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Weighted Norm Inequalities and Indices

Joaquim Mart́ın∗ and Mario Milman

Abstract. We extend and simplify several classical results on weighted norm
inequalities for classical operators acting on rearrangement invariant spaces
using the theory of indices. As an application we obtain necessary and suffi-
cient conditions for generalized Hardy type operators to be bounded on Λp(w),

Λp,∞ (w), Γp(w) and Γp,∞(w).

1. Introduction

Ariño and Muckenhoupt [2] characterized the class of weights Bp for which the
Hardy-Littlewood maximal operator is bounded on classical Lorentz spaces Λp(w)
defined by f ∈ Λp(w) ⇔ ‖f‖Λp(w) < ∞, where the quasi norm ‖f‖Λp(w) is given by

(1.1) ‖f‖Λp(w) =
∥∥∥f∗w1/p

∥∥∥
Lp(0,∞)

= ‖f∗‖Lp(w)

(where f∗ is the non-increasing rearrangement of f (cf. section 2 bellow)). In [2]
it is shown that w ∈ Bp iff the Hardy operator Pf(t) = 1

t

∫ t

0
f(x)dx, restricted to

Lp(w)d = decreasing functions in Lp(w), (1 ≤ p < ∞) is bounded:

(1.2) w ∈ Bp ⇔ P : Lp(w)d → Lp(w)d.

Moreover, the following explicit characterization of Bp is given in [2]:

(1.3) Bp =
{

w ≥ 0 : ∃c > 0 s.t.
∫ ∞

r

( r

x

)p

w(x)dx ≤ c

∫ r

0

w(x)dx

}
.

Neugebauer [31] derived a similar characterization of B∗
p , the class of weights

for which the conjugate Hardy operator Qf(t) =
∫∞

t
f(x)dx

x is bounded when
restricted to Lp(w)d :

(1.4) w ∈ B∗
p ⇔ Q : Lp(w)d → Lp(w)d,
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namely

(1.5) B∗
p =

{
w ≥ 0 : ∃c > 0 s.t.

∫ r

0

(
log
( r

x

))p

w(x) dx ≤ c

∫ r

0

w(x) dx

}
.

The classes Bp and B∗
p are of interest in analysis since some of the basic re-

arrangement estimates for classical operators can be formulated in terms of inequal-
ities involving Hardy type operators acting on decreasing functions (cf. section 2
below). A body of literature has been devoted to study the structural properties
of these classes of weights (cf. [3], [16], [31], [32], [36], [38], [40], [42], and the
references therein).

A characterization of Bd
p = decreasing weights in Bp, had been given much

earlier by Lorentz [27]. An alternative very general approach was developed in the
late sixties by Boyd [9]. Among other things Boyd gave a very simple characteriza-
tion of the class of rearrangement invariant Banach spaces on which the maximal
operator of Hardy-Littlewood M acts continuously:

M : X → X ⇔ P : X → X ⇔ β̄X < 1,

where β̄X is the upper Boyd index of X (see section 2 for definitions). The difficulty
trying to apply this result in our context lies in the fact that Boyd’s theory was
developed for Banach spaces. In this context a curious situation arises for Lorentz
spaces since, while the restriction that w is decreasing is known to be a necessary
and sufficient condition for (1.1) to define a norm, a posteriori, it follows from
the results in [36] that if w ∈ Bp then Λp(w) can be realized as a Banach space
under the equivalent norm given by ‖f‖Λp(w) = ‖(Pf∗)w1/p‖Lp(0,∞). However, by
now it is well understood that Boyd’s methods can be extended in a straightforward
manner to quasi-Banach rearrangement invariant spaces (cf. [36], [25], [30]), thus
providing an alternative route to a complete characterization of Bp using Boyd’s
theory. Given a weight w, let W (r) =

∫ r

0
w(x)dx, then the characterization of Bp

that follows from Boyd’s theory can be explicitly expressed as follows (cf. [36])

(1.6) Bp =
{

w : ∃γ ∈ [0, 1), c > 0 s.t. ∀s ∈ (0, 1], sup
r>0

W (r)
W (rs)

≤ cs−γp

}
.

If we let MW (s) = supr>0
W (r)
W (rs) , then (1.6) simply states that β̄MW

, the upper
Matuszewska-Orlicz index of MW , satisfies

(1.7) β̄MW
< p.

We note in passing that this characterization in turn immediately implies the crucial
Bp ⇒ Bp−ε property discovered in [2] (cf. also [3] and the papers quoted therein).
Indeed, since w ∈ Bp ⇔ β̄MW

< p, it follows that for each w ∈ Bp there exists
ε = ε(w) > 0 such that β̄MW

< p− ε ⇒ w ∈ Bp−ε.
1

On a different direction, since Pχ(0,r)(t) = min(1, r
t ), we see that (1.3) can be

reformulated as

(1.8) w ∈ Bp ⇔ sup
r>0

∥∥Pχ(0,r)

∥∥
Lp(w)∥∥χ(0,r)

∥∥
Lp(w)

< ∞.

1As it will follow from our development this proof that Bp ⇒ Bp−ε also works when 0 < p <

∞. On a similar vein several self improving results for closely related classes of weights in [4] can
be derived in the same fashion.
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Similarly, since Qχ(0,r)(t) = log
(

r
t

)
χ(0,r)(t), we have (cf. (1.5))

(1.9) w ∈ B∗
p ⇔ sup

r>0

∥∥Qχ(0,r)

∥∥
Lp(w)∥∥χ(0,r)

∥∥
Lp(w)

< ∞.

Thus, in the context of Lp(w) spaces, to check the continuity of P on the class of
decreasing functions it is enough to test on the subclass χ = {χr = χ(0,r) : r > 0}.
The previous discussion can be summarized as follows:

(1.10) P : Lp(w)d → Lp(w)d ⇔ sup
r>0

∥∥Pχ(0,r)

∥∥
Lp(w)∥∥χ(0,r)

∥∥
Lp(w)

< ∞⇔ β̄Λp(w) = z̄Λp(w) < 1,

where z̄Λp(w) is the upper Zippin index of Λp(w). The Zippin indices are defined
exactly as the Boyd indices but considering only the class χ (cf. section 2 below
for the details).

In this paper we consider the following extended form of the Ariño-Muckenhoupt
problem: given a function space X on (0,∞) characterize the class of weights WX

for which there exists c > 0, such that for all f ∈ Xd = decreasing functions in X,
we have

(1.11) ‖(Pf)w‖X ≤ c ‖fw‖X .

In particular we study in detail the connection between index conditions and prop-
erties of the generalized classes WX . We aim to show that the added generality is
useful in as much as it allows to clarify and simplify results in the literature as well
as to provide new results for classical function spaces.

A first obstacle towards a general theory is that, in general, the Boyd and the
Zippin indices are different and thus a characterization of the type (1.3):

w ∈ WX ⇔ ‖(Pχ(0,r))w‖X ≤ c‖χ(0,r)w‖X ,

fails, in general. However, it turns out that while the Zippin indices do not con-
trol, in general, the action of P on all the decreasing functions, things improve
after we consider iterations of P (cf. Theorem 1 below). This phenomenon is thus
closely related to the self improving properties of these classes of weights. Our ap-
proach clarify the role of Zippin indices of a rearrangement invariant space, roughly
speaking, we shall show that in fact, they control the boundeddness of P ◦Pχ(0,r).

