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Integrative epigenomics 
in Sjögren´s syndrome reveals 
novel pathways and a strong 
interaction between the HLA, 
autoantibodies and the interferon 
signature
María Teruel1, Guillermo Barturen1, Manuel Martínez‑Bueno1, Olivia Castellini‑Pérez1, 
Miguel Barroso‑Gil1, Elena Povedano1, Martin Kerick2, Francesc Català‑Moll3,4, 
Zuzanna Makowska5, Anne Buttgereit5, PRECISESADS Clinical Consortium*, 
PRECISESADS Flow Cytometry Study Group*, Jacques‑Olivier Pers6, Concepción Marañón1, 
Esteban Ballestar3,4, Javier Martin2, Elena Carnero‑Montoro1,42* &  
Marta E. Alarcón‑Riquelme1,7,42*

Primary Sjögren’s syndrome (SS) is a systemic autoimmune disease characterized by lymphocytic 
infiltration and damage of exocrine salivary and lacrimal glands. The etiology of SS is complex with 
environmental triggers and genetic factors involved. By conducting an integrated multi‑omics study, 
we confirmed a vast coordinated hypomethylation and overexpression effects in IFN‑related genes, 
what is known as the IFN signature. Stratified and conditional analyses suggest a strong interaction 
between SS‑associated HLA genetic variation and the presence of Anti‑Ro/SSA autoantibodies in 
driving the IFN epigenetic signature and determining SS. We report a novel epigenetic signature 
characterized by increased DNA methylation levels in a large number of genes enriched in pathways 
such as collagen metabolism and extracellular matrix organization. We identified potential new 
genetic variants associated with SS that might mediate their risk by altering DNA methylation or 
gene expression patterns, as well as disease‑interacting genetic variants that exhibit regulatory 
function only in the SS population. Our study sheds new light on the interaction between genetics, 
autoantibody profiles, DNA methylation and gene expression in SS, and contributes to elucidate the 
genetic architecture of gene regulation in an autoimmune population.

Primary Sjögren’s syndrome (SS) [MIM 270150] is a systemic autoimmune disease characterized by lymphoid 
infiltration and tissue damage of the exocrine glands, mainly the salivary and lacrimal  glands1. The prevalence 
of SS is about 1% of the World population being the main risk group middle-aged women. SS patients show 
great clinical heterogeneity that is manifested at the serological, genetic, and cellular level and in their capacity to 
respond to treatment. SS patients with anti-Ro/SSA or anti-La/SSB autoantibodies usually develop a more severe 
disease with systemic manifestations and the appearance of lymphomas in a percentage of  them2.
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The etiology of SS is complex and not completely understood; environmental, genetic and epigenetic factors 
are known to be involved in its  development1,3–5. Genome-wide association studies (GWAS) have signified an 
important advance for understanding the mechanisms involved in the pathogenesis of SS. There are currently 
around 10 well-known risk loci implicated in SS susceptibility that have been revealed by GWAS  studies3–5. The 
loci identified suggest the importance of the adaptive and innate immune responses in SS pathology, especially the 
interferon (IFN) signaling pathway. Other important pathways include B cells signaling and autoantibody pro-
duction, the NF-kB signaling pathway and the T cell activation through the major histocompatibility  complex6. 
Many of the variants detected in GWAS studies are located in non-coding intron or intergenic regions, suggesting 
that they have a regulatory role that is fairly  unexplored7,8. Moreover, the identified SS-associated genetic variants 
can only explain a small proportion of the heritability observed in  SS9, suggesting the possible contribution of 
many gene variants at the low-frequency spectrum, with lower effect sizes, and/or the implication of gene-by-
environment interactions.

Functional approaches based on genome-wide data of the epigenome or the transcriptome are allowing to 
dive depth into the genetics of transcriptional regulation by detecting variants with potential regulatory effect, 
i.e., expression quantitative trait loci (eQTLs)8 or methylation quantitative trait loci (meQTLs)  discovery10,11. An 
increasing number of studies are showing widespread regulatory effects of disease associated genetic variants 
and are helping to mechanistically explain the genetic risk of disease. Functional genomics approaches have been 
applied very successfully in cancer research, and to some extent to autoimmune diseases as well, especially in 
rheumatoid arthritis (RA)12,13 and systemic lupus erythematosus (SLE)14,15 , but only recently in  SS16.

Epigenetic alterations can be integrators of the complex interaction between genes and the environment and 
are known to play a relevant role in autoimmunity by altering gene expression profiles in response to genetic 
factors, changing environment and immunological  conditions17,18. Recently, a few epigenome-wide association 
studies (EWAS) have been performed in different cell types and have consistently found a pervasive hypometh-
ylation in CpG sites within genes related with the type I IFN signaling, confirming this pathway as key in SS 
 pathology19–21. Likewise, gene expression profiling of minor salivary glands or peripheral blood showed a consist-
ent upregulation of IFN-inducible genes associated with SS, which was found more pronounced in the subset of 
cases serologically defined by increased titers of anti-Ro/SSA and anti-La/SSB  autoantibodies22,23.

Despite an increasing number of studies interrogating different layers of molecular information, the exist-
ing integrative approach for SS mainly focuses on deciphering the regulatory roles of previously known disease 
associated genetic variants discovered by  GWAS16,24. Therefore, these studies have not contributed to the iden-
tification of new risk variants associated with SS with regulatory function that could explain further the miss-
ing heritability of this complex  disease20. Furthermore, the vast majority of large-scale QTL studies have been 
performed in healthy populations, and do not directly compare the genetic regulatory effects between cases and 
controls, which could very much be different as the pathological condition imposes a different environmental and 
cellular context in affected individuals, especially in immune-related conditions, as we have recently described in 
scleroderma  patients25. In this regard, several experimental studies have shown that eQTL and meQTL effects are 
highly context-specific, as for example cell-type specific effects have been found when studying different blood 
cell  types26–28, and experimental studies of ex-vivo activation of immune cells have shown that eQTLs profiles 
are altered upon different  stimuli29,30.

This work represents the first epigenome- and transcriptional-wide integrative study that combines high 
throughput data on genetics, DNA methylation and gene expression coupled with serological and clinical profiles 
in a large group of SS patients and healthy subjects. It contributes, on the one hand, to identify new molecular 
pathways involved in SS. On the other hand, this work identifies putative novel genetic variants implicated in 
the disease through changes in DNA methylation or gene expression variants with regulatory effects exhibiting 
disease-specificity, therefore contributing to elucidate the genetic architecture of gene regulation in an autoim-
mune population. Finally, this work dissects the relationships between HLA variation, autoantibody profiles and 
the interferon signature in SS.

Results
Differentially methylated positions associated with SS. We explored the DNA methylation patterns 
associated with SS comparing the whole blood DNA methylation level between 189 SS patients and 220 heathy 
subjects (Supplementary Table 1) using the Infinium MethylationEPIC BeadChip with which we could interro-
gate 776,284 autosomic CpG sites. In total, we observed 118 differential methylated positions (DMPs) associated 
with SS at a Bonferroni-corrected threshold of P < 6.4 ×  10–08 (Supplementary Table 2). The majority of SS-asso-
ciated DMPs exhibited decreased methylation levels in SS patients compared with controls (91.5%), supporting 
the overall hypomethylation previously described in SS patients (Fig. 1a)19,20. The 118 SS-associated DMPs were 
annotated to 52 unique genes and 7 intergenic regions. The majority of them fell within promoters (49.2%) and 
gene bodies (40.7%), and only 4.2% were located in the 3’UTR. SS-associated DMPs were mainly distributed 
in open sea and shore CpGs and only 5 DMPs fell in CpG islands (Supplementary Fig.  1). We included an 
independent cohort formed by 60 SS patients and 89 healthy individuals (Supplementary Table 1) from whom 
we had DNA methylation data available from the 450 K array which contained half of the SS-associated DMPs 
detected in our discovery cohort. At a P < 0.05 we could successfully replicate 84.7% (Supplementary Table 2). 
The top 10 SS-associated DMPs with an average methylation difference |Δβ|> 0.1 were located within IFI44L, 
MX1, PARP9-DTX3L, NLRC5, IFIT1, IFIT3, IFITM1, PLSCR1, PDE7A and DDX60 genes, all of them known to 
be regulated by type I IFN. The most significant DMPs was the cg05696877 probe in the IFI44L gene for which 
an average methylation difference |Δβ|= 0.36 was observed (P = 3.5 ×  10–27; FDR = 2.7 ×  10–21) between SS and 
controls. Functional analyses for genes underlying SS-DMPs confirmed an enrichment of GO terms related 
with IFN signaling (GO:0060337; P = 3.5 ×  10–31; GO:0034340; P = 31.37 ×  10–30) as well as with defense response 
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to virus (GO:0051607; P = 2.3 ×  10–23) and cytokine-mediated signaling (GO:0019221; P = 1.63 ×  10–19) (Supple-
mentary Table 4).

We searched for CpGs that exhibit differences in DNA methylation variability between SS patients and con-
trols and named these variable methylated positions (VMPs) (Supplementary Table 2). We observed that 80% of 
SS-associated DMPs also exhibited evidence of increased DNA methylation variability at a significance level of 
P < 0.05 in SS patients compared with healthy controls. In our replication cohort, we could replicate 83.3% of the 
VMPs observed. The increased DNA methylation variability associated with SS is especially pronounced for MX1 
and PARP9-DXT3L genes for which we observed the largest variability differences. Increases in variabiltity might 
reflect epigenetic plasticity in immune-related cells and/or reflect that DNA methylation is regulated by diverse 
transcription factors involved in different inflammatory and immune signaling during disease  progression31–35.

