
Received 19 November 2022, accepted 19 December 2022, date of publication 26 December 2022,
date of current version 30 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3232144

Neg/pos-Normalized Accuracy Measures for
Software Defect Prediction
MAOHUA GAN , ZEYNEP YÜCEL, (Member, IEEE), AND AKITO MONDEN , (Member, IEEE)
Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan

Corresponding author: Akito Monden (monden@okayama-u.ac.jp)

This work was supported by JSPS KAKENHI under Grant JP20K11749 and Grant JP20H05706.

ABSTRACT In evaluating the performance of software defect prediction models, accuracy measures such
as precision and recall are commonly used. However, most of these measures are affected by neg/pos ratio
of the data set being predicted, where neg is the number of negative cases (defect-free modules) and pos is
the number of positive cases (defective modules). Thus, it is not fair to compare such values across different
data sets with different neg/pos ratios and it may even lead to misleading or contradicting conclusions. The
objective of this study is to address the class imbalance issue in assessing performance of defect prediction
models. The proposed method relies on computation of expected values of accuracy measures based solely
on the value of the neg and pos values of the data set. Based on the expected values, we derive the neg/pos-
normalized accuracy measures, which are defined as their divergence from the expected value divided by
the standard deviation of all possible prediction outcomes. The proposed measures enable us to provide a
ranking of predictions across different data sets, which can distinguish between successful predictions and
unsuccessful predictions. Our results derived from a case study of defect prediction based on 19 defect data
sets indicate that ranking of predictions is significantly different than the ranking of conventional accuracy
measures such as precision and recall as well as composite measures F1-value, AUC of ROC, MCC, G-mean
and Balance. In addition, we conclude that MCC attains a better defect prediction accuracy than F1-value,
AUC of ROC, G-mean and Balance.

INDEX TERMS Software defect, defect prediction model, accuracy measure, classification technology,
empirical software engineering.

I. INTRODUCTION AND MOTIVATION
To improve the efficiency of software testing and/or main-
tenance, it is important to predict defect-prone modules and
assign more effort to them. To this end, defect-prone module
prediction (or simply, defect prediction) has been studied over
decades bymany researchers [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10].

In assessing the performance of prediction models, it is
common to use Precision, Recall, F1-value, Balance [11],
Area Under the Curve (AUC) of Receiver Operating Charac-
teristics (ROC) [12], [13], etc. However, there is no consen-
sus on how to interpret these accuracy values. For example,
a model with a precision of 0.8 seems to achieve a pretty
good performance, but can we confidently claim that this

The associate editor coordinating the review of this manuscript and

approving it for publication was Wanqing Zhao .

model is successful? The decision will depend on the data
set. If the data set contains many defects (e.g. 80% of the
modules are defect-prone), a precision of 0.8 is not sufficient
for calling that prediction model successful. Namely, we can
approach such an accuracy even by assigning classes ran-
domly, whereas, this is not the case for data sets with very
few defects. In that respect, the susceptibility of the accuracy
measures to the proportion of defect-prone and defect-free
modules in the data set is a serious problem [14].

In order to address this issue, we propose deploying the
expected values of accuracy measures, which we show to be
possible to compute solely from the number of positive and
negative instances in the data set. In this way, if the (raw)
value of a certain accuracy measure is larger than its expected
value, the relating model is considered to be a successful one
and a proper action is suggested to be taken according to its
outcomes.

134580 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-0398-5824
https://orcid.org/0000-0003-4295-207X
https://orcid.org/0000-0001-6160-9547

M. Gan et al.: Neg/pos-Normalized Accuracy Measures for Software Defect Prediction

We deploy these expected values in defining neg/pos-
normalized values of various accuracy measures, which
enables us to rank predictions across different data sets.
Accounting for neg/pos ratios of the data sets, we can assess
the performance of the prediction model under investigation
in a more objective way.

In order to demonstrate the capabilities of the proposed
approach, we carry out a case study on 38 releases of 19 open
source software (OSS) project data sets from 3 data sources.
Specifically, we first carry out defect prediction on these sets
and evaluate performance in terms of several conventional
accuracy measures. We then compare them with their cor-
responding expected values. The case study confirms that
the predictions, which yield higher accuracy than respective
expected values are indeed successful.

The rest of the article is organized as follows. In Section II,
we elaborate on existing accuracy measures pointing out their
shortcomings. We also justify the reason for establishing
baseline values for accuracy measures through a preliminary
analysis of 19 defect prediction data sets. In Section III we
first introduce the basic idea of the proposed approach and
then provide explicit definitions. Subsequently, in Section IV
we present a case study of defect prediction to demon-
strate how well the proposed measures address the sus-
ceptibility of the accuracy measures to the proportion of
defect-prone and defect-free modules in the data set. Sub-
sequently, in Section V we provide threats to the validity of
our work and summarize our main results, contributions and
future work in Section VI.

II. BACKGROUND
In binary classification tasks, it is common to evaluate perfor-
mance based on a contingency table like the one illustrated in
Table 1. Specifically, the two dimensions depict the actual and
predicted states of the elements of the data set. Here, we use
A+ and A− to denote actual positives and actual negatives,
and P+ and P− to denote predicted positives and predicted
negatives. As framed within the scope of this study, an actual
positive is a defect-prone module, whereas an actual negative
is a defect-free module.

TABLE 1. Contingency table for binary classification tasks.

The prediction results that correctly indicate the presence
or absence of a defect are referred to as True Positive (TP) and
True Negative (TN), respectively. In addition, the prediction
results, which wrongly indicate the presence of a defect,
are called False Positive (FP) and the ones, which wrongly
indicate the absence of a defect, are called False Negative
(FN). In Table 1 the number of such prediction results are
denoted with TP,TN ,FP,FN in the corresponding cells.1

1Note that in Table 1 TP,TN ,FP,FN ∈ Z≥0.

Based on such values, one can calculate various measures
to evaluate classification performance. Some conventional
measures involve Precision, Recall, NPV (negative predictive
value) and Specificity.2 Henceforth, we use the normal font to
refer to an accuracy measure (e.g. Precision) and typewriter
font when it is treated as a random variable or a value that it
takes (e.g. Precision and precision, respectively).