Another important tool in our development are certain ‘reverse’ estimates for gen-
eralized Hardy operators acting on decreasing functions (cf. [6], [35]). In the last
section of the paper we combine these reverse estimates and the theory of indices
to give an extension of a variant of the classical Gehring Lemma2 in the context of
rearrangement invariant spaces.

The paper is organized as follows. In section 2 we shall give some background
information and set up our notation. In section 3 we establish the relation between
the Zippin indices of a r.i. space and the boundedness of generalized Hardy type
operators restricted to the class χ. In section 4 we study the boundednees of
Hardy’s operators (and its variants) on all sorts of weigthed Lorentz spaces. This
problem has been studied by several authors (cf. for example [1], [3], [14], [15],
[20], [21], [34], [40], [42], [43] and the references quoted therein3) however these

2Gehring’s Lemma lies behind the self improving property of Ap weights: Ap ⇒ Ap−ε.
3We apologize in advance to the authors of papers not mentioned here.
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authors generally do not use the theory of indices for function spaces. We shall
present here an unified approach of this problem based on indices techniques (cf.
Theorem 4) that extend and simplify results available in the literature and which
allows us to give necessary and sufficient conditions for generalized Hardy type
operators to be bounded on Λp(w), Λp,∞ (w), Γp(w) and Γp,∞(w) (cf. section
4 below the definitions of these spaces). Finally, in section 5, using still another
variant of the Boyd indices (cf. [23]), we show another application of our generalized
reverse Hardy inequalities and prove a version of Gehring’s lemma (cf. [19]) in the
context of rearrangement invariant spaces.

2. Background

We consider the generalized Hardy operators defined by

Definition 1. Let 0 < q < ∞, 0 ≤ λ < 1, we let P
(q)
1−λ and Q

(q)
λ , be defined by

P
(q)
1−λf(t) =

(
1

t1−λ

∫ t

0

|f(x)|q dx

xλ

)1/q

, Q
(q)
λ f(t) =

(
1
tλ

∫ ∞

t

|f(x)|q dx

x1−λ

)1/q

, t > 0.

Note that Q
(1)
λ is the adjoint of P

(1)
1−λ, and if λ = 0, q = 1 then P

(1)
1 = P , Q

(1)
0 = Q.

It is well know that these operators, restricted to decreasing functions, control
the basic rearrangement inequalities associated with some of the classical operators
of analysis. For example, for the Hardy-Littlewood maximal operator M , defined
by

Mf(x) = sup
x∈Q

1
|Q|

∫
Q

|f(s)| ds = sup
x∈Q

‖fχQ‖L1

‖χQ‖L1

,

we have (see [22], and also [7])

(2.1) (Mf)∗(t) ' Pf∗(t) := f∗∗(t), t > 0,

where f∗(t) = inf {λ > 0 : |{x ∈ Rn : |f(x)| > λ}| ≤ t} is the non-increasing re-
arrangement of f with respect to Lebesgue measure on Rn, and as usual F ' G
indicates the existence of some universal constant c > 0 such that c−1F ≤ G ≤ cF .

A commonly used version of the maximal operator, Mqf = (M (|f |q))1/q, is
obtained by means of replacing L1−averages with Lq−averages, from (2.1) we ob-
tain

(Mqf)∗(t) ' P
(q)
1 f∗(t).

More generally Stein ([37]) introduced maximal operators associated with Lorentz
space Lp,q−averages as follows

Mp,qf(x) = sup
x∈Q

‖fχQ‖Lp,q

‖χQ‖p,q

= sup
x∈Q

‖fχQ‖Lp,q

|Q|1/p
, (1 ≤ q ≤ p).

We have (cf. [5])

(Mp,qf)∗ (t) ≤ c

(
1

tq/p

∫ t

0

f∗(x)q dx

x1−q/p

)1/q

= cP
(q)
q/pf

∗(t).

In the same way, if H is the Hilbert transform, then a classical result of O’Neil-Weiss
and Calderón (cf. [33], [12], and also [9]) gives
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(2.2) (Hf)∗(t) ≤ c (Pf∗(t) + Qf∗(t)) , t > 0.

Generalized Hardy operators also play an important role in the weak interpo-
lation theory of Calderón [12] and more generally in abstract real interpolation (cf.
[8], [11], [4], as well as the references therein.)

Throughout the paper we let L0 denote the vector space of all (equivalence
classes) of Lebesgue measurable real functions on R+ = (0,∞).

We shall say that X is a quasi-Banach function space if is a quasi-Banach
linear subspace of L0 with the following properties:

(1) (Lattice property) Given g ∈ X and f ∈ L0 such that |f | ≤ |g|, then
f ∈ X and ‖f‖X ≤ ‖g‖X .

(2) (Fatou property) 0 ≤ fn ↑ f a.e. ⇒ ‖fn‖X ≤ ‖f‖X .
A quasi-Banach function space X will be called a rearrangement invariant

space if f ∈ X ⇔ f∗ ∈ X and ‖f‖X = ‖f∗‖X .

Remark 1. If T is one of the above maximal operators and X is a quasi-Banach
rearrangement invariant space, then the boundedness of T on X is described by the
behavior of these generalized Hardy operators.

A decreasing function means a non-increasing and non-negative function on
R+, Xd = X ∩Ld

0, will denote the cone of all decreasing functions of X, and χ will
denote the set of all characteristic decreasing functions, that is

χ =
{
χr := χ(0,r) , r > 0

}
.

Given a weight w on R+, that is a positive and measurable function, we let
W (r) =

∫ r

0
w(x)dx, r > 0.

We write T : X −→ Y to indicate that T is a bounded operator between X
and Y.

We shall now briefly review the basic theory of indices that we need for our
purposes here, for further information we refer to [7], [26] and the literature quoted
therein.

The upper and the lower Boyd indices associated with a quasi-Banach
function space X are defined as follows. We associate to X a submultiplicative
increasing function: hX(α), which is the norm of the dilation operator D 1

α
f(t) =

f
(

t
α

)
on decreasing functions:

hX(α) = sup
f∈Xd

∥∥∥D 1
α
f
∥∥∥

X

‖f‖X
, α > 0.

Note that hX(α) < ∞ for all α > 1, or hX(α) = ∞ for all α > 1. Then, we let

βX = inf
α>1

lnhX(α)
lnα

= lim
α→∞

lnhX(α)
lnα

, β
X

= sup
α<1

lnhX(α)
lnα

= lim
α→0+

lnhX(α)
lnα

.

Similarly, the upper and the lower Zippin indices (cf. [44]) are defined as the
Matuszewska-Orlicz indices associated with the submultiplicative increasing func-
tion MX(α), which is the norm of the dilation operator Dαf(t) = f

(
t
α

)
restricted

to the set χ, i.e.
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MX(α) = sup
f∈χ

∥∥∥D 1
α
f
∥∥∥

X

‖f‖X

= sup
r>0

ϕX(rα)
ϕX(r)

, α > 0,

where ϕX(r) = ‖χr‖X , is the fundamental function of X. The Zippin indices
are likewise given by

zX = inf
α>1

lnMX(α)
lnα

= lim
α→∞

lnMX(α)
lnα

, zX = sup
α<1

lnMX(α)
lnα

= lim
α→0+

lnMX(α)
lnα

.

