediction. This makes it more

aligned with a human driver’s thinking process. First, a human driver decides which

manoeuvre he/she will perform, then depending on the road geometry and context

he/she plans the trajectory, e.g. at what speed and in what direction the manoeuvre

will be executed. However, in this class of models the missing intermediate veloc-

ity prediction stage makes it di�cult to understand and use the end-to-end vehicle

kinematics while performing the final trajectory prediction.

Further, most of these developed models were evaluated either on a multi lane

highway or at signalled intersections. In these areas the tra�c infrastructure and

highway codes play a very important role in determining the vehicles’ future move-

ment. This makes it harder to judge how well these models include proportionately

the combined e↵ects of the road layout and surrounding vehicles’ behaviors on the

target vehicle’s future movement.

1.3 Thesis Objectives

The main objective of this thesis is to develop a behaviour prediction model which

is e↵ective not just in multi lane highways or signalled intersections but also at

un-signalled intersections where the inter vehicle negotiations are to a much greater

extent dependent on the movement of other road actors rather than the road in-

frastructure. The developed model should also be applicable to vehicle trajectories
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Figure 1.2: Sensor equipped test vehicle used to collect data. A detailed schematic

diagram of the test vehicle specifying where each of the sensors are installed, their

specifications and end-to-end data collection pipeline is explained in Chapter 3 or

Appendix.

collected from on-board sensors such as automotive radars, not just with infrastruc-

ture sensors such as cameras installed on top of high rise buildings or road network

cameras. The model should also consider the limited range of vehicle sensors, and

the likelihood of missed detections and occlusions.

In addition, future predictions should use the recently predicted, short-term

positions of all the road actors in the vicinity to make use of the most relevant

and recent scene information for long term prediction. The model must have the

ability to capture the highly co-dependent spatio-temporal features simultaneously.

Instead of directly producing the future trajectory, the model should first anticipate

the planned manoeuvre of the target vehicle, then the likely velocity to predict the

future trajectory.

1.4 Thesis Contributions

The main contributions of this thesis are as follows:

• A detailed analysis of the existing motion semantics and trajectory prediction

algorithms, along with their drawbacks, is given in Chapter 2.

• A novel Convolutional Long Short-Term Memory (Conv-LSTM) architecture,
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based on an Occupancy Grid Map (OGM) was developed which can capture

the highly co-dependent spatial and temporal movements simultaneously. In

contrast to existing techniques, the developed method predicts all the vehicles’

movements for the next time-instance, and then uses these predicted positions

to further predict the next to next and so on for each future time-instance to

keep the scene information up to date.

• The above OGM based model was then changed and extended in a more

e�cient way. Instead of passing the high dimensional OGMs, only the target

and surrounding vehicles’ position with additional tra�c rules and map based

features, were passed to a conventional encoder-decoder architecture as feature

vectors. This modification not only increased the training and testing e�ciency

by reducing the input data dimension, but also made it possible to provide

the network with the aforementioned tra�c rules and map based features.

• In contrast to the existing prediction techniques, the surrounding scene infor-

mation was not only used in the encoder but also in the decoder to keep the

scene information up to date during long term prediction. A dynamic sur-

rounding vehicle selection technique was also employed to identify and select

the most relevant surrounding vehicles instead of fixing them at the start of

the observation sequence. Further, the model was extended with two addi-

tional intermediate tasks, manoeuvre and velocity prediction, followed by the

future trajectory prediction, instead of only predicting the future manoeuvre

before predicting the trajectory.

• Model evaluation was performed using publicly available benchmark datasets

to compare with the state of the art, Then we used our newly collected radar

dataset, e.g. Figure 1.1, to consider better the e↵ects of sensing from a vehicle

rather than road infrastructural sensors, and the considerably di↵erent road

layout, a single carriageway and an absence of tra�c signals and multiple lanes.

For example, the four-way intersection shown in Figure 1.1(b) is slightly o↵set,

chosen because it was possible to park the test vehicle (Figure 1.2) close to the

junction to collect su�cient past movements of all the vehicles coming from all

four directions before they performed their planned turn manoeuvre. During

training this helped the model to understand how an individual vehicle’s past

velocity and relative position with respect to other vehicles influences the

various turn manoeuvres.
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1.5 Thesis Structure

• Chapter 2: A detailed literature survey of recently developed behaviour pre-

diction techniques and how they can be used with various sensor modalities,

such as stereo camera and automotive radar, is given. An in-depth explanation

of some of the most commonly used deep learning techniques in the trajectory

prediction area is also provided.

• Chapter 3: A novel methodology to capture the highly co-dependent spatio-

temporal features simultaneously using a sequence of OGMs and a Conv-

LSTM based architecture is given. Moreover, this chapter also presents a

novel technique which can utilize the currently predicted positions of all the

surrounding vehicles to keep the evolved scene more up to date during long

term prediction.

• Chapter 4: A Long Short Term Memory (LSTM) encoder-decoder architec-

ture is presented. This anticipates the future positions of other vehicles in the

road network given several seconds of historical observations and associated

map features. Unlike existing architectures, the proposed method incorporates

and updates the surrounding vehicle information in both the encoder and de-

coder, making use of dynamically predicted new data for accurate prediction in

longer time horizons. Experiments demonstrate that this approach can equal

or surpass the state-of-the-art for long term trajectory prediction.

• Chapter 5: A summary of the strengths and limitations of the developed

models, along with potential future work directions, is given in this chapter.
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Chapter 2

Background and Literature

Review

This thesis develops future behaviour prediction models to predict the future trajec-

tory of all the surrounding vehicles. This is a crucial stage in any Advanced Driver

Assistance System (ADAS) or in a level 5 autonomous vehicle in order to perform

safe, collision-free navigation. This chapter reviews the key research advances in

this area, together with how those techniques have been used with real-time sensor

data.

Section 2.1 gives a brief history of autonomous vehicle development. Section 2.2

discusses existing deep learning tools, mainly focused on recurrent neural network

models (RNN), as this is used heavily in my model development. Section 2.3 ex-

plains existing manoeuvre prediction, trajectory prediction and manoeuvre driven

trajectory prediction models along with their shortcomings. Since automotive radar

is the main sensor module considered in this work sections 2.4 and 2.5 explain its

working principle and applications in the automotive sector respectively. Though

we are interested primarily on data collected from the perspective of an automotive

radar, similar techniques can be applied to data collected from other sensor modali-

ties. Section 2.6 shows how similar features can also be extracted from the combined

use of a stereo camera and a GPS/IMU toolkit.

2.1 Introduction

Remote controlled, then autonomous, self-driving cars were postulated soon after

the invention of normal, human-driven motor vehicles. Francis Houdina demon-

strated a radio-controlled car named “American Wonder” in 1925 which was able

to drive through the congested streets of Manhattan without anyone sitting behind

the steering wheel. The vehicle was able to start its engine, shift gears, accelerate,

brake and also sound its horn when needed by the use of radio impulses sent by an
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operator sitting in another car which followed this “American Wonder”. Later, in

December 1926, a Milwaukee (Wisconsin,USA) car distributor “Achen Motor” used

this invented technology and exhibited its capability on the streets of Milwaukee

and the surrounding territory under the “Phantom Auto” name [141]. This was

demonstrated again on the streets of Fredericksburg (a city in Virginia) in June

1932.

Since then all the major automobile companies such as Audi, BMW, Ford, Gen-

eral Motors, the Google sibling Waymo [55], Nissan, Toyota, Tesla [148], [42], and

Volkswagen have been developing advanced autonomous consumer vehicles [7] and

not just light motor vehicles (LMV) but also heavy goods vehicles (HGV) or large

good vehicles (LGV) [98] [165]. Various laws have been introduced and followed

strictly by the automotive research community to keep the fatality rate to a mini-

mum during the early stages [58].

To date, a significant amount of research has been done to successfully navigate

an autonomous vehicle in multi-lane highways and signalled, multi-lane intersections.

In all these cases the tra�c infrastructures, lane markings and rules, tra�c lights

etc. play a crucial role. Navigating on a single carriageway or at a single-lane,

unsignalled intersection makes the task a lot more challenging as there is minimal

influence from the tra�c infrastructure while negotiating with other vehicles. Even

though di↵erent tra�c codes already exist to handle these situations, such as the

right of way, i.e. vehicles on the main road have higher priority, or that before

performing a turn at any junction the driver must slow down and give a proper

indicator signal, many human drivers fail to do this. Hence, to negotiate with other

vehicles in these scenarios it is of paramount importance to not only follow the tra�c

codes but also infer the intention and future path of all other vehicles in the vicinity

to avoid any potential collisions.

This chapter provides a detailed analysis of existing manoeuvre intention and

future trajectory prediction techniques. manoeuvre intentions include both highway

maneuvers (left lane change (LLC), right lane change (RLC) and straight-on) and

intersection maneuvers (right turn, left turn and straight on). This work draws

substantially on previous work on Recurrent Neural Networks (RNNs) to encode

the sequence of input positions as observations and decode the future positions as

prediction. These two RNN blocks are Long Short-Term Memory (LSTM) and

Convolutional Long Short-Term Memory (Conv-LSTM) blocks where the LSTM

takes sequential input in the form of a single dimension vector but the Conv-LSTM

takes sequential input in the form of two dimensional image. The next section

discusses the technical operating principles of these types of network.

30



Figure 2.1: Four di↵erent types of RNN layouts, one-to-one, many-to-many, many-

to-one, one-to-many, starting from top left and clockwise [99].

2.2 Deep Neural and Recurrent Neural Networks

The main focus of this thesis is to predict future trajectory as a sequence of positions

given past observations, again a sequence of positions with some additional features.

For this type of sequence-to-sequence problem, recurrent neural networks (RNN)

have been used heavily by the community due to their capability to encode and

decode any length of sequence [121], [142], [9], [76]. In order to understand the main

contributions of this thesis, the following section provides a brief explanation about

the working principles of recurrent neural networks.

2.2.1 Recurrent Neural Network Structures

A typical deep neural network has a single set of inputs and outputs only for the

current time instance. In contrast, a recurrent neural network (RNN) has a se-

quence of inputs and outputs for consecutive time instances. It re-runs the same

network at each time instance; this means that both the learned parameters, i.e.

the network weights and biases, remain the same while maintaining and sharing

additional “state” information across two consecutive time-steps. In this way, each

RNN layer has two sets of inputs, i.e. the output and state information from the

previous time-step and two sets of outputs, i.e. the outputs for the current time

step and for the current state information which are used during the next time-step.

There are four main types of RNN layout used commonly by the community. These

are one-to-one, one-to-many, many-to-one and many-to-many [99] layouts, shown in

Figure 2.1. The first, most basic RNN is the one-to-one. It can be thought of as
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Figure 2.2: A typical encoder-decoder RNN structure where Ct is the state output

from the RNN cell at time t, h is the observation sequence length and F is the

prediction sequence length [164].

a typical DNN which takes only the current input and produces only the output

for the current time instance. The second one-to-many layout takes one input data

value for the current time instance and can produce an output sequence of any arbi-

trary length. A typical task for this type of RNN layout is to generate the caption of

an image, a sequence of words of any length given a single image. The next layout

is many-to-one which takes a sequence of inputs and produces a single output. This

type of layouts has been used in various language processing tasks, e.g. classifying if

a sentence is positive or negative in tone given the sequence of words, or manoeuvre

classification tasks, e.g. identifying the current motion semantics (lane change or

straight on) given the past sequence of positions (input trajectory). Finally the last

many-to-many layout has both input and output sequences. Some typical examples

include machine translation, where it takes a sequence of words (sentence) as its

input and produces the translated version of the same sentence as a sequence of

words, and trajectory prediction, where it takes the input trajectory as a sequence

of positions and produces the future trajectory in the same form.

2.2.2 Encoder-Decoder Structures

The most commonly used many-to-many RNN layouts are called encoder-decoder

models. Since both the inputs and outputs are sequences these are also called

Seq2Seq [164] models. In these types of model the encoder takes the sequence input

to encode the past observation state and the decoder produces the sequence output

using the encoded state. Both the input and output sequences can be created using

various data entities such as a sequence of words, i.e. a sentence [149], or a sequence

of images, i.e. a video stream [19], or even across entities, for example in which the

input sequence consists of images (i.e. a video) and the output sequence consists

of words (i.e. a sentence) [162]. As shown in Figure 2.2, a typical encoder-decoder

structure starts with random initialization of the current state of the RNN cell
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in the encoder. It then takes a single time instance from the very start of the

observation/input sequence. The RNN cell then produces a state output given the

single time instance input and the randomly initialized state. The produced cell

state is then used by the same RNN cell instead of the randomly initialized cell

state at the beginning along with the next time instance input feature vector to

produce the next cell state. This sequential cell state sharing technique continues

until the end of the observation sequence. Once completed, the single encoder cell

contains the encoded state of the entire observation sequence which is usually the

current time instance. The next part is the decoder which also consists of a single

RNN cell, but this time instead of randomly initializing the cell state, the encoded

state is used as the initial state for the decoder RNN cell. At each time instance

in the decoder the RNN cell produces two outputs, one the predicted entities and

second the current state. Both these outputs are then fed back to the same RNN

cell before predicting for the next time instance. Three types of RNN cell, i.e. the

GRU, LSTM and Conv-LSTM cells, are discussed in the following section.

2.2.3 Recurrent Neural Network Cells

The training of a typical deep neural network consists of three stages, forward prop-

agation, cost computation and backward propagation. Forward propagation is cal-

culating the network output given a set of input data where the network weights

are initialized randomly. In the next stage the di↵erence between the current net-

work outputs and their corresponding ground truth outputs are computed using a

predefined cost function (aka loss function). Finally, the partial derivative of the

cost function with respect to the current weights is computed to update the network

weights. In the case of an RNN using conventional fully-connected layers, this may

lead to a situation where the gradient of the cost function becomes extremely low.

This will equally reduce the e↵ective changes in the values of the network weights

or can even make them zero in the worst case. This means the model will stop

learning during the training stage. This the vanishing gradient problem. In order to

overcome this issue three di↵erent types of RNN cells were proposed, which are the

gated recurrent unit (GRU), long short-term memory (LSTM) and Convolutional

long short-term memory (Conv-LSTM). All three types of cells are explained below:

The Gated Recurrent Unit (GRU)

The gated recurrent unit was first proposed by Kyunghyun Cho et al [22]. Compared

to a classical DNN layer, a GRU cell has two additional gates, the“update gate”

and the “reset gate”. The update gate combines the current input and information

passed from the previous time step using a weighted sum approach, which finally
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Figure 2.3: Gated recurrent unit (GRU) cell structure [22]

passes through a sigmoidal activation function to force it between 0 to 1. In this way

the model decides how much past information should be passed to the future. The

reset gate follows the same steps but to determine how much of the past information

the model should forget. Finally the outputs from both these gates are combined

to produce the final output for the current time step. A single GRU cell, shown in

Figure 2.3, is formulated as,

ut =�(W u ⇤ Zt +Ku ⇤Ht�1) (2.1)

rt =�(W r ⇤ Zt +Kr ⇤Ht�1) (2.2)

h̃t =tanh(W h ⇤ Zt + rt ⇤Kh ⇤Ht�1) (2.3)

Ht =(1� ut) ⇤Ht�1 + ut ⇤ h̃t (2.4)

where Zt is the input feature at time t, W u, Ku are the update weights, W r, Kr

are the reset weights, W h, Kh are the previous state weights, + and ⇤ denotes

element-wise addition and multiplication respectively.

Figure 2.4: Long-Short Term Memory (LSTM) Cell structure [70]
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Long Short-Term Memory (LSTM)

The long short-term memory (LSTM) cell was first proposed by S. Hochreiter and J.

Schmidhuber [70]. The LSTM unit is an advanced version of a GRU unit with three

di↵erent gates, “input”, “output” and “forget” gates. In comparison to a standard

GRU unit, an LSTM unit exposes both the current cell state (Ct) and output Ht

at each time step which are then used at the next time step. Due to the additional

“output” gate an LSTM cell works better with longer sequences when compared to

the GRU. Given Zt, an input vector at time t, a single LSTM cell, shown in Figure.

2.4, is formulated as,

it = �(Woi ⇤ Zt +Whi ⇤Ht�1 + bi) (2.5)

ft = �(Wof ⇤ Zt +Whf ⇤Ht�1 + bf ) (2.6)

ut = �(Woy ⇤ Zt +Why ⇤Ht�1 + by) (2.7)

Ht = ut ⇤ tanh(Ct) (2.8)

Ct = ft⇤Ct�1+it ⇤ tanh(Woc ⇤ Zt+Whc ⇤Ht�1+bc) (2.9)

where Woi, Wof , Woy and Woc are the input weights, Whi, Whf , Why, Whc are the

previous state weights, bi, bf , by, bc are biases, + and ⇤ denote element-wise addition

and multiplication respectively.

Convolutional Long Short Term Memory (Conv-LSTM)

The convolutional long short-term memory (Conv-LSTM) cell was first proposed by

X. Shi et al [179]. As shown in Figure 2.5, a Conv-LSTM layer works in a similar

fashion to that of a Vanilla-LSTM (V-LSTM) except the inner representations and

input are both two-dimensional (provided the input image is a single channel). This

enables the model to capture both temporal and spatial correlations at the same

time. This layer can be further formulated as,

it = �(Woi ⇤OGMt +Whi ⇤Ht�1 + bi) (2.10)

ft = �(Wof ⇤OGMt +Whf ⇤Ht�1 + bf ) (2.11)

ut = �(Woy ⇤OGMt +Why ⇤Ht�1 + by) (2.12)

Ht = ut � tanh(Ct) (2.13)

Ct = ft�Ct�1+it � tanh(Woc ⇤Ot+Whc ⇤Ht�1+bc) (2.14)

where OGMt is the input 2D image at time t, an Occupancy Grid Map (OGM)

for example, Woi, Wof , Woy and Woc are input weights, Whi, Whf , Why, Whc are

previous state weights, bi, bf , by, bc are biases and ⇤ denotes convolution.
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Figure 2.5: Convolutional Long-Short Term Memory (Conv-LSTM) Cell structure

[179]

2.3 Trajectory and manoeuvre Prediction Meth-

ods

A detailed survey of vehicle behaviour prediction was published by Lefèvre [92],

in which the models were classified into two main categories, physics-based and

learning-based. Since then, a significant amount of work has been done using learn-

ing as a basis and state-of-the-art Recurrent Neural Network (RNN) architectures.

The representation of any vehicle trajectory as a sequence of points/positions allows

researchers to formulate the trajectory prediction task as an sequence-to-sequence

(encoder-decoder [22]) problem, where a sequence of vehicle positions is fed into

the encoder, and the vehicle’s future positions are predicted recursively through the

decoder. In considering further the previous work in this area, it can be further cat-

egorized into three sub categories, maneuver-prediction, trajectory-prediction and

maneuver-dependent trajectory prediction.

2.3.1 Maneuver Prediction

The estimation of a vehicle’s current manoeuvre is strongly correlated with given its

past observation sequence in highways [178], urban intersections [123] and round-

abouts [190]. In earlier research, classical approaches such as Support Vector Ma-

chines (SVMs) [106], [90] and Dynamic Bayesian Networks (DBNs) [93] were devel-

oped to classify a driver’s intended manoeuvre 2-3 secs in advance. Considering a
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Figure 2.6: A typical example of a survey performed to understand the importance

of video sequence instead of a single image frame to judge a vehicle’s motion and

movement direction [91].

Markov process, some researchers tried initially to perform manoeuvre prediction

using only the current state. Later, to investigate the suitability of this concept a

survey was performed [91] in which one group of drivers was shown a single image

frame, and the other group shown a video sequence, of several random tra�c sce-

narios. Both groups were asked to anticipate future vehicle maneuvers. The group

having access to the video sequence performed significantly better, which justifies

the incorporation of vehicle’s past states in addition to the current state during

behaviour prediction. A typical example from this survey is shown in Figure 2.6,

where if only the first image is seen, it is impossible to judge if both the vehicles i.e.

A and B, are moving or parked. However, if three consecutive frames are seen, then

it can be easily judged that vehicle B is moving and vehicle A is parked (static).

Moreover, interactions with and between surrounding vehicles and map based

features also play a very crucial role during target vehicle’s future manoeuvre pre-

diction. This is why researchers started to incorporate both these factors into their

multi-layered artificial neural networks for the following cases, lane change prediction

on a highway [178] and turn prediction at an intersection [189].

In most cases, manoeuvre prediction was treated as a classification task, but in

[181] a lane change manoeuvre was considered as a regression task with two major

parameters, first, the time at which a driver begins to shift laterally within a lane and

second, when the lane change will be completed (see Figure 2.7). In all these tech-
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Figure 2.7: Lane change manoeuvre prediction treated as a regression problem using

two parameters, lane change start and lane change end time [181].

niques only the future maneuvers of the surrounding vehicles were estimated. This

is not su�cient to plan a collision free trajectory for the autonomous ego-vehicle as

any specific manoeuvre can be performed at any particular velocity/motion leading

to di↵erent positions in the next 3-5 secs.

Assuming future movement can be seen as a set of discrete decisions made by the

human driver followed by a continuous movement, an elegant way to handle both

discrete and continuous variables is the Hybrid State Model [50]. Such a model

was used by Geng et. al. [54] to encode a strong implementation of the Highway

Code, which defines rules which all tra�c participants should (but don’t always)

follow. Most behaviour prediction models developed to date are scenario specific,

e.g. designed for motorways or urban settings. This makes the problems tractable,

and if taken to conclusion the road network would be split into situation specific

nodes, and as such would require switching between behaviour prediction models

[13]. Hence, to achieve full autonomy, a choice has to be made between two options

that are di�cult to scale, a scenario specific model that requires switching, and the

dangers of delay and incorrect transitions, and a fully generic model that may be

too complex for practical implementation.

2.3.2 Trajectory Prediction

Trajectory prediction has long been performed with classical Kalman [21], [161] and

Particle [177], [90] Filters, Constant Turn Rate and Velocity models (CTRV) [124],

or a combination of a cubic polynomial curve model with a CTRV [184]. They

use only the target vehicle’s (for which the prediction is being performed) past

movement information to predict the future trajectory, which make them e�cient

and powerful in the short-term (i.e. 0.5s to 1s). However, these simple kinematic

models are unable to perform well during the longer term (i.e. 3s to 5s in the

future) as they do not encode either the interaction with other vehicles or with road
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Figure 2.8: False lane change prediction from an SVM classifier due to zigzag move-

ment of the target vehicle [174]. LC is lane change and LK is lane keeping.

infrastructure, which are essential for any long-term trajectory prediction.

Various interaction based models such as the Interacting Multiple Model (IMM)

[152], Intelligent Driver Model (IDM) [96] and Modified Intelligent Driver Model

(MIDM) [32] were developed to encode the vehicle to vehicle interactions, but all

these models were mainly inspired by the classical car-following technique with a

strong assumption that the target vehicle’s future motion is solely dependent only

on the single vehicle in front which is not always the case in any dense tra�c or at an

intersection. Inspired by the classical Social Force Model (SFM) [65], Ratsamee et.

al. developed a Modified Social Force Model (MSFM) [127] where the underlying

interactions were encoded not only through the physical components such as human

position but also considered various human-centric social components such as face

orientation, body pose, proxemics (personal space during motion) etc. Finally all

these interaction forces with respect to the moving target were modeled using the

MSFM to avoid any potential collisions and perform a successful navigation through

a crowded scene. A similar approach, the n-body collision avoidance scheme was

developed by Jur van den Berg et al [12] where each moving agent in the scene ac-

quires the current positions and velocities of all the other agents along with its own

position and velocity at each time step. Based on this information, an individual

agent infers the permitted velocity for the next time instance to perform collision

free movement. However, in the case of both MSFM and n-body collision avoidance,

modelling these interacting force fields between individual agents and inferring fu-

ture velocities based on other moving agents’ velocities in a realistic fashion are

very challenging. To avoid the development of complicated force-based or relative

velocity-based models, various learning-based approaches using, for example, a Sup-

port Vector Machine (SVM) [174], [14], were developed. The target vehicle’s past
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Figure 2.9: Four stages of a lane change maneuver, starting from lane keeping, lane

changing, lane arrival and finally lane adjustment [174].

features like acceleration, heading, steering angle, lane position etc. were used to

gain an early estimate of a lane change manoeuvre via future trajectory prediction or

a Growing-Hidden Markov Model (G-HMM) [160], when only the past positions were

used to estimate the future trajectory. Using Artificial Neural Networks (ANNs) [2],

past observations were encoded through LSTM cells. In the case of the G-HMM

[160], the model also had the capability to update both its structure and parameter

incrementally whenever a new observation sequence became available. As shown in

Figure 2.8, most of the lane change prediction models have a high false alarm rate

during zigzag driving patterns. This zigzag vehicle trajectory mostly occurs when

human drivers decide and start a lane change manoeuvre and then abort immedi-

ately after realizing the presence of surrounding vehicle in the adjacent lane. This

problem was solved by first dividing the lane change manoeuvre into four stages,

Lane Keeping, Lane Changing, Lane Arrival and finally Lane Adjustment [174] (see

Figure 2.9), and then training individual SVM classifiers for each of these stages.

Most of these techniques incorporate the surrounding map information and also

learn the model parameters from past observations, but the surrounding vehicle in-

teraction information is still missing, and this plays a crucial role in future trajectory

prediction. To incorporate these interacting e↵ects the researchers started placing

both the target and surrounding vehicles either in a single Occupancy Grid Map

(OGM) [87], [121] or multiple Occupancy Grid Maps [114], divided on the basis of

the number of lanes.

