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SUMMARY

Hhex encodes a homeobox transcriptional regulator important for embryonic development and hematopoi-
esis. Hhex is highly expressed in NK cells, and its germline deletion results in significant defects in lymphoid
development, including NK cells. To determine if Hhex is intrinsically required throughout NK cell develop-
ment or for NK cell function, we generate mice that specifically lack Hhex in NK cells. NK cell frequency is
dramatically reduced, while NK cell differentiation, IL-15 responsiveness, and function at the cellular level
remain largely normal in the absence of Hhex. Increased IL-15 availability fails to fully reverse NK lymphope-
nia following conditional Hhex deletion, suggesting that Hhex regulates developmental pathways extrinsic to
those dependent on IL-15. Gene expression and functional genetic approaches reveal that Hhex regulates NK
cell survival by directly binding Bc/2/711 (Bim) and repressing expression of this key apoptotic mediator. These

data implicate Hhex as a transcriptional regulator of NK cell homeostasis and immunity.

INTRODUCTION

Natural killer (NK) cells are innate lymphocytes best known for
their functional efficacy against transformed and virus-infected
cells. With growing interest in the use of NK cells as immunother-
apeutic agents (Huntington et al., 2020), the need for a deeper
understanding of basic NK cell biology has emerged. Much effort
has been channeled into understanding the regulation of tran-
scriptional programs specific to NK cells and how this process
influences NK cell development and function (Goh and Hunting-
ton, 2017; Sun, 2016). Recent studies have provided further
mechanistic insights on how ID2 (Zook et al., 2018; Delconte
et al., 2016b) and NFIL3 (Kostrzewski et al., 2018) regulate NK
cell development. Deletion of another transcription factor,
TCF1, revealed a correlation between granzyme expression
and both NK cell maturation and function (Jeevan-Raj et al.,
2017). Other transcription factors, such as FOXO3, CBFB,
RUNX1, RUNX3, and IRF8, have also been implicated in NK
cell responses against viral infections (Adams et al., 2018). T-
bet was found to be specifically required for the persistence of
MCMV-specific memory NK cells, revealing stage-specific re-
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quirements for T-bet and Eomes during a viral response (Madera
et al., 2018). Finally, close links between cellular metabolism and
NK cell homeostasis, maturation, proliferation, and function
(Marcais et al., 2013; Donnelly et al., 2014; Yang et al., 2016;
Ali et al., 2015) have led to the identification of transcriptional
regulators of NK cell metabolism. Three transcription factors,
SREBP (Assmann et al., 2017), c-Myc (Loftus et al., 2018), and
RFX7 (Castro et al., 2018), have been implicated thus far, though
more may be added to this group of transcription factors as
studies begin to re-examine transcription factors in NK cell
metabolism.

Hhex (hematopoietically expressed homeobox) is a member of
the Homeobox family of transcription factors (Bedford et al.,
1993; Crompton et al., 1992; Ghosh et al., 1999; Hromas et al.,
1993). Like other homeodomain-containing transcription factors
(Gehring, 1987), Hhex is a critical regulator of cell differentiation
and morphogenesis, particularly during embryonic develop-
ment, when it is highly expressed in the developing liver, thyroid,
and lungs (Bogue et al., 2000; Keng et al., 1998; Thomas et al.,
1998). Hhex-deficient mouse embryos fail to survive beyond
mid-gestation because of severe liver, forebrain, thyroid, and
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cardiovascular malformation (Hallag et al., 2004; Keng et al.,
2000; Martinez Barbera et al., 2000). Hhex is also required for
development of the various hematopoietic lineages, albeit to
varying extents. Erythroid progenitors and erythrocytes develop
independently of Hhex, whereas Hhex is only required for
myeloid development in times of hematopoietic stress (Guo
et al., 2003; Kubo et al., 2005; Paz et al., 2010; Goodings et al.,
2015; Jackson et al., 2015, 2017). Hhex dependency during
lymphoid development is best understood in the context of B
cells that express the highest levels of Hhex among the lymphoid
lineages (Bedford et al., 1993; Goodings et al., 2015; Heng et al.,
2008; de Graaf et al., 2016). Hhex-deficient mice lack mature B
cells because of impaired IL-7 signaling, dysregulated expres-
sion of cell cycle genes, increased apoptosis, and develop-
mental arrests of early progenitors (Jackson et al., 2015; Good-
ings et al., 2015). The few remaining B cells were also reported to
be defective for antibody production and immunoglobulin recep-
tor arrangement (Bogue et al., 2003). Similarly, defective T cell
development in the absence of Hhex has also been observed,
though only in a competitive transplantation setting (Jackson
et al.,, 2015), as T cells express much lower levels of Hhex
compared with B and NK cells (Bedford et al., 1993; Goodings
et al., 2015; Heng et al., 2008; de Graaf et al., 2016).

Hhex has also been implicated in the development of NK cells
with comparable Hhex expression as B cells (de Graaf et al.,
2016; Heng et al., 2008), as significant NK cell losses were
observed in chimeric studies with germline-deficient mice (Jack-
son et al., 2015). However, whether this deficiency resulted from
impaired lymphoid progenitor development or a role for Hhex
later in NK cell development remains unclear. To address this
question, we generated a mouse model that facilitates the inac-
tivation of Hhex in NK cells. We find that Hhex is intrinsically
required for homeostatic maintenance of lineage-committed
NK cells and critical for promoting NK cell survival by repression
of the pro-apoptotic factor BIM.

RESULTS AND DISCUSSION

Conditional Deletion of Hhex Leads to Significant NK
Cell Loss

The role of Hhex in NK cell development and function remains
enigmatic even though it is consistently expressed throughout
NK differentiation (Figures 1A and S1A), and homozygous
germline deletion of Hhex leads to a dramatic loss of NK cells
in vivo (Jackson et al., 2015). Consequently, we generated
Hhex™ Ncr1+/€® mice to examine the role of Hhex within the
NK cell lineage. Exons 2 and 3, which encode the homeodomain
of Hhex, were targeted for Cre-mediated deletion in all NKp46-
expressing cells so as to inactivate the transcriptional activity
of Hhex in predominantly NK cells (Narni-Mancinelli et al.,
2011). Appreciable loss of HHEX was observed by western blot-
ting of NK cell lysates from Hhex™"Ncr1*/°™® mice (hereafter
referred to as Hhex“/? mice; Figure 1B). Flow cytometric analysis
of CD37NK1.1"NKp46* NK cells revealed a striking loss in the
proportion and total numbers of NK cells in the spleens (Fig-
ure 1C), bone marrow, and lungs (Figure S1B) of Hhex*? mice.
Therefore, Hhex plays a non-redundant role in the development
and maintenance of lineage-committed NK cells. Although Hhex
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is well known for its regulatory role in cell development (Soufi
et al., 2006; Hallag et al., 2004; Hunter et al., 2007), NK cell matu-
ration as defined by CD27 and CD11b expression (Figure 1D;
Chiossone et al., 2009; Hayakawa and Smyth, 2006; Huntington
et al., 2007b; Kim et al., 2002) was largely normal in Hhex“/
mice, barring minor differences among the immature and M2
subsets. In light of consistent Hhex expression during NK cell
maturation and even NK cell loss across all maturation subsets,
Hhex is likely to be continuously required by all differentiated NK
cell subsets.

Loss of Hhex Does Not Alter NK Functionality In Vitro

To address the role of Hhex in NK cell function, we first examined
the impact of Hhex deficiency on NK cell receptor expression, as
functionality can be influenced by signals from activating and
inhibitory receptors expressed on the cell surface (Morvan and
Lanier, 2016). Hhex*’4 mice possessed fewer NK cells express-
ing activating (Figure 1E) and inhibitory (Figure S1C) receptors of
the Ly49 family. Expression of two other activating receptors,
NKG2D and DNAM-1 (encoded by Cd226), was, however, signif-
icantly upregulated in the absence of Hhex (Figure 1F). Despite
the changes in receptor expression, NK cell function remained
intact, as similar proportions of IFN-y producing or degranulating
(CD107a*) Cre control and Hhex*’4 NK cells were observed after
ex vivo stimulation with PMA/ionomycin, IL-12/IL-18, or plate-
bound monoclonal antibodies against various activating recep-
tors (Figure 1G). Genes encoding the IL-12 and IL-18 receptor
subunits were also expressed at similar levels in Cre control
and Hhex“/4 NK cells (Figure S1D), suggesting intact recognition
of IL-12 and IL-18. Finally, comparable rates of calcein release
were measured when Cre control or Hhex’4 NK cells were incu-
bated with B16F10 melanomas at various effector-to-target (E:T)
ratios (Figure 1H), suggesting normal tumor killing on a per cell
basis in the absence of Hhex. Overall, the data suggest that
NK cell function is largely independent of Hhex.

