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Chemotherapies may increase mutagenesis of healthy cells and change the selective pres-

sures in tissues, thus influencing their evolution. However, their contributions to the mutation

burden and clonal expansions of healthy somatic tissues are not clear. Here, exploiting the

mutational footprint of some chemotherapies, we explore their influence on the evolution of

hematopoietic cells. Cells of Acute Myeloid Leukemia (AML) secondary to treatment with

platinum-based drugs show the mutational footprint of these drugs, indicating that non-

malignant blood cells receive chemotherapy mutations. No trace of the 5-fluorouracil (5FU)

mutational signature is found in AMLs secondary to exposure to 5FU, suggesting that cells

establishing the leukemia could be quiescent during treatment. Using the platinum-based

mutational signature as a barcode, we determine that the clonal expansion originating the

secondary AMLs begins after the start of the cytotoxic treatment. Its absence in clonal

hematopoiesis cases is consistent with the start of the clonal expansion predating the

exposure to platinum-based drugs.

https://doi.org/10.1038/s41467-021-24858-3 OPEN

1 Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. 2 Hematology and Hemotherapy
Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain. 3 Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona,
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Somatic tissues evolve as a result of the interplay between
genetic variation—contributed by a range of endogenous
and external mutational processes—and selective con-

straints acting at the level of organs or tissues1–3. Chemotherapies
cause the death of large amounts of cells, thus imposing specific
selective constraints on somatic tissues4. Certain cells, able to
withstand chemotherapies by virtue of certain advantageous
mutations or phenotypic characteristics may subsequently expand
to replenish the exhausted tissue after the insult is withdrawn.
Some widely used chemotherapies, due to their mutagenic
mechanism, also contribute to the genetic variation present in
exposed tumor cells or cell lines5–10.

One homeostatic process in which the long-term effects of
chemotherapies have been extensively studied is hematopoiesis. It
is known, for example, that secondary hematopoietic malig-
nancies, such as acute myeloid leukemia (AML) occur in patients
who are exposed to chemotherapies as part of the treatment of a
solid malignancy11,12. Moreover, clonal hematopoiesis (CH), a
condition related to aging across the human population is known
to occur more frequently among people previously exposed to
chemotherapies13–19. CH, in turn, is associated with other health
risks, such as subsequent hematopoietic malignancies or
increased incidence of cardiovascular disease13,17,20–22. The
molecular mechanisms underlying the advantage provided by
some CH-causing mutations affecting DNA damage and repair
genes in the face of certain chemotherapies have been
unraveled16. However, the timing of the clonal expansion that
ultimately causes treatment-related CH or treatment-related
AML with respect to the exposure to chemotherapy remains
elusive. This is key to understanding whether the cytotoxic agent
may be the cause of this clonal expansion or only provides a new
evolutionary constraint that favors the expansion of a pre-
existing clone.

To date, it is not known whether these chemotherapeutic
agents leave their mutational footprint in healthy cells. Further-
more, the immediate effects of the exposure to chemotherapies on
the evolution of healthy tissues is not clear. We reasoned that the
detection of the mutational footprint of chemotherapies in
therapy-related AML (tAML) and CH cases provide a powerful
tool to study their influence on such conditions. We first set out
to determine whether cells that were not malignant at the time of
their exposure to chemotherapeutic agents bear their mutational
footprint. Furthermore, we used this footprint as a barcode23 to
determine whether the clonal expansion started before or after the
beginning of the exposure to the drug. Ultimately, this allowed us
to study how chemotherapies interfere with healthy hematopoi-
esis, causing the emergence of treatment-related AML (tAML) or
treatment-related CH (tCH).

Results
The role of chemotherapies in the evolution of tAMLs. We and
others have previously observed that certain chemotherapies,
through direct DNA damage or interference with the replication
machinery leave a mutational footprint in the metastatic tumors
of patients exposed to them as part of the cancer treatment5,7. We
reasoned that such chemotherapies, being systemic, may also be
able to leave their mutational footprint in non-malignant cells.
However, detecting private chemotherapy mutations—in the
absence of any clonal expansion—in non-malignant cells is
extremely challenging. We reasoned that secondary neoplasms
could give us the opportunity to study this. Secondary neoplasms,
such as tAMLs, which appear in some patients following treat-
ment of a primary solid tumor, originate from hematopoietic cells
that were non-malignant at the time of exposure (Fig. 1a). It is
not clear whether these tAMLs are driven specifically by drug-

related mutations, or if they appear as a consequence of the
evolutionary bottleneck chemotherapies posed on hematopoiesis,
or as a contribution of both factors.

To explore the role of anti-cancer treatments in the develop-
ment of tAMLs, we collected a cohort of 30 (3 in-house) whole-
genome sequenced tAMLs (Fig. 1b; Fig. S1a; Table S1) and 32
primary AMLs (WGS AML cohort)24,25. Overall, no significant
differences are appreciable in total somatic SNVs (p= 0.33) or
indels (p= 0.1) burden between tAMLs and primary AMLs, as
previously reported24 (Fig. 1c; Table S1). However, all tAMLs
from patients exposed to platinum-based chemotherapies exhibit
a mutational footprint associated with these drugs (N= 8; Fig. 1d;
Fig. S1b; Table S1). This signature is highly similar (cosine
similarity 0.94) to a platinum-related signature identified across
metastatic tumors from patients exposed to the drug5,26. (Here-
tofore, we refer to this mutational signature as platinum-related.)
The contribution of this signature to the mutation burden of
platinum-exposed tAMLs causes their total burden to be
significantly higher than that of primary AMLs and tAMLs not
exposed to platinum-based drugs (Fig. 1e). Moreover, platinum-
exposed tAMLs harbor a significantly higher number of double
base substitutions than tAMLs of patients exposed to other drugs
and primary AMLs, as expected from the mutagenic mechanism
of platinum-based drugs27 (Fig. 1e; Table S1). Despite the
profound phenotypic differences that exist between non-
malignant hematopoietic cells and solid tumor cells, the number
of platinum-related mutations in tAMLs is similar (around 1000)
to that detected across metastatic tumors from patients exposed
to the same chemotherapies5 (Fig. 1f). Therefore, the exposure to
platinum-based drugs appears to be a sufficient condition for the
acquisition of platinum-related mutations in non-malignant
hematopoietic cells.

