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Abstract

Background. Virus-like particles (VLPs) are a multivalent platform showing great promise for the development of vaccines, gene
therapy, diagnostic, and drug delivery approaches. Particularly, HIV-1 Gag VLPs provide a robust and flexible scaffold for the
presentation of a variety of antigens. The insect cell baculovirus expression vector system (BEVS) is nowadays one of the refer-
ence systems to produce these complex nanoparticles, but information about VLP quality, quantity, stability, as well as cell per-
formance is scarce, especially at bioreactor scale. Results. VLPs produced in the reference High Five and Sf9 insect cell lines
share similar physicochemical properties, with VLPs produced in Sf9 cells showing lower levels of double stranded DNA and
protein contaminants, and a higher degree of VLP assembly. Besides VLPs, other nanoparticle populations are divergently
encountered in each cell line. Hi5 supernatants contain a higher load of extracellular vesicles, while Sf9 supernatants exhibit
higher concentrations of baculovirus particles. Similar titers are achieved when comparing Gag to Gag-eGFP VLP production,
with the size of most of the nanoparticles produced comprised at the 150-250 nm range. Eventually, Gag VLP production in
a 2 L stirred tank bioreactor is successfully demonstrated, validating bioprocess transference to the final product candidate.
Conclusions. This work provides two potentially valuable strategies for the production of HIV-1 Gag VLPs and a detailed anal-
ysis of the different nanoparticle populations produced.
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human papillomavirus, and malaria® The versatility of VLPs is
not restricted to vaccines, with successful results reported in gene
therapy,®'® drug delivery,'"'? theragnostic,'”> and in vitro

INTRODUCTION

The baculovirus expression vector system (BEVS) has become one
of the gold standards for recombinant protein production. Since
its development in the early 1980s, the BEVS has experienced an
unprecedented evolution' and is nowadays considered a robust
technology to produce high levels of recombinant proteins in

* Correspondence to: E Puente-Massaguer, Departament d'Enginyeria Quimica,

short times.? A variety of products have been produced with this
system, ranging from very simple recombinant proteins® to more
complex products including adeno-associated virus vectors* and
virus-like particles (VLPs).?

VLPs are self-assembling nanoparticles made of one or several
structural proteins of the native virus. These nanoparticles closely
resemble the original virus structure but, unlike wild-type viruses,
are devoid of viral genetic material.° The main field of application
of VLPs is in vaccine development since they have shown to elicit
robust and broad immune responses that are capable
of engaging B and T cells.” Currently, several prophylactic VLP-
based vaccines are commercially available for Hepatitis B, E,
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diagnostic approaches.”® Among the different VLP candidates
available, Gag-based VLPs have shown great promise in a variety
of applications by providing a stable scaffold for membrane pro-
tein presentation against infectious diseases,'” as an active cancer
immunotherapy,'® and for protein delivery."”

The production of enveloped VLPs is generally accomplished in
mammalian or insect cell lines'® and through different expression
systems,'®?° with the insect cell/BEVS being generally unri-
valled.?" 5f9, a clonal isolate derived from the parental Spodoptera
frugiperda cell line IPLB-Sf-21-AE, and High Five (Hi5, BTI-TN-
5B1-4) insect cells are generally the choice to produce recombi-
nant products with this system. Sf9 cells are known to achieve
higher baculovirus (BV) titers, whereas Hi5 cells are typically used
for recombinant protein production. Advances in the field of
nanoparticle characterization and quantification have opened
the opportunity to characterize the production of complex prod-
ucts at nanoparticle level. Moreover, progress made in the field
of cell culture media development in recent years has put the
basis for the intensification and standardization of recombinant
protein production with the BEVS. In this sense, we recently
assessed and optimized the production of Gag-eGFP VLPs with
the BEVS in both insect cell lines cultured in shake flasks.?>** Bio-
process validation using the final candidate product, its stability,
and the transference to larger volumes are key aspects for the suc-
cess of any given bioprocess. It has been a long time since the last
attempts to transfer Gag VLP production with the BEVS to bioreac-
tor scale,®* and advances made in the field provide an excellent
opportunity to explore the production and quality of these
nanoparticles.

In this work, the physicochemical properties and stability of
HIV-1 VLPs produced in insect cells is initially addressed. Next,
the quantity and quality of the Gag-eGFP VLPs produced in Hi5
and Sf9 cells, and its comparison to Gag VLP production is ana-
lyzed at nanoparticle level. Finally, aiming to establish an insect
cell platform for the rapid production of Gag VLPs, a proof of con-
cept in bioreactor is conducted.