Recently, in ANN encoder-decoder architecture has attracted a lot of attention

[121], [29], [115], [82] as a trajectory prediction problem can be considered as a

sequence-to-sequence problem, where the both surrounding vehicle interaction in-

formation and map based features are added into the input sequence. In [121] and

[29] the past position information was fed directly as an input trajectory sequence to

predict the target vehicle’s future position. In [115] and [82] a sequence of occupancy

maps is provided to the model which is trained to predict the future map sequence.
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Figure 2.10: Occupancy grid map (OGM) prediction using multiple convolutional

layers for spatial feature extraction and RNN cells (LSTM/GRU) for temporal fea-

ture extraction via classical encoder-decoder structure [115], [82].

An example of occupancy map input-output is shown in Figure 2.10, where the en-

coder consists of multiple convolutional layers to extract the spatial features from

the input OGMs. The extracted features are then passed to the core RNN block

to extract the temporal features. Using both the temporal and spatial features the

core RNN block, mainly made of LSTM or GRU cells, performs the future motion

prediction, but only in feature space. The decoder module consists of multiple trans-

posed convolutional layers that take those predicted motions to produce the future

occupancy map through up-sampling. In the first case, where the raw trajectory

information was used, this makes it di�cult to consider all the surrounding cars in

the decoder as these only learn future movement from the encoded features. There-

fore, the interaction predicted in the future horizon may not be fully exploited. In

the second case, where a sequence of occupancy maps is provided, this can lead to

two major problems, establishing car association and loss function design. First,

associating each predicted car’s position with its corresponding ground-truth posi-

tion can be di�cult when there are multiple cars close to each other. Therefore,

the positions predicted by the network during training may be wrongly assigned,

leading to a wrongly computed loss function. Second, the common loss function

used in these cases is the pixel to pixel distance between the predicted and ground

truth occupancy map which can be misleading in a scenario where more than one

car is moving at the same speed.

In [114], instead of using the classical Recurrent Neural Network (RNN), a Rela-

tional Recurrent Neural Network (RRNN) was used. The advantage of the RRNN

over the simple RNN is that it not only captures the inter-vehicle interaction in the

observation sequence but also enables an “attention” mechanism to identify the most

important information in the input and store this in the memory state accordingly.

Inter-vehicle interaction e↵ects can also be captured by connecting the underlying
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Figure 2.11: A typical example of a graph network where each LSTM cell captures

an individual vehicle’s temporal features including the target vehicle for which the

prediction is being performed. The extracted features from individual LSTM cells

are then shared through a pooling structure [63].

states of the LSTM cells, where a single LSTM is responsible for either the SV or

the TV itself [63], [74]. This type of state sharing technique can be thought of as a

graph- [100], [94] or a tree-network [119] where each tra�c agent is considered as a

node (a single LSTM Cell) connected to all other nodes via edges.

A typical example of a graph network is shown in Figure 2.11, in which the hidden

states of each vehicle-specific LSTM cell capture the e↵ective temporal information

for that specific vehicle. It includes both the positions and motion intentions at

di↵erent times. Lastly, a pooling structure was developed [63] which helps the

target vehicle (for which the prediction is being performed) LSTM unit to accept

and merge information from the neighbouring LSTM units. In a slightly di↵erent

approach, along with individual LSTM cells, an additional set of Fully-Connected

(FC) layers were added for each surrounding vehicle [44]. These additional FC layers

were fed directly with the relative position between the corresponding surrounding

vehicle and the target vehicle. This combined LSTM-FC network structure was

called a Data Fusion encoder. Moreover, instead of using a single LSTM block in

the decoder, four di↵erent LSTM blocks were maintained, in which three blocks

were responsible for producing three di↵erent manoeuvre specific trajectories, left

lane change, right lane change and straight on, and the fourth block produces three

weights to combine the all three predicted trajectories into a single trajectory.
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Inspired by a conversational model called DialogWAE (Wasserstein auto-encoder)

[62] C. Fei et. al. proposed a conditional Wasserstein auto-encoder trajectory pre-

diction model (TrajCWAE) [45] where the prior and posterior distributions were

modeled as Gaussian mixture distributions and were minimized using Wasserstein-

GAN (Generative Adversarial Networks) [4] instead of the classical KL-divergence

[15] technique. In addition, kinematic physical constrains were added to the model

to penalize the generated trajectories with large jerk and high acceleration as these

are not practical in any real world scenario. In [175], instead of feeding the vehicle

past trajectory information directly into the LSTM cells, G. Xie et. al. used an

additional 1D convolutional layer followed by a 1D pooling layer to extract firstly

the key features from the raw trajectory input and then feed the high level extracted

features into the LSTM cell structure to sequentially predict the target vehicle’s fu-

ture positions. In addition, a box plot method was adopted to remove the outliers

from both the training and testing trajectory data to improve the accuracy. The

main purpose behind using the two-stage CNN-LSTM technique is that the CNN

part will learn the spatial relations and the LSTM part will learn the temporal re-

lations between the input and output trajectories of the target vehicles. However,

this multi-stage training technique can make it harder for the model to learn jointly

the highly co-dependent spatio-temporal features.

In any congested tra�c scene a vehicle’s movement is strongly dependant on

the movement of the “front-vehicle” which further depends on the movement of the

vehicle in front of the “front-vehicle”. This chain of dependency can also go in the

left and right directions, as far as the range of the latest on-board sensors, or even

further with the help of infrastructure sensors. The problem with graph-networks is

that they become very complicated with an increasing number of surrounding tra�c

agents. This forces users to consider only a few surrounding vehicles with respect to

the target vehicle [74], making the scene information partial for the “front-vehicle”.

Moreover assignment of specific nodes [100] or LSTM cells [74] to the neighbouring

tra�c agents at the beginning of the observation sequence does not allow any new

vehicle to appear in the vicinity, or any existing vehicles to disappear for the entire

observation and prediction horizon (“birth” and “death” events). These events are

very likely in any dynamic tra�c scene such as at intersections or on motorways

during high speed overtaking.

2.3.3 Maneuver Driven Trajectory Prediction

A driving process can be divided into two sub processes in which a human driver de-

cides which manoeuvre (Left-Turn, Right-Turn, Lane-Change etc.) to perform and

then plans the trajectory keeping the surrounding vehicles, road map and intended
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Figure 2.12: An example four-way intersection used in [145] to create the manoeuvre

specific trajectory clusters.

manoeuvre in mind. Considering this inter-dependency between a vehicle’s motion

semantics and its future course, a lot of researchers have considered the trajectory

prediction problem as a two stage task where the underlying manoeuvre intention

aids prediction of the future trajectory or vice versa. Mohammad et. al. [145] used

the past observation sequence to estimate the future trajectory first and then with

the help of the Longest Common Subsequence (LCSS) distance metric identified

which manoeuvre specific trajectory cluster was the closest match to predict the fu-

ture maneuver. In order to create the trajectory clusters, vehicle data collection was

performed at a typical four-way intersection (see Figure 2.12) using infrastructure

sensors, mainly overhead CCTV cameras. The collected trajectories were then clus-

tered around three common manoeuvre classes i.e. left turn, right turn, and straight

on, with the help of K-means [97] and Expectation Maximization [116] algorithms.

The problem with this approach is that the anticipated manoeuvre is not recursively

helping the trajectory-prediction module, making the manoeuvre estimation stage

redundant. Alternatively, given the observation sequence the underlying manoeuvre

can be estimated first. This has been encoded using a Dynamic Bayesian Network

[134], [135], [137], a Partially Observable Markov Decision Process (POMDP) [78],

and a set of Hidden Markov Models (HMM) [49] where a single HMM model was

associated with each manoeuvre and trained with the recorded maneuver-specific

trajectory clusters or a single Hidden Markov Model integrated with a Gaussian
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Mixture Model (GMM). Similar to multiple HMM models, a mixed regression ap-

proach was developed by Tran and Firl [153] where individual regression models were

trained against each manoeuvre class to identify the most likely manoeuvre of the

target vehicle given a new set of observation sequences. After successfully estimating

the intended maneuver, the future trajectories were predicted either using the mean

and variance of the trajectory cluster associated with the predicted manoeuvre [5],

[6], or using Dynamic Time Warping (DTW) distances between the observed tra-

jectory segment and individual trajectories within the predicted cluster to identify

and use the best matching trajectory, together with the vehicle’s current kinematics

[131] or simply using the conventional Frenet Framework [17], [75]. In the last case,

i.e. with the Frenet Framework, the authors assumed that during the entire process

the vehicle’s longitudinal acceleration remained unchanged and that all the vehicles

travel along the lane centre line except for the times when it is actually performing

the lane change maneuver. Even though in most cases vehicles do travel along the

lane centre line, the assumption of constant longitudinal acceleration in [17] and [75]

can make it hard for the model to understand the interacting e↵ects of surrounding

vehicles on the target vehicle’s movement. Lane centre lines are usually extracted

from a geographic information system (GIS) and stored in parabolic form shown in

equation (2.15)

y(x) = c2x
2 + c1x+ c0 (2.15)

where c2, c1 and c0 are the coe�cients. It is known from [170] that the lateral com-

ponent d(t) and longitudinal component s(t) for a prototypical trajectory of a vehicle

moving from an initial state (s0, ṡ0, s̈0, d0, ḋ0, d̈0) to the final state (s1, ṡ1, s̈1, d1, ḋ1, d̈1)

in the Frenet frame can be optimally modelled as a polynomial of order 5. This guar-

antees the jerk continuity and provides a unique solution. Trajectory generation in

the Frenet frame involves two major steps starting from estimating the initial as

well as final state and then generating the trajectory.

Initial and final state of trajectories in Frenet frame The initial state tra-

jectory of target vehicle shown in equation 2.16 was derived from its state vector

which includes current position in the world co-ordinate frame (x, y), speed ⌫, ori-

entation ✓ and acceleration !.
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8
>>>>>>>>>><

>>>>>>>>>>:

d0 = y0

ḋ0 = ⌫0 sin(✓0)

d̈0 = !0 sin(✓0)

s0 = x0

ṡ0 = ⌫0 cos(✓0)

s̈0 = !0 cos(✓0)

(2.16)

where (x0, y0), ⌫0, ✓0 and !0 are the initial position, speed, orientation and accelera-

tion, respectively. The partial knowledge about the final state is shown in equation

(2.17).

8
>>>>>>>>>><

>>>>>>>>>>:

d1 = yt

ḋ1 = ⌫t sin(✓t)

d̈1 = !t sin(✓t)

s1 = xt

ṡ1 = ⌫t cos(✓t)

s̈1 = !t cos(✓t)

(2.17)

where (xt, yt), ⌫t, ✓t and !t are the final position, speed, orientation and ac-

celeration, respectively. The final location as well as the final orientation of the

target vehicle are usually estimated using the predicted maneuver. For example,

in case of a turn manoeuvre (xt, yt) will be (xlink, ylink) where xlink, ylink are the

x-y coordinates of the future link’s or lane’s position to which target vehicle will

move, estimated by the manoeuvre prediction model. Similarly for follow road, the

same lane’s centre line polynomial as shown in equation 2.15 was used, and for lane

change the lane width was used as the lateral shift so that (xt, yt) can be estimated.

Trajectory Generation The lateral, d(t), and longitudinal components, s(t), of

the generated trajectory in the Frenet frame are shown in equations 2.18 and 2.19

respectively,

d(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0 (2.18)

s(t) = b5t
5 + b4t

4 + b3t
3 + b2t

2 + b1t+ b0 (2.19)

where ai=0,1,2,3,4,5 and bi=0,1,2,3,4,5 are the coe�cients. With known initial and final

states, starting time t0 = 0 and ending time t1 = t, equations 2.20 and 2.21 can be

solved to estimate the coe�cients which generate the predicted trajectory.
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A few examples of trajectories generated using the Frenet frame for turn and lane

change maneuvers at di↵erent longitudinal and lateral motions are shown in Figure

2.13. A slightly di↵erent approach was adopted by Schlechtriemen et al [133] to

perform the manoeuvre driven trajectory prediction task where the future manoeu-

vre probabilities were estimated by a Random Decision Forest and each manoeuvre

specific trajectory cluster was derived using a Gaussian Mixture Regression method.

Finally a “Mixture of Experts” approach was used to combine the computed ma-

noeuvre probabilities and the probability density functions of the regression method

to predict the future lateral movement of the target vehicle. However, road struc-

ture, e.g. the type of the junction, plays a crucial role during trajectory cluster

formation. This makes these models intersection-specific and di�cult to generalize.

Using these two stage trajectory prediction concepts, various deep learning based

models were developed for intention estimation and future motion prediction either

simultaneously, e.g. with the help of Mixture Density Networks (MDN) [77], or

separately, e.g. using two LSTM blocks where the first block predicts the future

manoeuvre and the second block predicts the trajectory given the predicted ma-

noeuvre from the first block [176]. In the last decade the LSTM encoder-decoder

architecture has became more and more popular. This has the unique ability to

read and generate sequences of any length, i.e. sequence-to-sequence. For example,

a manoeuvre dependent encoder-decoder architecture was proposed by N. Deo and

M. M. Trivedi [29] in which the future manoeuvre was predicated first given the

observation sequence and then the decoder used the estimated manoeuvre along

with the encoded state for recursive trajectory prediction for the entire future hori-

zon. In another approach, inspired by one of the latest meta-learning induction [33]
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(a) Left lane change with lateral speed and ac-

celeration equal to 2m/s and 2m/s
2 respec-

tively

(b) Left lane change with longitudinal speed

equal to 8 m/s.

(c) Generated trajectory for left turn.

Figure 2.13: Trajectory generation of target car in Frenet frame for turn and lane

change maneuvers with di↵erent speed profiles.
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approaches called Conditional Neural Process [52], Dong et. al. developed a novel

two-stage network for sequential trajectory prediction [35]. The end-to-end network

consists of an observer-subnet (or demonstration network) and a generator-subnet.

The observer is responsible for categorization of the combined long-term past obser-

vation (past trajectories) of both the target and surrounding vehicles into di↵erent

high-level manoeuvre oriented categories. The generator-subnet produces the future

trajectory of the target vehicle sequentially, using only the immediate observation

immediately before the prediction time step and the estimated category provided

by the observer-subnet.

In all of these works, the future positions, both lateral and longitudinal, were

directly estimated given the intended manoeuvre but the vehicle motion is a↵ected

firstly and as a consequence we see di↵erent trajectory splines. Forcing the model to

predict the future motion first given the estimated maneuver, and then the future

trajectory helps the network to understand the end-to-end maneuver-driven vehi-

cle kinematics. Moreover a left-turn manoeuvre performed on di↵erent sides of a

single/dual carriageway will have di↵erent position co-ordinates, but similar motion

components (mostly lateral), which will help the model to generalize a single ma-

noeuvre behaviour independent of the side from which the vehicle is approaching a

junction. Further, in most cases, the models the models described in this section

used the surrounding vehicles’ (SV) interaction only in the encoder, and decoded the

future trajectory of the target vehicle (TV) for the entire future horizon without us-

ing any updated information on the SV. This absence of updated scene information

in the decoder makes the predicted trajectory inaccurate at longer horizons. Hence,

inspired by [176] and [74], a maneuver-orientated trajectory prediction scheme was

developed where the entire scenario was updated after every decoder prediction,

considering each vehicle as the target vehicle concurrently, and identifying the most

influential surrounding vehicles with respect to each target vehicle. This updates

the latest scene input to the decoder, as opposed to the use of predetermined target

and surrounding vehicle data [74].

2.4 Radar Sensing

A basic radar system detects the distance of an object by sending electromagnetic

pulse and then measuring its time-of-flight using equation 2.22

r =
C⌧

2
(2.22)

where C is the speed of light, ⌧ is the round trip time and r is the distance in

metres. A basic scheme of radar system is shown in Figure 2.14. Due to various
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Figure 2.14: Basic scheme of a radar system [146]

atmospheric factors the return signal usually gets attenuated and loses its power

over distance. Depending on the object’s range from the radar system, its return

signal power can be physically modeled by equation 2.23 [146]

Pr =
PtGtAr�F 4

(4⇡)2R2
tR2

r

(2.23)

where Pr is the return power, Rt is the distance between the object and the

transmitter, Rr is the distance between the object and the receiver, Gt is the antenna

gain, � is the radar cross section, Pt is the transmitted power, Ar is the receiver

antenna area, and F is the propagation factor.

2.4.1 Synthetic Aperture Radar

The radar system used in this thesis for test vehicle setup and data collection is

an imaging radar. The most commonly used imaging radar technique is based on

Synthetic Aperture Radar (SAR) technique. SAR images are usually created by

transmitting successive pulses of radio waves from a moving target travelling at a

high altitude like airplanes or spacecrafts. The reflected pulses from the ground

plane are then captured and recorded using a receiver antenna. Finally, with the

help of advance signal processing techniques such as back-projection algorithms

high resolution ground images are constructed. An example SAR image and the

way it was captured by moving the sensor is shown in Figure 2.15. Inverse SAR

(ISAR) is another similar technique to SAR where a static radar sensor captures

multiple moving targets. With the knowledge of the targets’ movement and advance

reconstruction algorithms high resolution images are created [173].
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Figure 2.15: SAR image capture. An example of an optical (left panel) and a SAR

image (right panel) is shown on the right. [173]

2.4.2 FMCW Radar

Frequency modulated continuous wave (FMCW) is the most commonly used tech-

nique in automotive radar. A FMCW radar consists of two components which are

RF Generator and Mixer. A detailed description of both these components are

mentioned below.

• RF Generator: The primary task of the Radio Frequency (RF) Genera-

tor is to generate a waveform with a starting frequency fc, duration Tc and

bandwidth B. Figure 2.16 shows an example of a chirp generated by the

transmitter. The generated wave form will then be transmitted to capture

the range information and the bandwidth size indicates how much data it

can carry, implying higher range resolution. The generated waveform can be

defined mathematically as function of frequency and time:

y(t) = A sin (2⇡f0t+ ⇡kt2 + ✓) (2.24)

where k = f1�f0
⌧P

, f0 and f1 are the initial and final frequencies respectively and

⌧P is the time di↵erence between them. The most commonly used modulation

techniques are Triangular wave and Sawtooth wave.

• Mixer: The main task of mixer is to mix the transmitted and received signal

in order to estimate the range information. Assume the transmitted and re-

ceived signals are x1 and x2 with frequencies !1 and !2 and phase ✓1 and ✓2,

respectively. Both these signals can be formulated as follows:

x1 = sin (!1t+ ✓1) (2.25)

x2 = sin (!2t+ ✓2) (2.26)
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Figure 2.16: An example chirp generated by a FMCW automotive radar.

Figure 2.17: FMCW transmitted and received triangular chirps [172].
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Figure 2.18: An illustration of how to transform a signal in the time domain to

range data [79].

The mixer will first evaluate the phase and frequency di↵erences of the above

two signals. The resultant signal will be:

x1 = sin [(!2 � !1)t+ (✓2 � ✓1)] (2.27)

In the next stage, the beat frequency up fbu and down fbd and the Doppler

frequency fd (see Figure 2.17) will be estimated using Fast Fourier Transform

(FFT). Figure 2.18 demonstrates how a typical signal in time domain can be

converted to range information through FFT. As shown in Figure 2.19, the

range resolution of a radar solely depends on its bandwidth.

Most of the recent automotive radars are multiple input multiple output (MIMO)

based, which means it will have multiple transmitter and receivers. With the help of

multiple antennas the direction of arrival (DoA) can also be computed. The angular

resolution of a MIMO radar can be computed using the following equation:

✓res =
�

Ad cos (✓)
(2.28)

where ✓ is the angle of where the object is, d is the distance and A is the number

of antennas. Assuming ✓ is 0 and d = �
2 , the angular resolution will become:

✓res =
2

A
(2.29)

For a MIMO radar with 3 transmitters and 4 receivers the angular resolution

can be calculated using Equation 2.29:

53



Figure 2.19: Derivation of the range resolution equation [79].

Figure 2.20: A typical example of a scanning radar installed at the front of an

automotive [81].

✓res =
2

7
= 0.28rad = 16.043° (2.30)

An angular resolution of 16° is not always enough for high resolution imaging.

With the help of mechanical scan it can be improved and the angular resolution will

be based on the beamwidth. A typical example of a scanning radar with a range up

to 100m is shown in Figure 2.20 .

2.5 Applications of Automotive Radar

Given the partial emphasis of this work on interpreting the data collected by an

automotive radar system, this section describes some of the previous work in which

such systems have been used. Applications of radar in the automotive sector were
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initiated in early 70s [60], and since then radar has been used for many surround-

sensing tasks due to its functionality, robustness, reliability and its ability to work in

many adverse weather or lighting conditions [86], [147], [64]. An automotive radar

consists of three building blocks. First, there is the sensing block for modulation,

demodulation and raw data signal processing. Second, there is the perception block

for target detection and tracking. Finally, the planning block involves localization,

situation interpretation plus prediction and decision making [166]. Early automotive

radar systems were really good at measuring object distance with high range accu-

racy but due to the poor angular resolution it was harder to separate two nearby

objects, specially in case of small and vulnerable road-users such as pedestrians

and bicycles. However, the newer generation of automotive radar has implemented

various advanced and e�cient signal processing techniques to achieve higher angu-

lar resolution and overcome this problem [43], [136]. The major applications have

involved:

• Detection and tracking of other road users, e.g. vehicles [84], [112], [61], [105],

pedestrians [20], [67] and bicyclists [66]. In the case of pedestrians and bi-

cyclists the micro-Doppler signatures were used generated either from the leg

movements of pedestrians or wheel rotations of bicycles.

• Target classification among four di↵erent classes (car, bicycle, single and group

of people) using either a classical convolutional network, a residual network,

or a combination of convolutional and recurrent networks [3].

• Human behaviour classification, e.g. slow walk, fast walk or slow walk with

hands in pocket [140], together with classification uncertainty [39].

• Detection of lane and road markings [47], [46].

Mono-static radar systems have been used to detect and track targets using

Kalman [102], cascaded Kalman filters [95], Extended Kalman Filters [150], polyno-

mial fitting [104] and deep learning techniques [36], [122]. The use of multiple radars

improves the accuracy [48]. Automotive radar based tracking starts by measuring

three target parameters, range, radial velocity and azimuth angle [102], of which

radial velocity will be used at first to separate the moving targets from the clut-

ter. Multiple returns from the same target will then be grouped together to form

target specific clusters which will then be associated with the existing tracks using

the nearest neighbour approach. Finally the tracks belonging to the real targets are

passed to a Kalman filter to estimate the current position of all the targets. Usually,

target positions are converted firstly from polar to Cartesian co-ordinate system us-

ing the measured range and azimuth angle before feeding it to the Kalman filter.
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Figure 2.21: Advance Path Measurement technique [157], [156]. The left most image

is the output from the Navtech radar in polar co-ordinates, then the converted image

in Cartesian co-ordinates and finally the extracted road geometry.

Cao et. al. proposed an extended target tracking technique in [18] for vehicles with

the assumption that the targets are rectangular. This prior shape information of

the targets was added to the model as a quadratic equality constraint on the state

to improve the target shape estimation plus it made the target association stage a

lot more simplified and accurate.

Automotive radar systems are not now limited to specific target detection and

tracking, but are also used to perform semantic scene segmentation, as for example

by use of a two-fold neural network model [138]. Usually radar systems only work

within the line-of-sight, but an understanding of temporal sequences of Doppler

velocity and position measurements has allowed researchers to untangle the noisy

indirect and direct reflections to make detection, classification and tracking possible

even without line-of-sight [132].

Developers have used automotive radar to collect vehicle trajectory data [120]

and to sense infrastructure sensor as a “birds-eye view” [158], [118]. Various radar

based vehicle trajectory prediction and collision avoidance algorithms have been de-

veloped, but usually either for very basic lane changes on highways [120], [88], [101]

or at specific intersections to predict a manoeuvre but not the entire trajectory

[158]. Instead of using only radar, a Kalman filter based sensor fusion technique

was adopted in [8] to fuse sensor data from LiDAR, Camera and Radar along with

a vehicle-to-vehicle communication system to not only predict the surrounding road

actors’ future trajectory but also to anticipate both vehicle-to-vehicle as well as

vehicle-to-pedestrian collisions well in advance. However, as shown in Figure A.2 in

a foggy scenario fusing radar data with camera and LiDAR data can sometimes lead

to poor perception of the scene. Millimeter wave automotive radars were also used

by Tsang et. al., to predict the ego-vehicle’s future trajectory by first estimating
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Figure 2.22: Test vehicle equipped with Velodyne LiDAR, Navtech Radar, ZED

Stereo Camera and Advance Navigation GPS/IMU kit, used to collect data from

di↵erent junction.

the road path ahead. The technique was called Advance Path Measurement (APM)

[157], [156] which consists of four steps starting with first generating a 3D radar

image of the current scene in polar co-ordinates using radar range, magnitude and

azimuth data which are then converted into Cartesian co-ordinates. In the next

stage, the road edge reflections were used in combination with a second order poly-

nomial fit to define the path ahead of the ego-vehicle and finally its future trajectory,

again with the assumption that a vehicle always travels through the road central

line.

A example of data from the Navtech radar, converted from polar to Cartesian

images, and the extracted road geometry, is shown in Figure 2.21. A similar tech-

nique was developed by Hoare et. al. [69] where the main focus was to estimate

the detailed road geometry in front of the host vehicle using convolutional neural

networks applied to the radar image. Moreover, radar was used jointly with other

sensors, camera, LiDAR, and even a V2V communication system, to perform trajec-

tory prediction and avoid any potential collisions. In bad weather or poor lighting

a reliance on fusion of radar with other sensor modules can lead to a significant loss

of performance, and a strong dependency on the V2V communication [187] can lead

to dangerous accidents during dropped connections.

