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Abstract: Characterizing whether a Markov process of discrete random variables
has a homogeneous continuous-time realization is a hard problem. In practice, this
problem reduces to deciding when a given Markov matrix can be written as the
exponential of some rate matrix (a Markov generator). This is an old question known
in the literature as the embedding problem [11], which has been solved only for
matrices of size 2 X 2 or 3 X 3. In this paper, we address this problem and related
questions and obtain results along two different lines. First, for matrices of any size,
we give a bound on the number of Markov generators in terms of the spectrum of the
Markov matrix. Based on this, we establish a criterion for deciding whether a generic
(distinct eigenvalues) Markov matrix is embeddable and propose an algorithm that
lists all its Markov generators. Then, motivated and inspired by recent results on
substitution models of DNA, we focus on the 4 x 4 case and completely solve the
embedding problem for any Markov matrix. The solution in this case is more concise
as the embeddability is given in terms of a single condition.
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1. Introduction

Markov matrices are used to describe changes between the states
of two discrete random variables in a Markov process. As the entries
of Markov matrices (or transition matrices) represent the conditional
probabilities of substitution between states, Markov matrices have non-
negative entries and rows summing to 1. Among them, embeddable ma-
trices are those that are consistent with a homogeneous continuous-time
Markov process, so that changes occur at a constant rate over time and
time is conceived as a continuous concept. The instantaneous rates of
substitution are usually displayed as the entries of real matrices with
non-negative off-diagonal entries and rows summing to 0, so-called rate
matrices. In the homogeneous continuous-time setting, the transition
matrices of a Markov process can be computed as M(t) = e, where
@ is the rate matrix ruling the process and ¢t > 0 accounts for the time
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elapsed in the process. In this case, M is said to be embeddable. Equiv-
alently, a Markov matrix M is embeddable if it can be written as the
exponential of a rate matrix Q, M = e? (with no reference to time t).
Any rate matrix Q satisfying M = e® is called a Markov generator of M.

Almost a century ago, Elfving ([11]) formulated the problem of de-
ciding which Markov matrices are embeddable, the embedding problem.
Solving the embedding problem results in giving necessary and suffi-
cient conditions for a Markov matrix M to be the exponential of a rate
matrix Q, M = e?. Although the question is quite theoretical, it has
practical consequences and, as such, it may appear in any applied field
where discrete and continuous-time Markov processes are considered.
For instance, in economic sciences [20, 15], in social sciences [29], and
in evolutionary biology [32, 21], the embedding problem is crucial for
deciding whether a Markov process can be modeled as a homogeneous
continuous-time process or not.

Although the embedding problem is solved for 2 x 2 and 3 x 3 ma-
trices [24, 10, 22, 4], it has remained open for larger matrices so far.
Some partial results on the necessary conditions for a Markov matrix
to be embeddable were given in the second part of the twentieth cen-
tury [28, 24, 9]. Moreover, there exist sufficient and necessary condi-
tions on the embeddability of Markov matrices with different and real
eigenvalues. This is a consequence of a result due to Culver [8] and char-
acterizes embeddability of this type of matrices in terms of the principal
logarithm; see Corollary 2.8. There are also some inequalities that need
to be satisfied by the determinant or the entries of the matrix in order
to be embeddable [16, 13]. At the same time, there is a discrete version
of the embedding problem, which consists in deciding when a Markov
matrix can be written as a certain power of another Markov matrix
(see [29, 17, 18] for instance).

A related issue is that of deciding whether there is a unique Markov
generator for a given embeddable Markov matrix. Note that each Markov
generator provides a different embedding of the Markov matrix into a
homogeneous continuous-time Markov process. We refer to this question
as the rate identifiability problem. It is well known that for diagonally
dominant embeddable matrices the number of Markov generators re-
duces to one [9, Theorem 4]. The same happens if the matrix is close to
the identity; for example, if either ||M — I|| < 0.5 or det(M) > 0.5 [20].
However, the situation becomes really complicated as the determinant of
the matrix decreases. The first example of a Markov matrix with more
than one Markov generator was given in [30], and further examples were
provided in [10, 20]. In all these examples, however, the principal loga-
rithm happens to be a rate matrix.
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In this paper we provide a solution to the embedding problem for
Markov matrices of any size with pairwise different eigenvalues (not
necessarily real); see Theorem 4.5. This situation covers a dense open
subset of the space of Markov matrices, so it solves the embedding prob-
lem almost completely (the set of matrices with repeated eigenvalues
has measure zero within the whole space of matrices). For such matri-
ces, we bound the number of Markov generators in terms of the real
and imaginary parts of the eigenvalues and establish a criterion for de-
ciding whether a Markov matrix with different eigenvalues is embed-
dable. Based on this criterion, we provide an algorithm that gives all
Markov generators for Markov matrices with different eigenvalues (Al-
gorithm 4.7). We also give an improvement in the bounds on the deter-
minant mentioned above; see Corollary 3.3. The main techniques are the
description of the complex logarithms of a matrix (see [14]) and a careful
study of the complex region where the eigenvalues of a rate matrix lie
(Section 3).

In addition to these results, we completely solve the embedding prob-
lem for 4 x 4 Markov matrices (with repeated or different eigenvalues).
The solution to the embedding problem provided in this case (see Sec-
tion 5) is much more satisfactory because we are able to characterize
embeddability by checking a single condition (and not looking at a list
of possible Markov generators). We have devoted special attention to
4 x 4 matrices not only because it was the first case that remained still
open, but also because our original approach and motivation arises from
the field of phylogenetics, where Markov matrices rule the substitution
of nucleotides in the evolution of DNA molecules. In recent years, new
results and advances concerning the embedding problem have appeared
in this field, providing deep insight and illustrative examples of the com-
plexity of the general situation; see [21, 27, 1, 5]. The present work
builds on some previous contributions by the authors in this setting.

For 4 x 4 Markov matrices M with different eigenvalues (real or not)
we prove that the embeddability can be checked directly by looking at
the principal logarithm Log(M) together with a basis of eigenvectors:

Theorem 1.1. Let M = Pdiag(1, A1, A2, A\3)P~1 be a 4 x 4 Markov
matriz with \y € Rsg, Ao € C, A3 € C pairwise different. If Ao, A3 ¢ R,
define V = P diag(0, 0, 2mi, —27mi) P,

Log(M);: -
L:= max {—Og(h-‘ , U:= min {
(i.):i74, Vij>0 Vi (i.5):i#34, Vi ;<0
and define V=0, L =U = 0 if all eigenvalues are real. Set
N :={(i,j): i # 4, Vi; =0, and Log(M); ; < 0}.

. LOg(M)LJ
Vi ’
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Then, M is embeddable if and only if N =0, L < U, and \; ¢ R<g
fori=1,2,3. In this case, the Markov generators of M are the matri-
ces Log(M) + kV, where k € Z satisfies L < k <U.

As a byproduct we give an algorithm that outputs all possible Markov
generators for such a matrix. Apart from this general case of matri-
ces with different eigenvalues, we also study all other cases within the
4 x 4 case and we give an embeddability criterion for each (see Subsec-
tion 5.1, Cases I, II, III, IV, and Subsection 5.2). The case of diagonal-
izable matrices with two real repeated eigenvalues (Case III) turns out
to be much more involved; still we are able to provide necessary and
sufficient conditions for the embeddability in terms of eigenvalues and
eigenvectors, and to propose an algorithm that checks whether a Markov
matrix in this case is embeddable (Corollary 5.14, Algorithm 5.16).

The outline of the paper is as follows. In Section 2 we state with pre-
cision the embedding problem and recall some known results needed in
the sequel. Section 3 is devoted to bounding the real and the imaginary
part of the eigenvalues of any rate matrix (Lemma 3.1). These bounds
are used in Section 4 in order to provide a sufficient and necessary con-
dition for an n x n Markov matrix with pairwise different eigenvalues
to be embeddable. In the same section, we also give the algorithm that
outputs all Markov generators of such matrices. We devote Section 5 to
4 x 4 matrices, studying their embeddability in full detail by splitting
them into all possible Jordan canonical forms. The proof of Theorem 1.1
is also given there. In the last section of the paper, Section 6, we summa-
rize the results on the rate identifiability for embeddable 4 x 4 matrices
(see Table 2). Appendix A is devoted to details concerning the imple-
mentation of Algorithm 5.16.

2. Preliminaries

In this section we recall some definitions and relevant facts about the
embedding problem of Markov matrices.

