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 Abstract  
 

 

Abstract 

 

Optimisation algorithms are widely used in water resources to identify the 

optimal solutions for problems with multiple possible solutions. Many studies 

in this field focus on the development and application of advanced optimisation 

algorithms, making significant contributions in improving optimisation 

performance. On the other hand, the performance of optimisation algorithms is 

also related to the features of the problems being solved, therefore, selecting 

appropriate algorithms for corresponding problems is also a key to the success 

of optimisation. Although a number of metrics have been developed to assess 

these features, they have not been applied to problems in the water resources 

field. The primary reason for this is that the computational cost associated with 

the calculation of many of these metrics increases significantly with problem 

size, making them unsuitable for problems in water resources. Consequently, 

there is a lack of knowledge about the features of problems in the water 

resources field. This PhD thesis aims to understand the features of problems in 

water resources, and the process can be split into two stages. The first stage is 

to identify metrics that can be applied within an affordable computational cost. 

This is addressed in the first content chapter (Paper 1). The second stage is to 

apply metrics identified in the first stage to understand the features of problems 

in the water resources field, including the calibration of artificial neural 

network models (Paper 2) and conceptual rainfall runoff models (Paper 3). This 

includes the understanding of optimisation difficulty of these problems 
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according to their features, and how their features change through the change 

of their problem structure and the types of problems to which they are applied.  

 

In the first paper, the computational cost of fitness landscape metrics 

(explanatory landscape analysis (ELA) metrics) used in computer science is 

tested and metrics that are suitable for application to water resources problems 

are identified. Each metric used to understand the features of problems requires 

a given number of samples, which usually increases with an increase in 

problem size (dimensionality). Consequently, metrics which require a big 

increase in sample size through the increase of problem size are not suitable for 

real-world water resources problems. To identify ELA metrics that have low 

dependence on problem size, 110 metrics in total are tested on a range of 

benchmark functions and a number of environmental modelling problems, and 

28 are identified to be able to be applied to complex problems without 

significant increase in computational cost. This finding provides us a new 

approach to better understand the problem structure of optimisation problems 

in water resources and has the potential to provide guidance in optimisation 

algorithm selection for problems in the water resources field. 

 

In the second paper, metrics identified to have low dependence on problem size 

in the first paper are applied to Artificial Neural Network (ANN) model 

calibration problems. ANN models for different environmental problems with 

different number of inputs and hidden nodes are used in the test. The 

environmental problems considered include Kentucky River Catchment 
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Rainfall‐Runoff Data (USA), Murray River Salinity Data (Australia), Myponga 

Water Distribution System Chlorine Data (Australia), and South Australian 

Surface Water Turbidity Data (Australia). It is demonstrated that ELA metrics 

can be used successfully to characterize the features of the error surfaces of 

ANN models, thereby helping to explain the reasons for an increase or decrease 

in calibration difficulty, and in doing so, shedding new light on findings in 

existing literature. Results show that the error surfaces of ANNs with relatively 

simple structures have a more well-defined overall shape and have fewer local 

optima, while the error surfaces of ANNs with more complex structures are 

flatter and have many distributed, deep local optima. Consequently, ANNs with 

simpler structures can be calibrated successfully using gradient-based methods, 

such as the back-propagation algorithm, whereas ANNs with more complex 

structures are best calibrated using a hybrid approach combining 

metaheuristics, such as genetic algorithms, with gradient-based methods. 

 

In the third paper, the ELA metrics identified to have low dependence on 

problem size in the first paper are applied to Conceptual Rainfall Runoff (CRR) 

model calibration problems. Different CRRs with different model types, error 

functions, catchment conditions and data lengths are tested to identify how they 

affect the features of problem structure, which are related to their model 

calibration and parameter identification difficulty. It is suggested that ELA 

metrics can be used to quantify key features of the error surfaces of CRR 

models, including their roughness and flatness, as well as their degree of optima 

dispersion. This enables key error surface features to be compared for CRR 
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models with different combinations of attributes (e.g. model structure, 

catchment climate conditions, error metrics and calibration data lengths and 

composition) in a consistent, efficient and easily communicable fashion. 

Results from the application of these metrics to the error surfaces of 420 CRR 

models with different combinations of the above attributes indicate that model 

structure differences result in the differences in surface roughness and relative 

optima dispersion. Additionally, increasing catchment wetness increases the 

relative roughness of error surfaces, it also decreases optima dispersion. This 

suggests that model structure and catchment climate conditions can be key 

issues in affecting the calibration difficulty, efficiency and parameter 

uniqueness. The experiments conducted in this study also encourage further 

tests on further CRR models and catchments to identify general patterns 

between calibration performance, model structure and catchment 

characteristics. 
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Chapter 1   Introduction 

 

 

1 Background 
 

Optimisation methods are being used extensively for assisting with the 

identification of the most appropriate solutions for a range of environmental 

problems (Maier et al., 2014; 2019), such as stormwater management (Liu et 

al., 2016; Di Matteo et al., 2019), wastewater treatment (Hamed et al., 2004), 

land use management (Emirhüseyinoğlu and Ryan, 2020; Newman et al., 

2020), environmental management (Kasprzyk et al., 2013), water-energy 

system design (Guidici et al., 2019), water distribution system design (Zecchin 

et al., 2006) and irrigation scheduling (Nguyen et al., 2017; Sedighkia et al., 

2021), as well as the development of environmental models, including input 

variable selection (Grivas and  Chaloulakou, 2006; Galelli et al., 2014) and 

model calibration (Pelletier et al., 2006; Burton et al., 2008). Existing research 

in this field has primarily focused on the development of improved optimisation 

algorithms, such as GALAXY (Wang et al., 2020), DREAM (Vrugt, 2016), 

Borg (Hadka and Reed, 2015), particle swarm optimisation (Chau, 2007), 

NSGA-II (Fu et al., 2008), ant colony optimisation (Emami Skardi et al., 2015) 

and policy tree optimisation (Herman and Giuliani, 2018), as well as the 

comparison of the performance of different algorithms on different problems 
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(e.g. Tikhamarine et al., 2020; Piotrowski and Napiorkowski, 2011; Kisi et al., 

2012; Bullinaria and AiYahya, 2014; Wang et al., 2020). However, in 

accordance with the “No Free Lunch” theorem (Wolpert and Macready, 1997), 

no optimisation algorithm can outperform all others across every single 

problem. Consequently, there is a need to better understand the features of 

different optimisation problems so that algorithms that are better suited to 

particular problem types can be selected (Maier et al., 2014). 

 

The features of optimisation problems can be represented geometrically by 

considering the “fitness landscape”, which depicts the shape of the fitness 

function (otherwise termed objective function) for a particular objective with 

respect to the decision variables (e.g. model error as a function of different 

values of model parameters for model calibration problems) (see Maier et al., 

2019). As the aim of the optimisation process is to find the highest or lowest 

points in this landscape, depending on whether the aim is to maximise or 

minimise the objective function, the ease or difficulty with which this can be 

done is a function of the features of this landscape. For example, if the 

landscape is smooth with a single, well-defined high- or low-point (global 

optimum), this point is relatively easy to find. Conversely, if the landscape is 

rough, with many minima or maxima of similar or equal value (local optima), 

the overall best solution (global optimum) is more difficult to find. Similarly, 

the presence of flat regions or plateaus in the fitness landscape generally makes 

it more difficult to guide the search towards the highest or lowest point in the 

landscape. 
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1.1 Metrics to understand the features of fitness landscapes 

of optimisation problems 

 

In order to enable a better understanding of the features of optimisation 

problems to be obtained, a number of Exploratory Landscape Analysis (ELA) 

metrics have been developed (Mersmann et al., 2010; Munoz et al., 2015a). For 

example, such metrics can provide an indication of the global structure of the 

fitness landscape (e.g. its curvature), its degree of multi-modality (e.g. the 

prevalence of local optima) or the presence of plateaus (Mersmann et al., 2011). 

These metrics have been demonstrated to provide useful results for Black-Box 

Optimisation Benchmarks (BBOB) (Hansen et al., 2009), and they can 

successfully distinguish the differences of features between different 

benchmarks by using a given number of samples (Mersmann et al., 2011; 

Munoz et al., 2015a; Munoz and Smith-Miles, 2017). Furthermore, machine 

learning frameworks have also been successfully used to link the metric results 

with optimisation algorithm performance, so that the framework can be used to 

predict the performance of selected algorithms on different benchmark 

problems without trial and error (Smith-Miles et al., 2014; Munoz and Smith-

Miles, 2017). 
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1.2 Applications of ELA metrics to water resource 

optimisation problems 

 

Application of these metrics to environmental optimisation problems has been 

extremely limited (e.g. Gibbs et al., 2011; Bi et al., 2015). Instead, an empirical 

“brute force” approach is often used to determine which algorithm or 

parameterisation to use on a case study-by-case study basis (Maier et al., 2014). 

One potential reason for this is that there are different metrics for different 

landscape features (Mersmann et al., 2010; Malan and Engelbrecht, 2013; 

Maier et al., 2014; Munoz et al., 2015a), as well as different metrics for the 

same features, all with particular biases (Munoz et al., 2015a), making it 

difficult to know which metrics to use. However, the main reason for the lack 

of adoption of ELA metrics is likely to be related to the computational effort 

required to calculate them. As these metrics are calculated based on samples 

from the fitness landscape (Pitzer and Affenzeller, 2012), the number of 

samples required to obtain meaningful metric values can increase significantly 

with the size of the search space (Munoz et al., 2015a). When addressing real-

world environmental optimisation problems, which are often characterised by 

large search spaces, this can either lead to computational intractability or the 

case where the computational effort associated with calculating the metrics is 

greater than that required as part of the “brute-force” approach of applying 

different algorithms or algorithm parameterisations to determine which works 

best. 
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1.3 Current knowledge about fitness landscapes of 

environmental optimisation problems 

 

For environmental optimisation problems, previous studies mainly focus on the 

results or performance of optimisation. This includes 1) whether the best 

solutions can be found for a given optimisation problem; 2) whether there is 

only one best solution or a group of solutions with the same fitness value.  

 

The first point was analysed by different kinds of optimisation problems listed 

in Section 1 in this chapter, and is particularly concerned with the application 

of data-driven models such as artificial neural networks (ANNs) to a wide 

range of hydrological modelling problems (e.g. Maier and Dandy, 1999; 

Zounemat-Kermani et al., 2016; Sivakumar et al., 2002; Piotrowski and 

Napiorkowski, 2013; Tan et al., 2018; Xie et al., 2021). As with all models, 

calibration is a critical component of the development of ANN models (termed 

“training” in the ANN literature). The unknown structure of the selected ANN 

models (e.g. the different settings of hidden nodes, hidden layers and transfer 

functions) (Maier et al., 2010; Wu et al., 2014) and corresponding 

parameterisation (Kingston et al., 2006; Mount et al., 2013; Humphrey et al., 

2017) can lead to inaccurate information if the calibration process is not 

successful. 

 

In order to increase the calibration performance of ANNs, an area of particular 

focus has been the comparison of optimisation algorithms for calibrating ANN 
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models (Kingston et al., 2005; Wu et al., 2013), with many studies reaching 

contradictory conclusions about which optimisation approaches perform better, 

with limited insight into why this might be the case. For example, Piotrowski 

and Napiokowski (2011) compared the performance of differential 

evolutionary algorithm (DE), particle swarm optimisation (PSO), differential 

evolution with global and local neighborhoods (DEGL) and Levenberg–

Marquardt (LM) algorithms for calibrating ANN models, where they found that 

DE had very poor performance, and LM, a second-order gradient algorithm, 

outperformed all metaheuristics. In contrast, Maroufpoor et al. (2020) found 

that LM often prematurely converged to local optima, and grey wolf 

optimisation (GWO), a metaheuristic, could obtain better solutions than LM. 

Second-order gradient algorithms were also found to perform worse than first-

order gradient methods by Maier and Dandy (1999). 

 

The second point is also known as the parameter identification problem, which 

is a very typical problem for conceptual rainfall runoff (CRR) model calibration 

(Duan et al., 1992; Guillaume et al., 2019). Due to different sources of 

modelling non-identifiability in CRR models, such as model structural non-

identifiability and observation error non-identifiability (for details, see 

Guillaume et al., 2019), there is usually more than one parameter set that leads 

to the minimum calibration errors when calibrating a CRR model. Different 

runs/initializations of an optimisation algorithm on the given problem can 

return different values of parameters (e.g. Shin et al., 2015), consequently, the 

physical meaning of the parameters are hard to identify and the calibrated 
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model may be not appropriate to use for prediction as the nonidentifiable 

parameters failed to capture the behaviours of the system. 

 

In order to minimize the impact of non-identifiability of CRR models, most 

previous studies have focused on different ways of quantifying the difference 

between modelled and corresponding measured outputs (e.g. which error 

metric to use, which data to use against which to compare model performance 

(e.g. data length, data splitting, missing data, types of catchments)) (Gan et al., 

1997; van Griensven, 2006; Vaze et al., 2010; Fowler et al., 2016), different 

approaches to identifying the best set of model parameter values (e.g. different 

optimisation methods) (Duan et al., 1992; Shin et al., 2015), different model 

structures (Andréassian et al, 2001; Shin et  al., 2015; García-Romero et al, 

2019) or how to best understand and quantify uncertainties associated with the 

calibration process (Beven 2016; Jackman et al., 2006; Kavetski et al., 2006; 

2010). While the above papers are based on an implicit understanding that 

model errors change with values of model parameters, and that automated 

calibration using optimisation methods corresponds to the process of finding 

the lowest point in this “error surface” (i.e. fitness landscape), explicit 

assessments of how the characteristics of this surface change as a function of 

different model structures and the way errors are calculated, as well as the 

influence this has on the computational efficiency and difficulty of the 

calibration process and the uniqueness of the calibrated model parameters, have 

received less attention. Although a number of studies have demonstrated that 

knowledge of the features of the error surface is important for explaining and 
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interpreting the results of CRR model calibration trials (Sorooshian and Gupta, 

1983; Iorgulescu and Jordan, 1994; Thyer et al., 1999; Suliman et al., 2016), 

the selection of appropriate model structures (e.g. Kavetski and Kuczera, 2007) 

and the choice of suitable optimisation algorithms (e.g. Duan et al., 1992; 

Kuczera, 1997; Kavetski et al., 2007), the above studies used ad-hoc methods 

for obtaining visualizations of lower-dimensional components of the error 

surface, and there are still no appropriate ways to understand the features of the 

entire error surface of high dimensional problems. 

 

1.4 Limitations of understanding the problem structure for 

optimisation problems in water resources 

 

The key limitation of understanding the problem structure for optimisation 

problems in water resources is that previous studies have primarily focused on 

the results of optimisation, including random/manual/automatic 

selection/comparison of different optimisation algorithms, models, and other 

factors to find the combination that leads to the best results among all trials.  

However, there has been a lack of understanding about why one kind of 

problem can be easier/harder to optimise than the other. While the visualization 

of lower-dimensional components of the fitness landscape has been used to 

interpret the results of optimisation problems (Razavi and Gupta, 2016a; 

2016b), there is lack of methods to interpret the fitness landscape of high 

dimensional problems. 
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1.4.1 Lack of methods for fitness landscape analysis 

 

As mentioned in Section 1.2 in this chapter, application of ELA metrics to 

environmental optimisation problems has been extremely limited, due to the 

complexity and high-dimensionality of real-world environmental optimisation 

problems, despite their success in the application to benchmark problems. To 

enable ELA metrics to be used for developing a better understanding of fitness 

landscape features and selecting the most appropriate optimisation algorithms 

for real-world optimisation problems, there is a need to determine (i) which 

ELA metrics, if any, have low dependence on problem dimensionality and 

sample size, so that they can be applied to real-world problems in a 

computationally efficient manner, and (ii) what information about the features 

of the fitness landscape can be ascertained from these metrics. This is the basis 

for the application of ELA metrics to real-world problems. However, there is a 

lack of knowledge about these metrics and their performance on real-world 

problems. Consequently, there is a need to determine which are suitable to be 

used to understand the fitness landscape of real-world problems. 

 

1.4.2 Lack of understanding of fitness landscape of real-world 

optimisation problems 

 

Due to the lack of knowledge of the features of fitness landscapes of real-world 

optimisation problems, previous studies only focused on optimisation results, 

including finding/developing optimisation algorithms that can outperform 

other algorithms for the case studies considered, and assessing the influence of 

different aspects of the problem investigated on optimisation performance to 
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select the combinations that maximize performance (e.g. finding the model 

structure and parameterisation of ANN models that can find the minimum 

model error efficiently, and finding the appropriate model structure, data 

length, error metric or other factors that can lead to the most identifiable 

parameter sets of CRR models). However, the settings determined by these 

studies can only be suitable for their particular cases, and the optimal settings 

are likely to change when applied to other case studies, due to the differences 

in fitness landscapes of these case studies. Therefore, it is worth identifying the 

reasons for the differences in selections between different case studies by 

understanding the features of fitness landscape of these problems.  This can 

help to ensure the reliability of the selected combinations, as the reason why a 

given combination can result in good performance can be interpreted. 

Additionally, understanding the features of the fitness landscape can also 

provide prior knowledge to the selection of different combinations of problem 

characteristics, which can help to increase the quality of combinations for 

comparison by eliminating combinations that do not have suitable features of 

fitness landscapes. 

 

2 Research aims 

 

This thesis has two main aims. The first aim is to test the current widely used 

ELA metrics on benchmark problems to check their applicability to real-world 

environmental optimisation problems. The second aim is to apply the 
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applicable ELA metrics to understand the features of fitness landscapes of real-

world optimisation problems, including ANN and CRR model calibration 

problems. These are typical data-driven and process-driven models in the water 

resources field, respectively, so that it is good to see the applicability of ELA 

metrics to both kinds of models. Additionally, the focuses of calibrating these 

two models are different. The focus of calibrating ANN models is mainly on 

finding the model structure and parameterisation which can obtain best 

solutions (i.e. minimum error) efficiently. As more complex ANN models can 

theoretically perform at least as well as simpler ones due to their higher degree 

of freedom, the failure of more complex ANNs to find better solutions is 

therefore likely to be caused by fitness landscapes / error surfaces that are 

complex, which makes it more difficult to find the better solutions. As a result, 

it is worth knowing how fitness landscape features change through the increase 

of ANN complexity. On the other hand, the focus of calibrating CRR models 

is not only about finding the best solutions, but also about the identifiability of 

model parameters, as they generally have a physical interpretation.  

 

In order to meet these two aims, this thesis has three objectives. The first 

objective is related to the first aim discussed above. The second and third 

objectives are related to the application of ELA metrics that are found to be 

suitable (Objective 1) to ANN model calibration (Objective 2) and CRR model 

calibration (Objective 3), respectively. The general relationship between aims 

and objectives is shown in Figure 1.1, and detailed descriptions of the 

objectives are given below. 
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Objective 1. To check the applicability of ELA metrics to real-world 

environmental optimisation problems by identifying ELA metrics with low 

dependence on problem dimensionality and sample size. 