Hence, a vehicle detection and prediction system based solely on radar sensing

is crucial for level 4 and level 5 autonomy in all conditions [34], and behaviour

prediction is the main focus in this thesis. For the radar images, the test vehicle

[143] shown in Figure 2.22 was used, which is equipped with a Navtech Radar, a

Velodyne LiDAR, a ZED Stereo Camera and an Advanced Navigation GPS/IMU

Tool Kit. The Navtech Radar used in this work operates at 76-77GHz with a

maximum range of 50-200m (dependent on mode), a range resolution of 6-25cm, an

azimuthal resolution of 1 � 2o which equates to approximately 69cm at 20m and a

maximum frame rate of 4Hz.

57



2.6 Feature Extraction Techniques

As mentioned earlier, most of the trajectory prediction techniques rely heavily on

the current context which includes both the map based features extracted from a

GIS and the relative positions of all the surrounding vehicles with respect to the

target vehicle. This combined use of context information with raw measurement

can boost the system performance significantly [51]. In some cases state-of-the-art

semantic segmentation algorithms [113] have been applied to street scenes to classify

image pixels into object categories. However, such detailed information may be

redundant, as humans are selective and focus on salient details while driving safely.

For example, patches of ice on a road are very important, but whether the pavement

is composed of flagstones or tarmac is not an issue. Interactions of all other tra�c

participants with the ego-vehicle are key features need to be incorporated to make

an accurate prediction [68]. For example, the detection of other cars in adjacent or

in the same lane as the ego-vehicle make it possible to make a lane change prediction

for a target vehicle [107]. The inclusion of prior information together with the state

vectors of individual tra�c participants should make the system more accurate and

capable of longer term behaviour prediction [51]. This includes road structure,

map based localization, road markings, tra�c signs and lights etc [126]. Scene

specific conditions, e.g. fog, ice, tra�c light changes etc can also a↵ect the dynamic

behaviour of other vehicles [128].

The major steps involved in any feature extraction process are detection, classifi-

cation, tracking and finally placing them within the GIS coordinate system. Though

this thesis is mainly focused on automotive radar, this section explains that these

features can be extracted from RGB images (see Figure 2.23(a)) collected with a

stereo-vision system. In order to map all tra�c participants (cars in this case) one

needs the relative horizontal and vertical distance of each car with respect to the ego

vehicle in metres. Using the stereo vision system combined with a trained DNN to

recognize cars, an example of the detection system is given in Figure 2.23(b), with

the corresponding positions on the global map shown in Figure 2.23(c). It can be

seen here that vehicles on both sides of the road have been considered. Arguably,

in the case of a multi-lane highway, this is not necessary as vehicles cannot cross

from one side to another but in the case of single carriageway or intersections there

is a high chances of this occurring. On a single carriageway during an overtake

manoeuvre a vehicle has to move to the opposite side of the road. In the case of an

intersection, the vehicle has to consider any oncoming vehicle on the other side of

the road near the intersection before crossing or preforming a di↵erent turn manoeu-

vre at the same time, thus causing a collision. For distance estimation the detected

bounding boxes were first overlaid onto the depth image generated using the left and
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(a) Ego-vehicle perspective RGB image collected with the on-board stereo camera [53].

(b) Detection and classification of tra�c participants in the scene. The bounding boxes are

the detected target cars in the scene and the numbers in red are distances of the target cars

from the ego vehicle in metres.

(c) Localization of tra�c participants on a Google satellite map [109]. The red dot is the ego

vehicle and the green dots are the surrounding vehicles where each is considered as a target

vehicle once during behaviour prediction. The individual distance vectors of each extracted

feature are shown by yellow arrows. For simplification and better understanding all these

features are shown with respect to the ego vehicle.

Figure 2.23: Detection, Classification and Localization on Kitti dataset [53].
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Figure 2.24: Steps involved in surrounding vehicle distance estimation using RGB

stereo images from Kitti dataset [53].

right RGB images. Since each bounding box contains the detected vehicle as well as

some background in the corners, a histogram based technique was used to estimate

the longitudinal distance instead of simply averaging out all the pixels within the

box. Since the detected vehicle and the background are at di↵erent distances, use

of the histogram helped filter out the background pixels from the depth image. The

detailed steps involved in this process are shown in Figure 2.24.

Next, we consider the impact of some of the most commonly used features such as

headway distance in ego-lane H, distance from nearest car in adjacent lane D, speed

of target car ⌫T , relative speed from forward car ⌫diff , distance from nearest junction

J , indicator signal I and lane number or relative lane position L on behaviour

prediction. The assignment of a target car Tcar, car in an adjacent lane Adjcar and

a forward car Fcar with respect to the ego car are shown in Figure. 2.25.

1. Headway distance in ego-lane H: Distance of the Tcar for which the prediction

will be performed from the Fcar in the same lane is the headway distance (see

Figure 2.23(c)). This is one of the most important reasons for lane change.

People tend to avoid changing lane as long as the ego lane is available or H

is greater than the safety limit decided by highway code. On the other hand

if the distance between Tcar and Fcar is low, people change lane to perform an

overtaking manoeuvre based on the availability of next lane, or reduce their

speed to increase the gap if the adjacent lane is not available. The headway

distance H can be calculated by

H =
p
(xT � xF )2 + (yT � yF )2 (2.31)

where (xT , yT ) and (xF , yF ) are the locations of Tcar and Fcar, respectively.
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Figure 2.25: Assignment of Tcar, Fcar and Adjcar on a simulated scene along with

possible locations for manoeuvre transitions (Follow Road, Left Lane Change and

Left Turn shown with red lines).

2. Distance of nearest car in adjacent lane D: As mentioned above, the final

decision before an overtake manoeuvre is dependent on the distance of nearest

car in the adjacent lane, (which defines lane availability), which can be defined

as
D =

q
(xT � xAdj)2 + (yT � yAdj)2 (2.32)

where (xT , yT ) and (xAdj, yAdj) are the locations of Tcar and Adjcar, respectively.

3. Speed of target car ⌫T : Di↵erent manoeuvre sequences have likely speed pro-

files. For example, most drivers tend to reduce speed during a turn sequence.

The follow road manoeuvre can have a wider speed profile based on the current

context. The current speed of the target car, Tcar, is a good starting point for

future speed estimation since the acceleration and declaration are limited.

4. Relative speed with respect to forward car ⌫diff : A high relative speed between

Tcar and Fcar is another reason for an overtake maneuver. During this scenario

the time to collision with Fcar is low, which makes the driver in Tcar either

reduce speed or change lane based on availability of adjacent lane. ⌫diff can

be derived by
⌫diff = ⌫T � ⌫F (2.33)

where ⌫T , ⌫F are the velocity of the Tcar and Fcar, respectively

5. Distance from nearest junction J : The presence and type of a junction a↵ects

future speed and manoeuvre sequence significantly. If the distance of the

nearest junction from Tcar is high the chances of any turn manoeuvre in the

near future will be low and vice-versa. J is defined as

J =
p

(xT � xJ)2 + (yT � yJ)2 (2.34)
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Figure 2.26: Car indicator signal extraction. Image on left is input image to the

pipeline captured by the stereo camera installed on the ego vehicle. Image on right

is the extracted indicator signal shown by the green rounds.

where (xJ , yJ) is location of nearest junction with respect to the Tcar extracted

from the GIS map.

6. Indicator signal I: Prediction of a target car’s behaviour using a known in-

dicator signal will be more reliable and accurate [91]. If there is a junction

nearby (extracted from road-network) and Tcar car is giving a right indicator

there is a high probability that the Tcar will make a right turn. If the location

is on a motorway and the left indicator is on there is high probability the car

will merge to a left vacant lane. An example of indicator detection is shown

in Figure. 2.26. Based on the extracted indicator signal, I is defined as

I =

8
>>>>>><

>>>>>>:

�1, if Left Indicator is ON

1, if Right Indicator is ON

0, if both Indicators are OFF

2, if Hazard lights are On

7. Lane number or relative lane position L: The position of the Tcar with respect

to ego-lane (where lane information is available) will help to predict future

diversion. If Tcar is within the lane, there is low probability that it will perform

a lane change in a short future time horizon. In contrast if Tcar is almost at

the left side of the current lane or some portion of the car has already left

the current lane and moved to the available left lane there is a high chances

that it will merge to left lane in the immediate future. On the other hand,

at a multi-lane junction, cars in the left-turn lane are more likely to make a

left turn from the junction and vice-versa. On a motorway, lane location can

play a crucial role in speed estimation. Extracted lane information is shown

in Figure 2.27. Based on the extracted lane information L is defined as
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Figure 2.27: Estimated lane Tcar is currently in, is shown by red boundaries. Number

at top of the bounding box is distance of the detected car from ego vehicle in metres.

Two fractional numbers at bottom of the bounding box are the distance of Tcar from

the nearest lane markings respectively in metres. Dividing these two values will give

the relative lane position.

L =

8
>>>>>>>>>><

>>>>>>>>>>:

�2, if Left Turn & Through Lane

�1, if Left Turn Lane (Only)

0, if Through Lane

1, if Right Turn Lane (Only)

2, if Right Turn & Through Lane

2.7 Summary

Vehicle intention prediction for the safe navigation of autonomous vehicles is a well

researched area. This chapter provides an in-depth survey of the existing predic-

tion algorithms, categorized into three di↵erent categories, manoeuvre prediction,

trajectory prediction and manoeuvre driven trajectory prediction. In the case of

manoeuvre prediction the model is only responsible for prediction of the manoeu-

vre intention of the human driver, whereas trajectory prediction techniques produce

the future trajectory. manoeuvre driven trajectory prediction is more attuned to

human behaviour, as the model first predicts the future manoeuvre and then the

future trajectory is predicted given past observations and the predicted maneuver.

However, a human driver usually performs three steps while performing the ego-
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vehicle path planning. First he/she decides the future maneuver, which is either

left lane change, right lane change, straight on or right turn, left turn, straight on

depending on the current context. Next he/she decides the motion or velocity at

which the planned manoeuvre is executed and finally as result we see the future tra-

jectory. In a machine-driven algorithm, the missing intermediate motion prediction

stage in most of the existing methods makes it harder for the network to learn the

end-to-end maneuver-driven vehicle kinematics. Existing techniques also tend to fix

the surrounding vehicles at the beginning of the observation sequence. This makes

it very hard to cope with a dynamic tra�c scene where new vehicles may appear or

existing vehicles may disappear throughout the entire past observation sequence as

well as the prediction horizon.

During the early stages, various classical approaches such as Kalman filters and

particle filters were used to perform the trajectory prediction task. Due to the

missing surrounding vehicle interaction these models became very inaccurate during

long term prediction. To address this problem various interactive models such as

the Social Force Model [65], [127] and Intelligent Driver Model [96], [32] were used,

but formulating the inter-vehicle force fields or developing smart driving models

becomes very complicated with a growing number of surrounding vehicle in a dense

tra�c scene. Moreover, most of these models only consider the current state of the

target vehicle and are unable to capture the inherent temporal features. This is

a crucial factor for accurate long term trajectory prediction. This motivated a lot

of researchers to formulate the trajectory prediction task as a sequence-to-sequence

problem where, given a sequence of positions as input trajectory, the goal is to

predict the future trajectory of all the vehicles in the scene as a future sequence of

positions. As mentioned in Section 2.3 a lot of work has been done using an encoder-

decoder architecture for sequence-to-sequence trajectory prediction problems. The

main building block of any such encoder-decoder architecture is the RNN cell, as

reviewed in Section 2.2.

The majority of the trajectory prediction models introduce context, such as the

surrounding vehicle positions and map features as reviewed in section 2.6, only in the

encoder and not in the decoder. The decoder is then only responsible for decoding

the future position of the “target vehicle”. The problem with this approach is that

during long term prediction, the absence of any updated context or scene information

makes the predicted trajectory inaccurate. This was the main motivation behind

the development of a new LSTM network approach in which the surrounding vehicle

positions and the context information are updated progressively in the decoder to

keep the scene context relevant during long term prediction.

Even though the developed algorithms can be used for any sensor module, and

indeed the developed model was tested on benchmark video sets collected from over-
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head video cameras, this thesis also focuses on vehicle trajectories generated using

an automotive radar due to its ability to work in adverse weather or lighting condi-

tions. Hence, a specific section on detection, tracking, segmentation and behaviour

prediction using automotive radars 2.4 was also included, mainly focused towards

FMCW automotive radars. Keeping the other sensor modalities also in mind, sec-

tion 2.6 explains how various surrounding vehicle features such as relative positions,

relative speed, headway distance, indicator signal etc and map based context in-

formation such as distance from the nearest junction, lane based localization, lane

rules (turn lane or through lane) can be extracted using a RGB-stereo camera and

a GPS/IMU advance navigation tool kit.
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Chapter 3

Interactive Vehicle Trajectory

Prediction with Convolutional

Recurrent Neural Networks

In this chapter, a novel conv-LSTM based trajectory prediction model is presented.

The spatio-temporal features are captured simultaneously, and unlike previous tech-

niques, the context information is made available not just in the encoder but also

in the decoder to keep the scene information more up to date during long term

prediction. The developed model has been evaluated against two publicly available

benchmark datasets. Finally, section 3.7.3 explains how the lack of tra�c codes in

the prediction model leads to wrong trajectory prediction in two highly interactive

scenarios.

3.1 Introduction

The two most crucial factors for future trajectory prediction are each vehicle’s past

movement i.e. temporal behaviour, and their relative position with respect to each

other i.e. spatial geometry. In this context, the primary spatial geometry can

also be thought of as inter-vehicle interactions. In most of the recent work these

interactions were captured by first creating an OGM using the vehicles’ relative

positions. The same step was followed for a sequential OGM to generate the high

level temporal features. These OGMs have been used in two ways to perform future

trajectory prediction. In the first case, the entire OGM sequence was passed to

a CNN based architecture which was trained to predict the future position of the

target vehicle for the entire prediction horizon [117], [59], [71]. The issue with this

approach is that the CNNs are developed mainly to extract spatial features and due

to the missing interconnection between consecutive frames it became hard for the
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model to understand the inherent temporal characteristics. In the second case the

prediction was done using a two stage process [117], [59]. At first the OGM sequence

was passed to a CNN architecture to extract the high level spatial features. The

extracted features were then passed to an LSTM or GRU based recurrent neural

network to finally predict the future position of the target vehicle. The problem

with this approach is that the highly co-dependent spatio-temporal features were

captured separately.

In our apprach both were captured simultaneously using a Conv-LSTM based

deep learning model. Both the target vehicle (for which the prediction is being

performed) and the surrounding vehicles in the vicinity were placed into a multi

channel occupancy grid map (OGM) using their relative positions at the current

frame. A sequence of OGMs was created to capture the temporal behaviour using

all the vehicle positions in the previous frames. In contrast to the previous work,

instead of passing individual OGMs into CNN based architectures and then to a

recurrent neural network, the sequence of OGMs was fed directly into the developed

and trained Conv-LSTM based architecture to extract the spatio-temporal features

simultaneously and finally mapped to the target vehicle’s position at the next frame.

Moreover, in most of the recent works the trajectory prediction problem has

only been formulated as a sequence-input-sequence-output (SeqToSeq) structure.

This means that the sequence of past positions for both the target and surrounding

vehicles is fed to the network and the future trajectory i.e. sequence of positions only

for the target vehicle is predicted. In this way the inter-vehicle interaction e↵ect

is only be present in the input sequence and not during the long term prediction

sequence making the scene information outdated quickly. To handle this issue,

the trajectory prediction problem was formulated as a sequence-input-single-output

(SeqToOne) structure which means that instead of predicting the target vehicle’s

future movement for the entire prediction horizon it will predict the future position

only at the next time instance, but for all the vehicles in the vicinity. Second, a novel

feedback scheme has been developed that uses the currently predicted positions of

all the vehicles to update the input OGM sequence before predicting for the next

time instance. This keeps the scene information up to date, even during long-term

prediction. Both the developed Conv-LSTM based architecture and the feedback

scheme was bench-marked against the state-of-the-art networks using two publicly

available datasets, i.e. NGSIM [24], [23] and High-D [89]. Moreover, in the case of

NGSIM, the model was trained using US-101 highway data [23] and tested using

I-80 highway data [24] to demonstrate the generality of the developed technique. In

summary the major contributions of this chapter are as follows:

• A novel architecture was designed including Conv-LSTM [179] layers which
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captures both the target and surrounding vehicle’s spatial as well as tempo-

ral movement simultaneously for future movement prediction, since these two

factors are highly co-dependent.

• To solve the vehicle association problem e�ciently, separate Occupancy Grid

Maps (OGM) are generated with respect to each target vehicle.

• To incorporate the social e↵ect of surrounding vehicles’ movement on a target

vehicle’s future motion, a novel feedback mechanism was also proposed to

update the input OGMs after each prediction using the current predicted

positions of all the surrounding cars.

3.2 System Model

The problem addressed in this chapter is as follows: given the past observation of

the target vehicle as well as all the surrounding vehicles in the vicinity of the tar-

get vehicle the task is to predict the future movement of both the target and the

surrounding vehicles. There are three key assumptions in this chapter. First, the

observed vehicle trajectories must be perfect. This means there should not be any

missed detections or occlusions causing incomplete trajectory data. Second, only

those vehicles appearing at the start of the observation sequence along with the

target vehicle are considered as surrounding vehicles. This is because the proposed

interactive prediction technique in this chapter also predicts the surrounding vehi-

cle’s future movement and without a fixed length of past observation sequence it

is impossible to do so. Third, due to the fixed shape and orientation of the cre-

ated OGMs this technique will achieve best performance in straight roads specially

multi-lane highways. The main motivation behind using a fixed shape and orienta-

tion OGM is to make it generally applicable to any type of highway with di↵erent

numbers of lanes. Ideally, the trained model will be able to perform the trajectory

prediction task in a completely new scenario, for which the model was never trained.

Moreover, a rectangular shape was adopted during the entire observation and

prediction horizon as vehicles will travel a lot more in the forward direction com-

pared to sideways movement. In order to preserve the relative movements between

consecutive frames it is important to maintain a fixed origin for all the positions

in both the observation and prediction time instances. With slight modification

this technique can also be used at other tra�c locations such as roundabouts or

intersections. Then, the width of each OGM needs to be increased so that it can

accommodate the starting point of all the side roads merging at a roundabout or

at an intersection. Once the target vehicle completes the turn manoeuvre a new set
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of OGM observation sequences will be created but this time the orientation will be

aligned with the side road in the which the target vehicle entered.

Various map based features such as the number of lanes, presence of any intersec-

tion, type of the intersection i.e. signalled or unsignalled etc are also crucial factors

for target vehicle’s future trajectory prediction. Considering the approach presented

in this chapter, such features must be encoded in individual OGMs, thus forcing the

model to perform two additional tasks. First those features have to be extracted

from the OGMs and then it is necessary to understand how they can impact the

future movement of the target vehicle. The main focus of this chapter is to develop

a model that can realize how the past relative movements of other vehicles in the

vicinity can impact the target vehicle’s future movement. This is why, in the work

presented in this chapter, none of the map based features were used while creating

the OGM observation sequence.

3.3 Problem Formulation

3.3.1 Vehicle Trajectory Representation

A vehicle trajectory is represented as a sequence of points, and each is associated

with a unique time instance [(x, y)t�h, (x, y)t�h+1, ......, (x, y)t] where h is the length

of the observation sequence and (x, y)t is the co-ordinate position at time t. For N

vehicles in a scene, their trajectories T are represented as a 2D matrix below, where

the ith row holds the trajectory of the ith vehicle along with the physical length

(Len) and width (Wid) of the corresponding vehicle:

T =

2

66664

(x, y, Len,Wid)1t�h (x, y, Len,Wid)1t�h+1 . . . (x, y, Len,Wid)1t
(x, y, Len,Wid)2t�h (x, y, Len,Wid)2t�h+1 . . . (x, y, Len,Wid)2t

. . . . . . . . . . . .

(x, y, Len,Wid)Nt�h (x, y, Len,Wid)Nt�h+1 . . . (x, y, Len,Wid)Nt

3

77775

The goal is to predict the future trajectory TPred of all vehicles for the next F time

instances given T . TPred can be given by

TPred =

2

66664

(x, y)1t+1 (x, y)1t+2 . . . (x, y)1t+F

(x, y)2t+1 (x, y)2t+2 . . . (x, y)2t+F

. . . . . . . . . . . .

(x, y)Nt+1 (x, y)Nt+2 . . . (x, y)Nt+F

3

77775

3.3.2 Problem Statement

Hence, the goal is to predict the position of all the cars (xn
t+1,t+F , y

n
t+1,t+F ) 8n =

1, 2, 3.., N for the future F frames given the past positions of all the cars for the last
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Figure 3.1: Generated occupancy grid map from the tra�c scene with respect to a

specific target car.

h frames. To achieve this the problem was further divided into two sub problems

explained below,

• Predicting the next position (xn
t+1, y

n
t+1) 8n = 1, 2, 3.., N of all the cars in the

scene considering each as a target car for once, given the observation sequence

OGMn
t�h,t created with respect to that specific car n.

• Updating each individual car’s observation sequence OGMn
t�h+f,t+f 8n = 1,

2, 3.., N and 1  f  F given all the predicted positions (xn
t+f , y

n
t+f ).

3.3.3 Spatio-Temporal Scene Representation Using an OGM

Generally, within an Occupancy Grid Map (OGM), each cell value indicates the

probability that cell is occupied. In this case, since the positions and trajectory

information T are labelled manually a binary cell was considered which means that

cells are either occupied (‘1’) or vacant (‘0’) as shown in Figure 3.1. Thus a single

OGM will hold the spatial relationship between the target and surrounding cars and

a sequence of these OGMs will hold the temporal information. The joint spatio-

temporal features can be represented as a 4D matrix OGMR⇥C⇥2
t�h,t 8R,C, h > 0

where R, C are the number of rows, columns of each OGM and h is the number of

frames within the observation sequence and 2 is to maintain two separate channels

of each OGM so that the target and surrounding vehicles can be placed separately.

Separate observation sequences are created for each vehicle in the scene considering

that particular vehicle as the target vehicle. OGMn
t�h,t 8n = 1, 2, ..., N denotes

a sample observation sequence created with position information from t � h to t

considering c as the target vehicle, where t is the current time instance. The origin

of each observation sequence will be the position of the target vehicle at time t.
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Figure 3.2: Proposed Conv-LSTM based architecture.

3.3.4 Frame of Reference

The origin of the all the grid maps in an observation sequence is the position of the

target car at the beginning of the observation sequence. All the surrounding vehicles

are placed on an individual OGM based on their relative positions with respect to

the target car at that time instance. By maintaining a fixed origin of all the OGMs

in the entire prediction as well as observation sequence, it is possible to keep both

the target and the surrounding vehicles in a single coordinate frame making it easier

for the model to capture how the past temporal features are correlated with future

movement. On the other hand, with a moving OGM with respect to the target

vehicle, the relative movement information would get lost. For example, consider

if at the first time instance the target vehicle is at position (x0, y0) which is also

the origin of the first OGM, and at the second time instance the target vehicle is

at position (x1, y1) which is now the new origin of the second OGM. In both these

OGMs, due to di↵erent origins, the target vehicle will appear at the same location

making it di�cult for the model to understand its relative movement from the last

time instance to the current time instance.
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Figure 3.3: Proposed feedback prediction scheme.

3.4 Conv-LSTM Based Future Trajectory Predic-

tion

Recurrent neural networks are designed for sequential problems, specifically when

dealing with temporal information. However vanilla RNN [73] and LSTM [57],

[28] networks are incapable of using both the temporal and spatial information

simultaneously. To address this problem a Conv-LSTM deep network architecture

[179] has been used in this work.

3.4.1 Proposed Network Architecture

The proposed network architecture consists of three modules, Interaction Learning,

Temporal Learning and Motion Learning. It is shown in Figure 3.2. OGMn
(t,t�h) are

the input OGMs at time t for vehicle n. The blue “Conv-LSTM” blocks are part of

the “Interaction Learning” module, green “Multiple Dense Layers” are part of the

“Temporal learning” module, finally the grey “Concatenate” layer is the “Motion

Learning” module which concatenates the states from the the “Conv-LSTM” blocks

and also outputs from the “Multiple Dense Layers” and passes it to another set of

“Multiple Dense” layers to finally predict the position of vehicle n at the next frame,

(x, y)nt+1.

Interaction Learning

The Interaction Learning module learns the dependency between the movement of

target vehicle, c, and its surrounding vehicles. It takesOGMc
t�h,t as input. As shown

in Figure 3.2, this part has three “ConvLSTM Blocks”, each of which is composed

of a 2D Conv-LSTM layer followed by MaxPooling and BatchNormalization layers.

The kernel dimensions in the three di↵erent Conv-LSTM layers are (3,3), (5,5) and

(7,7). The small dimension in the first layer is to successfully extract the relative car

positions. In the following two layers have di↵erent kernel dimensions to separate
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Table 3.1: Detailed architecture of the proposed Interaction-Learning Module in-

cluding layer type, filter count, activation functions and kernel dimensions.