In terms of the entries in Table 1, the above-mentioned
conventional accuracy measures are computed explicitly as:

precision =
TP

TP+ FP
; (1)

recall =
TP

TP+ FN
; (2)

npv =
TN

FN + TN
; (3)

specificity =
TN

TN + FP
. (4)

A. WEAKNESS OF CONVENTIONAL ACCURACY MEASURES
It is common to use Precision and Recall for evaluating per-
formance in the detection of positive cases (i.e. defect-prone
modules) [2], [6], [15], whereas NPV and Specificity are
used mostly for evaluating performance concerning the iden-
tification of negative cases (i.e. defect-free modules) [16],
[17], [18], [19], [20], [21]. Nevertheless, there is no universal
agreement on which measure is the most appropriate one for
each detection task.

For various purposes such as quality assurance, Preci-
sion and Recall are the most intuitive measures, since they
reflect performance in detecting positive cases (i.e. defect-
prone modules). Nevertheless, as discussed by Zhang and
Zhang [22], a coupled deliberation of Precision and Recall
is indispensable, since there is an inherent trade-off between
them. Namely, in order to increase precision, one may
simply consider as positive only those cases with a very
high probability of being positive. But this will raise FN and
thus decrease recall. On the other hand, if the condition
for being considered positive is loosened, recall can be
improved, at the cost of deterioratingprecision. However,
even a coupled deliberation may not be sufficient in certain
cases. For instance, Chicco and Jurman [24] argue that the
F1-value (which is the harmonic mean of the precision
and recall) can dangerously show overoptimistic inflated
results, especially on imbalanced data sets.

Therefore, in addition to the detection of positive cases
(i.e. Precision and Recall), one needs to pay regard also to
the detection of negative cases [23], [24]. Indeed, a recall
of 1.0 can be easily achieved by predicting all modules as
positive, but this would result in poor predictive performance
for negative cases, i.e. specificity becomes zero. In this
respect, Chicco and Jurman [24] recommend using Matthews
Correlation Coefficient (MCC), which considers both posi-
tive and negative prediction performance.

2Precision is also known as Positive Predictive Value, whereas Recall and
Specificity are also referred to as True Positive Rate and True Negative Rate,
respectively.

VOLUME 10, 2022 134581

M. Gan et al.: Neg/pos-Normalized Accuracy Measures for Software Defect Prediction

However, note that an important criticism to all such per-
formance measures is their susceptibility to certain intrin-
sic features of the data. In defect prediction domain,
Menzies et al. [14] argue that the accuracy measures in Equa-
tions 1∼4 as well asMCC are not robust [26], [27], [28], since
they are very often affected by the neg/pos ratio of the data set,
where pos is the number of actual positive (i.e. defect-prone)
modules (i.e. A+) and neg is the number of actual negative
(i.e. defect-free) modules (i.e. A−),

Neg/pos ratio =
A−

A+
. (5)

For instance, a large neg/pos ratio tends to yield low
precision. Nevertheless, Menzies et al. also argue that
a low precision per se is not always a problem, since
there are many cases where a low precision is acceptable.
On the other hand, although composite measures such as
AUC of ROC, Balance and G-mean are known to be more
robust against neg/pos ratio [25], [47], [48], according to their
definition, AUC of ROC and Balance focus solely on positive
cases and ignore the negative ones, whereas G-mean [7]
ignores the precision of both positive and negative cases.

In this paper, exploiting the intuitive nature of four con-
ventional accuracy measures of Precision, Recall, NPV
and Specificity, we propose using their expected values,
which can be regarded as a baseline, to overcome their
susceptibility to neg/pos ratio, and to avoid over-optimistic
or over-pessimistic interpretations. We also propose a
neg/pos-normalization scheme to enable a fair and objec-
tive assessment of model performance, and define the ‘‘suc-
cessful prediction’’ based on proposed neg/pos-normalization
scheme to focus on both positive and negative cases, and both
recall and precision. By comparing prediction results across
different data sets with different neg/pos ratios, we show that
the neg/pos-normalized values are more robust against the
composition of the data set. We compare our measures with
the F1-value, AUC of ROC, MCC, G-mean and Balance to
show how these metrics give a similar or different evaluation
for the samemodel, and show that there are some cases where
these composite measures are not considered useful based on
the definition of ‘‘successful prediction’’.

B. PRELIMINARY ANALYSIS
To demonstrate the influence of neg/pos ratio on the assess-
ment of defect prediction performance, we conduct a prelim-
inary analysis.

1) DATA SETS AND PREDICTION METHOD
We collected 19 open source software project data sets from
3 sources (see Table 2). Specifically, the data sets from no.1
to no.4 (MYLN, PDE, JDT and NBNS) are introduced by
Kamei et al. and the details on data collection and measure-
ment methods can be found in [8], [29], and [30]. The
data sets from no. 5 to no.13 (ANT, CAML, FRST, JEDT,
LOG4, LUCN, POI, PROP, SYNP) are donated by Jureczko
and Madeyski [3], [4] to the SeaCraft repository [33] and
their specifics are reported in [4]. The remaining data sets

from no.14 to no.19 (ECOS, EXIM, GNY, HLMA, HBNT,
XDOC) are collected from the Software Engineering Data
Repository for Research and Education [31] and their details
are elaborated on in [32].3

Note that each data set in Table 2 is represented with
2 releases, which enables a cross-version defect prediction.
In our preliminary experiments, we performed such defect
prediction, where the older release is used as training data and
the newer release is used as test data. As for the specific pre-
diction method, we deployed random forest, since it is shown
by Lessmann et al. to constitute one of the best-performing
defect prediction methods [9]. We used the library ‘‘random-
Forest’’ of R and its default hyperparameter (the number of
tree = 500).

FIGURE 1. Relationship between neg/pos ratio and precision (r=-0.758)
and NPV (r=0.469) in cross-version defect prediction (see Equations 1
and 3). Dashed curves represent approximations with logarithmic
function and r denotes the correlation coefficient.

2) RESULTS OF THE PRELIMINARY ANALYSIS
The results of our preliminary analysis are illustrated in
Figure 1, where the x-axis shows the neg/pos ratio (see Equa-
tion 5) and the y-axis depicts the precision or npv of
cross-version defect prediction.4 From Figure 1, we can see
clearly that precision decreases with increasing neg/pos
ratio, whereas npv increases. In other words, concerning data
sets with a high number of positives (i.e. defect-prone mod-
ules), precisionmay turn out to be high as a natural result
of the composition of the set. Similarly, regarding data sets
with a high number of negatives (i.e. defect-free modules),
npvmay unfold to be higher, merely due to the simplification
of detection (of negatives).

3Note that from these 19 datasets we removed those modules with zero
lines of code and used the remaining modules in our analysis.