Loss of Hhex Affects NK Cell and ILC1 Differentiation

To determine the underlying molecular phenotype of Hhex4/4 NK
cells, we performed RNA sequencing (RNA-seq) and identified a
total of 690 differentially expressed genes (DEGs; false discovery
rate [FDR] < 0.05; Figure 2A). The larger proportion of upregu-
lated DEGs (401) suggests that Hhex functions predominantly
as a transcriptional repressor, which is consistent with findings
from other cell types (Paz et al., 2010; Guiral et al., 2001). Intrigu-
ingly, 68 of the 690 DEGs have previously been annotated as
ILC1 signature genes (Robinette et al., 2015; Weizman et al.,
2017; Seillet et al., 2016). NK cells (CD49a~CD49b™*), DP cells
(CD49a"CD49b™), and ILC1s (CD49a*CD49b~) make up cell
types of the group 1 ILC compartment, and a degree of plasticity
between the lineages has been proposed (Gao et al., 2017).
Further testing against microarray data for splenic CD127*
ILC1s and CD127~ NK cells (Robinette et al., 2015) confirmed
significant enrichment of ILC1 signature genes in Hhex?4 NK
cells (p = 0.001; Figure 2B), including Cxcr6, a core ILC1 signa-
ture gene (Figure S2A). These data suggest that Hhex functions
as a transcriptional repressor of ILC1 identity in NK cells. Addi-
tionally, gene set testing against KEGG pathways revealed a sig-
nificant enrichment of cell cycle genes (FDR = 0.018) in Hhex*/4
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NK cells, most of which appear to be transcriptionally repressed
by Hhex, but not genes associated with apoptosis, JAK/STAT
signaling, and NK cell mediated cytotoxicity (Figure S2B).
Consistent with the significant increase in ltga? (gene encod-
ing CD49a) mRNA transcripts in splenic Hhex?’4 NK cells, we de-
tected a significant increase in numbers and proportion of
CD49a*CD49b™ DP cells not typically present in the spleen (Fig-
ure 2C), with similar trends in the bone marrow and liver (Fig-
ure S2C). ILC1 numbers were largely unaffected by the loss of
Hhex, even though it is equally highly expressed in both NK cells
and ILC1s (Figure S2D) and Ncr1-mediated Hhex deletion would
also be predicted to occur in ILC1s. Despite the role for Hhex in
repressing ILC1 gene expression, NK cells remained the pre-
dominant cell type (~70%) within the group 1 ILC compartment,
and no differences in Eomes expression were detected by RNA-
seq (Figure 2D). Flow cytometric analysis revealed a significant
increase in the proportion of CD49a*CD49b* DP cells that
lacked EOMES (Figure 2E), suggesting acquisition of an ILC1-
like phenotype following Hhex deletion. A possible explanation
could be increased activin-A signaling, which induces an ILC1-
like phenotype in NK cells (Gao et al., 2017; Rautela et al.,
2019), as a result of augmented expression of Acvr2a (gene en-
coding activin receptor type-2A; Figure 2A) in Hhex?/4 NK cells.
In contrast, CD49a-CD49b* Hhex** NK cells retained high
Eomes and CD62L but low CD200R expression (Figure 2F; Weiz-
man et al., 2017; Wang et al., 2018; Ng et al., 2018), which further
validates their identity as bona fide NK cells. Thus, the significant
enrichment of ILC1 signature genes within the NKp46* compart-
ment of Hhex*’ mice stemmed from increased frequencies of
CD49a"CD49b* DP cells rather than increased expression of
ILC1 signature gene expression among conventional NK cells.

Increased NK Cell Turnover in the Absence of Hhex that
Is Not Driven by IL-15

Previous studies have reported impaired IL-7 signaling and
attenuated IL-7Ra expression in Hhex-deficient B cells (Jackson
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etal., 2015; Goodings et al., 2015). Given that IL-7 and IL-15 both
use the common vy chain receptor subunit (Noguchi et al., 1993;
Carson et al., 1994; Sugamura et al., 1995) and share similar
signaling pathways (Lin et al., 1995), we hypothesized that the
drastic loss of NK cells in Hhex’“ mice could be due to impaired
responses to IL-15, a key mediator of NK cell homeostasis (Ken-
nedy et al., 2000; Cooper et al., 2002; Huntington et al., 2009).
Despite similar expression of the IL-15 receptor subunits IL-
15Ra (CD215), IL-15Rp (CD122), and common y chain (CD132)
between Cre control and Hhex?4 NK cells (Figures 3A and
S3A), Ki-67 expression was significantly higher in Hhex*/4 NK
cells but not the DP population (Figure 3B). The increase in NK
cell turnover was confirmed by measuring EdU incorporation
(Figure S3B). Consistent with increased NK cell turnover in vivo,
Hhex“/4 NK cells exhibited greater CTV dilution in vitro when
cultured in >12.5 ng/mL rhIL-15 (Figure S3C) but ultimately
failed to accumulate in greater numbers than Cre control NK cells
(Figure 3C). Taken together, these data indicate that NK cells
become hyper-proliferative in the absence of Hhex, but this re-
sults in a net loss rather than an accumulation of NK cells.

To further determine if the loss of NK cells in Hhex?/4 mice
could be due to aberrant JAK/STAT signaling events down-
stream of the IL-15 receptor, we assessed hematopoietic and
NK cell reconstitution in mixed bone marrow chimeras generated
with congenic CD45.1* control (wild-type [WT]) donors and
Hhex*'", Hhex*"caStat5b™*, Hhex 4, or Hhex'“caStatsb™*
experimental donors (Figure 3D). Consistent across both he-
matopoietic and NK cell compartments, enforced IL-15 signaling
via constitutive expression of the Stat5b transgene expression
failed to prevent cell loss in the absence of Hhex (Figure 3E).
Intact signal transduction via STAT5 was verified by comparing
fold induction of phosphorylated STAT5 (pSTATS5) in Cre control
and Hhex*’“ NK cells following in vitro re-exposure to rhiL-15,
which yielded only mild differences (Figure S3D). Other IL-15
signal transduction pathways, such as the PISK/AKT/mTOR
(Marcais et al., 2013; Donnelly et al., 2014) and MAPK (Osinalde

Figure 1. Conditional Deletion of Hhex in NKp46-Expressing Cells Affects NK Cell Numbers but Not Maturation and Tumor Killing on a Per
Cell Basis

(A) Bar graph depicting Hhex mRNA expression as measured by RNA sequencing of flow cytometrically sorted CD3"NK1.1*NKp46* splenic Imm
(CD11b~KLRG17), M1 (CD11b*KLRG17), and M2 (CD11b*KLRG1*) NK cells.

(B) Representative western blot validating appreciable loss of HHEX in CD3~NK1.1*NKp46* splenic Hhex*4 NK cells. The housekeeping gene B-actin was used
as loading control.

(C) Representative FACS plots demonstrating the identification of NK1.1*NKp46* splenic NK cells after gating on viable CD45*CD3" cells. Enumeration of
absolute CD3"NK1.1*NKp46* NK cell numbers and their relative frequencies among CD45" cells in the spleens of Cre control and Hhex'4 mice.

(D) Flow cytometric analysis of NK cell maturation on the basis of CD11b and CD27 expression on NK cells (identified as in C) in the spleens and bone marrows of
Cre control and Hhex*’? mice. Bar graphs indicate the absolute numbers of DN, Imm, M1, and M2 NK cells and their relative frequencies within the NK
compartment.

(E) Flow cytometric analysis of activating receptor expression on NK cells (CD3~NK1.1*NKp46*CD49a CD49b*) from Cre control and Hhex*'* mice. Bar graphs
depict the frequencies of Cre control and Hhex“’? NK cells that express the activating receptors Ly49D and Ly49H.