Definition 2.1. A real square matrix M is a Markov matriz if its entries
are non-negative and all its rows sum to 1. A real square matrix @ is a
rate matriz if its off-diagonal entries are non-negative and its rows sum
to 0. A Markov matrix M is embeddable if there is a rate matrix @ such
that M = e?; in this case we say that Q is a Markov generator for M.
Embeddable Markov matrices are also sometimes referred to as matrices
that have a continuous realization [31]. The embedding problem ([11])
consists in deciding whether a given Markov matrix is embeddable or not,
in other words, determining which Markov matrices can be embedded
into the multiplicative semigroup ({e®? : >0}, -) for some rate matrix Q.
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The following notation will be used throughout the paper. Id denotes
the identity matrix of order n. We write GL,,(K) for the space of n x n
invertible matrices with entries in K = R or C. For A € C\{0}, we use the
notation log; (A) to denote the k-th branch of the logarithm of A, that is,
log, (A) =log |A|4+(Arg(N)+27k)i, where Arg()\) € (—m, 7] is the principal
argument of A. For ease of reading the principal logarithm log,(\) will
be denoted as log(\A). Given a square matrix M, we denote by (M) the
set of all its eigenvalues and by Comm™ (M) the commutant of M, that
is, the set of invertible complex matrices that commute with M.

Remark 2.2. If D is a diagonal matrix,

miy ma2 my
D:diag )\1,...,)\1,)\2,...,>\2,...7)\17...,)\1

with A; # A;, then Comm™ (D) consists of all the block-diagonal matrices

whose blocks are taken from the corresponding GL,,,(C). In particular,

the commutant of D does not depend on the particular values of the

entries A;. If my = mg = -+ = my = 1, then Comm™(D) is the set of

invertible diagonal matrices.

If M is diagonalizable, the following result describes all possible log-
arithms of M (that is, all the solutions @ to the equation M = e@).

Theorem 2.3 ([14, §VIIL8]). Given a non-singular matriz M with
an eigendecomposition P diag(A1, Mg, ..., \n)P~L, where \; € C, i =
1,...,n, and P € GL,(C), the following are equivalent:
(i) Q is a solution to the equation M = €@,
(ii) @=P Adiag(logy, (A1), logy, (A2), ... log (An))A™t P~ for some
ki,ka, ..., kn € Z and some A € Comm™(diag(A1, Ao, ..., An)).

Remark 2.4. With respect to the previous result, we want to point out
the following.

(i) If w is an eigenvector of @ with eigenvalue a, then w is also an
eigenvector of M = €9 with eigenvalue e®. The converse is not
true in general.

(ii) If Comm*(diag(A1,...,An))=Comm™(diag(logy (A1), .. . log (An))),
then the description of the logarithms is slightly simpler, as every
logarithm can be written as

Q = P diag(logy, (A1), ..., logy ()\n))P_l.

Moreover, in this case, M and ) have the same eigenvectors. This
occurs, for example, when all the eigenvalues of M are pairwise
distinct or also when k1 = ko = --- = k.
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The well-known formula det e? = e @ implies that the determinant
of every embeddable matrix is a positive real number. Hence, through-
out this paper we implicitly assume that all Markov matrices are non-
singular and have a positive determinant. Note that this is not a re-
striction of the original problem, but a necessary condition for a Markov
matrix to be embeddable.

Since both Markov and rate matrices have only real entries, the study
about the existence of real logarithms of real matrices by [8] is relevant
for solving the embedding problem. The following proposition is a direct
consequence of that work.

Proposition 2.5 (see [8, Theorem 1]). Let M be a real square matriz.
Then, there exists a real logarithm of M if and only if det(M) > 0 and
each Jordan block of M associated with a negative eigenvalue occurs an
even number of times.

In [8, Theorem 2], Culver also proved that matrices with pairwise
distinct positive eigenvalues have only one real logarithm, namely, the
principal logarithm:

Definition 2.6. The principal logarithm of M, which will be denoted
by Log(M), is the only logarithm whose eigenvalues are the principal
logarithm of the eigenvalues of M (see [19, Theorem 1.31]). In particular,
if M is diagonalizable, then

Log(M) = P diag(log(\1),...,log(\,)) Pt

If M is a Markov matrix, then its principal logarithm Log(M) has row
sums equal to 0 (although it may not be a real matrix).

Remark 2.7. Note that the above definition of the principal logarithm
(Definition 2.6) extends the usual definition (e.g. see [19, p. 20]), which
requires that the matrix M has no negative eigenvalues. This is required
in order to use the spectral resolution of the logarithm function. In this
paper, however, we mainly deal with diagonalizable matrices, for which
the principal logarithm can be defined directly by taking the principal
argument of the eigenvalues. The only non-diagonalizable Markov ma-
trices that we deal with are 4 x 4 (see Subsection 5.2) which, according
to Proposition 2.5, have no negative eigenvalues if they have a real log-
arithm.

As a byproduct of the results explained above, we get the following
embeddability criterion for Markov matrices with pairwise distinct real
eigenvalues in terms of its principal logarithm.
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Corollary 2.8. Let M be a Markov matrix with pairwise distinct real
etgenvalues. Then:
(i) If M has a non-positive eigenvalue, then M is not embeddable.
(ii) If M has no negative eigenvalues, M is embeddable if and only if
Log(M) is a rate matriz.

3. Bounds on the eigenvalues of rate matrices

It is well known that the eigenvalues of a Markov matrix have modulus
smaller than or equal to 1 [25, §8.4]. Here we bound the real and the
imaginary part of the complex eigenvalues of rate matrices. To this end,
if @ is an n x n rate matrix with n > 3 and A € ¢(Q) is a non-real
eigenvalue, we define

bn()) := min {\/2 tr(Q) Re(\) — (Re(N))?,

o V3 tr(Q)
B,, := min {—2 tr(Q), _2t£m(7r/n)} .

Re()) } |

~ tan(w/n)

The following technical result is used in the next section and is also
useful to improve a result of [20] (see Corollary 3.3).

Lemma 3.1. Let Q be an nxn rate matriz. Then for any eigenvalue A €
o(Q) we have

(i) Re(\) < 0. Moreover, if X\ € R, then trgQ) < Re()) <0.

(ii) Im(A)] < bn(A) < By if A € R.
Moreover, the bound on [Im(X)| given by b, (\) is tight for n > 3.

Proof: (i) If Q is a rate matrix, then e? is a Markov matrix. In partic-
ular, the eigenvalues of ) are logarithms of the eigenvalues of a Markov
matrix. Since the modulus of the eigenvalues of a Markov matrix is
bounded by 1, we get Re(A) < 0 for any A € o(Q). Moreover, as non-
real eigenvalues of ) appear in conjugate pairs, we have that

@ = > A= > A+ > Re()).
A€o (Q) A€a(Q)NR A€o (Q)\R
Therefore, if A ¢ R, then Re(\) appears twice in this expression, and so
Re(X) > tr(Q)/2.

(ii) We prove first that, for any non-real eigenvalue A\ € o(Q), we have

M) )] < VERQ R — )P < ~ 22 (@),




418 M. CASANELLAS, J. FERNANDEZ-SANCHEZ, J. ROCA-LACOSTENA

Let us take 7 = —tr(@). Since @ is a rate matrix we get that C~2 =
Q + rld, is a matrix with non-negative entries whose rows sum to r.
Then any eigenvalue A € ¢(@Q) has modulus smaller than or equal to r

(see [25, §8.3]). Now, if A is an eigenvalue of @), we have that A+r € o(Q).
Therefore, (Re(\) + )2 + Im()\)? = |\ + r|?> < r? and we obtain

(2) V)] < Vr? = (Re(N) +7)2 = v/2Re() tr(Q) — Re(})2.

The second inequality in (1) follows by using 0 > Re(A\) > tr(Q)/2 in (2).
We prove now that

Re(A t
0 (| < - el
tan(m/n) 2 tan(w/n)
for any non-real eigenvalue A\ of Q. If n < 3, then @ has no complex
eigenvalue, because 0 is an eigenvalue of any rate matrix and complex
eigenvalues of real matrices appear in conjugate pairs. If n > 3, the first

theorem in [28] claims that the principal argument of any eigenvalue A €
o(Q) is bounded as

(4) (; - ;) m < |Arg(\)].

Then the first inequality in (3) is obtained by using that Im(\) =
tan(Arg(A)) Re(A), Re(A) <0, and that [tan| restricted to (—7, —7/2 —
m/n] U [r/2 + 7/n, 7] attains its maximum at

T T T T 1
(5) ‘tan( 2 n)‘ = |tan (2 + n)‘ ~ tan(m/n) >0
The second inequality follows by using Re(A) > tr(Q)/2.