It follows readily from the obvious estimate MX(α) ≤ hX(α) that,

0 ≤ β
X
≤ zX ≤ zX ≤ βX ≤ ∞.

3. χ−Bounded Hardy type operators

In this section we establish a connection between the theory of Zippin indices
and the continuity of iterates of P

(q)
1−λ and Q

(q)
λ acting on χ.

We first single out the type of continuity that is naturally associated with the
Zippin indices (cf. [41] for a related type of continuity).

Definition 2. Let X be a quasi-Banach function space and let T a quasilinear
operator. We shall say that T is χ−X bounded if there exits a constant C = C(T,X)
such that for all f ∈ χ

‖Tf‖X ≤ C ‖f‖X .

Lemma 1. Let X be a quasi-Banach function space. Let 0 < q < ∞, then

(1) If 0 ≤ λ < 1, P
(q)
1−λ is χ−X bounded if and only if∥∥∥(r

t

) 1−λ
q

χ(r,∞)(t)
∥∥∥

X
≤ C‖χ(0,r)(t)‖X for all r > 0.

(2) If λ 6= 0, Q
(q)
λ is χ−X bounded if and only if∥∥∥(r

t

)λ
q

χ(0,r)(t)
∥∥∥

X
≤ C‖χ(0,r)(t)‖X , for all r > 0.

(3) Q
(q)
0 is χ−X bounded if and only if∥∥∥( ln

(r

t

)) 1
q

χ(0,r)(t)
∥∥∥

X
≤ C‖χ(0,r)(t)‖X for all r > 0.

Proof. Note that by the lattice property if f, g ≥ 0 then

‖f‖X + ‖g‖X ≤ 2 ‖f + g‖X ≤ 2c (‖f‖X + ‖g‖X) .

Using this property and

P
(q)
1−λχ(0,r)(t) = (1− λ)−1/q min

(
1,
(r

t

) 1−λ
q

)
,

statement (1) follows immediately.
A computation shows that

Q
(q)
λ χ(0,r)(t) = λ−1/q

[(r

t

)λ

− 1
]1/q

χ(0,r)(t),



WEIGHTED NORM INEQUALITIES AND INDICES 7

consequently Q
(q)
λ is χ−X bounded if and only if∥∥∥[(r

t

)λ

− 1
]1/q

χ(0,r)(t)
∥∥∥

X
≤ C‖χ(0,r)‖X .

Since (a + b)1/q ' a1/q + b1/q (a ≥ 0, b ≥ 0) we get that(r

t

)λ/q

'
[(r

t

)λ

− 1
]1/q

+ 1

and (2) follows readily.
Finally, using

Q
(q)
0 χ(0,r)(t) =

(
ln
(r

t

))1/q

χ(0,r)(t),

part (3) follows immediately. �

In this section we will quantify the extent to which the Zippin indices can be
used to characterize the χ−boundedness of Hardy type operators. Observe that if
X is a rearrangement invariant quasi-Banach space, then (cf. Theorem 1 below),

(3.1) zX <
1− λ

q
⇒ P

(q)
1−λ is χ−X bounded,

(3.2) zX >
λ

q
⇒ Q

(q)
λ is χ−X bounded.

However (cf. Remark 3 below), if P
(q)
1−λ (resp. Q

(q)
λ ) is χ − X bounded then, in

general, we can only deduce that zX ≤ 1−λ
q (resp. zX ≥ λ

q ). For example, if
X = L2,∞ is the space weak-L2, i.e.

L2,∞ = {f ∈ L0 : ‖f‖L2,∞ = sup
0<t<∞

f∗(t)t1/2 < ∞}

then ‖χr‖L2,∞ ' r1/2, ‖P (1)
1/2χr‖L2,∞) ' r1/2, and therefore P

(1)
1/2 is χ − L2,∞

bounded, however zL2,∞ = 1/2.
Our main result in this section shows however that the χ − X boundedness

of iterates of P
(q)
1−λ or Q

(q)
λ is controlled by the Zippin indices of the quasi-Banach

function space X. The proof relies on a suitable modification of the classical iteration
methods of Boyd and Montgomery-Smith (cf. [9] and [30, Theorem 2]).

We shall need the following version of the Aoki-Rolewicz Theorem :

Remark 2. (Cf. [30, Lemma 6]) Let X be a quasi-Banach function space, then
for all q > 0, there is a number 0 < s ≤ q such that∥∥∥∥∥∥

( ∞∑
n=0

|fn|q
)1/q

∥∥∥∥∥∥
X

≤ c

( ∞∑
n=0

‖fn‖s
X

)1/s

.

The next two Lemmas collect some results that will be useful in what follows.

Lemma 2. Let 0 < q < ∞, 0 ≤ λ < 1, 0 < ε, then if λ + ε < 1

(1) P
(q)
1−λ−εχr(t) =

( ∞∑
n=0

εn

[(
P

(q)
1−λ

)n+1

χr(t)
]q)1/q

.

(2) Q
(q)
λ+εχr(t) =

(∑∞
n=0 εn

[(
Q

(q)
λ

)n+1

χr(t)
]q)1/q

.
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Proof. By induction and a straightforward application of Fubini theorem we
obtain
(3.3)[(

P
(q)
1−λ

)n+1
χr(t)

]q
=


n+1︷ ︸︸ ︷

P
(q)
1−λ ◦ · · · ◦ P

(q)
1−λχr(t)


q

=
1

t1−λ

∫ t

0

χr(x)
ln( t

x )n

n!
dx

xλ
.

Therefore by the monotone converge theorem and a simple summation of series we
see that for 0 < λ + ε < 1 we get the desired result.

Statement (2) follows from

(3.4)
[(

Q
(q)
λ

)n+1

χr(t)
]q

=
1
tλ

∫ ∞

t

χr(x)
ln(x

t )n

n!
dx

x1−λ
.

�

Lemma 3. Let α > 1, then

(1) P
(q)
1−λ ◦ P

(q)
1−λχr(t) ≥

(
lnα

(1− λ)α1−λ

)1/q

χαr(t), (0 ≤ λ < 1).

(2) Q
(q)
λ ◦Q

(q)
λ χr(t) ≥

(
α (lnα− 1) + 1

α1−λ

)1/q

χ r
α
(t), (λ 6= 0).

(3) Q
(q)
0 χr(t) ≥ (lnα)1/q

χ r
α
(t).

Proof. Using (3.3) and the fact that χr(x) ln( t
x ) is a decreasing function of

x, we get

P
(q)
1−λ ◦ P

(q)
1−λχr(t) ≥

(
1

t1−λ

∫ t/α

0

χr(x) ln
(

t

x

)
dx

xλ

)1/q

≥
(

χr(t/α) ln α

(1− λ)α1−λ

)1/q

.

Statement (2) follows from (3.4), since

Q
(q)
λ ◦Q

(q)
λ χr(t) ≥

(
1
tλ

∫ αt

t

χr(x) ln
(x

t

) dx

x1−λ

)1/q

≥
(

χr(αt)
α1−λ

1
t

∫ αt

t

ln
(x

t

)
dx

)1/q

=
(

χ r
α
(t)

α (lnα− 1) + 1
α1−λ

)1/q

.