(F) Flow cytometric expression of NKG2D and DNAM-1 on Cre control and Hhex?2 NK cells (CD3"NK1.1*NKp46*CD49a~CD49b*). Bar graphs depict the MFI of
NKG2D and DNAM-1 staining among Cre control and Hhex?'4 NK cells, as well as the proportion of Cre control and Hhex“/4 NK cells that express DNAM-1.
(G) Frequencies of degranulating (CD107a") splenic NK1.1*NKp46*CD49b*Eomes* NK cells after ex vivo stimulation with PMA and ionomycin, IL-12, and IL-18 or
plate-bound antibodies against Ly49D, Ly49H, DNAM-1, NKG2D, and NKp46. As controls, cells were also incubated in wells that were not coated with anti-
bodies.

(H) Percentage specific lysis of calcein-labeled B16F10 melanomas by expanded Hhex?’4 NK cells (flow cytometrically sorted on viable
CD45*CD3 NK1.1*NKp46*CD49b") at the E:T ratios indicated.

Results shown are from one experiment of at least three mice per genotype (A), one representative experiment of at least three mice per genotype (B-F), pooled
from two experiments of at least three mice per genotype (G), and technical triplicates from one of three independent experiments (H). All bar graphs represent
mean + SD; each dot represents an individual mouse, except for graph depicting calcein release (H). Unpaired t tests; actual p values indicated. See also
Figure S1.
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et al., 2015; Huntington et al., 2007a; Mishra et al., 2014) path-
ways, remain to be interrogated. Altogether, the data presented
indicate that the loss of Hhex leads to NK cell hyper-proliferation
that is not driven by aberrant IL-15 signaling via STAT5.

Aberrant Expression of Pro-survival and Pro-apoptotic
Factors in the Absence of Hhex Cells Results in Impaired
NK Cell Survival

Hhex*4 NK cells showed reduced accumulation despite a clear
proliferative advantage in vitro, alluding to a defect in survival.
This was evident with Hhex?’? NK cells that were cultured in
5 ng/mL rhIL-15, which supports NK cell survival rather than pro-
liferation (Delconte et al., 2016a; Viant et al., 2017). Similarly, the
loss of Hhex has previously been associated with increased
apoptosis among immature B cell populations (Jackson et al.,
2015). Although flow cytometric detection of activated cas-
pase-3/7, which indicates irrevocable commitment to cell death
(Nicholson et al., 1995; Slee et al., 1999), did not reveal signifi-
cant differences in the frequencies of apoptotic NK cells
ex vivo (Figure S3), this may be explained by avid clearance of
apoptotic NK cells via phagocytic pathways (Carbonari et al.,
1995; Gordon and Pluddemann, 2018).

Given that NK cell survival is determined by interactions be-
tween the key mediator of NK cell apoptosis BIM and anti-
apoptotic factors such as BCL2 and MCL1 (Huntington et al.,
2007a; Viant et al., 2017; Sathe et al., 2014), the expression of
these apoptotic and survival factors in Hhex*’? NK cells was
determined using flow cytometry (Figure 3F). Hhex*? NK cells
expressed significantly higher levels of BIM than Cre control
NK cells, supporting increased apoptotic signaling in Hhex*/4
NK cells. Differences in MCL1 expression between Cre control
and Hhex“/4 NK cells, though statistically significant, were mild
and deemed unlikely to affect Hhex’4 NK cell survival. Unex-
pectedly, BCL2 expression was also significantly increased,
potentially to compensate for increased BIM expression.
BCL2, a pro-survival protein that is induced by IL-15, has been
shown to bind and antagonize BIM in NK cells (Huntington
et al., 2007a). To determine if further augmenting BCL2 levels
could also rescue Hhex-deficient NK cells from increased BIM-
mediated apoptosis in vivo, mixed bone marrow chimeras
were generated (Figure 3G). Consistent with published findings

Cell Reports

(Ogilvy et al., 1999), Bcl2 transgene expression resulted in the
over-representation of Hhex-sufficient hematopoietic cells as
well as NK cells (Figure 3H). This advantage was retained
when Hhex was systemically inactivated by Cre recombinase ex-
pressed under control of the Mx7 promoter (Kihn et al., 1995),
providing further evidence for impaired cell survival, most likely
due to overwhelming BIM levels, as the primary reason for NK
cell loss in Hhex*4 mice.

Hhex Promotes NK Cell Survival by Direct Repression of
Bcl2I11 Expression

To assess the extent to which increased BIM levels influenced
NK cell numbers in Hhex*’4 mice, Bcl2/11 (gene encoding BIM)
and Hhex were concomitantly inactivated in NKp46-expressing
cells. Remarkably, the proportion and total numbers of NK cells
in all hematopoietic tissues of Hhex?’“Bim“/4 mice were compa-
rable with Cre control mice (Figure 4A), confirming BIM-medi-
ated apoptosis as the key driver of NK cell ymphopenia in Hhex
4/4 mice. In order to investigate if HHEX directly inhibits BIM
expression by binding to the Bcl2/11 gene, we performed cleav-
age under targets and release using nuclease (CUT&RUN [CnR])
sequencing, a more sensitive technique that is based on the
main principles of chromatin immunoprecipitation (ChiIP)
sequencing (Skene and Henikoff, 2017). GREAT analysis of
peaks called by MACS2 revealed 1,554 genes in the proximity
(within 0.1 kB) of HHEX binding sites. Comparing these genes
with those that were differentially expressed in the absence of
HHEX (RNA-seq; Figure 2A), we identified 55 common genes
(Figure 4B). One of the common genes was Bcl2/11, and direct
binding of HHEX to its promoter region was observed (Figure 4B).
These data confirm a direct role for HHEX in repressing Bcl2/11-
mediated NK cell apoptosis and a mechanism behind the essen-
tial role of HHEX in normal NK cell lymphopoiesis in vivo. The hy-
per-proliferative phenotype of Hhex? NK cells was also
reversed with the additional deletion of Bc/2/11, as indicated
by similar frequencies of Ki-67* NK cells in the spleens of
Hhex“'“Bim“'4 mice and Cre control mice (Figure 4C). Counter-
intuitively, these results also suggest that the hyper-proliferation
Hhex*/4 NK was driven largely by intrinsically high BIM levels and
to some degree a homeostatic response to reduced NK cell
numbers, rather than the direct regulation of NK cell proliferation

Figure 2. Hhex Inactivation Results in Enrichment of ILC1 Signature Genes and Augments Frequencies of Eomes CD49a*CD49b* (DP) Cells
(A and B) RNA-seq analysis of differentially expressed genes (DEGs) between CD45*CD3~CD19~ NK1.1*NKp46*CD49b* splenic NK cells from Cre control and
Hhex*4 mice. (A) Heatmap of all DEGs (FDR < 0.05) between biological replicates of Cre control and Hhex*"? NK cells. The genes annotated includes genes of
interest and ILC1 signature genes (underlined). Color key shows Z score values for the heatmap. (B) Barcode plot depicting enrichment of a previously described
ILC1 gene signature in Hhex*4 NK cells. Genes from the dataset were ranked by moderated t statistics; upregulated genes shaded in pink and downregulated
genes shaded in blue. Signature genes are indicated on the plot as vertical lines. The position of each individual gene along the plot reflects the significance of
differential expression, and the direction of differential expression is colored red for upregulation or blue for downregulation.

(C) Representative flow cytometry plots demonstrating the identification of NK (CD49a~CD49b*), DP (CD49a*CD49b*), and ILC1 (CD49a*CD49b ") after gating
on viable CD45"CD3"NK1.1*NKp46* cells. Enumeration of absolute NK, DP, and ILC1 numbers and their relative frequencies within the group 1 ILC
compartment (viable CD45*CD3~NK1.1*NKp46*) in spleens of Cre control and Hhex?’# mice.

(D) Bar graph depicting transcript abundance of Eomes in NK1.1*NKp46*CD49b* cells as determined by RNA-seq.

(E) Flow cytometric analysis of Eomes expression among splenic DP and NK cells of Cre control and Hhex*'4 mice. Bar graphs depict Eomes expression with
respect to the frequency of Eomes-expressing (Eomes™) DPs or the median fluorescence intensity (MFI) of Eomes staining among NK cells.

(F) Representative histograms demonstrating CD200R and CD62L expression on Eomes™ liver NK cells of Cre control and Hhex*'4 mice in relation to Eomes ™ liver
ILC1 of Cre control mice. Bar graphs depict quantitation of CD200R and CD62L expression on Eomes* NK cells from the livers of Cre control and Hhex'“ mice.
Results shown are from one experiment of at least three mice per genotype (A and B) and one experiment of at least three mice per genotype (C-F). All bar graphs
represent mean + SD; each dot represents an individual mouse. Unpaired t tests; actual p values indicated. See also Figure S2.