Interestingly, no trace of the 5FU-related mutational footprint
appears in any of the three tAML cases from patients exposed to
the drug (Fig. S1b). This absence of the 5FU-related mutational
profile is not the result of lack of statistical power (Fig. S2a–e).
Rather, the footprint is indeed absent from 5FU-exposed tAMLs.
Platinum-based drugs directly damage the DNA of cells
generating bulky adducts. Conversely, 5FU through the inhibition
of thymidylate synthase28, alters the pool of nucleotides available
for DNA synthesis, and as analogous to thymidine it could,
hypothetically, be incorporated to the nascent DNA strand. We
thus reasoned that cells that divide during the treatment could
incorporate 5FU mutations, whereas cells that remain quiescent
during the exposure to 5FU—and do not divide until the
nucleotide pool has been recovered—will not. The lack of the 5FU
mutational footprint would indicate that cells that establish
tAMLs could have been quiescent (potentially hematopoietic
progenitors) at the time of treatment29–31.

In summary, we demonstrated that platinum-based therapies
leave their characteristic mutational footprint across non-
malignant hematopoietic cells upon exposure to them. Intrigu-
ingly, the footprint that characterized 5FU appears to be absent
from these exposed non-malignant hematopoietic cells, possibly
because quiescence is a key mechanism of survival to the
chemotherapy exposure.

Footprint of chemotherapies with differing mutagenic
mechanisms. To investigate further the hypothesis that the dif-
fering mechanisms of platinum-based drugs and 5FU/Capecita-
bine were the reason why we only observed the footprint of the
former, we resorted to a cohort of metastatic cancer patients
(more than 700) who as part of the treatment of their primary
tumor had been exposed to either of these drugs (metastasis
cohort32; Fig. S3a). In this cohort, the mutational footprint of
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5FU/Capecitabine and platinum-based drugs have been detected
by us and others5,7 in some metastatic tumors (Fig. 2a).

We reasoned that the detection of treatment-related mutations
in metastases (upper branch in schematic Fig. 2b) could occur in
two different scenarios. In a metastasis seeded before the start of
the treatment, the chemotherapy imposes an evolutionary
bottleneck that may result in a reduction of the size of the
tumor. In the presence of a strong bottleneck the metastasis could
be reduced to one or few surviving cells, yielding treatment
mutations that can be detected by bulk sequencing. In the second
scenario, the treatment predates the seeding of the metastasis.
The effect of the bottleneck, in this case, consists in favoring
seeding by one or few cells. In either scenario, if the bottleneck is
not strong enough, this decreases the likelihood that treatment

mutations appear at levels that are detectable through bulk
sequencing (middle branch). In both scenarios, the survival of a
single cell that expands to form the biopsied metastasis would
result in at least a fraction of the treatment-related mutations
being detected as clonal. Differences observed in the fraction of
clonal treatment-related mutations across metastatic tumors may
therefore also reflect their distinct evolutionary histories (Fig.
S3b). Another possibility—with a result indistinguishable from
the latter—is that the treatment does not leave a mutational
footprint in tumor cells (lower branch).

