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Abstract: Simultaneous removal of nitrogen and phosphorous is a recommended practice while
treating wastewater. In the present study, control strategies based on proportional-integral (PI),
model predictive control (MPC), and fuzzy logic are developed and implemented on a plant-wide
wastewater treatment plant. Four combinations of control frameworks are developed in order to
reduce the operational cost and improve the effluent quality. As a working platform, a Benchmark
simulation model (BSM2-P) is used. A default control framework with PI controllers is used to
control nitrate and dissolved oxygen (DO) by manipulating the internal recycle and oxygen mass
transfer coefficient (KLa). Hierarchical control topology is proposed in which a lower-level control
framework with PI controllers is implemented to DO in the sixth reactor by regulating the KLa of
the fifth, sixth, and seventh reactors, and fuzzy and MPC are used at the supervisory level. This
supervisory level considers the ammonia in the last aerobic reactor as a feedback signal to alter the
DO set-points. PI-fuzzy showed improved effluent quality by 21.1%, total phosphorus removal
rate by 33.3% with an increase of operational cost, and a slight increase in the production rates of
greenhouse gases. In all the control design frameworks, a trade-off is observed between operational
cost and effluent quality.

Keywords: supervisory layer; BSM2 model; model predictive control; fuzzy controller; opera-
tional cost

1. Introduction

The increase in the global population and urbanization has emanated in an increase
in the use of water and therefore in the production of contaminated water (wastewater).
This causes the effect of the water cycle and generates disorder in natural functioning. The
intensification of the demand for clean water with deficient water resources has eventually
resulted in a growing interest towards resource recovery during the treatment of wastewa-
ter. It is perceived that valuable resources like clean water, energy, and nutrients can be
recovered from wastewater [1]. This leads to the progression of wastewater treatment
plants (WWTP) into a water resource recovery facility (WRRF) [2]. Modelling and control of
WWTPs generated a lot of interest among the wastewater community to increase flexibility
and reduce the costs while operating WWTPs. WWTP’s are intricate because of chemical
and biological interactions in between the processes, the peculiar nature of microbes, a
disorder of concentrations, and dynamic rates of flow [3,4]. Among all the benchmark
simulation models, BSM1-P is a platform with a defined plant layout, bioprocess models
(activated sludge models (ASM)), influent loads, sensors, and actuators. Hence, BSM1-P
platform allows unbiased comparison of carbon, nitrogen, and phosphorus removal in
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activated sludge control strategies [5,6]. Based on the models of WWTPs, plant-wide mod-
els take the attention of researchers for a long time run as the whole plant is understood
by considering all process interactions [7–9]. Different plant-wide models are studied in
the literature, which includes sludge control approaches, biogas production in primary
settler, handling of the anaerobic digester, and phosphorus modeling with interactions
of sulfur and iron cycles [10–17]. In the literature, many control applications like fuzzy
logic controller (FLC), model predictive controller (MPC), proportional-integral (PI), and
ammonia-based aeration control (ABAC) with different hierarchical combinations of PI,
MPC, and fuzzy were studied, and it is observed that there is a trade-off between opera-
tional cost and effluent quality [18–21]. Maheswari et al. (2020) designed the nested control
loop on three-stage biological treatment for ammonia changes and they observed that Efflu-
ent Quality Index (EQI) is improved with higher operational costs [22]. Shiek et al. (2021)
implemented an ammonia-based aeration control (ABAC) with four different combina-
tions of controllers like PI-MPC, MPC-MPC, PI-fuzzy, and MPC-fuzzy, which resulted
in a tradeoff between Operational Cost Index (OCI) and EQI. In their study, the ammo-
nia removal rate was improved by 18% in the case of MPC-MPC but P removal was not
affected much [23].

Based on the benchmark simulation model on the plant-wide model (BSM2), different
control applications like PI, artificial neural network (ANN), and sludge-based strategies,
hierarchal control approaches are reported [24,25]. It was reported that the application
of FLC improves EQI by 8% and reduces the aeration energy consumption up to 13%.
Revollar et al. (2020) implemented a cascade strategy by using PI control with DO and
ammonia on the BSM2 platform, and they noticed a 9% improvement on operational
cost [26]. Barbu et al. (2017) implemented controllers for DO, ammonia, and TSS (total
suspended solids) on the BSM2-G (greenhouse gas emission) platform, and as a result, an
improved EQI of 11% and reduced OCI of 7.7% were achieved [27]. Supervisory control
approaches on BSM2 are developed with different combinations of PI, MPC, and fuzzy,
and it was found that PI-MPC showed a reduced OCI of 6.7%. Similarly, PI-fuzzy provided
an improved EQI of 9.2% [28]. Even though many researchers designed control approaches
based on BSM2, controllers design based on BSM2-P is limited.