6 Cell Reports 33, 108285, October 20, 2020



Cell Reports ¢? CellP’ress

OPEN ACCESS

A ) B
20004 _P=.215 | NK1.1'NKpag* | 80 1 NK1.1'NKp46*
“\ CD49a*CD49b* CD49aCD49b*
T 1600 | (DP) =X 60 (NK)
= I 5
o 1200 ‘
o I\ i 40
q e I i
I < 20
400 |
I\ \
T T .r'l"! T T T o .r i T T T
CD122———» Ki-67 ——» Ki-67 ——»
[ Unstained control @ Cre control [ Isotype control @ Cre control
— Cre control ©® Hhex4 — Cre control ® Hhex¥4
— Hhexs — Hhex*~
c rhiL-15 (ng/ml
5(ng/ml) 54 125 25.0 50.0
8000 20000 60000 120000
6000 -@- Cre control 15000 45000 90000
10000 30000 60000:
5000 15000 30000
6 1'2 2‘4 4‘5 7I2 9‘6 150 6 1‘2 2'4 4‘8 7'2 9‘6 150 ll) 1‘2 2‘4 4‘8 7'2 9'6 150 6 1'2 2'4 4‘8 7‘2 9‘6 1;0
time (h) time (h) time (h) time (h)
D E
Hhex*" or Hhex™ or p <.001 p=.336 p <.001 p=.950
WT Hhex*'caStat5b™* or Hhex"’caStat5b™ = — —
(Donor - CD45.1) (Donor - CD45.2) S 100 ‘ac'; 100
£ £
S b <8 75 §§_ 75
35 s SE 4
oo O3
w N4
S 25 25
~ 0 o
. X‘\ \ D &\X
% tissue Ny O S+ 0
analyses \e\K\Q’ \6\6 \?\\(\G \,5@
2x10° SR &5 &
cells/host NS L R\
9.5 Gy 7 et o

AN &.‘f“\ ~“<\‘\ <

(Host - CD45.1)
F

<.001 =.002
| 6000 p <.001 L= 400 L=
|
_ T T 300
H E 4000 E 400 E
H = g g 200
I 0 2000 @ 200 =
‘ 100
‘ |
I
NARVANAN 0 0 0
BIM—»
= ::s1otype:=[ c?ntrol @ F1 control
-_— control ® Hhexs
— Hhex*4
G Hhex*" or Hhex”* H p =.002 p <.001 p <.001 p <.001
WT Hhex*"Bcl2™* or Hhex"2Bcl2™* = =
(Donor - CD45.1) (Donor - CD45.2) S 100 S 100
IS £
N N T °
o é 75 i‘é 75
8 g 5o 8 % 50
0
E 25 é 25
1:1 ) ~
o
% tissue jS\\\ \’f o \rf«
analyses ‘?\‘\ \\%0 \’\‘\ V%o
2x 108 N &6 & et
cell/host ‘?\\(\ Y\K\
9.5 Gy 7 é\ é&
N, /Fi\?};\% 12, \
ALY = Weeks .
2

(Host - CD45.1)

(legend on next page)

Cell Reports 33, 108285, October 20, 2020 7




¢ CellPress

OPEN ACCESS

by Hhex. Taken together, the data presented show that Hhex
regulates NK cell survival and ultimately NK cell numbers, by
directly repressing Bcl2/11 expression and subsequently BIM-
mediated apoptosis.

Robust NK Cell Response to MCMYV Infection in the
Absence of Hhex

Given that NK cell frequency and turnover was restored in
Hhex*"“Bim“'4 mice, we examined the in vivo impact of Hhex defi-
ciency on NK cell function by challenging these mice with murine
cytomegalovirus (MCMV). During the acute phase MCMV infec-
tion, NK cells that express Ly49H are able to recognize the m157
MCMYV glycoprotein and undergo rapid expansion, driven by IL-
12 and IL-18 to mediate rapid immunity via IFN-y production (Arase
et al., 2002; Brown et al., 2001; Dokun et al., 2001; Smith et al.,
2002). We compared total NK and Ly49H* NK cell numbers be-
tween naive and infected Hhex*/4, Hhex*'“Bim“’4, and Cre control
mice. Although Hhex*? mice possessed far fewer total and
Ly49H* NK cells than Cre control mice by 7 days post-infection
(i.e., end of expansion phase), NK cells of infected Hhex*/“ mice
trended toward higher fold expansions, which was statistically sig-
nificant for the Ly49H" subset (Figure 4D). The fold expansion of
Hhex*4Bim*'4 remained similar to Cre control mice, which agrees
with previous findings that Bim is at least dispensable for NK cell
expansion during MCMYV infection (Min-Oo et al., 2014) and reiter-
ates the requirement for Hhex during NK cell proliferation in vivo.
Unexpectedly, viral titers in the spleens, livers, and lungs of
Hhex“/4 mice were not significantly higher than those of Cre control
or Hhex?'Bim“’4 mice (Figure 4E), which suggests that only a rela-
tively small number of functionally competent NK cells are required
to mediate a protective response against MCMV infections.

In summary, we have shown that the survival and conse-
quently homeostatic maintenance of lineage-committed NK
cells is intrinsically dependent on Hhex. The pro-survival role of
Hhex is maintained throughout NK cell maturation, as Hhex dele-

Cell Reports

tion does not result in the selective loss of a particular matura-
tional subset. NK cell development, function, and survival are
classically thought to be critically dependent on IL-15 (Kennedy
et al., 2000; Cooper et al., 2002; Huntington et al., 2007a).
Furthermore, IL-15 signaling has been shown to induce BCL2
that antagonizes BIM in NK cells (Huntington et al., 20072). As
such, it was surprising to find that enforced IL-15 signaling by
constitutive activation of STAT5 did not augment BCL2 to levels
that would overcome the intrinsically high levels of BIM levels in
Hhex?’4 NK cells and promote NK cell survival, suggesting that
IL-15-independent pathways are involved. Although IL-15-inde-
pendent NK cell responses have been described in MCMV-in-
fected mice (Sun et al., 2009) and vaccinia-infected mice (Ohs
et al., 2016), where NK cell proliferation is instead driven by IL-
12, we have no evidence that IL-12 signaling or IFN-y production
in response to IL-12 is altered in Hhex?’4 NK cells. Coinciden-
tally, RNA-seq analysis revealed that expression of /l2ra (gene
encoding IL-2Ra or CD25) was significantly increased in Hhex-
deficient NK cells, suggesting increased sensitivity to IL-2. As
such, future studies on responses to IL-2 may shed further light
on the present findings and reveal subtle differences between
the receptor subunits and signaling pathways that are co-utilized
by IL-2 and IL-15 (Osinalde et al., 2015).

Hhex has been previously been implicated in the regulation of
HSC self-renewal and early lymphoid progenitor development
via active repression of the cell cycle inhibitor Cdkn2a (Jackson
et al., 2015, 2017; Goodings et al., 2015). In contrast, Cdkn2a
expression was not upregulated in Hhex-deficient NK cells,
which instead showed increased DNA replication and expres-
sion of cell cycle genes such as Mki67, Cdk2, Cdk6, and E2f3
(Baychelier and Vieillard, 2013; Jung et al., 2012). Thus, the
mechanism by which Hhex controls cell cycle in NK cells is likely
a distinct from HSC and other lymphocytes.

Bioinformatic analyses have revealed a significant enrichment
of ILC1 signature genes in CD3 NK1.1*"NKp46"CD49b* cells,

Figure 3. Increased IL-15-Independent NK Cell Turnover in the Absence of Hhex
(A) Flow cytometric assessment of IL-15RB (CD122) subunit expression (MFI) on splenic NK cells (CD3~NK1.1*NKp46*CD49a CD49b*) from Cre control and

Hhex*'4 mice.

(B) Flow cytometric analysis of DP and NK cell turnover in Cre control and Hhex*’4 mice by Ki-67 expression. Bar graphs depict the frequencies of Ki-67 ex-

pressing splenic DP and NK cells from Cre control or Hhex4/4

used to discern non-specific binding.

mice expression as determined by intracellular antibody staining. A matching isotype control was

(C) CD3~CD19 NK1.1*NKp46*CD49b* Cre control and Hhex/4 NK cells were CTV-labeled and cultured in 5, 12.5, 25, and 50 ng/mL IL-15. Viable cell numbers
were enumerated after the indicated time in culture.