Objective 1.1. To identify which ELA metrics have low dependence on 

problem dimensionality and sample size for a range of benchmark functions with a 

wide variety of known fitness landscape properties.  This indicates which ELA 

metrics can be applied to real-world environmental optimisation problems from the 

perspective of computational tractability.  It also opens the door to assessing the 

potential practical value of using ELA metrics to assist with determining which 

optimisation algorithm or settings might be most appropriate from a computational 

efficiency perspective, as the computational effort associated with the calculation of 

ELA statistics should be less than that associated with the “brute force” approach for 

determining which optimisation algorithm performs best. 

Objective 1.2. To check whether the ELA metrics identified as having low 

dependence on problem dimensionality and sample size for benchmark functions also 

have low dependence on these factors for a number of real-life environmental 

modelling problems. 

Objective 1.3. To map the ELA metrics that have low dependence on problem 

dimensionality and sample size to the fitness landscape features they are designed to 

provide information on, thereby providing a desktop assessment of the potential 

usefulness of the ELA metrics that are suitable to determining the features of real-world 

optimisation problems. 
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Objective 2. To assess whether ELA metrics that have low dependence on 

problem dimensionality and sample size are able to provide meaningful 

information on the potential calibration difficulty of ANN models of different 

complexity. 

Objective 2.1. To assess the impact of model structure on different features of 

fitness landscape of ANN model calibration problems. 

Objective 2.2. To identify the rules and trends of how different features of fitness 

landscapes of ANN model calibration problems change with changes in model 

complexity. 

 

Objective 3. To assess whether ELA metrics that have low dependence on 

problem dimensionality and sample size are able to quantify the key features 

of the error surfaces (fitness landscapes) of CRR models. 

Objective 3.1. To use ELA metrics to identify key error surface features for 

different combinations of model structures, catchments, error metrics and calibration 

data lengths. 

Objective 3.2.  To assess the corresponding implications for calibration 

(optimisation) efficiency, calibration (optimisation) difficulty and parameter 

uniqueness for different combinations of model structures with different key error 

surface features.  
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Figure 1.1 Structure of Thesis 
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3 Organisation of Thesis 
 

The main body of this thesis (Chapters 2 to 4) comprises of three journal articles 

produced within this research. A summary of the thesis chapters is given below. 

 

Chapter 2 (Journal paper 1) tests different ELA metrics and identifies the ones 

that have performance with low dependence on problem dimensionality and 

sample size, which can be suitable for applying to real-world environmental 

optimisation problems. 

 

Chapter 3 (Journal paper 2) applies the metrics identified in Chapter 2 to ANN 

model calibration problems. ANN models with different complexity are tested, in 

order to identify the trends between the change of features of fitness landscapes of 

ANN model calibration problems and corresponding change of model complexity. 

 

Chapter 4 (Journal paper 3) applies the metrics identified in Chapter 2 to CRR 

model calibration problems. Different CRR models for different catchments, error 

metrics and data length are tested. The chapter evaluates the level of impacts of these 

components on the calibration efficiency, difficulty and parameter uniqueness of 

CRR models through quantifying their key error surface features. 

 

Chapter 5 summarises the contributions of the research. Future work is also 

discussed. 
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Abstract 

 

Optimisation methods are applied increasingly to environmental problems. 

Much research in this area is concerned with the behaviour of optimisation 

algorithms, however, the effectiveness of these algorithms is also a function of 

features of the problem being solved. Although a number of metrics have been 

developed to quantify these features, they have not been applied to 

environmental problems. The primary reason for this is that the computational 

cost associated with the calculation of many of these metrics increases 

significantly with problem size, making them unsuitable for real-world 

problems. In this chapter, 28 fitness landscape metrics that have low 

dependence on problem size are identified through extensive computational 

experiments on a range of benchmark functions and testing on a number of 

environmental modelling problems. These metrics can be applied to real-world 

optimisation problems in a computationally efficient manner to better 

understand their features and determine which optimisation algorithms are 

most suitable. 

 

 

Highlights: 

• Formal optimisation methods are used increasingly for a range 

of environmental problems.  

• Fitness landscape metrics can be used to better understand the 

characteristics of optimisation problems. 

• Many fitness landscape metrics are unsuitable for application to 
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real-world problems due to their high computational cost.  

• 28 fitness landscape metrics that can be applied to real-world 

environmental optimisation problems are identified. 

• These metrics provide insight into the identifiability of models 

and the selection of optimisation algorithms and parameters.  

 

Keywords: 

Optimisation, Calibration, Fitness Landscape, Error Function, Exploratory 

Landscape Analysis (ELA), Evolutionary Algorithms 
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1 Introduction 
 

Optimisation methods are being used extensively to assist with the 

identification of the most appropriate solutions for a range of environmental 

problems (Maier et al., 2014; 2019), such as stormwater management (Liu et 

al., 2016; Di Matteo et al., 2019), wastewater treatment (Hamed et al., 2004), 

land use management (Emirhüseyinoğlu and Ryan, 2020; Newman et al., 

2020), environmental management (Kasprzyk et al., 2013), water-energy 

system design (Guidici et al., 2019), water distribution system design (Zecchin 

et al., 2006) and irrigation scheduling (Nguyen et al., 2017; Sedighkia et al., 

2021), as well as the development of environmental models, including input 

variable selection (Grivas and  Chaloulakou, 2006; Galelli et al., 2014) and 

model calibration (Pelletier et al., 2006; Burton et al., 2008). Existing research 

in this field has primarily focused on the development of improved optimisation 

algorithms, such as GALAXY (Wang et al., 2020), DREAM (Vrugt, 2016), 

Borg (Hadka and Reed, 2015), particle swarm optimisation (Chau, 2007), 

NSGA-II (Fu et al., 2008), ant colony optimisation (Emami Skardi et al., 2015) 

and policy tree optimisation (Herman and Giuliani, 2018), as well as the 

comparison of the performance of different algorithms on different problems 

(e.g. Tikhamarine et al., 2020; Piotrowski and Napiorkowski, 2011; Kisi et al., 

2012; Bullinaria and AiYahya, 2014; Wang et al., 2020). However, in 

accordance with the “No Free Lunch” theorem (Wolpert and Macready, 1997), 

no optimisation algorithm can outperform all others across every single 

problem. Consequently, there is a need to better understand the features of 

different optimisation problems so that algorithms that are better suited to 
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particular problem types can be selected (Maier et al., 2014). 

 

The features of optimisation problems can be represented geometrically by 

considering the “fitness landscape”, which depicts the shape of the fitness 

function (otherwise termed objective function) for a particular objective with 

respect to the decision variables (e.g. model error as a function of different 

values of model parameters for model calibration problems) (see Maier et al., 

2019). As the aim of the optimisation process is to find the highest or lowest 

points in this landscape, depending on whether the aim is to maximise or 

minimise the objective function, the ease or difficulty with which this can be 

done is a function of the features of this landscape. For example, if the 

landscape is smooth with a single, well-defined high- or low-point (global 

optimum), this point is relatively easy to find. Conversely, if the landscape is 

rough, with many minima or maxima of similar or equal value (local optima), 

the overall best solution (global optimum) is more difficult to find. Similarly, 

the presence of flat regions or plateaus in the fitness landscape makes it more 

difficult to guide the search towards the highest or lowest point in the 

landscape. It should be noted that for multi-objective optimisation problems, 

each objective has its own fitness landscape, as variations in objective values 

with changes in decision variable values are likely to be different for different 

objectives (see Maier et al., 2019).  

 

In order to enable a better understanding of the features of optimisation 

problems to be obtained, a number of Exploratory Landscape Analysis (ELA) 
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metrics have been developed (Mersmann et al., 2010; Munoz et al., 2015a). For 

example, such metrics can provide an indication of the global structure of the 

fitness landscape (e.g. its curvature), its degree of multi-modality (e.g. the 

prevalence of local optima) or the presence of plateaus (Mersmann et al., 2011). 

However, application of these metrics to environmental optimisation problems 

has been extremely limited (e.g. Gibbs et al., 2011; Bi et al., 2015). Instead, an 

empirical “brute force” approach is often used to determine which algorithm or 

parameterisation to use on a case study-by-case study basis (Maier et al., 2014). 

One potential reason for this is that there are different metrics for different 

landscape features (Mersmann et al., 2010; Malan and Engelbrecht, 2013; 

Maier et al., 2014; Munoz et al., 2015a), as well as different metrics for the 

same features, all with particular biases (Munoz et al., 2015a), making it 

difficult to know which metrics to use. However, the main reason for the lack 

of adoption of ELA metrics is likely to be related to the computational effort 

required to calculate them. As these metrics are calculated based on samples 

from the fitness landscape (Pitzer and Affenzeller, 2012), the number of 

samples required to obtain meaningful metric values can increase significantly 

with the size of the search space (Munoz et al., 2015a). When addressing real-

world environmental optimisation problems, which are often characterised by 

large search spaces, this can either lead to computational intractability or the 

case where the computational effort associated with calculating the metrics is 

greater than that required as part of the “brute-force” approach of applying 

different algorithms or algorithm parameterisations to determine which works 

best. Consequently, to enable ELA metrics to be used for developing a better 
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understanding of fitness landscape features and selecting the most appropriate 

optimisation algorithms for real-world problems, there is a need to determine 

(i) which ELA metrics, if any, have low dependence on problem dimensionality 

and sample size, so that they can be applied to real-world problems in a 

computationally efficient manner, and (ii) what information about the features 

of the fitness landscape can be ascertained from these metrics. 

 

In order to address these shortcomings, the objectives of this chapter are: 

1. To identify which ELA metrics have low dependence on problem 

dimensionality and sample size for a range of benchmark functions with a 

wide variety of known fitness landscape properties.  This indicates which 

ELA metrics can be applied to real-world environmental optimisation 

problems from the perspective of computational tractability.  It also opens 

the door to assessing the potential practical value of using ELA metrics to 

assist with determining which optimisation algorithm or settings might be 

most appropriate from a computational efficiency perspective, as the 

computational effort associated with the calculation of ELA statistics 

should be less than that associated with the “brute force” approach 

determining which optimisation algorithm performs best. 

 

2. To check whether the ELA metrics identified as having low dependence on 

problem dimensionality and sample size for benchmark functions also have 

low dependence on these factors for a number of real-life environmental 

modelling problems. 
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3. To map the ELA metrics that have low dependence on problem 

dimensionality and sample size to the fitness landscape features they are 

designed to provide information on, thereby providing a desktop 

assessment of the potential usefulness of the ELA metrics that are suitable 

to determining the features of real-world optimisation problems. 

 

The remainder of this chapter is organised as follows. Details of the 

methodology used to achieve the above objectives are given in Section 2, 

followed by the results and discussion in Section 3. Summary and conclusions 

are provided in Section 4. 

 

2 Methodology 
2.1 Overview 

 

An overview of the methodology used to achieve the three objectives stated in 

the Introduction is given in Figure 2.1 (with further details provided in 

Appendix A). As can be seen, the first three steps of the identification of ELA 

metrics with low dependence on problem dimensionality and sample size with 

the aid of benchmark functions (objective 1), and checking whether these 

metrics also have low dependence on problem dimensionality and sample size 

for real-life environmental modelling problems (objective 2), are the same.  The 

first of these steps includes the sampling of fitness landscapes with different 

features and dimensionality using a range of samples sizes, as these samples 

are required for the calculation of the different ELA metrics in Step 2. 

For objective 1, fitness landscapes with different features are represented by 

the noiseless BBOB suite of 24 benchmark functions (Hansen et al., 2009), as 
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these contain a wide range of known landscape features (see Section 2.2.1 for 

details), can be scaled to different dimensionalities (Hansen et al., 2019) and 

have been used in a number of fitness landscape studies (Mersmann et al., 2010, 

2011; Shirakawa and Nagao, 2014, 2016; Munoz et al., 2015b; Munoz and 

Smith-Miles, 2017; He et al., 2018). Twenty replicates are generated for five 

different dimensionalities (2, 5, 10, 20, 30) for each of the 24 benchmark 

functions, resulting in 2,400 (24 functions x 5 dimensionalities x 20 replicates) 

fitness landscapes. Each of these is sampled 30 times with different sampling 

lengths ranging from 100 to 120,000, resulting in 72,000 (2,400 fitness 

landscapes x 30 sample lengths) sets of fitness landscape samples.  A maximum 

dimensionality of 30 is selected, as this corresponds to the upper end of 

dimensionalities used in previous studies using these benchmark functions 

(Mersmann et al., 2011; Munoz et al., 2015b; Munoz and Smith-Miles, 2017; 

Shirakawa and Nagao, 2014, 2016; Kerschke et al., 2015; Garden and 

Engelbrecht, 2014).  A maximum sample length of 120,000 is used, as this has 

been found to be sufficient for the convergence of ELA metric values in 

preliminary analyses and is significantly greater than sample sizes used in 

previous ELA studies, which are generally on the order of 6,000 or 1000 × 

Dimension (Mersmann et al., 2011; Munoz et al., 2015b; Munoz and Smith-

Miles, 2017; Shirakawa and Nagao, 2014, 2016; Kerschke and Preuss, 2015; 

Garden and Engelbrecht, 2014). 

 

For objective 2, the fitness landscapes with different features correspond to 

those for the calibration (training) of artificial neural network (ANN) models 
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used to predict a number of environmental variables (runoff, turbidity, salinity) 

(see Section 2.2.2 for details). These environmental modelling problems have 

been selected as (i) model calibration is a common environmental optimisation 

problem (Maier et al., 2019), (ii) ANNs have been used extensively for 

environmental modelling (see Maier et al., 2010; Wu et al., 2014; Cabaneros et 

al., 2019), (iii) the parametric dimensionality of ANNs can be changed within 

a single model framework by increasing the number of hidden nodes (Maier et 

al., 2010) and (iv) the fitness landscapes associated with the calibration of ANN 

models have been shown to vary in complexity (e.g. Kingston et al., 2005; 

Samarasinghe, 2006). Ten replicates are generated for 11 model structures (0-

10 hidden nodes, corresponding to problem dimensionalities ranging from 1 to 

70 – see Section 2.2.2 for details) for each of the 3 modelling problems 

considered, resulting in 330 (3 problems x 11 dimensionalities x 10 replicates) 

fitness landscapes. Each of these is sampled 23 times with different sampling 

lengths ranging from 100 to 50,000, resulting in 7,590 (330 fitness landscapes 

x 23 sample lengths) sets of fitness landscape samples. A maximum sample 

length of 50,000 is selected as this has been found to be sufficient for 

convergence of ELA metric values in preliminary analyses.  

 

The second of these three steps involves the calculation of the desired ELA 

metrics for each of the sets of fitness landscape samples generated in the 

previous step. For objective 1, 89 ELA metrics are considered, which constitute 

the full set of metrics used in previous fitness landscape analysis studies 

(Mersmann et al., 2011; Munoz et al., 2015b; Munoz and Smith-Miles, 2017), 
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to maximise the chances of identifying metrics with low dependence on 

problem dimensionality and sample size that also provide useful information 

about a range of fitness landscape features. For the environmental modelling 

problems (objective 2), only the ELA metrics that are found to have low 

dependency on problem dimensionality and sample size for the benchmark 

functions (see Figure 2.1, step 4) are used in order to check whether the findings 

from the benchmark functions apply in real-life environmental modelling 

contexts. 

 

The third and last of these steps involves the calculation of the degree of 

dependence of the ELA metrics considered in the previous step on both 

problem dimensionality and sample size. If a metric has low dependence on 

both, it is likely to be able to be applied to real-world environmental 

optimisation problems.  If this is not the case, the computational effort required 

to calculate the metric is likely to be too large for practical purposes. 

 

For the benchmark functions (objective 1), dependence is represented by the 

relationship between sample size, problem dimensionality and the reject rate, 

which is the fraction of the 24 test functions for which the hypothesis that a 

particular sample size gives the “true” value of a particular fitness landscape 

metric does not hold based on the Wilcoxon Rank Sum Test (calculated using 

20 replicates) (see Section 2.4.1 for details).  In this context, the “true” value is 

taken as the value obtained for the largest number of samples considered (i.e. 

120,000). If the reject rate for a particular metric is low, and remains so with 
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increasing dimensionality (over the 5 dimensionalities considered) and sample 

size (over the 30 sample lengths considered), calculation of the “true” value of 

this metric can be considered to have low dependence on problem 

dimensionality and sample size, making it a suitable candidate for application 

to real-world environmental optimisation problems. The Wilcoxon Rank Sum 

Test is used for this purpose as it provides a statistically rigorous approach to 

testing dependence for a desired confidence level. 

 

For the environmental modelling problems (objective 2), whether the low 

degree of dependence on problem dimensionality and sample size holds for the 

selected metrics is checked by calculating the number of samples required for 

a particular ELA metric value to be within 10% of the “true” value of this 

metric for different problem dimensionalities (averaged over the three case 

studies), as represented by ANN models with different numbers of hidden 

nodes (and hence model parameters) (See Section 2.4.2 for details). In this 

context, the “true” value is taken as the value obtained for the largest number 

of samples considered (i.e. 50,000). If the number of samples required to 

achieve “accurate” results is relatively small (e.g. less than 5,000), then the low 

dependence of the metric under consideration on sample size is confirmed. If 

the number of required samples is small for ANN models with different 

numbers of hidden nodes (i.e. different problem dimensionalities), then the low 

dependence of the metric under consideration on problem dimensionality is 

also confirmed. 
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Figure 2.1 Outline of methodology 

 

The fourth step involves the categorisation of the different ELA metrics in 

terms of their relative degree of dependence on problem dimensionality and 

sample size for the benchmark functions (objective 1). This is achieved by 

grouping the 89 ELA metrics considered based on the centroids of the 

Euclidean distances of the slopes of the linear regression relationships (with 

logarithm transformation) between reject rate (see Step 4) and ((sample size) 

or (problem dimensionality)) using a hierarchical clustering approach (Nielsen, 

2016) (see Section 2.5 for details). This provides an indication of whether there 

are natural groupings of metrics with differing degrees of dependence on 

problem dimensionality and sample size and potential reasons for this, as well 

as which metrics, if any, have low dependence on both problem dimensionality 
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and sample size, and are hence suitable for application to real-world 

optimisation problems. 

 

As part of the fifth and final step, the landscape features that can be quantified 

with the fitness landscape metrics that have low dependence on problem 

dimensionality and sample size, identified as part of Objective 1 and validated 

in Objective 2, are identified by mapping these metrics to the landscape features 

they are designed to provide information on via a desktop assessment (objective 

3). This provides information on the types of landscape features that can be 

obtained from ELA metrics that can be applied to real-world problems, which 

can then be used to gain a better understanding of the characteristics of different 

environmental optimisation problems and which optimisation methods and 

parameterisations might be most appropriate for these. However, performing 

such assessments is beyond the scope of this chapter. 

