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Abstract
Aims/hypothesis We hypothesised that adolescents with type 1 diabetes with a urinary albumin/creatinine ratio (ACR) in the
upper tertile of the normal range (high ACR) are at greater risk of three-step diabetic retinopathy progression (3DR) independent
of glycaemic control.
Methods This was a prospective observational study in 710 normoalbuminuric adolescents with type 1 diabetes from the non-
intervention cohorts of the Adolescent Cardio-Renal Intervention Trial (AdDIT). Participants were classified as ‘high ACR’ or ‘low
ACR’ (lowest and middle ACR tertiles) using baseline standardised log10 ACR. The primary outcome, 3DR, was determined from
centrally graded, standardised two-field retinal photographs. 3DR riskwas determined usingmultivariable Cox regression for the effect
of high ACR, with HbA1c, BP, LDL-cholesterol and BMI as covariates; diabetes duration was the time-dependent variable.
Results At baseline mean ± SD age was 14.3 ± 1.6 years and mean ± SD diabetes duration was 7.2 ± 3.3 years. After a median
of 3.2 years, 83/710 (12%) had developed 3DR. In multivariable analysis, high ACR (HR 2.1 [1.3, 3.3], p=0.001), higher mean
IFCC HbA1c (HR 1.03 [1.01, 1.04], p=0.001) and higher baseline diastolic BP SD score (HR 1.43 [1.08, 1.89], p=0.01) were
independently associated with 3DR risk.
Conclusions/interpretation High ACR is associated with greater risk of 3DR in adolescents, providing a target for future
intervention studies.
Trial registration isrctn.org ISRCTN91419926.

Keywords AdDIT . Adolescents . Diabetic nephropathy . Diabetic retinopathy progression . Kidney function . Microvascular
complications . Type 1 diabetes

Abbreviations
3DR Three-or-more-step diabetic

retinopathy progression

ACR Albumin/creatinine ratio
AdDIT Adolescent Type 1 Diabetes

Cardio-Renal Intervention Trial
DBP Diastolic BP
SBP Systolic BP
SDS SD score

Introduction

Prevention of sight-threatening diabetic retinopathy through
early intervention requires timely screening and identification
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of people at greatest risk of diabetic retinopathy progression
[1]. Urinary albumin/creatinine ratio (ACR) within the upper
tertile (high ACR) of the normoalbuminuric range during the
early years following type 1 diabetes diagnosis is associated
with future risk of kidney disease [2] and cardiovascular risk
[3], impaired cardiac autonomic function [4] and early alter-
ations in the retinal microvasculature [5], when comparedwith
a lower ACR despite shorter diabetes duration. However, an
association between ACR and risk of diabetic retinopathy
progression has not been clearly established in youth with type
1 diabetes. Glycaemic control and diabetes duration are the
most consistently shown determinants for diabetic retinopathy
progression [1].

In addition to active intervention, the Adolescent Type 1
Diabetes Cardio-Renal Intervention Trial (AdDIT) included a
parallel observational (non-intervention) natural history
cohort of participants with high ACR and low ACR in whom
the outcome of diabetic retinopathy was examined. Utilising
this observational cohort, we hypothesised that high ACR is
associated with greater risk of diabetic retinopathy progres-
sion independent of glycaemic control.

Methods

Study population Overall, 4407 adolescents with type 1
diabetes were screened for participation in AdDIT, each
providing three consecutive early morning urine samples at
two separate visits. Centralised assessment of all urine
samples was performed at the WellChild Laboratory,

Evelina Children’s Hospital, London. The average residual
was calculated using age, sex and duration and the coefficients
from the previous models [6]. ACR tertile assignment was as
follows: upper-tertile (high ACR group) ACR >1.2 middle-
tertile ACR 0.8–1.2 and lower-tertile ACR <0.8. The lower
two tertiles were combined for analysis as the ‘low ACR’
group [7].

We assessed 710 natural history participants (510 low
ACR and 200 high ACR) who attended repeat annual
standardised visits and had gradable retinal photography
across three countries (UK, Canada and Australia) using
protocols previously described [5]. Anonymised digital retinal
photographs were centralised to the Centre for Eye Research
Australia, Melbourne, VIC, Australia for diabetic retinopathy
grading according to the Early Treatment Diabetic
Retinopathy Study [8] by expert graders masked to ACR
tertile and clinical characteristics. Three-or-more-step diabetic
retinopathy progression (3DR) in the worse eye was the
primary outcome measure, as used in the DCCT [9]; the mini-
mum grade of those with 3DR was grade 31.