To further explore what determines that the mutational
footprints of platinum-based drugs and 5FU across metastases
from exposed donors are detected, we studied whether the
metastasis appears in a site proximal or distal of the organ of the
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Fig. 1 The mutational footprint of chemotherapies across treatment-related AMLs. a Cancer patients (breast cancer as an example in the figure—purple
circle) exposed to chemotherapy, which damages cell DNA (orange stars), may develop treatment related acute myeloid leukemia (tAMLs). Non-
malignant hematopoietic cells at the time of exposure to chemotherapy are faced with a bottleneck that reduces the population, leading to the development
of AML over time. b The whole-genome sequence of thirty tAML cases of patients who suffered from a primary solid tumor and were treated with different
anticancer drugs (represented in the Sankey diagram) were obtained from three different sources, including three cases sequenced in-house. These were
analyzed in combination with 32 cases of primary AMLs (WGS AML cohort). c Burden of single nucleotide variants and indels do not significantly differ
across cases of the WGS AML cohort (two-tailed Mann–Whitney p= 0.33, and 0.1 respectively). d Mutational profile of a platinum-related signature
active across cases in the WGS AML cohort. All tAML cases from patients exposed to platinum-related drugs exhibit activity of the signature (two-tailed
Mann–Whitney p= 3.37 × 10−9, and 4.16 × 10−7). As a result of the process of reconstruction of the mutational profile of all samples carried out by the
signatures extraction algorithm, one tAML case in a patient not exposed to platinum-based drugs and one primary AML case exhibit a “false” small activity
of the platinum-related signature, a phenomenon known as signature bleeding26. (See more details in Fig. S1.) e Burden of single nucleotide variants (left)
and double base substitutions (right) of primary AML, non-platinum-exposed, and platinum-exposed tAML cases in the WGS AML cohort. Comparisons
were carried out with a two-tailed Mann-Whitney test. f Number of mutations contributed by the platinum-related signature across tAML cases in
comparison with that counted across metastatic tumors from several organs of origin. The box in each boxplot delimits the first and third quartiles of the
distribution (with a line representing the median); the whiskers delimit the lowest data point above the first quartile minus 1.5 times the interquartile
distance and the highest data point below the third quartile plus 1.5 times the interquartile distance. AML acute myeloid leukemia, t-AML treatment-related
AML, WGS whole-genome sequencing, SBS single base substitution, SNV single nucleotide variant, INDEL insertion or deletion.
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mutations among distant or proximal metastases. c Platinum-based drugs and 5FU contribute mutations in the DNA via two different mechanisms
(illustrated by the blue cells in the left panel). While the former creates adducts on the DNA, the latter alters the pool of nucleotides available for DNA
replication. Thus, cells exposed to platinum-based drugs will carry mutations of the treatment after DNA replication, irrespective of whether cells are
quiescent at the time of exposure or not (top arrow). On the other hand, 5FU-exposed cells will only incorporate mutations if their DNA is replicated while
the pool of nucleotides is still distorted by the drug (middle arrow). If it has been restored before DNA replication, no mutations will be incorporated
(bottom arrow). Therefore, immediately following exposure, two scenarios are possible: the surviving cells either bear treatment mutations (yellow cell) or
not (blue cell). We reasoned that whether the treatment mutations are visible at the time of metastasis depends on the strength of the evolutionary
bottleneck facing the primary tumor and its timing with respect to the exposure (see periods of time represented in different colors below figure). A
stronger bottleneck during or immediately after treatment will lead to treatment mutations detectable through bulk sequencing (top drawing). On the
contrary, a weaker bottleneck, or a bottleneck suffered before treatment (for example, if the metastasis predates the treatment) will lead to treatment
mutations below the limit of detection of the bulk sequencing (middle drawing). d Distribution of time of treatment (days) and time after treatment (days)
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primary tumor and the time elapsed between the start of the
treatment and the collection of the metastasis biopsy.

The mutational footprint of both platinum-based drugs and 5FU
is detected more often in distal metastases—frequently mono-
clonally seeded due to a stronger evolutionary bottleneck33—, than
in proximal metastases (Fig. 2c, e; Fig. S3c). Tumors with detectable
mutational footprint of either treatment exhibited significantly
longer time elapsed between the start of the treatment and the
metastasis biopsy than those with no detectable footprint (Fig. S3d).
Significant differences in the time between the end of treatment and
the biopsy (time since the end of treatment) distinguished
platinum-exposed tumors, but not 5FU-exposed tumors (Fig. 2d,
e; Fig. S3c; Table S2). We reasoned that the longer the time since the
end of treatment, the more likely the clonal expansion leading to the
metastasis—in any of the two scenarios described above—began
after the exposure to the chemotherapy, and thus the higher the
odds to detect the footprint.

On the contrary, tumors with detectable footprint of 5FU were
exposed to the drug (time of treatment) significantly longer than
those without the footprint, but both groups showed no
significant differences in the time since the end of treatment
(Fig. 2d, e; Table S2). Unlike unrepaired DNA adducts left by
platinum-based drugs, which may be directly converted into
mutations as DNA replicates, 5FU-generated mutations can only
appear if, at the time of replication, the nucleotide pool has not
been restored. This is more likely to occur the longer cells are
exposed to 5FU, and is probably the reason why the time of
treatment is key to observing 5FU mutations in the metastases.
This would also explain why there are no significant differences in
the time after the treatment for the metastases that show the 5FU
footprint and those that do not. The significantly longer time of
treatment of tumors with the 5FU footprint may account for the
time required for the full clonal expansion.

These results provide clues about the relationship between the
strength of the evolutionary bottleneck imposed by the treatment
of the primary tumor and the evolution of the metastasis, and of
the state of cells during treatment. How this evolutionary
bottleneck comes about in the interplay between treatment
regimens, doses, the genetic background of the patient, and the
genetic and epigenetic makeup of the tumor, among other factors,
remains to be studied.

In summary, treatment-related mutations are only detected in
a fraction of the tumors in the metastasis cohort, and their level of
clonality is variable across metastases. Using the mutational
footprint of the chemotherapy as a barcode, we are able to infer
that in metastases with high activity of the drug related signature
among clonal mutations, the start of the treatment preceded the
beginning of the clonal expansion giving rise to the metastasis23.
The detection of the footprints also provides clues about the state
of cells during treatment. Therefore, as stated above, the absence
of detectable 5FU-related mutations in tAMLs may be explained
by the malignancy being started by hematopoietic cells that were
quiescent during their exposure to the drug.

The effect of chemotherapies on the selective constraints faced
by hematopoietic cells. Next, we used the knowledge leveraged in
metastatic tumors to ask whether the clonal expansion of the
tAML is prior or posterior to the exposure of patients to
platinum-based drugs. We found that across the WGS AML
cohort, platinum-related mutations are more active among clonal
mutations than those contributed by other mutational processes
(Fig. 3a). The presence of that platinum-related footprint among
clonal mutations in all platinum-exposed tAMLs is confirmed by
a de novo identification of signatures that are active among clonal
mutations (Fig. S4a). Furthermore, most of the mutations

contributed by the platinum-based signature are clonal (75%)
(Fig. 1d). This is consistent with the treatment predating the
clonal expansion of the hematopoietic cells that founded the
tAML. The presence of a fraction of subclonal mutations could be
explained by mutations that appear during treatment after the
initiation of the clonal expansion, or due to lesion segregation34.