Layer Type Activation Alpha Kernel Filters

Conv-LSTM Leaky-Relu 0.1 (3,3) 2

BatchNormalization --- --- --- ---

MaxPooling --- --- (3,3) ---

Conv-LSTM Leaky-Relu 0.1 (5,5) 4

BatchNormalization --- --- --- ---

MaxPooling --- --- (5,5) ---

Conv-LSTM Leaky-Relu 0.1 (7,7) 8

BatchNormalization --- --- --- ---

MaxPooling --- --- (7,7) ---

the dependency of near and distant cars on the target car’s future movement. To

maintain the OGM dimension, the “same” padding is employed to all three Conv-

LSTM layers. The filter counts for the three Conv-LSTM layers from the beginning

are 2, 4 and 8, respectively, with Leaky-ReLU (Leaky-Rectified Linear Unit) as the

activation function to avoid neuron death. A detailed structure of the interaction-

learning module is mentioned in Table 3.1.

Temporal Learning

Recent frames within the historical observation sequence are more informative than

older frames for future motion estimation. To capture this varied contribution of

individual frames separate sets of fully connected layers are maintained for each

temporal instance. Extracted features from each temporal Conv-LSTM slice are

then fed directly to the fully connected layers. The sizes of the layers in this module

are 128 ! 64 ! 32 ! 16 with Leaky-ReLU as the activation function.

Motion Learning

The last part of the model is responsible for motion learning based on the extracted

features from the previous two parts. All the temporal slices were concatenated with

the extracted state from the Conv-LSTM layers and fed through fully connected

layers to learn the correlation between previously extracted features and future

movement in the next frame. The neuron counts of the layers are 128 ! 64 !
32 ! 16 ! 8 ! 2 with Leaky-ReLU as the activation function except the last layer.

As the underlying task is regression linear activation was used in the last layer to

predict the 2D position of the target car in the next frame.
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Table 3.2: Detailed architecture of the proposed Temporal and Motion Learning

Modules including layer type, neuron count, activation function and alpha.

Module Layer Type Neurons Activation Alpha

Temporal-

Dense 128 Leaky-ReLU 0.1

Learning

Dense 64 Leaky-ReLU 0.1

Dense 32 Leaky-ReLU 0.1

Dense 16 Leaky-ReLU 0.1

Motion

Dense 128 Leaky-ReLU 0.1

Dense 64 Leaky-ReLU 0.1

Dense 32 Leaky-ReLU 0.1

Learning Dense 16 Leaky-ReLU 0.1

Dense 8 Leaky-ReLU 0.1

Dense 2 linear ---

A detailed description of both the temporal and motion learning modules are

mentioned in Table 3.2.

3.4.2 Feedback Based Prediction Technique

As mentioned earlier, the model is trained with the last h OGM frames as input and

the position of target car in the next frame as output. To update the positions of

the target and surrounding vehicles in the observation sequence after each instance

prediction, a feedback based scheme shown in Figure 3.3 is introduced. The vehicle

position table (left, blue) holds the historical position in the last h frames for each

car in the scene. The orange OGM Generator block is responsible for N observation

sequence generation considering each vehicle as the target vehicle once. The N

violet Prediction blocks predict the position (x, y)t+1 in the next frame. Finally,

the predicted positions are stored (the last red box) and fed back to the position

information table (first blue table) to update the current scene simultaneously.

The first part is the vehicle past position table of shape (N ,h) which holds

the positions of each car for the previous frames from t � h to t from trajectories

T . Whenever there is a “birth” or the appearance of a new car in the scene, it

appends its location at the end of the table. Similarly whenever there is a “death”

or a car goes out of the scene, the row associated with that car is removed. This

vehicle position table is then passed to the OGM Generator block which creates

N observation sequences considering each vehicle as a target vehicle once. Each

observation sequence is then passed through the pre-trained model to predict the

next position (x, y)t+1 at t+1. Once all the vehicle’s future positions are predicted,
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they are concatenated to represent the full set prediction at t + 1. This updates

the vehicle position table by replacing the oldest frame. After the first prediction

the vehicle position table holds position information from t � h + 1 to t + 1 for

each vehicle. Once new positions are appended to the vehicle position table, their

OGMs are generated through the OGM generator block. Similarly, after the second

prediction, the position table has the observation from t�h+2 to t+2. The process

is repeated until it reaches the maximum prediction horizon F .

The steps involved in predicting the positions of each vehicle at each future

timestamp for all the vehicles currently present in the scene and recreating the cur-

rent scene information using those predicted positions is summarised in Algorithm 1

During future movement prediction of one particular vehicle at t+f , 8f = 2, 3, ..., F

where f is the current prediction instance, the predicted positions of all the other

cars between t + 1 and t + f � 1 are also considered in the observation sequence.

Hence, this feedback updates the input sequence repeatedly to incorporate potential

future interactions with other cars more e↵ectively.

3.5 Implementation Details

This section explains data formatting, training, and validation on two publicly avail-

able datasets i.e. NGSIM [23], [24] and High-D [89]. Details about both these

datasets are presented in Sections 3.6.1 and 3.6.2.

3.5.1 Data Formatting

The pixel dimensions of the OGM considered in this work are 1024 rows in the

longitudinal and 128 columns in the lateral direction with 3 (h = 30 frames) and

5 (F = 50 frames) seconds as the observation and prediction time windows, re-

spectively. The physical dimensions of the grid map are 600 feet (⇠180 m) by 100

feet (⇠30 m). In both NGSIM (US101 [23] and I80 [24]) and High-D [89] datasets,

among all the tracked vehicles the highest velocity recorded is roughly 75 feet/sec

and the total observation and prediction temporal windows in this experiment are 3

+ 5 = 8 secs which allows each car to move roughly 600 feet, which sets the longitu-

dinal physical dimension. In the lateral direction, a 100 feet wide grid map covered

the adjacent lanes along with the target car’s ego-lane with some extra margin on

both sides. So one single OGM can hold the spatial relationships between all the

cars and since both NGSIM and High-D have a data acquisition rate of 10Hz, 30

sequential OGMs will jointly represent the spatio-temporal information for the 3

seconds observation window. In the longitudinal direction 600 feet physical length

were quantized using 1024 rows which led to approximately 600/1024 = 0.58 ft/pix
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Figure 3.4: Sliding window sampling scheme for training the network. The blue and

the red are the target and surrounding vehicles respectively. Multiple copies of the

same vehicle id indicates di↵erent time instances.

OGM resolution. On the other hand in case of the lateral direction 128 feet phys-

ical width which includes roughly 2 adjacent lanes on both sides along with the

target vehicle’s ego lane, were quantized using 128 columns leading to 100/128 =

0.78 ft/pix OGM resolution. In any highway scenario vehicles tend to accelerate or

decelerate more often compare to performing a lane change maneuver. Considering

the orientation of the created OGMs any vehicle acceleration or deceleration will

lead to position change in the longitudinal direction and any lane change manoeu-

vre will lead to position change in the lateral direction. This is why during the

OGM creation longitudinal resolution was maintained higher compare to the lateral

resolution. So that the memory consumption for each input OGM can be reduced

without loosing the raw trajectory information much. Moreover, while deciding

these dimensions the numbers that are power of 2 were only considered to optimize

the use of memory. Keeping this in mind along with the physical length and width

of actual vehicles any higher number of rows or columns for the OGMs will become

redundant in terms of trajectory accuracy. For each OGM generation the locations

estimated through the global state plane co-ordinate system were used instead of

the US-101 [23] or I-80 [24] specific local co-ordinate system to make it more generic.

The future trajectories were predicted with respect to the local coordinate system.

Once predicted, it can be converted back to the global co-ordinate system with the

knowledge of its origin location in the state plane co-ordinate system.

3.5.2 Multi-Channel OGM

Instead of placing both the target and surrounding vehicles into the same OGM

double-channel OGMs were created to pass them separately to the network. That

made it easier for the network to di↵erentiate the target vehicle for which the pre-

diction is being performed and the surrounding vehicles whose relative positions are

a↵ecting the target vehicle’s future motion. The first channel of all the OGMs in
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one observation sequence holds just the relative movement of the target car from

start to end of the observation sequence and the second channel holds the relative

movement of all the surrounding cars with respect to the target car for the same

sequence. Vehicle dimensions are usually 8 ft/16 ft for cars and 14ft/54ft for HGVs.

Considering these dimensions and the feet per pixel resolution of the OGMs each

vehicle will roughly have 250-1500 pixels. The input data can be think of as a

two-channel birds-eye view image of the current scene.

For faster and e�cient sample generation at first two dictionaries were created,

“Vehicle Dict” and “Frame Dict” from the entire NGSIM and High-D dataset with

Vehicle ID and Frame ID as the keys, respectively. Each vehicle in the Vehicle Dict

was selected as target car once and the current Frame ID of the selected target vehi-

cle along with the Frame Dict was jointly used to identify the surrounding vehicles

present at that instance to create the input trajectory matrix T mentioned in the

vehicle trajectory representation. Due to the fixed input shape of the proposed net-

work only the vehicles present in the last h = 30 frames were considered to create T .

Once created each vehicle in the trajectory matrix (T ) was considered as a target

vehicle once to create its OGMs for the entire observation sequence (h = 30 OGMs).

The detailed steps involved for the OGM creation for each target car are given in

Algorithm 2. A sample multi-channel OGM is shown in Figure 3.1.

3.5.3 Sampling the Sequence

A sliding window is used to generate sequence samples which can be used for the

SeqToOne architecture. Consider generating samples for one specific target vehicle

(the blue vehicle in Figure 3.4) with surrounding vehicles 1,2 and 3 (the red cars

in Figure 3.4). To generate the first sample (Sample1) of the observation sequence

associated with the target vehicle, it uses its historical position information from t0

to t29 (for h = 30 frames) with the corresponding surrounding cars in the same co-

ordinate frame considering the target vehicle’s position at t29 as origin. The target

car’s position at t30 in the same co-ordinate frame will be the ground truth output.

For the next sample (Sample2), for the same target vehicle the time window was

moved one unit forward, which means the observation sequence will be generated

based on the target vehicle’s position from t1 to t30 considering the position at t30

as the origin and the position at t31 as the output. Using the same time window

shift approach, the rest of the samples can be generated.

This kind of sampling scheme helps the feedback based technique to predict ac-

curately by providing similar data points during training. Now let’s assume the

trained model is predicting a di↵erent target car’s future movement in a similar

tra�c situation using the feedback technique. Input would be the observation se-
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quence of 30 OGMs generated using the target car’s position from t0 to t29 and the

predicted output would be the position at t30 which is similar to sample1 in the

training dataset. Once predicted for t30, the predicted position along with positions

from t1 to t29 is used to predict the position in the subsequent frame (t31). Due to

the sliding window sampling technique, this time it will find correspondence with

sample2 and will predict accurately. In the same way for the next frame (t32) it will

find a strong similarity with sample3 and so on.

3.5.4 Training

The Conv-LSTM models are trained by minimizing the Euclidean distance between

the predicted and the ground truth positions over all the samples:

L =
q

(xtrue � xpred)2 + (ytrue � ypred)2 (3.1)

where L is the computed loss, xtrue and ytrue are the ground truth, and xpred and

ypred are the predicted lateral and longitudinal positions, respectively.

The developed model was trained using the RMSprop optimizer [151] as this

works better for recurrent models. The step decay learning rate starts from 0.01

and reduces by 30 percent after each 5 epochs. The model is implemented in Keras

[85] with the TensorFlow backend [1], [186]. The implementation of the proposed

technique can be found here.

3.6 Benchmark Datasets

One of the most popular and the first bird’s-eye view dataset is the Next-Generation

Simulation (NGSIM) dataset that includes 45 minutes of vehicle tracking data for

two multi-lane intersections, the Lankershim Boulevard [25] and Peachtree Street

[26], and two multi-lane motorways, I-80 [24] and US-101 [23], in the United States.

Birds eye views of both the multi-lane highways and multi-lane intersections are

shown in Figure 3.5 and Figure 4.6, respectively. The coverage area, collection sites,

number of intersections and lane counts for all four sub-datasets in the NGSIM

dataset are given in Table 3.3. Each sub-dataset includes more than 2400 trajec-

tories of real tra�c captured by video cameras mounted on the roof of a 36-storey

building, with camera frame rates at 10 Hz for 45 minutes in three di↵erent tra�c

conditions, i.e. mild, moderate and congested. Each data point in the trajectory

information includes lateral and longitudinal position, instantaneous speed, accel-

eration, current section ID, current intersection ID and instantaneous movement.

The lateral and longitudinal positions are actually measured in the local co-ordinate

system. In Figure 3.5(a) and 3.5(b) the origin locations are the bottom-left corner
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(a) I-80 Highway [24] (b) US-101 Highway [23]

Figure 3.5: Bird’s Eye View (BEV) of two highway locations in the NGSIM dataset,

i.e. I-80 and US-101. Each sub figure consists of a satellite view of the observation

area and a schematic diagram with lane counts

of the black boxes drawn on top of the individual schematic diagrams. Instanta-

neous movement indicates which maneuver (straight-on or left/right turn) a vehicle

is currently performing. A slightly di↵erent dataset was collected and published by

Krajewski et. al. called the High-D dataset [89]. In this case instead of using fixed

overhead cameras, an unmanned aerial vehicle (UAV) was used to collect vehicle

trajectory data from 6 di↵erent highways in Germany with di↵erent lane numbers

and speed limits. It includes real vehicle trajectories of more than 110500 vehicles

where state-of-the-art computer vision algorithms were used to detect and local-

ize each vehicle. The generated trajectories were further processed using Bayesian

smoothing. The information associated with each trajectory is similar to the NGSIM

dataset. Further details about both the NGSIM and High-D datasets are explained

in Section 3.6.1 and 3.6.2, respectively.

3.6.1 Next Generation Simulation (NGSIM)

The next Generation Simulation (NGSIM) US-101 [23] and I-80 [24] highway datasets

were collected and published by the US Federal Highway Administration. US-101

covers a 640 meters (2,100 feet) long, 5 lane wide (3.66m or 12ft each) section on a

Hollywood freeway in Los Angeles (see Figure 3.5(b)) and I-80 covers a 503 meters

(1,650 feet) long, 6 lane wide (3.66m or 12ft each) section on the I-80 freeway in

Emeryville, California (see Figure 3.5(a)). These separate scenarios allow us to train

and test the model on two completely di↵erent datasets. Each consists of more than

5000 trajectories of real tra�c captured at 10Hz for 45 minutes with three di↵erent
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Table 3.3: Details about four di↵erent sites in NGSIM dataset

Location Coverage (m/feet) Lanes Intersections

I-80, Hollywood Freeway, Los Angeles 503/1650 5 –

US-101 Emeryville, California 640/2100 6 –

Lankershim Boulevard, Los Angeles 500/1600 3-4 4

Peachtree Street Atlanta 500/2100 2-3 5

tra�c conditions, i.e. mild, moderate and congested. Each data point in the US-101

[23] and I-80 [24] datasets have Vehicle ID (unique ID of the current tracked vehicle),

Frame ID (the current frame number after the vehicle has appeared in the installed

video camera’s field-of-view), Total Frames (total number of frames the vehicle was

present in the video camera’s field-of-view), Global Time (current Unix time), Lo-

cal X and Local Y (position of the vehicle in the local collection area), Global X

and Global Y (position of the vehicle in the global State Plane Co-ordinate System),

V Length and V Width (length and width of the vehicle in feet), V Class (type of

the vehicle i.e. truck, bus, or car), V Vel and V Acc (instantaneous speed and accel-

eration of the vehicle respectively) and Lane ID (ID of the current lane the vehicle

is travelling in).

3.6.2 High-D Dataset

High-D [89] is a real vehicle trajectory dataset including more than 110,500 vehicles

collected on 6 di↵erent highways with di↵erent lane numbers and speed limits using

an unmanned aerial vehicle, shown in Figure 3.6. State-of-the-art computer vision

algorithms were used to detect and localize each vehicle. The generated trajecto-

ries were further processed using Bayesian smoothing. The information associated

with each trajectory is similar to the NGSIM dataset with some additional tra�c

features, i.e. lateral (x), longitudinal (y) positions (see Figure 3.6 for x/lateral and

y/longitudinal directions), instantaneous speed and acceleration (both in x and y

direction), vehicle length and width (in meters), vehicle type (i.e. truck, bus or

car), Lane ID (ID of the current lane the vehicle is travelling in), Distance Head-

way (DHW), Time Headway (THW) and Time to Collision (TTC) of preceding and

following vehicles on the ego and adjacent lanes along with their IDs.
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Figure 3.6: A example scene of the High-D dataset [89] collected with a drone

(unmanned aerial vehicle) that captures tra�c from a bird’s eye view on a road

section with a length of about 420 m.

3.7 Results and Performance Evaluation

3.7.1 Compared Models

The developed model was then compared with several existing models (defined be-

low) either re-coding (CV,V-LSTM), downloading public code (CS-LSTM), or using

published results (D-LSTM).

• Constant Velocity (CV): In the constant velocity (CV) model, only the

instantaneous velocity of the target car was used to calculate the succeeding

longitudinal and lateral positions.

• Vanilla-LSTM (V-LSTM): In the V-LSTM model only the target car’s past

trajectory was used to predict the future trajectory, not using any information

about the surrounding cars. To ensure fair comparison, this model was also

trained in SeqToOne fashion and then used the proposed feedback scheme

to predict the whole future sequence. The reason the developed model was

compared with V-LSTM is to understand whether the proposed technique can

capture and benefit from other surrounding cars’ information to make the long

term prediction more accurate.

• Dual-LSTM (D-LSTM): A two-stage LSTM based network is proposed in

[176] by Long et al. The proposed method feeds the input trajectory sequence
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Table 3.4: RMSE comparison on NGSIM dataset [23] between CV, V-LSTM, Dual-

LSTM, CS-LSTM and the proposed technique at di↵erent time horizons. The Dual-

LSTM results are from the original paper [176] as the code or model is not publicly

available. All the RMSE values are in metres.

Prediction Horizon

Model 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s 10 s

CV 0.74 2.05 3.72 5.65 7.62 9.64 11.75 13.98 16.28 18.47

V-LSTM 0.81 1.78 2.85 4.06 5.39 6.84 8.38 10.05 11.85 13.77

Dual-LSTM

[176]

0.47 1.39 2.57 4.04 5.77 – – – – –

CS-LSTM [29] 0.58 1.26 2.11 3.18 4.53 6.21 8.42 11.12 14.20 17.90

Proposed 0.80 1.67 2.39 3.23 4.50 5.66 6.92 8.43 9.73 11.40

to the first LSTM block to recognize the driver intention as an intermediate

step. The second LSTM block receives the recognized driver intention to

estimate the future trajectory. Since the code is not available and the model

is tested on the same dataset the results provided in the paper were considered

directly.

• Convolutional Social Pooling-LSTM (CS-LSTM): This incorporates a

manoeuvre based (Left Lane Change, Right Lane Change or Follow Road)

motion model to generate a multi-modal predictive distribution [29] using the

conventional SeqToSeq encoder-decoder architecture. Even though it includes

the surrounding vehicle interaction e↵ect in the encoder but the decoder is only

responsible to decode the future positions of the target vehicle only, making

the scene information outdated during the long term prediction.

3.7.2 Performance Comparison with State-of-the-Art Meth-

ods

A comparison of performance of all algorithms over 4000 test sequences randomly

selected from the NGSIM dataset [23] is shown in Figure 3.7. As a performance

metric, the Root Mean Squared Error (RMSE) between the predicted and ground-

truth positions were computed for a future horizon of 1 to 10 seconds for all the

tra�c participants (cars and HGV). In most of the recent literature the considered

prediction horizon is only 5 secs but in this chapter it was extended to 10 secs
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Figure 3.7: The RMSE comparison of CV, V-LSTM, Dual-LSTM [176], CS-LSTM

[29] and the proposed method on 4000 sequences selected from NGSIM US-101 [23]

dataset. This figure shows their average mean squared errors for the prediction time

horizon from 1s to 10s.

to better understand how the proposed interactive prediction mechanism technique

can keep the scene information up to date during a longer term prediction. While

predicting the immediate future the observed surrounding scene information plays a

crucial role, but while predicting in the longer term the observed sequence becomes

outdated. Therefore, the predicted positions of all the surrounding vehicles as well

as the target vehicle should be used as the current context. Although this model was

only evaluated using the publicly available multi-lane highway datasets to compare

its performance with existing algorithms, the main use of this type of technique

with a long term prediction capability should be in a single carriageway scenario,

especially when a vehicle is performing an overtake maneuver. The overtaking ve-

hicle has to go onto the other side of the road where the vehicles are travelling

in the opposite direction which means the relative speed is a lot higher and more

dangerous. Before starting to overtake a human driver always anticipates the entire

manoeuvre, crossing to the other side of the road, then merging back in. Depending

on the velocity and length of both the overtaking vehicle and the vehicle in front,

it can take typically more than 5 secs, especially if both are HGVs and the velocity

di↵erence between them is low.

It can be seen that the naive CV model produces the highest prediction error due

to the absence of any temporal or interaction information. In V-LSTM, the past

trajectory information was also employed, which makes future motion estimation

(velocity and acceleration) more accurate and so outperforms the basic CV model.
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(a) NGSIM [23] (b) High-D [89]

Figure 3.8: The RMSE on NGSIM [23], [24] and High-D [89] datasets with two

di↵erent activation functions (ReLU and LeakyReLU) for Conv-LSTM layers. For

each evaluation metric, its average values were plotted for the prediction time horizon

from 1s to 5s.

The developed model in this chapter includes the information on surrounding cars

for the whole future prediction horizon outperforms both CV and V-LSTM; this

suggests that the surrounding cars’ relative motion plays a crucial role in future

trajectory prediction.

The performance of Dual-LSTM is better than both the CV and V-LSTM mod-

els during the short term horizon due to the presence of the intermediate intention

recognition step, but it is still not as good as CS-LSTM or the proposed method

due to the missing surrounding cars’ information. CS-LSTM (with manoeuvre in-

formation) and the proposed technique (without manoeuvre information) perform

almost similarly during the short term future horizon. Achieving similar perfor-

mance without manoeuvre class information (Lane Change, Follow Road) does save

the e↵ort and necessity of labeling each trajectory sequence during the training pro-

cess. In addition, since this method also considers the predicted positions of all

other surrounding vehicles in the scene to update the OGM frames, it outperformed

the state-of-the-art CS-LSTM method during the long term prediction horizon. The

RMSE of each method at di↵erent time horizons is shown in Table 3.4.

Two di↵erent activation functions, ReLU and Leaky-ReLU, were used for the

first three Conv-LSTM layers to identify the contribution of activation functions to

model performance. The comparisons of these two settings on two di↵erent datasets,

NGSIM and High-D, are shown in Figure 3.8(a) and Figure 3.8(b), respectively. The

performance with the Leaky-ReLU activation function is better than normal ReLU

on both datasets. Moreover, due to the better variety and more natural trajectories,

the overall performance on the High-D data is better than the NGSIM dataset. The

RMSEs of each setting on each dataset, at di↵erent time horizons, are shown in

Table 3.5.
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(a) Successful left lane change prediction on NGSIM dataset

(b) Successful left lane change prediction on High-D dataset

(c) Wrongly anticipated right lane change on High-D dataset

(d) Missed pulling back to right lane after overtake on High-D dataset

Figure 3.9: Case studies of the prediction results by the proposed method. The

predicted and ground truth trajectories are drawn in dashed Red and solid Green

lines respectively. Black dashed lines are the lane markings where Lane 1 is the left

most lane. Each image shows future trajectory up to 5s.
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Table 3.5: RMSE comparison on two di↵erent datasets (NGSIM and High-D) with

two di↵erent activation functions (ReLU and Leaky-ReLU) for the Conv-LSTM

layers at 5 di↵erent time horizons

Prediction Horizon

Dataset Activation 1 s 2 s 3 s 4 s 5 s

NGSIM ReLU 0.76 1.66 2.59 3.77 4.92

NGSIM Leaky-ReLU 0.87 1.76 2.58 3.34 4.14

High-D ReLU 0.74 1.57 2.44 3.39 4.30

High-D Leaky ReLU 0.87 1.55 2.20 2.88 3.59

3.7.3 Case Studies

The distribution of di↵erent maneuvers in most recent datasets is heavily biased

towards follow road sequences or in other words an absence of frequent lane changes.

To address this problem the results were further illustrated by showing the predicted

trajectories (see Figure 4.18) in four highly interactive scenes with a potential lane

change. Figure 3.9(a) shows that target vehicle 239 is preceded by a relatively slow-

moving vehicle 237 within the same lane and the right adjacent lane is occupied by

HGV 233. In this scenario, ideal driving behaviour would be to perform a left lane

change to overtake the slow preceding vehicle provided a su�cient gap is available

in the left lane which is indeed the case. Another similar scenario in the High-D

dataset with a high chance of lane change is shown in Figure 3.9(b) where vehicle

281 is preceded by slow-moving vehicle 279, the right lane is occupied by another

vehicle 280, and the left lane is available. In both these cases the model successfully

predicted a left lane change trajectory.

Within the US driving code, the overtake manoeuvre should only be performed

using the left vacant lane; in the case when the left lane is occupied the driver should

wait until it is clear. In addition, once the overtake manoeuvre is completed the

vehicle should cut back in to the rightmost vacant lane. Contradictory trajectories,

overtaking using the right lane and not pulling back into the right lane after suc-

cessful overtaking, are shown in Figure 3.9(c) and Figure 3.9(d) respectively. Figure

3.9(c) shows the violation of the first code, where vehicle 469’s ego lane and both the

left lanes are congested. Due to the availability of a significant gap in the rightmost

lane, the proposed model predicted a dangerous accelerated right lane trajectory as

opposed to the decelerated left lane change ground truth trajectory. Figure 3.9(d)

shows a violation of the second code, where vehicle 65’s ego lane is empty and there

is no need for an immediate lane change in terms of lane congestion. This is why the

86



proposed technique predicted a follow lane trajectory as opposed to the right lane

change (ground truth) trajectory, pulling back into the rightmost vacant lane. There

is a strong possibility that these violations are caused by the missing tra�c code

information in the model. Future work should consider adding rule-based layers to

the model to handle these types of case.