From the first inequality in both (1) and (3), we have [Im(X)| < b, ().
On the other hand, the inequality b, (\) < B,, follows from the definition
of b,(A\) and the second inequalities in (1) and (3). This concludes the
proof of (ii).

Next, we show that the bound on |Im(\)| given by b,(\) is tight
for n > 3. As shown in [28, Theorem on p. 537], for each n > 3, there is
an n X n rate matrix () with at least one eigenvalue satisfying (4) with
equality. Such a matrix is given by

—a ifi=j,
gj=4a ifi=j—1 modn,
0 otherwise,

where « is an arbitrary positive number. It can be seen that this matrix @
has at least a non-real eigenvalue A satisfying [Im(\)| = |Re(A) tan(% +

Z)|. Using that Re(\) < 0 together with (5), we get —% =
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|Im(A)| < b,(N). The definition of b,(\) implies that [Im(X\)| = b, (N),

so the inequality is tight.

Remark 3.2. Note that for n > 2 we have tan(w/n) > tan(w/(n + 1)).

As for n = 6 tan(m/n) is 1/v/3, we obtain that

()
2 tan(m/n)

—? tr(Q) if n > 6.

if n=3,4,5,6,
B, =

Although for n > 6 the value in the minimum defining b,,(\) depends

on A, for n < 6 we have b,(\) = —%. Indeed, if n € {3,4,5,6},
then

_ _ReM R
tan(m/n) < ~Re(N)v3
= /4Re(M\)2 — Re(M\)2 < /2tr(Q) Re(\) — (Re()))2.

Figure 1 illustrates both the remark above and Lemma 3.1.

—x —x

y= tan(*yn) y y= tan(*l/n) y
By
bn (N)=v2tr(Q)Re(N)—(Re(N))?
Br
1o [on ) = Tmte s
€T xX
y= tan(w/n) y= tan(mw/n)
n<6 n>"7

FIGURE 1. The shaded area is the complex region containing the
eigenvalues of n X n rate matrices (Lemma 3.1) according to the
two cases described in Remark 3.2. For n < 6, we have that

r Re(X .
B = — gy and b () = —eP) while for n > 7, B, =

- ? tr(Q) and the expression for by, (A) depends on the value of A
as illustrated by the eigenvalues A and )\’ in the figure. All these
bounds are represented in black in the figure.



420 M. CASANELLAS, J. FERNANDEZ-SANCHEZ, J. ROCA-LACOSTENA

The following result improves the bound given in [20, Theorem 5.1],
which states that a Markov matrix M with pairwise distinct eigenvalues
and det(M) > e~ ™ is embeddable if and only if Log(M) is a rate matrix.
We are able to relax the hypothesis on the determinant and avoid the
condition of distinct eigenvalues.

Corollary 3.3. Let M be an n x n Markov matriz with det(M) >

—27 tan

min{e_%, e (”/")}. Then, the only possible Markov generator for M
is Log(M). In particular, M is embeddable if and only if Log(M) is a
rate matriz.

Proof: Let @ be a Markov generator for M. By hypothesis, tr(Q) =
log(det(M)) is strictly greater than min{—%, —2m tan(m/n)}. There-
fore, using Lemma 3.1(ii), we have |[Im(\)| < B,, < 7 for all A € o(Q).

Hence, @ is the principal logarithm of M. O

Remark 3.4. As in Remark 3.2, we have that e~2mtan(m/n) < 6_27% for
27
n=3,4,5,6 and e 27tn(7/7) > 75 for n > 6.

Table 1 gives numerical values for the bound in Corollary 3.3.

Size of M n=3 n=4 n=>5 n>6
Bound on det(M) | 0.000019 0.001867 0.010410 0.026580

TABLE 1. Lower bounds on the determinant (rounded to the
6th decimal) that allow the characterization of the embeddability
in terms of the principal logarithm of an n x n Markov matrix
according to Corollary 3.3 and Remark 3.4. Previously known
bounds were e~ ™ = 0.043214 and 0.5 for all n € N (see [10] and
[20], respectively), which have been improved by Corollary 3.3.

4. Embeddability of Markov matrices with (non-real)
distinct eigenvalues

In this section we deal with Markov matrices with pairwise distinct
eigenvalues. It is known that the embeddability of these matrices is de-
termined by the principal logarithm if all the eigenvalues are real (see
Corollary 2.8). However, this may not be the case if there is a non-real
eigenvalue [26]. By virtue of Proposition 2.5, we know that every (real)
matrix M with distinct eigenvalues has some real logarithm; by [8, The-
orem 2 and Corollary], we also know that if M has complex eigenvalues,
then there are countably-infinitely many logarithms. In this section, we
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give a precise description of those real logarithms with rows summing
to 0 (Proposition 4.3) and we show that only a finite subset of them have
non-negative off-diagonal entries (Theorem 4.5). In this way we are able
to design an algorithm that returns the Markov generators of a Markov
matrix with distinct eigenvalues (real or not); see Algorithm 4.7.

As pointed out in the preliminaries section, it is well known that a
necessary condition for a Markov matrix to be embeddable is to have a
positive determinant. If we assume that all eigenvalues are distinct, then
this implies that the real eigenvalues lie in the interval (0, 1]. Throughout
this section we consider matrices satisfying the following assumption:

Assumption 4.1. We assume that M is a (non-singular) diagonalizable
n X n Markov matriz with pairwise distinct eigenvalues and whose real
eigenvalues lie in the interval (0,1]. Without loss of generality, we can
write

M:Pdia‘g(17)‘1a"'a)\ta,u17m;'"a,usam)P_l

for some P € GL,(C), \; € (0,1) withi =1,...,t, and p; € {z € C:
Im(z) > 0} with j =1,...,s, all of them pairwise distinct.

Definition 4.2. Given a Markov matrix M as in Assumption 4.1, for
each (ki,...,ks) € Z*° we define the following matrix:

Logy, . 1. (M):=Pdiag(0,log(A1), . . .,log(\¢),logy, (11),logy, (1), - -
.. logy, (ps),1ogy (ps)) P

Note that Log, (M) is the principal logarithm of M, Log(M).

.....

The next result claims that these are all the real logarithms of the
matrix M.

Proposition 4.3. Let M be a Markov matriz as in Assumption 4.1.
Then, a matriz Q) with rows summing to 0 is a real logarithm of M if
and only if Q = Logy, 1 (M) for some ky,... ks € Z.

Proof: We know that the first column of P is an eigenvector of M with
eigenvalue 1. Since the rows of M sum to 1 and it has no repeated eigen-
value we can assume without loss of generality that it is the eigenvector
(1,1,...,1). In addition, we know that for m = 1,...,s the (¢t + 2m)-th
and (t+2m+1)-th columns of P can be chosen to be conjugates because
M is real.
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<) Using that log; (1) = log_; (@) it follows from Theorem 2.3 that
Logy, . k. (M) is a logarithm of M for any ki,..., ks € Z. Note
that the rows of Q sum to 0 because the first column of P is the
eigenvector (1,1,...,1) and its corresponding eigenvalue is 0. More-
over, the non-real eigenvalues of () appear in conjugate pairs and
the corresponding eigenvectors appearing as column vectors in P
are also a conjugate pair, thus @ is real.

=) Let @ be a real logarithm of M with rows summing to 0. Since
M has pairwise distinct eigenvalues so does Q). Moreover, @ is
diagonalizable through P (see Remark 2.4(ii)). Hence, it follows
from Theorem 2.3 that:

Q= Pdiag(logko(l), logg (A1), ..., logg, (M), ...

ceey IngtJA (N’l)v logkt+2 (m)v cee 710gkt+2571 (:us)a 10gk‘t+25 (E))P71

Since the rows of @ sum to 0 we get that kg = 0. Since @ is real and

has no repeated eigenvalues it follows that k1 = ks =---=k; =0
and that its non-real eigenvalues appear in conjugate pairs. Hence,
108k, 5,y (Bm) =logy, ., (tim)- O

Remark 4.4. When all the eigenvalues of M are real (that is, s = 0), the
proposition above claims that the only real logarithm with rows summing
to 0 is the principal logarithm.

From the proposition above and Lemma 3.1 we get that any Markov
matrix with pairwise distinct eigenvalues has a finite number of Markov
generators. Hence, its embeddability can be determined by checking
whether a finite family of well-defined matrices contains a rate matrix
or not, as stated in the next result. In order to simplify the notation, for
a given Markov matrix M and for any z € C we define

If @ is a Markov generator of M and log,,(z) is an eigenvalue of @, then
Bn(z) = by (logy(z)). Hence, according to Lemma 3.1 we have 5,(z) =
log |zl f5) = 3,4,5,6.