Across both, tAML and primary AML cases, the most
prevalent mutational signature is associated with the steady
accumulation of mutations in hematopoiesis, or HSC signature35,
(Fig. 3b, c; Fig. S4b; p= 2.86 × 10−17) over time. The linear
relationship between the number of mutations contributed by this
process of hematopoiesis and age, which has been observed in
healthy hematopoietic cells is maintained across primary AMLs,
albeit with a slight acceleration (Fig. 3c; p= 2.34 × 10−11). This
relationship is maintained when the effect of potential confound-
ing signatures (such as AML1 SBS) and of possible sequencing
artifacts is taken into consideration (Fig. S4c). The mutations
contributed by other processes active in hematopoietic cells do
not accumulate linearly with age (Fig. S4d).

Surprisingly, the linear relationship between the gain of
hematopoiesis-related mutations and age at diagnosis is lost across
tAMLs, and this appears to be independent of whether or not the
chemotherapy leaves a mutational footprint (Fig. 3d, p= 0.81).
Some chemotherapies, such as 5FU, are known to affect
particularly cycling cells36. Upon recovery from their effect, the
repopulation of the hematopoietic compartment may result in an
accelerated HSC mutation rate37,38. This would produce—as
observed in some tAMLs—a number of hematopoiesis mutations
that is higher than that expected given the age of patients
(Fig. 3d). Nevertheless, some tAML cases exhibit a mutation
burden below the trend of homeostatic accumulation of
mutations with age (Fig. 3d), which could be explained by an
acceleration not high enough (or lack thereof) to overcome the
relatively low burden of the quiescent HSCs. In any event, the loss
of linearity between the age of patients and the number of HSC
mutations across tAMLs suggests that regardless of their
mutagenic effect, chemotherapies alter the developmental
dynamics of the hematopoietic compartment30,38.

Since the hematopoietic cells founding the primary and tAMLs
face different selective constraints, we next asked whether
mutations in different genes drive both malignancies. To this
end, we identified genes under positive selection across 261
whole-exome sequenced AMLs (16 of them secondary to
treatment) with paired-normal samples. These are part of a
cohort of 608 AML patients39, 41 of which correspond to tAML
cases (WES AML cohort; Fig. S3e). While previous studies have
focused on the enumeration of observed mutations in known or
suspected cancer genes across tAML cases40,41, we applied an
unbiased approach42 for a de novo identification of driver genes
in the WES AML cohort. We identified signals of positive
selection in the mutational pattern of 36 genes (Fig. 3e; Table S3).
Although the same set of genes drive both primary and tAML
cases, some differences are appreciated in the prevalence of their
mutations (Fig. S3f; Table S3), such as an enrichment of TP53
mutations among tAMLs—an effect noted before24,40,41 (Fig. 3f).
Intriguingly, contradicting previous studies involving other
cohorts40,41,43,44, we observed the same for IDH1 mutations.
This discrepancy might thus be attributed to specific character-
istics of the WES AML cohort. On the contrary, and in agreement
with previous observations40,41, mutations of NPM1 are under-
represented across cases of tAML.

The evolution of treatment-related CH and tAML. CH is a
condition characterized by the presence in the blood of indivi-
duals of an expanded HSC clone, driven by advantageous somatic
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mutations13–17,19,45,46. In the growth conditions of the healthy
bone marrow niche, or faced with particular challenges—such as
exposure to cytotoxic therapies—some of these mutations provide
an HSC with a growth advantage with respect to its neighbors.
We previously detected somatic mutations present in the blood
samples of the ~4000 donors of the metastasis cohort using the
tumor sample as a reference of the germline genome of the
donor46 (Fig. 4a). The detection of these mutations constitutes
evidence of the occurrence of CH in the donors of this cohort.
Tracing the signals of positive selection on the mutations
observed in genes across donors we have previously obtained a
compendium of CH driver genes46.

Exploiting this compendium of CH drivers, we next asked
whether mutations in the same genes provide an advantage to
hematopoietic cells faced with chemotherapies to develop
treatment-related CH or full-blown tAML. In coherence with
observations on the risk that mutations in different genes pose for
the progression of age-related CH into AML47,48, we found
mutations of TP53 (significantly), IDH2 and several splicing
factors (not significantly) overrepresented among tAML cases
(Fig. 4b). In addition, mutations of FLT3, known to occur late in
leukemogenesis41, were also significantly overrepresented across
tAML cases. Conversely, DNMT3Amutations appear significantly
overrepresented across CH cases, an effect driven mostly by
mutations outside the R882 hotspot (Fig. S5a).