3.8 Summary

In this chapter, a novel Conv-LSTM based architecture was proposed with an inter-

active feedback based prediction scheme to forecast the future trajectory of tra�c

participants from the current scene. The model has the capability to make use

of both the spatial and temporal features simultaneously and thus improves the

accuracy of the predicted trajectory. Moreover, the designed feedback scheme en-

codes the surrounding vehicle interaction, not only in the input sequence but also

during the prediction horizon, by sequentially predicting future positions of all the

surrounding vehicles in the vicinity and then using those predicted positions while

predicting the next time instance. Several experiments on two di↵erent datasets,

NGSIM [24], [23] and High-D [89], show that the proposed method can achieve com-

parable prediction accuracy with the state-of-the-art models during the long term

prediction horizon, even without using manoeuvre information. Moreover, for both

the datasets the proposed network was trained and tested on di↵erent highways to

establish the generality of it. In the proposed feedback scheme, since the predicted

position of the current frame was used to predict the position in the next frame,

there is a chance of error accumulation during the long-term prediction horizon.

This is why in the the next chapter a novel “retrain technique” has been used to

reduce this error accumulation even further. In addition to this, various map based

features were also introduced in the observation sequence to handle the wrongly

anticipated trajectories that occur due to the missing contextual information.
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Chapter 4

Predicting Vehicle Behaviour

using Automotive Radar and

Recurrent Neural Networks

In contrast to the previous chapter, the scene information, together with various

map based features, are encoded in a feature vector formation instead of the high

dimensional occupancy grid maps. Unlike existing models, the context information

of the surrounding vehicles is not fixed at the beginning of the observation sequence

but dynamically selected at each time instance in both the past and future observa-

tions. In other words the developed model has the capability to allow the “birth”

of new vehicles or “death” of existing vehicles which makes it applicable in any

evolving tra�c scene. Moreover, considering a human driver’s thinking process, an

auxiliary network structure was developed where the model first predicts the future

manoeuvre, then uses the predicted manoeuvre to predict the future motion. and

then uses both the predicted manoeuvre and the motion to predict the future tra-

jectory. This model has been evaluated using both the publicly available benchmark

datasets as well as our newly collected ego vehicle perspective radar dataset.

4.1 Introduction

In a variety of tra�c scenarios, it is necessary to interpret the actions and predict

the future manoeuvres and trajectories of all vehicles within the field of view of the

sensing system. This applies both to tra�c monitoring, in which a static sensor may

survey a sub-section of the tra�c network, or to an autonomous or assisted driving

scenario in which the goal is to predict the manoeuvres of surrounding vehicles.

In congested tra�c scenes, the movement of any ‘target’ vehicle (TV) is strongly

dependant on the road layout and the movement of the surrounding vehicles (SVs),
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whose movement further depends on their SVs. Existing models have problems with

an increasing, and a variable number of surrounding tra�c agents. This forces users

to consider only a small, fixed number of SVs with respect to the TV for which the

prediction is being performed [119]. Researchers, e.g. [100], [119], tend to consider

the same set of SVs with respect to the TV throughout a complete sequence. This

is not appropriate for a sequence of any length in which the di↵erent vehicles move

in di↵erent directions or at di↵erent speeds, because the closest vehicles at the start

of the sequence may have moved much further away.

This chapter discusses new work on behaviour prediction using a manoeuvre-

motion-orientated Long Short Term Memory (LSTM) based encoder-decoder archi-

tecture. This anticipates the future manoeuvres and positions of all the vehicles

in the scene given several seconds of historical observations and associated map

features. Unlike existing encoder-decoder architectures, the SV information is in-

corporated in both the encoder and decoder to allow dynamic selection and updates

of the most e↵ective SV movements, boosting the accuracy for longer term predic-

tion. To update the entire scenario after every decoder prediction, each vehicle is

considered concurrently as the TV, identifying the most influential SVs with respect

to that TV as opposed to the use of predetermined TV and SV data.

The proposed LSTM methodology is applicable to any sensing mode, but an

automotive radar was considered as the sensor of interest, and to that end the SVs

within a tractable dynamic range of 5-100 metres of the TV were only considered

to allow sensible behaviour prediction and time to act. In addition to using estab-

lished benchmarks, the developed behavior analysis technique was also applied to

a newly collected dataset using a 76-77GHz automotive radar mounted on a small

van [143]. In most of the recent work, radar was used jointly with other sensors,

e.g. camera, LiDAR, and even a V2V communication system, to perform trajec-

tory prediction and avoid any potential collisions. But as shown in Figure A.2 in

bad weather (mostly foggy) or poor lighting a reliance on fusion of radar with other

sensor modules can lead to a significant loss of performance, and also a strong depen-

dency on the V2V communication can lead to dangerous accidents during dropped

connections. Hence, a vehicle detection and prediction system based solely on radar

sensing is crucial for level 4 and level 5 autonomy in all conditions, and behaviour

prediction is the main focus of this thesis. The main contributions of this chapter

are:

• A novel LSTM architecture that predicts vehicle trajectories and manoeuvres

with updates from both the historical (known) and predicted manoeuvres as

well as motion .

• An approach that reconsiders the entire current scene after each recursive step
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in both the encoder (observation-sequence) and decoder (prediction-sequence).

This dynamically re-identifies and selects the nearest, and hence most influ-

ential SVs at each time step.

• Evaluation of the presented approach against the state-of-the-art using bench-

mark datasets US junction Lankershim [25], US Highway I-80 [24], US Highway

US-101 [23] and the newly collected radar dataset [143] acquired by a 76-77GHz

automotive radar. This shows comparable performance to the state-of-the-art

and its probable e↵ectiveness to be deployed in an on-board sensing scenario.

4.2 System Model

The problem addressed in this chapter is as follows: given the past observations of

all the vehicles in the scene along with various map based features, the task is to

predict the future manoeuvre, velocity and trajectory of all those vehicles. Similar

to the previous chapter, due to the fixed input size, only the vehicles appearing at

the start of the observation sequence will be considered for prediction. The proposed

technique in this chapter can be used for both highways as well as for intersections

but only after retraining the model. The main reason behind this is the strong

dependency on various scene specific map based features. For example distance

from the nearest junction will play a very crucial role during trajectory prediction

at an intersection whereas in the highways this will become irrelevant. This is why

depending on the current context the input feature vector structure needs to be

changed and hence the necessity of retraining the model specially when it is trained

with only highway data and then tested with intersection data or vice versa.

4.3 Problem Formulation

4.3.1 Problem Statement

A vehicle trajectory is represented as a sequence of points, each of which is associated

with a unique time instance [(x, y)t�h, (x, y)t�h+1, ......, (x, y)t)] where h is the length

of the past observation sequence and t is the current time. For N vehicles in a scene,

as shown in Figure 4.1, the trajectories, T , are represented as a 2D matrix, where

the i’th row holds the trajectory of the i’th vehicle:

T =

2

66664

(x, y)1t�h (x, y)1t�h+1 . . . (x, y)1t
(x, y2t�h (x, y)2t�h+1 . . . (x, y)2t
. . . . . . . . . . . .

(x, y)Nt�h (x, y)t�h+1)N . . . (x, y)Nt

3

77775
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Figure 4.1: Tra�c scene showing several vehicles and road network features.

The goal is to predict the manoeuvre class (m), velocity (v) and position (pos)

for all vehicles for the next F time instances given T and associated map features,

also shown in Figure 4.1. A restricted set of three manoeuvre classes, left turn, right

turn and straight on were considered, which are consistent with the data collected

and comparable to other work, although this is clearly not exhaustive. The predicted

entities are represented as,

2

66664

(m,v,pos)1t+1 (m,v,pos)1t+2 . . . (m,v,pos)1t+F

(m,v,pos)2t+1 (m,v,pos)2t+2 . . . (m,v,pos)2t+F

. . . . . . . . . . . .

(m,v,pos)Nt+1 (m,v,pos)Nt+2 . . . (m,v,pos)Nt+F

3

77775

where m = [P s, P l, P r] is the probability of performing straight, left and right

turn manoeuvres respectively, velocity, v = [ẋ, ẏ], and position, pos = [x, y].

4.3.2 Feature Vector Design

Our feature set includes TV and SV interaction, road-map features and tra�c rules.

TV-SV Interaction

To capture the interaction of vehicles the position (x, y), i.e. the front centre of

the vehicle (see Figure 4.3) and velocity (ẋ, ẏ) of the TV and the ns nearest SVs

at each frame in the last h frames were used. To make the model independent of

any specific map relative instead of absolute position was used. The position of the

target vehicle, (x, y)TV
t�h, at the beginning of the historical sequence is considered as

the origin for whole sequence. For velocities the absolute values for both the TV and

SVs were considered instead of the relative values. This is to di↵erentiate between
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(a) Feature vector of the encoder input, Ot, where x, y, ẋ, ẏ, l, j, d and µ are

the features associated with the TV. xk,yk ... µk are the features associated

with the SVs k 2 {1, 2, ..., ns}.

(b) Feature vector of the decoder input Dt, where P s, P l, P r, ẋ, ẏ, x and y are

the predicted entities associated with the TV. P s
k , P

l
k ... yk are the predicted

entities associated with the SVs k 2 {1, 2, ..., ns}.

Figure 4.2: Detailed structure of the encoder and decoder input feature vectors.

high and low speed driving.

Road Map Features

Map-based features strongly influence the future movement of vehicles. The con-

sidered features are : 1) distance from the closest junction (j), 2) lane-based local-

ization, i.e. the current lane number of the vehicle (�) and 3) the lateral distance

within that lane (d).

Tra�c Rule Features

Future movement of vehicles in a multi-lane road is strongly influenced by the rules

(µ) assigned to each lane. For instance, at a junction some lanes are marked for a

single specific manoeuvre, e.g. a left or right turn. Hence, a vehicle in a designated

lane should (but may not) make a proscribed manoeuvre. Similarly, for motorways

the outermost lane is for overtaking only. A vehicle in that lane has a higher chance

of moving back to the inside lane even if the outermost lane is empty. However,

accurate lane based localization of vehicles using a GIS is hard to perform in real

time and prone to error.

During prediction, each vehicle is considered as the TV once and the feature

vector is created by populating features associated with that vehicle, followed by

the SVs. The feature vector structures, Ot and Dt, at time t are shown in Figure

4.2(a) and Figure 4.2(b), respectively. To keep the input data dimensions fixed,

ns was kept constant. If there are more than ns SVs present in the current scene,
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Figure 4.3: Dynamic SV selection at each timestamp based on the Euclidean distance

from the TV. Ek is the Euclidean distance between TV and SVk and Ot is the input

feature vector at time t. The black dots at the front-centre of each vehicle show

their point mass locations used for feature vector creation and Euclidean distance

calculation between individual vehicles.

Euclidean distance from the TV was used to identify the nearest ns vehicles.

Figure 4.3 illustrates the process of selection of surrounding vehicles. When

considering a single TV, the closest (ordered by Euclidean distance) SVs are selected

for the feature vectors input to the encoder and decoder at each timestamp, as shown

in Figure 4.2. Thus, in Figure 4.3, at t = 1 the SVs are the ordered set {1, 2, 3, 4}, at
t = 2 the SVs are {5, 6, 2, 1}. This strategy is in contrast to the common alternative

of fixing the SVs at the beginning of the observation sequence, in which case they

might move out of the sphere of influence on the TV yet still be encoded. While

performing this dynamic selection process, vehicles from both sides of the road were

considered as the SV depending on their distance from the target vehicle. In the case

of multi lane highways it might be redundant as vehicles travelling on the opposite

side of road with respect to target vehicle should never appear on the same side but

in case of single carriageway or at an un-signalled intersection this is not true. At an

un-signalled intersection, before making a turn it is important to consider oncoming

vehicles on the opposite side of the road trying to pass the intersection or making

a di↵erent turn. Hence, filtering out those SVs would make the model applicable

only in multi-lane highway scenarios and not in other locations. Moreover, these

SVs were populated not just with their positions but also with their associated map

features, e.g. in which lane the vehicle is travelling or how far that vehicle is from

an intersection. During the training process these associated features helped the

model to understand how individual SVs, even when they are not on the same side

of the road, can influence a TV’s future movement. When there are less than ns

surrounding vehicles present zero padding was used to keep the input dimension

fixed.
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4.4 Comparison with the OGM Approach

As explained in the previous chapter, in the OGM based approach, if there are N

vehicles in the scene the technique creates N sequences of OGMs of dimension 1024,

128 and 30. Where 1024 and 128 are the number of rows and columns of each OGM,

respectively. 30 is the number of frames in each past observation sequence. This

made the final size of each input for each vehicle equal to 3932160 (1024⇤128⇤30). In
the case of the feature vector based approach proposed in this chapter the input size

for each vehicle is only (4+1) ⇤ 8 ⇤ 30 = 1200, where 4 is the number of surrounding

vehicles considered, 1 is the target vehicle for which the prediction is performed and

8 is the number of features associated with each vehicle, as explained in the previous

section. As shown below, this change of approach led to an almost 200% reduction

in the input size

|3932160� 1200|
3932160+1200

2

= 199.878% (4.1)

Moreover, compared to the OGM based approach, the feature vector based tech-

nique proposed in this chapter also reduced the size of the intermediate entities

created to perform the interactive prediction stage. In the case of the OGM based

approach, after predicting the future position of each vehicle for the current predic-

tion time instance, the proposed technique recreates the individual OGMs of dimen-

sion 1024*128=131072 for each vehicle before predicting the next time instance. In

the case of the feature vector approach explained in this chapter only the decoder

input of shape (4+1)*7 = 35 is created, where 4 is the number of surrounding ve-

hicles considered, 1 is the target vehicle and 7 is the number of predicted entities,

which includes 3 predicted manoeuvres (left turn, right turn, and straight or left

lane change, right lane change and straight on), 2 predicted velocities ((vx, yx)) and

2 predicted positions (x, y). As shown below, in this case the technique used in this

chapter leads to an almost 200% size reduction during the intermediate prediction

stage.

|131072� 35|
131072+35

2

= 199.893% (4.2)

Reducing the size of the model input as well as the intermediate entities cre-

ated to perform the interactive prediction stage, makes the current technique more

e�cient in both time and memory consumption.
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Figure 4.4: The proposed LSTM based encoder-decoder Structure, using the LSTM

cell with a 256 neuron count. An example LSTM cell is shown in Figure 2.4. FC

Layers are the fully-connected layers shown in Figure 4.5. O(t�h) to O(t) are the

encoder-inputs shown in Figure 4.2(a) consisting of the TV’s features (sky-blue)

and nearest ns SV’s features (orange). D(t+1) to D(t+F ) are the decoder-inputs

shown in Figure 4.2(b) consisting of the predicted entities of the TV (purple) and

the predicted entities of nearest ns SVs (red).

4.5 Future Trajectory Prediction using a LSTM

Structure

Our full network architecture consists of an encoder-decoder structure, with associ-

ated manoeuvre learning, velocity learning and trajectory learning modules shown

in Figs. 4.4 and 4.5.

4.5.1 Encoder-Decoder Module

The encoder processes the underlying, input temporal information and passes it

to the decoder. As shown in Figure 4.4, the encoder is a stacked-LSTM network

[40] consisting of two LSTM layers which take Ot�h,t as input. Both LSTM layer

states were initialized randomly. In most recent encoder-decoder based trajectory

prediction models, the decoder is responsible for capturing the encoded state from

the encoder and produces future positions using only the TV’s past positions, not

using any information regarding the SVs. This makes the decoder outdated as the

future horizon extends. This problem was addressed by adding the nearest ns SV’s

previous manoeuvres (mt), velocities (vt) and positions (post) into the decoder-

input vector Dt+1, while predicting the state vector at t+ 1,
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Figure 4.5: Proposed fully-connected (FC) layer structure. The manoeuvre, veloc-

ity and trajectory sub-structures consist of multiple FC layers. The blue arrows

show the LSTM cell output from the decoder. The red arrows show the predicted

manoeuvre input to the velocity and trajectory sections, The grey arrows show the

predicted velocity into the trajectory section. Finally the purple arrow shows the

predicted position.

Dt+1 = [mt,vt,post,m
1
t ,v

1
t ,pos

1
t , ...,m

ns
t ,vns

t ,posnst ] (4.3)

where, mt, vt, post are the predicted entities of the TV and mk, vk, posk are

the predicted entities of the SV k 2 {1, 2, .., ns}.
The decoder-input feature vector Dt+1 is shown in Figure 4.2(b). The decoder

also consists of two stacked LSTM layers [40] which take Dt+1 as input. To feed

the encoded states the last memory states from the first and second LSTM layers in

the encoder were passed to the decoder to initialize the states of its first and second

LSTM layers respectively. As the decoders are mainly responsible for producing

the sequence output it is safe to ignore the state outputs from the LSTM layer

and only consider the final cell output (CD2
t+1) for the succeeding subsections. The

intermediate cell output (CD1
t+1) from the first LSTM layer has already been passed

to second LSTM layer.

4.5.2 Manoeuvre Learning

The manoeuvre learning module is responsible for prediction of the manoeuvre class

m for each time instance in the sequence, then used as a prior for velocity and

trajectory learning. As shown in Figure 4.5, this module takes the decoder output

CD2
t+1 as input and predicts the TV manoeuvre mt+1 for the next time steps. The
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module consists of fully connected layers with neuron counts of 512 ! 256 !
128 ! 64 ! 32 ! 16 ! 8 ! 3 (this is the mt+1). The last layer’s neuron count

is consistent with the 3 manoeuvre classes (P s, P l and P r). An Exponential Linear

Unit (ELU) with ↵ = 0.1 was used as the activation function for all but the last

layer. The last layer has Softmax [41] activation to produce the probability of each

manoeuvre. This normalizes the output vector as a distribution consisting of three

probabilities (P s, P l, P r) proportional to the exponential of each cell value in vm,

[P s, P l, P r] =


expsP

n2vm expn
,

explP
n2vm expn

,
exprP

n2vm expn

�

4.5.3 Velocity Learning

Due to the strong dependency of future velocity on the planned manoeuvre, this

module takes both CD2
t+1 and mt+1 as input and predicts both velocity components

(ẋ, ẏ) as shown in Figure 4.5. CD2
t+1 and mt+1 are concatenated before being passed

to the fully connected layers. The neuron counts of the layers in this module are

512 ! 256 ! 128 ! 64 ! 32 ! 16 ! 8 ! 2. Due to the presence of two motion

components, (ẋ, ẏ)t+1, the last layer neuron count is two. An ELU with ↵ = 0.1

was used as the activation function for all the layers except the last one. As the

underlying task is regression, “linear” activation was used in the last layer to predict

continuous ẋ and ẏ.

4.5.4 Trajectory Learning

As shown in Figure 4.4, the final section predicts future position (x, y)t+1, given

CD2
t+1, mt+1, ẋ and ẏ. These were concatenated as the intermediate input vector

[CD2
t+1, P

s
t+1, P

l
t+1, P

r
t+1, ẋt+1, ẏt+1] before feeding to the fully connected layers. The

neuron counts of each layer are 1024 ! 512 ! 256 ! 128 ! 64 ! 32 ! 16 ! 8 !
2. There are two neurons in the last layer, corresponding to xt+1 and yt+1. Again,

the last layer has a “linear” activation, and an ELU with ↵ = 0.1 for all other layers.

4.5.5 Loss Functions

Our proposed architecture predicts three entities (manoeuvre, velocity and position),

so three distinct loss functions were used.

Manoeuvre Loss

The three ground truth manoeuvre class labels in the training sample are formatted

as one hot vector where a probability value of 1 was assigned to the true manoeuvre
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class and 0 to the rest. This representation makes it easier to compute the categorical

cross entropy loss [169], the negative log-likelihood between the predicted and true

manoeuvre classes over all the training samples

Lm = �
X

i2vm

(P i ⇥ log (P̂ i)) (4.4)

where Lm is the manoeuvre loss, (P̂ s, P̂ l, P̂ r) and (P s, P l, P r) are the predicted

and ground-truth manoeuvre class probabilities, respectively.

Velocity Loss

The loss of Eq. (4.5) measures the di↵erence between the ground-truth and the

predicted velocity components:

Lv = log (cosh (ẋ� ˆ̇x)) + log (cosh (ẏ � ˆ̇y)) (4.5)

where Lv is the computed velocity loss, (ẋ, ẏ) and (ˆ̇x, ˆ̇y) are the ground-truth

and predicted velocity components respectively. The robustness achieved due to

the combined e↵ect of the logarithm and cosh functions makes the training stable

during the occasional wildly incorrect prediction [169].

Trajectory Loss

Trajectory learning was achieved by minimizing the Euclidean distance between the

predicted and ground truth positions over all the samples:

Ltraj =
p

(x� x̂)2 + (y � ŷ)2 (4.6)

where Ltraj is the computed trajectory loss, (x,y) and (x̂, ŷ) are the ground truth

and predicted positions, respectively.

4.5.6 Interactive Prediction

The proposed network predicts m, v and pos for all vehicles in the scene for the

next F frames. The prediction has two stages. In the first stage, N encoder-input

feature vectors Ot�h,t were created considering each vehicle as a TV once and its ns

nearest vehicles as SVs, of N cars present in the scene. As future vehicle positions

are unknown, at time t all three entities (m, v and pos) are predicted for all the

vehicles at the next time instance (t + 1), and these predicted entities update each
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decoder-input before predicting for t+2, and so on till t+F . Similar to the encoder-

input structure, the predicted entities of the TV followed by the nearest ns SV’s

were populated in the decoder-input shown in Figure 4.2(b). The nearest and most

influential SVs were highlighted by calculating the Euclidean distance between the

current predicted position of the TV and the predicted positions of the other vehicles

in the scene. This made it possible to reconsider any new vehicle (“birth”), or drop

any existing vehicle (“death”) that moves in or out of the considered neighbourhood.

The detailed steps involved in input feature vector creation and interactive sequential

prediction are explained in Algorithm 3 and 4, respectively, using a pseudo-code

format.

During prediction of future movement of a particular TV at t+f , (f 2 2, 3, ..., F )

where f is the current prediction instance, the predicted entities of the most influ-

ential SVs at t+f�1 are also considered in the decoder-input. Hence, this feedback

scheme updates the scene information repeatedly to incorporate the potential future

interaction of SVs more e↵ectively. In the decoder, the SV’s information is shared

with the TV by selecting and appending a fixed number (ns) of the most influential

vehicle features in the decoder-input instead of directly connecting individual LSTM

cells [74] or nodes [100]. This makes the proposed technique scalable to any number

of vehicles present in the scene.

4.6 Experimental Procedure and Use of Data

Although the developed methodology is targeted at data arising from automotive

radars, there was no suitable radar dataset or public benchmark available at the

time. Hence, it was evaluated with a newly collected radar dataset [143]. To further

compare the developed approach with the state-of-the-art, it was also evaluated

using the two publicly available datasets, the Lankershim [25] and combined I-

80/US-101 highway datasets [24] [23] collected by video cameras.

4.6.1 Evaluation on Benchmark Dataset

The NGSIM dataset explained in Section 3.6.1 also includes two intersection datasets,

Lankershim [25] and Peachtree [26]. Lankershim [25] covers a 500 meters (1600 feet)

long, 3-4 lane wide section on Lankershim Boulevard in Los Angeles (see Figure

4.6(a)) which includes 4 intersections. Peachtree covers a 640 meter (2100 feet)

long, 2-3 lane wide section of Peachtree street in Atlanta which includes 5 intersec-

tions (see Figure 4.6(b)). Each data point in these datasets has all the data fields

mentioned in Section 3.6.1, plus the O Zone (Origin Zone, from where the vehi-

cle entered the area) and D Zone (Destination zone, from where the vehicle exited
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(a) Lankershim Junction [25] (b) Peachtree Street [26]

Figure 4.6: Bird’s Eye View (BEV) of two intersection locations in NGSIM dataset,

i.e. Lankershim Boulevard and Peachtree Street, Atlanta. Each sub figure consists

of a satellite view of the observation area and a schematic diagram with lane counts

the area), Int ID and Section ID (intersection or Section ID at which the vehicle

is currently travelling), Direction (in which direction the vehicle is currently travel-

ling, i.e. East-Bound, North-Bound, West-Bound, or South-Bound) and Movement

(movement rule associated to the current lane). Although, the Lankershim data

[25] is more interesting with several intersections, most previous methods have been

evaluated on the combined NGSIM US-101 [23] and I-80 [24] dataset. Therefore,

to conduct a fair comparison, the developed model was evaluated on these samples

first and then on the intersection data.

In both cases, i.e. I-80/US-101 highway and Lankershim intersection data, the

locations estimated through the global state plane co-ordinate system were used

for trajectory generation instead of the specific local co-ordinate system to make it

more generic. The instantaneous speeds (ẋ, ẏ) at each frame were estimated from

successive frames instead of using V Vel available directly from the dataset. The

lane number (�) and lane movement rule (µ) were populated directly from the

dataset. Details about both these datasets are given in Section 3.6.1. To label each

trajectory with a single manoeuvre the vehicle’s origin zone (101-111, Figure 4.7,)

and destination zone (201-211, Figure 4.7) was used. For example, if a vehicle enters

from zone 101 and exits through zone 203, this means the vehicle has performed a

right turn. In addition to this a combination of the current section and driving

100



Figure 4.7: Schematic diagram with junction and section locations of the NGSIM

[25] evaluation area, and a satellite view [111] with a few sample trajectories on one

selected junction, where green, yellow and red indicate vehicles performing straight,

right and left manoeuvres at that junction, respectively.

direction were used to identify the nearest junction and calculate the additional

feature “distance from the junction”. Among 2413 detected vehicles only 1036

vehicles performed either a left or right turn manoeuvre at any intersection. The

number of vehicles associated with each manoeuvre is given in Table 4.1.