" tan(w/n)
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Theorem 4.5. If M is a Markov matriz as in Assumption 4.1, then
(i) M is embeddable if and only if Logy, , (M) is a rate matriz

for some (ki,...,ks) € Z*® satisfying {%] <k <
L—Arg(uj)+ﬁn(uj)J forj=1,...,s

2

(ii) M has at most Ll MJS Markov generators if n > 6,

2m

at most Ll—%J ifn=3,4,5, and at most 1 if n < 2.

Proof: If @ is a logarithm of M, then log(det(M)) tr(Q). Hence, since
Re(logy, (1)) = log |u| we have that 8, (u) = by (log,(u)) for any k € Z
and any p € o(M).

(i) Let @ be a Markov generator for M. According to Proposition 4.3
there exist k1,...,ks € Z such that Q = Logy,, ;. (M). Now, by
Lemma 3.1 we have |[Im(logy, (1)) < Bn (k). We get the asserted
bounds by using that [Im(logy, (1)) = |Arg(u;) + 2mk;|.

(ii) If n < 3, then M has only real eigenvalues and hence its only
possible Markov generator is Log(M). For other values of n, it
follows from the first statement that if Logy, (M ) is a Markov
generator, then k; lies in an interval of length ZB ": 22, Since k; € Z

for all j we get that M has at most [] j Ll M%WJ generators.
The statement follows by using Lemma 3.1 and Remark 3.2 to

get
log(det(M)) . _
dm lfn—3,4,5,6,
- log(det(M)) if n > 6. O

Remark 4.6. As shown in the proof of Theorem 4.5(ii), the number of
Markov generators of M is also bounded by [] j Ll 25 z “ ST J Although
this bound improves those in Theorem 4.5(ii), we do not know if it is
sharp or not and we prefer to give a bound depending on log(det(M))
because this quantity might be related to the expected number of sub-
stitutions of the Markov process ruled by M (see [3] for further details
on this in the context of phylogenetics).

To close this section, we present an algorithm which determines the
embeddability of a Markov matrix with pairwise distinct eigenvalues and
returns all its Markov generators.
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Algorithm 4.7 (Markov generators for n x n matrices with distinct
eigenvalues).

input : M, an n x n Markov matriz with no repeated eigenvalues.
output: All its Markov generators if M is embeddable, an empty
list otherwise.

generators=[ |

compute eigenvalues of M

if M has a negative or zero eigenvalue, then
return “M not embeddable”

L exit
else

S 2

if s >0 (i.e. M has a non-real eigenvalue), then

for j=1,...,sdo

L set lj = {*Arg(ﬂj)*ﬁn(ﬂj)'l and u; = {*Arg(wﬂﬁn(M)J

_ #mnon-real eigenvalues

27 2m
for k‘l :ll,...,ul do
for ks, =1s,...,us do
compute Logy, (M)
if Logy, . (M) is a rate matriz, then
| add Logy, . . (M) to generators

else
if Log(M) is a rate matriz, then
| add Log(M) to generators

if generators=[ ], then
L return “M not embeddable”

else
| return generators

Remark 4.8. As stated in Corollary 3.3, if M has a Markov generator
other than Log(M), then M has a small determinant and some eigen-
values of M are close to 0. In this case there might be numerical issues
in the implementation of the algorithm.

5. Embeddability of 4 X 4 Markov matrices

In this section we study the embedding problem for all 4 x 4 Markov
matrices. In this case, we can be more precise than in Theorem 4.5 and,
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for matrices with distinct eigenvalues, we manage to give a criterion for
the embeddability in terms of the eigenvectors; see Corollary 5.6. We
are also able to deal with repeated eigenvalues so that the results of this
section include all possible 4 x 4 Markov matrices.

5.1. Embeddability of diagonalizable 4 X 4 Markov matrices.
Using Proposition 2.5 and the fact that the modulus of the eigenvalues
of a Markov matrix is bounded by 1, we are able to enumerate all pos-
sible diagonal forms of a diagonalizable 4 x 4 Markov matrix with real
logarithms (up to ordering the eigenvalues):

Lemma 5.1. Let M be a diagonalizable 4 x 4 Markov matriz. If M
admits a real logarithm, then its diagonal form lies necessarily in one of
the following cases (up to ordering the eigenvalues):

Case I diag(1, A1, A2, A3)  with A1, A2, A3 € (0,1] pairwise distinct.
Case 11 diag(1, A\, u, 1)  with A € (0,1], u,p € C\R.

Case IIT  diag(1, A\, u, ) with A € (0,1], pe[—1,1), p #0, p # A
Case IV diag(1,\, A\, A)  with A € (0,1].

Proof: Since M is diagonalizable and 1 is an eigenvalue, we can write
diag(1, A1, A2, A3) for the diagonal form. If M has a negative eigenvalue,
it must have multiplicity 2 by Proposition 2.5. Thus, M has at most
one negative eigenvalue. On the other hand, since M is a real matrix,
non-real eigenvalues of M come in conjugate pairs. These considerations
give rise to Case II and Case III. Any other possibility corresponds to
a Markov matrix, with all the eigenvalues real and positive. Finally,
we claim that if the diagonal form is diag(1, A, i, ) with A # p, then
@ # 1. Indeed, if g = 1, then M — Id would have rank 1 because M is
diagonalizable. Note that the rows of M — Id vanish, which contradicts
the fact that M —Id has no negative entries outside the diagonal. We are
led to either g = A (Case IV) or that the three eigenvalues are pairwise
distinct (Case I). O

Next, we proceed to study the embeddability of Markov matrices lying
in each of the cases in Lemma 5.1.

Case I.

Lemma 5.2. Let M be as in Case I with an eigendecomposition
Pdiag(1, A1, A2, A3) P~ with A\, A, A3 € (0, 1] pairwise distinct and P €
GL4(R). Then M is embeddable if and only if Log(M) is a rate ma-
triz. Moreover, in this case Log(M) is the only Markov generator.

Proof: If A1, A2, A3 # 1, the embeddability of this case is already solved
by Corollary 2.8. Otherwise, we can assume A; = 1 without loss of
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generality. Under this assumption, let Q be a Markov generator for M.
By Remark 2.4(i), the eigenvalues of @ are log;, (1), logy, (1), log;,, (X2),
logy,, (A3) for some k; € Z. Since the sum of the rows of @ vanish, 0 is an
eigenvalue of () and therefore either k; = 0 or ks = 0. Using that @ is
real we deduce that both of them are 0 because non-real eigenvalues of Q)
must appear in conjugate pairs. Again, since @ is real, the eigenvalues
of @) corresponding to the non-repeated real eigenvalues of M are their
respective principal logarithms, so that k3 = k4 = 0. As Log(M) is
the only logarithm whose eigenvalues are the principal logarithms of the
eigenvalues of M we get @ = Log(M). O

Case II. Markov matrices M in Case II have non-real eigenvalues and
an eigendecomposition as

(6) M =P diag(1,\, u, i) P~" with A€ (0,1], u€C\R, and P€GL4(C).
Without loss of generality, we assume Im(u) > 0 in order to simplify the

notation used in this section. If A # 1, Proposition 4.3 claims that the
Markov generators of these matrices are of the form

Logy (M) = P diag(0, log()), logy (1), logy (1)) P~
= Pdiag(0,log(\), log(p) + 27k, log(p) — 27k i) P~ .

The next result shows that the Markov generators are of this form
even if A = 1.

Proposition 5.3. Let M be a Markov matriz with an eigendecomposi-
tion Pdiag(1,1, pu, ji)P~ with p, i € C such that p # 0 and Im(u) > 0.
Then,

(i) If ﬁdiag(l, 1, u, ,L_L)ﬁ71 is another eigendecomposition of M,
P diag(0, 0, log; (1), logy, () P~" = P diag(0, 0, logy (1), logy. (1)) P~

(ii) A matriz Q is a real logarithm of M with rows summing to 0 if
and only if Q has the form

Log,, (M) = P diag(0,0,log,,(u), log, (1)) P~

Proof: (i) If ﬁdiag(l7 1, ,u,ﬂ)ﬁ_l is another eigendecomposition of M,
then P = PA for some matrix A € Comm™(diag(1,1, u, 7). As

Comm* (dlag(17 11 Hy ﬁ)) = Comm* (dlag(ov 07 Ing (M)v Ing (N)))’

we obtain the desired result.

(ii) By (i), the definition of Log, (M) does not depend on P and it is a
logarithm of M (see Theorem 2.3). Note that (1,1,1,1)" is an eigenvector
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of M with eigenvalue 1 because M is a Markov matrix. Hence we can
assume that the first column vector of P is (1,1,1,1)" and the rows of
Log; (M) sum to 0.