Finally, we reasoned that if, as in the case of tAMLs, the
treatment predated the start of the clonal expansion, platinum-
related mutations would occur at the same clonality as
hematopoiesis mutations, as they would have been present in
the HSC that founded the CH. We expect a median of 100
platinum-related mutations in each blood sample with detectable
CH—i.e., the same number of hematopoiesis mutations, as across
tAMLs (Fig. 4c). Therefore, we reasoned that, under these
conditions, platinum-related mutations should be detectable
across the blood samples of CH cases in the metastasis cohort.
However, no platinum mutational footprint (or of any drug) is
detected through a mutational signatures extraction approach
across the blood samples in the metastasis cohort (Fig. S5b, c).
We thus determined the limit of detection of platinum-related
mutations across the blood samples with detectable CH in the
metastasis cohort through the capability of mSigAct—a method
aimed at recognizing the activity of a particular mutational
signature—49 to retrieve the activity of platinum-based drugs
generated in a controlled experiment. Briefly, we first generated
synthetic samples with analogous distribution of mutation burden
and background mutational profile as the blood samples in the
metastasis cohort (Supplementary Notes). Then, we injected
across these samples increasing numbers of platinum-related
mutations and, each time, we asked whether the inclusion
of the platinum-based signature significantly improved the
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reconstruction of the mutational profile of these samples over the
signatures included in the background. In this experiment, we
assume that platinum-related mutations have the same clonality
as HSC mutations, as would be the case if the CH started after the
beginning of the treatment, as observed for tAML cases. We
ascertained that a significant improvement in the reconstruction
of the profile of these synthetic samples (p < 0.01) is obtained for
10 or more injected platinum-related mutations (Fig. 4d;
Supplementary Notes). Nevertheless, the application of the
mSigAct to the blood somatic mutations of the metastasis cohort
yielded no trace of the platinum mutational footprint (Fig. 4e;
Supplementary Notes), indicating that treatment mutations are
below the level of clonality of hematopoiesis mutations. Hence,
we concluded that the start of the clonal expansion giving rise to
the CH is prior to the beginning of the exposure to platinum-
based drugs.

In summary, we posit that small pre-existing clones of
hematopoietic cells carrying a mutation that is advantageous to
the cells in the presence of platinum-based drugs, such as the
PPM1D (yellow-colored in Fig. 4c, right) continue their
expansion favored against the background of the selective
constraint posed by the chemotherapy. Conversely, in the case
of tAML, with a stronger bottleneck during or after treatment, a
single cell gives rise to the leukemic clone (Fig. 4f).

Discussion
Sequencing somatic tissues provides a window into their evolu-
tion through the interplay of genetic variation and selection. The
sources of genetic variation and their change throughout time
may be resolved by delineating the mutational processes and
clonal sweeps to which a tissue has been exposed26,50. The
detection of the clonal sweeps punctuating the history of a tissue
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informs on the mutations that provide selective advantages to the
constraints faced by its cells51,52. The link between the evolu-
tionary dynamics of somatic tissues and the emergence of neo-
plasias has been known for a long time, and as a result, the
interplay of variation and selection has been intensively studied in
the context of tumorigenesis1–3. Nevertheless, studying the evo-
lution of somatic tissues throughout life is also key to under-
standing aging, neurodegenerative diseases, and certain
cardiovascular conditions. In this endeavor, the resources,
approaches and methods developed in recent decades to study
cancer emergence and evolution may be repurposed to examine
other conditions and diseases.

In this article, building upon our previous finding of the
mutational footprint of a group of chemotherapies5, we revealed
that mutations contributed by platinum-based drugs appear in
cells that were non-malignant at the time of their exposure.
Furthermore, the number of treatment mutations that appear in
these cells is in the same order of magnitude as those observed in
malignant cells after exposure. In other words, at least in the case
of platinum-based drugs, which directly damage the DNA27, the
exposure to the drug produces a mutagenic effect of the same
magnitude in both tumoral and healthy cells. We propose that
mutations caused by these substances appear irrespectively of
whether cells are dividing or not at the time of exposure. Other
agents require their incorporation into the DNA by polymerases
as a necessary step to leave a mutational footprint, such as 5FU/
capecitabine and other base analogs7,53. Interestingly, their
mutations will thus only appear in cells that are not quiescent
when the nucleotide pool is altered29–31,54,55. This explains why
5FU mutations do not appear in treatment-related AMLs, and
only in some healthy colonic crypts of patients exposed to 5FU or
capecitabine56.

One point that remains obscure concerns the potential con-
tribution of platinum-based drugs to the set of driver mutations
of treatment-related AMLs. Although mutations in the same
genes appear to drive primary and tAMLs, it is still possible that
in some cases the mutations driving tAMLs are contributed by
the platinum related signature. To solve this issue, more tAML
cases from patients exposed to platinum-based drugs need to be
sequenced. It is also important to highlight that in this work, we
have focused on signatures of single nucleotide variants. It is
possible that platinum-based drugs and/or other chemotherapies
leave other footprints in the genome in the form of structural
variants, some of which might be involved in leukemogenesis.

Exploiting the treatment mutations as a barcode of the clonal
expansion of exposed cells, we showed that the original clonal
expansion of tAMLs and treatment-related CH differ in their
timing with respect to the moment of treatment. While the clonal
expansion that founded the tAML is posterior to the moment of
treatment, the establishment of the CH clone predates the treat-
ment. In CH, at the time of treatment a variety of small clones of
hematopoietic cells already exist. When exposed to platinum-
based drugs, HSC clones carrying mutations that hinder the
recognition and repair of certain DNA lesions, such as those
affecting PPM1D, TP53 or CHEK2 possess an advantage to sur-
vive and develop over neighboring clones15,16,45,46. Moreover,
mutations in different genes are overrepresented across tAML
and CH cases. These results suggest that CH and tAML follow
different evolutionary pathways. Whether other pre-existing dif-
ferences at the moment of exposure to the treatment determine
one or the other outcome remains to be clarified. The use of
treatment mutations as barcodes in the metastatic setting—that
track the strength of the bottleneck—may be interesting for
clinical applications. Clonal neoantigens are more likely to elicit
an antitumor immune response57,58. Patients with metastases that
underwent stronger evolutionary bottlenecks are expected to

carry a higher burden of clonal neoantigens—treatment-related
or otherwise—and thus respond better to immune checkpoint
inhibitors.