DNA methylation is an epigenetic mark that changes with environmental triggers as for example drugs. We 
investigated whether our SS-associated signatures were driven by the most common treatments in our SS patients 
by adjusting the linear model for treatments such as antimalarial, steroids, and immunosuppressive therapy (see 
details of the treatment applied to the individuals in each cohort in Supplementary Table 1). Our results show that 
most of the SS-DMPs (80.5%) remained significantly associated at our threshold P < 6.4 ×  10–08 while the reminder 
showed suggestive associations, of P < 1 ×  10–04, indicating that therapy applied to the SS patients does influence 
the DNA methylation patterns associated with SS only in a minority of sites, with modest effects (Supplementary 
Table 3). In fact, a comparison of the effect size of the 118 significant SS-DMPs obtained in these 2 analyses, when 
including or not the therapy as covariate in the linear regression, showed high correlation (Pearson’s correlation 
R = 0.99, P = 2.2 ×  10–6). Similar results were also observed in the replication cohort, for which we observed a 
high replication rate (81.0%) (Supplementary Table 3). Differences in DNA methylation levels and variability 
of CpGs located in the X-chromosome were also evaluated in females of the discovery cohort, we could not 
find any significant differences in females at a significance level corrected for multiple testing (data not shown).

Figure 1.  DNA methylation and gene expression patterns associated with SS. Volcano plot for the differential 
DNA methylation association study in the discovery cohort. P-values are represented on the –log10 scale in the 
y-axis. The effect size and direction obtained for each CpG site is depicted in the x-axis. Green dots represent 
significant associations with negative sign (hypomethylation). Red dots represent significant associations 
with positive signs. The top associations are labeled with gene names. (b) Volcano plot for the differential 
expression analysis in the discovery cohort. The effect size and direction obtained for each gene is depicted in 
the x-axis. Green dots represent significant associations with positive sign (overexpression). Red dots represent 
significant associations with negative signs. The top associations are labeled with gene names. (c) Plots showing 
high correlation between an average of DNA methylation quantified as β-values at the promoters of the most 
significant SS-associated DMRs and gene expression at the logarithmic scale. R  software73 and Adobe Illustrator 
(https:// www. adobe. com/) was used to create figures.

https://www.adobe.com/
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The IFN epigenetic signature in SS is shaped by Anti‑La/SSA and associated with classII HLA 
genetic variation. Hypomethylation at IFN-regulated genes has been strongly associated with the pres-
ence of anti-Ro/SSA and/or anti-La/SSB autoantibodies previously 36. Stratified analyses based on anti-La/SSB 
and anti-Ro/SSA autoantibodies positivity show in our data that the epigenetic signature is observed only when 
positive anti-Ro/SSA patients were compared with healthy subjects (Supplementary Table 3, Fig. 2a-b). Indeed, 
all associations became far from genome-wide significant (P > 0.006) when the model that includes positive and 
negative SS patients was adjusted by anti-Ro/SSA presence or when only patients negative for SSA were con-
trasted with controls (P > 0.05). Hierarchal clustering shows that DNA methylation profiles in anti-Ro/SSA nega-
tive patients resembles that observed in healthy controls rather than to anti-Ro/SSA positive patients (Fig. 2b). 
While stratifying analyses based anti-La/SSB patients also yielded stronger associations in the positive group, 
all associations found could be explained by the presence of anti-Ro/SSA autoantibodies and nothing remained 
significant after adjustment for anti-Ro/SSA (Supplementary Table 3, Fig. 2b). Patients positive for both anti-Ro/
SSA and anti-La/SSA exhibited the strongest DNA methylation differences. See for example, in Fig. 2c, the DNA 
methylation difference at IFI44L gene (cg13452062) in all SS patients (|Δβ|= 0.40) goes up to |Δβ|= 0.53 when 
only SSA + patients are analysed, and is increased up to |Δβ|= 0.60 in the SSA + /SSB + group, and goes down to 
|Δβ|= 0.03 in the negative-group. This trend is conserved across all SS-associated CpGs (Fig. 2b, d, e).

Previous studies have recently shown that genetic association between HLA and SS is dependent on autoan-
tibody  profiles36. In order to further explore the possible link between HLA and the epigenetic IFN signature, we 
imputed classical HLA alleles and performed a series of logistic and linear regression models based on stratifica-
tion and conditional analyses. At a significance level corrected for multiple testing we identified 2 class II HLA 
alleles (HLA-DQB1-0201 and HLA-DRB1-0301) associated with increased risk for SS (P < 3 ×  10–07) which also 
are associated with the Anti-La/SSA presence (P < 2 ×  10–04) and with the IFN epigenetic signature (P < 1 ×  10–04) 
measured as the decreased in DNAm at IFN-related genes (Table 1). Conditional analyses revealed that the 
relationship between HLA-DQB1-0201 and HLA-DRB1-0301 and the epigenetic IFN signature is lost when the 
presence of Anti-Ro/SSA is included in the model. We also categorized SS patients as positive or negative for 
the epigenetic IFN signature (see method) and observed that the association between HLA and SS is only seen 
in positive IFN signature SS patients (P < 8 ×  10–04), and not present in negative IFN signature patients (P > 0.4).

In the absence of autoantibodies, we cannot observe the HLA genetic associations with SS, and all the epi-
genetic signals associated with SS disappear, at least when analyzing single CpG-sites (Supplementary Table 3). 
Altogether, our results suggest that there is a complex and a strong interaction between genetic variation in the 
HLA region, the presence of anti-Ro/SSA antibodies and the IFN-epigenetic signature observed in SS.

Differentially methylated regions associated with SS. We sought to identify differentially methyl-
ated regions (DMRs) associated with SS with the purpose of finding subtle, but consistent, methylation changes 
within a region that could not be detected when analyzing CpG sites by themselves. At FDR 5% threshold, we 
identified DMRs within 135 gene bodies, 335 promoters and 219 in CpG islands (CGI) (Supplementary Table 5). 
We found that many of the SS-associated DMPs (55.6%) were SS-associated DMRs, as for examples differentially 
methylated promoters for IFI44L, OAS2, RSAD2, BST2, PARP9-DTX3L, IFITM1, MX1, EPSTI1 or LY6E, and 
differentially methylated gene bodies of AGRN, IRF7, B2M, HERC5, ADAR and SP100, among others.

Importantly, we identified 442 novel differentially methylated genes exhibiting DMRs but for which we did 
not find DMPs. We could not perform a strict replication of these signatures because DNA methylation was 
measured in a different array (450 K) in the replication sample, and this implies having lower coverage in the 
pre-defined regions analyzed. However, we found out that up to 45% novel DMRs, lying within 199 genes, showed 
robust signals in the independent sample (P < 0.05) (Supplementary Table 5). Among the novel genes impli-
cated in SS we found new interferon-regulated genes, such as SAMHD1, ISG15 and XAF1; and other proteins 
related with the immune system such the Tumor Necrosis Factor, TNF, the TNF-receptor CD27, the chemokine 
receptor like protein 2, CCRL2, and the tyrosine kinase LCK. We also discovered a group of genes belonging 
to the HOX family, such as HOXB2, HOXD8, HOXA9, HOXA10 or HOXA4, that is implicated in transcrip-
tional processes, as well as other transcription factors such CEBPD and GATA2. Interestingly, we discovered a 
large group of genes with differential methylated regions implicated in collagen metabolism such as COL11A2, 
COL18A1, COL27A1, COL13A1, COL23A1 and COL5A1 that were not previously identified. In addition, many 
DMRs, especially those that fell in CGI, were located within long non-coding RNAs (LncRNAs), as for example 
RP11-723C11.2, RP11-326C3.7, RP11-480D4.2 or RP11-89K21.1 (see Supplementary Table 5). We performed 
functional enrichment analyses for the set of genes showing lower DNA methylation in the SS group (64%) and 
separately those with increased DNA methylation (34%). On one hand, DMRs with negative signs showed an 
enrichment in well known pathways implicated in SS such as interferon and cytokine signaling (R-HSA-913531 
and R-HSA-1280215, respectively, from Reactome database), as well as in NOD-like receptor signaling pathway 
(KEGG path:hsa04621), viral carcinogenesis (KEGG path:hsa05203), transcriptional misregulation in cancer 
(path:hsa05202), necroptosis (KEEF path:hsa04217). On the other hand, those genes showing DMRs with positive 
effects were found to be enriched in pathways such as Collagen biosynthesis and modifying enzymes (Reactome, 
R-HSA-1650814) and extracellular matrix organization (Reactome R-HSA-1474244) (Fig. 2, Supplementary 
Table 6), which represent novel molecular pathways implicated in SS, and might indicate that the hypermethyla-
tion of these genes can be implicated in SS pathogenesis by down-regulating these molecules.