The benchmark simulation model (BSM2-P) is an integrated version of BSM1-P that
includes both water and sludge treatment process units [29] and BSM2. In the BSM2-P
framework, PI-based controlling DO in the sixth reactor and cascade PI in the control
of ammonia and total suspended solids were developed and it was found that OCI and
EQI are in the trade-off. Closed-loop control showed an improved result when compared
with open-loop operation [30]. Sludge management strategies like bio-solids beneficiation
facility (BBF) are studied to improve solubility, sludge dewaterability, and handle high
sludge loads with change in the microbial population [31].

To the best of the authors’ knowledge, advanced hierarchical control strategies are not
implemented on the BSM2-P plant level layout to improve effluent quality and operational
costs. On this note, the present work focuses on implementing advanced hierarchical
control strategies based on MPC, fuzzy controllers; and the plant performance is evaluated
by developing different control approaches. A lower-level control strategy is developed
for DO control in the sixth reactor by manipulating the KLa of the fifth, sixth, and seventh
reactors in the biological treatment process. PI controller is used at the lower level, whereas
fuzzy and MPC are used at the supervisory level. The supervisory level is based on the
ABAC to determine the dissolved oxygen set-point. EQI; OCI; percentage of nutrient
removals; and production rates of methane, carbon dioxide, and hydrogen are studied
while evaluating the control strategies.

2. Materials and Methods

This section provides an explanation of the working regime of BSM2-P with details
of the performance/economy assessment and indices. Model creation and simulation are
performed using MATLAB/SIMULINK.
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2.1. Influent Data

Model-based influent load generation as elucidated in [2,32,33] is used to generate
dynamic influent load data to execute the performance of plant-wide scenarios of the
wastewater treatment plants. The daily average dynamic mass flow rates are provided
in Table 1. More information about the handling of influent generation is illustrated
in [15,34,35]. Dynamic simulations are performed for 609 days with steady-state simulation
for 300 days. S:COD is the ratio of added sulphate [2]. The last 1-year data are used for
performance assessment of the plant. State variables of ASM2d, units with notations, and
average influent data are reported in the Supplementary data Table S1.

Table 1. Average data of dynamic mass flow rates.

Dynamic Mass Flow Rates Average Data

Chemical oxygen demand (COD) 8386 kg/d

Nitrogen 1014 kg N/d

Phosphorus 197 kg P/d

S:COD 0.003 kg S Kg/COD

2.2. Model Scenario

The plant-wide model of BSM2-P has a resemblance to BSM2 plant [9] but a modifi-
cation is carried out in the activated sludge unit (ASU). In ASU, two anaerobic reactors
are added ahead of anoxic and aerobic reactors (A2/O) to enhance phosphorus removal
and to improve PAO’s with a competitive dominance over other nitrogenous bacteria.
The plant-wide model of BSM2-P consists of ASU, primary (PSU) and secondary (SSU)
sedimentation units, Thickener (THK), anaerobic digestion (ADU) unit, storage (SU), and
dewatering (DU) unit, with internal and external recycles. Figure 1 depicts the plant-wide
model of BSM2-P and Table 2 represents each process unit of WWTP of BSM2-P with their
working function and physical configurations. The internal recycle is maintained at three
times the influent data, and sludge flow is at the rate of 600 m3/d.

Figure 1. Proposed plant-wide model layout based on BSM2-P.
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Table 2. Attributes of plant-wide model processes units and physical configurations.