Conversely, we prove now that any real logarithm @ of M with rows
summing to 0 is of the form Log; (M). From Theorem 2.3 we have that

Q = P Adiag(logy, (1), logy, (1), logy, (1), logy, (7)) A~ P~

for some ky, ko, k3, k4 € Z and some A € Comm™(diag(1,1, u, z)). Since
the rows of @) sum to 0 we get k1 = ko = 0 as in the proof of Lemma 5.2.
As @Q is real, we get that log;,, (1) and log,,, (fz) must be conjugate pairs:

logy, (1) = logy,, (1) = log_ ;. () and hence, k4 = —ks3. Since the ma-
trix A commutes with (0,0,logy, (1),log, (1)) (see Remark 2.2), @ is
equal to Log, (M) (taking k = k3). O

Now that we know that all logarithms in Case II are of type Log, (M),
in order to proceed with the study of embeddability we decompose
Log; (M) as
(7) Log, (M) = Log(M)+k-V, where V = P diag(0, 0, 27i, —27i) P~

Next we show that the values of k for which Log, (M) is a Markov
generator form a sequence of consecutive numbers.

Lemma 5.4. Let M be a Markov matriz as in (6). If Log, (M) and
Logy, (M) are rate matrices with ki < k, then Log, (M) is a rate matriz
for all k € [kq, ko).

Proof: The proof is immediate because the entries of Log, (M) =Log(M)-+
k -V depend linearly on k. O

Note that we could use Lemma 3.1 to bound the values of k for which
Log; (M) might be a Markov generator, as we did in Section 4. However,
Lemma 5.4 allows a precise description of those logarithms of M that
are Markov generators (not only giving a necessary condition).

Theorem 5.5. Let M, P, and V be as above. Define
L= max {og( ) ’J—‘ , U:= min {og( ) ’JJ
(i,4)+i#4, Vi ;>0 Vij (i,5) 055, Vi ;<O Vi
and set N :={(i,7) : i # j, V;,; =0, and Log(M); ; < 0}.
Then, Logy, (M) is a rate matriz if and only if N =0 and L < k <U.
Proof: By (7) we have that Log, (M) = Log(M) + k - V. Now, assume

we choose k € Z such that Log, (M) is a rate matrix. In this case,
Log(M); ; + kV;; > 0 for all i # j. Hence, for i # j we have:
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e 0 < Log(M), ; for all ¢, j such that V; ; = 0. In particular, N = 0.
—Log‘(/ﬁ < k for all 7, j such that V; ; > 0. In particular, £ < k.

—% > k for all ¢, j such that V; ; < 0. In particular, U > k.

Conversely, let us assume that A’ = () and that there is k¥ € Z such
that £ < k < U. We want to check that Log, (M) is a rate matrix.
Indeed, take (i,7) with ¢ # j, then:

e If V;; = 0, we have Log,(M);; = Log(M); ;. Since N' = 0 it

follows that Log(M); ; > 0, thus Logk( )ij >0

o If V; ; > 0, then Log, (M), ; > Log(M); ; +£ VZ] > Log(M), ; +

— Log(M i Vii=0.
Vi) i.J
o IfV;; <0 then —Log,, (M); ; < —Log(M); ;—U-V; ; < —Log(M); j—
%V = 0. Moreover, the rows of Log, (M) sum to 0, as
proved in Propositions 4.3 and 5.3. O

The theorem above lists all Markov generators of M. As an immediate
consequence, we get the following characterization of 4 x 4 embeddable
matrices with a conjugate pair of (non-real) eigenvalues.

Corollary 5.6. Let M = Pdiag(1,\, i, ji) P~ for some X € (0,1] and
u,pi € C\R. Let L, U, and N be as in Theorem 5.5. Then, M is
embeddable if and only if N =0 and L <U.

Now we can prove Theorem 1.1 in the introduction using Lemma 5.2
and Corollary 5.6:

Proof of Theorem 1.1: Assume that M = Pdiag(1, A, A2, \3)P~ ! is a
4 x4 Markov matrix with Ay € Ryg, Ay € C, A3 € C pairwise distinct. We
know that |\;| < 1 and, if M is embeddable, \; ¢ R<( for any i =1, 2, 3.
Therefore, M lies in Case I if all its eigenvalues are real and in Case II
otherwise.

If M lies in Case I, then M is embeddable if and only if Log(M) is
a rate matrix (Lemma 5.2). As the rows of the principal logarithm of a
Markov matrix sum to 0, by setting V' = 0 we have that Log(M) is a
rate matrix if and only if N' = (). Moreover, in this case Log(M) is the
only Markov generator (Lemma 5.2).

If M lies in Case II, then the statement is precisely Corollary 5.6. In
addition, from Theorem 5.5 we obtain that the Markov generators in this
case are Log, (M) for k € [L£,U], which coincide with Log(M) + 2wkV
as defined in the statement of Theorem 1.1. O

Next, we present an algorithm that solves both the embedding prob-
lem and the rate identifiability problem for 4 x 4 Markov matrices in
Cases I and 1II.
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Remark 5.7. We already know that the embeddability of a Markov ma-
trix is not always determined by the principal logarithm [5]. In the
4 x 4 case, we can prove that the set of embeddable Markov matri-
ces whose principal logarithm is not a Markov generator is not a subset
of zero measure; on the contrary, it is a set of full dimension. Moreover,
for any k € Z there is a non-empty Euclidean open set of embeddable
Markov matrices, all of them in Case II, whose unique Markov generator
is Log (M). See [6] for details.

Algorithm 5.8.

input : M, a4 x4 Markov matriz with distinct eigenvalues as in
Theorem 1.1.

output: All its Markov generators if M is embeddable, an empty
list otherwise.

generators=[ |
compute eigenvalues of M
if M has no negative or zero eigenvalue, then
set Principal = Log(M)
if all the eigenvalues are real, then
| add Principal to generators if it is a rate matriz
else
compute P and V' as in Theorem 1.1
compute L, U, and N
if N =0, then

for k € Z such that L < k <U do

compute Log, (M) = Principal + kV
L add Log;, (M) to generators if it is a rate matriz

if generators = [ ], then

L return “M not embeddable”
else

| return generators

Case III. Let M be a Markov matrix as in Case III with an eigende-

composition as

(8) M = Pdiag(1, A\, pu,p)P~" with A € (0,1], p € [=1,1), u # A, 0,
and P € GL4(R).

Note that the matrix P can be assumed to be real since all the eigenvalues
of M are real. Note also that this case can be seen as a limit case of
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Markov matrices with a conjugate pair of complex eigenvalues (Case II)
and, analogously to that case, M has infinitely many real logarithms with
rows summing to 0. However, in the present case one has to be careful
when using Theorem 2.3 in order to take into account the commutant of
the diagonal form of M.

We introduce the following matrices.

Definition 5.9. Let M, P, A\, and u be as in (8) above. For any k € Z
and z,y, z € R, we define the matrix

Qk(‘ra va) =L+ (27Tk + Arg(/,L))V(x,y, Z)v
where L = P diag(0,log(\), log |u|,log |u|) P~ and

V(z,y,z) := Pdiag <0,0, <:Z z)) P

Remark 5.10. If p > 0, we have Qo(z,y, z) = Log(M) for all (z,y,2) €
R3. For later use, note that V(az,ay,az) = aV(x,y,z) for all a € R,
and hence

Qr(x,y,2) = {Q‘k(_x7 —y,—z) ifpu>0,

Q*kfl(_xa -Y, _Z) if < 0.

As in the previous case, we start by enumerating all the real loga-
rithms of M with rows summing to 0. To this end, we define V C R? as
the algebraic variety

V={(z,y,2) € R® | xz —y* = 1}.

The next theorem shows that those logarithms with real entries and
rows summing to 0 are of the form Qy(z,y,2) with (z,y,2) € V. Fur-
thermore, V is a 2-sheet hyperboloid with one of its sheets V_ in the
orthant x,z < 0 and the other sheet V, in the orthant x,z > 0. The
restriction of (z,y, z) to either of these components gives a bijection be-
tween the set of matrices Qx(z,y, z) and the real logarithms of @ with
rows summing to 0 (other than Log(M)).

Theorem 5.11. Let M be a Markov matriz as in (8). Then, the fol-
lowing are equivalent:

(i) @ is a real logarithm of M with rows summing to 0,
(ii)) Q = Qr(z,y,2) for some (z,y,2) €V, k € Z.