(D and E) Assessing rescue of Hhex?’4 NK cells by constitutive activation of Stat5b (caStat5b). (D) Schematic of 50:50 bone marrow chimeric setup. Un-
fractionated bone marrow from CD45.1* WT control donors and either CD45.2* Hhex™", Hhex 4, Hhex*"caStat5b™*, or Hhex '“caStat5b™* experimental
donors were transplanted into lethally irradiated CD45.1" recipients. (E) Hematopoietic and NK cell reconstitution was assessed 12 weeks post-transplantation.
Bar graphs represent frequencies or ratios of WT and either Hhex™", Hhex™"4, Hhex*'caStat5b™*, or Hhex '“caStat5b”’* hematopoietic (CD45*) and NK cells
retrieved from the spleens of mixed bone marrow chimeras.

(F) Flow cytometric determination of BIM, BCL2, and MCL1 expression in F1 control or Hhex*4 NK cells (CD3"NK1.1*NKp46*Eomes™) retrieved from the spleen
and bone marrow of F1:Hhex*"? mixed bone marrow chimeras.

(G and H) Assessing rescue of Hhex-deficient NK cells by Bc/2 overexpression. (G) Schematic of 50:50 bone marrow chimeric setup. Unfractionated bone marrow
from CD45.1* WT control donors and either CD45.2* Hhex*", Hhex /4, Hhex*"Bci2™*, or Hhex "“Bcl2™* experimental donors were transplanted into lethally
irradiated CD45.1* recipients.

(H) Hematopoietic and NK cell reconstitution was assessed 12 weeks post-transplantation. Bar graphs represent frequencies or ratios of WT and either Hhex*"",
Hhex "4, Hhex*"Bci2™*, or Hhex '“Bci2™* hematopoietic (CD45*) and NK cells retrieved from the spleens of mixed bone marrow chimeras.

Results shown are from one representative experiment of at least three mice per genotype (A and B), technical triplicates from one of two independent ex-
periments (C), three pooled experiments (D, E, G, and H) and donor pairs of F1 control and Hhex*’“ mice reconstituting six recipients (F). All bar and line graphs
represent mean + SD; each dot on bar graphs represents an individual mouse, except for graph depicting in vitro expansion of CTV labeled NK cells (C). Unpaired
t tests; actual p values indicated. See also Figure S3.
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traditionally defined as NK cells, in the absence of Hhex. This
clearly highlights the limitations of the markers that are typically
used to identify NK cells and distinguish them from ILC1s, which
is further compounded by phenotypic and functional heteroge-
neity among group 1 ILCs (O’Sullivan, 2019; Gao et al., 2017;
Rautela et al., 2019). That said, Hhex clearly has a dominant ef-
fect on the frequency of NK cell numbers compared with other
ILC1s despite similar expression of Hhex, and this may be due
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SOURCE

IDENTIFIER

Antibodies

FcR blocking reagent

Armenian hamster anti-mouse CD3e (Clone
145-2C11)

Rat anti-mouse CD4 (Clone GK1.5)

Rat anti-mouse CD8a (Clone 53-6.7)

Rat anti-mouse CD19 (Clone 6D5)

Rat anti-mouse F4/80 (Clone BM8)

Rat anti-mouse Ly6G (Clone 1A8)

Rat anti-mouse |-A/I-E (Clone M5/114.15.2)
Rat anti-mouse TER-119 (Clone TER-119)
Rat anti-mouse MCL1 (Clone 19C4-15)
Rat anti-mouse CD16/CD32 (Clone 2.4G2)
Mouse anti-mouse BCL2 (Clone 10C4)

Rat anti-mouse BIM (Clone 3C5)

Rat anti-mouse EOMES (Clone Dan11mag)
Rat anti-mouse IFN-y (Clone XMG1.2)
Mouse anti-human Ki-67 (Clone B56)
Mouse anti-mouse pSTAT5 (Y694)

Mouse anti-mouse B-actin (Clone AC-74)

Armenian hamster anti-mouse CD3e (Clone
145-2C11)

Rat anti-mouse CD3e (Clone KT3-1.1)
Rat anti-mouse CD3 (Clone 17A2)
Rat anti-mouse CD3 (Clone 17A2)
Rat anti-mouse CD11b (Clone M1/70)
Rat anti-mouse CD11b (Clone M1/70)
Rat anti-mouse CD11b (Clone M1/70)

Armenian hamster anti-mouse CD27 (Clone
LG.7F9)

Armenian hamster anti-mouse CD27 (Clone
LG.7F9)

Armenian hamster anti-mouse CD27 (Clone
LG.7F9)

Rat anti-mouse CD45 (Clone 30-F11)
Rat anti-mouse CD45 (Clone 30-F11)
Mouse anti-mouse CD45.1 (Clone A20
Mouse anti-mouse CD45.1 (Clone A20
Mouse anti-mouse CD45.2 (Clone 104
Mouse anti-mouse CD45.2 (Clone 104

Armenian hamster anti-mouse CD49a
(Clone Ha31/8)

Rat anti-mouse CD49b (Clone DX5)
Rat anti-mouse CD62L (Clone MEL-14)
Rat anti-mouse CD107a (Clone 1D4B)
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Miltenyi Biotec
BioLegend

BioLegend

BioLegend

BioLegend

BioLegend

BioLegend

BioLegend

BD Biosciences

WEHI monoclonal antibody facility
WEHI monoclonal antibody facility
BioLegend

WEHI monoclonal antibody facility
Thermo Fisher Scientific

BD Biosciences

BD Biosciences

BD Biosciences

Sigma-Aldrich

BD Biosciences

WEHI monoclonal antibody facility
BD Biosciences

BioLegend

BD Biosciences

BioLegend

WEHI monoclonal antibody facility
BD Biosciences

BioLegend

Thermo Fisher Scientific

BD Biosciences
BioLegend

BD Biosciences
Thermo Fisher Scientific
BD Biosciences
BioLegend

BD Biosciences

BD Biosciences
Thermo Fisher Scientific
BD Biosciences

Cat# 130-092-575
Cat# 100302, RRID:AB_312667

Cat# 100402, RRID:AB_312687
Cat# 100702, RRID:AB_3127414
Cat# 115502, RRID:AB_313637
Cat# 123102, RRID:AB_893506
Cat# 127602, RRID:AB_1089180)
Cat# 107602, RRID:AB_313317)
Cat# 553672, RRID:AB_394985
N/A

N/A

Cat# 633508, RRID:AB_2290367
N/A

Cat# 46-4875-82, RRID:AB_10597455
Cat# 554413, RRID:AB_398551
Cat# 556026, RRID:AB_396302
Cat# 612567, RRID:AB_399858
Cat# A2228, RRID:AB_476697
Cat# 551163, RRID:AB_394082

N/A

Cat# 740147, RRID:AB_2739902)
Cat# 100232, RRID:AB_2562554
Cat# 740147, RRID:AB_2739902)
Cat# 101257, RRID:AB_2565431

N/A

Cat# 558754, RRID:AB_397106)

Cat# 124229, RRID:AB_2565795

Cat# 47-0271-82, RRID:AB_10853642

Cat# 557659, RRID:AB_396774
Cat# 103134, RRID:AB_2562559
Cat# 560580, RRID:AB_1727489
Cat# 11-0453-82, RRID:AB_465058)
Cat# 560694, RRID:AB_1727492)
Cat# 109839, RRID:AB_2562604
Cat# 564863, RRID:AB_2738987)

Cat# 553857, RRID:AB_395093

Cat# 25-0621-82, RRID:AB_469633)

Cat# 560648, RRID:AB_1727420
(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Rat anti-mouse CD200R (Clone OX-110) BioLegend Cat# 123909, RRID:AB_1227748)

Rat anti-mouse DNAM-1 (Clone 10E5) Thermo Fisher Scientific Cat# 17-2261-82, RRID:AB_11149875
Rat anti-mouse DNAM-1 (Clone 10E5) BioLegend Cat# 128822, RRID:AB_2728146
Goat Anti-Rabbit IgG (HRP) Abcam Cat# ab97051, RRID:AB_10679369

Goat Anti-Mouse IgG (HRP)
Rabbit anti-mouse HHEX (Clone 2018B)
Rabbit anti-mouse HHEX (polyclonal)

Syrian hamster anti-mouse KLRG1 (Clone
2F1)