Differential expression around SS‑associated epigenetic signals. In order to detect coordinated 
epigenetic and transcriptional changes associated with SS, we explored the possibility that the DNA methyla-
tion observed at the majority of SS-associated DMRs correlates with the expression of genes in the proximity. 
We identified 422 differentially expressed genes (DEGs) associated with SS when comparing RNA-seq gene 
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expression data available for 174 SS patients and 135 healthy subjects in our discovery cohort (P < 1.6 ×  10–6), the 
majority of them show increased expression in SS patients and were successfully replicated in our independent 
sample (85.5% and 88.2%, respectively) (Fig. 1b and Supplementary Table 7). IFI44L was observed as the most 
significant differentially expressed gene  (Log2FC = 3.12; P = 7.6 ×  10–55; FDR = 3.3 ×  10–50). Not surprisingly, many 
overexpressed genes were related with the IFN signaling (65/422), such as EPSTI1, RSDA2, USP18 or CMPK2 
(Table 2), but a large proportion of SS-DEGs belong to other functional categories, being enriched in pathways 
such as response to external biotic stimulus (GO:0043207), response to stress (GO:0006950), interspecies inter-
action between organisms (GO:0044419), protein binding (GO:0005515), RNA binding (GO:0003723) or nega-
tive regulation of biological processes (GO:0048519) (Supplementary Table 8).

Next, we investigated whether DNA methylation at DMRs and gene expression at DEGs are correlated and if 
this correlation is associated with SS status and could, therefore, represent coordinated effects on SS, by expression 

Figure 2.  Effect of Autoantibody profile in SS-associated epigenetic signals. (a) Hierarchical clustering 
representation from SS patients and healthy individuals (in columns) accordingly to DNA methylation levels 
(in rows) at the top SS-associated CpG sites. Subjects are classified according to disease status (green) and the 
presence of Anti-Ro/SSA (purple) and Anti-La/SSB (light blue) autoantibodies. (b) Barplot representing the 
effect sizes obtained in different models where DNA methylation was contrasting between different SS patients 
(according to autoantibody profiles). Black bar is a model that contrasted SSA- SS patients with CTRLs. Grey 
bar is a model that included all SS patients and was adjusted by SSA. Green bar is a model that included all SS 
patients and was unadjusted by SSA. Yellow line is a model that compared SSA + SS patients and CTRL. Blue 
line is a model that contrasted SSA + patients with CTRLs adjusted by SSB. Red bar is a model that contrasted 
SSA + SSB + patients and CTRLs. (c) Boxplots representing DNA methylation differences across different groups 
in three selected genes. R  software73 and Adobe Illustrator (https:// www. adobe. com/) was used to create figures.

Table 1.  Genetic associations between HLA variation, presence of Anti-La/SSA autoantibodies and epigenetic 
IFN signature. β reflects the additive effect of allele dosage for different HLA alleles and P is the associated 
significance level. The association between HLA genetic variation, SS and SSA was determined by means of 
logistic regression adjusted by sex and age. The association between HLA genetic variation and epigIFN was 
determined by linear regression models adjusted by sex, age, cell proportions and batch effects. epigIFN 
refers to the epigenetic IFN signature. DNA methylation at IFI44L gene (cg13452062) was used as a proxy for 
epigIFN. Patients exhibiting DNAm > 0.8 were classified as negative epigIFN. Patients exhibiting DNAm < 0.8 
were classified as positive epigIFN.

HLA Alleles

SS ~ HLA SSA ~ HLA epigIFN ~ HLA epigIFN ~ HLA + SSA
SS ~ HLA (positive 
epigIFN)

SS ~ HLA (negative 
epigIFN)

beta.HLA P.HLA beta.HLA P.HLA beta.HLA P.HLA beta.HLA P.HLA beta.HLA P.HLA beta.HLA P.HLA

DRB1_0301 1.14 2.07E-07 0.27 1.02 x  10–04  − 0.17 9.16 x  10–05  − 0.06 0.142 1.40 7.14 x  10–09  − 0.30 0.470

DQB1_0201 1.16 1.39E-07 0.29 2.03 x  10–05  − 0.18 6.55 x  10–05  − 0.05 0.210 1.44 2.58 x  10–09  − 0.29 0.493

https://www.adobe.com/
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quantitative trait methylation (eQTM) analyses. We observed a total of 48 eQTMs or genes showing a strong 
correlation between DNA methylation levels and gene expression (Pearson’s coefficient > 0.60, P < 1.6 ×  10–34) 
(Supplementary Table 9). Many of the SS-eQTMs fell within the promoters of the IFN-related genes, such as 
IFI44L (Fig. 1c), EPSTI1, MX1, DTX3L, PAPR9, LY6E, IFITM3, DDX60, RSAD2, PLSCR1 and ADAR. For all of 
them we observed that decreased DNA methylation strongly correlated with increased expression levels in SS 
patients, while no correlation was apparent in the healthy population. Interestingly, we observed strong coor-
dinated effects at other non IFN-regulated genes implicated in the immune system such as CD3D, FGR, PILRA 
or NLRC4, and in genes with unrecognized function in SS, such as MDGA1, PM20D1 and SIRPB2 (Pearson’s 
coefficient > 0.80). Genes showing correlated patterns of DNA methylation and gene expression were enriched 
mainly in immune-related gene ontologies being the most significant, immune response (GO:0006955), defense 
response (GO:0006952), activation of the immune response (GO:0002253) and response to stress (GO:0006950) 
(Supplementary Table 10). Our results suggest that SS-associated changes in DNA methylation can impact the 
transcriptional landscape in SS patients, and this could ultimately lead to alteration in the cellular function and 
immune response.

Genetic drivers of SS‑associated differential methylation and expression. To obtain insights 
into the extent to which differential methylation and expression associated with SS is genetically controlled, we 
performed cis-meQTL and cis-eQTL analyses (see Methods). By means of linear regression models that adjust 
for disease conditions, we found evidence for genetic control in 52% of SS-associated DMPs and 39% of SS-asso-
ciated DEGs (gene variants no farther than 1 Mb to CpG or to transcription start site—TSS). Specifically, at an 
FDR of 5% we found a total of 4,305 significant meQTLs that included 61 SS-DMPs and 3,508 single-nucleotide 
polymorphisms (SNPs). We were able to assess the replication of 1475 meQTLs that involved 31 CpGs included 
in the 450 K array and replicated results for 20 CpGs (64%) that were involved in 754 meQTLs (P < 0.05) (Sup-
plementary Table 11). The most significant meQTLs regulate DNA methylation at the EPSTI1 gene, at an inter-
genic region in chromosome 3 where CCR cluster is located, and at VRK2, ADAR, IRF7 and MX1 genes. On the 
other hand, we identified a total of 11,399 significant eQTLs, that included 172 SS-DEGs and 10,620 SNPs, from 
which we could replicate 6414 eQTLs (56%) at a significance threshold of P < 0.05 and with consistent direction 
of effect, implicating 81 genes (Supplementary Table 12). Genetic variants located close to the TSS of GBP3 show 
the strongest association with GBP3 gene expression, followed by cis-genetic variation regulating gene expres-
sion of C3AR1 or MASTL, ETV7 and IFITM3.

Figure 3.  Functional Enrichment Results for differentially methylated regions based in Reactome database. (a) 
Dotplot representing Reactome functional pathways that are enriched in differentially methylated regions. Only 
significant pathways (adjusted P < 0.05) that are represented by more than 5 genes are illustrated. (b) Enrichment 
map that organizes significant enriched terms into a network with edges connecting overlapping gene sets. 
(c) Genes that are involved in significant terms are connected by linkages. Pathways in red are enriched in 
hypomethylated genes while pathways in blue are enriched in hypermethylated genes. Dot size represents 
number of genes with DMRs per pathways. R  software73 and Adobe Illustrator (https:// www. adobe. com/) was 
used to create figures.

https://www.adobe.com/
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Intermediary role of DNA methylation and gene expression in genetic risk of SS. Then, we 
investigated the possibility that changes in DNA methylation and gene expression mediate genetic risk in SS, as 
it has been shown to occur for other autoimmune  diseases13,33. For that, we interrogated whether SNPs involved 
in meQTLs and eQTLs could be linked to the disease and showed allele frequency differences in a set of 391 SS 
patients and 549 healthy controls in a direction that is consistent with a mediation role of DNA methylation or 
gene expression (Supplementary Tables 13, 14, Methods). At a Bonferroni-corrected significance of P < 0.0008, 
we detected risk variants in the HLA region of chromosome 6 that regulate DNA methylation at gene PSMB8 
(Table 3). In this case, the minor T-allele of SNP rs7769693, at the HLA-DRB9 pseudogene, is associated with 
increased SS risk and with decreased methylation levels, suggesting that the variant might exert its risk by hypo-
methylating the PSMB8 gene. Regarding eQTL results, at a Bonferroni-corrected significant level of P < 0.0002 
we detected genetic variants associated with gene expression and SS at three differentially expressed genes C2, 
TAP2 and PSMB9 (Table 2).