Moreover, if Q#Log(M), there is a unique k € Z and a unique (z,y, z) €
Vi such that Q = Qi (x,y, 2).
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Proof: (i) = (ii) We know by Theorem 2.3 that any logarithm @ of M
is of type

Q = P Adiag(logy, (1), logy, (A), logy, (1), logy, (1)) A~ P~

for some k1, ko, k3, k4 € Z and some A € Comm”™(diag(1, A, p, 1)).

Since the rows of @ sum to 0, (1,1,1,1)! is an eigenvector of M with
eigenvalue 0. Since non-real eigenvalues of () must appear in conjugate
pairs it follows that ky = ko = 0 (even if A = 1). Moreover, we also
deduce that logy, (1) and logy, (u) are a conjugate pair. This implies
that ky = —k3 if p > 0 and kg = —k3 — 1 if g < 0. Therefore, if we take
k = k3, we have

Q = P Adiag(log(1),log()), logy, (1), logy, (1)) A~ P~*
(9) = P Adiag(0,log()), log |u| + (27k + Arg(u))i, log ||
— (27K + Arg(p))i)A~t P71

If all the eigenvalues of @ are real, we deduce that Arg(u) = 0 and
k = 0. In this case, the eigenvalues of ) are given by the principal
logarithm of the respective eigenvalues of M and hence Q = Log(M).

Now assume that ¢ has a conjugate pair of complex eigenvalues
log |u| £ (27k + Arg(u))i. Hence, the third and fourth column vectors
of P A must be a conjugate pair (up to scalar). Furthermore, we have
that P is a real matrix and hence it is the third and fourth column vec-
tors of A that are a conjugate pair. This fact together with the fact that
A commutes with diag(1, A, u, 1) leads to:

z1 0 0 0
0 2 0 0
0 0 a+bi z(a—bi)
0 0 c+di z(c—di)

A=

with z,21,20 € C\ {0} and a,b, ¢, d € R satisfying ad — be # 0 because
A is a non-singular matrix. We can decompose A as A = A; Ay, where:

10 0 0 2 0 0 0
o1 0 0 o = 0 o0
(10) Al_OOab’AZ_ 0 0 1 =z
00 ¢ d 0 0 i —zi
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Let us define

) J = Ay diag(0,log(N), log |u| + (2mk + Arg(u))i, log |,u|
—(2mk + Arg(u))i)As
0 0 0 0
(2) o 1og(n) 0 0
10 0 log | 21k + Arg(p)
0 0  —(@2nk+ Arg(n)) log |l

Using this notation, the matrix @ in (9) can be written as Q =
PA;JAT'P~1 Note that A; commutes with diag(0, log()), log |u|, log |])
and hence

Q = P diag(0,1og()), log | ul, log |u|) P~

+ (27k + Arg(p)) P A, diag (o,o, ( 0 0)) AP

A final computation shows that Aldlag(O 0 ( 2o ))Afl equals V(z,y, 2)
with

a® 4+ b2 ac + bd A+ d?

Twd—be YT ad—be °T wd—be

It is immediate to show that xz —y? = 1, thus (x,y,2) € V. This proves
that (i) implies (ii).

(ii) = (i) We know that Qx(x,y, 2) is real by Definition 5.9: it is straight-
forward to check that (1,1,1,1)! is an eigenvector with eigenvalue 0 of
both L and V, and so it is also an eigenvector of Qg (z,y, z) with eigen-
value 0.

Hence it is enough to check that if (z,y,2) € V, then Qg (z,y,2) is a
logarithm of M. To this end, consider the matrix J introduced in (12)
and the matrix

OO O =
o O = O
Ble —m © O
gl O O O
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If (z,y,2z) € V, then we have z = # A straightforward compu-

tation shows that P~1Qy (anyy7 1+Ty2)P — BJB~! = 0. Hence, it follows
from (11) that

1+y2

Q (x " ) — P Adiag(0, log(\), log | + (2% + Axg(s1))i, log |

— (2rk + Arg(u))i)A~t P!

with A = BAs (Asg is defined in (10)). Since both B and Ay commute

with diag(1, A, g, ) it follows from Theorem 2.3 that Q. (z,y, #) is a
logarithm of M, which concludes the first part of the proof.

In the first part of the proof, we already proved that there exists k € Z
and (x,y, z) € V such that Q@ = Qx(z,y, z). By Remark 5.10, we can take
(z,y,2) € V4 without loss of generality. To prove that k and (x,y, z) are

unique we assume that Qi(z,y,2) = Qz(7,y,2) for some k € Z and
(Z,7,2) € V4. In this case, we have

2k + Arg()V (2,9, 2) = (27k + Arg(w))V (3,7, 2)-
Since @ # Log(M) then (27k + Arg(p)) # 0 and hence:

. 2k + Arg(p) o 2k + Arg(p) - L 21k + Arg(p) .

T ork+ Arg(n) YT 2nk+ Arg(w)” T 2mk o+ Arg(p)
Now, using that (z,y, 2), (7,7, 2) € V we get zz—y* = (;;ﬁiimf(ﬂ?—
7?) = 1. Moreover, since z,2,,z > 0, we deduce that Z:Z%ﬁm =1,
so k =k and (Z,7,2) = (x,y, 2). O

Remark 5.12. Because of Remark 5.10, every real logarithm of M with
rows summing to 0 can also be realized as some Q(z,y, z) for a unique
k € Z and a unique (z,y,z2) € V_.

In order to characterize those logarithms that are rate matrices, for
any k € Z we define the set

Pr = {(x,y,2) € R®: Qi(x,y, 2) is a rate matrix}.

Note that the entries of Q(z,y, z) depend linearly on z, y, z, and hence
Py is the space of solutions to a system of linear inequalities (i.e. a con-
vex polyhedron). From Theorem 5.11 we obtain that the set of Markov
generators for a Markov matrix in Case IIT is |J;, Pr N V4. The following
corollary is an immediate consequence of Lemma 3.1 and Theorem 5.11
and shows that there is a finite set of integers k such that P, NV, # 0.
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In Appendix A we show a procedure to check whether the intersec-
tion Pr NV, is not empty and get a point in it.

Using the notation introduced in Section 4, if @) is a Markov generator
of a Markov matrix M with eigenvalues 1, A, and p as in (8), then
it has at most one conjugate pair of non-real eigenvalues, log, (1) and
log;. (). It follows from Lemma 3.1 that their imaginary part is bounded
by B4(n) = —log || and as a consequence, we obtain the next result.

Corollary 5.13. Let M be a Markov matriz as in (8). If Q is a Markov
generator of M, then Q = Qi(z,y,z) for some (x,y,z) € Vi and
some k € Z satisfying

—Arg(p) tloglu| _, _ — Arg(p) — log ||
o - o '

As a byproduct, we give an embeddability criterion for 4 x 4 Markov
matrices with two repeated eigenvalues.

Corollary 5.14. Let M be a Markov matriz as in (8).
(i) If p > 0, M is embeddable if and only if Py N V4 # 0 for some k

with
loglul] o, o | =loglul
21 - 27 '

(ii) If p < 0, M is embeddable if and only if Pr N V4 # O for some k
satisfying

_L logful) | L _ loglul
2 2 - = 2 2T '

In particular, if p < —e™™, then M 1is not embeddable.

Proof: Since k € Z, the bounds on k are a straightforward consequence
of Corollary 5.13. Indeed, it is enough to take Arg(u) = 0 for p > 0 and
Arg(p) = 7 for p < 0. In the case of u < 0, it is immediate to check

that [—3 + %] <|-3- %J if and only if log || < —7. Hence, if

@ < —e~ ™, there is no k satisfying the embeddability conditions in the
statement. O

Remark 5.15. Example 4.3 in [5] shows an embeddable Markov matrix
as in (8) with y = —e™™. Thus, the bound on Corollary 5.14 is sharp.

From Corollary 5.14 we derive an algorithm that tests the embed-
dability of Markov matrices lying in Case III.
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Algorithm 5.16 (Markov generators of 4 x4 matrices with two repeated
eigenvalues).

input : M (Markov matriz) and P as in (8).
output: One of its Markov generators Q(x,y,z) for each k € Z
(if they exist).

generators = [ ]
compute the eigenvalues of M: 1, A, u, i
if det(M) >0 and p > —e™ ™, then
Compute L = P diag(0,log()\),log |ul, log |u|)P~1
set [ — {—Arg(g):log\uw and U = L—Arg(u;;\log(u)lj
for L<k<U (keZ):do

if P.NV #£0 (see Appendiz A), then

choose (z,y,z) € PN V4 (see Appendiz A)
L add Qi(x,y,z) = L+ kV(x,y,2) to generators

if generators = [ ], then
L return “M not embeddable”
else return generators

Remark 5.17. If Qi(x,y,z) # Log(M), then each choice of (z,y,2) €
P NV, in the algorithm above would give a different Markov generator
for M (5.11). Thus, the set of all Markov generators of M is obtained by
considering, for each possible k, all (x,y, z) € Pr NV (this can produce
infinitely many Markov generators). In Appendix A we show how to
compute #Py, NV for a fixed k.