4In order to have a clear illustration, we chose two out of the four
conventional accuracy measures in Equation 1∼4, where one focuses on
positive cases and the other on negative cases.

134582 VOLUME 10, 2022

M. Gan et al.: Neg/pos-Normalized Accuracy Measures for Software Defect Prediction

TABLE 2. Summary of the defect data sets used in the experiments. The maximum and minimum rate of defect-prone modules are indicated in bold face
with ∗.

As a result, we can say that Precision and Npv depend
considerably on the composition (i.e. neg/pos ratio) of the
particular data set under investigation. In that respect, judging
the performance of a model based on (raw) accuracy mea-
sures without paying regard to their neg/pos ratios may lead
to misleading or contradicting conclusions.

III. PROPOSED MEASURES
Our basic assumption is that all possible prediction outcomes
with the correct composition have the same likelihood to
occur. This assumption is determined paying regard to (i) fair-
ness and (ii) desirability of prediction.

Fairness addresses the distribution of positives and nega-
tives in the data set and the impact of that on accuracymetrics.
Consider defect prediction on a data set, where actual class of
all modules are positive (i.e. defect-prone). In that case, the
only possible precision is 1.0. It is not fair to compare the
performance of somemodel on this data set to its performance
on another data set. Similarly, concerning defect prediction

on a data set with all negatives (i.e. defect-free modules), the
only possible precision is 0.0, which again precludes a
fair comparison to another data set.

Desirability addresses the condition, in which the per-
centage of defect-prone modules in prediction should match
the percentage in the test data. In practice, this is not
easy to achieve, and overestimation and underestimation
frequently occur due to the difference in the percent-
age of defect-prone modules in training and test data.
To address this issue, researchers propose remedies based
on numerical approaches, such as misclassification rate bal-
ancing [34], over-/under-sampling [1], [35], [36], [37], and
transfer-learning [38], [39].

To satisfy fairness and desirability and to evaluate predic-
tion models in an unprejudiced way, we believe that it is
necessary to account for the proportion of defect-free and
defect-prone modules in the data set. To that end, in what
follows, we first discuss the expected values of accuracymea-
sures and then introduce the proposed normalization scheme.

VOLUME 10, 2022 134583

M. Gan et al.: Neg/pos-Normalized Accuracy Measures for Software Defect Prediction

A. EXPECTED VALUES OF ACCURACY MEASURES
In this section, we first compute of expected values of TP,
TN etc., deploy them to compute the expected values of con-
ventional accuracy measures, explaining relating specifics on
a general case, whereas a demonstration on a specific toy
example is provided in Appendix A.

As mentioned in Section III, our basic assumption is that
all possible prediction outcomes with the correct composition
occur with the same likelihood. Suppose that we perform
defect prediction on a test data set with T modules. Let the
number of actual positives and actual negatives be denoted
with A+ and A−, respectively (see also Table 1). Clearly,
T = A+ + A− for actual states, and also T = P+ + P−

for predicted states.
Let an arbitrary prediction result5 be represented with a

vector πi and the index i denotes the i-th possible prediction
result. Since there are T modules in the test data set, we may
use a binary vector with T components (i.e. using a ‘‘1’’ for a
predicted positive module and a ‘‘0’’ for a predicted negative
module.).

Predicating on fairness and desirability, we consider only
those vectors πi for which P+ = A+ and P− = A−. In other
words, A+ modules are predicted as positive and A− modules
are predicted as negative, all of which are not necessarily
predicted correctly. Suppose that 5(A+,A−) = {πi} is the
set of all such vectors (i.e. prediction results), Specifically,
the elements of5(A+,A−) are permutations of A+ ‘‘1’’s and
A− ‘‘0’’s.
The number of elements of5(A+,A−) is the total number

of all such permutations. Namely,

#
(
5(A+,A−)

)
=

(
T
A+

)
, (6)

as #(·) denotes the number of elements of a set and T = A++
A− as mentioned above.
Let us focus on a particular actual positive module. There

will be #
(
5(A+,A−)

)
predictions for this module (i.e. one

in each vector πi). In addition, due to our basic assumption,
A+/T of those predictions will indeed be positive (i.e. True
Positive). Thus, concerning each actual positive case, the
number of positive predictions in all vectors πi is given by

A+

T
·

(
T
A+

)
. (7)

Moreover, since there are A+ actual positive modules in the
test data, the total number of positive modules, which are
correctly predicted as positive (i.e. TP), is

TP = A+ ·
A+

T
·

(
T
A+

)
. (8)

From this value, the expected value of TP can be computed as
TP per prediction. Remember that the number of predictions

5Here, the ‘‘arbitrariness’’ does not refer to the stochasticity of the predic-
tion model. It simply refers to the fact that one can apply this method to any
data set with a known neg/pos ratio, assuming equal probabilities for each
possible prediction outcome delivered by a (black box) prediction model.

(i.e. possible permutations) is as given in Equation 6. Thus,
we get

E(TP) =
TP

#
(
5(A-,A+)

) = A+·A+·(TA+)
T(T
A+
)

=
(A+)2

T
. (9)

Also, the total number of FP, FN and TN can be computed
in a similar way to Equation 8 and their respective expected
values can be obtained in a similar way to Equation 9.6

Finally, such expected values can be deployed in com-
puting the expected values of the commonly used accuracy
measures. In particular, the expected values for the measures
given in Equations 1∼4 can be computed as

E(Precision) =
E(TP)

E(TP)+ E(FP)
=
A+

T
, (10)

E(Recall) =
E(TP)

E(TP)+ E(FN)
=
A+

T
, (11)

E(Npv) =
E(TN)

E(FN)+ E(TN)
=
A−

T
, (12)

E(Specificity) =
E(TN)

E(TN)+ E(FP)
=
A−

T
. (13)

Interestingly, expected values for the accuracy mea-
sures concerning the identification of positive cases
(i.e. Precision and Recall) are found to be A+/T , and
those relating to negative cases (i.e.Npv andSpecificity
are found to be A−/T . This indicates that, provided that a test
data set contains many positive instances (i.e. defect-prone
modules), then high precision and recall are essential,
while low npv and specificity are acceptable.