Table 2.  Genetic association of SS-meQTLs and SS-eQTLs with SS and other related SADs mediated by DNA 
methylation or gene expression changes. Alleles represent major allele first, and then the minor allele, which is 
the allele tested in each analysis. β meQTL represents the DNA methylation change with the increased in dosage 
of the minor allele. P meQTL corresponds to the P value from the linear regression model that regresses out 
the number of minor alleles for a given SNP to DNA methylation levels adjusting by age, sex, batch effects, 
estimated cell proportions, disease status and first genetic component. βEWAS represents the DNA methylation 
difference between SS and healthy controls from the epigenome-wide association study together obtained 
by linear regression model in which DNA methylation levels are regressed out by SS status and adjusted by 
age, sex, batch effects and estimated cell proportions. OR represents the Odd Ratio obtained from genetic 
association testing based on logistic regression modeling which the SS statuts is regressed out by number of 
minor alleles for a given SNP adjusted by age, sex, batch effects, estimated cell proportions and first genetic 
component and its corresponding. P represents the P-value obtained in the genetic associations. SAD (OR, P) 
represents the odd ratio and P value obtained in genetic testing for other diseases. RA = Rheumatoid Arthritis, 
SLE = Systemic Lupus Erythemathosus, UCTD = Undifferentiated Connective Tissue Disease, SSc = Systemic 
Scleroderma, PAPs = Primary anti-phospholipid syndrome. SADSnoSS = All SADs patients excluding SS. 
Genomic positions are based on the hg19 human reference sequence build (GRCh37). * eQTL reported in 
GTEx project (https:// www. gtexp ortal. org/ home/), in the case of eQTL the same SNP-gene is reported. #  SNP 
associated with related disease phenotype in GWAS catalog (https:// www. ebi. ac. uk/ gwas/) or Open Target 
Genetics Portal (https:// genet ics. opent argets. org/).

CpG Gene rsID
SNP Position 
(hg38 Chr:bp) A1/A2 βmeQTL PmeQTL βEWAS P EWAS OR P PRECISESADSSADs

A. Genetic effects on SS mediated by changes in DNA methylation

cg08099136 PSMB8 rs9275569 6:32,710,259 C/T  − 0.018 1.92 ×  10−04  − 0.062 2.43 ×  10–09 2.03 1.57 ×  10−08 SLE (1 x  10–04)

cg14880222 IFI44 rs1051047* 1:78,663,909 A/G 0.027 5.94 ×  10−08  − 0.036 3.61 ×  10–09 0.54 0.0127 SLE (0.042)

cg03879629 intergenic (CCR 
cluster) rs9838739* 3:46,095,597 T/C  − 0.046 5.21 ×  10−05  − 0.071 7.81 ×  10–09 1.71 0.0242 SLE (0.002), MCTD 

(0.008), UCTD (0.004)

cg12013713 PARP12 rs6962291*# 7:139,971,218 T/A  − 0.017 2.96 ×  10−05  − 0.048 8.54 ×  10–09 1.32 0.0270

Transcript Gene rsID
SNP Position 
(hg38 Chr:bp) A1/A2 βeQTL PeQTL βdiffexp P diffexp OR P PRECISESADS

B.Genetic effects on SS mediated by changes in gene expression

ENSG00000166278 C2 rs1054684$# 6:32,809,044 T/C 0.300 3.57 ×  10−04 0.911 1.46 ×  10−13 4.04 2.16 ×  10−13 SLE(1 x  10–05), MCTD 
(0.03), UCTD (0.048)

ENSG00000204267 TAP2 rs4947258 6:32,779,625 A/G 0.168 3.51 ×  10−04 0.478 2.31 ×  10−17 3.53 2.90 ×  10−12 SLE(1 x  10–05)

ENSG00000240065 PSMB9 rs3117106 6:32,375,492 T/C 0.139 2.19 ×  10−04 0.287 1.12 ×  10−08 2.22 1.23 ×  10−07 SLE (0.001)

ENSG00000204713 TRIM27 rs2523425* 6:29,526,364 C/T  − 0.069 9.24 ×  10−06  − 0.136 1.06 ×  10−06 1.51 7.32 ×  10−04 SADSnoSS (0.03)

ENSG00000128604 IRF5 rs4731531$* 7:128,922,493 G/A 0.084 3.45 ×  10−04 0.192 6.48 ×  10−07 1.46 0.0014 SLE (0.005)

ENSG00000174444 RPL4 rs4482223 15:65,828,392 A/G 0.101 3.18 ×  10−04  − 0.195 1.01 ×  10−09 0.53 0.0019 RA (0.004)

ENSG00000124508 BTN2A2 rs3799378*# 6:26,404,046 A/G 0.096 2.74 ×  10−04 0.228 4.61 ×  10−08 1.54 0.0025

ENSG00000234127 TRIM26 rs9261518 6:30,149,108 G/A  − 0.113 2.66 ×  10−05 0.154 3.65 ×  10−09 0.60 0.0029 UCTD (0.01)

ENSG00000175970 UNC119B rs10849822* 12:120,939,591 G/C  − 0.066 3.28 ×  10−04  − 0.161 2.88 ×  10−09 1.48 0.0075 SLE (0.02)

ENSG00000162614 NEXN rs6660288 1:78,927,603 G/A 0.143 2.73 ×  10−04 0.685 3.02 ×  10−14 1.36 0.0156 MCTD (0.04), UCTD 
(0.02)

ENSG00000002549 LAP3 rs57570581 4:17,705,638 G/A  − 0.216 2.76 ×  10−05 0.867 2.61 ×  10−22 0.75 0.0187 UCTD (0.02)

ENSG00000204516 MICB rs9348883# 6:32,390,672 T/A  − 0.174 3.12 ×  10−04 0.242 1.19 ×  10−09 0.46 0.0276

ENSG00000154451 GBP5 rs76397273* 1:89,333,021 A/G  − 0.288 9.70 ×  10−05 0.701 2.54 ×  10−13 0.67 0.0301 SSc (0.007), UCTD 
(0.03)

ENSG00000184898 RBM43 rs289953 2:151,143,385 T/C 0.183 8.55 ×  10−09 0.378 5.03 ×  10−12 1.29 0.0398 SLE (0.03), SSc (0.01)

ENSG00000166750 SLFN5 rs11080327* 17:35,244,427 G/A 0.222 4.68 ×  10−14 0.255 1.11 ×  10−06 1.28 0.0401 PAPs (0.04)

https://www.gtexportal.org/home/
https://www.ebi.ac.uk/gwas/
https://genetics.opentargets.org/
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To give statistical robustness and further support to the functional and genetic link between meQTL and 
eQTLs with SS and with autoimmune processes, we first interrogated whether or not the novel identified SS-risk 
variants that reached a suggestive significance level of P < 0.05, show evidence of association with other SADs for 
which we had access to genotypic data: systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic 
sclerosis (SSc), mixed connective tissue disease (MCTD), undifferentiated connective tissue disease (UCTD) 
and primary antiphospholipid syndrome (PAPs) (Table 2, Supplementary Table 15). Moreover, we searched for 
additional evidence of their functional role in public databases of eQTL and GWAS studies. Importantly, genetic 
variants regulating DNA methylation at the intergenic region of the CCR cluster in chr3 (Fig. 4a) and DNA 
methylation at the downstream region of IFI44 gene (Fig. 4b) show convincing evidence of their link with other 
SADS and have been described as eQTL for the same genes (Supplementary Table 16). Likewise, genetic vari-
ants regulating gene expression of the genes TRIM27 (Fig. 4c), BTN2A2, UNC119B, GBP5 (Fig. 4d) and SLFN5 
show significant associations with other SADS and a link with gene expression has been previously observed in 
eQTL studies for these genes (Supplementary Table 16). Altogether, these results support the scenario in which 
differences in DNA methylation and gene expression are intermediates of genetic risk for SS. This study provides 
a framework for the discovery of new risk loci associated with SS via alteration of regulatory landscapes.

Disease‑dependent genetic effects on SS‑associated differential methylation and gene 
expression. Finally, we hypothesized that there might exist genetic variants whose effect on molecular 
phenotypes depends on the specific environment of altered immune activation originated during the disease 
process. In order to identify such disease-dependent genetic effects or disease-interacting QTLs, we performed 
a gene-by-environment interaction meQTLs and eQTLs analyses in which we looked for gene variants that 

Table 3.  Most significant meQTLs and eQTLs exhibiting disease-dependent genetic effects. β INT represents 
the interaction effect between a given SNP and SS status in DNA methylation level. P INT represents the 
P-value obtained for the β INT in a linear regression model that adjusts for SNP, SS status, age, sex, batch 
effects, estimated cell proportions and the first principal genetic component. β SS.meQTL represents the DNA 
methylation change with the increased in dosage of the minor allele in SS population for a given SNP. P SS.meQTL 
corresponds to the P value from the linear regression model that regresses out the number of minor alleles for 
a given SNP to DNA methylation levels adjusting by age, sex, batch effects, estimated cell proportions, disease 
status and first genetic component in SS population. β CTRL.meQTL represents the DNA methylation change 
with the increased in dosage of the minor allele in the healthy control population for a given SNP. P CTRL.meQTL 
corresponds to the P value from the linear regression model that regresses out the number of minor alleles 
for a given SNP to DNA methylation levels adjusting by age, sex, batch effects, estimated cell proportions, 
disease status and first genetic component in the healthy control population. NA represents effects that are non 
significant (P > 0.05).