Finally (3) follows from(∫ ∞

t

χ
r
(x)

dx

x

)1/q

≥
(∫ αt

t

χ
r
(x)

dx

x

)1/q

≥ (lnα)1/q
χ r

α
(t).

�

Theorem 1. Let X be a quasi-Banach function space, 0 < q < ∞, then:

(a) P
(q)
1−λ ◦ P

(q)
1−λ is χ−X bounded if and only if zX < 1−λ

q , (0 ≤ λ < 1).

(b) Q
(q)
λ ◦Q

(q)
λ is χ−X bounded if and only if zX > λ

q , (λ 6= 0).

(c) Q
(q)
0 is χ−X bounded if and only if zX > 0.
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Proof. To see (a) suppose that P
(q)
1−λ◦ P

(q)
1−λ is χ−X bounded, and let α > 1.

By Lemma 3-(1) we get

C ≥ sup
r>0

∥∥∥P (q)
1−λ ◦ P

(q)
1−λχr

∥∥∥
X

‖χr‖X

≥
(

lnα

(1− λ)α1−λ

)1/q

sup
r>0

‖χαr‖X

‖χr‖X

=
(

lnα

(1− λ)α1−λ

)1/q

MX(α) ≥
(

lnα

(1− λ)α1−λ

)1/q

αzX .

Thus zX < 1−λ
q . To prove the converse we first prove that P

(q)
1−λ is χ−X bounded.

To this end note that

P
(q)
1−λχr(t) =

(∫ 1

0

χr(ξt)
dξ

ξλ

)1/q

≤ C

( ∞∑
n=0

2−n(1−λ)χ2nr(t)

)1/q

.

Therefore, if we pick s, 0 < s ≤ q, as in Remark 2, we have∥∥∥P (q)
1−λχr

∥∥∥
X
≤ c

( ∞∑
n=0

2−
ns(1−λ)

q ϕX(r2n)s

)1/s

≤ cϕX(r)

( ∞∑
n=0

2−
ns(1−λ)

q MX(2n)s

)1/s

.

Let ε > 0, be such that zX +ε <
1− λ

q
, then by definition it follows that there exists

C > 0 such that MX(2n) ≤ C2n(zX+ε), whence
( ∞∑

n=0
2−

ns(1−λ)
q MX(2n)s

)1/s

< ∞.

Consequently P
(q)
1−λ is χ − X bounded for any 0 ≤ λ < 1 such that zX < 1−λ

q .

The fact that P
(q)
1−λ is χ−X bounded does not, a priori, imply that its iterates are

χ − X bounded. In fact note that P
(q)
1−λχr does not belong to χ. However, since

we have proved that a family of operators P
(q)
1−λ is χ−bounded, the boundedness of

iterates can be extrapolated as follows. By our previous discussion if we select ε

such that zX <
1− λ− ε

q
<

1− λ

q
, it follows that P

(q)
1−λ−ε is χ −X bounded. By

Lemma 2-(1) it follows that

ε1/qP
(q)
1−λ ◦ P

(q)
1−λχr(t) ≤ P

(q)
1−λ−εχr(t),

therefore P
(q)
1−λ ◦P

(q)
1−λ is χ−X bounded. The proof of parts (b) and (c) are almost

identical to the case (a) if we use Lemma 2-(2) and Lemma 3 parts (2) and (3). �

Remark 3.

(3.5) If P
(q)
1−λ is χ−X bounded ⇒ zX ≤ 1− λ

q
.

(3.6) If Q
(q)
λ is χ−X bounded ⇒ zX ≥ λ

q
, (λ 6= 0).

Note that if X is a quasi-Banach function space then Xd ⊂ L∞(ϕX)d. Indeed,
if f ∈ Xd, r > 0, then we have

f(r) ‖χr‖X = ‖f(r)χr‖X ≤ ‖fχr‖X ≤ ‖f‖X .
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Moreover X and L∞(ϕX) have the same fundamental function. Obviously if P
(q)
1−λ

is χ−X bounded then P
(q)
1−λ is χ− L∞(ϕX) bounded. Thus for all t > 0 we have,(

χ(0,r)(t) +
(r
t

) 1−λ
q χ(r,∞)(t)

)
ϕX(t) ≤ CϕX(r).

If we now let t = αr, α > 1 then we see that

ϕX(αr)
ϕX(r)

≤ Cα
1−λ

q ,

and (3.5) follows. To prove (3.6) we proceed as in Theorem 1 using the inequality

Q
(q)
λ χr(t) ≥

(
1
tλ

∫ αt

t

χr(x)
dx

x1−λ

)1/q

≥

(
χr(αt)

(
αλ − 1

)
λ

)1/q

.

The following corollary can be proved using the same methods.

Corollary 1. Let X be a quasi-Banach function space, 0 < q < ∞, then the
following statements are equivalent:

(a) P
(q)
1−λ ◦ P

(q)
1−λ is χ − X bounded ⇔ ∃ε > 0 such that P

(q)
1−λ−ε is χ − X

bounded ⇔ P
(q)
1−λ ◦ ..(n..◦P

(q)
1−λ is χ−X bounded for all n ≥ 1, (0 ≤ λ < 1).

(b) Q
(q)
λ ◦Q

(q)
λ is χ−X bounded ⇔ ∃ε > 0 such that Q

(q)
λ+ε is χ−X bounded

⇔ Q
(q)
λ ◦ ..(n.. ◦Q

(q)
λ is χ−X bounded for all n ≥ 1, (λ 6= 0).

(c) Q
(q)
0 is χ − X bounded ⇔ ∃ε > 0 such that Q

(q)
ε is χ − X bounded ⇔

Q
(q)
0 ◦ ..(n.. ◦Q

(q)
0 is χ−X bounded for all n ≥ 1.

Remark 4. Note that, in general, if P
(q)
1−λ◦ P

(q)
1−λ (resp. Q

(q)
λ ◦Q(q)

λ ) is χ−bounded

we cannot deduce that P
(q)
1−λ (resp. Q

(q)
1−λ) is bounded on decreasing functions. For

example, in [39] the author exhibits a rearrangement invariant Banach space X
such that zX = zX = 1

2 , but β
X

= 0 and βX = 1, therefore while Theorem 1 im-
plies that P and Q are χ−X bounded, by Boyd’s theory P and Q are not bounded
on X, (cf. [9] or [7, Chapter 3, Theorem 5.15]).

If the Boyd and Zippin indices coincide the χ− boundedness of P
(q)
1−λ◦ P

(q)
1−λ

(resp. Q
(q)
λ ◦Q

(q)
λ , or Q

(q)
0 ) is equivalent to the boundedness of P

(q)
1−λ (resp. Q

(q)
λ ) on

decreasing functions. The next Theorem thus follows immediately from Theorem
1 and [30, Theorem 2].

Theorem 2. Let X be a quasi-Banach function space, 0 < q < ∞. Then,

(a) If βX = zX , P
(q)
1−λ is bounded when restricted to decreasing functions if

and only if P
(q)
1−λ ◦ P

(q)
1−λ is χ−X bounded, (0 ≤ λ < 1).

(b) If β
X

= zX , Q
(q)
λ is bounded when restricted to decreasing functions if and

only if Q
(q)
λ ◦Q

(q)
λ is χ−X bounded, (λ 6= 0).