In summary, our results demonstrate the usefulness of certain
mutational signatures, such as those associated with the exposure
to chemotherapies to study the evolution of somatic tissues.
Furthermore, it opens the door to explore some of the longer-
term effects that the exposure to such cytotoxic treatments causes
in cancer survivors.

Methods
Datasets of tumor somatic mutations
(A) WGS AML cohort. Sequencing in-house treatment-related AML samples:
Informed consent was obtained from three secondary AML patients after approval
by the Ethics Committee for Clinical Research of Hospital Santa Creu i Sant Pau
(January 2017). Within the context of the tAML study described in this paper, the
use of these samples was approved by the Ethics Committee for Research of
Hospital Clínic de Barcelona (September 2020). DNA was extracted from six
samples of three secondary AML patients. Both samples were bone marrow aspi-
rates corresponding to the diagnosis of the AML and the remission. The latter was
used as control for the germline genome of the patients. The short-insert paired-
end libraries for the whole genome sequencing were prepared with KAPA
HyperPrep kit (Roche Kapa Biosystems) with some modifications. In short, in
function of available material 0.1–1.0 μg of genomic DNA was sheared on a
Covaris™ LE220-Plus (Covaris). The fragmented DNA was further size-selected for
the fragment size of 220–550 bp with Agencourt AMPure XP beads (Agencourt,
Beckman Coulter). The size selected genomic DNA fragments were end-repaired,
adenylated and ligated to Illumina platform compatible adaptors with Unique Dual
matched indexes or Unique Dual indexes with unique molecular identifiers
(Integrated DNA Technologies). The libraries were quality controlled on an Agilent
2100 Bioanalyzer with the DNA 7500 assay for size and the concentration was
estimated using quantitative PCR with the KAPA Library Quantification Kit Illu-
mina® Platforms (Roche Kapa Biosystems). To obtain a sufficient amount of
libraries for sequencing it was necessary for the low input libraries (0.1–0.2 μg) to
amplify the ligation product with 5 PCR cycles using 2× KAPA-HiFi HS Ready Mix
and 10X KAPA primer mix (Roche Kapa Biosystems). The libraries were
sequenced on HiSeq 4000 or NovaSeq 6000 (Illumina) with a paired-end read
length of 2 × 151 bp. Image analysis, base calling, and quality scoring of the run
were processed using the manufacturer’s software Real-Time Analysis (HiSeq 4000
RTA 2.7.7 or NovaSeq 6000 RTA 3.3.3). Mean read depth of the tAML samples
achieved in the sequencing was 103.

Calling somatic mutations: We obtained 57 whole-genome sequenced AML
cases from dbGAP phs00015924. Two extra samples of tAML from platinum-
treated patients were obtained from EGAD0000100502825. (Informed consent
from the patients was obtained by the original projects that sequenced the
samples.) Primary and tAML samples were sequenced at 31 and 35 mean read
depth, respectively. The data for each case comprised paired bone marrow samples
at the time of diagnosis and remission. The latter was used as control of the
germline genome of each patient (Table S1). The cram files deposited were reverted
to fastqs using bamtofastq59. Then, the fastq files from phs000159,
EGAD00001005028, and the inhouse cohort were processed in a uniform manner
using the sarek60 pipeline implemented within nextflow-core (nextflow version
19.10)61. Briefly, the pipeline aligns the fastqs to GRCh38 using bwa-mem62, and
then implements GATK63 best practices to mark duplicates and base recalibration,
and lastly somatic variant calling. Variant calling of both single nucleotide variants
and short insertions and deletions was performed using Strelka264. Only variants
labeled as PASS by the pipeline were kept. Variants within regions of low
mappability or low complexity65,66 were excluded from downstream analyses. All
somatic mutations were annotated with VEP67 (version 92).

(B) WES AML cohort. Within the beatAML cohort39, a bone marrow sample and a
paired skin sample were taken from 261 AML patients. The somatic mutations
identified in these AML cases were downloaded from the Genomics Data
Commons68 (GDC) repository provided by the authors of the original paper
reporting the sequencing and variant calling of these patients. Of note, the original
Varscan269 variant calling was used, and mutations that coincided with variants
present in gnomAD70 v2.1 at allele frequency greater than 0.005 were removed.
Mutations identified in the 347 remaining patients without a paired normal sample,
as well as the clinical information of all patients in the cohort, were downloaded
from the cbioportal repository71. While the somatic mutations across the 261 cases
with paired samples (deemed more reliably true somatic calls) were employed in
the driver discovery (see below), mutations identified in AML driver genes across
the 608 cases were subsequently taken into account.

(C) Metastasis cohort. Single base substitutions (SBS) identified across the whole-
genome of metastases from 729 Breast, 537 Colon-Rectum, 154 Urinary-Tract, and
155 Ovary primary tumors were retrieved from the Hartwig Medical Foundation32

(HMF) (DR-110). Somatic mutations (called by HMF) were processed as explained

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24858-3

8 NATURE COMMUNICATIONS |         (2021) 12:4803 | https://doi.org/10.1038/s41467-021-24858-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


in our previous publication5. Briefly, We kept only mutations labeled as PASS by
the calling pipeline and filtered out mutations in poorly mappable and low-
complexity regions of the genome, as explained above. Clinical data of the donors
of these metastatic samples, obtained from HMF were processed, so that treatment
regimen were mapped to their unitary drugs and manually assigned drugs admi-
nistered to patients to 58 different FDA drug categories (https://www.accessdata.
fda.gov/cder/ndctext.zip). The start and end dates of treatments and the date of the
metastasis biopsy were used to calculate the time of treatment and the time
between the end of treatment and the biopsy.