CpG Gene SNP
SNP Position (hg38 
Chr:bp)

Discovery cohort
Replication 
cohort

βINT PINT βSS.meQTL PSS.meQTL βCTRL.meQTL PCTRL.meQTL βINT PINT

A. SS-dependent meQTLs

cg08818207 TAP1 rs113547322 6:32,238,742 0.058 1.5 ×  10−05 0.048 0.0004 NA  > 0.05 0.059 0.0091

cg14392283 LY6E rs13273708 8:143,002,764  − 0.018 1.6 ×  10−04  − 0.016 0.0006 NA  > 0.05  − 0.020 0.0061

cg01309328 PSMB8 rs3134951 6:32,147,308  − 0.040 4.0 ×  10−04  − 0.024 0.0124 NA  > 0.05  − 0.040 0.0023

cg14951497 STAT1 rs4853645 2:191,839,218  − 0.029 5.5 ×  10−04  − 0.024 0.0012 NA  > 0.05  − 0.038 0.0418

cg12906975 Intergenic (LY6E) rs55937049 8:143,033,566  − 0.013 0.0018  − 0.011 0.0087 NA  > 0.05  − 0.017 0.0410

cg23387863 SGK269 rs1079396 15:78,137,720  − 0.024 0.0022  − 0.017 0.0119 NA  > 0.05  − 0.028 0.0141

cg10734665 ATP10A rs7169481 15:25,712,123  − 0.022 0.0031 0.018 0.0047 NA  > 0.05 0.030 0.0138

cg08099136 PSMB8 rs3129943 6:32,370,868  − 0.030 0.0038  − 0.027 0.0050 NA  > 0.05  − 0.035 0.0108

Gene ID Gene SNP
SNP Position (hg38 
Chr:bp)

Discovery cohort
Replication 
cohort

βINT PINT βSS.eQTL PSS.eQTL βCTRL.eQTL PCTRL.eQTL βINT PINT

B.SS-dependent eQTLs

ENSG00000183486 MX2 rs9305702 21:40,755,922  − 0.300 1.8 ×  10−04  − 0.302 1.8 ×  10−04 NA  > 0.05  − 0.315 0.0172

ENSG00000198785 GRIN3A rs2417310 9:101,964,703 0.251 4.5 ×  10−04 0.235 7.0 ×  10−04 NA  > 0.05 0.262 0.0092

ENSG00000185885 IFITM1 rs12364973 11:1,116,140 0.386 6.9 ×  10−04 0.280 0.0130 NA  > 0.05 0.430 0.0476

ENSG00000013374 NUB1 rs77466830 7:151,831,985  − 0.143 7.7 ×  10−04  − 0.151 3.5 ×  10−04 NA  > 0.05  − 0.158 0.0345

ENSG00000133106 EPSTI1 rs9525846 13:43,816,621  − 0.607 8.8 ×  10−04  − 0.577 2.4 ×  10−03 NA  > 0.05  − 0.651 0.0199

ENSG00000188313 PLSCR1 rs56077428 3:146,981,084 0.471 0.0010 0.357 0.0208 NA  > 0.05 0.600 0.0185

ENSG00000157601 MX1 rs9305702 21:40,755,922  − 0.602 0.0012  − 0.496 0.0083 NA  > 0.05  − 0.779 0.0085

ENSG00000247317 LY6E − DT rs902834 8:142,111,410 0.167 0.0038 0.129 0.0149 NA  > 0.05 0.149 0.0469

ENSG00000108691 CCL2 rs1490922 17:33,725,536 0.351 0.0044 0.307 0.0159 NA  > 0.05 0.367 0.0252

ENSG00000187210 GCNT1 rs2377425 9:75,947,610 0.132 0.0047 0.083 0.0452 NA  > 0.05 0.210 0.0068
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interact with disease status on shaping DNA methylation and gene expression levels at SS-associated DMPs and 
DEGs. We considered relevant and robust disease interacting QTLs those that accomplish the following strict 
conditions: i) an interaction effect that passes a significance threshold of  PINTER < 0.005 in the discovery cohort 
and a significance threshold of  PINTER < 0.05 in the replication cohort, with consistent direction of the effect, ii) 
genetic variant associated with DNA methylation or gene expression only in the SS group  (PSS.QTL < 0.05) and 
without evidence of genetic associations in the healthy population  (PCTRL.QTL > 0.05), iii) genetic variants that 
show a minor allele frequency higher than 0.10 in the SS group.

For DNA methylation, we observed convincing evidence for disease-interacting meQTLs at 8 SS-associated 
DMPs within genes TAP1, LY6E, PSMB8, STAT1, SGK269 and ATP10A (Table 3 and Supplementary Table 17). 
The most significant gene-environment interaction (ßINTER = -0.018,  PINTER = 2.0 ×  10–04) that fell outside the HLA 
region involved the genetic variant rs13273708 at chromosome 8 and DNA methylation at LY6E (cg14392283) 
(Fig. 4a, Table 3). For this variant, the minor C-allele is associated with a decrease in LY6E-DNA methylation 
only in SS patients, but this association is not observed in the healthy population (Table 4). A similar scenario 
is observed for the STAT1 gene for which we found the second most significant disease-dependent meQTLs 
effect (ßINTER = −0.029,  PINTER = 5.47 ×  10–04) outside the HLA region (Fig. 5b). Another convincing example 
implicates the interaction between SS status and rs1079396 in shaping DNA methylation levels at SGK269 gene 
(ßINTER = −0.024,  PINTER = 0.003, Fig. 5c), and the interaction with rs7169481 in shaping DNA methylation at 
ATP10A (cg10734665 , ßINTER = 0.022,  PINTER = 0.003, Fig. 5d). For gene expression, some IFN-inducible genes 
such as MX2, IFITM1, EPST1, MX1 and LY6E-DT show convincing evidence that their expression is genetically 
regulated in a disease-specific manner (Table 3 and Supplementary Table 18). The most significant disease-
dependent effect was observed for MX1 gene expression (ßINTER = −0.300,  PINTER = 1.8 ×  10–0, Fig. 5e), which 
is overexpressed in SS patients, and only genetically regulated within the disease population. In this case, the 
minor T-allele of rs9305702 is associated with decreased MX1 gene expression in SS patients, without evidence 
of association in the healthy population (Fig. 5e). Other genes such as IFITM1 (Fig. 5f), CCL2 (Fig. 4g), NUB1 
(Fig. 5h), PLSCR1, GRIN3A and GCNT1 also show disease-specific eQTLs that regulate their SS-associated dif-
ferential expression (Table 3).

For all those disease-interacting meQTLs and eQTLs, the same trend is observed in the replication sample 
(Supplementary Table 17 and 18) and we found no evidence for them to be genetic regulators of DNA meth-
ylation and/or gene expression in a model that corrects for disease status and includes the whole population 
(Supplementary Table 17 and 18), or in other studies that have interrogated healthy populations (Supplementary 
Table 19)8,10,37. Our findings reveal a differential genetic architecture of gene regulation between SS patients and 
the healthy population, and suggest that the specific immunological and pathological conditions in autoimmunity 

Figure 4.  Intermediary role of DNA methylation and gene expression in SS genetic risk. (a) The minor 
G-allele of SNP rs1051047 exerts a protective role on SS susceptibility by increasing DNA methylation levels 
at the upstream region of gene IFI44 (cg1488022). (b) The minor C-allele of SNP rs9838739 exerts risk on 
SS susceptibility by decreasing DNA methylation levels at the intergenic region within the CCR  cluster in 
chromosome 3 (cg03879629). (c) The minor T-allele of SNP rs2523425 exerts risk on SS by decreasing TRIM27 
gene expression. (d) The minor G-allele of SNP rs76397273 exerts a protective effect on SS by decreasing GBP5 
gene expression. Green boxplots and barplots represent SS population, while grey plots represent the healthy 
control population. DNA methylation is quantified with β-values, gene expression is at the logarithmic scale. R 
 software73 and Adobe Illustrator (https:// www. adobe. com/) was used to create figures.

https://www.adobe.com/
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modify how genes regulate the transcriptional landscapes of immune cells, which likely has an impact in the 
function and fate of cells.

Discussion
Here, we present a comprehensive integrative large-scale analysis that serves to discovery new loci and pathways 
involved in SS, to recognize the importance of hypermethylation events in SS pathogenesis, and to unravel the 
genetic architecture of blood gene regulation in a systemic autoimmune disease.

We could confirm the activation of the IFN system in  SS38 by recognizing blood hypomethylation and over-
expression of a large number of genes involved in IFN signaling or specially of type I IFN-inducible genes. Type 
I IFNs are key immune mediators involve in viral response and in activation of immune  responses39. Previous 
large-scale studies have extensively characterized the interferon signature in SS with large scale gene expression 
data and recently, with DNA methylation as well, in different tissues and cell  types19,20,22,23,40–43. Our stratified 
analyses reveal that the IFN epigenetic signature is restricted to only those SS patients that exhibit Anti-Ro/SSA 
autoantibodies positivity and enhanced in those that also exhibit Anti-La/SSB. It has been reported that patients 
positive for these  autoantibodies44 and that exhibit the IFN  signature45 are at higher risk for worse diagnosis 
some disease manifestations such as hypergammaglobulinemia and ongoing lymphomas. Several authors have 
recognized the important contribution to clinical management that stratifying patients based on gene expression 
based biomarkers of IFN  signature38. Recently, a study has shown than an epigenetic-based IFN signature could 
be even a more suitable biomarker for patient  classification45.