Process Unit Working Function References Configurations

PSU Non-reactive [36] 900 m3

SSU Double-exponential
velocity function reactive [37–40] 6000 m3

ASU ASM2d [32,41] 4500 m3

ADU ADM1 [42] 3400 m3

THK Reactive [7,43] Underflow 30.9 m3/d

DU Reactive [7,43] 9.6 m3/d sludge and
168.9 m3/d reject water

SU Non-reactive [7] 160 m3

2.3. Plant-Wide Assessment Criteria
2.3.1. Effluent Quality Index

The Effluent Quality Index (EQI) defines the amount of effluent to surface waters
averaged over the assessment time interval related to the weighting factors of discharge
loads of composition. The EQI (kg pollutants units/D) [2,7] is integrated with additional
phosphorus process reactions, and the pollution composition with individual variables is
illustrated below:

EQI = 1
T·1000

∫ tend
tstart

(θTSSTSSef(t) + θCODCODef(t) + θNKJNKJef(t)

+θNOSNOef(t) + θBOD5BOD5ef(t) + θPorgPorgef
(t)

+θPinorgPinorgef
(t)
)

Qef(t) dt

(1)

CODef = SFef + SAef + SIef + XIef + XSef + XB,Hef + XPAOef + XPHAef

+XB,Aef + iCODSFe(II)
SFe(II)ef

+ iCODSIS
SISef + iCODX

SO
XSO

ef
+ XSRBef

(2)

NKJef = SNHef + iNSF
SFef + iNSI

SIef + iNXI
XIef + iNXS

XSef

+iNBM

(
XB,Hef + XPAOef + XB,Aef + XSRBef

) (3)

Porgef
= XPPef+iPSF

SFef + iPSI
SIef + iPXI

XIef + iPXS
XSef+

iPBM

(
XB,Hef + XPAOef + XB,Aef + XSRBef

) (4)

BOD5ef = 0.25
(

SFef + SAef +
(
1− fSI

)
XSef +

(
1− fXIH

)
XB,Hef

+
(
1− fXIP

)(
XPAOef + XPHAef

)
+
(
1− fXIA

)(
XB,Aef + XSRBef

) ) (5)

Pinorgef
= SPO4ef

(6)

SNOef = SNO3 (7)

TSSef = XTSS (8)

The subscript ‘ef’ indicates the effluent discharge. θi signifies the weighting factors of
different pollutants to convert into basic pollution units, which are tabulated in Table 3.
iCODi denotes the COD compounds, iNi denotes the nitrogen compounds, iPi denotes the
phosphorus compounds, T signifies the total assessment time interval (364 days), and Qef
denotes the discharge flow rate (m3/d). The corresponding conversion factors for fi are
reported in [2,5,32,41]. All the concentrations are addressed in g/m3 units.
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Table 3. Weighting factors for EQI.

Weighting Factors of EQI (θi)

Weighting factors θTSS θCOD θNKJ θNO θBOD5 θPorg θPinorg

Value 2 1 30 10 2 100 100

2.3.2. Operational Cost Index (OCI)

Operational cost is a weighted summation of costs associated with the production of
sludge (SP) (kg ss/d), methane (PM) (kg.CH4/d), pumping (PE), aeration (AE), mixing
(ME), and heating (HE) energies (KWh/d); internal and external recycles are provided
(m3/d). All individual components are addressed in [2,7]. Thus, the OCI is estimated as

OCI = AE + PE + zPS·SP + ME− zPM·PM + max(0, HE− 7PM) (9)

where zi denotes the weighting factors; zPS is 3 and zPM is 6.
Aeration, pumping, and mixing energies are addressed in Equations (10), (11) and

(13). Here, aeration power is needed to aerate bioreactors; pumping is used to alter the
flow rate from one end to another end and for internal, external flow patterns [2,7].

The aeration energy (AE) is described as (kWh/d):

AE =
Ssat

O
1800·T

∫ tf

to

7

∑
i=1

Vi·KLai(t) dt (10)

where KLai signifies the oxygen mass transfer coefficient, Vi notifies the volume of the
reactors and oxygen saturation coefficient. T is the length of evaluation time (364 days).

The pumping energy (PE) is defined as (kWh/d):

PE = 1
T

∫ tf
to

0.004·Qint + 0.008·Qr + 0.050·Qw + 0.075·QPU + 0.060 QTU

+0.004·QDOdt
(11)

where Qintr is the internal recycle (m3/d), Qexr is the external recycle (m3/d), Qw is the
waste flow (m3/d), QPU is the primary clarifier underflow, QTU is the thickener underflow,
and QDO is the dewatering overflow.