Syrian hamster anti-mouse KLRG1 (Clone
2F1)

Mouse anti-mouse Ly49A (Clone A1)
Mouse anti-mouse Ly49C/I (Clone 5E6)
Rat anti-mouse Ly49D (Clone 4E5)

Rat anti-mouse Ly49D (Clone 4E5)

Rat anti-mouse Ly49G2 (Clone 4D11)
Mouse anti-mouse Ly49H (Clone 3D10)
Mouse anti-mouse Ly49H (Clone 3D10)
Mouse anti-mouse NK1.1 (Clone PK136)
Mouse anti-mouse NK1.1 (Clone PK136)
Rat anti-mouse NKG2D (Clone CX5)

Rat anti-mouse NKG2D (Clone CX5)

Rat anti-mouse NKp46 (Clone 29A1.4)
Rat anti-mouse NKp46 (Clone 29A1.4)
Rat anti-mouse NKp46 (Clone 29A1.4)
Rat anti-mouse NKp46 (Clone 29A1.4)

Armenian hamster anti-mouse TCRp (Clone
H57-597)

Armenian hamster anti-mouse TCRp (Clone
H57-597)

Southern Biotech
R&D Systems
Abcam

BD Biosciences

Thermo Fisher Scientific

Thermo Fisher Scientific
BD Biosciences

BD Biosciences
BioLegend

BD Biosciences
Thermo Fisher Scientific
BioLegend

BD Biosciences

WEHI monoclonal antibody facility

BD Biosciences
BioLegend

BD Biosciences
BioLegend

BioLegend

Thermo Fisher Scientific
BD Biosciences

BioLegend

Cat# 1070-05, RRID:AB_2650509
Cat# MAB83771, RRID:N/A

Cat# ab34222, RRID:N/A

Cat# 564014, RRID:AB_2738542

Cat# 25-5893-82, RRID:AB_1518768

Cat# 12-5856-82, RRID:AB_1311270
Cat# 553277, RRID:AB_394751

Cat# 555313, RRID:AB_395724)
Cat# 138302, RRID:AB_10574460
Cat# 555315, RRID:AB_395726
Cat# 17-5886-82, RRID:AB_10598809
Cat# 144702, RRID:AB_2561549
Cat# 564143, RRID:AB_2738617
N/A

Cat# 558403, RRID:AB_647201

Cat# 130202, RRID:AB_1227717
Cat# 560757, RRID:AB_1727466
Cat# 137611, RRID:AB_10915472
Cat# 137602, RRID:AB_10552740
Cat# 25-3351-82, RRID:AB_2573442
Cat# 560657, RRID:AB_1727575

Cat# 109212, RRID:AB_313435

Armenian hamster anti-mouse TCRp (Clone WEHI monoclonal antibody facility N/A
H57-597)

Chemicals, Peptides and Recombinant Proteins

20X Bolt MOPS SDS Running Buffer Thermo Fisher Scientific Cat# B0001
4X Bolt LDS Sample Buffer Thermo Fisher Scientific Cat# B0007
10X Bolt Sample Reducing Agent Thermo Fisher Scientific Cat# B0009
Calcein-AM BD Biosciences Cat# 564061
CellTrace Violet Thermo Fisher Scientific Cat# C34557

Clarity Western ECL substrate
Collagenase Type 4
DNase-1

Fixable Viability Stain 510
Fixable Viability Stain 780
GolgiStop

lonomycin

Lyse/Fix buffer 5X

Mouse IL-12

Neomycin sulfate

Percoll

Bio-Rad
Worthington
Worthington
BD Biosciences
BD Biosciences
BD Biosciences
Merck

BD Biosciences
Miltenyi Biotec
Sigma-Aldrich
GE Healthcare

Cat# 1705061

Cat# LS004188

Cat# LS002139

Cat# 564406

Cat# 565388

Cati# 554724

Cat# 10634

Cati# 558049

Cat# 130-096-708

Cat# N1876

Cat# 17-0891-01
(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
Perm buffer I BD Biosciences Cat# 558050
PMA Merck Cat# P8139
Poly(l:C) Merck Cat# P1530
Recombinant human IL-15 Miltenyi Biotec Cat# 130-095-766
Recombinant human IL-18 MBL International Cat# B001-5
RIPA lysis buffer 10X Merck Cat# 20-188
Stain buffer (FBS) BD Biosciences Cat# 554656
Sytox Blue Thermo Fisher Scientific Cat# S34857
Zombie UV Fixable Viability Kit BioLegend Cat# 423108
Critical Commercial Assays

CellEvent Caspase-3/7 Flow Cytometry Thermo Fisher Scientific Cat# C10427
Assay Kit

Click-iT Plus EdU Alexa Fluor 488 Flow Thermo Fisher Scientific Cat# C10633
Cytometry Assay Kit

EasySep Mouse NK Isolation Kit StemCell Technologies Cat# 19855

Foxp3 Staining Buffer Set Kit
MGIEasy DNA FS Library Prep Set

NEBNext Ultra Il Directional RNA Library
Prep Kit for lllumina

Thermo Fisher Scientific
MGiITech
New England Biolabs

Cat# 00-5523-00

Cat# 1000017572

Cat# E7760L

RNeasy Plus Mini Kit QIAGEN Cat# 74134

Deposited Data

RNA-sequencing on bulk This paper GEO database accession number GEO:
CD3"'NK1.1*NKp46*CD49b* Hhex/4 and GSE140284

Cre control NK cells

CUT&RUN-sequencing on cultured C57BL/ This paper GEO database accession number GEO:
6 WT NK cells GSE155957

Experimental Models: Cell Lines

Mouse: B16F10 melanoma ATCC Cat# CRL-6475, RRID:CVCL_0159

Experimental Models: Organisms/Strains

Mouse: Bcl2™* Ogilvy et al., 1999 N/A
Mouse: Bim™" Herold et al., 2014 N/A
Mouse: CD45.1 congenic WEHI Bioservices N/A
Mouse: caStat5™* Burchill et al., 2003 N/A
Mouse: F1 (CD45.1/CD45.2) WEHI Bioservices N/A
Mouse: Hhex" Hunter et al., 2007 N/A
Mouse: Hhex"! Bogue et al., 2003 N/A
Mouse: Hhex™"Bim™" This paper N/A
Mouse: IL-15 Tg Fehniger et al., 2001 N/A
Mouse: Mx1-Cre Kuhn et al., 1995 N/A
Mouse: Ncr1/cr Narni-Mancinelli et al., 2011 N/A
Software and Algorithms

FlowJo 10.6.1 FlowJo N/A
GraphPad Prism 8 GraphPad N/A
R Studio https://rstudio.com/ N/A
Virus strains

MCMV strain K181-Perth Martins et al., 2019 N/A

Other

123count eBeads

MagniSort Streptavidin Negative Selection
Beads

Thermo Fisher Scientific
Thermo Fisher Scientific

Cat# 01-1234-42

Cat# MSNB-6002-74
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Nicholas D.
Huntington (nicholas.huntington@monash.edu.au).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The RNA-seq and CnR-seq data generated in this study are available on GEO database (accession number GEO: GSE140284 and
GEO: GSE155957, respectively).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

The mouse strains Hhex™" (Hunter et al., 2007), Hhex”" (Bogue et al., 2003), Ncr1€™ (Narni-Mancinelli et al., 2011), Bim™" (Herold
et al., 2014), caStatsb™* (Burchill et al., 2003), Bel2™* (Ogilvy et al., 1999), IL-15 Tg (Fehniger et al., 2001) and Mx7-Cre (Kilhn
et al., 1995) have been described. Hhex™ mice were crossed with Ncr1® mice to generate Hhex™"Ner1*/°™® mice (Hhex?/4).
Hhex*"4 mice were crossed with Bim™" mice to generate Hhex*’Bim“’4 mice. Crossings between Hhex™", caStatsb™*, Bcl2™*
and Mx1-Cre mice were carried out to generate Hhex™", Hhex"caStat5b™*, and Hhex”"Bci2™+ mice. Systemic deletion of Hhex
in these mice to generate Hhex”?, Hhex”“caStats5b™*, and Hhex”“Bcl2™* mice was induced by intraperitoneally (i.p.) administering
7 week old mice with three 200 mg/kg doses of polyinosinic-polycytidylic acid sodium salt (poly(l:C); Merck Cat# P1530) dissolved in
sterile saline, every other day. Crossings between Hhex*'+, Hhex™" Bcl2™+ and caStat5™* mice were carried out to generate Hhex*'",
caStat5b"*Hhex*'", and Bcl2™*Hhex*'" control mice. Mice on a congenic CD45.1 background or F1 background between CD45.1
and CD45.2 were sourced from WEHI Bioservices and used as control donors (wild-type; WT) in chimeric studies. Ncr1 *+/Cre mice (Cre
control) were used as controls for Hhex*’“ mice and to account for Cre recombinase-associated toxicity (Loonstra et al., 2001; Jan-
bandhu et al., 2014). All genetically modified mouse strains used in this study were either maintained on a C57BL/6 background or
have been backcrossed for > 10 generations to C57BL/6. Both male and female mice aged between 8 to 16 weeks were used for
experiments. Animal experiments performed were carried out in accordance with the National Health and Medical Research Com-
mittee (NHMRC) Australian code of practice for the care and use of animals for scientific purposes and approved by the WEHI Animal
Ethics Committee.