B. NEG/POS-NORMALIZED ACCURACY MEASURES
To demonstrate how to use expected values in interpreting
the values of accuracy measures concerning a certain pre-
diction model, we give a hypothetical example in Figure 2.
Let M denote an accuracy measure. Suppose that running
defect prediction on three data sets A, B, C with a certain
defect prediction model yields the accuracy values m, which
are demonstrated in Figure 2 together with their expected
values E(M).
If we interpret prediction performance based only on m,

the prediction for data set C seems much better than those
for A and B. However, note that concerning data set C the
expected value of M is even higher than its empirical value,
i.e. E(M) > m. In other words, if we keep making random
predictions for C, eventually we will get better accuracy
than m. In this sense, we consider a prediction to be success-
ful, only if the accuracy measures yield better numbers than
their expected values.

In addition to this simple binary (better or worse) assess-
ment, one can also quantify how much better or worse the
prediction model is than the expected values. Of course, it

6Specifically, E(FP), E(FN) and E(TN) are respectively A+A−/T ,
A+A−/T and (A−)2/T .

134584 VOLUME 10, 2022

M. Gan et al.: Neg/pos-Normalized Accuracy Measures for Software Defect Prediction

FIGURE 2. Accuracy values m and expected values E(M) for three data sets.

is plausible to consider that the higher is the empirical value
than the expected value, the better is the prediction perfor-
mance. However, taking the difference between the empir-
ical and expected values straightforwardly is not adequate,
since one needs to consider also the variance in possible
predictions. In that respect, concerning an accuracy value m,
we define the neg/pos-normalized value m̄ as follows:

m̄ =
m− E(M)
σπ

(14)

where σπ denotes the standard deviation of all possible pre-
diction outcomes. Specifically,

σπ =

√√√√√√
#(5)∑
i=1

(πi − E(5))2

#(5)
(15)

where E(5) denotes the expected value of πi (see also
Appendix A).7

Using the neg/pos-normalized measures, we can assess
how much better or worse the prediction results are than
the expected values. For example, assuming one normal dis-
tribution based on all possible predictions, if the neg/pos-
normalized precision, i.e. precision, is larger than 0,
then the prediction is better than 50% of all possible predic-
tions, and thus it can be considered as successful. On the other
hand, if precision > 1, then the prediction is 1σ better
than an average prediction and so it is better than 84% of all
possible predictions, which is quite successful.

In this paper, a prediction for which neg/pos-normalized
recall, precision, specificity, NPV are all positive is consid-
ered to be a successful prediction, otherwise it is an unsuc-
cessful prediction.

7Note that in Equation 15, #(5) is simply a shorthand notation for
#
(
5(A-,A+)

)
appearing in Equation 6.

IV. CASE STUDY
The purpose of this case study is to demonstrate that large
values of accuracy measures do not necessarily indicate suc-
cessful predictions and vice versa. For drawing attention to
the dangers of using conventional accuracy measures in com-
paring prediction results across different data sets, we con-
trast the rankings of data sets in terms of raw and neg/pos
normalized accuracy values.8

A. DATA AND METHODOLOGY
As data, we use the same sets deployed in the preliminary
analysis (see Table 2). Similar to Section II-B, we conduct
a cross-version defect prediction, where the old version of
each project is used in training and its new version is used
in testing. As a defect prediction model, we employ random
forest, since it was shown to be one of the best models in the
defect prediction domain and in other classification problems
in terms of prediction performance and stability [9], [40],
[41], [42], [43].

In addition, we evaluate commonly-used composite mea-
sures F1-value, AUC of ROC, MCC, G-mean and Balance by
comparing their ranking results with our ranking by neg/pos-
normalized measures.

Figure 3 shows the procedure of our case study. Firstly,
we use training data to conduct model construction. Sec-
ondly, we make predictions on the test data and calculate
raw values of accuracy measures. Thirdly, we calculate their
expected values (e.g. as in Equation 10) and the standard devi-
ations (see Equation 15). Finally, we calculate corresponding
neg/pos-normalized values as in Equation 14.9

In this study, we perform 30 repetitions of the prediction
experiment, and take the average of them as the value of the
prediction experiment.

B. COMPARISON OF ACCURACY MEASURES TO THEIR
EXPECTED VALUES
Figure 4 and Table 3 show the relationship between
raw (empirical) values of the four conventional accuracy
measures as well as their expected and neg/pos normalized
values.10 Figure 4 provides the overall distribution of raw and
expected values and Table 3 lists the values accurately.

Regarding positive accuracy measures, we first examine
Precision in Figure 4-(a) and Recall in Figure 4-(b).11

In Figure 4-(a), the data point at the top right corner
represents data set no.9 (LOG4), which attains a remarkably

8Note that producing a ranking of data sets according to the accuracy
values of some prediction model is not one of our purposes. Nevertheless,
we consider it as a simple and clear way to demonstrate the discrepancy
between raw and neg/pos normalized accuracy values.

9While computing raw values of some accuracy measures, there are cases
where the denominator becomes zero because of too large neg/pos ratio
(e.g. data set no. 19 XDOC). In our experiment, we use m̄ = 0 for such
cases.

10In Figure 4, each color denotes a different data set. The gradation of
colors does not imply any progressive relationship between data sets.

11In Figure 4-(a), there is one unsuccessful prediction. Namely, for data
set no.19 (XDOC) Precision = 0, since a valid prediction model could
not be constructed due to too few instances of positive cases in training data
(see also Table 2).

VOLUME 10, 2022 134585

M. Gan et al.: Neg/pos-Normalized Accuracy Measures for Software Defect Prediction

FIGURE 3. Procedure of cross-version experiment.

TABLE 3. Values of conventional accuracy measures and their neg/pos-normalized values for each data set.

high precision. Nevertheless, it is almost the same as
its expected value and the neg/pos ratio is considerably
low (i.e. 0.085, see also Table 2).12 Thus, although the
precision is high, it is not sufficient to prove the efficacy
of the prediction model. Therefore, we check the recall
value relating to this data set in Figure 4-(b) (see the right
most data point) and see that the raw value is lower than
the expected value. We can also confirm In Table 3-(b) that
recall = 0.282 and E(Recall) = 0.922, which is
a significant difference. Hence, although we cannot draw
a reliable inference from precision, based on recall,
we can say that this prediction is not good. As a matter of
fact, since this data set has many defect-prone modules (see
Table 2), there is little value in predicting defects, and it is
preferable to test just all modules.

On the other hand, data set no.14 (ECOS) attains the
lowest precision and yet it is more than three times
larger than its expected value (i.e. precision = 0.080,

12Actually, we can read the exact values relating to data set no.9 as
precision = 0.947 andE(Precision) = 0.922) in Table 3-(a) and (b).