The sludge production (SP) is expressed as (kg/d):

SP =
1

T·1000
·
(

XTSS(tf)− XTSS(to) +
∫ tf

to
TSSX(t)QX(t) dt

)
S (12)

XTSS(t) = XTSS, ASU(t) + XTSS, SSU(t) + XTSS, PSU(t)
+XTSS, ADU(t)
+XTSS, SU(t) S

with XTSS,X(t) = TSSX(t)·VX.
Where QX (t) is the sludge flow and TSSX is the total amount of solids in the sludge

flow stream (after dewatering in BSM2-P). XTSS is elucidated as the sum of TSS mass
present in an individual process unit. The subscripts refer to the concern process units.

The mixing energy (ME) is defined as (kWh/d):
The mixing is highly necessary to avoid the biomass settling in the non-aerated and

aerated reactors like all ASU tanks; anaerobic digester and the mixing energy (ME) is
defined as (kWh/d):

ME = MEASU + MEADU (13)

where

MEASU =
24
T

tf∫
to

∑i=7
i−1

[
if KLai < 20d−1 0.005·Vi
if KLai ≥ 20d−1 0

]
·dt
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MEADU = 24·0.005·VADU

where, Vi is the ith tank volume (m3) and 0.005 kW/m3 is the mixing power consumption
factor in ASU. VADU is the volume of liquid in ADU and the mixing power consumption
factor 0.005 kW/m3.

Methane production (kg CH4/d) is defined as:
The average methane production per day value is defined by using Equation (14).

PM =
Patm·16
T·R·TOT

tf∫
to

1
Ptg(t)

·Pg,CH4(t)·Qg(t)·dt (14)

where, PgCH4 (bar) is the partial pressure of methane gas produced in the headspace; R
denotes the universal gas law constant i.e., 8.3145.10−2 bar m3 kmol−1 k−1; TOT repre-
sents the operating temperature of the digester (308.15 K); Ptg is the total gas pressure in
the headspace; Patm is atmospheric pressure (1.013 bar); and Qg is the gas flow rate of
produced gas.

Net heating energy is described as:

HEnet = max(0, HE− 7·PM) (15)

where HE is the amount of energy required to get the anaerobic digester up to operating
temperature, as shown in the below Equation (16):

HE =
24

86400·T

∫ tf

to
PH2O·CH2O·(TOT − Tadu,i(t))·Qad(t)·dt (16)

TADU,i =
TPSU·QPSU(t) + TTHK(t)·QTHK(t)

QADU(t)

Here, QADU(t) = QPSU(t) + QTHK(t).
Where, PH2O is the density of water (1000 kg/m3), CH2O is the specific heat capacity

of water (4.186 KJ kg−1 0C−1). Tad,i is the temperature of ADU influent, and TOP is the
optimal temperature of ADU. Qad is the flow rate to the ADU (m3/d).

Following stringent regulations is a top priority for wastewater treatment plants. The
legal constraints to be followed are the same as BSM1, i.e., TP is less than 2 gP/m3; TN is
less than 18 gN/m3; biological oxygen demand (BOD5) is less than 10 g/m3; COD is less
than 100 gCOD/m3; TSS is less than 30 g/m3; and SNH is less than 4 gN/m3.

3. Control Approaches
3.1. Design of Proportional-Integral (PI) Controller

The PI controllers can be framed using a wide variety of techniques accessible in the
literature. In the present work, the Skogested internal model control (SIMC) method is
used to design the PI controllers [44]. The first-order plus time order delay (FOPTD) model
as prescribed in Equation (17) is identified for the design of the PI controllers for each loop.

G(s) =
KPe−θds

τp S + 1
(17)

where, KP denotes the process gain, θd denotes the delay, and τp signifies the time constant
of the system. For more clarification, the method of approach is depicted in the flow
diagram in the Supplementary data Figure S1. The identification method and designed
controllers are elucidated distinctly. Figure S2 depicts the PI controller in the wastewater
flow diagram.



Energies 2021, 14, 6386 7 of 19

3.2. Design of Model Predictive Controller (MPC)

MPC is a well-known advanced controller in which the objective is to predict the
future move of the variable of significance and by using optimization, the corresponding
control moves are determined systematically. At each control time interval, MPC predicts
the nature of the variables of outputs over the prediction horizon (P). The control move
sequence is computed over the control horizon (M) based on output predictions [23,45]. A
quadratic cost function (Q) is selected for the operation of MPC, which is defined in the
mode of Equation (18).