(c) If β
X

= zX , Q
(q)
0 is bounded when restricted to decreasing functions if and

only if Q
(q)
0 is χ−X bounded.
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4. Applications

Definition 3. We say that a quasi-Banach function lattice X belongs to the
class Wλ,q (0 ≤ λ < 1) iff

P
(q)
1−λ is χ−X bounded ⇒ P

(q)
1−λ ◦ P

(q)
1−λ is χ−X bounded.

In the same way, we say that X belongs to the class W ∗
λ,q (0 ≤ λ < 1) iff

Q
(q)
λ is χ−X bounded ⇒ Q

(q)
λ ◦Q

(q)
λ is χ−X bounded.

In terms of the Zippin indices the above definition is equivalent to (cf. Theo-
rem 1)

X ∈ Wλ,q ⇔ zX <
1− λ

q
, and X ∈ W ∗

λ,q ⇔ zX >
λ

q
.

Remark that by Theorem 1-(c) every quasi-Banach function lattice X belongs
to the class W ∗

0,q. However as we have seen in Remark 3 the P
(q)
1−λ χ−X boundedness

(resp. Q
(q)
λ χ−X boundedness) does not imply that X ∈ Wλ,q (resp. X ∈ W ∗

λ,q).
In this general context the property X ∈ Wλ,q (resp. X ∈ W ∗

λ,q) is related with
some self improving properties of classes of weights that we shall now discuss.

Definition 4. Let 0 < p < ∞, 0 ≤ λ < 1, we consider the following classes of
weights

(4.1) Bp =
{

w ≥ 0 : ∃c > 0 s.t.
∫ ∞

r

( r

x

)p

w(x)dx ≤ c

∫ r

0

w(x)dx

}
.

(4.2)

B∗
λ,p =

w ≥ 0 : ∃c > 0 s.t.



∫ r

0

( r

x

)λp

w(x) dx ≤ c

∫ r

0

w(x) dx , λ 6= 0,

∫ r

0

(
log
( r

x

))p

w(x) dx ≤ c

∫ r

0

w(x)dx, λ = 0.


Remark 5. If 0 < p < ∞, 0 ≤ λ < 1, from Lemma 1 we have

(1) P
(q)
1−λ is χ− Lp(w) bounded ⇔ w ∈ B (1−λ)p

q
.

(2) Q
(q)
λ is χ− Lp(w) bounded ⇔ w ∈ B∗

λ, p
q
.

These classes of weights have some self improving properties that have been
proved by several authors (cf. [2], [3], [38] and the papers quoted therein for the
Bp class, and [31, Theorem 3.2] for the B∗

λ,p weights). In the next Lemma we
collect these properties and give an alternative proof which gives the optimal range
of ε′s for which the implication “B∗

λ,p ⇒ B∗
λ+ε,p” holds.

Lemma 4. Let 0 < p < ∞, 0 < λ < 1. The following statements hold

(1) (cf. [38]) If w ∈ Bp then there exists ε > 0 such that w ∈ Bp−ε. Moreover,
if c is the best constant such that (4.1) holds, then ε < p

c+1 .

(2) If w ∈ B∗
λ,p then there exists ε > 0 such that w ∈ B∗

λ+ε,p. Moreover, if c

is the best constant such that (4.2) holds, then ε < λ
c−1 .

In both cases the upper bound on ε is the best possible.
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Proof. For (1) see [38, Lemma 3].
To see (2) recall that w ∈ B∗

λ,p is equivalent to

(4.3)
∫ x

0

w(t)
tpλ

dt ≤ c

xpλ

∫ x

0

w(t)dt, x > 0.

Choose 0 < ε < λ
c−1 , multiply (4.3) by x−εp−1 and integrate from 0 to r. Changing

the order of integration we arrive to

1
εp

∫ r

0

w(t)
tpλ

(
t−εp − r−εp

)
dt ≤ c

p(λ + ε)

(∫ r

0

w(t)
(
t−p(λ+ε) − r−p(λ+ε)

)
dt

)
.

Therefore using (4.3) once again we get(
1
ε
− c

(λ + ε)

)∫ r

0

w(t)
tp(λ+ε)

dt ≤
(

1
ε
− 1

(λ + ε)

)
c

rp(λ+ε)

∫ r

0

w(t)dt.

To show that λ
c−1 is best possible consider w(x) = xα, α > λp− 1. �

Theorem 3. Let 0 < p, q < ∞, 0 ≤ λ < 1, then
(a) Lp(w) ∈ Wλ,q ⇔ Lp,∞(w) ∈ Wλ,q ⇔ w ∈ B p(1−λ)

q
.

(b) Lp(w) ∈ W ∗
λ,q ⇔ Lp,∞(w) ∈ W ∗

λ,q ⇔ w ∈ B∗
λ, p

q
.

Proof. (a) Since Lp(w) ∈ Wλ,q is equivalent to zLp(w) < 1−λ
q , to prove the

first equivalence it is enough to see that

zLp(w) = zLp,∞(w)

which follows readily from

MLp,∞(w)(α) = sup
r>0

(
W (αr)
W (r)

) 1
p

= MLp(w)(α).

Assume now that w ∈ B p(1−λ)
q

, by Lemma 4-(1) there exists δ > 0 such that

w ∈ B p(1−λ)
q − δq

p
, therefore letting ε = δq

p we have w ∈ B p(1−λ−ε)
q

. It follows that

P
(q)
1−λ−ε is χ − Lp(w) bounded and by Corollary 1-(a) we get that P

(q)
1−λ ◦ P

(q)
1−λ is

χ−Lp(w) bounded which is equivalent to Lp(w) ∈ Wλ,q. The converse is obvious.
Let us now to see (b). Since

zLp(w) = zLp,∞(w)

the first equivalence follows as in the previous case. If λ = 0 the second equivalence
follows from Theorem 1-(c). Suppose that w ∈ B∗

λ, p
q
, λ 6= 0. By Lemma 4-(2),

there exists ε > 0 such that w ∈ B∗
λ+ε, p

q
thus Q

(q)
λ+ε is χ − Lp(w) bounded and by

Corollary 1-(b), Q
(q)
λ ◦Q

(q)
λ is χ− Lp(w) bounded, as required. �

The main result of this section gives a characterization of the continuity of
P

(q)
1−λ and Q

(q)
λ on Lp(w)d, Lp,∞(w)d, Γp(w) and Γp,∞ (w) spaces (0 < p < ∞). We

start by recalling the definitions of the spaces Γp(w) and Γp,∞ (w).

Γp(w) =

{
f ∈ L0 : ‖f‖Γp(w) =

(∫ ∞

0

f∗∗(x)pw(x) dx

)1/p

< ∞

}
,



WEIGHTED NORM INEQUALITIES AND INDICES 13

and

Γp,∞ (w) =

{
f ∈ L0 : ‖f‖Γp,∞(w) = sup

0<t<∞
f∗∗(t)

(∫ t

0

w(x) dx

)1/p

< ∞

}
,

where as usual we let f∗∗ = Pf∗.
We also let

Λp(w) =

{
f ∈ L0 : ‖f‖Λp(w) =

(∫ ∞

0

f∗(x)pw(x) dx

)1/p

< ∞

}
,

(note that Λp(w)d = Lp(w)d), and

Λp,∞ (w) =

{
f ∈ L0 : ‖f‖Λp,∞(w) = sup

0<t<∞
f∗(t)

(∫ t

0

w(x) dx

)1/p

< ∞

}
.