MATERIALS AND METHODS

Insect cell lines and culture conditions

Hi5 cells (cat. no. B85502, Thermo Fisher Scientific, Grand Island,
NY, USA) and Sf9 cells (cat. no. 71104, Merck, Darmstadt,
Germany) were grown in the low-hydrolysate animal
component-free 5f900Ill medium (Thermo Fisher Scientific). Hi5
and Sf9 cells were subcultured three times a week at a cell density
of 2-4 x 10° cells mL™'?> and 4-6 x 10° cells mL™"?® in 125 mL
disposable polycarbonate Erlenmeyer shake flasks (Corning, Steu-
ben, NY, USA), respectively. All cultures were grown in an orbital
shaker at 130 rpm (Stuart, Stone, UK) and maintained at 27 °C. Cell
count and viability were measured with the Nucleocounter NC-
3000 (Chemometec, Allerad, Denmark) using acridine orange for
cell detection and 4,6-diamidino-2-phenylindole  (DAPI)
(Chemometec) to quantify non-viable cells.

Recombinant BVs and infection conditions

The recombinant Autographa californica multicapsid nucleopoly-
hedrovirus (AcMNPV) encoding a Rev-independent full-length
HIV-1 gag gene fused in frame to eGFP (Gag-eGFP)?” was con-
structed using the BaculoGold BV expression system
(BD Biosciences, San Jose, CA, USA). The recombinant AcMNPV
encoding the full-length HIV-1 gag gene (GenBank accession
no. K03455.1) codon-optimized for insect cell expression was

developed with the Bac-to-Bac BV expression system (Thermo
Fisher Scientific).?® Both genes were under the control of the poly-
hedrin (polh) promoter.

5f9 cells were used for BV amplification by infection at 3 x 10°
cells mL™" and a multiplicity of infection (MOI) of 0.1. BV contain-
ing supernatants were harvested at 96 h post infection (hpi) at
1000 x g for 5 min. The number of infectious BV particles/mL
was measured in Sf9 cells by the plaque assay method in 6-well
plates (Nunc, Thermo Fisher Scientific).??

Production of Gag-eGFP and Gag VLPs in shake flasks

Hi5 and Sf9 cells were infected with BV-Gag or BV-Gag-eGFP in
125 mL Erlenmeyer shake flasks with 15 mL of Sf900lll medium
at conditions previously optimized. Briefly, exponentially growing
Hi5 cells were infected with a MOI of 2.5 at 2 x 10° cells mL™", and
Gag or Gag-eGFP VLPs produced harvested at 69 hpi by centrifu-
gation at 1000 X g for 5 min.>* For Sf9 cells, BV infection was per-
formed with a MOI of 0.01 at 3.7 x 10° cells mL™", with VLPs
harvested at 80 hpi.?>

Production of Gag VLPs in bioreactor

A 2 L DASGIP® Bioblock glass bioreactor (Eppendorf, Hamburg,
Germany) equipped with three Rushton impellers was used for
Hi5 and Sf9 cell cultivation in 0.6 L working volume. Aeration
was performed through a sparger to maintain the dissolved
oxygen (DO) at 30% oxygen of air saturation. The air flow rate
was set at 1 L h™' and temperature at 27 °C. Initial agitation
conditions were set at 150 rpm for Hi5 cells and 100 rpm for
Sf9 cells. Agitation conditions were automatically adjusted in
cascade control to aeration by the DASware control software
(Eppendorf) to maintain the DO setpoint at 30% oxygen of air
saturation. The pH was fixed at 6.4 for Hi5 cells and 6.2 for Sf9
cells and controlled with 20% w/w HsPO, and 7.5% w/w
NaHCOs. Antifoam C (Sigma Aldrich, Saint Louis, MO, USA)
was added to the cell culture by pulses to prevent foam
formation.

Hi5 and Sf9 cells previously grown in 1 L Erlenmeyer shake flasks
(Corning) were inoculated in the bioreactor at a final concentra-
tion of 1 x 10° cells mL™". Hi5 and Sf9 cells were infected with
BV-Gag at the same MOI used for shake flasks, when a viable cell
concentration of 2 x 10° and 3.7 x 10° cell mL™" was attained
respectively. Gag-VLPs were harvested by centrifugation at
1000 x g for 5 min at the same conditions used in shake flasks.