E(Precision) = 0.019, see Table 3-(a), (b)). Note that
relating to this data set also the recall is much greater than
its expected value (i.e. recall = 0.320, E(Recall) =
0.019, see Table 3-(a), (b)) and also that the neg/pos ratio is
considerably high (i.e. 50.6, see Table 2). Therefore, for data
set no.14 the low precision is considered not to imply
a bad prediction. Similarly, despite fair values of recall,
the predictions relating to data sets no.1 (MYLN) and no.14
(ECOS) are actually successful, since their recall values
(and other accuracy measures) are greater than their expected
values.

Regarding negative accuracy measures, we examine npv
in Figure 4-(c) and specificity in Figure 4-(d).
In Figure 4-(c),npv of all data sets are seen to be very close

to their expected values. This indicates that a small/large npv
implies a small/large expected value E(Npv), which makes
it insufficient for the judgment of in/efficiency of prediction
performance.

Therefore, we examine the specificity values given
in Figure 4-(d). Five data sets (no. 1, 7, 8, 14, 17) are seen
to have lower specificity than their expected values

134586 VOLUME 10, 2022

M. Gan et al.: Neg/pos-Normalized Accuracy Measures for Software Defect Prediction

FIGURE 4. Scatter diagram of raw values and expected values.
(a) Precision, (b) Recall, (c) Npv and (d) Specificity.

(see also Table 3). For example, data set no. 8 (JEDT) has
specificity = 0.929, which is very high but not as high
as its expected value E(Specificity) = 0.978. Thus,
despite the high specificity, we cannot say that the
prediction is successful. Note also that the relating neg/pos
ratio is 43.727 (see Table 2). On the other hand, data set no.
10 (LUCN) has the lowest specificity of 0.451, but it is
greater than its expected value E(Specificity) = 0.403.
These results indicate the danger of linking the empirical

value of (raw) accuracy measures directly to performance
evaluation, and also show that misleading inferences can be
avoided by the proposed comparison procedure with corre-
sponding expected values.

Note that the probability of detection (pd) and the prob-
ability of false alarm (pf), which are often used in defect
prediction studies [11], [14], are considered to be unreli-
able in some datasets. It is because pd and pf are referred
as ‘‘recall’’ and ‘‘1-specificity’’ in this study and
neg/pos-normalized recall and specificity are not
always reliable as shown in Table 3.

C. PERFORMANCE EVALUATION WITH
NEG/POS-NORMALIZED MEASURES
In this section, we first compute the neg/pos-normalized
measures (see Equation 14) corresponding to the four con-
ventional accuracy measures given in Equations 1∼4. Then,
we provide two performance rankings with respect to the raw
and neg/pos normalized values of the accuracy measures

1) RANKING OF PREDICTIONS FOR DIFFERENT DATA SETS
Table 3-(a) and (c) show respectively the raw and neg/pos-
normalized values concerning the four conventional accuracy
measures.

As it can be seen in Table 3-(c), for several data sets
the neg/pos normalized values are negative, especially for
recall and specificity. Notably, data set no. 3
(JDT) has the highest precision of 3.233, although the
precision itself is not very high (i.e. 0.467). On the other
hand, data set no. 9 (LOG4) has the lowest precision of
0.027, although the precision itself is the highest (i.e.
0.947). Thus, it is already evident from these tables that
neg/pos normalization leads to a large difference in relative
performances.

Subsequently, we rank the predictions with respect to their
performance in terms of all accuracy measures. To that end,
we use the win-tie-loss method [44], [45] and we aggregate
all pairwise win-tie-loss values concerning the 4 accuracy
measures into one because they are based on similar princi-
ples. Specifically, concerning a particular accuracy measure,
if data set A attains a higher value than data set B, the number
of wins concerning A and the number of losses concerning B
are incremented by one, whereas for equal values, the number
of ties concerning A and B is added by one.13

Table 4-(a) shows the ranking of data sets based on conven-
tional (raw) accuracy measures, whereas Table 4-(b) shows
the ranking based on the neg/pos-normalized values of those
measures. We immediately notice that the two rankings are
quite different. Some of the data sets, for which neg/pos
normalization leads to a large change in rank, involve CAML
(13 → 3), GNY (18 → 11), and JEDT (3 → 10). Taking
a closer look at CAML data set, we see that it ranks 11,
13, 9, and 9 with respect to precision, recall, npv,
specificity, respectively. And, after neg/pos normaliza-
tion the respective ranks become 7, 8, 7, 10, rising a few
degrees on average.

2) COMPARISON WITH CONVENTIONAL COMPOSITE
MEASURES
As composite accuracy measures, we use the F1-value, AUC
of ROC, MCC, G-mean and Balance since these are com-
monly used accuracy measures in two-group classification
studies (including software defect prediction). We compute
their (raw) values (we perform 30 repetitions and take their
average as shown in Table 5), rank them according to these
values and compare this ranking to the one reported in
Table 4.
In addition, we evaluate the parallel between each pair of

rankings based on the correlation coefficient (r). Note that a
correlation coefficient (in absolute value) smaller than 0.36 is
generally considered to indicate a low or weak correlation,
0.36 to 0.68 a modest or moderate correlation, and 0.68 to
1.0 a strong or high correlation [46].

13Note that the original win-tie-loss method uses a statistical test to judge
win or loss, whereas this paper simply judges based on the difference in
accuracy values, since statistical tests (such as Wilcoxon rank-sum test) do
not apply to accuracy measures in two-group classification.

VOLUME 10, 2022 134587

M. Gan et al.: Neg/pos-Normalized Accuracy Measures for Software Defect Prediction

TABLE 4. Ranking of predictions for 19 data sets based on (a) conventional (raw) accuracy measures and (b) neg/pos-normalized accuracy measures.

TABLE 5. Successful prediction and (raw) value of composite measures.

Figure 5 shows the distribution of pairs of rankings for each
composite accuracy measure. In each diagram, the x-axis
represents the ranking based on neg/pos-normalized measure
(given in Table 4-(b)) and the y-axis represents the ranking
based on (raw value of) the composite measure.

Based on the values presented in Figure 5, we find the
correlation betweenMCC and its neg/pos-normalized version
to be quite strong (r = 0.920). On the other hand, the corre-
lation of AUC of ROC, F1-value, G-mean and Balance with
their respective neg/pos-normalized versions to be moderate
(i.e. r = 0.486, r = 0.469, r = 0.430 and r = 0.401,
respectively). Therefore, we recommend using MCC rather
than the F1-value, AUC of ROC, G-mean and Balance.