 

The above analyses are conducted using the University of Adelaide’s 

supercomputing facilities, which consist of 48 skylake nodes, with 80 cpus and 

377GB of memory per node. Samples from the 24 noiseless BBOB benchmark 

functions are generated using the R Package FLACCO (Kerschke and 

Trautmann, 2016), the R package ValidANN (Humphrey et al., 2017) is used 

for ANN development, the R package fastcluster (Müllner , 2013) is used for 

hierarchical clustering, the R codes wilcox.test() and lm() are used for the 

Wilcoxon Rank Sum test and regression analysis, respectively, and the 

MATLAB code PLHS (Sheikholeslami and Razavi, 2017) is used for sample 
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generation. R-code for how to calculate the ELA metrics for a given set of 

fitness landscape samples is provided as supplementary material. 

 

2.2 Sampling of fitness landscapes 
2.2.1 Benchmark functions 

 

As mentioned in Section 2.1, the noiseless BBOB suite of 24 benchmark 

functions (Hansen et al., 2009) has been used extensively for a number of 

fitness landscape studies. The functions have been designed specifically to 

represent fitness landscapes with a wide range of features, such as the degree 

of multi-modality, global structure, variable scaling in different directions (i.e. 

variable sensitivity), degree of similarity in different areas of the search space, 

size of basins of attraction (optima), and differences in the magnitudes between 

global and local optima and degrees of flatness of the search space (plateaus) 

(see Table 2.1).  The degree to which these different features are represented in 

the 24 functions is summarised in Table B.1 in Appendix B. 

 

Table 2.1 Descriptions of High-Level Fitness Landscape Features 

 

Feature Description 

Multi-
Modality 

Problems with higher multi-modality have a higher density of local optima in 
the search space and are therefore more difficult to solve. In contrast, 
problems with lower multi-modality have a lower density of local optima, 
making it easier to identify the global optimum. 

Global to 
Local Optima 
Contrast 

Fitness landscapes with a greater global to local optima contrast are easier to 
search, as the differences between global and local optima are larger, making 
it is easier to distinguish global optima from local ones, avoiding convergence 
to local optima. In contrast, fitness landscapes with a smaller global to local 
optima contrast are harder to search, as it is easier for algorithms to become 
trapped in local optima, leading to premature convergence.  

Basin Size 
Homogeneity 

Problems with greater basin size homogeneity are easier to solve, as this 
enables algorithms with particular parameterisations, and hence searching 
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behaviour, to effectively search the entire fitness landscape.  In contrast, 
problems with lower basin size homogeneity are more difficult to solve, as the 
algorithm parameterisation that results in optimal searching behaviour in one 
basin is unlikely to be optimal in another basin. Therefore, only some basins 
can be fully searched, resulting in a higher probability that the global optimum 
will be missed. 

Search Space 
Homogeneity 

Problems with a greater search space homogeneity are easier to solve, as 
their features are more similar throughout the entire fitness landscape and 
hence only a single algorithm/algorithm parameterisation is likely to be 
required for the search to be successful.  In contrast, lower search space 
homogeneity is an indication that fitness landscape features are likely to be 
different in different areas of the search space, making it more difficult to find 
the global optimum with a single algorithm/algorithm parameterisation.  

Global 
Structure 

Problems with a more well-defined global structure (e.g. a “big-bowl” shape) 
are easier to solve as they are able to guide optimisation algorithms into 
promising regions of the search space.  In contrast, the global optimum is 
more difficult to find for problems with a less well-defined global structure 
(e.g. a “flat” fitness landscape), as there is little information to guide 
optimisation algorithms towards this optimum. 

Plateaus 

Fitness landscapes with more plateaus generally result in slower convergence 
during the search, as they contain regions where there are minimal 
differences in fitness function values, providing less useful information to 
guide optimisation algorithms into promising areas of the search space in 
these regions. In contrast, fitness landscapes with fewer plateaus generally 
result in faster convergence, as they provide more useful information in 
guiding the algorithm search more consistently throughout the fitness 
landscape. 

Separability 

Problems with a higher degree of separability are easier to solve, as they 
enable the problem to be split into several lower-dimensional sub-problems 
that can be solved independently, making the overall problem easier to solve. 
In contrast, problems with a lower degree of separability are more difficult to 
solve, as the problem is more difficult to be split into lower-dimensional sub-
problems, requiring higher-dimensional problems to be solved. 

Variable 
Scaling 

Problems with a higher degree of variable scaling introduce potential 
challenges during the optimisation process, as there are larger differences in 
the contribution of different decision variables to fitness values.  
Consequently, changes in values of variables with small contributions during 
the optimisation process do not result in significant changes in fitness function 
values, requiring variables with larger contributions to converge to good 
values before the other decision variables have an influence, which may have 
converged to poor values in the meantime (Gibbs et al., 2011; Maier et al., 
2014).  In contrast, problems with a lower degree of variable scaling do not 
present these challenges (unless all variables have no contribution to fitness 
function values) as changes in the values in any of the decision variables 
during the optimisation process result in relatively significant changes in the 
fitness function, thereby enabling all decision variables to converge to good 
values simultaneously. 
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2.2.2 Environmental modelling problems 

 

As mentioned in Section 2.1, three different environmental modelling problems 

are considered, including: rainfall-runoff modelling in the Kentucky River, 

USA; the prediction of filtered water turbidity from a range of raw water quality 

parameters and the added Alum dose (treatment) for surface waters in South 

Australia; and the forecasting of salinity in the River Murray at Murray Bridge, 

South Australia, based on values of upstream salinities and flows. These are 

selected as they represent a diversity of environmental problems that have been 

used in a number of previous benchmarking studies (e.g. Wu et al., 2013; 

Humphrey et al., 2017). As was the case in these studies, the selected ANN 

model architecture is a multi-layer perceptron (MLP), as this type of model 

architecture has been used widely and successfully in practice and enables 

fitness landscapes (i.e. the calibration error functions) with different 

dimensionalities (in terms of number of model parameters) to be generated 

within the same model structural framework simply by changing the number 

of hidden nodes (Maier et al., 2010; Wu et al., 2014).  Details of the model 

inputs and outputs, as well as the available data, are given in Table 2.2, which 

are identical to those used in previous studies. As mentioned in Section 2.1, the 

number of hidden nodes for each ANN is varied between 0 and 10 to ensure 

that fitness landscapes with different features are obtained (see Table 2.1). The 

root mean square error (RMSE) is used as the objective function for model 

calibration, as was the case in previous studies (Wu et al., 2013; Humphrey et 

al., 2017). It should be noted that as the aim of this study is to identify the 

characteristics of the fitness landscapes of different ANN models, model 
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calibration (training) is not required; only samples generated from the fitness 

landscapes are needed. 

Table 2.2 Case Study Information 

 

Case Study 

Kentucky 
Rainfall 
Runoff 

River Murray Salinity  
South Australia 
Turbidity 

References 

Jain and 
Srinivasulu 
(2006), Wu 
et al. (2013), 
Humphrey et 
al. (2017) 

Maier and Dandy (1996), 
Bowden et al. (2002), Wu 
et al. (2013), Humphrey et 
al. (2017) 

Maier et al. (2004), 
Wu et al. (2013), 
Humphrey et al. 
(2017) 

No. of Inputs 2 2 5 

No. of 
Hidden 
Nodes 

0, 1, 2, …, 10 

No. of 
Parameters 

3 to 41 3 to 41 6 to 71 

Calibration 
Data Points 

2842 1215 120 

Inputs (Lags) Flow (t, t-1) 
Mannum salinity (t), 
 Waikerie Salinity (t) 

Raw Water Turbidity, 
Raw Water pH,  

Raw Water Color,  
Raw Water UVA, 

Alum dose 

Outputs 
(Lags) 

Flow (t+1) 
Murray Bridge salinity 

(t+14) 
Filtered water 

turbidity 
 

2.3 Fitness landscape metrics 
 

As mentioned in Section 2.1, a total of 89 ELA metrics are considered.  These 

consist of the six low-level groups of metrics developed by Mersmann et al. 

(2011), including convexity, y-distribution, level set, meta model, local search 

and curvature, and the information content of fitness sequences (ICoFS) 

metrics as shown in Table 2.3. Each of these groups of metrics is designed to 

provide information on different combinations of fitness landscape features, 

including global structure, multimodality, separability, global to local optima 
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contrast, search space homogeneity, plateaus, variable scaling and basin size 

homogeneity (Tables 2.1 and 2.3). Brief outlines of these metrics are given 

below. More detailed information, such as the statistics used to summarise the 

results of these metrics, and the mapping between the metrics and features, are 

summarised in Appendix C. Unfortunately, there is no direct correlation 

between particular metrics and individual fitness landscape features, making it 

difficult to provide a more intuitive understanding of the metrics. 

 

Convexity Metrics: convexity metrics use the deviation between linear 

regressed fitness values 𝑦′ and the true fitness value 𝑦 to analyse the shape of 

fitness landscapes. Random pairs of points (𝑥𝑖 , 𝑥𝑗) are selected from the total 

sample pool 𝑋, and a third point is selected from the line between these two. 

At this new point, the actual fitness landscape value is compared to the linear 

interpolation of fitness values from the original points. Whether the landscape 

is positively or negatively convex can provide information about the overall 

shape of the fitness landscape. 

y-Distribution Metrics: y-distribution metrics use the probability density 

function (PDF) of fitness values of samples to provide information on the 

scaling and distribution of fitness landscapes in terms of the fitness values. The 

PDF is estimated based on the frequency of fitness values identified by selected 

samples on the search space. The distribution shown by the PDF can provide 

information about how easy it is to identify solutions with better fitness values, 

as if more samples that have good fitness values are shown to have a higher 

probability to be identified, it should be relatively easier to find the globally 
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optimal solution, unless the fitness landscape is “deceptive”, in which case the 

global optimum is not in the vicinity of good local optima, making it more 

difficult to locate (e.g. needle in the haystack problems) (Deb and Goldberg, 

1994; Maier et al., 2014). 

Level Set Metrics: level set metrics use discriminant analysis to check the 

complexity of fitness landscapes. Samples are assigned to high- and low-

quality groups based on their fitness values. Next, different predictive models 

are used to check whether they can re-classify the samples accurately.  

Meta Model Metrics: meta model metrics involve the building of regression 

models based on sampling points and checking how well these fit to the fitness 

landscapes. This is in order to show the similarity between the regression 

models and the corresponding problem’s fitness landscape. Different 

regression models, including both independent (simple) and cross-term 

parameters, are used to check the separability of a fitness landscape. Separable 

fitness landscapes should be more easily fitted to simple models, whereas non-

separable fitness landscapes should be better fitted by the cross-term models. 

Local Search Metrics: local search metrics use the information provided by a 

set of local optima (obtained by a gradient algorithm using random starting 

points) to assess the properties of the distribution of optimal solutions across a 

fitness landscape. Of importance here is estimating the size of the basin of 

attraction for local optima. Local optima with short distances between each 

other are clustered within a common basin. The size of these basins and how 

they are distributed across the fitness landscape are related to the features the 

local optima. 
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Curvature Metrics: curvature metrics assess the information provided by first 

order derivatives and Hessian matrices of sample points on the fitness 

landscape. This information can help to assess whether each variable has the 

same influence in guiding the searching process, and whether the fitness 

landscape provides enough information to guide the searching to find good 

solutions, especially for derivative/perturbation based algorithms. 

ICoFS Metrics: The Information Content of Fitness Sequences (ICoFS) 

metrics use a set of samples to construct a sequence of fitness landscape values 

(based on either nearest neighbour in the parameter space or a random 

ordering). These sequences are then used to create an indicator sequence of 

values from {-1,0,1} depending on the comparison of sequential values in the 

original sequence. That is, for consecutive sequence values yn and yn+1, a value 

of -1 is assigned if yn > yn+1, 0 for yn = yn+1, and 1 for yn < yn+1 (note that a 

threshold is used for the inequality comparisons). A smooth, near monotonic, 

fitness landscape (e.g. single modal one) would be expected to have a sequence 

without frequent signal change (e.g. [1, 1, 1, 1, 1] or [-1, -1, -1, -1, -1]). A multi-

model fitness landscape, on the other hand, would be expected to have a 

sequence with frequent changes in the signal (e.g. [1, -1, 1, -1, 0, -1, 0, 1]). 

Finally, a flat fitness landscape would have a sequence of zeros due to its only 

slight difference in fitness values. The information contained in the sequence 

is processed, and used to provide characterisations of the level of roughness in 

the fitness landscape, which is highly related to multi-modality. 
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Table 2.3 Relationship between ELA Metric Classes (in the columns) and 

Fitness Landscape Features (in the rows) 

 

  
 

2.4 Calculation of degree of dependence of metrics 

on dimensionality and sample size 
 

As mentioned in the Introduction, the objective of this chapter is to identify 

which ELA metrics have low dependence on problem dimensionality and 

sample size so that they can be applied to real-world environmental 

optimisation problems. It should be noted that although the primary features of 

the benchmark functions are known, assessing the degree to which the ELA 

metrics under consideration are able to correctly assess these features is beyond 

the scope of this chapter. In addition, there is no direct one-to-one 

correspondence between different metrics and different features, as mentioned 

in Section 2.3. 

 

2.4.1 Benchmark functions 

 

As mentioned in Section 2.1, the degree of dependence of the benchmark 
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functions on problem dimensionality and sample size is assessed with the aid 

of the Two-Tailed Wilcoxon Rank Sum Test, which is a nonparametric test 

with a null hypothesis that the probability of the selected populations arises 

from the same underlying distribution. In this case, the two populations under 

consideration consist of values of fitness landscape metrics calculated using a 

given number of samples (e.g. 100 to 120,000 – see Figure 2.1) and those 

calculated using the largest number of 120,000 samples. The reasoning behind 

this is that the metric value at the largest number of samples is taken as the most 

accurate computation of this metric. That is, the hypothesis test is given as:  

                                            

𝐻0: 𝐸𝐿𝐴𝑖,𝑗,𝑑,𝑘 = 𝐸𝐿𝐴𝑖,𝑗,𝑑.120,000

𝐻1: 𝐸𝐿𝐴𝑖,𝑗,𝑑,𝑘 ≠ 𝐸𝐿𝐴𝑖,𝑗,𝑑,120,000
                                          (2.1)                                          

where 𝐸𝐿𝐴𝑖,𝑗,𝑑,𝑘 and 𝐸𝐿𝐴𝑖,𝑗,𝑑,120,000 represent the ELA metric results of the 𝑖th 

metric, the 𝑗th test function and the dth dimension, with 𝑘 samples and 120,000 

samples, respectively. Consequently, if the null hypothesis is satisfied for 

relatively small sample sizes for a particular fitness landscape metric, this 

metric can be considered to have low dependence on sample size. 

 

In this study, a 95% confidence level is used to test the hypotheses. To enable 

the results of the different computational experiments to be compared more 

easily, they are represented in terms of the reject rate, symbolized by 𝑅, which 

is the percentage of experiments for which the above null hypothesis is rejected, 

and is calculated as follows: 

𝑅𝑖,𝑑,𝑘 = ∑
𝐼{𝑝𝑖,𝑗,𝑑,𝑘≤0.05}

𝑁

𝑁
𝑗=1                                            (2.2)                                             
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where 𝑅𝑖,𝑑,𝑘 refers to the reject rate of metric 𝑖 among the 24 test functions for 

problems with 𝑑 dimensions and 𝑘 samples, I{x} is an indicator function which 

is equal to 1 if the Boolean statement x is true and zero otherwise, and 𝑁 is the 

total number of test functions, which is 24 in this study. Consequently, lower 

values of the reject rate indicate that a metric is more independent of sample 

size and dimensionality and hence more suited to being applied to real-world 

environmental optimisation problems. 

 

2.4.2 Environmental modelling problems 

 

As mentioned in Section 2.1, fitness landscape metrics that are found to have 

low dependence on both problem dimensionality and sample size (i.e. a low 

reject rate) for the test functions (see Section 2.3) are applied to the real-world 

environmental modelling problems to check if the low dependence of these 

metrics on sample size and dimensionality holds for the real-world 

environmental optimisation problems considered. As also mentioned in Section 

2.1, this check is achieved by calculating the number of samples required for a 

particular ELA metric value to be within 10% of the “true” value of this metric 

for different problem dimensionalities, which is considered reasonable for 

practical purposes. The percentage difference is calculated using the 

normalized difference between the “true” value of a given ELA metric, 

obtained for a sample size of 50,000 (see Section 2.1), and the corresponding 

value for a smaller sample size, 𝑘 (e.g. 100, …, 50,000 – see Figure 2.1), as 

follows:  
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𝐸𝑟𝑟𝑖,ℎ,𝑐,𝑘 = |𝑀𝑒𝑑𝑖,ℎ,𝑐,𝑘 − 𝑀𝑒𝑑𝑖,ℎ,𝑐,50,000|/𝑀𝑒𝑑𝑖,ℎ,𝑐,50,000 × 100%                     (2.3) 

 

where 𝐸𝑟𝑟𝑖,ℎ,𝑐,𝑘  is the normalised error, which is calculated by using the 

corresponding medians of Metric 𝑖, Case 𝑐 and Number of Hidden Nodes ℎ 

(corresponding to different problem dimensionalities – see Table 2.2), and 

𝑀𝑒𝑑𝑖,ℎ,𝑐,𝑘 is the median of the metric values in the data set as identified by the 

subscripts (the subscripts have the same meaning as in 𝐸𝑟𝑟𝑖,ℎ,𝑐,𝑘). In addition 

to metrics that were considered unsuitable based on the computational criteria, 

five ELA metrics that were not considered to provide useful information on the 

real-world environmental case studies considered were also excluded. These 

include metrics that apply to linear and non-continuous relationships, which is 

not the case for ANNs, as they are highly non-linear and continuous. 

Consequently, values of these metrics are equal to zero for the case studies 

considered, therefore not providing any useful information.  

 

2.5 Categorisation of fitness landscape metrics 
 

As mentioned in Section 2.1, using the results from the analysis on the 

benchmark functions, the assessed ELA metrics are categorized based on their 

degree of dependence on problem dimensionality and sample size, in order to 

identify metrics with low dependence on both. This is achieved via a two-step 

process. 

 

The first step involves the quantification of the degree of dependence of metric 

values on sample size and problem dimensionality. This is achieved by 

developing a regression model that relates the reject rates calculated in Eq. (4) 
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to sample size and problem dimension as follows:  

𝑅 = 𝑎 ∙ ln(𝐷𝑖𝑚) + 𝑏 ∙ ln(𝑆𝑆) + 𝑐                                                   (2.4) 

where 𝑅  represents the reject rate, 𝐷𝑖𝑚  and 𝑆𝑆  represent dimension and 

sample size, respectively, and 𝑎 , 𝑏  and 𝑐 represent the slope of dimension and 

sample size, and intercept, respectively. By way of interpretation, for example, 

a large value of a implies that the reject rate is highly influenced by the 

dimension. Example R-code for performing these calculations is provided as 

supplementary material. 