Flow cytometry analysis of BV infection

The percentage of Gag-eGFP expressing cells was assessed using
a BD FACS Canto Il flow cytometer equipped with a 488 and
635 nm laser configuration (BD Biosciences, San Jose, CA, USA).
For Gag expressing cells, a specific staining protocol was imple-
mented. Shortly, cells were harvested at different times, washed,
and fixed in 4% p-formaldehyde (Sigma) for 10 min at 4 °C. After-
wards, cells were washed and permeabilized using 0.1% (v/v)
tween-20 (Sigma) for 15 min at room temperature (RT). Cells
were washed again and blocked with 10% fetal bovine serum.
After three washing cycles, cells were incubated with a rabbit
anti-HIV-1 p24 primary antibody (EnoGene, New York, NY, USA)
under mild rotation conditions for 1 h. Cells were then washed
and incubated with a chicken anti-rabbit IgG secondary conju-
gated to Alexa Fluor 467 (Thermo Fisher Scientific) under contin-
uous rotation for 2 h at RT in the dark. Cells were finally washed,
resuspended in ice-cold phosphate buffered saline (PBS) solu-
tion and analyzed in the APC PMT detector of the flow
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cytometer. A total of 2 x 107 cells were analyzed per sample at a
flow rate of 10 uL min~". Single cells were gated according to
side scatter (SSC-H) versus forward scatter (FSC-A) dot plots and
Gag-eGFP (FITC-A) or Gag (APC-A) positive cells in comparison
to a non-transfected control depending on their mean FITC-A
or APC-A fluorescence intensity, respectively. Data acquisition
and analysis was performed with the BD FACSDIVA software
v.5.0 (BD Biosciences).

Gag-eGFP VLP characterization by ion exchange
chromatography

An AKTA pure 25 M2 with an S9 sample pump and fraction collec-
tor F9-C (Cytiva, Marlborough, MA, USA) was used. Fifty milliliters
and 43 mL of clarified cell culture supernatants containing Gag-
eGFP VLPs produced in Hi5 and Sf9 cells, respectively, were fil-
tered using a 0.8 pm Millex AA syringe filter (MilliporeSigma, Bed-
ford, MA, USA) and loaded into 1 mL radial flow monolith column
(CIMmultus™ QA, Sartorius, Gottingen, Germany).

Mobile phase A and B consisted in 50 mM HEPES, pH 7.2, and
50 mM HEPES, 2 M NadCl, pH 7.2, respectively. The column was
equilibrated with 50 mM HEPES, 100 mM NaCl, pH 7.2 (5% v/v of
buffer B) before loading. After column loading, a washing step
with 15 column volumes (CV) of equilibration buffer (5% v/v of
buffer B) was conducted. A 100-1000 mM NaCl (5-50% of buffer
B) linear gradient at a flow rate of 1 mL min™" was used to assess
the VLP elution profile (50 CV). Samples were loaded into the col-
umn using the sample pump. Conductivity and ultraviolet
(UV) absorbance at wavelengths of 280 and 260 nm were moni-
tored using the software Unicorn (Cytiva).%° Total protein concen-
tration and double stranded DNA (dsDNA) quantification were
conducted by the Bradford assay (BioRad Laboratories, Hercules,
CA, USA) and QuantiTTM PicoGreen® dsDNA kit (Thermo Fisher
Scientific) according to manufacturer's instructions.”®

Nanoparticle quantification and characterization
Nanopatrticle tracking analysis

VLP and total nanoparticle concentrations were measured by
nanoparticle tracking analysis (NTA) using a NanoSight NS300
(Malvern Panalytical, Malvern, UK). Fluorescent particles mea-
sured were considered as VLPs, whereas all light-scattered parti-
cles were considered as total nanoparticles. Shortly, samples
from harvested supernatants at 3000 x g for 5 min were diluted
in 0.22 pm-filtered DPBS and continuously injected into the
device chamber through a syringe pump at an average concen-
tration of 108 particles mL™" (20-60 particles frame™"). Videos of
60 s from independent triplicate measurements were analyzed
with the NanoSight NTA 3.2 software (Malvern Panalytical).

Flow virometry

VLP and total nanoparticle concentrations were assessed by flow
cytometry using a CytoFlex LX (Beckman Coulter, Brea, CA, USA).
Gating of the different populations was made according to
SSC-A versus FITC-A dot plots and using fresh DPBS and Sf900lll
medium samples as negative controls. Samples from superna-
tants harvested at 3000 x g for 5 min were diluted in 0.22 pm-
filtered DPBS and triplicate measurements from independent
samples were analyzed with the CytExpert 2.3 software
(Beckman Coulter).

Super-resolution fluorescence microscopy
The different nanoparticle populations in Gag and Gag-eGFP
supernatants were analyzed with a TCS SP8 confocal microscope

equipped with the Huygens deconvolution and LAS X software
and GPU array (Leica Microsystems, Wetzlar, Germany) at Servei
d'Anatomia Patologica from Hospital Sant Joan de Déu.>° Briefly,
nanoparticles were stained with 0.1% v/v of CellMask™ and 0.1%
v/v of Hoechst 33342 or 0.05% v/v for Sf9-derived nanoparticles.
Stained preparations were loaded onto a microscope slide and
adsorbed to the surface of the cover glass (Linea LAB, Barcelona,
Spain) for 30 min at RT. Analysis was conducted with 100x magni-
fication (zoom 5) and a line average of 3 and 496 x 496 pixels with
a HC PL APO CS2 100 X/1.40 OIL objective in the HyVolution2
mode (Leica). Five fields of 13 sections per each biological tripli-
cate were analyzed. Deconvolution was performed with the SVI
Huygens Professional program and the best resolution strategy
(Scientific Volume Imaging B.V., Hilversum, the Netherlands). Par-
ticle size distribution (PSD) analyses were performed with the 3D
module package in Imaris 8.2.1 (Bitplane, Oxford Instruments,
Zurich, Switzerland) at Servei de Microscopia from Institut de Neu-
rociencies (Universitat Autonoma de Barcelona).”® PSD histo-
grams were created with Microsoft Excel 2016 (Redmond,
WA, USA).