Regarding the identification of successful/unsuccessful
prediction, the composite measures are sometimes not use-
ful. For example, data set no. 1 (MYLN) has high F1-value
(0.728), AUC of ROC (0.857),MCC (0.513), G-mean (0.738)

and Balance (0.707) as shown in Table 5, but according to the
Table 3, its neg/pos-normalized recall, precision, specificity,
NPV are not all positive, therefore the prediction for the data
set is considered to be unsuccessful. On the other hand, data
set no. 6 (CAML) has lower F1-value (0.345), AUC of ROC
(0.669), MCC (0.252), G-mean (0.499) and Balance (0.480),
but its neg/pos-normalized recall, precision, specificity, NPV
are all positive, so the prediction for this data set is considered
to be successful.

V. THREATS TO VALIDITY
We provide a discussion on the validity of the proposed
method in terms of three commonly adopted experimental
validation approaches, i.e. internal validity, external validity
and construct validity.

Internal validity refers to the extent to which the observed
effect is a consequence of the presumed cause. In our case,

134588 VOLUME 10, 2022

M. Gan et al.: Neg/pos-Normalized Accuracy Measures for Software Defect Prediction

FIGURE 5. Relationship between the rankings based on (a) F1-value,
(b) AUC of ROC, (c) MCC, (d) G-mean, (e) Balance and the ranking based
on neg/pos normalized accuracy measures (see Table 4-(b)). Correlations
coefficients are 0.469, 0.486, 0.920, 0.430 and 0.401, respectively.

one possible issues of internal validity are worth mentioning.
This issue is that we used a single prediction method. In that
respect, our important future work is to employ other predic-
tion methods such as support vector machines and logistic
regression models to increase the validity of the result.

External validity refers to the generalization of the results.
In this study, we address external validity by using 38 releases
of 19 open-source software project data sets with diverse
characteristics obtained from different sources. Namely, they
vary in number (i.e. the number of bugs), and project vari-
ables, as well as origin (i.e. recording organization) and
recording period. In addition, we applied our method to
four different accuracy measures Precision, Recall, NPV and
Specificity. Our future work is to employ more data sets
and accuracy measures to increase the generalization of the
results.

Construct validity refers to the relevance and capability of
the observations and measurements in evaluating the posed
hypothesis. In this study, we compare the results of the pro-
posed normalization with the (raw) values of conventional
measures. It is our future work to employ other methods
(e.g. human evaluation) to increase the validity of our work.

VI. CONCLUSION AND FUTURE PROSPECTS
This paper describes a way to compute expected values of
accuracymeasures based on all possible prediction outcomes.
Based on the expected values, we define neg/pos-normalized
accuracy measures as the difference between the actual and
expected values divided by the standard deviation of all
possible prediction outcomes. A case study of defect pre-
diction with 19 data sets show that even a low accuracy
value (e.g. precision < 0.1) could be considered to
indicate a successful prediction (e.g. the case of data set no.14
(ECOS)), and a high accuracy value (e.g. precision >

0.8) can imply failure (e.g. the case of data set no.9 (LOG4)
because it is too close to the baseline), depending on the
composition (i.e. neg/pos ratio) of the data set. We also com-
pare our ranking based on the neg/pos-normalized measures
with conventional ranking using F1-value, AUC of ROC,
MCC, G-mean and Balance, and found that MCC showed
the highest correlation (r = 0.920) with our ranking; thus,
we recommend using MCC rather than F1-value, AUC of
ROC, G-mean and Balance.

As future work, we will employ other prediction models
with more data sets and accuracy measures to increase the
generalization of the results and to increase the construct
validity of our work.

APPENDIX A TOY EXAMPLE FOR COMPUTATION OF
EXPECTED VALUES OF ACCURACY MEASURES
Now let us study how this procedure works on a toy example.
Consider the hypothetical test data with T = 5 modules
shown in Table 6. As shown in the first row of this table, A+

is 2 and A− is 3.
The lower part of Table 6 lists such predictions (i.e. vectors

πi) for which P+ = 2 and P− = 3.14 As seen in this table,
the number of prediction results with this composition is 10,

#
(
5(2, 3)

)
=

(
5
2

)
= 10.

In addition, the expected value of π , i.e E(5) can be com-
puted as the average of all πis as

E(5) =

10∑
i=1
πi

10
=
[
0.4 0.4 0.4 0.4 0.4

]
. (16)

Without loss of generality, let us focus on the 1st module,
which is an actual positive. There are 10 predictions for this
module, i.e. one in each πi, i ∈ [1, 10]. In addition, 2/5 of

14In this table, we sorted the vectors πi in decreasing order, as if they are
binary numbers. Nevertheless, the order of sorting is not important for our
problem.

VOLUME 10, 2022 134589

M. Gan et al.: Neg/pos-Normalized Accuracy Measures for Software Defect Prediction

TABLE 6. Example of test data and possible predictions.

those 10 predictions are True Positive, i.e.

2
5
· 10 = 4.

Since there are 2 actual positives and there are 4 True Posi-
tives for each, the total number of True Positives concerning
all the modules is

2 ·
2
5
· 10 = 8.

Examining all predictions π1 ∼ π10 in Table 6, one may
see that the total number of True Positives concerning all
5 modules is indeed (i.e. TP = 8). Therefore, the expected
TP is computed as TP per prediction,

E(TP) =
8
10
.

Similarly, examining π1 ∼ π10, one can see that there are
a total of 12 FPs, 18 TN s and 12 FN s in Table 6. Thus,
their expected values are E(FP) = 1.2, E(TN) = 1.8,
E(FN) = 1.2.

Based on these expected values, it is possible to
compute the expected values of accuracy measures
(e.g.E(Precision),E(Recall),E(Npv), etc.). For exam-
ple, concerning the example illustrated in Table 6,

E(Precision) =
E(TP)

E(TP)+ E(FP)

=
0.8

0.8+ 1.2
= 0.4.

Relating to the same toy example, one can calculate the
expected value of recall E(Recall) as, once again, 0.4.
By using such expected values as baseline criteria, the

quality of a particular prediction model can be evaluated. For
instance, a model which yields as prediction result the 2nd

permutation in Table 6) attains precision of 0.5 and a
recall of 0.5, both of which are larger than the correspond-
ing expected values. In that respect, this prediction model can
be judged to be a good one.