 

This form of the relationship was considered most appropriate based on visual 

inspection of the plots of reject rate versus sample size and problem 

dimensionality, with a logarithm transformation used to scale the magnitude of 

the coefficients.  As shown in Appendix D, the r2 values of these relationships 

generally range between 0.3 and 0.86, indicating the ability to discriminate 

between relationships of different strengths. For a small number (10) of 

relationships, r2 values were less than 0.2. However, as shown in Appendix D, 

this was for relationships with very low dependence on sample size and 

problem dimensionality, where the fluctuations in the relationship (i.e. noise) 

had a significant impact on the r2 values. However, this did not affect the 

correct quantification of the relative impact of sample size and problem 

dimensionality on ELA metric values, which is the primary objective. 

The second step involves hierarchical clustering (Nielsen, 2016) of the values 

of the slopes for dimensionality (i.e. values of 𝑎 in Eq. (6)) and sample size (i.e. 

values of 𝑏 in Eq. (6)) for different ELA metrics based on the centroids of their 
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Euclidean distances to identify groups of ELA metrics with different degrees 

of dependence on sample size and problem dimensionality. 

It should be noted that in order for the above results to be meaningful, the 

absolute values of 𝑅 also need to be checked. While low dependence on sample 

size and problem dimensionality are pre-conditions for the application of ELA 

metrics to real-world environmental problems, metrics belonging to this 

category only provide useful information if the values of 𝑅 are consistently 

low, rather than consistently high.  In this study, this check is performed by 

visual inspection of the plots of 𝑅  versus sample size and problem 

dimensionality. 

3 Results and Discussion 
3.1 Categorisation of fitness landscape metrics  
3.1.1 Cluster Location 

 

As can be seen in Figure 2.2, the ELA metrics considered form five distinct 

clusters with different degrees of dependence on problem dimensionality and 

sample size. Typical relationships between reject rate, dimensionality and 

sample sizes for metrics in these clusters are shown in Figure 2.3.  

 

The 39 metrics belonging to cluster 1 have a low dependence on problem 

dimensionality and sample size (Figure 2.2), as evidenced by the flat slopes of 

the relationships between reject rate and both problem dimensionality and 

sample size, as seen in Figure 2.3(a). The fact that the reject rate for metrics 

belonging to this cluster is very low across the full range of sample sizes and 
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problem dimensionalities investigated (Figure 2.3(a)) suggests that metrics 

belonging to this cluster are suitable for application to real-world 

environmental optimisation problems. In contrast, this does not appear to be 

the case for the metrics belonging to the remaining clusters. For example, the 

23 metrics belonging to Clusters 2 and 3 have high dependence on sample size 

and medium-high dependence on problem dimensionality, with typical plots of 

the relationships between reject rate, problem dimensionality and sample size 

for metrics belonging to these clusters shown in Figures 2.3(b) to 3(d).  This is 

likely to make the application of these metrics to real-world environmental 

optimisation problems computationally intractable. 

 

The 5 metrics belonging to cluster 4 have low dependence on dimensionality, 

but high dependence on sample size, as evidenced by a typical plot of reject 

rate versus these two factors in Figure 2.3(e). This makes metrics belonging to 

this cluster difficult to apply in practice, as large sample sizes are required for 

even relatively simple problems. The 7 metrics belonging to cluster 5 have low 

dependence on sample size, but medium dependence on problem 

dimensionality (see Figure 2.3(f) for a typical plot of the relationship of reject 

rate versus sample size and dimensionality). This makes them applicable to 

relatively simple real-world problems, but computational tractability is likely 

to become an issue for higher-dimensional problems. 

It should be noted that 15 metrics are excluded from clusters 1 to 5 in Figure 

2.2, as their reject rates are very high (see Figures 2.3(g) and 3(h)), making 

them unsuitable for application to real-world optimisation problems, as 
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discussed in Section 2.5.  As can be seen in Figure 2.3(g), there are some cases 

where the reject rate is low when the sample size is small, but this increases 

rapidly when the sample size increases to a given level. This is because when 

the sample size is small, the values of these metrics are highly variable, 

providing greater opportunities for the median values to be close to the “true” 

value. However, this variability decreases with an increase in sample size, 

reducing the chance that the median values are close to the “true” value of the 

metric, indicating that the actual reject rates for these metrics are very high and 

therefore not suitable for application to real-world environmental problems.

 

Cluster Dimension Impact Sample Size Impact 

1 Low Low 

2 Median High 

3 High High 

4 Low High 

5 Median Low 

 

Figure 2.2 Metric Categorisation based on Impacts on Sample Size and 

Dimension. The numbers in the figure refer to the metric number, details of 

which are given in Appendix C. 
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Figure 2.3 Typical Rate of Rejection Plots of Different Clusters 

 

a (Cluster 1) 
b (Cluster 2) 

c (Cluster 

2) 
d (Cluster 3) 

e (Cluster 4) 
f (Cluster 5) 

g (Unclassified) h (Unclassified) 
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3.1.2 Cluster Composition 

 

A summary of the composition of each of the five clusters in Figure 2.3 in terms 

of metric class is given in Table 2.4. As can be seen, cluster 1 contains at least 

one metric from each class, with all of the 4 convexity and 10 ICoFS metrics 

belonging to this cluster.  The majority of the 3 Y-Distribution (66.7%), the 9 

Meta Model (66.7%) and 21 Local Search (57.1%) metrics also belong to 

cluster 1, while only one out of the 18 Level Set (5.6%) and 4 out of the 24 

Curvature (16.7%) metrics fall into this cluster. 

 

A common feature of all metrics belonging to cluster 1, irrespective of which 

metric class they are part of, is that their calculation only requires fitness values 

and the relative distance between samples, without knowledge of the location 

of each sample in the search space, as is the case with many of the other metrics. 

This is a likely cause for the low dependence of the calculation of these metrics 

on sample size and problem dimensionality. 

 

The majority of the metrics belonging to clusters 2 and 3 are part of the Level 

Set and Meta Model classes and have relatively high levels of dependence on 

both sample size and problem dimensionality. The likely reason for this is that 

calculation of metrics in these two classes requires the development of 

regression models using the available samples. Consequently, the values of the 

metrics obtained are a function of sample size and dimensionality, as the 

development of representative regression models generally requires a larger 
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number of samples for higher-dimensional problems. However, the degree to 

which this is the case is a function of the complexity and non-linearity of the 

required regression models. For example, as the calculation of some of these 

metrics is based on simple linear regression models, some of the metrics 

belonging to these classes have low dependence on sample size and problem 

dimensionality and hence belong to Cluster 1 (Table 2.4). 

 

All of the metrics belonging to Cluster 4 are part of the curvature metric class 

(Table 2.4) and have a high dependence on sample size, but a low dependence 

on dimensionality. This is because the values of the curvature metrics are based 

on the first-order derivative and Hessian matrix of each sample point. 

Consequently, calculation of these metric values is a function of individual 

samples without considering the spatial dependencies of their relationships, and 

is therefore the likely reason they are not affected significantly by 

dimensionality. In contrast, sample size has a significant impact on curvature 

metric values.  This is because sample points in different regions of the search 

space are likely to provide different gradient information, resulting in high 

variability unless the sample size is sufficient.  This issue is likely to be 

exacerbated for some curvature metrics (metrics related to 𝐶𝐺  and 𝐶𝐻 in Eq. 

(C9) and (C12), respectively) that rely on information about relative gradients, 

especially in flat regions of the search space, as this is likely to result in infinite 

values. Consequently, these curvature metrics are the ones that result in high 

reject rates, even for low-dimensional problems and large sample sizes (e.g. 

Figure 2.3(g) and 2.3(h)), and have therefore been excluded from the clusters 
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in Figure 2.2. 

 

Cluster 5 consists of metrics belonging to the local search class, which have 

low dependence on sample size but high dependence on problem 

dimensionality. This is because these metrics are related to the size of the local 

basins within the search space, which is calculated based on the number of local 

optima identified in each basin. As problem dimensionality increases, the 

number of basins grows dramatically, making it virtually impossible to identify 

more than one local optimum in each basin. As a result, the values of the 

metrics become meaningless, even for relatively large sample sizes.  

 

Table 2.4 Metrics in Each Class in Different Clusters 

Metric Class 
(total size) 

No. of Metrics in the Cluster % of Metric 
Class in 

Cluster 1 
Cluster 

1 
Cluster 

2 
Cluster 3 

Cluster 
4 

Cluster 
5 

Excluded 
Metrics 

Convexity (4) 4 0 0 0 0 0 100 

Y-Distribution 
(3) 

2 1 0 0 0 0 66.7 

Level Set (18) 1 8 9 0 0 0 5.6 

Meta Model (9) 6 2 1 0 0 0 66.7 

ICoFS (10) 10 0 0 0 0 0 100 

Curvature (24) 4 0 0 5 0 15 16.7 

Local Search 
(21) 

12 1 1 0 7 0 57.1 

 

 

3.2 Validation of categorisation of fitness landscape 

metrics 
 

As mentioned in Section 2.4.2, five of the 39 Cluster 1 metrics are not suitable 

for application to real-world environmental problems. As a result, only the 34 

remaining metrics are validated using the real-world environmental modelling 

problems. To summarise these results, Figure 2.4 shows the number of samples 
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required for each of these metrics to achieve convergence for the ANNs with 

different numbers of hidden nodes. As discussed in Section 2.4.2, convergence 

was taken as the number of samples required for metric values to be within 

10% of the “true” value obtained for the maximum number of samples 

considered.  

 

As can be seen from Figure 2.4, 28 of these 34 metrics (82.4%) converge within 

2,000 samples, which is typically within 4% of the number of samples used to 

generate the “true” metric values (i.e. 50,000 for most metrics – see Figure 

A.1). For the vast majority of these metrics (22), converge occurs within 500 

samples, which is typically within 1% of the number of samples used to 

generate the “true” metric values. The results in Figure 2.4 clearly illustrate that 

there is no increase in the number of samples required for convergence with an 

increase in problem dimensionality (i.e. the number of hidden nodes). 

Consequently, these 28 metrics can be considered to have low dependence on 

sample size and problem dimensionality from a practical perspective, 

indicating that they are likely to provide a computationally efficient means for 

better understanding the fitness landscapes of a range of complex, highly-

dimensional, real-world environmental optimisation problems.  It should be 

noted that for some of the metrics, there is a slight increase in the number of 

samples required for convergence for lower problem dimensionalities (i.e. 

smaller number of hidden nodes). However, these variations are very small (i.e. 

on the order of hundreds of samples), compared with the 50,000 samples used 

to obtain the “true” metric values. 
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The six metrics that showed low dependence on sample size and problem 

dimensionality for the benchmark problems, but not for the real-world 

environmental problems, include four metrics belonging to the meta model 

class, one belonging to the ICoFS class and one belonging to the y-distribution 

class. These four meta model metrics all utilise single regression models that 

do not consider interactions between parameters. As interactions between 

parameters are likely to be a feature of real-world environmental modelling 

problems, the single regression models used in the four metrics in question are 

unlikely to represent the fitness landscapes of the environmental modelling 

problems considered. Consequently, these metric values are likely to become 

non-informative, requiring a larger number of samples for accurate calculation.  

In contrast, the lack of rapid convergence of the y-distribution (i.e. kurtosis) 

and ICoFS (i.e. 𝜖𝑠 ) metrics that appear to not be suitable for real-world 

environmental modelling problems is likely to be related to the scaling of 

fitness values for the problems considered, suggesting that the scaling of fitness 

values is more difficult to recognise by using samples from real-world 

problems than test functions. It is likely that different samples provide fitness 

values with different scaling, making these two metric values unstable for 

environmental modelling problems. 
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Figure 2.4 No. of Simulations until Values are Within 10% of the Values at 

50,000 Simulations  

 

3.3 Interpretation of metrics with low dependence on 

sample size and dimensionality 
 

Based on the results presented in Sections 3.1 and 3.2, there are 28 ELA metrics 

that appear to be suitable for application to real-world environmental 

optimisation problems, as they have been shown to have low dependence on 

sample size and problem dimensionality for a wide range of benchmark and 

real-world problems.  However, in addition to their computational tractability, 

the usefulness of these ELA metrics is also a function of the type of information 

they can provide about the different features of the fitness landscapes of 

environmental optimisation problems. 
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As shown in Table 2.5, the 28 suitable metrics cover six metric classes, 

excluding curvature metrics, and provide information on six of the eight major 

fitness landscape features. This provides the opportunity to obtain a better 

understanding of different attributes of a range of environmental optimisation 

problems in a computationally efficient manner.  For example, application of 

metrics such as {nn, rand}.ic.eps.max and {nn, rand}.ic.eps.ratio can provide 

information on the potential identifiability of environmental models (Shin et 

al., 2013; Gupta et al., 2006) that can complement information provided by 

more commonly used sensitivity analysis approaches (e.g. Razavi and Gupta, 

2015; Guillaume et al., 2019; Razavi et al., 2021). Specifically, information 

about the magnitude of multimodality and plateaus of fitness landscapes can 

provide information on the size of regions with non-unique parameters and 

information about search space homogeneity can provide insight into the 

distribution and location of these regions. 

 

Alternatively, ELA metrics can provide insight into which optimisation 

algorithm or optimisation algorithm parameterisation are most appropriate for 

a given problem (Maier et al., 2014; Gibbs et al., 2011; 2015). For example, 

{nn, rand}.ic.h.max, ela_local.center.dist_mean  and 

ela_local.fun_evals.median  can be used to obtain information about the degree 

of multimodality, distribution of optima regions and overall depth of optima 

region of the fitness landscape in a computationally efficient manner prior to 

the optimisation process.  If the fitness landscape is found to have low 

multimodality and the optima regions are shallow and converged to a small 
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area on the fitness landscape, use of a gradient-based optimisation approach 

might be most appropriate (Maier et al., 2019).  In contrast, if the fitness 

landscape is found to have high multimodality, with deep and widely 

distributed optima regions, use of global search evolutionary algorithms might 

be preferred (Maier et al., 2019).  The degree of multimodality and the presence 

of plateaus is also able to inform which values of the parameters that control 

the searching behaviour of evolutionary algorithms are most appropriate (see 

Munoz and Smith-Miles, 2017; Wang et al., 2020; Zecchin et al., 2005; 2012) 

and the degree of homogeneity of the search space is able to assist with 

determining whether there is value is adapting the values of the parameters that 

control the searching behaviour of evolutionary algorithms (e.g. Zheng et al., 

2017). 

 

Table 2.5 Features Represented by Suitable Metrics 

Metric Metric Class 
Required 

No. of 
Samples 

Feature Number (* Feature Names See 
Footnotes) 

1 2 3 4 5 6 7 8 

ela_conv.conv_prob Convexity <500 √ √   √    

ela_conv.lin_dev.orig Convexity <500 √        

ela_conv.lin_dev.abs Convexity <500 √        

ela_distr.skewness 
Y-

Distribution 
<500 √        

ela_level.lda_mda_10 Level Set <500 √ √       

ela_meta.lin_simple.intercept Meta Model <500      √   

ela_meta.quad_simple.adj_r2 Meta Model <2000   √      

nn.ic.h.max ICoFS <500  √       

nn.ic.eps.max ICoFS <2000 √     √   

nn.ic.eps.ratio ICoFS <2000 √     √   

nn.ic.m0 ICoFS <500  √       

rand.ic.h.max ICoFS <500  √       

rand.ic.eps.s ICoFS <500 √     √   

rand.ic.eps.max ICoFS <500 √     √   

rand.ic.eps.ratio ICoFS <500 √     √   

rand.ic.m0 ICoFS <500  √       
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ela_local.center.dist_lq Local Search <1000  √   √    

ela_local.center.dist_mean Local Search <500  √   √    

ela_local.center.dist_median Local Search <1000  √   √    

ela_local.center.dist_uq Local Search <500  √   √    

ela_local.center.dist_sd Local Search <500  √   √    

ela_local.fun_evals.min Local Search <2000        √ 

ela_local.fun_evals.lq Local Search <500        √ 

ela_local.fun_evals.mean Local Search <500        √ 

ela_local.fun_evals.median Local Search <500        √ 

ela_local.fun_evals.uq Local Search <500        √ 

ela_local.fun_evals.max Local Search <500        √ 

ela_local.fun_evals.sd Local Search <500        √ 
*1 - Global Structure 2 – Multimodality 3 – Separability 4 – Global to Local Optima 

Contrast     5 – Search Space Homogeneity 6 – Plateaus 7 – Variable Scaling 8 – Basin Size 

Homogeneity 

 

 

4  Summary and Conclusions 
 

Optimisation algorithms are used extensively for the development of 

environmental models and the identification of solutions to environmental 

problems. How well a particular algorithm performs on a given problem is a 

function of both algorithm behaviour and the characteristics of the problem 

being solved, as represented by the fitness landscape. While significant 

attention has been given to the development of algorithms with different 

behaviours, little effort has been devoted to better understanding problem 

characteristics, generally resulting in a brute-force approach to identifying 

algorithms and parameterisations that perform acceptably for a particular 

problem. This is despite the fact that a number of metrics have been developed 

to assist with identifying features of fitness landscapes, such as their global 

structure, their degree of multimodality and the presence of plateaus, the 

identification of which would assist in the selection of appropriate optimisation 

algorithms and parameterisations without the need for a brute-force approach. 
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The primary reason for the lack of adoption of fitness landscape metrics in 

practice is that the calculation of these metrics is based on samples from the 

fitness landscape, which can be computationally expensive for real-world 

environmental problems, as they are often based on complex and highly-

dimensional simulation models. In order to test whether this is the case, the 

degree of dependence on problem dimensionality and sample size of 89 fitness 

landscape metrics was assessed. Each metric was calculated for 72,000 

different sets of fitness landscape samples obtained from 2,400 fitness 

landscapes derived from commonly used benchmark functions, and their 

degree of dependence on problem dimensionality and sample size was 

assessed. Results show that 39 of the 89 metrics have low dependence on 

dimensionality and sample size, 34 of which are considered suitable for 

application to environmental problems. 

 

The low degree of dependence on problem dimensionality and sample size of 

these 34 metrics was tested on a number of real-world environmental modelling 

problems, corresponding to 7,590 sets of fitness landscape samples from 390 

fitness landscapes. Results indicate that 28 of the 34 aforementioned fitness 

landscape metrics also have low dependence on problem dimensionality and 

sample size for the real-world environmental modelling problems, often 

requiring fewer than 500 fitness landscape samples for convergence. These 28 

metrics cover a wide range of fitness landscape features, including their global 

structure, multimodality, separability, search space and basin size homogeneity 

and the presence of plateaus. 
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A limitation of this study is that although ELA metrics that have low 

dependence on problem dimensionality and sample size were identified using 

a large number of test functions with different dimensionalities and a wide 

variety of fitness landscape features, these mathematical functions are unlikely 

to represent all of the complexities and features of fitness landscapes associated 

with real-world optimisation problems. However, the fact that the majority of 

the ELA metrics that were found to have low dependence on sample size and 

problem dimensionality for the test functions also had low dependence on 

sample size and problem dimensionality for the real-world problems 

considered provides confidence in the generality of the findings presented. 