Gag-eGFP quantification

The supernatants of insect cells infected with the BV-Gag-eGFP
were recovered by centrifugation at 3000 X g for 5 min. Green
fluorescence was measured with a Cary Eclipse fluorescence spec-
trophotometer (Agilent Technologies, Santa Clara, CA, USA) at RT
as follows: Aex =488 nm (5 nm slit), Aem = 500-530 nm (10 nm slit).
Relative fluorescence units were calculated by subtracting fluores-
cence unit values of fresh Sf900lll medium.

Gag quantification

An HIV-1 p24 enzyme-linked immunosorbent assay (ELISA) kit
(Sino Biological, Wayne, NJ, USA) was used to quantify the con-
centration of Gag polyprotein. Supernatants were harvested by
centrifugation at 3000 x g for 5 min. Samples were incubated in
SNCR buffer for 10 min at 70 °C, and in 1.5% Triton X-100 for
10 min at 100 °C. The substrate solution was prepared by dissol-
ving a SIGMAFAST OPD substrate tablet and one urea hydrogen
peroxide tablet (MilliporeSigma) at a final concentration of
0.4 mg mL™" in deionized water. An HIV-1 p24 protein standard
of known concentration was also included for absolute Gag quan-
tification. The reaction was stopped by adding a 625 mM H,SO,
solution after 10 min incubation. The absorbance was measured
at 492 nm with a reference wavelength at 630 nm in a Tecan Infi-
nite 200 Pro reader (Tecan, Mdnnedorf, Switzerland). p24 concen-
tration values were corrected according to HIV-1 Gag molecular
weight (55 kDa).

SDS-PAGE and western blot

Gag and Gag-eGFP VLP containing supernatants were examined
by SDS-PAGE and western blot for HIV-1 p24 (A2-851-100, Icosa-
gen, Tartu, Estonia) and GP64 (A2980, Abcam, Cambridge, UK)
detection.*’

Cryo-transmission electron microscopy

BV-Gag infected Sf9 and Hi5 cell supernatants at 80 and 69 hpi,
respectively, were visualized with a cryo-transmission electron
microscope. Two to three microliters of sample were blotted onto
400 mesh Holey carbon grids (Micro to Nano, Wateringweg, the
Netherlands) previously subjected to glow discharge in a PELCO
easiGlow discharge unit (Ted Pella Inc., Redding, CA, USA). Sam-
ples were subsequently plunged into liquid ethane at —180 °C
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Figure 1. Characterization of Gag-eGFP VLPs produced in shake flasks. Elution profiles of infected Hi5 (A) and Sf9 cell (B) supernatants using a monolithic
ion exchange column. The black dotted line in the chromatogram indicates conductivity, whereas blue and red lines refer to ultraviolate (UV) absorbance
at 280 and 260 nm, respectively. Fluorescence (C), protein (D), and dsDNA distribution (E) in P1, P2, and P3 elution fractions. SDS-PAGE (F) and HIV-1 p24
western blot (G) analysis of P1, P2, and P3 elution fractions. The P1 fraction was diluted 1:2 before loading the SDS-PAGE and western blot. The black arrow
corresponds to the band of the full-length Gag-eGFP polyprotein. Conc, concentration; FU, fluorescence units; dsDNA: double-stranded DNA.
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using a Leica EM GP cryo workstation (Leica) and observed in a
Jeol JEM-2011 TEM electron microscope operating at 200 kV
(Jeol Ltd., Akishima, Tokyo, Japan). During imaging, samples were
maintained at —173 °C and pictures were taken using a CCD mul-
tiscan camera model no. 895 (Gatan Inc., Pleasanton, CA, USA).