Q =
P

∑
i=1
||ΓL(L(A + l/A)− r(A + l))||2 +

M

∑
i=1
||Γ∆v(∆v(A + l− 1))||2 (18)

Here, ΓL and Γ∆v denotes the input and output rate weights respectively. L(A + l/A)
is the controlled variable output at the future time interval of A + l, where the model is
predicted at a particular time of A. The identification method and designed controllers are
elucidated distinctly. Figure S3 depicts the MPC controller in the wastewater flow diagram.
The third order state-space model of the system as shown in Equations (19) and (20) is
as below:

x(A + 1) = Gx(A) + Nu(A) (19)

y(A) = Sx(A) + Zu(A) (20)

Here x(A) signifies the state of vector, and G, N, S, and Z denote the state-space matrices.

3.3. Design of Fuzzy-Logic Controller (FLC)

Fuzzy logic is a widely used tool in a variety of control applications. FLC’s have been
used in all stages of wastewater treatment processing. According to the literature, the most
advanced control and processing units in WWTP are solved using fuzzy control or rule
(FLC). This is achieved by employing fuzzy rules that are identical to those used in human
inference design. FLC is used on the WWTP in this study [19,23]. Figure S4 depicts the
FLC controller in the wastewater flow diagram.

4. Results and Discussion

Implementation of control strategies on plant wide-models: The results after imple-
menting all the four control strategies are discussed here.

4.1. PI Control (2 Loops)

In ASU, SO,7, in the last aerobic tank (tank7), and SNO,4, in the second reactor of anoxic
(tank 4), are controlled. The corresponding input variables are mass transfer coefficient
(KLa) and internal recycle (Qintr). The set points are chosen according to the requirements
of the WWTP. Usually, the value of SO,7 in the oxic reactor is retained in the range of 1.5 to
4 gO2/m3, and the practiced value is 2 gO2/m3. Similarly, the advisable working values
for the nitrate levels in the anoxic tank are in the range of 1–3 gN/m3 and the practiced
value is 1 gN/m3 [21]. The corresponding control relevant models are developed using the
attained open-loop data for each SNO,4 and SO,7 control loops. For the values of 88,000 and
73, the concentrations of NO and DO are reported as 2 gO2/m3 and 1 gN/m3 respectively.
In the seventh and fourth reactors, a random input signal with a ±10% variation in these
values is given and the attained output data for NO and DO are collected. The NO and DO
output data are now used to build state-space models and also first-order plus time order
delay (FOPTD) models using the method of prediction error minimization. Based on these
models, each loop is equipped with PI controllers that are designed using SIMC [44]. The
respective obtained FOPTD model parameters are:

NO loop: KP = 0.000026144, τp = 0.012515, and θd = 0.000875.
DO loop: KP = 0.04538, τi = 0.010085, and θd = 0.
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Based on these models, PI controllers are designed using the SIMC method and are
obtained for NO and DO loops like Kc =35748.16, Ti= 0.01215, Kc =11.015, and Ti = 0.010085
respectively. With these controllers, the plant-wide model is simulated and the correspond-
ing simulation results are given in Section 4.4. The resultant tracking performance of SO
and SNO is depicted in Figure 2A,B. The default control approach associate with two control
loops is shown in Figure 3A.

Figure 2. Set-point tracking for: (A) dissolved oxygen and (B) Nitrate.

4.2. PI Control (One Loop)

In this approach, a close-loop control framework contains a single PI controller as
shown in Figure 3B. According to this scheme, SO in the sixth tank is maintained at a set-
point of 2 mgO2/l by regulating the KLa6. In addition, the oxygen mass transfer coefficients
entering tank 5 and tank 7 are multiplied by a factor of 1 and 0.5, respectively, to have
improved manipulation and thus efficient aeration in these tanks [30].

4.3. Ammonia-Based Aeration Control (ABAC) Approach

In this approach, cascade configuration, as shown in Figure 3C, is used, in which
MPC/Fuzzy controllers for ammonia (SNH,6) control are used by manipulating SO,6 set
point in the aeration tank 6. Here, SO,6 in aeration tank 6 is controlled by regulating the
airflow rates of reactors 5, 6, and 7 as implemented in strategy 2. PI controller is designed
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at the lower level with combinations of fuzzy and MPC at the supervisory level. PI-MPC
and PI-fuzzy combinations are proposed as overall control structures. The corresponding
list of all four different control approaches is listed in Table 4.