Another limitation of this study is that the ELA metrics can only be calculated 

for continuous optimisation problems, which excludes certain types of 

problems encountered in practice, such as the optimisation of water distribution 

systems using discrete pipe sizes (e.g. Zheng et al., 2017; Wang et al., 2020) 

and the optimisation of best-practice stormwater management options (e.g. Di 

Matteo et al., 2019). 

 

The findings that there are 28 fitness landscape metrics that are able to provide 

insight on a range of fitness landscape characteristics that appear to be suitable 

for application to real-world environmental optimisation problems opens the 

door to gaining greater insights and improving the efficiency of a range of 

environmental optimisation problems.  For example, these metrics can provide 

insight into the potential identifiability of the parameters of different 

environmental models, as well as information on the suitability of different 
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optimisation algorithms and parameterisations for particular environmental 

optimisation problems.  Consequently, future research efforts should focus on 

testing the applicability of the identified metrics to a wide range of real-world 

optimisation problems in order to better understand the features of their fitness 

landscapes and to check whether the features of these landscapes identified 

with the aid of the ELA metrics align with those identified in previous studies, 

providing further confidence in the usefulness of the metrics. In addition, there 

would be value in applying the metrics to the fitness landscapes of the 

individual objective functions for multi- and many-objective optimisation 

problems, and to better understand the extent to which knowledge of the 

features of fitness landscapes can inform the selection of appropriate 

optimisation algorithms and their parameterisations.
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Abstract 

 

Artificial Neural Network (ANN) models have been used for hydrological and 

water resources modelling for several decades, where the problem of the 

calibration of ANN models has drawn much attention. The corresponding 

literature has largely focused on obtaining an optimal calibrated model by using 

appropriate inputs and ANN structure and optimisation algorithms. However, 

the selection of appropriate models and calibration procedures is traditionally 

undertaken through a trial-and-error process, with little insight as to the links 

between the problem properties, ANN model structure and calibration 

difficulty. Recognizing that calibration is the process of finding the minima on 

an error surface, calibration difficulty can be considered as a function of the so-

called fitness landscape properties of this surface. In this chapter, a set of fitness 

landscape metrics are adopted to characterise the features of the error surface 

of ANN models, including the global convexity structure, the surface 

roughness and multi-modality, and separability. A large-scale computational 

study is undertaken, involving the application of multi-layer perceptrons 

(MLPs) to a range of environmental problems, where the model structure is 

systematically varied in order to understand the impact of a changing MLP 

model structure on the properties of the calibration error surface. This work 

helps to explain the reasons for an increase or decrease in calibration difficulty, 

and in doing so, sheds new light on findings in past literature. 
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Highlights: 

• Exploratory fitness landscape metrics can be used to 

characterise the features of the error surfaces of ANNs 

• The error surfaces of simple ANNs have a more well-defined 

overall shape and have fewer local optima 

• The error surfaces of complex ANNs are flatter and have many 

distributed, deep local optima 

• Simple ANNs can be calibrated successfully using gradient-

based methods 

• Complex ANNs are best calibrated using a hybrid approach 

combining metaheuristics with gradient-based methods 

 

Keywords 

Artificial neural networks (ANNs), multi-layer perceptrons (MLPs), 

calibration (training), optimization, fitness landscape, error surface, 

exploratory landscape analysis (ELA) 
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1 Introduction 
 

Artificial neural networks (ANNs) have been used extensively for hydrological 

modelling over the last several decades, including water quality forecasting 

(Maier and Dandy, 1999; Lischeid, 2001; Bowden et al., 2005; Cigizoglu and 

Kisi, 2006; Kisi, 2010; Bayram et al., 2012; Lafdani et al., 2013; Olyaie et al., 

2015; Zounemat-Kermani et al., 2016; Amamra et al., 2018; Meral et al., 2018; 

Banadkooki et al., 2020;  Kim et al., 2021), water quantity forecasting 

(Sajikumar and Thandaveswara, 1999; Zealand et al., 1999; Gautam et al., 

2000; Kim and Barros, 2001; Sivakumar et al., 2002; Zhang and Govindaraju, 

2003; Rajurkar et al., 2004; Coulibaly and Baldwin, 2005; Kingston et al., 

2005; Wang et al., 2006; Yu and Liong, 2007; Chua et al., 2008; Wu et al., 

2009; Adamowski and Sun, 2010; Khatibi et al., 2011; Jothiprakash and Magar, 

2012; Piotrowski and Napiorkowski, 2013; He et al., 2015; Humphrey et al., 

2016; Tan et al., 2018; Fathian et al., 2019; Cheng et al., 2020), water level 

forecasting (See and Openshaw, 1999; Phien and Kha, 2003; Pereira Filho and 

Dos Santos, 2006; Chau, 2006; 2007; Leahy et al., 2008; Tiwari and Chatterjee, 

2010; Hajji et al., 2012; Pan et al., 2013; Nourani and Mousavi, 2016; 

Mukherjee and Ramachandran, 2018; Kurian et al., 2020; Xie et al., 2021), 

evaporation modelling (Kişi, 2006; 2013; Cobaner, 2011; Chaudhari et al., 

2012; Kişi and Tombul, 2013; Feng et al., 2018; Ferreira et al., 2019; 

Maroufpoor et al., 2020; Nourani et al., 2020a; 2020b), the prediction of soil 

properties (Elshorbagyand Parasuraman, 2008; Parchami-Araghi et al., 2013; 

Trenouth and Gharabaghi, 2015; Zanetti et al., 2015; Zhuo et al., 2016; 
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Rahmati, 2017; Patrignani and Ochsner, 2018; Li et al., 2020; Jian et al., 2021), 

water temperature forecasting (Sahoo et al., 2009; Sabouri et al., 2013; 2016; 

Cole et al., 2014; DeWeber and Wagner, 2014; Graf et al., 2019), and some 

other applications (Xu et al., 2017; Nourani et al., 2017; Zubaidi et al., 2018; 

Nguyen-ky et al., 2018; Rezaali et al., 2021).  As with all models, calibration 

is a critical component of the development of ANN models (termed “training” 

in the ANN literature).  However, for ANN models, calibration takes on 

additional importance. Firstly, compared with process-driven models (see 

Mount et al., 2016), the structure of ANN models is generally unknown and is 

often determined via a trial-and-error process - models with different structures 

are calibrated and the model structure that performs best on the calibration data 

(or test data if cross-validation is used) is selected (Maier et al., 2010; Wu et 

al., 2014). Consequently, the selected model structure is a function of the 

success of the calibration process, in that, if the calibration does not identify 

the combination of model parameter values that corresponds to the lowest error 

for a given model structure, the conclusions about which model structure is 

most appropriate can be incorrect. Secondly, given the black-box nature of 

ANNs, the only way to extract meaningful information about the system being 

modelled is via analysis of the calibrated model structure and parameters 

(Dimopoulos et al., 1995; Lek et al., 1996; Maier and Dandy, 1997; Kingston 

et al., 2006; Mount et al., 2013; Humphrey et al., 2017).  Consequently, the 

model information obtained is a function of the success of the calibration 

process, and for reasons outlined above, a poorly performing calibration 

process can lead to inaccurate information. 



65 

                                                                                                  Chapter 3  

 

 

Given the importance of the calibration of ANN models, it is not surprising that 

this issue has received significant attention in literature. An area of particular 

focus has been the comparison of optimisation algorithms for calibrating ANN 

models (Kingston et al., 2005; Wu et al., 2013), with many studies reaching 

contradictory conclusions about which optimisation approaches perform better, 

while providing limited insight into why this might be the case. For example, 

Piotrowski and Napiokowski (2011) compared the performance of differential 

evolutionary algorithm (DE), particle swarm optimisation (PSO), and 

differential evolution with that of global and local neighborhoods (DEGL) and 

Levenberg–Marquardt (LM) algorithms for calibrating ANN models, where 

they found that DE had very poor performance, and LM, a second-order 

gradient algorithm, outperformed all metaheuristics. In contrast, Maroufpoor et 

al. (2020) found that LM often prematurely converged to local optima, and grey 

wolf optimisation (GWO), a metaheuristic, could obtain better solutions than 

LM.  Second-order gradient algorithms were also found to perform worse than 

first-order gradient methods by Maier and Dandy (1999). 

 

In order to better understand potential reasons for the contrasting findings in 

the studies outlined above, it is important to recognize that the success of a 

particular calibration approach is not only a function which algorithm is used, 

but also a function of the difficulty of the calibration problem itself (Maier et 

al., 2014). Calibration problems can be represented geometrically by the error 

surface (otherwise known as the error function, fitness function, fitness 

landscape or response surface), which consists of the relationship between 
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different values of model parameters and the corresponding calibration errors 

(Maier et al., 2019). As the purpose of calibration is to identify the set of model 

parameters that result in the smallest calibration error (akin to finding the 

lowest point in the error function), calibration difficulty is a function of the 

features of the error surface. For example, if the error surface is smooth with a 

single, well-defined minimum, this optimal point is relatively easy to find. 

Conversely, if the error surface is “rough”, that is, it possesses many minima 

of similar or equal value (i.e. local minima), the overall global minimum is 

difficult to find (Guillaume et al., 2019). Similarly, the presence of flat regions, 

or plateaus, in the error function generally make it less computationally 

efficient to guide the search towards regions with lower error. 

 

Given that many ANN models contain a relatively large number of parameters 

that need to be calibrated, it is difficult to visualize their error surfaces 

(Kingston et al., 2005). An alternative approach to gaining insight into the 

features of the error surfaces of ANNs with different model structures is with 

the aid of exploratory landscape analysis (ELA) metrics (Mersmann et al., 

2010). While these metrics have been shown to be able to identify a range of 

fitness landscape (error surface) features on a number of mathematical 

benchmark problems (Mersamann et al., 2011; Munoz et al., 2015b; Munoz 

and Smith-Miles, 2017), their application to high-dimensional real-world 

problems has been limited as their computational requirements are generally 

considered prohibitive. This is because these metrics are calculated based on 

samples from the parameter space and the number of samples required to obtain 
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meaningful metric values has been shown to increase exponentially with 

problem dimensionality, at least for some metrics (Munoz et al., 2015a). 

However, recently Zhu et al. (2021) identified a number of ELA metrics that 

have low dependence on problem dimensionality and sample size, making them 

computationally tractable for application to higher-dimensional problems. This 

opens the door to using these metrics to gain a better understanding of the 

features of the error surface, and hence how the calibration difficulty of ANNs 

is likely to change with model structure. 

 

Consequently, the overall aim of this chapter is to assess whether ELA metrics 

that have low dependence on problem dimensionality and sample size are able 

to provide meaningful information on the potential calibration difficulty of 

ANN models of different complexity. The remainder of this chapter is 

organised as follows. Details of the methodology used to achieve the above 

objectives are given in Section 2, followed by the results and discussion in 

Section 3. A summary and conclusions are provided in Section 4. 

 

2 Methodology 
2.1 Overview 

 

In order to better understand the impact of ANN model structure on calibration 

difficulty, the features of error surfaces of ANNs for a range of diverse case 

studies and model structures are determined with the aid of a number of ELA 

metrics (Figure 3.1).  As can be seen, four case studies are used, including 

Kentucky River Catchment Rainfall‐Runoff Data (USA) (hereon refer to as the 
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Kentucky Runoff case), Murray River Salinity Data (Australia) (Murray 

Salinity case), Myponga Water Distribution System Chlorine Data (Australia) 

(Myponga Chlorine case), and South Australian Surface Water Turbidity Data 

(Australia) (SA Turbidity case) (see Section 2.2 for details). These are selected 

as they represent a variety of hydrological modelling problems that have 

different numbers of inputs and data series lengths, therefore representing a 

diversity of error surfaces. These case studies have also been used as 

benchmark problems in a number of previous studies investigating the impact 

of different ANN model development practices (e.g. Wu et al., 2013; 

Humphrey et al., 2017). 

 

Multi-layer perceptrons (MLPs) are used as the ANN model architecture, as 

this has been by far the dominant architecture used in previous ANN 

applications in hydrology and water resources (see Maier et al., 2010; Wu et 

al., 2014). For each case study, a single layer of hidden nodes is used. The 

number of hidden nodes is varied between 0 and 10, resulting in numbers of 

model parameters (connection and bias weights) ranging from 1 to 120. Ten 

stochastic replicates of each MLP model with a given number of hidden nodes 

(0, 1, 2, …, 10) for each of the four case studies are generated, resulting in a 

total of 440 error surfaces (Figure 3.1). Further details of the MLP models are 

given in Section 2.3. 
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Figure 3.2  Outline of methodology 

 

In order to enable the ELA metrics to be calculated, 2,000 samples of the error 

surfaces are generated for each of the 11 model structures and four case studies 

(Mersmann et al., 2010).  This is considered adequate based on the findings of 

Zhu et al. (2021). These sets of samples for each of the 440 error surfaces are 

used to calculate a corresponding set of values for 5 ELA metrics. These 

metrics are selected as (i) they have been found to have low dependence on 

problem dimensionality and sample size (Zhu et al. 2021), thereby enabling 
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them to be applied to real-world problems and (ii) because they are able to 

identify a wide range of features of an error surface, enabling a comprehensive 

assessment of the impact of model structure on calibration difficulty to be 

performed (see Section 2.4 for details). 

 

The above analyses were conducted using the University of Adelaide’s 

supercomputing facilities, which consist of 48 Skylake nodes, with 80 CPUs 

and 377GB of memory per node. The R package ValidANN (Humphrey et al., 

2017) is used for MLP development, Latin Hypercube Sampling (generated 

using the lhs package in R) is used for sample generation and the R package 

FLACOO (Kerschke and Trautmann, 2016) is used for the calculation of the 5 

fitness landscape metrics.  

2.2 Case Studies 
 

As outlined above, the case studies used in this chapter are the Kentucky 

Runoff, Murray Salinity, Myponga Chlorine, and SA Turbidity cases. Further 

information on the data sets used for these case studies is provided in Table 3.1. 

The input selection and data splitting undertaken by Wu et al., (2013) is used, 

with the calibration datasets used as the basis for ELA metric calculation. 

 

 

 

 

 

 



71 

                                                                                                  Chapter 3  

 

 

Table 3.1 Case Study Information 

Case Study 
Kentucky 

Runoff  

Murray 

Salinity 

Myponga 

Chlorine 

South Australia 

(SA) Turbidity 

Previous 

Studies 

Jain and 

Srinivasulu 

(2006); Wu et 

al. (2013) 

Maier and 

Dandy 

(1996); 

Bowden et al. 

(2002); Wu et 

al. (2013); 

Humphrey et 

al. (2017) 

Bowden et al. 

(2006); May 

et al. (2008); 

Wu et al. 

(2013) 

Maier et al. 

(2004); Wu et al. 

(2013); 

Humphrey et al. 

(2017) 

Total 

Available 

Data Points 

4749 2028 2773 203 

Potential No. 

of Inputs 
20 416 384 6 

Selected No. 

of Inputs 
2 2 10 5 

Model Output Flow (t+1) 
Salinity 

(t+14) 

Chlorine 

(t+24) 

Filtered Water 

Turbidity 

Calibration 

Data Points 
2842 1215 1662 120 

 

 

2.3 ANN Models and Data Transformations 
 

The inputs and outputs of all cases used in this chapter are summarised in Table 

3.2. Inputs 𝑋 are transformed to the standard normal distribution (𝑋′~𝑁(0, 1)) 

and outputs are scaled linearly between 0.1 and 0.9, in order to be aligned with 

Humphrey et al., (2017). The hyperbolic tangent function is used as the MLP 

transfer function between input nodes and hidden nodes, and a linear function 

is used between hidden nodes and output nodes. 
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Table 3.2 Selected Inputs and Outputs of Four Data Sets 

Case Study Inputs 
Input 

Lags 
Output(s) Output Lags 

Kentucky 

Runoff 
Flow t, t - 1 Flow t + 1 

Murray 

Salinity 

Mannum salinity t Murray 

Bridge 

salinity 

t + 14 
Waikerie salinity t 

Myponga 

Chlorine 

Myponga WTP 

chlorine 
t 

Aldinga 

chlorine 
t + 24 

Myponga tank 

chlorine 
t, t - 17 

Cactus Canyon 

Temperature 
t - 13 

Aldinga chlorine 

t, t – 1, t – 

3, t – 24, t 

– 27, t - 

47 

South 

Australian 

Turbidity 

Raw Water 

Turbidity 
- 

Filtered water 

turbidity 
- 

Raw Water pH - 

Raw Water Colour - 

Raw Water UVA - 

Alum dose - 

 

2.4 Fitness Landscape Metrics 
 

As shown in Figure 3.1, 5 ELA metrics, found to have low dependence on 

dimensionality and sample size by Zhu et al., (2021), are used to analyze the 

features of error surfaces. A total of 5 different features described in previous 

studies (Mersmann et al., 2010; Munoz et al., 2015a) are determined by these 

metrics. Details of these metrics and features are presented below. 

 

Global Structure, and the mean pairwise convexity deviation 

 

The global structure refers to the general shape of the error surface. Global 

optima of error surfaces with a more well-defined global structure (e.g. a “big-

bowl” shape) are easier to find, as such error surfaces are able to guide 
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optimisation algorithms into promising regions of the search space.  In contrast, 

the global optimum is more difficult to find for error surfaces with a less well-

defined global structure (e.g. a “flat” landscape or a landscape with slopes that 

change direction frequently or lead to different regions), as there is little 

consistent information to guide optimisation algorithms towards this optimum. 

The mean pairwise convexity deviation metric (Mersmann et al., 2010) 

calculates the convexity of the error surface based on pairs of samples, where 

convexity is measured with respect to the line between the two points. 

Convexity is related to the global shape of the error surface. Typically, a surface 

with positive convexity refers to a well-defined global structure, which makes 

it easier to find global optima as outlined above. Non-positive convexity, on 

the other hand, can make the search process more difficult, as in this case the 

gradient information provides little guidance to the search. 

 

Multimodality and the maximum entropy of information content 

 

The landscape feature multimodality refers to the number of local optima on 

the error surface, which is also highly correlated with the degree of “roughness” 

of the error surface. Error surfaces with higher degrees of multimodality have 

a higher density of local optima, making it more difficult to find the global 

optimum. In contrast, error surfaces with a lower multimodality have a lower 

density of local optima, making it easier to identify the global optimum. 

Multi-modality can be measured using the maximum entropy of information 

content metric (Hmax) (Munoz et al., 2015a). This metric builds a ternary 

sequence based on the fitness values of a sequence of samples, where values of 
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“1”, “-1” and “0” are used in the sequence to refer to fitness values of a sample 

that is bigger, smaller and equal to that of the following sample. The sequence 

of a rough surface (a high multi-modal surface) will involve frequent changes 

in number. In contrast, a smooth surface (an error surface with low 

multimodality) will have a relatively consistent sequence. The maximum 

entropy of the sequence is calculated to characterise the frequency of change in 

the sequences. 