The tight relationship between autoantibodies and IFN signaling has been reported by multiple population-
based studies and experimental works in in blood, salivary glands and other target  cells22,36,40. However, the 
mechanisms behind this close relationship are still unclear. Whether the IFN signaling have an effect on autoan-
tibodies production or vice versa, is unresolved. On one hand, IFN signaling stimulated upon viral infection 

Figure 5.  Disease interacting QTLs (a) The minor C-allele of SNP rs13273708 is associated with a decrease in 
DNA methylation levels at LY6E gene only in SS patients (ßSS.meQTL =  − 0.018,  PSS.meQTL = 6 ×  10–04), but not in the 
healthy population  (PSS.meQTL > 0.05). (b) The minor A-allele of SNP rs902834 decreases the DNA methylation 
level at STAT1 only in SS patients (ßSS.meQTL =  − 0.024,  PSS.meQTL = 0.0012), and not the healthy population 
 (PCTRL.meQTL > 0.05). (c) The minor T-allele of rs1079396 is associated with SGK269-methylation in SS patients 
(ßSS.meQTL = -0.017,  PSS.meQTL = 0.0119), but not in the healthy population  (PCTRL.meQTL > 0.05). (d) The minor 
G-allele of rs7169481 in ATP10A is associated with increased DNA methylation at ATP10A in SS patients 
(ßSS.meQTL = 0.018,  PSS.meQTL = 0.0047). However, in the healthy population this allele has no significant effect 
 (PCTRL.meQTL > 0.05). (e) The minor T-allele of the rs9305702 genetic variant is associated with a decreased MX2 
gene expression in SS patients (ßSS.eQTL =  − 0.302,  PSS.eQTL = 1.8 ×  10–04), and shows no evidence of association in 
the healthy population  (PCTRL.eQTL > 0.05). (f) The minor C-allele of rs12364973 is associated with an increased 
IFITM1 gene expression in SS patients (ßSS.eQTL = 0.28,  PSS.eQTL = 0.012) and shows no evidence of association 
in the healthy population  (PCTRL.eQTL > 0.05). (g) In SS patients, NUBI expression decreases with the dose of 
the minor A-allele of rs77466830 (ßSS.eQTL =  − 0.15,  PSS.eQTL = 3.5 ×  10–04); however, in the healthy population 
it remains stable  (PCTRL.eQTL > 0.05). (h) In SS patients, PLSCR1 expression increased with the dose of the 
minor A-allele of rs56077428 (ßSS.eQTL = 0.357,  PSS.eQTL = 0.0208); however, in the healthy population it remains 
stable  (PCTRL.eQTL > 0.05). Green boxplots represent SS population, while grey boxplots represent the healthy 
control population. DNA methylation is quantified with β-values, gene expression is at the logarithmic scale. R 
 software73 and Adobe Illustrator (https:// www. adobe. com/) was used to create figures.

https://www.adobe.com/
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could generate antibodies that cross-react with autoantigens, such as Anti-Ro/SSA and Anti-La/SSB, by molecular 
 mimicry46. On the other hand, it is known that the deposition of immuno-complexes formed by autoanti-
bodies, RNA-binding proteins and material releases from apoptotic cells stimulate type I IFN production and 
subsequently activate IFN-regulated  genes47. Nevertheless, autoantibodies production seems not to be enough 
to trigger dysregulating IFN-signaling as this is not observed in healthy subjects that exhibit  autoantibodies48. 
In our study we could investigate further the genetic drivers of this strong relationship. Genetics studies have 
revealed that in SS there is a strong relationship between autoantibody production and class II HLA variation. 
Indeed, some studies have clearly show that class II HLA is only a risk factor for patients that are positive for 
Anti-La and/or Anti-Ro49,50.In a recent SADs molecular  stratification51, we recognized a strong relationship 
between class II HLA variation and a molecular cluster characterized by the IFN signature enriched in Anti-La 
and Anti-Ro positive patients. Beyond this previously gathered knowledge, here we have discovered that, specifi-
cally, the SS-associated class II HLA-DRB1-0301 and HLA-DQB1-0201 alleles are strongly associated with the 
IFN signature and with Anti-Ro/SSA and Anti-La/SSB production. Indeed, our stratified analyses revealed that 
class II HLA is only associated with SS and with autoantibody production in those patients exhibiting the IFN 
signature. Our findings point towards a complex interaction between class II HLA variation, IFN signaling and 
autoantibody production Other autoimmune diseases share a common IFN signature with SjS and common 
HLA risk variants, such as SLE and MCTD. Whether the same HLA alleles and autoantibodies are important 
for the IFN signature observed in other related autoimmune diseases remains to be explored. More studies that 
couple observational records with experimental data are needed to disentangle mechanistic routes behind these 
relationships and recognize potential new drug targets.

Importantly, we also identified a high number of novel hypermethylation events in genes not related to the 
IFN pathways when applying a statistical method based on gene set  enrichments52, a trend that was not observed 
when analyzing individual CpG sites. This method permits to detect associations of smaller magnitude but with 
consistent epigenetic patterns along pre-defined regions. Functional analyses in the group of genes exhibiting 
increased methylation in SS patients revealed enrichment in important pathways such as those related to the 
metabolism of collagen and/or implicated in extracellular matrix organization that have not been previously 
detected, but could explain the increased degradation of extracellular matrix structures and the significant 
loss of collagen observed in the lacrimal gland and other tissues in SS, and, therefore, have a key role in its 
 pathogenesis53. We anticipate that future efforts in biomarker discovery will successfully recognize that these 
hypermethylated signals can also be of good utility for SS stratification. .

In this study, we discovered new loci associated with SS whose functional mechanisms could be the altera-
tion of epigenetic states or gene expression profiles. The association that we have found between genetics, DNA 
methylation and SS in the CCR  gene cluster in chromosome 3 is very interesting and represents a novel genetic 
risk variant. Our study shows that the minor C-allele of rs9838739, located in an active regulatory region over-
lapping many transcription factor binding sites and upstream the CCR  gene cluster, increases risk for SS and 
several related systemic autoimmune diseases (SLE, MTD and UCTD) and decreases DNA methylation levels at 
this dense regulatory region. Previous eQTL studies from GTEx project identified that C-allele is associated with 
lower CCR5 expression in whole  blood37. Interestingly, the lack of CCR5 on dendritic cells of a NOD mouse, an 
experimental model for SS disease and diabetes, promotes a proinflammatory environment in submandibular 
glands, a target and affected tissue in SS  patients54. Furthermore, CCR5 expression is decreased on circulating 
monocytes from SS patients and is correlated with increased levels of inflammatory  chemokines55 . Our results, 
together with previous findings, suggest that genetically determined reduced methylation at CCR  cluster-methyla-
tion, could contribute to SS presumably via enhanced gene expression of inflammatory chemokines. Interestingly, 
the same region has been strongly associated with COVID19 susceptibility and severity in several international 
 efforts56,57 indicating that common molecular players may be involved in COVID19 and autoimmunity suscepti-
bility. Other than the well described regulatory role of IRF5 risk  variants58, we also identified that genetic variants 
at TRIM27, TRIM26, RLP4, NEXN, LAP3, GBP5, RBM43 and SLNF5 genes could be implicated in SS through 
changes in gene expression. For example, we identified a novel risk variant that we are others have demonstrated 
that downregulates TRIM2737,59. TRIM27 is a molecule that inhibits the innate immune response and has been 
recently shown to negatively regulate NOD2 mediated signaling by physical interaction and  degradation60. These 
data suggest that genetically determined reduced TRIM27 expression in SS patients can lead to enhanced innate 
responses via abnormally enhanced NOD2 activity.

Importantly, the findings of this work corroborate our hypothesis that genetic variants may only manifest 
genetic regulatory effects in the specific context of altered immune activity exhibited in SS patients. We identi-
fied strong meQTL effects only among SS patients and that we did not observed and have not been previously 
described in the general population for STAT1, LY6E and ATP10A  genes11. STAT1 is a signal transducer and 
transcriptional activator that is activated in response to several cytokines as IFN-alpha, IFN-gamma or IL-6. 
Stimulation of monocytes and B-cells in SS patients leads to increased sensitivity of immune cells from SS 
patients to STAT1-activating signals that might partly explain the IFN signature observed in  SS61 In line with 
these results, our transcriptional data shows overexpression of STAT1 in SS patients. On the other hand, LY6E, 
an IFN-regulated gene that encodes for the Lymphocyte Antigen 6E, is hypomethylated and overexpressed in SS 
patients. Interestingly, a previous study discovered trans-eQTL effects on LY6E gene expression that is dependent 
on immune  activation62, supporting that its genetic regulation is context-specific. An earlier GWAS study on 
cytokine responses found that genetic variants at ATP10A are associated with IFN-gamma production in response 
to vaccinia virus in subjects who had received the smallpox  vaccine63. These findings, and our results, support 
a scenario in which inter-individual genetic variation at this gene impacts IFN-regulated gene expression only 
upon immune activation and via alteration of epigenetic states.