REFERENCES
[1] G. Abaei, W. Z. Tah, J. Z. W. Toh, and E. S. J. Hor, ‘‘Improving soft-

ware fault prediction in imbalanced datasets using the under-sampling
approach,’’ in Proc. 11th Int. Conf. Softw. Comput. Appl., Feb. 2022,
pp. 41–47.

[2] Y. Jiang, B. Cukic, and Y. Ma, ‘‘Techniques for evaluating fault prediction
models,’’ Empirical Softw. Eng., vol. 13, no. 5, pp. 561–595, 2008.

[3] M. Jureczko and L. Madeyski, ‘‘Towards identifying software project
clusters with regard to defect prediction,’’ in Proc. 6th Int. Conf. Predictive
Models Softw. Eng. (PROMISE), 2010, pp. 1–10.

[4] M. Jureczko and D. Spinellis, ‘‘Using object-oriented design metrics to
predict software defects,’’ Models Methods Syst. Dependability, Oficyna
Wydawnicza Politechniki Wrocławskiej, pp. 69–81, Jun. 2010.

[5] T. M. Khoshgoftaar, K. Gao, and N. Seliya, ‘‘Attribute selection and
imbalanced data: Problems in software defect prediction,’’ in Proc. 22nd
IEEE Int. Conf. Tools Artif. Intell., Oct. 2010, pp. 137–144.

[6] A. Kaur and I. Kaur, ‘‘Empirical evaluation of machine learning algorithms
for fault prediction,’’ Lect. Notes Softw. Eng., vol. 2, no. 2, p. 176, 2014.

[7] M. Kubat and S. Matwin, ‘‘Addressing the curse of imbalanced training
sets: One-sided selection,’’ in Proc. Int. Conf. Mach. Learn., 1997, vol. 97,
no. 1, pp. 179–186.

[8] Y. Kamei, S. Matsumoto, A. Monden, K.-I. Matsumoto, B. Adams, and
A. E. Hassan, ‘‘Revisiting common bug prediction findings using effort-
aware models,’’ in Proc. IEEE Int. Conf. Softw. Maintenance, Sep. 2010,
pp. 1–10.

[9] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, ‘‘Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,’’ IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496,
Jul. 2008.

[10] J. C. Munson and T. M. Khoshgoftaar, ‘‘The detection of fault-prone
programs,’’ IEEE Trans. Softw. Eng., vol. 18, no. 5, p. 423, 1992.

[11] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code
attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

[12] A. P. Bradley, ‘‘The use of the area under the ROC curve in the evaluation of
machine learning algorithms,’’ Pattern Recognit., vol. 30, pp. 1145–1159,
Jul. 1997.

[13] J. A. Hanley and B. J. McNeil, ‘‘The meaning and use of the area under a
receiver operating characteristic (ROC) curve,’’ Radiology, vol. 143, no. 1,
pp. 29–36, 1982.

[14] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, ‘‘Problems with
precision: A response to comments on data mining static code attributes
to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33, no. 9,
pp. 637–640, Sep. 2007.

[15] R. Li and S. Wang, ‘‘An empirical study for software fault-proneness pre-
diction with ensemble learning models on imbalanced data sets,’’ J. Softw.,
vol. 9, no. 3, pp. 697–704, Mar. 2014.

[16] V. Garcia, R. A. Mollineda, and J. S. Sanchez, ‘‘Theoretical analysis of a
performancemeasure for imbalanced data,’’ inProc. 20th Int. Conf. Pattern
Recognit., Aug. 2010, pp. 617–620.

[17] T. M. Khoshgoftaar, K. Gao, A. Napolitano, and R. Wald, ‘‘A comparative
study of iterative and non-iterative feature selection techniques for software
defect prediction,’’ Inf. Syst. Frontiers, vol. 16, no. 5, pp. 801–822, 2014.

134590 VOLUME 10, 2022

M. Gan et al.: Neg/pos-Normalized Accuracy Measures for Software Defect Prediction

[18] S. Morasca and L. Lavazza, ‘‘On the assessment of software defect pre-
diction models via ROC curves,’’ Empirical Softw. Eng., vol. 25, no. 5,
pp. 3977–4019, Sep. 2020.

[19] M. Sokolova, N. Japkowicz, and S. Szpakowicz, ‘‘Beyond accuracy,
F-score andROC:A family of discriminantmeasures for performance eval-
uation,’’ in Proc. Australas. Joint Conf. Artif. Intell. Cham, Switzerland:
Springer, 2006, pp. 1015–1021.

[20] A. Tharwat, ‘‘Classification assessment methods,’’ Appl. Comput. Infor-
mat., vol. 17, no. 1, pp. 168–192, Jul. 2020.

[21] X. Xuan, D. Lo, X. Xia, and Y. Tian, ‘‘Evaluating defect prediction
approaches using a massive set of metrics: An empirical study,’’ in Proc.
30th Annu. ACM Symp. Appl. Comput., Apr. 2015, pp. 1644–1647.

[22] H. Zhang and X. Zhang, ‘‘Comments on ‘Data mining static code attributes
to learn defect Predictors,’’’ IEEE Trans. Softw. Eng., vol. 33, no. 9,
pp. 635–637, Sep. 2007.

[23] D. M. W. Powers, ‘‘Evaluation: From precision, recall and
F-measure to ROC, informedness, markedness and correlation,’’ 2020,
arXiv:2010.16061.

[24] D. Chicco and G. Jurman, ‘‘The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation,’’ BMC Genomics, vol. 21, no. 1, pp. 1–13, 2020.

[25] J. Huang and C. X. Ling, ‘‘Using AUC and accuracy in evaluating learning
algorithms,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 3, pp. 299–310,
Mar. 2005.

[26] L. A. Jeni, J. F. Cohn, and F. De La Torre, ‘‘Facing imbalanced data-
recommendations for the use of performance metrics,’’ in Proc. Humaine
Assoc. Conf. Affect. Comput. Intell. Interact., Sep. 2013, pp. 245–251.

[27] Y. Liu, J. Cheng, C. Yan, X. Wu, and F. Chen, ‘‘Research on the Matthews
correlation coefficients metrics of personalized recommendation algo-
rithm evaluation,’’ Int. J. Hybrid Inf. Technol., vol. 8, no. 1, pp. 163–172,
Jan. 2015.

[28] Q. Zhu, ‘‘On the performance of Matthews correlation coefficient (MCC)
for imbalanced dataset,’’ Pattern Recognit. Lett., vol. 136, pp. 71–80,
Aug. 2020.