 

Plateaus and the epsilon of information content 

 

Plateaus refer to regions of flatness in an error surface. Searching on error 

surfaces with more plateaus is generally less computationally efficient, as such 

error surfaces contain regions where there are minimal differences in function 

values, providing less distinct information to guide optimisation algorithms 

into promising areas. In contrast, error surfaces with fewer plateaus generally 

make searching more computationally efficient, as they provide useful 

information more consistently throughout the landscape. 

The epsilon of information content metric (Munoz et al., 2015a) utilizes the 

same sample sequence as Hmax to characterise the plateaus. A tolerance value 

() is assigned for comparison of whether the fitness values of two neighboring 

samples are to be considered as equal. The corresponding ternary sequence is 

generated as for Hmax but where the strict equality for label “0” is replaced by 

the  interval about the given sample value. The epsilon of information content 

metric value is the value of  that returns a sequence completely of the label 
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“0”. A relatively flat surface will return a very small  value, whereas a highly 

variable surface will return a large  value. The logarithm of the  values is 

used for result presentation. 

 

Basin size homogeneity and associated metrics  

 

Basin Size homogeneity is associated with the properties of local optima on the 

error surface. This feature refers to both the distribution of local optima and the 

difficulty in finding local optima. Firstly, with regard to the optima distribution, 

if local optima are contained within a small sub-region of the entire parameter 

space, it is easier for an algorithm to find the global optimum, or the near global 

optimum region. If local optima are spread throughout the error surface, it can 

be more difficult for an algorithm to find the global optimal region. Secondly, 

difficulty in finding local optima refers to the number evaluations required by 

a gradient based heuristic to find the local optima from random initial start 

points. This is related to the efficiency of finding local optima. Error surfaces 

that require a large number of evaluations to find the local optima are 

considered hard to calibrate. 

 

The median basin centroidal distance is a metric that assesses the distribution 

of local basins (containing local optima) on the error surface. The metric finds 

a large pre-specified number of local optima using a gradient algorithm, and 

uses hierarchical clustering to collate local optima within a very small distance 

in the same local basin. It calculates the pairwise distance between the 
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identified local basins and uses the median to summarise the average distance.  

The second metric to characterise basin size homogeneity is the median search 

function evaluations metric, which assesses the difficulty in finding local 

optima. This metric refers to the median number of function evaluations 

required to identify each local optimum. It can indicate how extensive and 

complex the basin is for a given local optimum. 

 

3 Results and Discussion 
 

The results for each of the 5 ELA metrics are given in Sections 3.1 to 3.5, 

followed by a summary and discussion of the results in Section 3.6. 

 

3.1 Mean pairwise convexity deviation  
 

The results of the mean pairwise convexity deviation are shown in Figure 3.2. 

The results represent the deviation between the fitness value on the error 

surface from that of a linear regression line, so that negative results indicate 

that the error surface is positively convex. The results show that the error 

surfaces of the MLP models become more convex as the number of hidden 

nodes increases, except for the zero hidden node cases, where MLPs have a 

linear structure (i.e. the hyperbolic tangent transformation from the hidden 

layer is not utilized). This increase in convexity indicates a change of error 

surface structure as illustrated in Figure 3.2(c).  

 

This is a key result, as it shows that models that have more hidden nodes have 

an advantage over models with fewer hidden nodes, as a more convex structure 
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can provide clearer gradient information to guide the search through the 

calibration process. However, the decreased calibration difficulty of models 

with more hidden nodes due to this increase in convexity is potentially 

counteracted by the increased calibration difficulty resulting from an increase 

in the dimension of the error surface. Nevertheless, the increase in convexity 

with an increase in the number of hidden nodes could explain why optimisation 

algorithms can still find good solutions for models with a large number of 

hidden nodes (and consequently parameters), even though the problems are 

more highly dimensional.  

 

As the number of hidden nodes increases, so does the number of parameters, 

and so a similar pattern is observed in Figure 3.2(b) as in Figure 3.2(a). In 

interpreting this figure, it is important to note that the Kentucky Runoff and 

Murray Salinity cases represent smaller MLPs (with only two inputs) in 

comparison to the larger SA Turbidity case (5 inputs) and the largest Myponga 

Chlorine case (10 inputs). It is seen in Figure 3.2(b), that for a given number of 

parameters (i.e. error surface dimension), the smaller MLPs are more convex 

than the larger ones, implying that increasing the number of inputs can serve to 

reduce the convexity of an MLP’s error surface, making it more difficult to 

calibrate. This highlights the potential importance of using formal input 

variable selection (IVS) algorithms for identifying the smallest number of 

inputs that have a significant impact on model performance (e.g. Galelli et al., 

2014). 
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Figure 3.2 Results of Mean Pairwise Convexity Deviation: (a) Change 

through No. of Hidden Nodes; (b) Change through No. of Parameters; (c) 

Change of the Global Structure 

 

 

 

 

 

3.2 Maximum entropy of information content (Hmax)  
 

Hmax represents how rough or how multi-modal the error surface is, where a 

higher Hmax refers to a rougher error surface, and vice versa. Figure 3.3 presents 

the results of Hmax versus the number of hidden nodes (Figure 3.3(a)) and the 

Increase of No. 

of Hidden 

Nodes 
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associated number of parameters (Figure 3.3(b)) for all case studies. As shown 

Figure 3.3(a), Hmax grows dramatically as the number of hidden nodes increases 

to larger than 3 (and the number of parameters is greater than 15). This increase 

in Hmax indicates an increase in the number of oscillations in, and hence the 

roughness of, the error surface, as the number of hidden nodes increases, as 

illustrated in Figure 3.3(c). However, after this initial increase, Hmax reaches a 

plateau for numbers of hidden nodes ranging from 3 to 10. This is because the 

error surfaces of these ANNs is already extremely rough, with Hmax values close 

to their theoretical maximum of 1.0.   
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Figure 3.3 Results of the Hmax: (a) Change through No. of Hidden Nodes; (b) 

Change through No. of Parameters; (c) Change of the Multimodality / 

Roughness 
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3.3 Epsilon of information content 
 

The epsilon of information content represents the range of the fitness values of 

the error surface, where a big  indicates a big range in fitness values and a 

small  refers to a flatter error surface. Figure 3.4 shows the result of the epsilon 

of information content for all case studies. These cases show a clear trend of an 

increase in surface flatness with an increasing number of hidden nodes 

(evidenced in Figure 3.4(a)), as illustrated in Figure 3.4(c)). In this figure, it is 

also seen that models with more inputs have a flatter structure than models with 

fewer inputs (that is, compare the high input case of Myponga Chlorine with 

the low input cases of Kentucky Runoff and Murray Salinity). Even when the 

number of parameters is the same for models with a different number of inputs 

(i.e. consider points intersecting a vertical line in Figure 3.4(b)), models with 

more inputs still show a flatter surface than those with a fewer number of 

inputs.  This again highlights the importance of the use of formal IVS 

algorithms, as discussed in Section 3.1. 
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Figure 3.4 Results of the Epsilon of Information Content: (a) Change 

through No. of Hidden Nodes; (b) Change through No. of Parameters; (c) 

Change of the Prevalence of Plateaus 
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3.4 Median basin centroidal distance  
 

Median basin centroidal distance characterises the distribution of local basins 

(and associated local optima) across the error surface. A bigger distance refers 

to a greater spread of basins, and a small distance refers to basins clustered in 

a small region of the error surface. Figure 3.5 presents the results of this metric 

for all cases. The plots for all cases start at a 0 distance, as only one optimum 

can be found for ANNs with no hidden nodes.  However, for one or more 

hidden nodes, the distance increases almost linearly with an increase in the 

number of hidden nodes. As seen in Figure 3.5(b), there is a strong consistency 

across the cases of basin distance for a given number of parameters, indicating 

the distance is more dependent on the number of parameters, regardless of the 

number of hidden nodes. This aids in the interpretation of Figure 3.5(a), where 

it is seen that, for a given number of hidden nodes, the larger cases (Myponga 

Chlorine and SA Turbidity) possess a greater basin distance (i.e. more inputs 

increase the basin distance). 

 

An increase in the distance between local optima is considered a disadvantage 

for optimisation, as this means algorithms have to explore a larger area on the 

error surface in order to identify the global optimum from the distributed local 

optima, compared with the cases where the local optima are clustered in a 

relatively small region (see Figure 3.5(c)). Therefore, models with many 

parameters require the use of optimisation algorithms with a strong exploration 

capacity, in order to be able to search through the entire space without missing 

any local optima or pre-maturely converging to sub-optimal sub-regions (see 
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Maier et al., 2019). 

  

 

 
 

Figure 3.5 Results of Median Basin Centroidal Distance: (a) Change through 

No. of Hidden Nodes; (b) Change through No. of Parameters; (c) Change of 

the Distribution of Local Basins 
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3.5 Median search function evaluations  
 

The median search function evaluations metric measures the difficulty of 

identifying local optima through a gradient-based local search. A larger number 

of evaluations indicates that the error surface is more difficult to optimise. As 

shown in Figure 3.6(a), as with the median basin centroidal distance, the 

number of evaluations increases near linearly for an increasing number of 

hidden nodes (with the larger cases requiring more evaluations). This expected 

result can be explained by considering Figure 3.6(b), where the function 

evaluations increase near linearly with the MLP parameter number, where the 

increase can be directly attributed to the increases in error surface dimension 

(i.e. higher dimensional surfaces require more evaluations). This is illustrated 

in Figure 3.6(c), where basins with local optima of MLPs with a smaller 

number of parameters are relatively small and easy to search, whereas those of 

MLPs with larger numbers of parameters are relatively large and spreading, 

resulting in difficulty in exploiting the local optima in the basin.  
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Figure 3.6 Results of Median Search Function Evaluations: (a) Change 

through No. of Hidden Nodes; (b) Change through No. of Parameters (c) 

Change of the Error Surface Nearby the Local Optima 
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3.6 Discussion 
 

Based on the results presented in Sections 3.1 to 3.5, the error surfaces of MLP 

models become more complex as the number of hidden nodes increases, 

irrespective of case study, as illustrated conceptually in Figure 3.7. The key 

change is that as the number of hidden nodes increases, the general shape of 

the error surface structure becomes flatter overall, whilst also becoming 

rougher, with an increasing number of local optima with smaller and deeper 

basins of attraction widely spread across the entire surface. Overall, the global 

structure of the error surface was found to be more related to the number of 

hidden nodes, while the features related to multimodality and local basin 

distribution were found to be related to the number of parameters. 
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Figure 3.7 Illustration of How a 1-D Slice of the Error Surface Changes due 

to an Increase in the Number of Hidden Nodes / Parameters: (a) Small 

MLPs; (b) Large MLPs 

 

The above findings are in agreement with the conclusions of Maier and Dandy 

(1998a, b), who found that, based on the results of extensive calibration trials 

on the Murray Salinity case study using MLPs with different numbers of inputs 

and hidden nodes, the error surfaces of complex MLP ANNs have large 

plateaus with many local optima that are deep and have steep slopes. The 

existence of many local optima for complex MLPs was also demonstrated by 

Kingston et al. (2005), who produced 3-D error surface plots of an ANN 
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rainfall-runoff model by fixing all connection weights to their optimal values 

while altering two weights at a time between a set of pre-determined limits. 

 

The above results suggest that it is more difficult to calibrate complex ANN 

models when calibration methods are used that do not have the ability to 

explore different regions of the error surface widely. This is because more 

complex models have error surfaces with a larger number of local optima, in 

which calibration approaches with low exploratory capability, such as gradient-

based optimisation algorithms, can become trapped (see Maier et al., 2019). 

This is why the commonly used back-propagation (BP) and Levenberg-

Marquardt (LM) algorithms have been found to perform relatively poorly on 

more complex MLP ANNs in previous studies. For example, Maier and Dandy 

(1996) found that model performance decreased with an increase in the number 

of model parameters when the BP algorithm was used for calibrating models 

with different numbers of inputs and hidden nodes for the Murray Salinity case 

study.  Similarly, Piotrowski and Napiorkowski (2011) found that the 

variability in calibration performance increased for calibration trials from 

different starting positions in model parameter space when a LM algorithm was 

applied to more complex ANN models, suggesting increased difficulty in 

finding better solutions for more complex models. 

 

Conversely, the above results also explain why the relative performance of 

calibration approaches with a greater ability to explore the search space has 

been shown to increase for more complex ANN models, as they have a greater 
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ability to escape local optima and find better regions in the error surface.  For 

example, for the Murray Salinity case study, Maier and Dandy (1998a) found 

that the performance of the BP algorithm increased for complex models when 

the exploratory ability of the algorithm was improved by increasing the step 

size used to explore the error surface. In addition, a number of studies have 

found that metaheuristics, which are known for their increased exploration 

ability (see Maier et al., 2019), are able to achieve better calibration 

performance than gradient-based methods for more complex ANNs. For 

example, Kingston et al. (2005) found that a Genetic Algorithm (GA) and the 

Complex Shuffled Complex Evolution algorithm outperformed the BP 

algorithm for a complex rainfall-runoff MLP, and Maroufpoor (2020) found 

that a Grey Wolf Optimisation algorithm outperformed the LM algorithm for 

calibrating complex MLPs ANNs for estimating reference evapotranspiration. 

However, although the greater exploratory ability of metaheuristics enables 

them to find better regions in complex error surfaces, because of their decreased 

exploitative capability, they generally have difficulty in finding the bottom of 

the deep, narrow local optima that are a feature of the error surfaces of complex 

MLP models. This explains why Piotrowski and Napiorkowski (2011) found 

that while the average performance of evolutionary algorithms over a number 

of calibration trials (from different starting positions in model parameter space) 

was better than that of the LM algorithm, the LM algorithm was able to find 

the best solutions in individual trials, provided the number of starting positions 

was sufficiently large. This also explains why a number of studies have found 

that a hybrid approach (as part of which a metaheuristic is used to find good 
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regions in the error surface that are then used as starting positions for gradient-

based approaches) have been found to result in improved calibration 

performance of complex ANNs.  For example, Alavi and Gandomi (2011) used 

simulated annealing (SA) coupled with a LM algorithm, Bahrami et al., (2016) 

coupled SA and GAs with a LM algorithm, and Chau (2007) used a split-step 

particle swarm optimisation (PSO) algorithm, which coupled standard PSO and 

LM algorithms. Consequently, the use of such hybrid algorithms is 

recommended for the calibration of complex MLP ANN models. 

 

4 Summary and Conclusions 
 

Calibration is an important component of the development of any model, but is 

especially critical for ANNs, as the quality of the calibration not only 

determines values of the unknown model parameters, but also the structure of 

the model and the degree to which underlying system knowledge can be elicited 

from the calibrated model. The success of model calibration is a function of 

how well suited the optimisation algorithm used is to exploring the error 

surface under consideration. While there have been many studies comparing 

the performance of different optimisation algorithms, existing literature has 

been largely silent on the properties of the error surface of ANNs with different 

structures, making it difficult to understand and explain why certain 

optimisation algorithms perform better than others, and which optimisation 

approaches are preferred, under particular circumstances. 
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This chapter has addressed this shortcoming by demonstrating that five 

exploratory landscape analysis (ELA) metrics that have been shown to have 

low dependence on problem dimensionality and sample size in previous studies 

can be used to better understand the features of the error surfaces of ANNs of 

varying complexity. Based on the results of four water quantity and quality case 

studies from the literature (Kentucky Runoff, Murray Salinity, Myponga 

Chlorine, SA Turbidity), it has been demonstrated that MLPs with a smaller 

number of hidden nodes and parameters are easier to calibrate, as they have a 

more well-defined overall shape that is able to guide optimisation algorithms 

to better regions in the error surface more easily. Additionally, the error surface 

of smaller MLPs is smoother, so that it is harder for algorithms to be trapped 

in local optima. In contrast, the generally flatter error surface of MLPs with 

more parameters and hidden nodes provides limited information to guide the 

search to better regions in the error surface. In addition, the higher level of 

multimodality / roughness of larger MLPs can also make it more difficult to 

identify the global optimum, especially for optimisation algorithms with 

limited exploration capacity, such as gradient-based methods. 

 

On the other hand, as error surfaces of larger MLPs are more convex than those 

of smaller MLPs, which results in better-defined gradient information in local 

regions, it should be easier to converge to the local optima of larger MLPs. 

However, this is also likely to lead to premature convergence to local optima, 

rather than the identification of the global optimum. In addition, the presence 

of these widely distributed, narrow and deep local optima in the error surfaces 
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of more complex MLPs means that hybrid approaches to calibration are likely 

to result in better performance. This is because such approaches use algorithms 

with higher degrees of exploration, such as metaheuristics, in the initial stages 

of the calibration to find good regions in the error surface, followed by 

algorithms with a higher degree of exploitation, such as gradient methods, in 

the latter stages of calibration, to enable good locally optimal, or globally 

optimal, solutions to be identified. 

 

 

While the findings of this study highlight the potential of using ELA metrics 

for better understanding the error surfaces of MLPs of different complexity for 

a range of case studies, thereby enabling light to be shed on the findings of 

previous studies, further analysis is needed to generalize the results more 

broadly.  This would include application of the metrics to a broader range of 

case studies and types of ANNs.  In addition, the findings of this research open 

the door to developing evidence-based approaches to tailoring optimisation 

methods and parameterisations (see Wang et al., 2020; Zheng et al., 2017) for 

calibrating ANN models of different types and complexity based on the 

knowledge of error surface features, rather than relying on a brute-force 

approach to using a range of optimisation approaches and picking the one that 

performs best for the problem at hand. 
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Abstract 

 

The ease and efficiency with which conceptual rainfall runoff (CRR) models 

can be calibrated, as well as issues related to the uniqueness of their parameters, 

has received significant attention in literature. While several studies have tried 

to gain a better understanding of the underlying factors affecting these issues 

by examining the features of the model error surfaces, this has generally been 

done in an ad-hoc fashion using lower-dimensional representations of higher-

dimensional surfaces. In this chapter, it is suggested that exploratory landscape 

analysis (ELA) metrics can be used to quantify key features of the error 

surfaces of CRR models, including their roughness and flatness, as well as their 

degree of optima dispersion. This enables key error surface features to be 

compared for CRR models with different combinations of attributes (e.g. model 

structure, catchment climate conditions, error metrics and calibration data 

lengths and composition) in a consistent, efficient and easily communicable 

fashion. Results from the application of these metrics to the error surfaces of 

420 CRR models with different combinations of the above attributes indicate 

that increasing model complexity results in an increase in relative error surface 

roughness and relative optima dispersion and that, while increasing catchment 

wetness increases the relative roughness of error surfaces, it also decreases 

optima dispersion. This suggests that in this particular study, optimisation 

efficiency might decrease with model complexity and catchment wetness, 

while optimisation difficulty may increase and parameter uniqueness might 
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decrease with model complexity and catchment dryness. This finding does not 

implicate the desirability of using simpler models, but highlights the potential 

value of the novel way to understand the optimisation difficulty of particular 

hydrological models. 