Analysis of insect cell metabolism

Glucose, lactate, and phosphate concentrations were measured
by ion-exclusion chromatography using a sulfonated polystyrene
divinyl benzene column (Aminex HPX-87H, Bio-Rad, Hercules, CA,
USA) in an Agilent 1200 series HPLC system (Agilent). A 0.01 N
H,SO, solution was used as the mobile phase with a flow rate of
0.45 mL min~". All measurements were performed in an AZURA
UV/VIS detector (Knauer, Berlin, Germany) with a refractive index
detector temperature of 35 °C. The standard deviation of the
technique was determined as 0.31% for glucose, 0.26% for lactate,
and 1.01% for phosphate measurement. The phosphate uptake
rate was calculated taking into consideration the amount of phos-
phate present in the medium and also the volume of H3PO,
added for pH control.
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Amino acid concentrations were determined by HPLC after
derivatization in a reversed-phase Eclipse Plus C18 column
(Agilent) at 40 °C according to manufacturer's instructions
(Agilent). The flow rate was adjusted to 0.64 mL min~' and two
solvents (solution A and B) were used in the mobile phase. Solu-
tion A consisted of 10 mM K,HPO, and 10 mM K,B,0;, and solu-
tion B of a 45/45/10% v/v/v mix of acetonitrile, methanol and
water, respectively. Amino acids were detected at 266/305 nm
for fluorenylmethoxycarbonyl derivates and at 450 nm for o-
phthalaldehyde derivates. The final amino acid concentration
was quantified using an internal standard calibration. The stan-
dard deviation associated with the measurement of amino acid
concentrations was 4 + 1%.

RESULTS AND DISCUSSION

Physicochemical properties and quality assessment
of HIV-1 VLPs

We have recently proven that the BV infection conditions of Hi5*
and Sf9 cells®® can be successfully optimized to produce high
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Figure 3. Analysis of Gag and Gag-eGFP VLPs. Imaging and assessment of size distribution by SRFM of the different nanoparticle populations in Hi5
(A) and Sf9 (B) supernatants infected with BV-Gag-eGFP. Nanoparticle lipid membranes were stained with CellMask™ (red) and nucleic acids with Hoechst
(blue). Imaging and evaluation of size distribution by SRFM of the different nanoparticle populations in Hi5 (C) and Sf9 (D) supernatants infected with BV-
Gag. (E) HIV-1 p24 (upper) and GP64 (lower) western blot analysis of Gag-eGFP and Gag VLP productions. The green mark indicates the Gag-eGFP band,
the black mark shows the Gag band, and the white mark illustrates the GP64 band. Cryo-TEM micrographs of Gag VLPs produced in Hi5 (F) and Sf9 cells
(G). NA, nucleic acid; NP, nanoparticle; SRFM, super-resolution fluorescence microscopy; VLP, virus-like particle.
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HIV-1 VLP titers. However, the physicochemical properties and
quality of these nanoparticles produced in both insect cell lines
is still to be characterized. To this purpose, fluorescently tagged
VLPs (Gag-eGFP VLPs) were used for an easier sample monitoring.
Different parameters were assessed by ion exchange chromatog-
raphy (IEX) in the unprocessed supernatant samples, including
Gag-eGFP polyprotein (fluorescence units, FU), total protein con-
centration (pug mL™"), and dsDNA concentration (ng mL™"). A
five-fold increase in FU was measured in Hi5 compared to Sf9
supernatants, with Sf9 supernatant samples exhibiting lower
levels of contaminating protein and dsDNA (Fig. 1). The low Hi5
cell viability at harvest might explain the high amounts of dsDNA
and proteins encountered in the supernatant. After IEX, there was
no presence of VLPs in the flowthrough, supporting the complete
capture of these nanoparticle by the monolith column (data not
shown). Three different fractions, P1-P3, were pooled in each
run according to UV 260 and 280 nm chromatograms. The three
elution peaks were obtained at conductivities of 22, 38, and
51 mScm™" in the Hi5 supernatant [Fig. 1(A)], with similar conduc-
tivity values of 25,31 and 51 mS cm™' for P1-P3 in the Sf9 super-
natant [Fig. 1(B)]. Most of the protein present in both Hi5 (80%)
and Sf9 supernatants (50%) eluted at lower salt concentrations
[Fig. 1(Q)], whereas dsDNA eluted in P1 in the Hi5 and in P3 in
the Sf9 supernatant, respectively [Fig. 1(D)]. The dsDNA elution
profile of the Hi5 supernatant sample was comparable to that
observed in Tnms42 cells,*? while it was similar to the elution pro-
file measured in CHO cells for the 59 supernatant.>® Considering
the different level of contaminants in each unpurified superna-
tant, as well as the strong positive charge of the quaternary amine
monolithic column, a competition for binding between negative
charged dsDNA and VLPs could be the reason behind the differ-
ences in dsDNA elution profiles.