Figure 3. Control frameworks for BSM2-P: (A) PI controllers, (B) Lower level control, (C) Supervisory
level control framework with a lower level.

Table 4. Functioning of control strategies.

Attributes PI controller (Two
Loops)

PI controller (One
Loop)

PI (Lower Level) +
MPC (Supervisory

Level)

PI (Lower Level) +
Fuzzy (Supervisory

Level)

Controlled variable SO,7 and SNO,4 SO,6 SNH,6 SNH,6

Set-point 2 gO2/m31 gN/m3 2 gO2/m3
DO set-point is

determined by higher
level

DO set-point is
determined by higher

level

Regulating variables KLa7 and internal
recycle

KLa in the last three
reactors

Set-point for DO
controller

Set-point for DO
controller

Controller design PI PI PI and MPC PI and Fuzzy
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4.3.1. PI-MPC Control Strategy

Here, PI controller is implemented for BSM2-P at the lower level and MPC is im-
plemented in the supervisory layer. To design MPC in the supervisory layer, system
identification of the model in the supervisory layer is carried out. In which, the SO set-point
is varied by ±10% around the operating point, and the resulting SNH concentration values
are collected. The prediction error method is used to identify a third order state-space
model based on this data set [46]. The identified state-space model for the supervisory
layer is expressed below Equation (21):

A =

 0.7231 0.1351 −0.03826
−0.3957 −0.2845 0.01298
−0.0068 −0.0477 −0.1704

 B =

 −0.09427
−0.75
−1.994


C =

[
1.306 0.074 −0.01624

]
D = [0]

(21)

Based on this model, MPC is designed with a sampling time of control as 0.05 days
(72 min); prediction and control horizons of 10 and 2, respectively; and rate of change of
regulated variable as 0.1. The corresponding results are given in Figure 4 in which the
computed values of SO by supervisory MPC controller and its tracking by the lower-layer
controller for 245–252 days are shown. The performance evaluation was done in the period
of 245–609 days. Figure 4 depicts that a good supervisory set-point tracking is achieved
by using the PI-MPC controller design framework in the sixth bioreactor. The resultant
average concentrations of nutrient removal, energy usages, and greenhouse gas emissions,
and performance of the plant with cost assessment are reported in Section 4.4 and compared
with the other three control frameworks.

Figure 4. Dissolved oxygen tracking in the sixth reactor (PI-MPC).

4.3.2. PI-Fuzzy Control Strategy

In this case, the fuzzy controller manipulates the SO set-points at a supervisory layer
to minimize ammonia peaks. The membership functions (MF) of SO,6 and SNH,6 are
considered in the range of 0–4 mg O2/l and 0.1–20 mg N/l, respectively. The MF’s for both
input and output variables are in a Gaussian bell-shaped curve, which is divided into three
linguistic variables, “high,” “low,” and “medium,” as shown in Figure 5A,B. A total of
three rules are considered according to the SO control loop requirement [23,28].

• If SNH level is “low”, then SO level is “low”
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• If SNH level is “high”, then SO level is “high”
• If SNH level is “medium”, then SO level is “medium”

The corresponding linguistic variables for “high,” “low,” and “medium,” are given
in Table 5. With these controllers, closed-loop simulations are carried out and the results
are given in Figure 5C. It can be observed that a good supervisory set-point tracking is
achieved by using the PI-fuzzy controller design framework. The effluent quality and
operational cost details along with other quantitative results are given in Section 4.4.

Table 5. Linguistic functions and MF’s for control inputs and outputs.

Linguistic Variable (Output)

Linguistic Value Range MF Characteristic Ranges

1 Lower Gaussian bell-shaped shaped 0.175 5.4 0.11

2 Medium Gaussian bell-shaped shaped 1.06 5.87 1.36

3 Higher Gaussian bell-shaped shaped 3.56 18 6

Linguistic Variable (Input)

Linguistic Value Range MF Characteristic Ranges

1 Lower Gaussian bell-shaped shaped 1.89 9.18 0.034

2 Medium Gaussian bell-shaped shaped 1.02 7.75 2.96

3 Higher Gaussian bell-shaped shaped 8.26 42.2 12.36

4.4. Comparison of Four Control Design Frameworks on BSM2-P

Nitrification oxidizes ammonium to nitrate, and denitrification reduces nitrate to
nitrogen gas. Then a high DO improves nitrification, but an excess of nitrate perhaps is
not fully denitrified in the anoxic reactors due to a lack of COD. Moreover, phosphorous
removal is largely influenced by dissolved oxygen, which is directly proportional to the
formation of orthophosphates. The effluent concentrations of ammonia, TN, TP, and TSS
are compared for all four control frameworks with their corresponding pollutant limit
value. These are depicted in Figure 6A–D.