Likewise, we also identified a group of IFN-related genes which expression is genetically regulated in a 
disease-specific manner, such as MX1, MX2, EPST1 and IFITM1. We also discovered context-specific eQTLS 
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for other genes with immune-related function such as CCL2 and PSLCR1. CCL2 encodes for a chemokine ligand 
that is secreted during inflammatory processes whose serum circulating levels are increased in  SS64. Intriguingly, 
the expression of CCL2 is genetically regulated upon in vitro stimulation but it shows no genetic regulation in 
naïve  conditions65. PSLCR1, the Phospholipid scramblase 1 gene, has been found to be differentially methyl-
ated and expressed in SS, SLE and  MCTD22,36,66. It is a DNA-binding transcriptional activator that amplifies the 
IFN-mediated antiviral response and induces cytokine expression and cell proliferation. Interestingly, a previ-
ous study has shown that the genetic regulation of PSLCR1 expression is stronger upon IFN  stimulation62. We 
also found disease-interacting genetic variants whose implication in systemic autoimmunity has not been well 
described. For example, NUB1 is an IFN-inducible gene that downregulates NEDD8, an ubiquitin-like protein. 
NUB1 overexpression is known to induce inhibition of cell growth in cancer  cells67. Its implication in autoim-
mune processes is uncertain but it could be related to lymphoma development.

Our study has some important limitations. First of all, we focused this work on the identification of molecular 
changes from whole-blood derived samples, which is a mixture of different immune-cell types, many of them 
directly involved in the autoimmune and inflammatory processes occurring in SS. The statistical approaches 
that we have applied have allowed us to identify epigenetic and transcriptional signatures that are common or 
shared across different blood cell types. This is, on one side, an advantage to future evaluation of these signals 
as blood biomarkers for disease diagnosis. However, our work has not revealed molecular changes occurring in 
specific cell types. Previous works have recognized cell-specific epigenetic signals on data from sorted cells but 
on a limited sample  size43,68. We also could not evaluate specific epigenetic changes related to the development 
of some important disease phenotypes for SS, as for example lymphomas. Defective DNA methylation in SS 
patients with lymphomas and other cancers has been previously  reported69 and, recently a relationship between 
lymphoma and the DNA-methylation based interferon signature has been  described45. However we did not 
have enough samples in our dataset to assess the epigenome-wide contribution in SS. Future studies that target 
specific disease phenotypes, that incorporate higher sample sizes, and add other cell-specific layers of molecular 
information will add more to the understanding of the genetic regulation and transcriptional consequences of 
epigenetic variation associated with SS and other systemic autoimmune diseases.

To wrap up, this study adds new pieces of evidences to the relationship between class II HLA variation, 
autoantibody profiles and the IFN molecular signature in SS, identifies new loci and pathways involved in SS, 
recognizes the importance of hypermethylation events in SS pathogenesis, and it contributes to unravel the 
genetic regulatory architecture of Sjögren’s Syndrome, which hopefully will motivate research for the discovery 
of new drugs and biomarkers for SS in the near future.

Material and methods
Participant recruitment. Samples included in this study were recruited from the PRECISESADS study, 
which is a European multi center, non-randomized, and observational clinical study with recruitment per-
formed between December 2014 and December 2018 at 19 institutions in 9 countries. PRECISESADS included 
patients affected by systemic autoimmune (around 400 by disease or group of diseases: rheumatoid arthritis, 
scleroderma or systemic sclerosis, primary Sjögren’s syndrome, systemic lupus erythematosus, and primary 
antiphospholipid syndrome, mixed connective tissue disease and undifferentiated connective tissue disease) and 
554 healthy  controls70,71.

A total of 558 samples were included in the core analyses of the present study (Supplementary Table 1), that 
included SS patients and healthy controls for which DNA methylation and genotype data was available. All 
patients diagnosed with SS (N = 278) fulfilled the diagnostic criteria of the American and European community 
published in  200272. The majority of the SS patients (94.8%) were females with a mean of age of 58.8 ± 12.4 years. 
Healthy individuals (N = 280), i.e., not having any history of autoimmune or infectious diseases, were included 
as controls, and matched to cases to the extent possible. The 74.4% of the healthy subjects were females with 
a mean of age of 45.1 ± 13.3 years. A large proportion of SS patients exhibited Anti-Ro/SSA positivity and/or 
Anti-La/SSB (70.9% and 33.7%, respectively).

Samples were divided in two sets; a discovery cohort formed by 189 SS patients and 220 healthy subjects 
and a replication cohort that included 60 SS patients and 89 healthy individuals. Epidemiological, clinical and 
serological features of the samples included in the discovery and the replication cohorts are summarized in 
Supplementary Table 1. Flow cytometry data and determination of autoantibody presence was generated from 
serological samples as described in Barturen et al.51.

Ethics declarations. An ethical protocol was prepared, reached consensus across all partners, academic 
and industrial, translated into all participant’s languages and approved by each of the local ethical committees 
of the clinical recruitment centers, and all experimental protocols were approved by each of the local commit-
tees. For a list of local committees and centers involved in PRECISESADS please see Supplementary Note 1. All 
patients recruited to the study were aged 18 years or older and signed an informed consent form, and all meth-
ods were carried out in accordance with relevant guidelines and regulations. The study adhered to the standards 
set by International Conference on Harmonization and Good Clinical Practice, and to the ethical principles 
that have their origin in the Declaration of Helsinki (2013). The protection of the confidentiality of records that 
could identify the included individuals is ensured as defined by the EU Directive 2001/20/EC and the applicable 
national and international requirements relating to data protection in each participating country.

Genome‑wide DNA methylation data and differential analyses. DNA methylation data of the dis-
covery cohort was obtained using the Infinium Methylation EPIC BeadChip (Illumina, San Diego, CA, USA) 
that covers more than 800,000 CpG sites. For replication cohort, we had also available genome-wide DNA meth-



13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23292  | https://doi.org/10.1038/s41598-021-01324-0

www.nature.com/scientificreports/

ylation data profiled obtained by Infinium Methylation 450 K BeadChip (Illumina, San Diego, CA, USA), which 
covers more than 400,000 CpG sites, most of them included in the EPIC array.

After DNA extraction from whole peripheral blood and bisulfite conversion, the genome for each sample 
was amplified, fragmented and hybridized to the corresponding Illumina arrays according to the manufacturer’s 
protocol. The quality control of samples and the normalization of the data was performed using the meffil R 
 software73,74 Samples were excluded based on the detection P criteria > 99%, poor bisulfite conversion based on 
control dashboard check, and sex mismatches according to failed chromosome X and Y clustering. Probes were 
filtered out based on detection P > 0.01 in > 95% of samples. Additionally, probes located at the X and Y chro-
mosomes were separated in different datasets to avoid gender bias. Probes with genetic variants at their CpG 
sites were also excluded. After applying these filtering steps we obtained 776,284 and 433,337 autosomic probes 
in the discovery dataset and in the replication dataset, respectively. A total of 17,530 probes located in the X 
chromosome passed the QC in the discovery cohort and 9282 in the replication cohort. DNA methylation was 
measured as a beta value ranging from 0 to 1. Zero represents an unmethylated state (0% molecules methylated 
at a particular sites) while 1 represents a fully methylated state (100% molecules methylated). After QC, the raw 
methylation beta values were background corrected and normalized using the functional normalization within 
the meffil R-package.

Differentially DNA methylated positions (DMPs) associated with SS were identified in our discovery cohort 
using a linear regression model that regresses out the SS status on DNA methylation levels at each CpG. The 
model was adjusted by sex, age, the first genetic principal component, the observed blood cell proportions 
obtained at the time of sample extraction, and batch effects as covariates. The technical variables Sentrix_ID and 
Sample_Plate corrected the batch effect. Data from blood cell proportions were obtained by flow cytrometry using 
Duraclone tubes (Beckman Coulter) by whole blood flow cytometry, as described in Jamin et al.75 and Barturen 
et al.51 (see Supplementary Note 2 for a list of investigators involved in the PRECISESADs Flow Cytometry Study 
Group). They were calculated as percentages of total leukocytes. Given the population stratification observed in 
our data, the first genetic principal component was included in the linear model as covariate. We also searched 
for variable methylated positions (VMP) that show DNA methylated variance differences between SS patients 
and healthy samples. For that, we first obtain the residuals of DNA methylation levels after correcting for all 
covariates in a linear regression model. Then, we searched for variance differences in DNA methylation residuals 
between cases and controls by applying a Levene’s test that accounts for mean differences. A Bonferroni-corrected 
threshold of P < 6.4 ×  10–08 was established to consider DMPs and VMPs as significant. For each significant DMP 
the mean DNA methylation in cases and controls was calculated. The independent cohort was used to evaluate 
the robustness of the significant associations. The same steps were followed in the replication set. In this case, 
the replication significance threshold was established at P < 0.05. All statistical analyses were performed using R 
(v3.4.2) Software 73. The effect of treatment and autoantibodies on the epigenetic associations found was evalu-
ated. First, treatments and autoantibodies were, independently, included as covariates in the linear model and we 
compared the results of the treatment-, autoantibody-adjusted and unadjusted models. Specifically, we controlled 
for the use of antimalarial, steroids and immunosuppressants, since we observed that more than 10 SS patients 
had these drugs prescribed, and the presence of Anti-Ro/SSA and Anti-La/SSB autoantibodies. Then, stratified 
analyses according to the presence/absence of these treatments were performed using a linear regression model 
adjusted by sex, age, the first genetic principal component, the cell proportions, and batch effects. Supplementary 
Table 1 prevalence of treatments and autoantibodies in SS patients included in this study.