The presence of Gag-eGFP VLPs was analyzed by spectrofluo-
rometry (FU), SDS-PAGE, and HIV-1 p24 western blot in each
pooled fraction [Fig. 1(E)-(G)]. The Gag-eGFP polyprotein was
detected in all fractions analyzed, most of it eluting at a low con-
ductivity in the Hi5 supernatant (93%), and at a low-intermediate
salt concentration in the Sf9 supernatant (60%). Differences in the

fluorescence elution pattern between cell lines could be attrib-
uted to the high ratio of unassembled Gag-eGFP monomer versus
Gag-eGFP VLPs in the Hi5 supernatant,? since free monomer has
been reported to elute earlier than VLPs.?® Apart from the differ-
ent content of unassembled Gag-eGFP monomer between both
cells, similar HIV-1 VLP elution profiles in monolithic columns were
observed in this work compared to other production platforms,
with HIV-1 VLPs produced in HEK 293, Tnms42 and CHO cells elut-
ing at conductivities of 27-49, ~20-45, and 45-90 mS cm™,
respectively. 2?3233

Stability of HIV-1 VLPs

Product stability is an important parameter to consider towards
extending the shelf-life of the product of interest. This is especially
relevant when it comes to enveloped particulate products such as
VLPs. To this purpose, the supernatant of VLPs produced with the
BEVS was split, aliquoted, and maintained at four different condi-
tions (27, 4, —20 and —80 °C) for 2 months. Gag-eGFP VLPs were
used with the aim to discriminate VLPs from other nanoparticle
populations co-expressed with the BEVS.?” Different analytical
techniques, including spectrofluorometry and NTA were
employed (Fig. 2). VLP fluorescence was generally maintained
over the 2-month period independently of the storage conditions
used [Fig. 2(A)]. However, VLP characterization in native condi-
tions by NTA revealed that the structural integrity of VLPs was
only preserved at 4 and —80 °C [Fig. 2(B)], suggesting that VLPs
stored at 27 and —20 °C were probably disassembling. Enhanced
protease activity could explain the instability of VLPs stored at
27 °C, while particle disruption due to external and internal ice
formation around the VLP envelope might explain the low stabil-
ity at —20 °C.>*3> Additionally, changes in the morphology were
detected in all conditions except —80 °C [Fig. 2(C)]. So far, it is still
not well known whether variations in VLP morphology can alter
their immunogenicity profile. In any case, this data indicates that
Gag VLPs produced with the BEVS can be safely stored at 4 and
—80 °C for mid to long term purposes without the need of further
purification.

Table 1. Quantification of Gag and Gag-eGFP VLP production titers and baculovirus particles in Hi5 and Sf9 cells infected with the BEVS in shake
flasks. Nanoparticle quantification was performed by NTA and flow virometry, and i baculovirus particles were measured by the plaque assay method
Condition Quantification method Product Fluorescent particles (10° particles mL™") Total particles (10° particles mL™")
Hi5 NTA Gag n.a. 495 + 60
Gag-eGFP 34+2 426 + 61
Flow virometry Gag n.a. 59+05
Gag-eGFP 22 +0.1 9.5+ 03
sfo NTA Gag n.a. 128 + 24
Gag-eGFP 37+9 181+ 15
Flow virometry Gag n.a. 59+03
Gag-eGFP 33+03 82+09
Sf900Ill medium NTA n.a. n.a. 448 + 19
Flow virometry 0.1+ 0.0
Condition Product IBV particles (107 pfu mL™")
Hi5 Gag 10.0 + 2.7
Gag-eGFP 60+ 14
Sfo Gag 31.0+ 135
Gag-eGFP 76.7 £ 513
IBV, infectious baculovirus particle; n.a., not available.
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Comparison of Gag-eGFP and Gag VLPs

Gag tagging with the fluorescent reporter protein eGFP is a useful
strategy in bioprocess development since discrimination
between other nanoparticle populations and VLPs is possible. This
allows a better control and understanding of nanoparticle-based
production platforms such as VLP expression with the BEVS. Nev-
ertheless, once the bioprocess has been defined, the production
of the final candidate without the fluorescent tag has to be
assessed. Super-resolution fluorescence microscopy, a novel tech-
niqgue to characterize different nanoparticle populations
simultaneously,”® was applied to characterize Gag-eGFP and
Gag VLP productions. Most of the Gag-eGFP VLPs produced in
both insect cell lines were detected at the 150-250 nm range, as
expected [Fig. 3(A) and (B)]. However, Sf9-derived Gag-eGFP VLPs
proved to be more heterogeneous with a fraction of these VLPs
with sizes in the 300-400 nm range. A higher number of nanopar-
ticles was also measured at the 300-500 nm range in Sf9 superna-
tants. This could be related to the three to ten-fold higher
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concentration of BV particles in Sf9 over Hi5 supernatants
(Table 1) given that these cells generally produce higher amounts
of BVs. This is in agreement with the higher frequency of nucleic
acid detection in the 300-500 nm range since BVs contain large
genomes up to 180 kb.*®