Case IV. Here, we deal with 4 x 4 Markov matrices with an eigenvalue
of multiplicity 3 or 4. This case corresponds to the equal-input matrices
used in phylogenetics. The reader is referred to [1] and [2] for a recent
and parallel study on this class of matrices with special emphasis on
embeddability.

Proposition 5.18. Let M be a diagonalizable 4 x 4 Markov matrix with
eigenvalues 1, A\, \, A. Then the following are equivalent:

(i) M is embeddable.

(ii) det(M) > 0.

(iii) Log(M) is a rate matriz.
Proof: If M = 1d, that is, A = 1, then it follows from Theorem 2.3
that Log(M) is the zero matrix and hence it is a Markov generator
for M. Moreover, it follows from Corollary 3.3 that the zero matrix is
the only Markov generator of the identity matrix.
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Now, let us assume A # 1. Since det(e®?)=e'"(?) it follows that (i) = (ii).
(iii) = (i) is straightforward, thus to conclude the proof it is enough to
check that if det(M) > 0, then Log(M) is a rate matrix.

Since M is a Markov matrix we get that M — A\1d is a rank 1 matrix
whose rows sum to 1 — A. Hence:

a+ A b c d
_ a b+ A c d

13 M=1 " "y cix a4 |
a b c d+ A

withA=1—(a+b+c+d) € (0,1), a,b,¢,d > 0.

Let us fix S € GL4(R) such that M = S diag(1, A\, \, \)S~!. Note that
if A =1, then M = Id and Log(M) = 0 is a rate matrix. On the other
hand, if A € (0,1), then we have:

Log(M) = S diag(0,log()),log()),log(\))S~*

log(A
- ;’g( 1) (S diag(1,\, A\, \)S~1 — Sdiag(1,1,1,1)S77)
log(A)
= M —1d).
L )
Since M —Id is a rate matrix and A € (0, 1) it follows that Log(}M) is a
rate matrix. O

Remark 5.19. In the context of DNA nucleotide substitution models,
these matrices correspond to the Felsenstein 81 model [12]. The station-
ary distribution of such matrices is given by I = (a, b, ¢, d)/(a+b+c+d),
where a, b, ¢, d are as in (13) (in particular, a + b+ ¢+ d > 0). When
the stationary distribution is uniform, that is, a = b = ¢ = d, we recover
the Jukes—Cantor model [23].

5.2. Embeddability of non-diagonalizable 4 X 4 Markov matri-
ces. If we restrict the embedding problem to non-diagonalizable 4 x
4 matrices, we have:

Theorem 5.20. A non-diagonalizable 4x4 Markov matriz is embeddable
if and only if it has only positive eigenvalues and its principal logarithm
18 a rate matriz. In this case, it has just one Markov generator.

Proof: The “if” part is immediate, so we proceed to prove the “only if”
part. Let M be an embeddable non-diagonalizable 4 x 4 Markov matrix.
We know that the dominant eigenvalue 1 has the same algebraic and
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geometric multiplicity (see [25, §8.4]). Therefore, M has at most one
Jordan block of size greater than 1 and, in this case, its Jordan form is
one of the following:

10 0 0 10 0 O

0 X 0 . 0 A 1 0 .

00 u 1 with p # 0,1, A#0, or 00 A 1 with A#£0, 1.
0 0 0 pu 0 0 0 A

As M is a real matrix, its eigenvalues are necessarily real. Moreover,
as M is embeddable, Proposition 2.5 yields that A and p are positive.
An immediate consequence of Theorem 2 in [8] is that if each Jordan
block appears exactly once in its Jordan form, then the only possible
real logarithm of M is the principal logarithm.

Hence, if M has a real logarithm other than Log(M ), then the Jordan
1000
form of M is J := (869?) with A € (0,1).
000X
Take P such that M = PJP~!. A more general version of Theo-
rem 2.3 for non-diagonalizable matrices (see Theorem 1.27 in [19]) shows

that any logarithm @ of M has the form:

27k 0 0 0
o 0 27T]€2i 0 0 —1 p—1
@R=PAL 5 07 log()) + 2mhyi 1/ AP
0 0 0 log(A) + 2mksi

for some A € Comm™(J).
It follows that A can be written as A = diag(B, Ids) diag(cy, ¢2, 3, ¢3)
with B € GL2(C). Now, if @ is a rate matrix, it is a real matrix and

hence k1 = —kg and k3 = 0. Moreover, its rows sum to 0 and hence 0 is
an eigenvalue of Q). Hence, k1 = —ko = 0. Thus:
0 0 0 0
_ 0 0 0 0 1 1
QR=PALG 0 gy 1 |4 F
00 0 log(A)
0 0 0 0
_ 0 0 0 0 1
=10 0 10e00) 1 | T
0 0 0 log(A)

and we see that the eigenvalues of ) are the principal logarithms of the
eigenvalues of M, so that @ = Log(M). O
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6. Rate identifiability

Once we know that a Markov matrix arises from a continuous-time
model, we want to determine its corresponding substitution rates. In
other words, given an embeddable matrix we want to know if we can
uniquely identify its Markov generator. Corollary 3.3 shows that if the
determinant of the Markov matrix is big enough, then there is just one
generator. However, this is not the case if the determinant is small. Note
that a small determinant means that the substitution rates are large or
that the substitution process ruled by M has taken a lot of time.

Definition 6.1. An embeddable Markov matrix M has identifiable rates
if there exists a unique rate matrix Q such that M = e?. The rate iden-
tifiability problem consists in deciding whether a given Markov matrix
has identifiable rates or not.

Proposition 6.2. Let M be a diagonalizable 4 x 4 embeddable Markov
matriz with eigenvalues 1, X\, \, X\. If det(M) > e~%™, the rates of M
are identifiable and the only generator is Log(M).

Proof: Let @ be a Markov generator for M. If A\ > e~27, then the real
part of the non-zero eigenvalues of @) is greater than —27, thus it follows
from Lemma 3.1 that their imaginary part lies in the interval (-2, 27).
Since the eigenvalues of M are real and positive this implies that the
non-zero eigenvalues of @ are log(A) and hence Q = Log(M). O

Remark 6.3. We do not think that this bound is sharp. To our knowledge,
the largest determinant of a 4 x 4 embeddable matrix with three repeated

eigenvalues and non-identifiable rates is e 712", and corresponds to the
matrix:
1 + 36747r 1— 67471' 1— 67471' 1— 67471’
M—l l—e™™ 1434 1—e 4 11—

4l 1= 1—e* 1434 11—
1—e 47 1—e 4 1—e 4™ 1434

Next we show three Markov generators for it:

—37 T 2w 0 -3 ™ 71' ™
T -3 0 2w T -3 m T
0 2 3w 0w ’ s T -3 s ’
2w 0 T -3 s T T -3
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Note that Theorem 4.5 bounds the number of generators of a Markov
matrix with no repeated eigenvalues. Moreover, Algorithm 4.7 lists all
the generators of such a matrix. If we restrict the identifiability problem
to 4 x 4 Markov matrices, we are able to deal with the rate identifiability
problem for all the matrices in Cases I, II, and III, that is, all 4 x
4 matrices except those with an eigenvalue of multiplicity 3 (Case IV),
for which we have Proposition 6.2. This is summarized in the following
table:

Diagonal form Embeddability Number of
of M criterion generators
Case I Log(M) is a rate matrix 1
N=0and LU U-L+1
Case 11
(Corollary 5.6) (Theorem 5.5)
Case TII Ue(Pe V) # 0 > #(Pe0V)
(Corollary 5.14) (Remark 5.17)
Case IV det(M) >0 1 if det(M) > e~
(Proposition 5.18)
M does not diagonalize Log(M) is a rate matrix 1 (Theorem 5.20)
(Theorem 5.20)
Other diagonal forms M is not embeddable —_—

TABLE 2. Embeddability test and number of generators for a 4 x
4 Markov matrix depending on its diagonal form.