HbA1c was analysed at each centre, using DCCT-aligned
methods [7]. HbA1c results were retrieved from clinical data-
bases to calculate mean HbA1c values through the study peri-
od. Upper HbA1c tertile was assigned to mean HbA1c values
≥74 mmol/mol (8.9%) and compared with the lower two
HbA1c tertiles combined into a single category (HbA1c

≥74 mmol/mol [8.9%] vs HbA1c <74 mmol/mol [8.9%]).
Lipid profile (cholesterol, HDL-cholesterol, LDL-cholesterol,
triacylglycerols) was measured using routine laboratory
methods [7].
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Height, weight and BMI SD scores (SDSs) were calculated
according to the least mean squares method [10]. BP was
measured (mean of two measures) using an Omron M6 BP
(all centres) with an appropriately sized cuff with SDS calcu-
lated [11]. The study was approved by the Cambridge
University Hospitals Research Ethics Committee and local
ethics committees internationally. Parents and participants
provided written informed consent and assent.

Statistics Descriptive baseline statistics comparing high vs
low ACR and 3DR progressors vs 3DR non-progressors are
presented asmean ± SD for normally distributed data, median
(IQR) for skewed distributions and as n (%) for proportions.
Differences between continuous independent samples were
evaluated using independent t tests for normally distributed
data, or Kruskal–Wallis test for skewed data. χ2 test was used
to determine differences between proportions.

The primary outcome measure was 3DR, which was exam-
ined using Cox proportional hazard regression. Diabetes dura-
tion was used as the time-dependent variable. HRs and 95%
CIs are reported per one unit change in the risk factor.
Explanatory variables included the following: high ACR and
low ACR; mean HbA1c and HbA1c ≥74 mmol/mol (8.9%);
BP SDS; BMI SDS; and LDL-cholesterol and diabetic reti-
nopathy status at baseline. All statistical analyses were
conducted using SPSS version 25 (https://www.ibm.com/au-
en/products/spss-statistics).

Results

At baseline, mean ± SD age was 14.3 ± 1.6 years and mean
± SD diabetes duration was 7.2 ± 3.3 years. There were no
significant differences between the high ACR and low ACR
groups with respect to age, sex distribution, systolic BP (SBP)
SDS, diastolic BP (DBP) SDS, BMI SDS, HbA1c or LDL-
cholesterol. The high ACR group had shorter diabetes dura-
tion (electronic supplementary material [ESM] Table 1).
Participants had a median (IQR) of 4 (2–5) assessments after
a median 3.2 years of follow-up; 3DR developed in 83/712
(11.7%). Cumulative incidence of 3DR in the high vs low
ACR group was 15.5% vs 10.2%, p=0.048 (ESM Table 1).

In univariable Cox regression analysis, high ACR, higher
HbA1c and higher DBP SDS were associated with greater risk
of 3DR (Table 1).

In multivariable Cox regression analyses, greater 3DR risk
was associated with high ACR (HR 2.1 [1.3, 3.3], p=0.001),
IFCC HbA1c (HR 1.03 [1.01, 1.04], p=0.001) and DBP SDS
(HR 1.43 [1.08, 1.89], p=0.01) (Fig. 1). 3DR risk was not
associated with diabetic retinopathy at baseline, nor lipid
levels nor BMI (Table 1).

In the low ACR group, HbA1c ≥74 mmol/mol (8.9%) signif-
icantly increased 3DR risk to that comparable with the highACR

groups. In the high ACR groups, HbA1c ≥74 mmol/mol was not
associated with greater 3DR risk (Fig. 1).

Discussion

Previously reported data from the AdDIT cohorts highlighted the
systemic nature of the pre-clinical diabetic endotheliopathy by
describing that high ACR was associated with changes in retinal
vascular geometry [5], greater risk of albuminuria and greater
thickening of carotid intima–media thickness [12]. In this multina-
tional AdDIT natural history cohort, we demonstrate that upper-
tertileACR (highACRgroup)within the normoalbuminuric range
was associated with greater risk of 3DR after adjusting for HbA1c.
Furthermore, we demonstrate that early rise in DBP and HbA1c

≥74 mmol/mol (8.9%) significantly increased risk of 3DR partic-
ularly in the low ACR group.

Interestingly, in the high ACR group, higher mean HbA1c

(≥74 mmol/mol [8.9%]) did not significantly modify risk of
3DR, suggesting that the inherent biological risk for progression
of microvascular complications may be largely independent of
appropriate glycaemic control. This is important in clinical care
settings, as individuals identified as ‘high risk’ through ACR
screening should continue to be closely monitored for complica-
tions despite optimal glycaemic control and highlights a need for
interventions other than glycaemic control to ameliorate risk and
progression diabetic retinopathy.