A similar size distribution was observed in Hi5 Gag VLP superna-
tants, with most of the nanoparticles located in the 150-250 nm
size range [Fig. 3(C) and (D)]. Specific detection of Gag-eGFP and
Gag in Hi5 and Sf9 supernatants was also confirmed by western
blot, while the presence of the GP64 BV-associated protein also
indicated the co-expression of BVs [Fig. 3(E)]. As Gag VLPs were
not tagged, VLPs could not be differentiated from other nanopar-
ticles, specifically extracellular vesicles (EVs), which fall in the same
size range and have been described to be co-expressed with VLPs
in animal cell lines.?° These nanoparticles are generally produced
at higher levels than VLPs, representing from 4 to 13-fold in Hi5
supernatants and from 2 to 5-fold in Sf9 supernatants,® with var-
iability attributed to the quantification methodology employed
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Figure 4. Transference of HIV-1 VLP production from shake flasks to bioreactor. Cell growth and viability profiles of Hi5 (A) and Sf9 cells (B). The black
arrow indicates the time of recombinant baculovirus infection. Evolution of Gag and Gag-eGFP expression in Hi5 (C) and Sf9 cells (D) by flow cytometry
after infection with recombinant baculoviruses. (E) Quantification of Gag production by enzyme-linked immunosorbent assay in the supernatant of
infected insect cells cultured in bioreactor at the time of harvest. The HIV-1 p24 protein was included as standard of known concentration.
(F) Measurement of total nanoparticles by NTA in the supernatant of infected insect cells cultured in bioreactor at the time of harvest. The concentration
of infectious baculovirus particles in these conditions was also determined by the plaque assay method. IBV, infectious baculovirus; NTA, nanoparticle
tracking analysis; R, bioreactor; SF, shake flask.
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(Table 1). The higher load of BV particles in the Sf9 supernatant
was also appreciated in Gag VLP preparations [Fig. 3(D)], with a
larger nanoparticle population frequency in the 300-500 nm
range compared to the Hi5 supernatant. Of note, it is possible that
the concentration of BV particles was higher than the titers
obtained by the plaque assay method due to the existence of
defective BV particles.?” The presence of nucleic acids in particles
of similar sizes to VLPs was detected in Gag and Gag-eGFP prepa-
rations, possibly indicating that nanoparticles within this size
range, VLPs, EVs or both, might contain or be associated with
nucleotide molecules.*®3° Further studies are needed to discrim-
inate which nanoparticle populations are subjected to incorpo-
rate or associate to nucleic acids.

Gag VLP supernatants from both insect cell lines were analyzed
by cryo-transmission electron microscopy (cryo-TEM). The native
structure of Gag VLPs could be observed but differentiation
of VLPs from EVs was more difficult in the Hi5 supernatant
[Fig. 3(F) and (G)]. This is possibly due to the higher load of EVs
co-expressed in Hi5 cells and also to the larger amounts of
proteins (Fig. 2), which increase the background signal and reduce
the quality of the imaging. Compared to previous studies with Gag-
eGFP VLPs, Gag VLPs proved to be less heterogenous and with a
higher degree of internal arrangement.®° The absence of the eGFP
fusion protein might result in the formation of more structured
nanoparticles closely resembling immature HIV-1 virions.

Gag VLP production in bioreactor

The production of Gag VLPs with the insect cell/BEVS was assessed
in a stirred tank bioreactor to test the feasibility of this platform for
large scale VLP manufacture. Similar cell growth and infection
kinetics were measured between shake flasks and bioreactors for
Gag as well as Gag-eGFP production, indicating the successful
transference of the conditions optimized in shake flasks to bioreac-
tor scale [Fig. 4(A)-(D)]. The higher MOI used in Hi5 cells completely
arrested cell growth after infection, whereas Sf9 cells continued to
grow for the next 48 hpi. The same reason applies to the earlier
decrease in cell viability and also the faster infection kinetics
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observed in Hi5 cells. After infection, an increase in stirring speed
was observed in Hi5 cells, peaking at ~24 hpi, which could be
related to a higher oxygen demand owing to the BV infection pro-
cess since cell growth was completely arrested.* As for Sf9 cells,
the maximum oxygen demand was recorded at ~40 hpi [Fig. 5
(A) and (B)], coinciding with the peak in viable cell concentration
and complete infection. In these conditions, Hi5 and Sf9 cells
yielded 1.86 and 1.28 mg L™' of Gag polyprotein, with a higher
amount of contaminant BV particles in the latter [Fig. 4(E) and
(F)]. VLP titers in both platforms were higher than those achieved
in insect cells by stable gene expression,*'** and transient transfec-
tion of plasmid DNA.**** On the other hand, a larger load of con-
taminant EVs in the same size range as VLPs was observed in Hi5
cell cultures. Despite several advances to separate these contami-
nant species from Gag VLPs have been accomplished in the last
years,*>* further research is still required. Moreover, it is not well
known how these specimens might impact the final application
of Gag VLPs, either by boosting their immunogenicity®” or by
reducing it.*® If BV particles negatively impact the final application
of Gag VLPs as a pharmaceutical product, Hi5 cells might be a bet-
ter option for VLP production. If this is not the case, Sf9 cells might
have an advantage since the presence of contaminating nucleic
acids, host cell proteins and unassembled Gag, and EVs is lower,
simplifying their purification. In any case, both platforms achieve
superior Gag VLP yields in comparison to other systems employed
to produce these nanoparticles at bioreactor scale,**>' and a three-
to four-fold increase with respect to the most recent optimization
study for Gag VLP production with the insect cell/BEVS.>? Assuming
a mouse is immunized with two doses of 5 pg of Gag VLPs in a
prime-boost regimen'® and not considering losses in process puri-
fication, a 1 L bioreactor culture of Sf9 or Hi5 cells would enable to
immunize around 100-200 mice, respectively.