4.6.2 Evaluation on the “Radiate” Dataset

As mentioned earlier the main goal of this thesis is to perform surrounding vehi-

cle behaviour prediction using ego-vehicle perspective realistic data collected with

on-board sensors. This is why the developed model was also evaluated on a newly

collected radar dataset “Radiate”. It includes of data collected by four di↵erent

sensor modalities, a 77 GHz Navtech radar, a 32 channel velodyne LiDAR, a ZED

stereo camera and an Advance Navigation GPS/IMU tool kit. The data collection

software was developed using the Robot Operating System (ROS) [125] framework

which collects and stores the data in a “rosbag”. Later, individual sensor data is

extracted along with their respective timestamps. The complete dataset consists of

5 hours of radar images along with the additional data collected through the other

sensors. Since radar is the main focus of this thesis, 3 hours worth of radar images

are fully annotated; this consists of more than 200K labelled object instances with
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Table 4.1: Vehicle distribution for each manoeuvre class in all three junctions, i.e.

the Lankershim, Kingussie (T) and Edinburgh (Four-way) junctions.

Number of Vehicles

Junction Straight Left Right Total

Lankershim (NGSIM) 1377 548 429 2354

Kingussie (T) (Radiate) 118 – 46 164

Edinburgh (Four-way) (Radiate) 111 26 31 168

8 categories of road actors i.e. car, truck, van, bicycle, motorbike, pedestrian and

group of pedestrians. Moreover it also includes a variety of weather conditions, e.g.

sun, rain, night, snow, and fog, and various driving scenarios e.g. motorway, urban,

parked, and suburban), representing di↵erent levels of challenge. Even though the

collected data includes both highways and intersections, this chapter focuses mainly

on the vehicle-to-vehicle interactions at signal-free intersections where the behaviour

prediction task is more challenging. This is because missing tra�c infrastructure

such as tra�c lights or turn specific lanes makes the inter-vehicle negotiation solely

dependent on the human driver’s behaviour. The model evaluation commenced

with a simple “T-junction” scenario (Kingussie), shown in Figure 4.9(a), having

mild congestion. Then the evaluation moves to a denser and more complex “Four-

way junction” (Edinburgh), shown in Figure 4.9(b). In both these cases the test

vehicle was parked near the junction (see Figure 4.8). In some of the recent vehicle

trajectory prediction work [29], [180], [30], [183], [31] the lateral or sideways move-

ments of all the vehicles on the main road were maintained along the X-axis and the

forward movements were maintained along the Y-axis. Considering this co-ordinate

convention and the horizontal main road in front of the parked test vehicle (see

Figure 4.8), the inverted co-ordinate system which is vertical x-axis and horizontal

y-axis was adopted in case of the “Edinburgh Four-way junction” dataset. Initially,

false or missed detections were not considered, rather human annotated bounding

boxes (as is indeed the case with the NGSIM data) were used to generate individual

vehicle trajectories which were smoothed using particle filters [56] to remove any

unwanted vibration introduced during the annotation. Similar to the NGSIM data,

the origin and destination zones were used to label each vehicle trajectory against

one of the designated manoeuvres. The numbers of vehicles for each manoeuvre

class for each junction are shown in Table 4.1. Compared to the NGSIM data, the

relatively smaller range of the vehicle sensors allowed it to capture only 30 to 50

frames for each vehicle with a frame rate of 4Hz. Examples of collected and labelled

trajectories are shown in Figure 4.9.
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Figure 4.8: A labelled radar image showing the test vehicle parked at a junction.

The actors are denoted by boxes which can be of any size and at any angle to the

image frame.

4.6.3 Sample Generation

For e�cient sample generation from the Lankershim dataset initially two dictionaries

were created i.e. “Vehicle Dict” and “Frame Dict” with Vehicle ID and Frame ID

as the respective keys. Each vehicle in the Vehicle Dict was selected as the TV

once; the current Frame ID of the TV together with the Frame Dict was used to

identify the SVs present at that time to create the input trajectory matrix, T . The

predicted SV’s positions were also used in the decoder; future position prediction

is only possible for the vehicles whose last h = 30 frames positional information

is available. Hence, to keep the context consistent between the observation and

prediction sequences, only the vehicles present in the last h = 30 frames were selected

as SVs. Once T was created the Euclidean distance was used (Figure 4.3) within a

sliding window to identify the most influential ns SVs at each timestamp.

For example, consider generating samples for one specific TV with SVs 1, 2, 3.

The observation sequence of the first sample is generated using the TV and SV’s

positions from t0 to t29 for (h = 30 frames). The ground truth for that sample is

the TV’s position from t30 to t79 for (F = 50 frames). For the next sample the time

window was shifted one unit forward so that the observation sequence is from t1 to

t30, and the ground truth is the TV’s position from t31 to t80 and so on. The process

is repeated for each vehicle as TV. The number of generated samples are given in

Table 4.2 where each NGSIM sample has 30 observation plus 50 prediction frames

and each Radiate sample has 12 (3 secs with 4 Hz Navtech radar acquisition rate)
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(a) Kingussie (T) junction [110]

(b) Edinburgh (four-way) junction [108]

Figure 4.9: The trajectories of each manoeuvre class for two di↵erent junctions col-

lected with the test vehicle [143]. Each sub-figure shows the satellite view [108],

[110] of the observed junction (right) and its view through the radar system (left).

Green, red and yellow lines show the vehicle performing straight-on, left-turn and

right-turn manoeuvres, respectively. The yellow arrows indicate the driving direc-

tions.
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observation plus 20 (5 secs) prediction frames.

4.6.4 Under-sampling Technique to Avoid Data Imbalance

In the Lankershim and US-101/I-80 datasets the number of vehicles travelling straight

on is higher than those making a turn or a lane change. This imbalanced data can

bias the network. To avoid this the vehicles performing the straight on manoeuvre

was under-sampled by selecting less vehicles from this class compared to the turns or

lane changes in the training data. Applying under sampling can remove the under-

lying prior probability information of performing various manoeuvres. For example,

if there is a supermarket at the right turn of a junction it is highly likely that more

vehicles will perform that turn compared to left turn or straight on. However, this is

true only for that specific junction and at a di↵erent junction the prior probability

can be di↵erent depending on where it is in the real world. In order to remove this

junction-specific prior probability the under sampling was performed before training

the model. In that way the model should better learn how the target vehicle’s fu-

ture manoeuvre, velocity and trajectory is predicated by the relative positions of all

the surrounding vehicles and their associated features rather than be predominantly

junction-specific.

From TABLE 4.1 the vehicle count performing the straight on manoeuvre in the

Lankershim dataset is almost three times the vehicle count performing either a right

or left turn. The under-sampling for this dataset was done using a two stage process,

where initially initially all the vehicles were categorized under two categories, i.e.

“straight” and “turning” vehicles. For example, a vehicle entering zone 108 or

101 and exiting zone 201 or 208 respectively means the vehicle never performed

a right or a left turn manoeuvre (see Figure 4.7) and is added to the “straight”

vehicle category. In the next stage, while randomly selecting vehicles less were

selected from the “straight” category compared to the “turning” vehicle category

and then generated samples using the sliding window technique explained in section

4.6.3. This adopted under-sampling of vehicles performing straight manoeuvres led

to better precision for both left and right turn manoeuvre classes.

This under-sampling technique was also adopted for the I80/US101 dataset. In

the I80/US101 data some of the vehicles never performed a lane change and the rest

of the vehicles did it only once in the entire observation area shown in Figure 3.5.

The sliding window sample generation technique explained in section 4.6.3 leads to a

relatively higher number of samples whose all the frames will be annotated as straight

manoeuvre compare to left or right lane change making the manoeuvre distribution

imbalanced. In this case the under-sampling was performed by selecting less vehicles

of those that never performed a single lane change from the I80/US101 dataset, as
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Table 4.2: Number of generated samples using the sliding window technique for the

Lankershim, Kingussie (T) and Edinburgh (Four-way) Junctions.

Dataset Training Validation Testing Total

Lankershim (NGSIM) 307360 80000 77327 464687

I-80/US-101 (NGSIM) 276130 90500 82500 449130

Kingussie (Radiate) 2880 440 282 3602

Edinburgh (Radiate) 3540 550 405 4495

all the frames in the generated samples from those vehicles will be annotated as

straight. On the other hand, those vehicles performed at least one lane change

generate a combination of samples where each frame can be marked as either a

straight or left/right lane change depending on its Lane ID in the past 20 frames.

If the Lane IDs are the same in the past 20 frames, this means that no lane change

happened whereas a change in Lane ID indicates a lane change. In both I-80 and US-

101 data the left most lanes are marked as 1, the second left most lanes are marked

as 2 and so on (Figure 3.5). This means that an increase in Lane ID indicates a

right lane change and a decrease in Lane ID indicates a left lane change.

4.6.5 Training

The three di↵erent loss components Lm, Lv and Ltraj have di↵erent scales. Lm refers

to a classification task which makes its value range relatively low compared to Lv or

Ltraj as these refer to regression tasks. Simple averaging to combine these three losses

into one common loss leads to a situation where the manoeuvre learning section

remains under fitted due to its lesser contribution. To address this, a weighted sum

approach was adopted to combine all three losses.

L = Wm ⇤ Lm +Wv ⇤ Lv +Wtraj ⇤ Ltraj (4.7)

where L is the final loss, Wm, Wv and Wtraj are the weights for Lm, Lv and Ltraj

respectively. Empirically, after multiple trials the weights were set to Wm = 0.42,

Wv = 0.29 and Wtraj = 0.29 with “Nadam” [38] as the optimizer because this works

better for recurrent tasks. The step decay learning rate starts from 0.001 and reduces

by 50 percent after each 2 epochs. The model is implemented in Keras [85] with the

TensorFlow backend. The implementation of the proposed technique can be found

here.
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4.7 Experimental Evaluation

Evaluation of the approach was performed using all the datasets presented in Sec-

tion 4.6 measuring firstly the manoeuvre classification accuracy and precision, and

secondly the accuracy of trajectory prediction. Where possible, a comparison with

previous work is also included.

4.7.1 Manoeuvre Classification

To evaluate the success of manoeuvre classification, the accuracy, A, and precision,

P , values were measured by

A =
TP + TN

TP + TN + FP + FN
P =

TP

TP + FP
(4.8)

where TP is a true positive, TN is a true negative, FP is a false positive and

FN is a false negative.

As can be seen in Table 4.3, both metrics are excellent for all four datasets,

well in excess of 90% in the majority of cases, dropping to 85.7% for precision in

the case of the right turn (Lankershim), and more tellingly to below 60% in the

I80/US101 data. For the Lankershim data, the developed technique was compared

with Phillips et al. [123] who used a combination of historical, tra�c and rule fea-

tures in an LSTM architecture to predict the manoeuvres. The proposed technique

achieved a better accuracy in all three manoeuvre classes when compared to this

method, which may be due the inclusion of additional scene information. For the

Kingussie and Edinburgh radar data, for which no previous results are available, the

estimated RMSE values are comparable. However, in the US-101/I-80 case, left and

right manoeuvres are lane changes rather than turns. Hence, there is no parameter

defining distance from a junction as none exist, and the velocity profile is liable to

be less informative. As these are key parameters in the case of the turns, this may

partly explain the lower success in left and right lane changes in that case.

To explain this more clearly the encoded states of all the predicted samples

against individual manoeuvre classes were plotted for both intersection and highway

datasets. The neuron count of each LSTM cell in the stacked-LSTM encoder is 256.

While predicting each sample the encoder will produce four outputs, 2 hidden states

and 2 cell outputs as vectors of length 256. As it is very di�cult to visualize such

a high dimension of the encoded states and cell outputs it was reduced from 256 to

2 using t-distributed stochastic neighbor embedding (t-SNE) [163] and then plotted

against their ground truth manoeuvre classes. As shown in Figures. 4.11(a), 4.11(b),

4.11(c) and 4.11(d), the hidden states and the intermediate cell outputs from the

encoder created three fairly distinct clusters for the three manoeuvre classes i.e.
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(a) Right turn manoeuvre mis-classification at

the Kingussie (T) Junction [110] due to slow

velocity profile.

(b) True future trajectory of TV after the

Kingussie (T) junction [110].

(c) True straight manoeuvre classification at Edinburgh (Four-way) junction [108] with low

velocity.

(d) True future trajectory of TV after the Edinburgh (Four-way) intersection [108].

Figure 4.10: Qualitative analysis of manoeuvre prediction at the Kingussie (T) and

Edinburgh (Four-way) junctions. For each subfigure, on the left and right are radar

and satellite images [108], [110] respectively. The violet car is the TV, the red cars

are the SVs. The future ground truth and predicted trajectories are marked in green

and blue respectively. The input trajectories for each vehicle are drawn in brown.

A shorter trajectory indicates a slower velocity

right turn, left turn and straight on in case of the Lankershim intersection dataset.

These distinct clusters helped the decoder and the rest of the network to achieve
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better classification accuracy. In case of the highway (I-80/US-101) dataset, due to

the missing key input features, the encoded states and the cell outputs were more

scattered (see Figures. 4.12(a), 4.12(b), 4.12(c) and 4.12(d)) leading to a poorer

manoeuvre classification accuracy.

To reinforce this conclusion, distinct velocity profiles between turning and going

straight vehicles at the Kingussie (T) junction are also shown in Figure 4.17. There is

a noticeable slowing on approach for turning vehicles, so combined with the junction

distance variable, this helps the model achieve close to 100% accuracy for manoeuvre

classification. However, this is not infallible. Noticeable slowing of a vehicle may

be because of the presence of SVs and not because it makes a right turn. As shown

in Figure 4.10(a) the model predicts a right turn for the TV as it was close to the

junction and had a slowing velocity profile, but this was due to the presence of

SV1 as it was performing a safe right turn manoeuvre. Once SV1 completes the

right turn the TV accelerates and continues on the straight road, but the previous

sub-sequence led to a right turn future trajectory (see Fig 4.10(b)). This is possibly

because of the lack of su�cient SV interactions in the training data made it harder

for the model to distinguish deceleration before a turn manoeuvre or the presence

of a SV.

On the other hand at the Edinburgh (Four-way) junction the velocity profiles

of the target vehicles are a↵ected not only by the junction location but also by

the presence of surrounding vehicles. Hence, although not as impressive as the

simpler T-junction case, the accuracy and precision measures are both high. A true

manoeuvre classification for a TV, even though it had a slow velocity profile and was

close to the junction, is shown in Figs. 4.10(c) and 4.10(d). Due to the presence of

su�cient SV interactions in the training data the model was able to conclude that

the slow velocity profile was caused by congestion. Figure 4.10(d) shows the true

future trajectory. To better understand why errors occur, class based normalized

confusion matrices are presented in tables 4.4 to 4.7. A demo of this work can be

found here.

4.7.2 Trajectory Prediction

Assessment on the NGSIM I-80 and US-101 Datasets

In contrast to manuever prediction, several authors have used the NGSIM I-80 [24]

and US-101 [23] datasets for trajectory prediction and this gives a point of compar-

ison with the developed approach. The Root Mean Square Error (RMSE) between

the predicted and ground truth trajectories is used as a metric and compared with

the following approaches:
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(a) Encoder hidden state (H1). (b) Encoder cell output (C1).

(c) Encoder hidden state (H2). (d) Encoder cell output (C2).

Figure 4.11: Intermediate encoded state and cell output visualization using t-

Distributed Stochastic Neighbor Embedding (t-SNE) [163] for the Lankershim in-

tersection dataset.

Table 4.3: Accuracy and Precision for the three manoeuvre classes in all four

datasets (Lankershim, Kingussie (T) junction, Edinburgh (Four-way) junction and

I80/US101 highway) in comparison with the baseline method [123].

manoeuvre Classes
Straight Left Right

Lankershim (Baseline [123])
Accuracy 0.858 0.925 0.933

Precision 0.968 0.682 0.039

Lankershim (Ours)
Accuracy 0.958 0.964 0.972

Precision 0.964 0.941 0.857

Kingussie (Ours)
Accuracy 0.999 – 0.999

Precision 0.999 – 0.998

Edinburgh (Ours)
Accuracy 0.983 0.992 0.986

Precision 0.977 0.986 0.982

I80/US101 (Ours)
Accuracy 0.972 0.991 0.975

Precision 0.978 0.487 0.599
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(a) Encoder hidden state (H1). (b) Encoder cell output (C1).

(c) Encode hidden state (H2). (d) Encoder cell output (C2).

Figure 4.12: Intermediate encoded state and cell output visualization using t-

Distributed Stochastic Neighbor Embedding (t-SNE) [163] for both the I-80/US-101

highway dataset. Here LLC means left lane change and RLC right lane change.

Table 4.4: Class based normalized confusion matrix for the three manoeuvre classes

at the Lankershim junction. Left, right and straight are left and right turn and

straight on respectively.

Actual

Straight Left Right

P
re
d
ic
te
d Straight 0.963 0.038 0.088

Left 0.023 0.941 0.056

Right 0.014 0.021 0.856
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Table 4.5: Class based normalized confusion matrix for three manoeuvre classes at

Kingussie (T) junction (Radiate). Left, right and straight are left and right turn

and straight on respectively.

Actual

Straight Right Left

P
re
d
ic
te
d Straight 0.999 0.002 –

Right 0.001 0.998 –

Left – – –

Table 4.6: Class based normalized confusion matrix for three manoeuvre classes at

the Edinburgh (Four-way) junction (Radiate). Left, right and straight are left and

right turn and straight on respectively.

Actual

Straight Left Right

P
re
d
ic
te
d Straight 0.976 0.011 0.014

Left 0.001 0.983 0.005

Right 0.023 0.006 0.979

Table 4.7: Class based normalized confusion matrix for three manoeuvre classes in

the I80/US101 dataset. Left, right and straight are left and right lane change and

straight on respectively.

Actual

Straight Left Right

P
re
d
ic
te
d Straight 0.978 0.302 0.397

Left 0.002 0.487 0.004

Right 0.021 0.211 0.599
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• Constant Velocity (CV): The instantaneous velocity of the TV was used

to calculate the succeeding trajectory.

• V-LSTM: For the Vanilla-LSTM the encoder-decoder part of of the developed

network architecture with the “trajectory-learning” section was only used.

The output CD2
t+1 from the decoder was fed directly to “Trajectory-Learning”

and not via “Manoeuvre” and “Velocity” learning. This made it possible to

understand the performance improvement due to the proposed multi-stage

prediction technique.

• Dual-LSTM (D-LSTM):D-LSTM is a two-stage LSTM network [176] where

the first stage identifies the driver’s intention, then the second stage estimates

the future trajectory given the identified driver’s intention.

• Convolutional Social Pooling-LSTM (CS-LSTM): This assigns a single

LSTM cell to each vehicle, including the TV for the encoder. The decoder

is only responsible for predicting the future trajectory recursively with an

intermediate stage manoeuvre identification [29].

• Multi-Agent Tensor Fusion (MATF): Surrounding vehicle interactions

and constraints were jointly modeled using a MATF technique [188] where past

trajectories of the vehicles and scene contexts were encoded first, and then a

convolutional fusion technique was adopted to capture multi-agent interaction.

• SCALE-Net: An edge-enhanced graph convolutional neural network was

used [83] where each vehicle was considered as a node in the graph network

and their interactions were captured by connected edges.

• OGM Technique: The occupancy grid map based approach proposed in the

previous chapter. In this technique both the target and the surrounding ve-

hicles were placed on a sequence of occupancy grid maps (OGMs) and then

passed to a Conv-LSTM based architecture to capture the spatio-temporal fea-

tures simultaneously. In addition to that an interactive prediction scheme was

also developed. Before predicting the next time instance it uses the currently

predicted positions of all the vehicles to update the OGM sequence, keeping

the scene information up to date.

• Proposed Ground-Truth (GT) Surrounding: In general, during the

training of an encoder-decoder architecture the decoder takes the GT infor-

mation of the last time instance before predicting the current instance, but

during testing it uses the predicted positions which causes a discrepancy. To

identify the e↵ect of this additional error the developed model was initially
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tested with the predicted positions for the TV but the true positions for the

SVs in the decoder.

• Retrain Technique: This is a more realistic setting where both the pre-

dicted positions for TVs as well as SVs were provided in the decoder. A

method similar to “Schedule Sampling” [11] was adopted to train the model.

Since the proposed approach selects the SVs dynamically, an o✏ine training

technique was adopted to eliminate the training-testing discrepancy. Instead

of physically connecting the previous time instances of TV and SV’s predicted

positions to the current time instance in the decoder, the model was trained

with the GT information in the decoder, i.e. “teacher-forcing”. Once the

model was partially trained the entire training set was predicted using the

partially fitted model to repopulate the decoder inputs with the predicted

future positions for the TV and dynamically selected SVs instead of using

the GT information. Once populated the model was then retrained with this

newly populated decoder inputs.

To perform a fair comparison the developed model was tested using 82000 test

sequences randomly selected from both I-80 and US-101. Due to the absence of any

intersections, the distance from the junction (j) and lane movement (µ) features

were removed from the input feature set, with manoeuvre classes left lane change,

right lane change and straight on. The normalized confusion matrix for these three

classes and their accuracy/precision are in Tables 4.7 and 4.3 respectively. For D-

LSTM, MATF and SCALE-Net, the results reported in their papers are considered,

as the code or the pre-trained model is not available online.

A comparison of the RMSE between the predicted and ground-truth positions for

a future horizon of 0.1 to 5 seconds is shown in Figure 4.13. The multi-stage trajec-

tory prediction scheme (GT-surrounding) led to higher accuracies when compared

to V-LSTM, as in the latter case the trajectory prediction is performed without

the intermediate “manoeuvre” and “velocity” stages. Dual-LSTM achieved better

performance than the naive CV model due to the intermediate manoeuvre recog-

nition step. However, the CS-LSTM, MAFT, SCALE-Net, OGM, GT-surrounding

and retrain techniques, all improved long-term prediction because Dual-LSTM lacks

interaction in both the encoder and decoder. The additional road-map and tra�c-

rule features in this method (retrain technique) and the GT-surrounding technique

achieved better accuracy for the entire prediction horizon compared to CS-LSTM ,

SCALE-Net and the OGM technique. In addition to this the feature vector based

technique adopted in this chapter led to a significant reduction in the input data

dimensions compared to the OGM technique (see section 4.4) but the accuracy of

the predicted trajectories from both these methods are still comparable. In the case
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Figure 4.13: The RMSE comparison of CV, V-LSTM, Dual-LSTM [176], CS-LSTM

[29], MATF [188], SCALE-Net [83], OGM, and the GT-surrounding and retrain

techniques on over 82000 sequences randomly selected from the I-80 [24] and US-

101 [23] datasets (NGSIM). The prediction time horizon is from 0.1s to 5s.

of MAFT, the scene context was embedded by an encoding channel but the missing

interaction in the decoder led to a higher displacement error. To summarise, the

method described in this chapter has achieved comparable accuracy with the state-

of-the-art, but due to the classical encoder-decoder training-testing discrepancy, this

has led to a higher displacement error compared to the GT-surrounding technique.

Assessment on the NGSIM Lankershim Dataset

To understand the impact of the additional intersection specific road map feature

j and tra�c rule feature µ the developed model was also tested on the Lankershim

dataset. A comparison of the RMSE between the predicted and ground-truth posi-

tions for a future horizon of 0.1 to 5 seconds between the CV, V-LSTM, proposed

GT-surrounding and retrain techniques, performed over 70000, randomly selected

test sequences, is shown in Figure 4.14, and Table 4.9. Similar to the I-80/US-101

dataset the naive CV model produced the highest prediction error due to the missing

temporal, interactive or map features. The GT-surrounding and retrain technique

outperformed the V-LSTM technique due to the auxiliary “manoeuvre” plus “ve-

locity” prediction stages, and the additional SV interaction in the encoder and the

decoder. The classical training-testing discrepancy caused a higher displacement

error for the retrain technique compared to the GT-surrounding technique.
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Table 4.8: RMSE comparison on NGSIM I-80 [24] and US-101 [23] dataset be-

tween CV, V-LSTM, Dual-LSTM, CS-LSTM, MATF, SCALE-Net, OGM, GT-

surrounding and retrain techniques at di↵erent time horizons.

Prediction Horizon (meters)
Models 1s 2s 3s 4s 5s

CV 0.71 1.75 3.06 4.66 6.52

V-LSTM 0.42 1.24 2.36 3.77 5.47

Dual-LSTM [176] 0.47 1.39 2.57 4.04 5.77

CS-LSTM [29] 0.58 1.26 2.11 3.18 4.53

MATF [188] 0.66 1.34 2.08 2.97 4.13

SCALE-Net [83] 0.45 1.15 1.97 2.91 –

OGM Technique 0.80 1.67 2.39 3.23 4.50

Proposed (GT-surrounding) 0.24 0.65 1.23 2.02 2.98

Proposed (retrain technique) 0.40 1.00 1.80 2.84 4.07

Figure 4.14: The RMSE comparison of CV, V-LSTM, proposed GT-surrounding

and retrain techniques over 70000 sequences selected from the Lankershim Junction

dataset (NGSIM) [25] dataset. This figure shows their average mean squared errors

for the prediction time horizon from 0.1s to 5s.
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Table 4.9: RMSE comparison on NGSIM Lankershim dataset [25] between CV, V-

LSTM, proposed (GT-surrounding) and proposed (retrain techniques) at di↵erent

time horizons.