(D) Blood samples of donors of the metastasis cohort. The WGS of both the tumoral
and blood control of the metastatic samples were obtained from the HMF repo-
sitory for downstream use in the identification of blood somatic mutations. The
identification of the somatic mutations in the blood samples of this cohort is
explained in Pich et al.46. Briefly, the variant calling was carried out using the
Google Cloud Platform (metastasis cohort). The matched blood and tumoral BAM
files—masked and deduplicated using GATK63—were aligned to the human
reference genome. The variant calling was carried out with Strelka264 employing
the blood sample as tumoral input and the tumor sample as control (reverse
calling). One metastatic sample was selected in the case of donors with more than
one. Only variants with two or more supporting reads matching the caller PASS
filter and with VAF < 0.5 were kept, and mutations in lowly mappable regions were
excluded. Variants observed at a greater frequency than known CH driver muta-
tions (see Pich et al.46) across a Panel of Normals (obtained from HMF) or
gnomAD70 v2.1 were removed, as were common SNPs and mutations within
segmental duplications, simple repeats, and masked regions. Finally, samples with
the mutation count in the 97.5 percentile of the mutation burden across the cohort
were deemed unreliable and excluded. Variants remaining after these filters were
deemed blood somatic mutations across the donors of metastatic tumors.

(E) Healthy blood samples. Whole-genome somatic variants of 23 healthy blood
samples were obtained from Osorio et al.35.

Mutational signatures extraction. Mutational signature extraction in the leuke-
mias in WGS AML cohort, the tumors in the metastasis cohort, and the healthy
blood samples in the metastasis cohort was performed using a non-negative matrix
factorization approach72,73. We employed the SigProfilerJulia (bitbucket.org/
bbglab/sigprofilerjulia) implementation built in our lab of the algorithm developed
by Alexandrov et al.5,72. The resulting signatures were then compared to the
PCAWG COSMIC V326 set using the cosine similarity measure. The Hemato-
poietic Stem Cell Signature (HSC Sig35) was computed as the average of the
number of mutations observed across the 23 healthy blood samples in each of the
96 tri-nucleotide channels and normalizing them by the total number of mutations
observed.

To test for the activity of a mutational signature in a specific sample we used the
mSigAct method49. Briefly, given a set of signatures bound to explain the
mutational catalogue of the samples (background signatures), this method tests
whether an additionally given signature (foreign signature) does improve the
sample catalogue reconstruction significantly. The method models the mutation
count data as being negative binomial distributed and conducts a likelihood ratio
test comparing the likelihood of the observed catalogue under two competitive
models: with/without the foreign signature. The method returns for each sample
the fitting exposures attributed to each signature (both background and foreign)
alongside the significance (p-value) yielded by the likelihood ratio test.

In the case of the metastatic samples the footprint was deemed as detectable
when both SigProfilerJulia and mSigAct report that the treatment signature was
active in the treated sample. The set of signatures deemed relevant according to
PCAWG26 in the respective tumor type cohort was used as a background.

The mutational profile of the 30 tAMLs in the WGS AML cohort was
reconstructed with a linear combination of the mutational signatures extracted
from a large pan-cancer cohort26 (see above) and the 5FU-related signature
identified in a previous article5. The deconstructSigs74 and the mSigAct49 methods
were employed in the reconstruction. As output of the reconstruction using
deconstructSigs we registered the activity (i.e., number of mutations) attributed to
the therapy-related signature. In the case of the mSigAct, the significance attributed
to the improvement of the reconstruction triggered by the inclusion of the therapy-
related signature (either platinum or 5FU) and its attributed activity were
measured.

Thirty-five de novo signature extractions were carried out (as explained above)
from all possible combinations of three annotated platinum-exposed tAMLs (out of
seven) and all the other AMLs in the WGS AML cohort. Each time, the mutational
profile of the signature most similar to SBS31 (and its cosine similarity) was
computed. Both were averaged across the 35 iterations.

Three synthetic tAML samples were generated using a combination of the HSC
signature and noise. Then, 279 (sd 71) mutations were injected following the
probabilities derived from the mutational profile of the 5FU-related signature
(SBS17b). A de novo signature extraction pooling these three synthetic samples and
the WGS AML cohort was carried out, and a signature with high cosine similarity
to the 5FU-related signature was detected.

Driver discovery. The discovery of genes with signals of positive selection in their
mutational pattern across the WES AML cohort was carried out using the IntOGen
pipeline42. Briefly, the IntOGen pipeline integrates seven complementary methods
to identify signals of positive selection in the mutational pattern of genes. The
IntOGen pipeline first pre-processes the somatic mutations in a cohort of tumors to
filter out hypermutators, map all mutations to the GRCh38 assembly of the human
genome and retrieve information necessary for the operation of the seven driver
detection methods. Then, the methods are executed and their outputs combined
using a weighted voting approach in which the weights are adjusted depending on
the credibility awarded to each method. Finally, in a post-processing step, spurious
genes that result from known artifacts are automatically filtered out. The version of
the pipeline used in this study to identify genes under positive selection across the
WES AML cohort and the blood samples of the metastasis cohort is described at
length at www.intogen.org/faq and in Martinez-Jimenez et al.42.