The analysis of cell metabolism is an important aspect to consider
in bioprocess development since strategies for process intensifica-
tion can be implemented. To this end, the metabolism of both
insect cell lines cultured at bioreactor scale after BV infection was
analyzed. Hi5 cells consumed larger levels of all the different
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Figure 5. Analysis of bioreactor parameters with the insect cell/BEVS. Stirring speed, dissolved oxygen concentration, pH, and volume of acid/base
added in Hi5 (A,C) and Sf9 cell (B,D) cultures. Black arrows indicate the time point of recombinant baculovirus infection. Profiles of glucose, lactate, phos-
phate (E,F) and main amino acids produced/consumed (G,H) in Hi5 and Sf9 cultures, respectively. Ala, alanine; Asn, asparagine; Asp, aspartic acid; DO, dis-
solved oxygen; GIn, glutamine; Glu, glutamic acid; RPM, revolutions per minute; Ser, serine.
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metabolites assessed in comparison to Sf9 cells [Fig. 5(E)—(H)], with
glucose, asparagine, and glutamine as the most highly consumed
(Supporting Information, Fig. S1). Asparagine is reported as the
principal nitrogen source for Hi5 cells and its uptake rate can be
even higher than glucose>® After BV infection, asparagine was
not consumed as rapid as previously observed,*' possibly due to
the low concentration in the medium at the time of infection,
resulting in complete asparagine exhaustion between 24-48 hpi
and coinciding with the decline in cell viability. Sf9 cells exhibited
a more balanced metabolism with reduced uptake fluxes of the dif-
ferent metabolites analyzed (Supporting Information, Fig. S1). Glu-
cose, the principal carbon source, and glutamine, an important
nitrogen source in insect cell cultures, were the main compounds
consumed by Sf9 cells. None of them was limiting by the end of
the production phase, though the low concentration of glutamine
in the medium (~1 mM) could have possibly influenced its uptake
by Sf9 cells. Interestingly, serine was depleted at 48 hpi, coinciding
with the peak of maximum viable cell concentration and complete
BV infection. Thus, asparagine and serine supplementation at the
time of infection could be an option to extend the productive time
of Hi5 and Sf9 cells, respectively, and further increase VLP yields.

The control of bioprocess parameters in the bioreactor was suc-
cessfully achieved in both insect cell lines. However, differences in
the behavior of Hi5 and Sf9 cells were observed [Fig. 5(C) and (D)].
The addition of sodium bicarbonate to the Sf9 cell culture by the
software control loop at the beginning of the bioreactor opera-
tion indicated the acidification of the culture medium. The accu-
mulation of organic acids derived from cell metabolism such as
glutamic and aspartic acid, both with pKa values below the cell
culture pH, and CO, production from cell respiration could be
the reasons behind medium acidification. On the contrary, the
addition of phosphoric acid to the Hi5 cell culture was detected.
Ammonia formation, a by-product of insect cell metabolism,
could explain medium basification since significantly higher
asparagine and glutamine uptake rates were measured in this cell
line>* Alanine was also produced in both bioreactor cultures
peaking in the 15-20 mM range. The formation of this amino acid
is a feature observed in animal cell metabolism under glucose
excess conditions.> Lactate, another by-product of insect cell
metabolism, was not produced after BV infection, which is proba-
bly associated to pH and dissolved oxygen concentration mainte-
nance along the culture.>®

CONCLUSIONS

This study provides a detailed analysis of the insect cell/BEVS
and shows the versatility of this system to produce HIV-1 VLPs.
VLPs produced in the reference Hi5 and Sf9 insect cell lines
exhibit similar physicochemical properties and are stable when
stored at —80 °C for 2 months with little impact on their mor-
phology. Gag VLP titers are similar to those obtained for Gag-
eGFP VLPs, with nanoparticle sizes in the 150-250 nm range
closely resembling immature HIV-1 virions. A high degree of
heterogeneity and complexity is detected in VLP productions,
with large concentrations of EVs, dsDNA and total protein con-
tent in Hi5 supernatants, whereas high loads of BV particles are
encountered in Sf9 supernatants. The successful transference
of Gag VLP production from shake flasks to stirred tank bioreac-
tor is demonstrated, providing two different strategies to pro-
duce these complex nanoparticles in large volumes with
controlled operational conditions.
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