Prediction Horizon (meters)
Models 1s 2s 3s 4s 5s

CV 0.74 2.05 3.72 5.65 7.62

V-LSTM 0.53 1.42 2.61 4.08 5.83

Proposed (GT-surrounding) 0.24 0.66 1.25 2.04 3.02

Proposed (retrain technique) 0.41 1.02 1.83 2.88 4.13

Assessment on the “Radiate” Dataset

Additional evaluations with the newly collected radar dataset were performed. The

motivation is to see whether the proposed approach is e↵ective within the field of

view of an automotive radar, which is the main concern. The two datasets used were

those collected at the Kingussie (T-junction) and Edinburgh (Four-way) junctions.

The RMSEs on these two junctions are shown in Figure 4.15. and tabulated in

Table 4.10.

As the developed architecture is predicting the future motion (“Motion Learn-

ing”) as an intermediate stage, its performance was also evaluated by recursively

calculating the current position using the last calculated position at the previous

time instance and the current predicted motion for the entire future horizon (1s to

5s):

x̂t+1 = x̂t + ˆ̇xt+1, ŷt+1 = ŷt + ˆ̇yt+1 (4.9)

where (x̂, ŷ)t+1 and (x̂, ŷ)t are the calculated positions for the next and cur-

rent time instances respectively, and (ˆ̇x, ˆ̇y)t+1 is the predicted motion for the next

time instance. In Figure 4.15, the RMSEs of the trajectories generated directly

through “Trajectory Learning” and ‘Motion Learning” are denoted as junctionpos

and junctionv receptively 8junction 2 [Kingussie, Edinburgh].

As stated earlier, the radar system we have used has only a 4 Hz frame rate

whereas the NGSIM dataset has a 10 Hz frame rate. Despite the 2.5 times lower

frame rate, the developed architecture achieved almost similar performance. The

longer trajectory sequences recorded with cameras installed on top of high buildings

(NGSIM) helped the model to understand di↵erent driving behaviours as opposed

to the relatively shorter trajectory sequences collected with the more limited range

radar, making the problem even more challenging. Due to the simpler junction
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Figure 4.15: The RMSE comparison of Lankershim (NGSIM), Kingussie (T) and

Edinburgh (Four-way) (Radiate) datasets. This figure shows their average mean

squared errors for the prediction time horizon from 0.25s to 5s.

Table 4.10: RMSE comparison on the Radiate dataset between the Edinburgh (Four-

way) and Kingussie (T) junctions at di↵erent time horizons.

Prediction Horizon (meters)
Junction Technique 0.25s 1s 2s 3s 4s 5s

Kingussie
Motion 0.27 0.70 1.23 1.85 2.49 3.15

Position 0.63 1.11 1.62 2.17 2.78 3.60

Edinburgh
Motion 0.44 1.09 2.11 3.23 4.43 5.83

Position 0.71 1.25 1.76 2.33 3.13 3.78

structure at Kingussie, the RMSE was lower than the Edinburgh junction. The

RMSEs using “Velocity Learning” were lower in the short-term horizon compared

to those predicted directly through “Trajectory Learning” (see Table 4.10 and Figure

4.15), because in the short term the current velocity has a more prominent e↵ect on

future position, but in the longer term, the surrounding vehicle positions and scene

context have a beneficial e↵ect. A demo of this work can be found here.

4.7.3 Reliability with missed detections

The evaluation to date is on perfectly annotated vehicle positions (as with NGSIM),

but for a live system this is unrealistic as there will always be missed detections. To

understand better the impact of this on performance additional experiments with 10,
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(a) Kingussie (T) junction

(b) Edinburgh (Four-way) junction.

Figure 4.16: The RMSE comparison on the Radiate dataset [143] with di↵erent

mis-detection rates, for the prediction time horizon from 1 to 5s.

Table 4.11: RMSE comparison on the Radiate dataset for 10, 20 and 30% mis-

detection rates at di↵erent time horizons.

Prediction Horizon (meters)
Junction mis-detection 1s 2s 3s 4s 5s

Kingussie

10% 1.10 1.62 2.18 2.84 3.68

20% 1.14 1.65 2.23 2.90 3.71

30% 1.22 1.75 2.32 2.99 3.84

Edinburgh

10% 1.32 1.74 2.32 3.11 3.95

20% 1.30 1.82 2.34 3.10 4.06

30% 1.48 2.02 2.57 3.32 4.27

119



Figure 4.17: Detected vehicles’ velocity profiles from 100 metres till the junction

location at Kingussie (T-junction). Yellow lines in the satellite image [110] show

the distance from the junction in metres. Solid red and dashed green lines in the

plot show the velocity profiles of the turning and straight-on vehicles, respectively,

at di↵erent distances from the junction.

20 and 30% missed detections were also performed. During training the full, correct

data was considered, but during testing simulated mis-detections or occlusions were

created by intentionally dropping the TV and SV positions for consecutive frames

in the input sequence. Separate particle filters were maintained for each tracked

TV and SV and the the two conventional particle filtering stages, i.e. particle

propagation and weight update on their assigned particle filters, were applied to

re-estimate those dropped TV and SV positions. At first the current particles were

propagated using the last known velocity. Since there are no new observations,

instead of updating the weights of the particle filters, equal weights were assigned

to all which were then used to estimate the dropped positions before passing to

the network. The RMSE comparisons between perfect and missed detection data

for the Kingussie (T-junction) and Edinburgh (Four-way) junctions are shown in

Figs. 4.16(a) and 4.16(b) respectively and reported in Table 4.11. In both cases it

achieved only slightly poorer performance which shows that the proposed technique

is robust to imperfect detection or potential occlusion.

4.7.4 Qualitative analysis and case studies

To better illustrate the proposed approach, four di↵erent examples are shown in Figs.

4.18(a) to 4.19(c). On the top left, a simple turn is shown. There are no SVs, but

analysing the velocity profiles of the straight and turning vehicles in Figure 4.17, it

is clear that the vast majority of turning vehicles have a decelerating velocity profile

when compared to straight vehicles moving at a constant speed. It is likely that

another feature, like distance from the junction, plays a significant role. The four-

way junction at Edinburgh has considerably more vehicle interaction and is shown

120



(a) Successful right turn prediction at Kingussie (T) Junction [110]

(b) Right-of-way for the vehicles travelling on the main road [108].

(c) Vehicles on the side road [108] cannot merge onto an occupied main road.

Figure 4.18: Qualitative analysis of the prediction results of the proposed technique.

For each subfigure, the left and right are views from the radar image and satellite

[110], [108], respectively. The violet car marked as TV is the Target Vehicle (for

which the prediction is being performed). Predicted and ground truth trajectories for

the TV are drawn in blue and green lines, respectively. Red vehicle and trajectories

indicate the currently selected SVs by the decoder as opposed to yellow vehicles and

trajectories that indicate un-selected vehicles (not SVs) by the decoder based on the

Euclidean distance from the TV. For each vehicle, the future trajectory was plotted

for 5 seconds.
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(a) Vehicles on side road [108] can only merge onto main road when its empty.

(b) Selection of e↵ective surrounding vehicles in the decoder based on the current scene

[108]

(c) Merging on main road [108] after it is clear

Figure 4.18: Qualitative analysis of the predictions of the proposed technique. For

each subfigure, the left and right are views from the radar image and satellite [110],

[108], respectively. The violet car marked as TV is the Target Vehicle (for which

the prediction is being performed). Predicted and ground truth trajectories for the

TV are drawn in blue and green lines, respectively. The red vehicle and trajectories

indicate the currently selected SVs by the decoder as opposed to the yellow vehicles

and trajectories that indicate un-selected vehicles (not SVs) by the decoder based on

the Euclidean distance from the TV. For each vehicle, For each vehicle, the future

trajectory was plotted for 5 seconds.
122



in Figure 4.18(b). The TV is on the main road with SV-1 waiting on a side road to

merge and SV-5 waiting on the main road to turn into the same side road. Despite

multiple surrounding vehicles, with knowledge of its own lane location and right-of-

way (the vehicle on the main road has priority), the proposed technique predicted

a straight, constant speed manoeuvre as opposed to any sudden stop. The opposite

e↵ect of the same right-of-way rule is shown in Figure 4.18(c), where the TV is on

the side road and the main road is occupied by SV-16. Due to congestion on the

main road the proposed model predicted a stop manoeuvre and a wait till the main

road is clear. As shown in Figure 4.19(a) once SV-16 crosses the side road with no

SVs on its tail, the main road is empty and this allows the target vehicle to merge

safely.

Figure 4.19(b) and Figure 4.19(c) demonstrate a potential fatal consequence

that can happen by assigning specific surrounding vehicles at the beginning of the

observation sequence. As shown in Figure 4.19(b), the model assigned vehicles 6,

7 and 8 as the considered SVs on the basis of Euclidean distance at the beginning

of the prediction sequence. Keeping the current situation in mind any real driver

would consider these same vehicles before merging in the main road. However,

once SV-8 crosses the side road at a safe distance, it becomes irrelevant after a

few predicted frames. On the other hand, a di↵erent SV-9, not close enough to be

considered initially, becomes relevant. A human driver should now consider SV-9

and ignore SV-8 before deciding to merge onto the main road. An approach that

assigns specific LSTM cells to the current surrounding vehicles at the beginning of

the sequence [74], [29] does not allow reconsideration of incoming vehicles, and could

lead to a dangerous manoeuvre.

4.8 Summary

A novel encoder-decoder architecture for vehicle behaviour prediction was presented

in this chapter. A key contribution is the encoding of the surrounding road net-

work and vehicle interaction, not just in the encoder but also in the decoder to

keep the scene information up to date. A further innovation is the consideration of

the relevant, surrounding vehicles, updating the network on the basis of the near-

est rather than a fixed set of nearby vehicles. This allows the birth and death of

vehicles as they come into and disappear from view. Using the encoder state with

the estimated manoeuvre and motion intention, this makes a well informed future

estimation of manoeuvre and trajectory. Several experiments on a previous, public

dataset (NGSIM) show that the proposed technique can achieve comparable predic-

tion accuracy with the state-of-the-art. Evaluating this same architecture on new

data collected from an automotive radar with very di↵erent sensing characteristics
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shows very encouraging performance in spite of the much more constrained field,

slower frame rate and shorter range of view.
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Chapter 5

Conclusions and Future Directions

This work has focused on the accurate anticipation of the future maneuvers and

trajectories of road vehicles in the immediate vicinity of an assumed ego vehicle as

an aid to autonomous or assisted driving. Two distinct architectural conributions

have been made to the development of LSTM architectures for behaviour prediction

based on sensor data. The methods developed have been evaluated under various

tra�c conditions including a multi lane motorway, a single lane, un-signalled T-

junction, a signalled multi lane four-way intersection, and finally an un-signalled

single lane four-way intersection.

Data Collection:

The team equipped a van with a hardware sensor suite that includes a 77-76 GHz

automotive Navtech radar, a 32 channel Velodyne liDAR, a ZED stereo camera and a

Advance Navigation GPS/IMU tool kit. The software framework, data acquisition,

processing and storage into a meaningful structure was developed using the Robot

Operating System (ROS) and MATLAB. Although there are many public datasets

available, the majority do not include radar data, and also the data is distinct in

including labelled radar images. The data was collected in both static and moving

ego-vehicle settings at the various tra�c locations.

LSTM architecture based on OGMs:

A new Conv-LSTM architecture was described in Chapter 3, showing the ben-

efits of extracting spatio-temporal features simultaneously. This used a sequence

of occupancy grid maps (OGMs) as input to predict the future vehicle trajectories.

An interactive feedback based prediction scheme was developed to predict all the

vehicle positions for the future time instances. When predicting the next instances

the predicted positions for the current instance were combined with the input OGM

sequences. This interactive predicting scheme has the capability to update the scene

information for a long term prediction horizon, thus improving the accuracy of the

predicted trajectories. The results were compared with state-of-the-art trajectory
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prediction techniques using two publicly available bird’s-eye view datasets, NGSIM

[23], [24] and High-D [89]. Moreover, to establish the generalised nature of the

proposed architecture the model was trained and evaluated on di↵erent highway

scenarios, i.e. in the case of NGSIM the model was trained on the US-101 [23]

dataset and tested on the I-80 [24] dataset.

An improved encoder-decoder LSTM architecture:

Dispensing with the OGM model, An improved, novel encoder-decoder archi-

tecture was described in Chapter 4. The context information, i.e. the information

about the surrounding vehicles, was fed not only into the encoder but also into the

decoder to update the scene data during long term prediction. In addition, a dy-

namic surrounding vehicle selection scheme was developed, identifying and selecting

the most influential surrounding vehicles using the Euclidean distance between the

target vehicle and all the other vehicles present in the scene. This is important be-

cause, instead of fixing the surrounding vehicles at the beginning on the observation

sequence as is commonly done, this dynamic selection scheme allows the model to

accept the birth and death of vehicles as they appear and disappear in the target

vehicle’s vicinity. As an additional contribution, rather than predicting the future

trajectory directly through the decoder, an auxiliary architecture was developed

to predict the future maneuver first, followed by the future motion and finally the

future trajectory.

The model described in Chapter 4 was evaluated on both publicly available

multi-lane highway [24], [23] and multi-lane intersection [25] data to compare the

performance with the state-of-the-art, achieving comparable prediction accuracy.

The model was also tested on the newly collected “Radiate” dataset. In both the

cases the proposed model achieved comparable performance to the publicly available

BEV data despite the fact that this data has a more constrained field-of-view, a

lower frame rate and limited range. Comparing the Kingussie (T) junction and

the Edinburgh (four-way) junction, the Kingussie (T) junction yielded a higher

prediction accuracy due to the simplicity of the junction structure and the clear

contrast between the turning and straight-on vehicle’s velocity profiles.

An additional evaluation, contrasting with the perfectly human annotated data

used so far, included artificial mis-detections that were created by dropping con-

secutive frames in the “Radiate” dataset. This simulated the e↵ect of occlusion or

detection errors, when for example the cars are detected and classified through a

deep learning based network. The near-similar performance in both the perfect and

imperfect data shows that the model has some degree of robustness.

Summary: Despite significant progress in vehicle behaviour prediction, one

key, missing factor has been consideration of the latest predicted behaviours of all
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the surrounding vehicles while performing prediction for the next instance. This

missing stage has made it di�cult in previous models to keep the scene information

up to date during the long term,, leading to poorer predictions. In contrast, both the

developed models in this thesis considered future predicted positions, and sometimes

the predicted manoeuvres and velocities as well, before predicting further ahead.

This has led to an improved accuracy of the predicted trajectories from the methods

described in Chapter 3 and 4. In addition to this the model in chapter 4 identifies and

includes the most important surrounding vehicles dynamically at each timestamp

for the entire observation and prediction horizon, instead of fixing them at the start,

thus making it more relevant in any continuously evolving tra�c scene.

5.1 Limitations of Proposed Approaches

Although the models presented in this thesis show promising results in various tra�c

conditions, there are a number of significant limitations:

• Intersection Specific: In the case of the “Radiate” dataset the same archi-

tecture was used for both the Kingussie (T) and Edinburgh (four-way) junc-

tions but it needed retraining. In other words the model was retrained with

the respective datasets before testing, instead of using a single set of model

weights produced by training the model with a mixture of vehicle trajectories

selected from both datasets. This means that the model was not general, but

junction-specific.

• Missing Road Layouts: Although the models were evaluated on both left-

hand and right-hand driving systems as well as at various tra�c conditions

i.e. highways and intersections it was not tested exhaustively on other possible

layouts, e.g. roundabouts that are common in urban locations. In the case

of Chapter 4 both the target and surrounding vehicle positions were passed

as a feature vector format without maintaining any fixed orientation. This

suggest that the proposed technique can be extended to other scenarios (e.g.

a roundabout) but only after adding some additional priority rules either to

the model or through features encoded in the input feature vector. However,

for the OGM technique proposed in chapter 3 the orientation of each OGM is

fixed for the entire observation and prediction sequence. In this case, near any

intersection or roundabout, the OGM sequence will be created considering the

main road as the initial alignment. Using the fixed width of each OGM the

model will be able to predict the future trajectory of all the turning vehicles up

to a point where the vehicles leave the main road in order to enter in any of the

side roads. Once the turn maneuver is complete a new set of OGM sequences
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should be created but this time aligned with the side road the target vehicle

entered.

• Limited Road Actors: In the current context only vehicles were considered.

Other important road actors such as pedestrians, bicycles, motorbikes etc were

not included. In the case of highways this may not cause much impact, but they

are common in any urban scenario. Adding these di↵erent types of road actors

into a single model and capturing their interactions is not straightforward

as they all behave di↵erently. For example, a vehicle can never perform a

sudden 180 degree turn at its current location because of the constrained front

wheel turn angle whereas that is not the case for a pedestrian. Moreover

the range of speeds at which individual road actors can move are completely

di↵erent. A vehicle can move at any speed from 0 to 100+ mph depending

on circumstances, Whereas the average speeds of pedestrians and cyclists are

somewhere in between 3-4 mph and 10-20 mph, respectively.

5.2 Future Work

The above mentioned limitations should be addressed with the following additional

steps:

• More Intersection Data: Till now a very limited amount of trajectory data

was collected using the test vehicle. This made it harder to develop a generic

model which will work at any intersection without retraining. Additional

data at a variety of diverse intersections would be beneficial, such as vehicle

trajectory data collected from multiple T-junctions, four-way intersections, 3,

4 and 5 exit roundabouts etc. Then a single model could be trained with a

much greater variety of vehicle trajectory data to make it more generic, and

applicable unseen intersections. In addition it would be helpful to extract the

type of intersection using the Google satellite map and use this during both

the training and prediction process. This would help the model to segregate

di↵erent driving behaviours at various types of intersections and then use

that prior information while predicting the future trajectory at any type of

intersection.

• Additional Road Users: Attributes associated with other road actors (pedes-

trians, bicycles, motorbikes) should be added to the vehicle data and features

to make better informed future trajectory prediction. Di↵erent road actors

have di↵erent attributes. For a vehicle the important attributes are its current

location, velocity, and acceleration, coupled with various map based features
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such as lane number, movement rules associated with that lane, distance from

the nearest junction etc. However, for a pedestrian these will change to how

far he/she is from the end of curb, gaze direction, whether travelling solo or

in a group, wearing any headphones or using his/her mobile etc. All these

features can help a model to learn how a pedestrian behaves. To develop a

model which can capture interaction between di↵erent road actors interaction,

the input feature vector must be populated accordingly before passing it to

the model both during training and prediction. This requires better percep-

tion algorithms that not only identify the location, motion and type of actor

(pedestrian car etc.), but also details about their current state(using phone,

gaze direction etc.)

• Adverse Weather and Light Conditions: The surrounding vehicle infor-

mation was extracted using the Navtech Radar. Although the radar signals

have been shown to be relatively una↵ected by adverse lighting or weather

conditions, it is still important to evaluate the model with adverse weather

data, e.g. a rainy or foggy day or at the night time. To do that at first the

relevant data sequences must be selected from the “Radiate” dataset. Once

done all the vehicles from those sequences would be annotated to generate the

ground truth vehicle trajectory data. This step can be done either by human

annotation directly or conceivably using deep learning based pre-trained ve-

hicle detection with error correction. This annotated, poor weather vehicle

data would be used to evaluate and compare the developed behaviour predic-

tion model performance against the data collected during good weather and

daylight conditions.

• Detection-Tracking-Prediction: Although an evaluation with missed de-

tections has been included in this work, the crucial step would be to develop

an end to end processing system for automotive radar, marrying vehicle detec-

tion, and multiple object tracking to behaviour prediction. In the first stage,

a state-of-the-art deep learning based vehicle detection model can be used to

detect all the vehicles from the automotive radar images in the form of bound-

ing boxes. Once detected, these are passed to a tracking filter such as the

GM-PHD filter to remove noise and clutter, then data association to match

vehicles across frames, generating continuous trajectories. The used tracker

should also be capable of doing “birth” and “death” of new and existing ve-

hicles, respectively. These continuous trajectories with their associated map

features would be passed to the pre-trained vehicle behaviour prediction model

to anticipate how the scene will evolve in the near future.
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• Situation Based Model Selection: As mentioned earlier, depending on

the current tra�c location of the target vehicle the input feature vector set

needed for future trajectory prediction changes. Instead of a completely gen-

eral, unlikely model, a multi-model approach can be developed where indi-

vidual models are responsible for di↵erent tra�c situations, e.g. multi-lane

highway, intersection or roundabout. This could, for example be selected from

a GPS and map data. In other words the autonomous ego vehicle’s current

location will be extracted from its on-board GPS sensor which can access a de-

tailed digital map to identify the type of tra�c location in which it is currently

travelling. Once identified, the relevant pre-trained model will be selected and

used to predict the future trajectory of all the other vehicles in the vicinity.
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Appendix A

Test Vehicle and Algorithms

This appendix mainly covers two major areas.

• The “Radiate” dataset used in this thesis is taken from an ’ego-vehicle’. We

consider here the drawbacks of the existing datasets as well as the main moti-

vation behind creating this new dataset. The hardware used to setup the test

vehicle and the developed software framework used to collect and store the

raw data are described. A list of tra�c locations where the data was collected

is given.

• Pseudo-codes are given of the developed algorithms performing the interactive

vehicle trajectory prediction tasks both in chapter 3: Interactive Vehicle Tra-

jectory Prediction with Convolutional Recurrent Neural Networks and chapter

4: Predicting Vehicle Behaviour using Automotive Radar and Recurrent Neu-

ral Networks.

A.1 The “Radiate” Dataset

Collecting real world tra�c data to validate the developed trajectory prediction al-

gorithms is critical. Proper measures must be taken while collecting the data to

ensure closeness to the real, ego-vehicle perspective. This is important because, if

the developed algorithms need to be used with vehicle on-board sensors, there is no

guarantee that they will perform similarly to the data collected with the overhead

sensors using a bird’s-eye view. Even though in the near future infrastructure sensors

will play a crucial role to avoid any potential collisions, e.g. at blind intersections,

there will still be a significant overlap with the ego vehicle on-board sensors. More-

over, there will be many intersections without the presence of any infrastructure

cameras. Preferably, the collected data must be 100% natural, which means the

driver driving the sensor equipped test vehicle must be allowed to drive normally

131



and all road actors in the vicinity should not be aware that their movements are be-

ing collected. Only then can the captured dataset include various driving behaviour

anomalies such as over speeding, careless driving, aggressive overtakes on motorways

or negligent merging onto the main road at intersections etc.

Considering the challenges of a natural vehicle trajectory dataset a lot researchers

used o↵ the shelf simulators such as IPG CarMaker, PTV Vissim [182] or Carla [37]

etc. to generate the dataset which could then be used to train and validate the

developed algorithms. But the major discrepancies between a dataset collected

with on-board sensors and through simulators are as follows:

• Data Inaccuracies: Any simulator-generated synthetic data assumes perfect

knowledge of the scene which is not true in the real world. For example the

localization of the ego-vehicle is usually done through on-board GPS systems

which will not always be accurate due to the canyon e↵ect [139], especially

when it is travelling through an urban area surrounded by high rise buildings.

Usually all the surrounding vehicle positions are estimated using their relative

position with respect to the ego-vehicle location. Now, any error in the ego-

vehicle location is also accumulated in the surrounding vehicle location.

• Occlusion Free: The assumption of perfect perspective of all the other road

actors in the scene can make the simulator data very dissimilar to the real

world data. Using vehicle on-board sensors can often lead to a situation where

the critical and small road actors such as pedestrians, bicyclists, or motorbikes

will be occluded by the other big road actors such as vehicles, trucks or lorries.

Introducing such natural occlusions in any simulator can be very laborious.

• Perfect Detection and Tracking: All simulators assume an accurate de-

tection of all the other vehicles in the vicinity, then noise free relative location

estimation with respect to the ego-vehicle, and finally perfect association of all

the other targets across frames to generate the continuous trajectories. This is

again not realistic as missed detection and wrong association of two di↵erent

targets across frames due to occlusion by other road actors are very common

phenomena in congested tra�c.

• Perfect Driving: It is very di�cult to make a simulator drive a vehicle ex-

actly as a human does. The driving behaviour in any simulator is always

perfect which means it does not include any extreme cases and driving irreg-

ularities such as close cut-ins or rash driving which are very common in real

tra�c.

Considering the above mentioned limitations in any simulator, there is no guar-

antee that if a developed algorithm works well with synthetic data, it will have
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similar performance on real data. This was the main motivation behind collect-

ing and publishing an ego-vehicle perspective multi-sensor dataset called “Radiate”

[143]. The data collection was done using a sensor equipped Volkswagen Transporter

while driving around di↵erent places in Scotland, United Kingdom. The collected

data consists of camera images, laser scans, high gigahertz radar images, high preci-

sion GPS and IMU measurements from a combined GPS/IMU kit, shown in Figure.

A.1. The main purpose in the context of this thesis in setting up the test vehicle

with di↵erent sensor modules and collecting real-time driving data is to push for-

ward the development of trajectory prediction algorithms targeted to di↵erent tra�c

scenarios (motorways, junctions, round-abouts etc). The usage of radar made the

dataset useful even in adverse weather and light conditions (rain, fog, night etc).