Observe that if f is decreasing then

(4.4) ‖f‖Lp,∞(w) = sup
t>0

(
t1/p

∫
{s:f(s)>t}

w(s) ds
)

= sup
t>0

f(t)
(∫ t

0

w(s)ds

)1/p

,

(therefore we have Λp,∞ (w)d = Lp,∞(w)d.)

Remark 6. The spaces Λp(w) and Γp(w) are called classical Lorentz spaces.
The spaces Λp,∞(w) and Γp,∞(w) are called weak Lorentz spaces. The spaces Λp(w)
were introduced by Lorentz in 1951 in [27]. The spaces Γp(w) were first used by
Sawyer in [41]. The weak Lorentz spaces were introduced in [15].

We assume in what follows that if X = Γp(w) and 0 < p < 1, then w satisfies
the non-degeneracy conditions (cf. [20])

(4.5)
∫ ∞

0

w(s)
(s + 1)p

ds < ∞,

∫ 1

0

w(s)
sp

ds =
∫ ∞

1

w(s)ds = ∞.

It will be convenient to state and prove the following

Lemma 5. If X = Lp(w), X = Lp,∞(w), X = Γp,∞(w) or X = Γp(w) then
βX = zX and β

X
= zX .

Proof. Note that the result will follow if can show that, there is a constant
c > 0 such that hX(α) ≤ cMX(α). We shall prove this claim for each of the spaces
under consideration. For X = Lp(w), the result is known for w decreasing (cf. [26,
page 98]), however the same proof works for general w. We now consider the case
X = Lp,∞(w). Let f be a given decreasing function, then by (4.4) we have∥∥∥D 1

α
f
∥∥∥

Lp,∞(w)
= sup

t>0
f

(
t

α

)
W (t)1/p = sup

z>0
f(z)W (αz)1/p

≤ MLp,∞(w)(α) sup
z>0

f(z)W (z)1/p.

Thus,
hLp,∞(w)(α) ≤ MLp,∞(w)(α).

In the case that X = Γp,∞(w), since

ϕΓp,∞(w)(t) = t sup
s≥t

W (s)1/p

s
, t > 0,
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we get

MΓp,∞(w)(α) = sup
t>0

ϕΓp,∞(w)(αt)
ϕΓp,∞(w)(t)

= sup
t>0


tα sup

s≥tα

W (s)1/p

s

sup
s≥t

W (s)1/p

s

 = sup
t>0


sup
s≥t

W (αs)1/p

s

sup
s≥t

W (s)1/p

s

 .

Then

‖D 1
α
f‖Γp,∞(w) = sup

t>0
f∗∗
( t

α

)
W (t)1/p = sup

t>0
f∗∗(t)W (αt)1/p

≤ sup
t>0

∫ t

0

f∗(s) ds sup
s≥t

W (αs)1/p

s

≤ sup
t>0


sup
s≥t

W (αs)1/p

s

sup
s≥t

W (s)1/p

s

 sup
t>0

∫ t

0

f∗(s) ds sup
s≥t

W (s)1/p

s

= MΓp,∞(w)(α) sup
t>0

∫ t

0

f∗(s) ds sup
s≥t

W (s)1/p

s
.

Since (see [13, Remark 2.11 (iv)])

‖f‖Γp,∞(w) = sup
t>0

∫ t

0

f∗(s) ds sup
s≥t

W (s)1/p

s

we obtain,
hΓp,∞(w)(α) ≤ MΓp,∞(w)(α).

Finally, if X = Γp(w), then we compute

MΓp(w)(α) = sup
r>0

∥∥∥D 1
α
χr

∥∥∥
Γp(w)

‖χr‖Γp(w)

= sup
r>0

(∫ αr

0
w(x)dx + αprp

∫∞
αr

w(x)dx
xp∫ r

0
w(x)dx + rp

∫∞
r

w(x)dx
xp

)1/p

.

Now, if 1 ≤ p < ∞, by [21, Theorem 3.7] we get that(∫ ∞

0

D 1
α
f∗∗(x)pw(x)dx

)1/p

=
(∫ ∞

0

f∗∗(x)pαw(αx)dx

)1/p

≤ MΓp(w)(α)
(∫ ∞

0

f∗∗(x)pw(x)dx

)1/p

.

If 0 < p < 1, since w satisfies the non-degeneracy conditions (4.5), by [20, Theorem
3.2] there is a constant c = c(p) (which only depends of p)4 such that(∫ ∞

0

f∗∗(x)pαw(αx)dx

)1/p

≤ cMΓp(w)(α)
(∫ ∞

0

f∗∗(x)pw(x)dx

)1/p

,

therefore in both cases,
hΓp(w)(α) ≤ cMΓp(w)(α).

4A perusal of the constants in the proof of [20, Theorem 3.2] shows that if we fix a > 4, then

c(p) =
21+1/pa

(ap − 1)1/p

(
1

2−p −
(

2
a

)p
)1/p

.
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�

Theorem 4. Let 0 < p, q < ∞, 0 ≤ λ < 1. Then,

(a) P
(q)
1−λ : Λp(w) → Λp(w) ⇔ w ∈ B p(1−λ)

q
⇔ P

(q)
1−λ : Λp,∞(w) → Λp,∞(w).

(b) Q
(q)
λ : Lp(w)d → Lp(w) ⇔ w ∈ B∗

λ, p
q
⇔ Q

(q)
λ : Lp,∞(w)d → Lp,∞(w).

(Moreover w ∈ B∗
0, p

q
⇔ P ◦ Pw(r) ≤ CPw(r), i.e. B∗

0, p
q

= B∗
0,1).

(c) P
(q)
1−λ : Γp(w) → Γp(w) ⇔

∥∥∥P (q)
1−λ ◦ P

(q)
1−λχr

∥∥∥
Γp(w)

≤ C ‖χr‖Γp(w).

(d) Q
(q)
λ : Γp(w)d 7→ Γp(w) ⇔

∥∥∥Q(q)
λ ◦Q

(q)
λ χr

∥∥∥
Γp(w)

≤ C ‖χr‖Γp(w) , (λ 6= 0).

(e) Q
(q)
0 : Γp(w)d → Γp(w) ⇔

∥∥∥Q(q)
0 χr

∥∥∥
Γp(w)

≤ C ‖χr‖Γp(w).

(f) If we replace Γp(w) by Γp,∞(w) in (c), and Γp(w)d by Γp,∞(w)d in (d)
and (e) the corresponding statements remain true.

Proof. (a) Since
(
P

(q)
1−λf

)∗
≤ P

(q)
1−λf∗ we only need to prove the boundedness

of P
(q)
1−λ on decreasing functions. By Theorem 3 we know that

w ∈ B p(1−λ)
q

⇔ zΛp(w) <
1− λ

q
.

By Lemma 5, zΛp(w) = βΛp(w), thus Theorem 2 applies.
To see the claim in (b) stating that

w ∈ B∗
0, p

q
⇔ P ◦ Pw(r) ≤ CPw(r),

let us observe that, by Theorem 1-(c), w ∈ B∗
0, p

q
is equivalent to zLp(w) > 0.