Differential DNA methylation regions (DMRs) associated with SS were estimated using mCSEA (methylated 
CpGs Set Enrichment Analysis) R package that implements a Gene Set Enrichment Analysis method (GSEA) to 
identify  DMRs52. Briefly, the first step of mCSEA consists in ranking all the CpG probes by differential methyla-
tion and subsequently evaluates the enrichment of CpG sites belonging to the same region in the top positions 
of the ranked list by applying the GSEA implementation of the fgsea package. mCSEA allows to perform analysis 
based on promoters, gene bodies, and CGIs that are defined based on R annotation packages form Illumina for 
450 K and EPIC arrays, respectively. A DMRs was considered as significant with a threshold FDR < 0.05 and with 
a minimum number of 5 CpGs associated to the region.

We used the mCSEA R  package52 to perform expression quantitative trait methylation (eQTM) analysis to 
discover significant associations between these DMRs and an expression alteration in the closer genes. In this 
case, the leading edge CpGs of each region is first defined and averaged for each region in each sample. Then, 
Pearson’s correlation coefficient is calculated between each region’s methylation and the proximal genes expres-
sion within 1500 base pairs upstream and downstream from the region.

RNA‑seq data and differential expression analysis. We analysed gene expression data available from 
179 SS patients and 247 healthy subjects. RNA-seq data was obtained as 50 bp single end reads using an Illumina 
HiSeq 2500 sequencer and its proprietary base caller. Fastq data was aligned against human genome GRCh19 
using STAR  aligner76 with GENCODE v19 [URL: https:// www. genco degen es. org/ relea ses/ 19. html] annotation 
as single pass alignment. Read counts were obtained using  RSEM77. Samples were included only if they had more 
than 8 million reads, a RIN score > 8 and did not appear as outliers in a principal component analysis. After 
filtering, a total of 42,878 genes were included in the study.

Differential expression analysis was performed using a linear model that regressed out SS status on read-
counts as gene expression levels adjusted by age, sex, the first genetic principal component, the cell proportions 
and sequencing pool (POOL) and RNA integrity number (RIN) as batch effects. A Bonferroni-adjusted P-value 
threshold < 1.16 ×  10–6 was established as significant to identify the differentially expressed genes (DEGs) in a 
discovery cohort formed by 135 SS patients and 174 healthy controls. In the replication cohort (44 SS patients 

https://www.gencodegenes.org/releases/19.html
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and 73 healthy controls), the same steps were followed while a replication significance threshold was established 
at P < 0.05. The analyses were performed using  DESeq278.

Genotype profiling and imputation methods. Genomic DNA from whole blood was obtained by 
standard methods. The samples were genotyped using HumanCore -12-v1-0-B, InfiniumCoreExome-24v1-2 
and InfiniumCoreExome-24v1-3, all of them of Illumina (San Diego, CA, USA). Only genetic variants, not 
indels, present on all three platforms were considered for data cleaning and analysis. Quality controls (QC) 
were performed using PLINK v1.979. Genetic markers were removed if these had a call rate < 90%, exhibited a 
significant differential missingness between cases and controls (P < 1 ×  10–4), and showed a significant deviation 
from Hardy–Weinberg equilibrium (P < 0.01 in controls and P < 1 ×  10–4 in cases). Variants with a minor allele 
frequency of less than 5% were excluded from the analysis. Samples were excluded of the study if they had a call 
rate < 95% and also high heterozygosity rate, i.e., they deviated 6 standard deviations from the centroid. Dupli-
cated or related individuals were identified using identity-by-descent criteria with  REAP80. A total of 218,947 
variants passed data filtering. Samples were excluded applying a threshold of kinship coefficient < 0.25.

Inference methods based on linkage disequilibrium structure was used in order to increase the number of 
genetic markers. Imputation was performed using the Michigan Imputation Server [URL: https:// imput ation 
server. sph. umich. edu/ index. html]81 and Haplotype Reference Consortium (HRC) as reference panel [URL: http:// 
www. haplo type- refer ence- conso rtium. org/]82. We considered the imputed genotypes with a info-value (Mini-
mac  R2) higher than 0.7, i.e., 70% of reliability. Imputed variants were also filtered according to the protocol 
described above.

In order to study the population structure and prevent population stratification the individual admixture 
frequency for each individual was estimated. In addition, population stratification was also analyzed by principal 
component analysis (PCA). Ancestry per cent for each individual was estimated using  FRAPPE83, and a set of 
2,707 independent genetic variants that maximized the differences between populations and clustering by K = 5, 
i. e, the 5 global populations: American, African, South Asian, East Asian and European. European published 
populations from 1000 Genomes phase 3 [URL: http:// www. inter natio nalge nome. org/ categ ory/ phase-3/] were 
included as reference panel. PCAs were also calculated using SMARTPCA from the Eigensoft  software84 and the 
same independent set of markers. In this analysis, only the European population from 1000 Genomes, excluding 
Finns, was included as reference population of our  samples85 (see supplementary Fig. 1). Six standard deviations 
from the centroid were used as a threshold to filter individuals that deviate from the main European clustering. 
Moreover, samples with less that 55% European ancestry were excluded from all analyses.

After genotyping QC and filtering of individuals for European ancestry classical HLA alleles were imputed 
for the PRECISESADS dataset (cases and controls) in the extended MHC region in chromosome  686. The 
SNP2HLA  software87 was used for imputation using a reference panel consisting of 5,225 European individuals 
in the Type 1 Diabetes Genetic  Consortium88 containing data of 8,961 variants across the MHC region, and two 
and four digit-resolution allelic identities of the HLA class I (HLA-A, HLA-B, and HLA-C) and II genes (HLA-
DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, and HLA-DRB1). Genotypes were extracted as allele dosages for 
298 HLA classical alleles.

Quantitative trait loci analysis and genetic associations. Genetic regulation of DNA methylation 
and gene expression was explored by the quantitative trait locus (QTL) approach using Matrix  eQTL89 . A linear 
regression model was performed to evaluate the effect of closely located SNPs (no further than 1 Mb to CpG site 
or TSS) with a MAF > 0.05 on DNA methylation levels of DMPs and on gene expression patterns of DEGs. In 
this case, the gene expression data were firstly normalized into variance stabilizing transformations (VST) using 
 DESeq278. The linear model was corrected by age, sex, disease status, the first genetic principal component, cell 
proportions, and the respective batch effect. A P-value threshold of false discovery rate (FDR) < 0.05 was con-
sidered as significant.

To investigate the possibility of different behavior of genetic effects between SS patients and healthy subjects 
in regulating DNA methylation and gene expression, meQTL and eQTL interacting analyses that included an 
interaction term between the considered molecular phenotype and the disease status was included in the linear 
regression model. Because of the lower statistical power of this analysis, we investigated only genetic variants 
reaching a minimum allele frequency of 10% among SS patients. We considered as significant those interaction 
signals that pass a suggestive P < 0.005 in the discovery cohort, that show consistent direction of effects in the 
replication sample and reached a P < 0.05 that could only be detected as meQTL or eQTL among SS patients 
(FDR < 0.05), but not in healthy subjects (P > 0.05).

Case–control genetic association analyses were conducted using PLINK v1.979. Logistic regressions under 
the allelic additive model were performed to interrogate the association between SS diagnosis and the dosage 
of the minor allele in SNPs involved in meQTL and eQTLs correcting for the first genetic principal component. 
We used a P < 0.05 to report significant genetic associations. Moreover, we tested the genetic association of SS-
associated genetic variants with other SADs comparing the allele frequencies of 261 SS, 314 SLE, 297 SSc, 332 
RA, 59 PAPs, 69 MCTD and 111 UCTD patients vs. 457 healthy controls.

Logistic and linear regressions under the additive model were performed to assess the genetic association 
between classical imputed HLA alleles and (i) risk for SS, (ii) presence of autoantibodies, and (iii) DNA methyla-
tion levels at the IFI44L gene (cg13452062) as a proxy for the IFN epigenetic signature (epigIFN). We considered 
as significant those associations passing a P < 1.7 ×  10–04 that corresponds to a Bonferroni-adjusted significance 
considering the number of HLA alleles tested. We also categorized SS patients as those exhibiting epigenetic 
hypomethylated IFN signature (DNA methylation-beta value < 0.8 at cg13452062) and those being negative 

https://imputationserver.sph.umich.edu/index.html
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for the IFN signature (DNA methylation-beta value >  = 0.8) and then performed HLA genetic associations in a 
stratified-fashion between the epigIFN positive and negative groups.

Bioinformatics tools. Significant DMPs were annotated to genes and gene locations according to annota-
tion files provided by Illumina, from which we obtained a list of unique differentially methylated genes. Enrich-
ment analyses based on gene ontology (GO) terms were performed using the web server ConsensusPathDB-
human [URL: http:// cpdb. molgen. mpg. de/ CPDB]90 that integrates different types of functional interactions from 
30 public sources in order to assemble a more complete and a less biased picture of cellular biology. Currently, 
ConsensusPathDB contains metabolic and signaling reactions, physical protein interactions, genetic interac-
tions, gene regulatory interactions and drug-target interactions in human, mouse, and yeast.. We performed 
gene-set overexpression analyses using as a background the total list of autosomal genes covered by the Illumina 
EPIC array, a minimum set-size of 2 next-neighbors, and the following pathway databases: Reactome, KEGG, 
Wikipathways and Biocarta. For gene ontologies, we selected gene ontologies levels of 2 and 3 categories, and 
pathways, and both biological and molecular functions. Representations of enriched pathways were performed 
using cluster profiler R  packages91.

Data availability
The cohort datasets generated and analyzed during the current study are available upon request through ELIXIR 
platform.
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