 

Highlights 

• Exploratory landscape analysis (ELA) metrics are used to quantify key 

features of the error surfaces of conceptual rainfall runoff (CRR) models 

• The features quantified include roughness, flatness and optima dispersion 

• Results show increased model complexity increases error surface 

roughness and optima dispersion 

• Results show that increasing catchment wetness increases error surface 

roughness and decreases optima dispersion 

• Results suggest that optimisation efficiency decreases with model 

complexity and catchment wetness 

• Results suggest that optimisation difficulty increases and parameter 

uniqueness decrease with model complexity and catchment dryness 

 

 

Keywords: 

Conceptual rainfall runoff (CRR) models, calibration, error surface, calibration 

efficiency, calibration difficulty, parameter uniqueness, optimisation, 

exploratory fitness analysis (ELA) metrics 
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1 Introduction 
 

The calibration of conceptual rainfall runoff (CRR) models involves the 

identification of values of model parameters that enable model outputs to best 

match a set of measured data.  While this is a conceptually simple process, it 

has many practical challenges, leading to the publication of a large number of 

papers on the topic. The vast majority of these have focused on different ways 

of quantifying the difference between modelled and corresponding measured 

outputs (e.g. which error metric to use, what model and observed data 

properties to use to compare model performance (e.g. data length, data splitting, 

missing data, types of catchments)) (Gan et al., 1997; van Griensven, 2006; 

Vaze et al., 2010; Fowler et al., 2016; Gibbs et al., 2018; Guo et al., 2020), 

different approaches to identifying the best set of model parameter values (e.g. 

different optimisation methods) (Duan et al., 1992; Shin et al., 2015), different 

model structures (Andréassian et al, 2001; Gibbs et al., 2018; Shin et  al., 2015; 

García-Romero et al, 2019) or how to best understand and quantify 

uncertainties associated with the calibration process (Beven 2006; 2016; Guo 

et al., 2017; Kavetski et al., 2006; Renard et al., 2010). 

 

While the above papers are based on an implicit understanding that model 

errors change with values of model parameters, and that automated calibration 

using optimisation methods corresponds to the process of finding the lowest 

point in this “error surface” (i.e. the n-dimensional surface comprised of the 

calibration error metric as a function of the n model parameters), explicit 

assessments of how the characteristics of this surface change as a function of 
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different model structures and error metrics, as well as the influence this has on 

the computational efficiency and difficulty of the calibration process and the 

uniqueness of the calibrated model parameters, have received less attention. 

However, explicit knowledge of the features of the error surface is required to 

fully interpret and understand the results of calibration trials using different 

model structures, error metrics, optimisation algorithms and calibration data 

(see Duan et al., 1992; Kavetski et al., 2007; Kavetski and Kuczera, 2007; 

Maier et al., 2019; Guillaume et al., 2019). 

 

For example, if the error surface of a particular model calibration problem (e.g. 

combination of model structure, data and error metric) is smooth, has a clearly 

defined global optimum and informative gradients, the calibration process is 

easy (i.e. a wide range of optimisation algorithms would perform well), with a 

unique optimal parameter set (Maier et al., 2019). In contrast, if the error 

surface of a particular model calibration problem is flat at a large scale but 

rough at a finer scale, with many local optima that are widely dispersed, the 

calibration process is difficult, as it would not be easy to find the lowest point 

on the error surface (Maier et al., 2019). Additionally, if a number of the local 

optima have similar error values (or optima that are continuously distributed 

throughout the parameter space, as with ridges for maximisation problems), the 

problem of parameter non-uniqueness arises, where it is not possible to identify 

which set of parameter values is “best” based on the calibration error alone. 

On the other hand, for different calibration problems, explicit knowledge of the 

relative degree of roughness and flatness of the error surfaces, as well as the 
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relative degree of the dispersion of the local optima across this surface, would 

enable generalisations to be drawn between the impact of the aforementioned 

attributes and the corresponding calibration performance.  This would also 

enable the selection of the most appropriate optimisation approaches and 

parameterisations for the calibration problem under consideration (Maier et al., 

2014; Gibbs et al., 2015). 

 

While the vast majority of CRR calibration studies have not considered the 

features of the error surface, a number of studies have demonstrated that 

knowledge of the features of the error surface is important for explaining and 

interpreting the results of CRR model calibration trials (Sorooshian and Gupta, 

1983; Iorgulescu and Jordan, 1994; Thyer et al., 1999; Suliman et al., 2016), 

the selection of appropriate model structures (e.g. Kavetski and Kuczera, 2007) 

and the choice of suitable optimisation algorithms (e.g. Duan et al., 1992; 

Kuczera, 1997; Kavetski et al., 2007). However, the above studies used ad-hoc 

methods for obtaining visualisations of lower-dimensional components of the 

error surface. In order to address this shortcoming, a number of more formal 

methods of visualising the error surface have been suggested.  For example, 

Xiong and O’Connor (2000) proposed a graphical approach to describe error 

surfaces for high-dimensional problems, whereas Shin et al. (2015) proposed 

the use of dotty and eigenvalue plots and Razavi and Gupta (2015) suggest the 

use of sensitivity analysis to identify the features of different cross sections of 

the error surface. 

The major shortcomings of the above approaches to identifying the features of 
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error surface are that they are only able to obtain lower-dimensional “slices” of 

higher-dimensional error surfaces and that they rely on graphical means to 

communicate the relevant information.  This makes it difficult to compare 

different error surface features in an objective fashion, as it requires 

interpretation of graphical outputs of lower-dimensional sub-problems. In 

addition, it makes the quantitative comparison of the features of the error 

surfaces under a range of case-study attributes almost impossible. 

 

In order to overcome the shortcomings of existing methods of characterising 

the features of the error surfaces of CRR models, the objectives of this chapter 

are to (i) propose three exploratory landscape analysis (ELA) metrics 

(Mersmann et al., 2010; Munoz et al., 2015b) as a means to objectively quantify 

key features of the error surfaces of CRR models, including relative roughness, 

relative flatness and relative optima dispersion, and (ii) use these three metrics 

to identify (a) key error surface features for different combinations of model 

structures, catchments, error metrics and calibration data lengths, and (b) the 

corresponding implications for calibration (optimisation) efficiency and 

difficulty, and parameter uniqueness.  This opens the door to better understand 

the calibration performance of different CRR models under a range of 

conditions and to provide guidance on the selection of appropriate model 

structures, error metrics and optimisation algorithms.  

 

The remainder of this chapter is organised as follows. The three metrics for 

characterising the relative roughness, flatness and optima dispersion of error 
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surfaces are introduced in Section 2, along with details of the computational 

experiments in which they are used to quantify these features for combinations 

across all case-study attributes consisting of four CRR models, five catchments 

in different climate zones, three error metrics and three different calibration 

data lengths. The results of the computational experiments are presented and 

discussed in Section 3, followed by summary and conclusions in Section 4. 

 

2 Methodology 
2.1 Overview 

 

The methodology for using the proposed ELA metrics to characterise different 

features of the error surfaces for CRR models with different case-study 

attributes is shown in Figure 4.1. As can be seen, four CRR models with 

different structures and of varying complexity are considered. These include 

the Australian Water Balance Model (AWBM), which has two parameters, 

IHACRES-CMD (abbreviated as IHACRES in the remainder of this chapter), 

which has six parameters, GR4J, which has four parameters and the 

Sacramento model, which has 13 parameters, and were selected due to their 

wide use in rainfall-runoff modelling (e.g. Gichamo and Tarboton, 2019; Guo 

et al., 2017; Perrin et al., 2003). The models are all soil moisture accounting 

models with varying complexity in terms of the physical processes 

incorporated (See Section 2.2).  
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Figure 4.3 Outline of methodology 

 

To cover a range of climate conditions, a total of five Australian catchments 

are considered, which are located in different climate zones and have different 

levels of rainfall, evapotranspiration and streamflow. The catchments are Black 

River (Burnie, Tasmania), which is considered a wet catchment, Elizabeth 

River (Darwin, Northern Territory), which is also considered a wet catchment, 

Scott Creek (Adelaide, South Australia), which is considered a catchment of 

medium wetness / dryness, Adelong Creek (Wagga Wagga, New South Wales), 

which is also considered a catchment of medium wetness / dryness, and Hugh 

River (Alice Springs, Northern Territory), which is considered a dry catchment. 

 

With regard to the error metric attributes, three metrics are considered, namely, 

the Nash-Sutcliffe coefficient (NS), the NS of log-transformed flows (LOGNS) 

and the weighted least squared (WLS) errors of Bayesian inference (Kavetski 

et al., 2006). The first two metrics are commonly used in rainfall-runoff studies 
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for comparison in terms of their difference in sensitivity to peak and low flows 

(Shin et al., 2013; 2015). The WLS metric assumes errors between observed 

and simulated flows are normally distributed with zero mean but different 

variance, which is controlled by the magnitude of flows. As a result, the WLS 

metric contains two extra parameters to characterise heteroscedasticity (see 

Section 2.4), which increases the dimensionality of the error surface compared 

with that for the NS and LOGNS metrics.  

 

Concerning the attribute of data length, a total of three different lengths are 

considered (1 year, 5 years and 10 years), with three combinations of subsets 

of 10 years of data used for each of the 1- and 5-year data lengths, resulting in 

the consideration of 7 different calibration data sets. Data length is considered 

an important issue affecting calibration results (see e.g. Iorgulescu and Jordan, 

1994; Gan et al., 1997). However, there are also studies which have shown that 

data length has a very limited impact on calibration results (e.g. Zhang et al., 

2015). Given this discrepancy in the literature, it is worth assessing how data 

length affects the features of error surfaces. 

 

In order to enable ELA metrics to be calculated for the error surfaces resulting 

from the 420 CRR models with the different combinations of attributes tested 

(i.e. 4 CRR models × 5 catchments × 3 error metrics × 7 calibration data sets), 

Latin Hypercube sampling is used to generate 1000 samples for each of the 420 

error surfaces based on the findings of Zhu et al. (2021) (Figure 4.1). 
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The generated samples are used to calculate values of three ELA metrics 

(Figure 4.1). These metrics relate to three features that have been shown to have 

an impact on CRR model calibration problems (see Duan et al., 1992; Kavetski 

et al., 2007; Kavetski and Kuczera, 2007; Maier et al., 2019; Guillaume et al., 

2019), including roughness (fine-scale, non-smooth surface features), flatness 

(the distribution of error surface values) and optima dispersion (the extent of 

clustering of the local optima). All three metrics have been shown to be 

effective in identifying the above fitness landscape features for a number of 

benchmark functions (Mersmann et al., 2010; Munoz et al., 2015b; Munoz and 

Smith-Miles, 2017). Furthermore, the selected metrics have been found to have 

low dependence on problem dimensionality and sample size (Zhu et al., 2021), 

enabling them to be applied to real-world problems.  

 

In order to enable the impact of the different attributes on the features of the 

error surfaces to be assessed in an easy-to-understand fashion for the large 

number of combinations of attributes considered, the values of the three ELA 

metrics for each of the 420 error surfaces are represented as five categorical 

values, with 1 corresponding to the most desirable value of each of the error 

surface features (e.g. very low roughness, very low flatness, very low optima 

dispersion) and 5 corresponding to the least desirable value of each of the error 

surface features (e.g. very high roughness, very high flatness, very high optima 

dispersion). This was done as the raw values of the metrics span different 

ranges that do not have an intrinsic meaning (see Appendix C). Consequently, 

the use of categorical values enables the relative values of the different metrics 
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to be compared in a manner that is intuitive and easy to interpret (i.e. same 

scale, interpretable scale where higher values are less desirable). As shown in 

Figure 4.1, the categorization of the raw values of the metrics was achieved by 

applying K-means clustering to values of each individual metric separately, 

where the value of K was set to 5 (i.e. the number of desired categories).  

 

The numerical study was conducted using the University of Adelaide’s 

supercomputing facilities, which consist of 48 Skylake nodes, with 80 CPUs 

and 377GB of memory per node. The R package Hydromad (Andrews et al., 

2011) was used for model simulation, Latin Hypercube Sampling (generated 

using the lhs package in R) was used for sample generation and the R package 

FLACCO (Kerschke and Trautmann, 2016) was used for the calculation of the 

three ELA metrics. 

 

Details of the CRR models, catchments, error metrics and ELA metrics used 

are given in Sections 2.2. 2.3. 2.4 and 2.5, respectively. 

 

2.2 CRR models 
 

All of the four models (AWBM, GR4J, IHACRES and Sacramento) are based 

on Unit Hydrograph theory (Andrew et al., 2011), and consist of a two-

component structure including a soil-moisture accounting (SMA) module and 

a routing hydrograph module (Shown in Figure 4.2). These models require a 

daily time series of rainfall and potential evapotranspiration (PET) as inputs 

and predict daily stream flow as an output. The differences between the models 
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in this chapter are differences in the SMA model and which routing model is 

used. 

 
Figure 4.2 Model framework (adapted from Andrew et al., 2011) 

 

The first model, AWBM, contains three production stores (𝑆1,  𝑆2 and 𝑆3) with 

different capacities (see Appendix A). On each day, precipitation 𝑃 is added to 

each store, and effective rainfall 𝑃𝑟 is produced when the storage exceeds the 

corresponding store capacity. To reduce the parameter size for the storages in 

AWBM from three to one, Boughton (2004) proposed an average capacity 

parameter to define the capacities of all three stores, at no loss of model 

performance. In addition to the single storage parameter, a parameter related to 

the multiplier of input PET is also considered. As a result, two parameters 

require calibration in the AWBM model, making it the simplest model 

considered in this study. 

 

The second model, GR4J, contains two stores (production store and routing 

store) and the store water exchange in the production store is related to the 

degree of catchment wetness (see Appendix A). On wet days, a net precipitation 

𝑃𝑛 is produced, and a portion of 𝑃𝑛, denoted as 𝑃𝑠, fills the production store. On 

dry days, on the other hand, a net evaporation En is produced, and a portion of 

En, denoted as Es, is extracted from the production store. The remaining 

component, 𝑃𝑟 , is produced based on the updated water level in the production 
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store, and undergoes a further routing process based on quick flow and slow 

flow components. In addition to the surface water, groundwater exchange is 

also considered in each component, where the final streamflow is the sum of 

each component. A total of four parameters require calibration in the GR4J 

model. 

 

In IHACRES, the level of storage is represented by the catchment moisture 

deficit (CMD), which is the difference between the store capacity and the 

current water level (see Appendix A). The CMD is used to define whether the 

day is dry or wet, which is related to the proportion of PET transferring to AET. 

In addition, CMD is also a function of the production of effective rainfall 𝑃𝑟 

from the store. The produced 𝑃𝑟  is subjected to a routing process, which splits 

𝑃𝑟 into quick and slow flows and analyses with two different unit hydrographs 

with different time base. The final streamflow of IHACRES is equal to the sum 

of the quick and slow flows. In total, IHACRES has six parameters that require 

calibration. 

 

The structure of the Sacramento model can be split into three zones, including 

the surface, upper and lower zones (see Appendix A). The surface zone is split 

into permeable, additional impermeable and impermeable areas. The net 

precipitation in the permeable area drains to the upper zone, while that in the 

impermeable area generates direct flow. The additional impermeable area 

generates direct flow when the catchment tension water requirements in the 

upper zone are met, otherwise the net precipitation also drains to the upper 
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zone. The upper zone consists of tension and free water. Inflow exceeding the 

tension water store drains as surface flow. A proportion of free water percolates 

to the lower zones, which also consists of tension and free water. A proportion 

of free water in the lower zone can also produce baseflow. As a result, the total 

flow at each time step produced by the Sacramento model is the sum of the 

flows produced in the three zones. The Sacramento model is the most complex 

of the models considered in this chapter, with 13 parameters that require 

calibration. 

2.3 Catchments 
 

Figure 4.3 shows the names and locations of the five catchments considered. 

As can be seen, the catchments are located in climatologically different regions 

in Australia, as defined in the Australian Köppen climate classifications of 

Stern et al. (2000). The historical data required for CRR model calibration are 

average daily rainfall, PET and runoff at each location. Daily rainfall data were 

obtained from a single rain gauge within each of the Scott Creek, Black River, 

Elizabeth River, and Adelong Creek catchments, while the rainfall data for the 

Huge River catchment were obtained by spatially averaging values from three 

rainfall gauges using the Thiessen polygon method. Daily runoff data were 

obtained from gauging stations at the outlet of each catchment. PET data were 

calculated using the Penman-Monteith model, which requires data on 

temperature, relative humidity, solar radiation and wind speed (Guo et al., 

2017). These data were obtained from a weather station nearby each catchment. 

Table 4.1 summarises the climate characteristics of the five catchments. As can 

be seen, the catchments were categorized into wet, mild and dry catchments 
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based on their annual rainfall, PET and runoff. 

 

The data for each catchment consist of a 10-year period from 01/01/1995 to 

31/12/2004. In order to assess the impact of data length on the features of the 

error surface, three groups of 1-year and 5-year data (with different start and 

end dates) are used as inputs, in addition to the entire 10-year period. 

 

 
Figure 4.3 Locations of rain gauges, catchment outlets, and weather stations 

from which data were obtained for calibration of the rainfall-runoff models 

for the five catchments (adapted from Guo et al., (2017)) 

 

Table 4.1 Catchment characteristics 

 

Catchment 

(and Area) 
Location 

Annual 

P (mm) 

Annual 

Q (mm) 

Annual 

PET (mm) 
PET/P Property 

Black River 

(318.5 km2) 

Burnie 1182 550 958 0.81 Wet 

Elizabeth River 

(95.6 km2) 

Darwin 1979 777 1864 0.94 Wet 

Scott Creek (29 

km2) 

Adelaide 892 133 1372 1.54 Mild 
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Adelong Creek 

(146.1 km2) 

Wagga Wagga 799 195 1436 1.80 Mild 

Hugh River 

(3324 km2) 

Alice Springs 344 56.2 1822 5.29 Dry 

 

 

 

2.4 Error metrics 
 

As mentioned above, the NS coefficients of flows and log-transformed flows 

were used as two of the three error metrics considered in this study. The 

equations of NS and LOGNS are given as: 

𝑁𝑆 = 1 −
∑ (𝑄𝑠

𝑡 − 𝑄𝑜
𝑡 )2𝑇

𝑡=1

∑ (𝑄𝑜
𝑡 − 𝑄𝑜

̅̅̅̅ )2𝑇
𝑡=1

                                                     (1) 

𝐿𝑂𝐺𝑁𝑆 = 1 −
∑ (ln (𝑄𝑠

𝑡 + 1) − ln (𝑄𝑜
𝑡 +1))2𝑇

𝑡=1

∑ (ln (𝑄𝑜
𝑡 + 1) − ln (𝑄𝑜

̅̅̅̅ + 1))2𝑇
𝑡=1

                               (2) 

where 𝑄𝑠
𝑡 and 𝑄𝑜

𝑡  are the simulated and observed flow at time step t; 𝑄𝑜
̅̅̅̅  is the 

average observed flow, T is the total number of time steps, and ln(·) is the 

natural logarithm, and the constant one is added to each log-transformed flow 

to avoid the negative infinite values caused by small and zero flows. Both error 

metrics have a range from negative infinity to 1, where 1 indicates a perfect fit. 