Cells

Purified NK cells were maintained in Iscove’s Modified Dulbecco’s Medium (IMDM) supplemented with 10% (v/v) fetal bovine serum
(FBS), 2 mM GlutaMAX (GIBCO Cat# 35050), 50 1M B-mercaptoethanol (8-ME, Sigma-Aldrich Cat# M6250), 50 ng/ml recombinant
hiL-15 (rhIL-15; Miltenyi Biotec Cat# 130-095-766), 100 ng/ml streptomycin and 100 IU/ml penicillin (Sigma-Aldrich Cat# P0781). The
murine B16F10 melanoma cell line (ATCC Cat# CRL-6475) was maintained in Dulbecco’s Modified Eagles Medium (DMEM) contain-
ing 10% (v/v) FBS, 50 uM B-ME, 100 pg/ml streptomycin and 100 IU/ml penicillin. All cells were maintained in a humidified incubator at
37°C with 5% COs,.

Viruses
The murine cytomegalovirus (MCMV) used in this study is from salivary gland-propagated stocks of the virulent MCMV strain K181-
Perth (Martins et al., 2019).

METHOD DETAILS

Bone marrow chimeras

CD45.2 (IL-15 Tg and WT) recipient mice were exposed twice, 3 hours apart, to 5.5 Gray (Gy) gamma-irradiation from a ®°Co source.
CD45.1 recipient mice received a single dose of 9.5 Gy from a '3"Cs source. Irradiated mice were injected intravenously (i.v.) with a
50:50 mixture of live nucleated cells from control and experimental donors. Hhex”4, Hhex”“caStat5b™*, and Hhex”“Bcl2""* exper-
imental donors were used at least 4 weeks after poly(l:C) (Merck Cat# P1530) treatment. All recipient mice were maintained on oral
neomycin-sulfate (2 mg/ml; Sigma-Aldrich Cat# 1876) for 3 weeks post-transplantation. Hematopoietic and NK cell reconstitution
was assessed at least 6 weeks post-transplantation.

Flow cytometry and cell sorting

Spleens, bone marrows, lungs and livers were processed differently to obtain single cell suspensions. Spleens and livers were
passed through 70 pm filters. Bone marrow flushed from a femur and tibia were repeatedly passed through a needle to disaggregate
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cells. Lungs were minced and enzymatically digested with 1 mg/ml Collagenase Type 4 (Worthington Cat# LS004188) and 30 pug/mi
DNase-1 (Worthington Cat# LS002139) in PBS. Digested lungs were passed through 70 um filters to disaggregate remaining cell
clumps. Dissociated livers and lungs were further subjected to isopycnic centrifugation in 33.75% v/v isotonic Percoll (GE Healthcare
Cat# 17-0891-01) to remove parenchymal cells. RBCs were cleared from all dissociated tissues by osmotic lysis.

Single cell suspensions were stained with monoclonal antibodies (Thermo Fisher Scientific, BD Biosciences and BioLegend)
against CD3 (17A2 or 145-2C11), CD11b (M1/70), CD27 (LG.7F9), CD45 (30-F11), CD45.1 (A20), CD45.2 (104), CD49a (Ha31/8),
CD49b (DX5), CD62L (MEL-14), CD107a (1D4B), CD122 (TM-B1), CD200R (OX-110), DNAM-1 (10E5), KLRG1 (2F1), Ly49A (A1),
Ly49C/I (5E6), Ly49D (4E5), Ly49G2 (4D11), Ly49H (3D10), NK1.1 (PK136), NKG2D (CX5), NKp46 (29A1.4), TCRB (H57-597),
BCL2 (10C4), BIM (3C5), EOMES (Dan11mag), IFN-y (XMG1.2), Ki-67 (B56), MCL1 (19C4-15), phospho-STAT5 (pSTAT5; 47) in
the presence of CD16/32 (2.4G2). Propidium iodide (PI; 50 ng/ml), 500 nM SYTOX Blue (Thermo Fisher Scientific Cat# S34857),
Fixable Viability Stain 510 (FVS510; BD Biosciences Cat# 564406) or FVS780 (BD Biosciences Cat# 565388) were used to exclude
dead cells. Detection of activated caspase-3/7 in apoptotic cells was performed with a CellEvent Caspase-3/7 Flow Cytometry Assay
Kit (Thermo Fisher Scientific Cat# C10427) according to the manufacturer’s protocol. Cells numbers per organ were enumerated us-
ing 123count eBeads (Thermo Flsher Scientific Cat# 01-1234-42). Staining for intracellular antigens (BCL2, BIM, EOMES, IFN-v, Ki-
67 and MCL1) was performed using the Foxp3 Transcription Factor Staining Buffer Set (Thermo Fisher Scientific Cat# 00-5523-00).
Intracellular staining for phosphorylated proteins (pSTAT5) was performed using Phosflow Lyse/Fix buffer (Cat# 558049) and Perm
buffer Ill (Cat# 558050) from BD Biosciences. Cells were acquired on BD LSRFortessa X-20 and FACSVerse cell analyzers (BD Bio-
sciences) and analysis was performed using FlowJo software (v10, TreeStar Inc.). The following pre-gating strategy was consistently
applied in immunophenotyping analyses: single cell, viable, CD45*CD3'NK1.1*.

Prior to sorting, splenic suspensions were enriched for NK cells by immunomagnetic bead depletion with the following biotinylated
antibodies TER-119 (TER-119), F4/80 (BM8), Ly6G (1A8), CD3 (145-2C11), CD4 (GK1.5), CD8w. (53-6.7), CD19 (6D5) and MHC Il (M5/
114.15.2) from BioLegend, MagniSort Streptavidin Negative Selection Beads (Thermo Fisher Scientific Cat# MSNB-6002-74) and an
EasySep Magnet (StemCell Technologies). NK cells, sorted on single cell, viable, CD45"CD3 " CD19'NK1.1"NKp46*CD49b™, were
recovered from the enriched supernatant using FACSAria Ill and FACSAria Fusion cell sorters (BD Biosciences).

NK cell stimulation and proliferation

To track NK cell proliferation in vitro, freshly isolated NK cells were labeled with 5 uM CellTrace Violet (Thermo Fisher Scientific Cat#
(C34557) as described (Hennessy et al., 2019) and cultured with the indicated concentrations of recombinant human IL-15 (rhIL-15;
Miltenyi Biotec Cat#130-095-766) for up to 120 h. Viable NK cells were enumerated using Pl and 123count eBeads (Thermo Fisher
Scientific Cat# 01-1234-42).

In STATS5 signaling studies, expanded NK cells were first starved of rhlL-15 for at least 4 h and then re-exposed to 50 ng/ml rhiL-15
(Miltenyi Biotec Cat#130-095-766). pSTAT5 levels were measured as described in 30 min intervals over 2 h.