The collected tra�c data was also used by our research group for various addi-

tional tasks in the self-driving area, like visual-odometry/Simultaneous Localization

and Mapping (SLAM) [72], vehicle detection/tracking in radar images [144], and

radar/LiDAR fusion for scene mapping [167]. After presenting an in-depth review

of existing ego-vehicle perspective datasets this appendix provides details about the

sensor equipped test vehicle and the Robot Operating System (ROS) based software

framework that was developed to capture and store the raw sensor data. Lastly, it

describes the various tra�c locations used in this thesis, where the test vehicle was

either parked or driven through, to collect diverse tra�c data.

A.1.1 Existing Ego-vehicle Perspective Real Datasets

To make the benchmark datasets more realistic there has been a recent increase

in the collection and publication of surrounding scene data from the ego-vehicle

point of view, not with overhead sensors, for which various sensor equipped test

vehicles have been driven for many hours at di↵erent locations. One commonly

used dataset is the KITTI Vision Benchmark suite [53] which includes four di↵erent

sensor modalities i.e. stereo camera, 64 beam Velodyne LiDAR, Global Positioning

System (GPS) and an Inertial Measurement Unit (IMU), collected in di↵erent Eu-

ropean cities. Similar datasets collected with sensor equipped ego-vehicles include

comma.ai’s dataset [130], the Udacity dataset [159] and Brain4Car’s dataset [80],

mostly collected in the San Francisco bay area. Other large datasets collected in

di↵erent cities of the USA are CityScapes [27], ApolloScape [168] and UC Berkeley

BDD100k [185], but they all consist of only camera and depth information using

stereo pairs. The more recent, Oxford RobotCar Dataset includes all the above

mentioned sensor modalities [103] along with a high resolution radar [10] but the

dataset is mainly focused on radar odometry, and is collected in urban areas (Oxford

city). In order to collect the data, the test vehicle travelled over the same route mul-
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Figure A.1: Schematic and real views of our test vehicle used to collect data. The top

left image is the Volkswagen Transporter van equipped with LiDAR, radar, stereo

camera and GPS/IMU kit. On the top right is a close up view of the Velodyne

LiDAR, CTS350-X Navtech Radar and ZED Stereo Camera. On the bottom left is

the schematic top view showing the individual sensor positions except for the IMU

as it is placed on the floor inside the vehicle. On the bottom right is the schematic

side view showing the exact IMU and GPS placements.
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tiple times to create radar based ground truth odometry information. Moreover, the

dataset contains only raw radar images without any surrounding vehicle annotations

or continuous trajectory information, which makes it hard to use in any trajectory

prediction, or indeed vehicle detection or classification, algorithm. Another similar

type of dataset, “nuScenes” [16], also includes radar data points collected with six,

77GHz Frequency Modulated Continuous Wave (FMCW) radars along with RGB

cameras, one LiDAR and one GPS/IMU tool kit. However, it only provides a sparse

2D point cloud instead of the full radar waveform, which again makes it very hard to

perform object detection and/or classification tasks. There are even cases where the

on-board radar returned only a single point for an entire vehicle in its range. Clearly

it isn’t possible to perform detection and classification of di↵erent road actors using

a single radar point return.

Although all these datasets collectively cover a wide variety of tra�c scenarios

and sensor modalities, they were collected mostly in ideal weather/light conditions

and the test vehicles were always in continuous motion, which means none of them

stayed in any specific location or intersection for a longer period of time to collect

di↵erent intersection specific tra�c flow. Keeping these two limitations in mind we

set up our test vehicle with di↵erent sensor modalities including high resolution radar

and collected our own dataset at di↵erent locations in Scotland, UK. We focused

mainly on signal-free intersections and adverse weather conditions. The signal-free

intersections helped us to understand the negotiations that usually happen between

vehicles without any interventions from the tra�c infrastructure, such as multi-lane

roads with specific turn rules or tra�c lights. These tra�c infrastructures often

play a significant role in ordering the vehicle flow at any dense intersection. The

adverse weather conditions helped us to understand the impact of weather and light

conditions on di↵erent sensor modalities. A typical comparison of di↵erent sensor

data collected at the same location in di↵erent weather conditions, i.e. with and

without fog, are shown in Figure. A.2(a) and Figure. A.2(b), respectively, where

both the Velodyne LiDAR and the ZED stereo camera got e↵ected due to the dense

fog, but the Navtech radar data remained largely the same.

A.2 The “Radiate” Test Vehicle

This section provides a detailed explanation of the sensor suite that was used to set

up the test vehicle and its layout to collect good quality data.
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(a) Foggy Day

(b) Clear Day

Figure A.2: Comparison between Velodyne LiDAR, Navtech Radar and ZED stereo

camera in a foggy and clear day at the same location to understand the impact on

all three sensor modalities in adverse weather condition.
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Figure A.3: All four sensors used in our test vehicle. Starting from left CTS350-

X Navtech Radar, ZED Stereo Camera, Velodyne HDL-32E LiDAR and Advance

Navigation Spatial Dual Kit.

A.2.1 Sensor Specifications

The test vehicle sensor suite consists of four di↵erent sensor modalities illustrated

in Figure. A.3, are as follows

• One ZED Stereo Camera to produce (672x376 pixel) left and right images at

30 Hz. It has two lenses of 2.8mm focal-length placed 120mm apart as a stereo

baseline with a depth range from 0.5m to 25m and electronically synchronized

rolling shutter.

• One Velodyne HDL-32E rotating 3D laser scanner with a range of 80-100m.

Range Accuracy: ±2cm , Field of View: +10.67° to -30.67° (41.33°) vertical,
360° horizontal, Angular Resolution: 1.33° vertical, 0.1° to 0.4° horizontal and
Rotation Rate: 5-20 Hz.

• One Spatial Dual Advance Navigation GPS/IMU kit that consists of tem-

perature calibrated accelerometers, gyroscopes, magnetometers and a pres-

sure sensor with a dual antenna Real-Time Kinematic (RTK) Global Navi-

gation Satellite System (GNSS) receiver. The main reason behind the usage

of two antennas, i.e. primary and secondary is to estimate the vehicle ori-

entation/heading. Individual sensors are coupled with a sophisticated fusion

algorithm to produce reliable and accurate navigation plus orientation. Hor-

izontal Position Accuracy: 1.2m, Vertical Position Accuracy: 2.0m, Velocity

Accuracy: 0.007m/s, Roll & Pitch Accuracy: 0.1°, Heading Accuracy at 1m

Antenna Separation: 0.1°.

• One Navtech Radar CTS350-X with range 100m (radius) operating at 76�77

GHz. Range Resolution: 0.175m, Azimuth and Elevation Beamwidth 1.8°,
Field of View: 360°, Frame Rate: 4 Hz and Power Supply: 24V DC.
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A.2.2 Sensor Positioning

The actual placement of our individual sensors onto our test vehicle (VW Trans-

porter) is shown in Figure. A.1. To have the best and maximum field of view for all

three perception sensor modules, i.e. LiDAR, radar and stereo camera, these were

placed at the top-front of the vehicle. Since both the LiDAR and radar have a 360°
field of view, they were placed at the front-right and front-left of the test vehicle

respectively, keeping the centre open for the stereo-camera. For the GPS/IMU tool

kit to achieve maximum GPS signal strength both the RTK GNSS receiver antennas

(primary,secondary) were placed at the top of the van, of which the primary receiver

was placed at the front and the secondary antenna at the rear with 1m separation

to get the maximum heading accuracy. The IMU unit was placed on the floor of the

car to alleviate the e↵ects of the greater vibrations that usually occur at the top of

the vehicle.

A.3 “Radiate” Software Architecture

In this section we discuss the developed software framework that was used to collect,

process and store data in a meaningful folder structure categorized both in terms of

the di↵erent sensors as well as the di↵erent scenarios.

A.3.1 Introduction of Robot Operating System

Our complete data collection software architecture was developed in the Robot Op-

erating System framework. The Robot Operating System, or simply ROS, is an

open-source meta-operating system which provides an interface between application

and hardware. In our case the hardware consists of the various sensor modules men-

tioned in the previous section and the main task is to collect raw data from all these

sensors and store it on the hard-disk.

Due to its loosely coupled design and the huge developers’ community from

all over the world working on various sensors and robot drivers, this has allowed

researchers to reuse o↵ the shelf sensor drivers in their own software pipeline instead

of wasting time on “reinventing the wheel”. Hardware abstraction, implementation

of commonly-used functionality, low-level device control, package management and

message-passing between processes are the five major tasks handled by this meta-

OS. In the ROS framework processes are usually called as nodes and every node

is responsible for one single task. Communications between nodes are usually done

using message passing over pre-defined logical channels called topics. The nodes can

be classified into two sub-categories, talker and listener, based on the task they are

performing. The main responsibilities of each kind of node are as follows:
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• Talker: A talker usually works as a sensor-driver which is responsible to

communicate with the hardware/sensor to get the raw data, format it as a

data message (usually called “sensor name.msg”) and send it over the topic.

• Listener: A listener usually listens into one or more topics and when there

are any messages available in the topic it collects them and acts according to

the requirement, either storage or further processing.

The data communication between talker and listener nodes is usually referred

to as “publisher-subscriber” model where the talker is publishing sensor data over

a topic and the listener is subscribing to the same topic to receive the data. In

addition to these mentioned functionalities ROS also provides three visualization

tools which are Gazebo, Rviz and MapViz to visualize the incoming data quickly

and “bag” files to store data in the hard disk e�ciently.

A.3.2 Architectural details

As our test vehicle consists of four di↵erent sensor modules, we created four di↵erent

talker/publisher nodes as each sensor’s driver, one listener/subscriber node to collect

data from all the four talker nodes and save it in a bag file for later use (see Figure.

A.4). Each talker node has its own name, specific message formats with the relevant

data fields depending on the sensor, and is responsible for predefined topics to

publish that message. Each sensor specific node and the associated topics and

message file formats are given in Table A.1. After all the five nodes were developed

we created a launch file to start all the nodes simultaneously instead of sequentially,

thus reducing any potential risk of forgetting to start one or more nodes during

real-time data collection.

A.3.3 Data Storage

Once the sequence specific sensor data was collected and stored in the bag files

our next task was to properly extract individual raw sensor data and store it in a

meaningful folder structure. A detailed structure of the data extraction stages are

shown in Figure. A.5. Individual bags are usually of length 30-45 minutes. As

it is hard to work with these giant bags we first split it into small bags of length

3 minutes each before extracting the raw sensor data. Moreover, splitting each

bag into small bags will allow other users to select a limited amount of data from

di↵erent sequences/scenarios (rain, snow, motorway, junction etc.) and thus prevent

any potential bias that may occur due to a particular scenario. The split bags were

named based on their master bag, which means if a bag is named as “sequence.bag”

(sequence 2 rain, snow, fog, motorway, city, junction) the split bags were named
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Figure A.4: End-to-end data collection pipeline developed using the Robot Operat-

ing System (ROS) framework, starting from the individual sensor drivers till storing

the collected data into bag files.

as “sequence 1.bag” (0-3 min), “sequence 2.bag” (3-6 min), ..... , “sequence N.bag”

(b-B min), where B is the length of the master bag and b = 3 ⇤ (N � 1). Once

the bags were split, each sensor’s raw data was extracted into separate folders along

with an additional file to save the timestamps of each frame. Timestamps were later

used to synchronize the sensors as each sensor works at di↵erent frame rates.

A.4 “Radiate” Collection Sites

In order to cover di↵erent tra�c scenarios the data collection was done in two

di↵erent settings, i.e. static and moving ego-vehicle. The ego-vehicle is our sen-

sor equipped test-vehicle shown in Figure A.1. The moving ego-vehicle scenario

is for di↵erent highways where both the ego-vehicle and the surrounding vehicles

were moving at di↵erent speeds. The static ego-vehicle scenario is for di↵erent un-

signalled tra�c intersections where the ego-vehicle was parked at a safe location

near two di↵erent intersections to collect junction specific data. The unsignalled

intersection allows us to understand how di↵erent vehicles will negotiate with each

other with less mandatory influence from the tra�c infrastructure. Di↵erent col-

lection sites for both the static and moving ego-vehicle cases are explained in the

following sections.
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Figure A.5: Data extraction stages starting from the raw bag files produced by the

subscriber node up to the individual sensor data stored into separate folders along

with timestamps for each frame, categorized based on scenarios and split into small

chunks of 3 minutes.

A.4.1 Moving Ego-Vehicle

The moving ego-vehicle scenario includes three di↵erent highways, i.e. single-lane,

two-lane and three-lane motorway. The main goal of collecting highway data with

three di↵erent lane counts is to understand its impact on high-speed driving be-

haviour by observing the lane-change events that happened during an overtake ma-

neuver. In any two or three lane highway the main precursors for any overtaking

maneuver are congestion in the ego-lane in which the vehicle is currently travelling,

and availability in the adjacent lane to perform a safe overtake maneuver. Moreover,

all nearby vehicles need to be considered first before starting the overtake maneuver

and since all these vehicles will be travelling in the same direction it is likely the

relative speeds between them are comparatively low. Given the correlating features

and the lower relative speeds, it is possible to anticipate any future movement with

a limited range on-board sensor, which is the “Navtech Radar” in our case with a

range of 100 meters. On the other hand an overtaking maneuver performed on an

single-lane motorway is a lot more critical as the over-taking vehicle will have to go

to the opposing lane, in which the relevant vehicles’ are travelling in the opposite

direction, and with a very high relative speed. This is why to perform successful

movement anticipation in a single-lane road the ego-vehicle must be equipped with

sensors with higher distance range in order to cope with the higher relative speed.

In some cases, while deciding the moving ego-vehicle’s travel path, we kept the
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origin and destination locations the same so that the Visual-SLAM (Simultaneous

Localization and Mapping) [72] community can also use this data with the loop-

closure facility. Snapshots of the collected data from a single, two and three lane

carriageways are shown in Figure A.6(a), A.6(b) and A.6(c) respectively.

A.4.2 Static Ego-Vehicle

The static ego-vehicle scenario includes three di↵erent types of intersections, i.e.

T-Junction, four-Way junction and roundabout. In all three cases we parked our

vehicle as close as possible to the junction and collected data. The main purpose

behind collecting this static ego-vehicle data is to understand driving behaviour prior

to di↵erent maneuvers that can be performed at any intersection such as left-turn,

right-turn, straight-on etc. Moreover, collected vehicle data in these three di↵erent

types of intersections can cover driving behaviour in most of the real world tra�c

junctions. The 100 meter range of our on-board Navtech radar system allowed us

to see vehicles early enough so that past vehicle trajectories can be di↵erentiated

against distinct intersection specific maneuvers. The bird’s-eye view (BEV) of all

the three intersections along with the location of the parked test-vehicle are shown

in Figure A.6(d), A.6(e) and A.6(f), respectively.

A.5 Pseudo codes of the Developed Algorithms

This section provides the developed pseudo codes of both the sequential prediction

techniques explained in chapter 3 and 4. Algorithm 1 describes how the sequential

prediction has been performed using the multi channel OGMs in chapter 3 and Al-

gorithm 2 shows how those multi channels OGMs were created using the vehicles’

position information. Next to that Algorithm 3 explains how the features vectors

were populated using information from both the target vehicles as well as the dynam-

ically selected surrounding vehicles in chapter 4 and Algorithm 4 shows how those

features vectors were passed to the pre-trained model to perform the interactive

prediction for all the vehicles currently present in the scene.
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(a) Single carriageway (b) Dual carriageway

(c) Three Lane Motorway (d) Kingussie (T) junction

(e) Edinburgh (four-way) junction (f) Kingussie (roundabout) junction

Figure A.6: Intersection specific static ego vehicle data collection. For each image

top left image shows an example radar image collected with the navtech automotive

radar. Red box indicates the location of the test vehicle near the junction. Top

right image shows the satellite view of the junction [108], [110] and the yellow arrow

indicates the direction of the test vehicle during data collection. Bottom right image

is a sample image collected with the ZED Stereo Camera (RGB) during collection.
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Result: TPred[N,F], predicted trajectory 8 N

/*Past trajectory information*/

T[N,h] = (x, y, Len,Wid)(1,N)
(t�h,t) 8 N ;

/*Store predicted trajectory*/

TPred[N,F] = (x, y)(1,N)
(t,t+F ) 8 N ;

for f in (t+1,t+F) do
/*Create blank inputOGMs */

inputOGMs[N,R,C,2,h] = 0;

/*Populate inputOGMs considering each car as target 8 N */

for i in (1,N) do
(orignX,originY) = (T[i,t-h].x,T[i,t-h].y);

for j in (t-h,t) do
(OGMX,OGMY) = (T[i,j].x-orignX)*LatRes,(T[i,j].y-orignY)*LonRes;

(OGMWid,OGMLen) = (T[i,j].Wid*LatRes,T[i,j].Len*LonRes);

/*Adding target car to inputOGMs channel 1*/

inputOGMs[i,OGMX:OGMWid,OGMY:OGMLen,1,j] = 1;

for s in (0,N) do
/*Ignore the considered target car*/

if s == i then
continue;

end

(surrX,surrY) = (T[s,j].x-orignX)*LatRes,(T[s,j].y-originY)*LonRes;

(surrWid,surrLen) = (T[s,j].Wid*LatRes,T[s,j].Len*LonRes);

/*Adding surrounding car to OGM channel 2*/

inputOGMs[i,surrX:surrWid,surrY:surrLen,2,j] = 1;

end

end

end

/*Predict next pose (x̂, ŷ) 8 N and add it to TPred[N,F] */

for n in (1,N) do
(x̂,ŷ)nf = model(inputOGMs[n, :, :, :, :]);

TPred[n,f] = (x̂,ŷ)nf ;

end

/*Adding the current predicted positions 8 N to T */

for k in (1,N) do
/*Update the current trajectory for kth vehicle in T */

xShiftk, yShiftk = (T [k, t�h+1].x�T [k, t�h].x), (T [k, t�h+1].y�T [k, t�h].y);

for l in (t-h+1,t) do
T[k,l-1].x,T[k,l-1].y = (T[k,l].x-xShiftk), (T [k, l].y � yShift

k);

end

/*Add the current predicted pose of kth vehicle in T */

T[k,t].x,T[k,t].y = (TPred[k,f].x̂),(TPred[k,f].ŷ);

end

end

Algorithm 1: Pseudocode for future trajectory prediction of all the cars (N)

present in the scene for the next F future frames given h historical frames, where

model is the pre-trained model. All (N) vehicles must be present in the entire

observation sequence i.e. from (t� h) to (t)
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Result: (inputOGMs,outputPosXY) 8 training and validation samples

(LatRes,LonRes) = (C/GirdWid, R/GirdLen);

CarDict = dict(CarID, [x,y,Len,Wid,FrameID] 8 FrameID of CarID);

FrameDict = dict(FrameID), [x,y,Len,Wid,carID] 8 CarID at FrameID;

for CarID in CarDict do
(targetCarID,TargetList) = (CarID, CarDict[CarID]);

TargetLen = length(TargetList);

for i in (0,TargetLen-h-1) do
/*Create blank inputOGMs*/

inputOGMs[R,C,2,h] = 0;

(originX,originY) = (TargetList[i].x,TargetList[i].y);

for j in (i,i+h) do
(x,y,Len,Wid,currentFrame) = TargetList[j];

(relativeX,relativeY) = (x-originX,y-originY);

/*Create blank OGM*/

OGM[R,C,2] = 0;

(OGMX,OGMY)= (relativeX*LatRes,relativeY*LonRes);

(OGMWid,OGMLen) = (Wid*LatRes,Len*LonRes);

/*Adding Target Car to first OGM channel*/

inputOGMs[OGMX:OGMWid,OGMY:OGMLen,1,j] = 255;

SurroundingCars = FrameDict[currentFrame];

for eachSurrCar in SurroundingCars do
(surrX,surrY,surrLen,surrWid,surrId) = eachSurrCar;

if surrId == targetCarID then

/*Target Car is already added*/

continue;

end

(surrRelX,surrRelY) = (surrX-originX,surrY-originY);

(OGMX,OGMY) = (surrRelX*LatRes, surrRelY*LonRes);

(OGMWid,OGMLen) = (surrWid*LatRes, surrLen*LonRes);

/*Adding Surrounding Car to second OGM channel*/

inputOGMs[OGMX:OGMWid,OGMY:OGMLen,2,j] = 255;

end

end

(outPosX,outPosY) = (TargetList[i+h+1].x,TargetList[i+h+1].y);

(relativeOutX,relativeOutY) = (x-outPosX, y-outPosY);

outputPoseXY = [relativeOutX,relativeOutY];

Add (inputOGMs,outputPoseXY) to sampleList;

end

end

Algorithm 2:Occupancy Grid Map (OGM) generation pseudocode with respect

to each car in the scene for model training. GridLen and GridWid are the

physical length and width of the grid in the real world measured in feet. R and

C are the number of rows and columns of the generated input OGMs and dict

is dictionary. sampleList is the list of samples generated by the OGM sample

generation algorithm and is used for training and validation of the proposed

network.
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Result: O
(1,N)
(t�h,t), D

(1,N)
(t+1)

/*Past trajectory information with map features*/

T[N,h] = (x, y, ẋ, ẏ,�, j, d, µ)1,Nt,t�h;

/*Store Predicted m̂, (ˆ̇x, ˆ̇y) and (x̂, ŷ) 8 N */

TPred[N,F] = [m̂, (ˆ̇x, ˆ̇y), (x̂, ŷ)](1,N)
(t+1,t+F )

/*Create input feature vector O1,N
t�h,t */

for i in (1, N) do

for j in (t-h, t) do
/*Add Target Vehicle TV*/

TVi = T [i, j].[x, y, ẋ, ẏ,�, j, d, µ];

O
i
j = [TVi];

/*Select most influential SVs*/

DistArray[N-1,2] = [EDistd, d], d 8 N : d 6= i;

/*Estimate Euclidean distance between TV and all SVs*/

for d in (1, N) do
/*Ignore Target Vehicle (TV)*/

if d == i then
continue;

end

EDistd = Euclidean[T [i, j].(x, y), T [d, j].(x, y)];

DistArray[d] = [EDistd, d];

end

/*Sort DistArray by Column 1*/

sort(DistArray, 1);

/*Add selected SVs*/

for l in (1:ns) do
SVId = DistArray[l,2];

SVl = [T [SV Id, j].[x, y, ẋ, ẏ,�, j, d, µ]];

O
i
j = [Oi

j ,SVl];

end

end

end

/* Populate initial Dt+1 8 N ⇤ /
for k in (1,N) do

m, (ẋ, ẏ), (x, y) = HotVector(Ok
t .TVk.µ), (O

k
t .TVk.(ẋ, ẏ)), (O

k
t .TVk.(x, y));

D
k
t+1 = [m, (ẋ, ẏ), (x, y)];

for l = 1:ns do

m, (ẋ, ẏ), (x, y) = HotVector(Ok
t .SVl.µ), (O

k
t .SVl.(ẋ, ẏ)), (O

k
t .SVl.(x, y));

D
k
t+1 = [Dk

t+1,m, (ẋ, ẏ), (x, y)];

end

end

Algorithm 3: Input feature vector O1,N
t�h,t and initial decoder input D1,N

(t+1) cre-

ation for all the N cars present in the scene. Both O1,N
t�h,t and D1,N

(t+1) will be

used by the sequential interactive prediction technique explained in the next al-

gorithm. EDistd is the Euclidean distance between the current Target Vehicle

(TV) and dth Surrounding Vehicle (SV d)
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Result: [m̂, (ˆ̇x, ˆ̇y), (x̂, ŷ)](1,N)
(t+1,t+F )

/*Start sequential prediction*/

/*Store Encoded state for all vehicles*/

EncodeArray[N] = (ES1, ES2)(1,N);

for i in (1,N) do

ESi1, ES
i
2 = Encoder(Oi

t�h,t);

EncodeArray[i] = [ESi1, ES
i
2];

end

for f in (t+1,t+F) do
/*Predict next frame 8 N */

for i in (1,N)) do

[m̂, (ˆ̇x, ˆ̇y), (x̂, ŷ)]if , [ES1, ES2]i = Decode(Di
f , EncodeArray[i]);

/*Update state for ith vehicle */

EncodeArray[i] = [ES1, ES2]i;

/*Store predicted entities for ith vehicle at fth time */

TPred[i,f] = [m̂, (ˆ̇x, ˆ̇y), (x̂, ŷ)]if ;

end

/*Populate Df+18 N with predicted entities*/

for j in (1,N) do

/*Populate D
j
f with TV Features*/

Dj
f+1 = TPred[j, f ];

/*Populate D
j
f+1 with SV Features*/

/*Estimate Euclidean distance between predicted TV and 8 N 6= j */

DistArray[N-1,2] = [EDistd, d], 8d 2 N : d 6= j;

for d in (1, N) do
/*Ignore Target Vehicle (TV)*/

if d == j then
continue;

end

EDistd = Euclidean[TPred[j, f ].(x̂, ŷ), TPred[d, f ].(x̂, ŷ)];

DistArray[d] = [EDistd, d];

end

/*Sort DistArray by Column 1 */

sort(DistArray, 1);

/*Add selected SVs to D
j
f+1 */

for l in (1:ns) do
SVId = DistArray[l,2];

SVPred = TPred[l,f].[m̂, (ˆ̇x, ˆ̇y), (x̂, ŷ)] ;

D
j
f+1 = [Dj

f+1,SVPred];

end

end

end

Algorithm 4: Interactive prediction technique for future position of all the cars

for the next F future frames given h historical frames. ES1 and ES2 are encoded

state from stacked LSTM 1 and LSTM 2 respectively. EDistd is the Euclidean

distance between the current Target Vehicle (TV) and dth Surrounding Vehicle

(SV d)
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