Figure 5. Cont.
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Figure 5. Membership functions rules: (A) Output, (B) Input, and (C) corresponding tracking
performance.

Based on the simulation results of all four control designs [PI controllers (two loops),
PI controller (one loop), PI–MPC at supervisory level, and PI–fuzzy at a supervisory
level], the corresponding average values of effluent concentrations are given in Table 6.
From Table 6, comparing with only lower-level controllers, the ammonia, TP, TSS, and
TN removal concentrations are improved. For ammonia, TP, TSS, and TN, the removal
efficiency is improved by 36%, 33.6%, 1.02%, and 11.3% in PI-MPC, PI-fuzzy, PI (one loop),
and PI (two loops) respectively.



Energies 2021, 14, 6386 13 of 19

Table 6. Comparison of average concentration values of effluent discharge for four control strategies.

Parameters PI Controller
(Two Loops)

PI Controller
(One Loop) PI-MPC PI-Fuzzy

SNH 1.05 0.96 0.57 1.28

TSS 15.39 15.54 15.38 16.23

TN 9.07 9.81 9.86 8.7

TP 4.54 4.05 4.4 2.69

COD 42.17 42.04 42.17 41.95

BOD5 2.43 2.42 2.45 2.50

IQI 97,875.71 97,875.71 97,875.71 97,875.71

EQI 14,625.98 13,715.37 14,391 10,824.9

Average production rates

Methane 1029 1024 1035 1438

Hydrogen 0.00392 0.00393 0.0039 0.0041

Carbon dioxide 1504 1527 1517 1640

Gas flow 2630 2635 2646 2722

OCI 10,959.1 10,949 11,810 11,007

Average percentage of Violations

TP 86.71 72.5 70.4 38.4

NH 2.71 3.12 0.21 1.28

TSS 0.025 0.062 0.048 0.58

BOD5 — – – 0.0085

Nremoved/OCI 0.08131 0.0800 0.0740 0.0815

Premoved/OCI 0.01044 0.0113 0.0098 0.0139

Figure 6. Cont.
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Figure 6. Cont.
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Figure 6. The effluent concentrations of (A) ammonia, (B) TN, (C) TP, (D) TSS, and (E) bar graph for
all (SP, AE, PE, ME, HE, and consumed energy (CE)) the operational plant performance parameters
are compared for four control frameworks with their corresponding average values.

Figure 6E depicts the average values of energy usages like aeration, pumping, mixing,
heating, consumed energies (kwh/d), and sludge production rate (kg ss/d). From the
graph, it was observed that energy consumption was high in the case of PI-MPC and
low in the case of the PI-fuzzy controller. The sludge production rate and heat energy
are high with the PI-fuzzy controller. In comparison, the fuzzy controller shows less
aeration energy to obtain better nutrient removal with a slight increase in the cost. In
the literature, also it was showed that the fuzzy control is favorable for better removal
of phosphorous. In comparison, PI (one loop) and PI-fuzzy showed an improved EQI of
21.1% with a 0.52% increase in OCI. In the comparison of all four control strategies, there is
a trade-off between OCI and EQI. Overall, in comparison with the PI (one loop) controller,
ammonia removal is improved with PI-MPC, and TP is improved with PI-fuzzy strategies.
In both cases, PI-MPC and PI-fuzzy showed improved EQI with an increase of OCI. The
corresponding greenhouse gases like methane, hydrogen, and carbon dioxides of averages
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production rates are also reported in Table 6. It is noticed that PI-fuzzy shows high methane,
hydrogen, carbon dioxide, and gas flow production rates of 28.7%, 4.87%, 6.8%, and 3.2%
in comparison with PI (one loop). PI-fuzzy and PI-MPC showed good improvement in
minimizing the percentage of violations in TP and ammonia. The percentage of violations
is also reported in Table 6. PI-fuzzy showed good removal efficiency in the phosphorus.
Moreover, PI-fuzzy showed lower OCI when compared with PI-MPC.