For in vitro assessment of NK cell degranulation and IFN-y production, splenic suspensions immunomagnetically depleted of
RBCs were stimulated with either 20 ng/ml phorbol 12-myristate 13-acetate (PMA; Merck Cat# P8139) and 1ug/mlionomycin (Merck
Cat# 10634) or 10 ng/ml mIL-12 (Miltenyi Biotec Cat# 130-096-708) and 100 ng/ml mIL-18 (MBL Cat# B001-5) for 4 h at 37°C to
respectively induce NK cell degranulation or IFN-y production. For plate-bound antibody stimulation, RBC-depleted splenocytes
were first treated with mouse FcR blocking reagent (Miltenyi Biotec Cat# 130-092-575) and then incubated for 4 h at 37°C in corre-
sponding wells that have been pre-coated with 5 ug/ml purified antibodies against DNAM-1 (10E5; Cat# 128822), Ly49D (4E5; Cat#
138302), Ly49H (3D10; Cat# 144702), NKG2D (CX5; Cat# 130202) and NKp46 (29A1.4; Cat# 137602) from BioLegend. All cells were
stimulated in the presence of GolgiSTOP (BD Biosciences Cat# 554724), anti-CD107a (1D4B; BD Biosciences Cat# 560648) and 10-
25 ng/ml rhiL-15 (Miltenyi Biotec Cat# 130-095-766).

Calcein release assay

NK cell cytotoxicity in vitro was assessed using the calcein release assay as described (Neri et al., 2001). Briefly, freshly sorted or
cultured NK cells were suspended in assay medium; phenol-red free RPMI 1640 medium supplemented with 10% (v/v) FBS,
50 uM BME, 2 mM GlutaMAX, 1mM sodium pyruvate (GIBCO Cat# 11360-070), 25 mM HEPES (GIBCO Cat# 15630-080) and 1X
MEM non-essential amino acids (NEAA) solutions (GIBCO Cat# 11140-050). B16F10 melanoma (ATCC Cat# CRL-6475) target cells
labeled with 15 pM Calcein-AM (BD Biosciences Cat# 564061) were incubated with effector cells at the indicated effector to target
(E:T) ratios for 4 h at 37°C. As controls, target cells were also incubated in assay medium in the absence of effector cells or 2% Triton
X-100. Calcein release from target cells was quantified by measuring fluorescent emission (excitation filter: 485 + 9 nm; cutoff:
515 nm; emission: 525 + 15 nm) from 100 ul cell-free supernatant with an EnVision Multimode Plate Reader (Perkin Elmer).

Murine cytomegalovirus infection

Mice were injected i.p. with 10* plaque-forming units (PFU) of murine cytomegalovirus (MCMV). Control mice were mock infected
with Mouse Osmolarity Buffered Saline (MOBS; 330 mOSm)/5% FBS. Mice were sacrificed at days 7 and 10 post-infection (p.i.)
for immunophenotyping of NKp46* NK cells (spleen and liver) and determination of viral titers (spleen, salivary gland and lung) by
plaque assays.
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EdU incorporation assay

5-ethynyl-2’-deoxyuridine (EdU) incorporation was performed using a Click-iT Plus EAU Alexa Fluor 488 Flow Cytometry Assay Kit
(Thermo Fisher Scientific Cat# C10633) according to the manufacturer’s protocol, with exception to the amount of EAU and number
of doses administered. Mice were injected i.p. with two doses of 200 pg EdU on alternating days. Control mice received sterile PBS
under the same dosing regimen. Spleens were harvested 24 h after the 2" injection and processed into single cell suspensions as
described for subsequent EAU detection according to the manufacturer’s protocol.

SDS polyacrylamide gel electrophoresis and western blotting

NK cell lysates were obtained by lysing NK cell pellets in 1X RIPA lysis buffer (Merck Cat# 20-188) containing 1X cOmplete Mini EDTA-
free Protease Inhibitor Cocktail (Sigma-Aldrich, Cat# 11836170001). Lysates were clarified (16000 g for 10 min at 4°C) prior to protein
quantification with a Pierce BCA Protein Assay Kit (Thermo Scientific Cat# 23227). 1X Bolt LDS Sample Buffer (Thermo Fisher Sci-
entific Cat# B0007) and 1X Bolt Sample Reducing Agent (Thermo Fisher Scientific Cat# B0009) were added to lysates and boiled for
5 min at 95°C. Proteins within the lysates were resolved on Bolt 4%-12% Bis-Tris Plus (Thermo Fisher Scientific) precast polyacryl-
amide gels in 1X Bolt MOPS SDS Running Buffer (Thermo Fisher Scientific Cat# B0001). Separated proteins were dry blotted onto
nitrocellulose membrane stacks (Thermo Fisher Scientific) using Program 0 (20 V for 1 min, 23 V for 4 min and 25 V for 2 min) on an
iBlot2 Gel Transfer Device (Thermo Fisher Scientific). Membranes were blocked in PBS-T (PBS and 0.1% (v/v) Tween) containing 5%
(w/v) skim milk powder before overnight incubation at 4°C with primary antibodies in PBS-T containing 5% (w/v) BSA and 0.05% (w/v)
sodium azide. Primary antibodies used were HHEX rabbit monoclonal antibody (2018B; R&D Systems Cat# MAB83771) and B-actin
mouse monoclonal antibody (AC-74; Sigma-Aldrich). Incubations with horseradish peroxidase (HRP)-conjugated secondary anti-
bodies in PBS-T containing 5% (w/v) skim milk were allowed to proceed for 1h at room temperature. Secondary antibodies used
were polyclonal goat anti-rabbit IgG H&L (Abcam Cat# ab97051) and polyclonal goat anti-mouse IgG (Southern Biotech Cat#
1070-05). Labeled proteins were visualized using Clarity Western Enhanced Chemiluminescence (ECL) substrate (Bio-Rad Cat#
1705061) and imaged using a ChemiDoc Imager (Bio-Rad).

RNA sequencing and data analysis

RNA isolation from sorted NK cells were extracted using a RNeasy Plus Mini Kit (QIAGEN Cat# 74134), according to the manufac-
turer’s protocol. RNA samples were quantified using the Agilent 2200 TapeStation System (Agilent). Next-generation sequencing li-
braries were prepared with quality-controlled RNA samples (RIN > 7.0) from at least three biological replicates per genotype using an
NEBNext Ultra Il Directional RNA Library Prep Kit for lllumina (New England Biolabs Cat# E7760L). cDNA libraries were pooled and
subjected to 75 bp single end sequencing at the WEHI Genomics Laboratory on a NextSeq 500 next-generation sequencer (lllumina)
to obtain approximately 20 million reads per sample. Reads were aligned to mm10/GRCm38 Gencode version M16 (Ensembl 91)
using the STAR (Dobin et al., 2013) aligner. Genewise counts were obtained using featureCounts (Liao et al., 2014). Genes with
counts-per-million (CPM) greater than 0.5 in at least three biological replicates were retained in the downstream analysis. The
gene expression values were TMM normalized (Robinson et al., 2010). Differentially expressed genes were determined by fitting a
Quasi-likelihood Negative Binomial Generalized Log Linear model per gene using edgeR (Robinson et al., 2010). Genes were called
differentially expressed if they achieved a false discovery rate of less than 0.05. Pathway enrichments and gene set tests were carried
out using limma (Ritchie et al., 2015). ILC1 signature genes were derived from publicly available microarray data (Robinette et al.,
2015; accession number GSE37488). RNA-sequencing data generated from ex vivo isolated Cre control and Hhex?’“ NK cells
was deposited into GEO database (accession number GSE140284).

CUT&RUN

NK cells from the spleen of one C57BL/6 (WT) mouse were enriched with the EasySep mouse NK isolation kit (StemCell Technologies
Cat# 19855) according to the manufacturer’s instructions and cultured for 5 days in the presence of 50 ng/ml rhiL-15. CUT&RUN
(Skene and Henikoff, 2017) was performed with 500,000 freshly isolated nuclei using polyclonal rabbit anti-HHEX antibody (Abcam
Cat# ab34222). Libraries were constructed using MGlEasy DNA FS library prep set 2 (MGITech Cat# 1000017572) and run on the
MGITech MGISEQ2000RS platform using MGlEasy V3 chemistry with FCL flowcell according to the manufacturer’s instructions.
Data was demultiplexed using splitBarcode and trimmed to 100b using bbduk. Fastq files were aligned to mm10 using Bowtie2
and peaks were called using MACS2 over the control sample (without primary antibody). Data was visualized using IGV and depos-
ited into GEO database (accession number GSE155957).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using GraphPad Prism v7 (GraphPad Software). The two-tailed Student’s t test was used to test
for significant differences (p < 0.05) between two samples with normally distributed parameters. Welch’s correction was applied
when the standard deviation between samples were unequal (F-test, p < 0.05). The Mann-Whitney test was used to test for significant
differences (p < 0.05) between two samples with parameters that are not normally distributed. Exact p values, except when p < 0.001,
are indicated in the figures and all error bars represent the standard deviations of the mean of the respective datasets.
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