[29] A. Monden, J. Keung, S. Morisaki, Y. Kamei, and K.-I. Matsumoto,
‘‘A heuristic rule reduction approach to software fault-proneness predic-
tion,’’ in Proc. Asia–Pacific Softw. Eng. Conf., vol. 1, 2012, pp. 838–847.

[30] T. Watanabe, A. Monden, Y. Kamei, and S. Morisaki, ‘‘Identifying recur-
ring association rules in software defect prediction,’’ in Proc. IEEE/ACIS
15th Int. Conf. Comput. Inf. Sci. (ICIS), Jun. 2016, pp. 1–6.

[31] Y. Kamei. (2016). Software Engineering Data Repository for
Research and Education. Accessed: Aug. 4, 2022. [Online]. Available:
http://analytics.jpn.org/SEdata/

[32] K. E. Bennin, J. Keung, A. Monden, Y. Kamei, and N. Ubayashi, ‘‘Inves-
tigating the effects of balanced training and testing data sets on effort-
aware fault prediction models,’’ in Proc. IEEE Comput. Softw. Appl. Conf.,
Jun. 2016, pp. 154–163.

[33] T. Menzies, R. Krishna, and D. Pryor. (2017). The SeaCraft Repository of
Empirical Software Engineering Data. Accessed: Aug. 18, 2022. [Online].
Available: https://zenodo.org/communities/seacraft

[34] T. M. Khoshgoftaar, X. Yuan, and E. B. Allen, ‘‘Balancing misclassifi-
cation rates in classification-tree models of software quality,’’ Empirical
Softw. Eng., vol. 5, no. 4, pp. 313–330, 2000.

[35] S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya, H. Al-Dossari,
and S. Ahmad, ‘‘An ensemble oversampling model for class imbal-
ance problem in software defect prediction,’’ IEEE Access, vol. 6,
pp. 24184–24195, 2018.

[36] R. Malhotra and S. Kamal, ‘‘An empirical study to investigate oversam-
pling methods for improving software defect prediction using imbalanced
data,’’ Neurocomputing, vol. 343, pp. 120–140, May 2019.

[37] S.-J. Yen and Y.-S. Lee, ‘‘Under-sampling approaches for improving pre-
diction of the minority class in an imbalanced dataset,’’ in Intelligent
Control and Automation. Berlin, Germany: Springer, 2006, pp. 731–740.

[38] C. Liu, D. Yang, X. Xia, M. Yan, and X. Zhang, ‘‘A two-phase transfer
learning model for cross-project defect prediction,’’ Inf. Softw. Technol.,
vol. 107, pp. 125–136, Mar. 2019.

[39] Z. Xu, S. Pang, T. Zhang, X.-P. Luo, J. Liu, Y.-T. Tang, X. Yu, and L. Xue,
‘‘Cross project defect prediction via balanced distribution adaptation based
transfer learning,’’ J. Comput. Sci. Technol., vol. 34, no. 5, pp. 1039–1062,
Sep. 2019.

[40] L. Guo, Y. Ma, B. Cukic, and H. Singh, ‘‘Robust prediction of fault-
proneness by random forests,’’ in Proc. 15th Int. Symp. Softw. Rel. Eng.,
2004, pp. 417–428.

[41] N. Gayatri, S. Nickolas, A. Reddy, and R. Chitra, ‘‘Performance analysis
of data mining algorithms for software quality prediction,’’ in Proc. Int.
Conf. Adv. Recent Technol. Commun. Comput., 2009, pp. 393–395.

[42] A. Nadi and H. Moradi, ‘‘Increasing the views and reducing the depth in
random forest,’’ Exp. Syst. Appl., vol. 138, Dec. 2019, Art. no. 112801.

[43] K. Shah, H. Patel, D. Sanghvi, and M. Shah, ‘‘A comparative analysis of
logistic regression, random forest and KNN models for the text classifica-
tion,’’ Augmented Hum. Res., vol. 5, no. 1, pp. 1–16, 2020.

[44] J. Keung, E. Kocaguneli, and T. Menzies, ‘‘Finding conclusion stability for
selecting the best effort predictor in software effort estimation,’’Automated
Softw. Eng., vol. 20, no. 4, pp. 543–567, Dec. 2013.

[45] P. Phannachitta, J. Keung, A. Monden, and K. Matsumoto, ‘‘A stability
assessment of solution adaptation techniques for analogy-based software
effort estimation,’’ Empirical Softw. Eng., vol. 22, no. 1, pp. 474–504,
Feb. 2017.

[46] R. Taylor, ‘‘Interpretation of the correlation coefficient: A basic review,’’
J. Diagnostic Med. Sonogr., vol. 6, no. 1, pp. 35–39, 1990.

[47] H. He and E. A. Garcia, ‘‘Learning from imbalanced data,’’ IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[48] T. Fawcett, ‘‘ROC graphs: Notes and practical considerations for
researchers,’’ HP Labs, Palo Alto, CA, USA, Tech. Rep., HPL-2003-4,
2003.

MAOHUA GAN received the B.E. degree in soft-
ware engineering from Northwestern Polytech-
nical University, in 2015, and the M.S. degree
in information science from Okayama University,
in 2020, where he is currently pursuing the Ph.D.
degree with the Division of Industrial Innovation
Sciences, Graduate School of Natural Science and
Technology. His research interest includes soft-
ware measurement and analytics.

ZEYNEP YÜCEL (Member, IEEE) received
the B.S. degree in electrical engineering from
Boğaziçi University, Istanbul, Turkey, and the
M.S. and Ph.D. degrees in electrical engineer-
ing from Bilkent University, Ankara, Turkey, in
2005 and 2010, respectively. She was a Post-
doctoral Researcher at ATR Laboratories, Kyoto,
Japan, for five years, before being awarded a JSPS
Fellowship, in 2016. She is currently an Associate
Professor with Okayama University, Japan. Her

research interests include robotics, signal processing, computer vision, and
pattern recognition.

AKITO MONDEN (Member, IEEE) received the
B.E. degree in electrical engineering from Nagoya
University, in 1994, and theM.E. and D.E. degrees
in information science from the Nara Institute of
Science and Technology (NAIST), in 1996 and
1998, respectively. He is currently a Professor with
the Graduate School of Natural Science and Tech-
nology, Okayama University, Japan. His research
interests include software measurement and ana-
lytics, and software security and protection. He is
a member of ACM, IEICE, IPSJ, and JSSST.

VOLUME 10, 2022 134591