To discover drivers across the WES AML cohort, we selected 261 patients with a
matched healthy sample, whose somatic mutations were thus considered more
reliable. We ran the IntOGen pipeline on the mutations of these samples.
Mutations in these or other genes known to drive AMLs75 were selected across the
608 patients of the cohort to show in the heatmap of AML drivers. In addition, two
tAML cases in the cohort carried the MLL driver translocation.

Clonal and subclonal mutations. We used the MutationTime.R package50

(metastasis cohort) and the approach developed by McGranahan et al.76 (tAMLs)
to classify SBS in a tumor as clonal or subclonal. Then, we associated each mutation
uniquely with a mutational signature using a maximum likelihood approach5,77,
and we computed the proportion of clonal mutations amongst all platinum-
associated mutations across metastatic tumors.

Subsequently, we computed the fold change between the relative proportions of
clonal and subclonal mutations associated to the platinum-related signature.

Logistic regressions. Multivariate logistic regression analysis was carried out to
explore the association between a set of clinical factors and the ability to identify a
specific mutational signal associated with chemotherapy. The factors considered
were: time of treatment, time since the end of the treatment, specific tumor type,
and whether the metastatic site was considered distal. We considered any metas-
tasis in the same organ as the primary tumor, in a lymph node, or in the omentum
or peritoneum (in the case of abdominal primary sites) as proximal to the primary
tumor. Metastases in other sites were considered distal. Only tumor types with
more than 10 samples were considered for this analysis.

Different multivariate logistic models were considered, each reflecting the
sought effect and interactions between the covariates in plausible ways. Model
selection was then performed by computing the Bayesian Information Criterion
(BIC) and by cross-validation (30% test size, N= 100 randomizations) resulting in
an average area under the ROC curve (auROC). Model selection gave precedence to
models with low BIC and high auROC (Table S2). In both platinum and 5FU
treatments, the best model has the same form.

Compendium of CH drivers. A list of 64 genes bearing mutations with signals of
positive selection in blood samples was obtained from Pich et al.46.

Detection of chemotherapy-associated signatures in blood somatic mutations
in the metastasis cohort. We laid out a computational analysis to ascertain the
presence of a chemotherapy-induced signature in the blood samples of the
metastasis cohort. Given that the low mutation count yielded by the reverse
somatic mutation calling precludes a straightforward interpretation sample by
sample (high false discovery rate and low statistical power) we proceeded by
comparing the distribution of actual reconstructed exposures (inferred from the
samples of treated and untreated donors, respectively) against the distribution of
exposures reconstructed from synthetic catalogues where the foreign signature has
been injected at known levels of exposure.

Given each of 4 possible foreign signatures of interest (associated with platinum
and 5FU)5, we generated synthetic mutational catalogues with/without mutations
contributed by the foreign signature. Next, we interrogated the observed and
simulated catalogues with a state-of-the-art signature detection method that yields
a reconstructed exposure of the foreign signature and a significance level sample by
sample49. With these outputs we could assess the distributions arising from both
observed and synthetic catalogues, thereby assessing the activity of specific
mutational processes in a cohort of samples and empirically validating the
sensitivity and specificity of the approach. We provide a full description of the
methodology in the Supplementary Notes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Code availability
All analyses described in the paper were implemented in Python and R. All the code
needed to reproduce all analyses in the paper is available at https://bitbucket.org/bbglab/
evolution_hemato_therapy.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24858-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4803 | https://doi.org/10.1038/s41467-021-24858-3 | www.nature.com/naturecommunications 9

https://www.accessdata.fda.gov/cder/ndctext.zip
https://www.accessdata.fda.gov/cder/ndctext.zip
http://www.intogen.org/faq
https://bitbucket.org/bbglab/evolution_hemato_therapy
https://bitbucket.org/bbglab/evolution_hemato_therapy
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Data availability
The data employed in the paper is available through different sources. Whole-genome
sequences of AML in-house samples that were generated for this study are available on
the European Genome-Phenome Archive (EGA) under accession number
EGAS00001005234. Whole-genome sequences of previously published samples in the
WGS AML cohort are available through dbGAP under accession number phs000159 and
on EGA under accession number EGAD00001005028. Access to these datasets may be
requested via the European Genome-Phenome Archive or the Database of Genotypes
and Phenotypes, and is granted by the respective Data Access Committees. Somatic
mutations of samples in the WES AML cohort are available through the GDC repository
provided by the authors in the original publication of the beat AML cohort ([https://
pubmed.ncbi.nlm.nih.gov/30333627/]) and through the cbioportal under accession
number aml_ohsu_2018. Whole-genome sequences of tumor and blood samples in the
metastasis cohort are available from the Hartwig Medical Foundation for academic
research upon request ([https://www.hartwigmedicalfoundation.nl/en]). (Detailed
instructions to access the data of the Hartwig Medical Foundation may be found at
https://hartwigmedical.github.) Blood somatic mutations identified in this cohort are also
available from the Hartwig Medical Foundation for academic research upon request
([https://hartwigmedical.github.io/documentation/data-access-request-application.
html]), due to the extreme difficulty to fully anonymize the data. A detailed description
of this dataset of healthy blood somatic mutations identified across patients with
metastatic tumors included in the Hartwig Medical Foundation cohort appears at https://
doi.org/10.1101/2020.10.22.350140.
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