7. Discussion

In this paper we have studied the embeddability and rate identifia-
bility of Markov matrices. Our study has led to a number of results and
the development of algorithms that are able to test the embeddability
and list the Markov generators of a given Markov matrix, namely Algo-
rithm 4.7 for any size n, and Algorithm 5.8 specifically for n = 4. In this
case, the embedding problem has been completely solved. It seems natu-
ral to think that the next step is to extend the study to 5 x 5 matrices, at
the expense of having to consider two conjugate pairs of complex eigen-
values instead of one and dealing with the difficulties that this causes.
Most of our results of Section 5 have an immediate generalization to
Markov matrices with a single conjugate pair of eigenvalues.

We have used Algorithm 5.8 in a sample of 107 Markov matrices uni-
formly and independently distributed within the space A of 4 x 4 Markov
matrices. As the set of Markov matrices might seem too general for
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some applied problems (e.g. modeling the substitution of nucleotides in
genomes), we have previously checked which of the matrices belonged to
certain more restrictive families of matrices that appear in the literature.
For instance, for Markov processes on (phylogenetic) trees it is impor-
tant to restrict to matrices that are diagonally largest in column (DLC
for short), i.e. Markov matrices whose diagonal entries are the largest
entries in each column; see [7]. We denote this set of 4 x 4 Markov ma-
trices by Agic. Usually, one can even restrict to the set Agq of diagonally
dominant matrices, that is, matrices M € A satisfying M;; > 0.5 for
all . If embeddable, these matrices have identifiable rates ([9]). Note
that if a matrix is diagonally dominant, then its off-diagonal entries are
smaller than or equal to 0.5. Hence, Aqq € Aqie € A. From a math-
ematical perspective, it makes sense to target the set of matrices that
lie in the connected component of the identity matrix when we remove
from A all matrices with determinant equal to 0. This set is called Atq,
corresponds to matrices with a positive determinant, and contains all
embeddable Markov matrices.

Samples Embeddable samples Percentage of embeddable
A 107 5774 0.05774
Arg | 4998008 5774 0.11553
Agre | 148375 5460 3.67987
Agq 2479 299 12.06132

TABLE 3. Based on a sample of 107 Markov matrices, the first
column shows how many sample points lie in each set, the sec-
ond column shows how many of them are embeddable, and the
third column displays the corresponding percentage. Embeddabil-
ity was checked with Algorithm 5.8.

Therefore, for each matrix generated, we have checked whether it
belonged to each of the sets described above (Agic, Aga, Aa) and, by
applying Algorithm 5.8, we have tested its embeddability. The results
are shown in Table 3. To conclude, we would like to emphasize that,
as the table shows, the percentage of embeddable Markov matrices is
surprisingly small. This result should be taken as a warning signal as it
probably has practical consequences related to modeling issues. Indeed,
it may be advisable to reconsider the restriction and use of continuous-
time homogeneous models, which seem to be very constrained even for
DLC matrices.

Appendix A

In this appendix, we explain how to find generators for 4 x 4 Markov
matrices with two repeated eigenvalues by using Algorithm 5.16. More
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precisely, we explain how to check whether the intersection P NV, in
Algorithm 5.16 is empty or not and how to choose a point in it (if not
empty).

Let M be a diagonalizable 4 x 4 Markov matrix with a repeated
eigenvalue and positive determinant, that is, M = P diag(1, A, p, u)P~!
for some P € GL4(R), A > 0, and p € [—1,1) such that 4 # 0 and p #
A. In this case, Theorem 5.11 yields that each Markov generator other
than Log(M) can be uniquely expressed as Q(z,y, z) for some k € Z
and some (x,y,2) € Pr N V.

Assume that & = 0 and Arg(u) = 0. Then, Qo(z,y, 2) is equal to
the principal logarithm of M for all (z,y, z). Therefore, if the intersec-
tion Pr N V4 is not empty, it is equal to V. In this case, the algorithm
can choose any point (z,y,z) € V4 such as (1,0,1). For the remainder
of this section we assume that Qy(z,y,z) # Log(M). This assumption
is equivalent to assuming that 27k 4+ Arg(u) # 0.

We denote by [; ; the entries of the matrix L in Definition 5.9 and
by pi; and p; ; the entries of P and P! respectively. Py is the set of
solutions to the system of inequalities Qi (z,y,2);; > 0 for all i # j,
where Qp(z,y,2) = L+ (2rk + Arg(u))V(z,y, z). A direct computation
shows that the entries of V(x,y, z) depend linearly on z, y, and z:

V(2,y,2)i,j = Pi,3Pa,jT — Pi,aP3,5% + (Pi,aDa,j — Pi;3D3,5)Y-
Hence, the planes H; ; containing the faces of P are given by the equa-
tions:

—l;
27k + Arg(p)’
From (A.1) we get that, for each 7 # j, the faces of two polyhedra Py,
and Py, (k1,k2 € Z) corresponding to the (i, j)-entry of Qg (z,vy,z) are
necessarily parallel.

Let us define f(z,y,2) = 2z — y*> — 1 so that V = {(z,y,2) € R? |
f(z,y,z) = 0}. Note that (z,y,z) € V1 if and only if f(x,y,2) =0 and
z,z > 0. Next we show how to find points in P N V.. To do so, we
evaluate f(z,y,z) at the vertices, on edges and on faces of Py according
to the following procedure:

(A1) pi3pajx — piaps,jz + (DiaDaj — Pi,3D3,5)Y

Step 1. Evaluate f(z,y, z) at each of the vertices of P.

o If there is a pair of vertices v; and ve such that f(vq)f(ve) < 0,
then V; cuts Py and hence there are infinitely many generators.
To find one of them, we restrict f to the line defined by v and v,
and find a point P = (z,y,2) in the segment between v, and v
such that f(P) = 0.
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e If there is not such a pair of vertices but there is some vertex v
satisfying f(v) = 0, then we take P = v.

e If the evaluation of f at all the vertices of Py has the same sign
(and none is equal to 0), then we proceed to Step 2.

Step 2. Find the vanishing points of f(z,y,z) on the edges of P. To
do so, we restrict f to the lines containing these edges and look for
solutions P = (z,y, z) of f =0 lying on the corresponding edge.

o If we find two solutions in such a line, V; cuts the interior of Py
and hence there are infinitely many generators.
o If the edges of Py do not intersect V,, then we proceed to Step 3.

Step 3. We assume that V' does not intersect any edge of Py. For i #
J consider the intersection H;; N V4, where H;; is the plane defined
by (A.1).

If this intersection is not empty, choose a point in it (see next para-
graph) and check whether it belongs to Py or not. This intersection lies
either completely in the corresponding face of the polyhedron or com-
pletely outside the polyhedron.

e If we find a point P = (z,y, z) which belongs to the polyhedron in
this way, then M has infinitely many generators and Qg (z,y, 2) is
one of them.

o If we fail to find a point in any of the faces, then M has no generator
with the current value of k.

To conclude, we give some insight on how to find P € H; ;NVy (when this
intersection is not empty). For ease of reading we write Az+By+Cz = D
for the equation of H; ; (see (A.1) for the precise coefficients). Given
1+7/

(z,y,2) € V, we can write z = because x # 0. Therefore, by
multiplying the equation Ax + By + Cz = D by x and rearranging the
terms in the equality, we conclude that

1+y2

Cy*+(Bx)y+(Az? —Dx+C) =0 if and only if (x, Y, ) €VNH, ;.

Hence, V4 N H; ; is not empty if there exists z > 0 for which the dis-
criminant

A(z) := (B? — 4AC)2* 4 (4CD)x — 4C?

is non-negative. We study below whether this is possible depending on
the coefficients of A(x):
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(i) If B> — 4AC < 0, compute the roots of A(z) = 0. If they are
non-real or negative, then V; N H; ; = (). If both roots are real
and positive, then all values between them satisfy A(z) > 0. Note
that in this case both roots have necessarily the same sign (because
vn{x=0}=0).

(ii) If B2 —4AC > 0, then A(z) > 0 when z >> 0.

(iii) If B2 —4AC =0 and CD > 0, then A(z) > 0 when z > 0.
(iv) If BZ—4AC =0,CD <0, and C # 0, then A(x) < 0 for all z > 0.
In this case, we have V, N H; ;j = 0.

(v) If A(z) is identically 0, then H; ; N V4 is unbounded with respect
to x, that is, for any zy > 0, there are points P = (xg,y,2) €
Hi,j n VJr.

Note that in cases (ii), (iii), and (v) we have that A(z) > 0 when

z > 0 and hence the set H; ; N V4 is unbounded with respect to x.
Therefore, if we know that the polyhedron Py is bounded, then the
intersection of V; with the face (i, j) is necessarily empty in any of these
cases.
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