Moreover, using the readily seen fact that zLp(w) =
1
p
zL1(w), we have that zLp(w) >

0 if and only if zL1(w) > 0 (i.e. Q : L1(w)d −→ L1(w)). Therefore,

Q
(q)
0 : Lp(w)d −→ Lp(w) ⇔ Q : L1(w)d −→ L1(w),

in other words
w ∈ B∗

0, p
q
⇔ w ∈ B∗

0,1,

as we wished to show.5

To see (c) by Theorem 1∥∥∥P (q)
1−λ ◦ P

(q)
1−λχr

∥∥∥
Γp(w)

≤ C ‖χr‖Γp(w) ⇔ zΓp(w) <
1− λ

q

and since (cf. Lemma 5) zΓp(w) = βΓp(w), Theorem 2 applies.
Finally, parts (d), (e) and (f) can be proved in the same way. �

Corollary 2. If w is decreasing then we have (cf. [16])

Q
(q)
0 : Lp(w)d −→ Lp(w) ⇔ P ◦ Pw(r) ≤ CPw(r) ⇔ Pw(r) ≤ Cw(r).

5It follows that the boundedness of Q
(q)
0 on Lp(w) on decreasing functions does not depend

on p. (cf. [31, Theorem 3.3] for Lp(w), 1 ≤ p <∞ and q = 1 and [17] if 0 < p < 1 and q = 1).
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Remark 7. Theorem 4 extends and simplifies several results that appear in the
literature. Note that if q = 1, λ = 0 and 1 ≤ p < ∞, the first equivalence in (a)
is the result of Ariño-Muckenhoupt [2] (cf. [31, Theorem 2.3] for the case q = 1,
0 < λ < 1, 1 ≤ p < ∞ and [38, Theorem 7] if 1 < q < ∞, λ = 0 and p = 1). If
q = 1, λ = 0 the second equivalence in (a) was proved by Soria [40, Theorem 3.1].
If q = 1, 0 < λ < 1 and 1 ≤ p < ∞, the first equivalence in (b) was proved by
Neugebauer [31, Theorem 3.1]. Finally observe that condition Bp implies Bp−ε is
equivalent to the χ − Lp(w) boundedness of P ◦ P , and from this condition it now
follows immediately that P is bounded on Λp(w).

Remark 8. If X is a rearrangement invariant Banach space then the inequal-
ity (cf. [26, page 126])

1
x

∫ x

0

Pχr (t) dt ≥
(

lnα + 1
α

)
1
x

∫ x

0

D 1
α
χr (t)dt, (α > 1, x > 0)

implies (cf. [12])

‖Pχr‖X ≥ lnα

α

∥∥∥D 1
α
χr

∥∥∥
X

.

Hence if P is χ−X bounded we have

C ≥ sup
r>0

‖Pχr‖X

‖χr‖X

≥ lnα

α
sup
r>0

‖χαr‖X

‖χr‖X

=
lnα

α
MX(α) ≥ lnα

α
αzX ,

which implies that zX < 1. Therefore, every rearrangement invariant Banach space
X belongs to W0,1. Applying this observation to Γp(w), 1 ≤ p < ∞, we find that

P : Γp(w) → Γp(w) ⇔ ‖Pχr‖Γp(w) ≤ C ‖χr‖Γp(w) .

Moreover the condition to the right is readily seen to be equivalent to
(4.6)

sup
t>0

t

(∫ ∞

t

x−p log (x/t)w(x)dx

)1/p(∫ t

0

w(x) dx + tp
∫ ∞

t

w(x)
dx

xp

)−1/p

< ∞.

Consequently we obtain a new proof of Stepanov’s result (cf. [42, Theorem 5.1]):

P : Γp(w) −→ Γp(w) ⇔ (4.6) holds.

It is of interest to point out that the Zippin indices of a rearrangement invariant
Banach space X are related to the best B1−constant associated to its fundamental
function ϕX . Let X be a rearrangement invariant Banach space with concave
fundamental function (cf. [7, Chapter 2, Proposition 5.11]). Suppose that ϕX(0+) =
0, then

(4.7) ϕX(t) =
∫ t

0

φX(s)ds,

where φX is a decreasing function. Consider the rearrangement invariant Banach
space Λ1(φX), it is known (cf. [10]) that

βΛ1(φX) = inf
λ>0

{
1− 1

λ
: P1− 1

λ
is bounded on Λ1(φX)

}
,

which in turn is equivalent to

(4.8) βΛ1(φX) = inf
λ>0

{
1− 1

λ
: φX ∈ B1− 1

λ

}
.
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If φX /∈ B1 then the infimum in (4.8) is equal to 1. If φX ∈ B1 by Lemma 4-1, there
exists ε > 0 such that φX ∈ B1−ε and we have

sup{ε : φX ∈ B1−ε} =
1

‖φX‖B1
+ 1

,

where

‖φX‖B1
= inf

{
c > 0;

∫ ∞

r

φX(s)
ds

s
≤ c

r

∫ r

0

φX(s) ds, r > 0
}

.

Moreover, since (cf. [32, Theorem 2.2])

‖φX‖B1
+ 1 = ‖P‖Λ1(φX)

it follows from that
βΛ1(φX) = 1− 1

‖P‖Λ1(φX)

.

But by Lemma 5, zΛ1(φX) = βΛ1(φX). Moreover, since X and Λ1(φX) have both the
same fundamental function (cf. (4.7)),

(4.9) zX = 1− 1
‖P‖Λ1(φX)

.

Boyd [10] proves that
1

1− βX

= ρX(P ),

(where ρX(P ) is the spectral radius of P on X). Hence using Gelfand’s formula for
the spectral radius and (4.9) we obtain

‖P‖Λ1(φX) =
1

1− zX
≤ 1

1− βX

= ρX(P ) = lim
n→∞

‖Pn‖1/n
X .

Thus,
βX = zX ⇔ ‖P‖Λ1(φX) = inf

n≥1
‖Pn‖1/n

X .

Let us also note that since P : X → X if and only if Q : X ′ → X ′ (where X ′ is the
associate space of X (cf. [7]) and β

X
= 1 − βX′ and zX = 1 − zX′ , it is easy to

derive a similar result for the lower Zippin indices.
The next proposition follows readily from the above definitions

Proposition 1. Let X be a rearrangement invariant Banach space and let
0 < q < ∞, 0 ≤ λ < 1. Then there are equivalent

(1) X ∈ Wλ,q (resp. X ∈ W ∗
λ,q).

(2) Λ1(φX) ∈ Wλ,q (resp. Λ1(φX) ∈ W ∗
λ,q).

(3) φX ∈ B (1−λ)
q

(resp. φX ∈ B∗
λ,q).

For Orlicz spaces the Boyd and Zippin indices coincide (cf. [7, Chapter 4,
Lemma 8.17 and Theorem 8.18]) and therefore by combining the above proposition
and Theorem 2 we can easily prove the following

Proposition 2. Let Φ a Young’s function. Then P
(q)
1−λ : LΦ −→ LΦ is bounded

(where LΦ is a Orlicz space endowed with the Luxemburg norm) if and only if 1
Φ−1( 1

t )

belongs to the Muckenhoupt class A (1−λ)
q +1

.
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Proof. It is well know (cf. [7, Chapter 4, Lemma 8.17] ) that

ϕLΦ(t) =
1

Φ−1( 1
t )

then by Theorem 2, P
(q)
1−λ : LΦ −→ LΦ is bounded if and only if zLΦ < 1−λ

q . By
Proposition 1 this is equivalent to ∂

∂tϕLΦ(t) ∈ B (1−λ)
q

, and now [18, Theorem 3.1]
applies. �

5. Gehring’s Lemma for rearrangement invariant spaces.

Let X be a rearrangement invariant Banach space. For 1 ≤ r < ∞, we consider
the space

X(r) =
{

f ∈ L0; ‖f‖X(r) = ‖|f |r‖1/r
X < ∞

}
.