4.5. Summary of Previous and Present Studies on BSM2-P

For the biological seven-reactor A2O process, different control frameworks have been
designed [47,48]. Optimal set-points are computed by higher-level control loops [49,50].
In [30] used BSM2-P as a simulation platform. PI controllers are designed to control
DO by regulating the oxygen mass transfer coefficient with additional aeration-based
ammonia controller and TSS control by regulating the external recycle. The control strategy
showed significant improvement in both effluent quality and operating costs. The designed
controllers showed improved EQI of 31% with decreased OCI of 6.9% when compared
with open loop. As far as pollutant concentration is concerned, TN and TP are improved
by 17% and 42.1% respectively.

In the present work, an ammonia-based aeration controller at the supervisory level
is designed. By using two different control combinations, PI-MPC and PI-fuzzy, the
performance is compared with [30] PI-fuzzy showed improved EQI of 13.5% with an
increase of 13.6% OCI. Phosphorus and TN removal are improved by 29.7% and 5.4%,
respectively, with the PI-fuzzy control framework and produce better EQI. PI-fuzzy shows
a high production rate of methane when compared to [30].

5. Conclusions

In this study, MPC and fuzzy were designed at the supervisory level, and PI was
designed for lower-level control for BSM2-P in ASM2d as an activated sludge model.
A total of four control frameworks were implemented to evaluate and test the plant
performance, concentrations, as well as effluent quality. The resultant performance indices
were compared with the PI strategy. In each control application case, there was a trade-off
between EQI and OCI. In comparison with PI (one loop), PI-fuzzy showed an improved
EQI of 21.1% with a 0.52% increase in OCI. Of all the compared outcomes, PI-fuzzy showed
better EQI and increased OCI. When comparing all four control strategies, it was reported
that average effluent pollutant concentrations like BOD5, COD, TN, ammonia, and TSS
attained the regulatory limits, except for phosphorus. Optimized ammonia removal was
noticed in PI-MPC, whereas better optimized phosphorous removal was noticed in PI-fuzzy.
PI-fuzzy showed high production rates of greenhouse gas emissions and low consumption
of aeration energy. The percentage of violations of total phosphorus was less in the case of
PI-fuzzy.
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Nomenclature

AE Aeration Energy (Kwh/d)
ASM1 Activated Sludge Model No.1
ASM2 Activated Sludge Model No.2
ASM2d Activated Sludge Model No.2d
ASM3 Activated Sludge Model No.3
BOD5 Biological Oxygen Demand
COD Chemical Oxygen Demand
DO Dissolved Oxygen
EQI Effluent Quality Index
IQI Influent Quality Index
K Proportional gain
KLa Oxygen transfer coefficient
TN Total Nitrogen
TKN Total Kjeldahl Nitrogen
TSS Total suspended solids
NO Nitrate
P Phosphorus
PE Pumping Energy (kWh/d)
KUt Pollutant load corresponding to component
Qo Influent flow rate (m3/d)
Qintr Internal recycle flow rate (m3/d)
Qr Return sludge flow rate (m3/d)
Qw Waste sludge flow rate (m3/d)
SA Fermentation products (g COD/m3)
SF Readily biodegradable organic substrate
SHCO Alkalinity of the waste water (HCO3/m3)
SI Inert soluble organic material (g COD/m3)
SNH Ammonium and ammonia nitrogen (g N/m3)
SNO Nitrate and nitrite nitrogen (g N/m3)
SN2 Dinitrogen (g N/m3)
SPO4 Inorganic soluble phosphate (g P/m3)
SS Readily biodegradable organic substrate (g COD/m3)
to Start time
tf End time
BODef Total BOD concentration
CODef Total COD concentration
SNO Nitrate concentration
SPorg Total N concentration
SPinorg Total phosphorus concentration
TKN Total organic N concentration
WWTP Wastewater Treatment Plant
XA Nitrifying organisms (g COD/m3)
XH Heterotrophic organisms (g COD/m3)
XI Inert particulate organic material (g COD/m3)
XS Slowly biodegradable substrates (g COD/m3)
XPAO Poly accumulating organisms (g COD/m3)
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XPHA Cell internal storage product of PAO’S (g COD/m3)
XPP Polyphosphate (g P/m3)
XSTO Cell inner storage product of heterotopy
XTSS Suspended solids (g SS/m3)
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