Our findings of greater risk in the high ACR group comple-
ment the diabetic retinopathy screening advice for adolescents
arising from theDCCT/EDIC [13] study group, primarily based
on HbA1c levels. At the same time, our findings are in keeping
with the greatest risk factors for proliferative diabetic retinopa-
thy in the DCCT, including an elevated urinary albumin excre-
tion rate and higher mean DBP [14]. Importantly, in our study,
the presence or absence of diabetic retinopathy at baseline did
not influence risk of 3DR, thus further demonstrating the robust
nature of stratification by ACR groups in youth with shorter
diabetes duration. Notably, the high ACR group had a lower
proportion of diabetic retinopathy at baseline, likely related to
shorter diabetes duration. In keeping with our hypothesis, a
higher proportion of high ACR participants developed 3DR
with ongoing diabetes exposure despite shorter diabetes dura-
tion. Those with high ACR appear to have an underlying
predisposition for a systemic endotheliopathy that progresses
more rapidly as evidenced by 3DR. The evidence supports both
genetic and metabolic mechanisms that protect and predispose
from diabetes complications [15], although clinically measur-
able and reproducible biomarkers associated with such risk
have been elusive. Our data suggest that broader screening
through ACR may assist to identify a ‘high risk’ group in the
population who are predisposed to earlier onset of complica-
tions and likely to benefit from earlier intervention.
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In the low ACR group, those with HbA1c ≥74 mmol/mol
(8.9%) had significantly increased risk of 3DR similar to the
high ACR group, thus confirming that HbA1c significantly
influences and modifies diabetic retinopathy and in keeping
with findings from the DCCT/EDIC studies [16]. Hence,
screening for microvascular complications is influenced by
an inherent biological predisposition, which is significantly
modified by glycaemic exposure.

In addition, an early elevation of DBP even within the
normotensive range significantly increased risk of 3DR,
consistent with our previous findings that DBP and SBP
increases within the normotensive range associate with
incident diabetic retinopathy in adolescents with type 1
diabetes [17].

The strengths of our study include a large multinational
population from a study collaboration with standardised

Table 1 Risk of 3DR
Characteristic Univariable model Multivariable model

HR (95% CI) p value HR (95% CI) p value

High ACR 2.3 (1.4, 3.5) 0. 001 2.1 (1.3, 3.3) 0.001

Female sex 1.2 (0.8, 1.8) 0.5 – –

Mean HbA1c (mmol/mol) 1.03 (1.02, 1.05) <0.0001 1.03 (1.01, 1.04) 0.001

Mean HbA1c (%) 1.40 (1.19, 1.65) <0.0001

Baseline HbA1c (mmol/mol) 1.03 (1.01, 1.04) <0.0001

Baseline HbA1c (%) 1.31 (1.12, 1.54) 0.001

Baseline SBP (mmHg) 1.01 (1.00, 1.03) 0.1 – –

Baseline DBP (mmHg) 1.04 (1.01, 1.06) 0.006 – –

Baseline SBP SDS 1.21 (0.97, 1.50) 0.1

Baseline DBP SDS 1.48 (1.12, 1.95) 0.006 1.43 (1.08, 1.89) 0.01

Baseline BMI SDS 1.25 (0.96, 1.62) 0.1 – –

Baseline LDL-cholesterol (mmol/l) 1.13 (0.87, 1.46) 0.4 – –

Baseline LDL >2.6 mmol/l 1.24 (0.79, 1.96) 0.4 – –

Retinopathy at baseline 0.92 (0.53, 1.76) 0.9 – –

Cox regression analysis with diabetes duration as time-dependent variable
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Fig. 1 Cox regression analysis of high vs low ACR for risk of 3DR. (a)
Risk of 3DR by ACR group and model adjusted for mean HbA1c and
DBP SDS. High ACR vs low ACR (HR 2.1 [1.3, 3.3]). (b) Risk by ACR
and HbA1c ≥74 mmol/mol (8.9%) model adjusted for DBP SDS. Upper-
tertile ACR (high ACR) is associated with risk of 3DR. Glycaemic
control modifies risk of 3DR particularly in the low ACR group. HR

(95% CI): Low ACR & HbA1c <74 mmol/mol, 1.0 (reference); Low
ACR & HbA1c ≥74 mmol/mol, 3.0 (1.7, 5.1); High ACR & HbA1c

<74 mmol/mol, 3.7 (1.9, 7.1); High ACR & HbA1c ≥74 mmol/mol, 3.7
(1.9, 7.2) The orange line (High ACR & HbA1c <74mmol/mol) is not
visible because it is obscured by the red line (High ACR & HbA1c ≥74
mmol/mol), due to similar HR
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methods. Limitations include a low number of photographs,
relatively short time in study period and the post hoc examina-
tion of these cohorts. However, we analysed a non-intervention
population and used total diabetes duration as our time-
dependent variable since the predominant effect of duration is
more pronounced for diabetic retinopathy. Furthermore, the
low ACR group had longer diabetes duration, thereby making
an underestimate of 3DR unlikely in this group compared with
the high ACR group.

In conclusion, we demonstrate that urinary ‘high ACR’,
albeit in the normoalbuminuria range, identifies adolescents
at greater risk of diabetic retinopathy progression. This was
despite shorter diabetes duration and after adjusting for
glycaemic exposure. We also observed that early DBP eleva-
tion significantly modifies 3DR risk. Higher glycaemic
burden increases risk of 3DR particularly in the low ACR
group and remains a crucial target for intervention. Further
research to translate the ACR screening threshold into real-
world application is required. The longitudinal follow-up from
AdDIT cohorts will provide invaluable insight into the mech-
anisms underlying diabetes complications and the potential
benefits of early ‘pre-complications’ interventions in paediat-
ric cohorts.
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