It is easy to see that (X(r), ‖.‖X(r)) is also a rearrangement invariant Banach space.
In this section it will be technically convenient to work with still a somewhat differ-
ent class of indices apparently introduced by Herz [23] who calls them “exponents
of X.”

Let X be a rearrangement invariant Banach lattice, then following [23] we
define the lower and the upper exponents of X as

γ
X

= lim
α→0+

1− hX(1− α)
α

and γX = lim
α→0+

hX(1 + α)− 1
α

.

Since [23] is not readily available in the next Lemma we reproduce some results
from the manuscript that we needed here.

Lemma 6. (cf. [23])
(1) 0 ≤ γ

X
≤ β

X
≤ βX ≤ γX ≤ 1.

(2) max(αβ
X , αβX ) ≤ hX(α) ≤ max(αγ

X , αγX ).
(3) ‖P‖X ≤ 1

1−γX
.

(4) γ
X(r) =

γ
X

r and γX(r) = γX

r .

Proof. Define δ : R → R by δ(x) = ln hX(ex). Since hX is a quasi-concave
increasing, submultiplicative, function, it follows that δ is increasing, x → x −
δ(x) is decreasing, δ(0) = 0, and δ is subadditive (i.e. δ(x + y) ≤ δ(x) + δ(y)).6

For h > 0 we have 0 ≤ h−1δ(h) ≤ 1 and δ(h) ≥ −δ(−h) ≥ 0. It follows that
γX = lim inf

h→0+
h−1δ(h) and γ

X
= lim sup

h→0+
−h−1δ(−h). And similarly βX =

lim sup
h→∞

h−1δ(h) and β
X

= lim inf
h→−∞

h−1δ(h). Now properties (1) and (2) follow

immediately. Part (3) follows from the inequality ‖P‖X ≤
∫∞
1

hX(t)t−2dt ≤ 1
1−γX

.

For (4) we use the fact that hX(r)(α) = (hX(α))1/r
. �

Theorem 5. Let 1 < p < ∞ and suppose that g and h are positive functions
such that there exists a constant c > 0 such that for all cubes Q ⊂ Rn with sides
parallel to the coordinate axes, we have(

1
|Q|

∫
Q

g(x)pdx

)1/p

≤ c
1
|Q|

∫
Q

g(x)dx + c

(
1
|Q|

∫
Q

h(x)pdx

)1/p

6Such a function is necessarily continuous.
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Then, there exist ε > 0 such that for all rearrangement invariant Banach spaces X
such that 1− ε ≤ γ

X
≤ γX < 1, if g, h ∈ X(p) there exist a constant C = C(c,X)

such that
‖g‖X(p) ≤ C ‖h‖X(p) .

Proof. We adapt the method used in [29]. In terms of the maximal operator
of Hardy-Littlewood M, we have

Mpg ≤ c(Mg + Mph),

where Mp = M(|f |p)1/p. Therefore by Herz’s inequality (cf. [7])

P
(p)
1 g∗(t) ≤ c(Pg∗(t/2) + P

(p)
1 h∗(t/2)).

Using (cf. [26, page 126])

1
r

∫ r

0

(
P

(p)
1 g∗(t)

)p

dt ≥
(

lnα + 1
α

)
1
r

∫ r

0

D 1
α
g∗(t)pdt, α > 1

and the fact that X(p) is a rearrangement invariant Banach space, we get (cf.
Remark 8)

(
lnα + 1

α

)1/p ∥∥∥D 1
α
g
∥∥∥

X(p)
≤
∥∥∥P (p)

1 g
∥∥∥

X(p)
≤ c(

∥∥∥PD 1
2
g
∥∥∥

X(p)
+
∥∥∥P (p)

1 D 1
2
h
∥∥∥

X(p)
).

Since βX(p) ≤ γX(p) =
1
p
γX <

1
p
, P

(p)
1 is bounded in X(p), furthermore, by

Lemma 6-(4), ‖P‖X(p) ≤
1

1− γX

p

. Thus

(
lnα + 1

α

)1/p

‖D 1
α
g‖X(p) ≤ 2c

1

1− γX

p

‖g‖X(p) + C(X, p, c) ‖h‖X(p) .

Since ‖g‖X(p) = ‖DαD 1
α
g‖X(p) ≤ ‖Dα‖X(p)‖D 1

α
g‖X(p) , it follows that

(5.1)
(

lnα + 1
α

)1/p ‖g‖X(p)

‖Dα‖X(p)

≤ 2c
1

1− γX

p

‖g‖X(p) + C(X, p, c) ‖h‖X(p) .

Now by Lemma 6-(2) we see that

‖Dα‖X(p) = hX(p)(1/α) ≤ (1/α)γ
X(p) = (1/α)

γ
X
p .

Thus

sup
α>1

((
lnα + 1

α

)1/p ‖g‖X(p)

‖Dα‖X(p)

)
≥ sup

α>1

(
lnα + 1
α1−γ

X

)1/p

‖g‖X(p)(5.2)

=

(
e−γ

X

1− γ
X

)1/p

‖g‖X(p) .

Combining (5.2) with (5.1) we get



20 JOAQUIM MARTÍN∗ AND MARIO MILMAN

(5.3)

( e−γ
X

1− γ
X

)1/p

− 2c

 1

1− γX

p


 ‖g‖X(p) ≤ C(X, p, c) ‖h‖X(p) .

Thus we see that if γ
X

is sufficiently close to 1, the left hand side of (5.3) is bigger
than 0, and we obtain

‖g‖X(p) ≤ C ‖h‖X(p) .
�

Remark 9. If X is a rearrangement invariant Banach space such that 1− ε <
γ

X
≤ γX < 1, where ε is taken such that the left hand side of (5.3) is bigger than

zero, then there exists δ > 0 such that X(1+δ) satisfies that 1 − ε ≤ γ
X(1+δ) ≤

γX(1+δ) < 1 and (5.3) is bigger than zero for X(1+δ), so in this case the Theorem
says that ‖g‖X(p(1+δ)) ≤ C ‖h‖X(p(1+δ)) . Observe that for example when X = L1+ε

then ‖g‖Lp(1+ε) ≤ C ‖h‖Lp(1+ε) (cf. [29].)

Remark 10. If X a is a rearrangement invariant Banach space satisfying

hX(α) = αβX if α > 1 and hX(α) = αβ
X if α < 1,

then is it possible to formulate the result above in terms of Boyd indices.

Remark 11. The assumption that g ∈ X(p) can be now removed by an approx-
imation argument as indicated in [24].

Remark 12. For a version of the Gehring Lemma using Boyd indices in the
case that X is a Orlicz space see [28].

Acknowledgement 1. We are grateful to the referee for useful remarks and
suggestions to improve the paper.
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