It can be seen that the only difference between NS and LOGNS is the log-

transformation of the flows. This difference changes the error of flows from 

homoscedastic to heteroscedastic based on flow volume in different time steps. 

The impact of this transformation is to increase the influence of low flows on 

the metric value. For example, Shin et al., (2013) demonstrated that parameters 

related to the slow flow store of IHACRES became insensitive when using NS. 

In contrast, parameter related to the unit hydrograph in GR4J became more 
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sensitive in NS, but less sensitive in LOGNS, as the time base of the unit 

hydrograph is more sensitive to capturing the flow peak. As parameter 

sensitivity is highly related to features of the error surface, it is very likely that 

features of the error surface change when the error metric is changed.  

 

In addition to NS and LOGNS, WLS is also included as an error metric due to 

its novel treatment of model errors. Unlike other error metrics, WLS also 

considers the heteroscedasticity of flow errors, but uses two additional 

parameters to estimate the variance of errors, which depends on the flow 

volume in each time step. The WLS metric assumes errors are normally 

distributed as 

𝜀𝑡~𝑁(0, 𝑎 + 𝑏 ∙ 𝑄𝑜
𝑡  )                                                                (3) 

where 𝜀𝑡 is the error between observed and simulated flow at time step t; 𝑄𝑜
𝑡  is 

the observed flow at time step t; a and b are constant parameters to describe the 

linear relationship between the variance of  𝜀𝑡   and 𝑄𝑜
𝑡 . It can be seen that 

higher flows have a bigger variation in errors, while this variation is smaller for 

lower flows. As a result of this heteroscedasticity, the error surface of models 

using WLS as an error metric are likely to be very different in comparison to 

NS. Additionally, because of the two additional parameters (a and b) ), it is also 

likely to be different in comparison to LOGNS, due to the difference with 

which heteroscedasticity is treated. The likelihood function is the product of 

the likelihood of 𝜀𝑡 at each time step, and is given by:  

𝑝(𝜺) = ∏ 𝑵(
𝑇

𝑡=1
𝜀𝑡|𝑎, 𝑏, 𝑄𝑜

𝑡 )                                                 (4) 
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where T is the total number of time steps; and 𝑝(𝜺) is the likelihood of errors 

at all time steps. For the interested reader, a detailed discussion of Bayesian 

inference and the WLS can be found in Renard et al. (2010).  

 

2.5 Fitness landscape metrics 
 

As mentioned above, three typical features (roughness, flatness and optima 

dispersion) are considered relevant in CRR model calibration problems (see 

Duan et al., 1992; Kavetski et al., 2007; Kavetski and Kuczera, 2007; Maier et 

al., 2019; Guillaume et al., 2019). An illustration of the relative impact of these 

features on the error surface of CRR models is shown in Figure 4.4. As can be 

seen, eight different conceptual error surfaces based on different combinations 

of the relative values of the features are shown.  

 

The error surfaces on the right side ((e) to (h)) are considered to be less efficient 

to calibrate than those on the left side ((a) to (d)). This is generally due to the 

increased relative roughness of the error surfaces on the right side, which may 

lead to a greater number of evaluations required to converge to the global 

optimum, or even to a failure to identify the global optimum due to pre-mature 

convergence. This problem can be severe even for flat error surfaces, such as 

those in (f) and (h), as there is lack of information to guide the search out of the 

rough areas. In contrast, the calibration of error surfaces on the left side is 

considered relatively more efficient, as there is no roughness on the error 

surfaces to slow down or mislead the search. Consequently, even though error 

surfaces (b) and (d) are relatively flat, they are still likely to be more efficient 
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to optimise, unless they are completely flat, in which case there would be no 

gradient information to guide the search at all.  

 

The error surfaces in (c), (d), (g) and (h) are expected to have parameter 

uniqueness problems, regardless of whether calibration efficiency is hindered 

due to the roughness of the error surface or not. This is because these error 

surfaces contain multiple local basins or regions of attraction with a wide 

distance between them, so that parameter non-uniqueness is a structural 

problem, rather than a problem of roughness. This is illustrated by error 

surfaces (c) and (d), which are smooth and are therefore expected to be more 

efficient to calibrate. However, they still have a problem with parameter 

uniqueness, as two different parameter sets have the same error metric value. 

 
Figure 4.4 Impact of relative values of selected fitness landscape metrics on 

features of error surfaces of CRR models 

 

To enable the above features (i.e. roughness, flatness and optima dispersion) to 

be quantified for the error surface of the models with different attributes (Figure 
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4.1), three ELA metrics are utilised in this chapter. These metrics have been 

used in previous studies for classifying the features of benchmark problems 

(Mersmann et al., 2010; Munoz et al., 2015b; Munoz and Smith-Miles, 2017) 

and have been shown to have low dependence on sample size and problem 

dimensionality (Zhu et al., 2021). Details of these three metrics are presented 

in the following subsections. 

 

Maximum entropy of information content (Degree of Roughness) 

The maximum entropy of information content metric (Hmax) (Munoz et al., 

2015b) is used to measure the multimodality of the error surface. The feature 

multimodality (Mersmann et al., 2010) refers to the number of local optima on 

the error surface, which is highly correlated to the roughness of the error 

surface. Error surfaces with higher degrees of multimodality have a higher 

density of local optima, which manifest themselves as rough surfaces. In 

contrast, error surfaces with a lower multimodality have a lower density of local 

optima, which are manifest as smooth surfaces. 

 

This metric builds a ternary sequence based on the fitness values of a sequence 

of samples, where values of “1”, “-1” and “0” are used in the sequence to refer 

to fitness values of a sample that is bigger, smaller and equal to that of the 

following sample. The sequence of a rough surface will involve frequent 

changes in number. In contrast, a smooth surface will have a relatively 

consistent sequence. The maximum entropy of the sequence is calculated to 

characterise the frequency of change in the sequences. The theoretical range of 
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this metric is [0, 1]. 

 

Epsilon of information content (Degree of Flatness) 

The epsilon of information content metric (Munoz et al., 2015b) characterises 

the plateaus (Mersmann et al., 2010) of error surfaces, which refer to regions 

of flatness. Error surfaces with more plateaus are generally flatter, and can 

cause parameter identification problems and slow down the calibration process. 

In contrast, error surfaces with fewer plateaus have a better shape, which 

corresponds to more sensitive and identifiable parameters. 

 

The metric utilises the same sample sequence as Hmax. A tolerance value () is 

assigned for comparison of whether the fitness values of two neighbouring 

samples are to be considered as equal. The corresponding ternary sequence is 

generated as for Hmax, but where the strict equality for label “0” is replaced by 

the  interval about the given sample value. The epsilon of information content 

metric value is the value of  that returns a sequence completely of the label 

“0”. A relatively flat surface will return a very small  value, whereas a highly 

variable surface will return a large  value. The logarithm of the  values is 

used for result presentation. The theoretical range of this metric is [-∞, ∞]. 

 

Median basin centroidal distance (Degree of Optima Dispersion) 

The median basin centroidal distance is a metric that assesses the distribution 

of local basins (Mersmann et al., 2010). A local basin is defined as a region on 

the error surface that contains multiple local optima with a very short distance 
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between them. This local basin conception is similar to multiple optima and 

regions of attraction as defined by Kavetski and Kuczera (2007) and Duan et 

al., (1992), respectively, for error surfaces of CRR models.  

 

The metric finds a large pre-specified number of local optima using a gradient 

algorithm, and uses hierarchical clustering to collate local optima within a very 

small distance in the same local basin. It calculates the pairwise distance 

between the identified local basins and uses the median to summarize the 

average distance. Therefore, a long distance represents local basins or regions 

of attraction that are dispersed on the error surface, so that values of model 

parameters are more difficult to identify. In contrast, a short distance means 

that local basins or regions of attraction are contained within a small region on 

the error surface, making the parameter identification process less difficult. The 

theoretical range of this metric is [0, ∞]. 

3 Results and Discussion 
3.1 Overview 

  

The heatmaps in Figure 4.5 indicate the relative influence of the four attributes 

investigated (i.e. model structure and complexity, catchment climate condition, 

error metric and calibration data length) on the three error surface metrics 

considered (i.e. roughness, flatness and optima dispersion). It should be noted 

that the results for the different combinations of calibration data for data lengths 

of 1 and 3 years have been combined, resulting in a comparison of the features 

of 180 (4 models × 5 catchments × 3 error functions × 3 data lengths) error 

functions. The colour of the heatmaps indicates the relative desirability of the 
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error surface characteristics based on the five categorical values for each fitness 

landscape metric (see Appendix B), with lighter colours (i.e. white) indicating 

more desirable characteristics (i.e. a lower value) and darker colours (i.e. dark 

blue) indicating less desirable characteristics (i.e. a higher value) (see Section 

2.1). There are some cells of optima dispersion of the Sacramento model that 

are shown as “NAN”, which indicates a failure in finding local optima for these 

cases. This is most probably due to the broadly acknowledged complex and 

poorly-behaved structure of the Sacramento model, which potentially contains 

numeric errors that are overwhelmed by uncertainties in the data and governing 

equations (Clark and Kavetski, 2010). 

The numbers in the cells of the heatmap are the calculated ELA metric values 

for the given features (see Section 2.5). It should be noted that as lower values 

of the epsilon of information content indicates a higher level of relative flatness, 

which is opposite to Hmax and the median basin centroidal distance, where 

larger values represent higher levels of relative roughness and optima 

dispersion, respectively, so that larger values of each of the three metrics 

correspond to less desirable fitness landscape features. It should also be noted 

that these results only refer to the features of the error surfaces, and not 

calibration performance in terms of absolute values of the error metrics. For 

example, a problem with higher calibration difficulty could contain lower 

absolute error values and vice versa.  

 

As can be seen from a visual inspection of Figure 4.5, based on the results of 

the experiments presented here, model structure and complexity appear to have 
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the largest influence on the metrics, with an increase in relative roughness and 

optima dispersion with an increase in model complexity. Catchment climate 

condition also appears to have an influence on relative roughness and optima 

dispersion, with wetter catchments resulting in rougher, less dispersed error 

surfaces. In contrast, the impact of different error metrics on the error surface 

characteristics appears to be confined to particular ELA metrics, model 

structures and catchment climate condition. The most pronounced influence of 

error metrics is associated with the application of the WLS metric to simpler 

models, especially for wetter catchments. As can be seen from Figure 4.5, error 

surface roughness appears to increase when the WLS metric is used for models 

with a small number of parameters, such as AWBM, as use of this metric results 

in a significant relative increase in the number of parameters (see Section 2.4). 

In contrast, use of the WLS metric appears to reduce error surface flatness and 

optima dispersion for simpler models, especially for wetter catchments, 

resulting in more well-defined regions of attraction in parameter space. The 

results in Figure 4.5 also indicate that there appears to be no pronounced impact 

of calibration data length on error surface characteristics for the experiments 

conducted. Given that model structure and complexity, and catchment climate 

condition, appear to have the biggest impact on the error surface metrics 

considered, these are discussed in detail in the subsequent sections. 
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Figure 4.5 Relative impact of Roughness (a), Flatness (b) and Optima 

Dispersion (c). Note that the catchments are ordered from left to right by 

decreasing wetness (wet, mild and dry catchments are coloured as red, 

green and blue respectively). 

 

3.2 Impact of model structure and complexity  
 

The impact of model structure and complexity on relative roughness, flatness 

and optima dispersion for the experiments conducted is shown in Figure 4.6, 

where boxplots of the percentage of the categorical values (i.e. 1 to 5) for each 

model and each of the metrics is presented. As can be seen, there is a general 

increase in the relative roughness in the error surface as model complexity 

increases, with AWBM (2 parameters) clearly the smoothest and Sacramento 

(13 parameters) clearly the roughest. The roughness of GR4J (4 parameters) 

and IHACRES (6 parameters) is very similar and clearly in-between the 

roughness of AWBM and Sacramento.. The rate in relative increase in 

roughness tends to decrease for more complex models, most likely because the 
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underlying roughness of more complex models is already very high. These 

trends can also be observed in the raw values of the metrics (Appendix C). 

 

The increase in the relative degree of optima dispersion with an increase in 

model complexity is even more pronounced than that for relative roughness, 

with a clear increase in the degree of dispersion of optima across the error 

surface as the number of model parameters increases (Figure 4.6, Appendix C). 

However, based on the results obtained, there appears to be no clear 

relationship between model complexity and the relative flatness of the error 

surface. Instead, this seems to be more affected by particular model structures. 

For example, for the experiments conducted, the relative flatness of the error 

surface of GR4J is much higher than that of the other models. 
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Figure 4.6 Influence of model structure / complexity on error surface 

features: Relative Roughness (a); Relative Flatness (b); Relative Optima 

Dispersion (c). The complexity of the CRR models increases from left to 

right: AWBM has 2 parameters, GR4J has 4 parameters, IHACRES has 6 

parameters and Sacramento has 13 parameters. 



125 

                       Chapter 5  

 

The fact that, based on the results of the experiments conducted, more complex 

models have rougher error surfaces (i.e. Figure 4.7) suggests that, by inference, 

they should have decreased optimisation efficiency (i.e. they should require a 

larger number of function evaluations to find the globally optimal solution in 

the error surface). This is because all optimisation algorithms search the error 

surface in an iterative fashion, generally starting at a random location and using 

various mechanisms (e.g. gradient information, evolutionary operators) to 

move to regions with lower errors in subsequent iterations based on information 

derived from the error surface (Maier et al., 2019). If the error surface is 

rougher, the information about the error surface used to guide optimisation 

algorithms is “noisier” and potentially misleading at times, thereby slowing 

down the optimisation process.  
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Figure 4.7 Impact of degree of model complexity on optimisation efficiency, 

optimisation difficulty and parameter uniqueness based on the result of the 

application of the proposed metrics for quantifying error surface roughness 

and optima dispersion, as well as relevant previous studies confirming these 

findings 

 

 

 

The above inferences align with the findings of a number of previous studies 

(see Figure 4.7).  For example, Garcia-Romero et al. (2019) calibrated 3 CRR 

models of different complexity (GR4J (4 parameters), HBV (10 parameters), 

Sacramento (16 parameters, the three extra parameters associated with surface 

vegetation area and groundwater transferring)) on 9 catchments using the SCE-

UA algorithm and found that the simplest model (i.e. GR4J) only required 
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around 1,000 iterations for convergence, whereas the most complex model (i.e. 

Sacramento) required around 6,000.  While Sorooshian et al. (1993) did not 

vary model complexity, they found that when calibrating the complex 

Sacramento model (13 parameters) over a number of trials using the Multistart 

Simplex algorithm, a very large number of function evaluations (an average of 

45,887) was required for convergence, indicating low optimisation efficiency 

for this complex model. 

 

By inference, the results in Figure 4.6 also suggest that optimisation difficulty 

(i.e. how difficult it is to find the global minimum in the error surface as part 

of the optimisation process) is likely to increase with increasing model 

complexity as a result of a corresponding increase in the dispersion of the 

optima over the error surface (Figure 4.7).  This is because the global minimum 

in the error surface is more difficult to find if there are multiple regions of 

attraction at a greater distance from one another (i.e. disparate regions with low 

errors), as the feedback from the error surface is equally likely to direct the 

search to locally optimal solutions than the globally optimum solution. 

However, the degree to which this is the case is also likely to be affected by the 

explorative capability of the optimisation algorithm used (Maier et al., 2019). 

If this degree is low, as is the case for gradient methods, whether a local or the 

global optimum in the error surface is identified is generally highly dependent 

on the starting position of the search, as such algorithms are unable to escape 

local optima (Maier et al., 2019). However, if the exploratory capability of the 

algorithm is increased (e.g. by using multi-starts or evolutionary algorithms), a 
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wider area of the error surface is explored, including the different regions of 

attraction, making it more likely that the globally optimal solution is identified. 

 

The finding that the optima of more complex models are likely to be dispersed 

over a greater region of the error surface also implies that the parameters of 

more complex models identified as part of the optimisation process should be 

to be less unique (Figure 4.7). This is because if optima are distributed over a 

smaller region of the error surface, the calibrated parameter values that are 

likely to be identified as part of the optimisation process are likely to be 

concentrated in a smaller region of the parameter space. As a result, even if 

there are different local optima, the resulting parameters values are similar to 

each other, ensuring that the values of the calibrated parameters are more well-

defined. 

 

The above inferences align with the findings of a number of previous studies 

(see Figure 4.7).  For example, McIntyre and Al-Qurashi (2009) found that 

when they calibrated IHACRES models with 3, 4 and 5 parameters, 

respectively, the model with 5 parameters performed worst, even though it had 

the greatest number of degrees of freedom, suggesting that it was more difficult 

to find the global optimum in the error surface as model complexity increased. 

Garcia-Romero et al. (2019) found that while the calibrated parameters of the 

simpler GR4J models (4 parameters) generally had unique values, this was not 

the case for the more complex Sacramento model (16 parameters), where 

calibrated values for 10 of the 16 parameters corresponded to a large range of 
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values. Each of these was found approximately the same number of times as 

part of the calibration trials conducted, suggesting the existence of optima that 

are more widely distributed over the error surface, increasing the difficulty of 

the optimisation problem and decreasing the uniqueness of the parameter 

values identified. 

 

Andreassian et al. (2001) and Shin et al. (2015) had similar findings, where 

unique sets of parameter values were able to be obtained for simpler models, 

but not for more complex models. In the case of Andreassian et al. (2001), the 

parameter values obtained for a GR3J model (an earlier 3 parameter version of 

GR4J) were unique, while those obtained for TOPMOD (6 parameters) and 

IHACRES (6 parameters) were not. In the case of Shin et al. (2015), unique 

parameter sets were able to be identified for both GR4J (4 parameters) and 

IHACRES (4 parameters), whereas this was not the case for SIMHYD (9 

parameters) and Sacramento (13 parameters). It is interesting to note that 

Andreassian et al. (2001) were not able to identify unique parameter sets for 

IHACRES, while Shin et al. (2015) were. One potential reason for this is that 

the former used a gradient method for calibration, which has limited 

exploratory capability, whereas the latter used 5 different global search 

algorithms (SCE, NSGA2, DREAM, DE, CMA-ES), which have greater 

exploratory ability and are therefore more likely to find global minima in error 

surfaces that have more widely distributed optima, as discussed above. 

 

It should be noted that the ability to identify unique sets of calibrated 
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parameters by finding the global minimum in the error surface as part of an 

optimisation process is related to the well-known issue of parameter 

identifiability (Guillaume et al., 2019). However, parameter identifiability is 

also related to the quality of the calibration data (e.g. how well the calibration 

data represent the underlying physical processes being modelled). If the quality 

of the calibration data is low, the global minimum in the error surface found 

with the aid of the optimisation algorithm is not necessarily the “true” optimum 

(Maier et al., 2019). This was demonstrated by Andreassian et al. (2001) and 

Shin et al. (2015), who found that parameter uniqueness could be improved by 

improving the quality of the calibration data. 

 

3.3 Impact of catchment climate condition 
 

The impact of catchment climate condition on relative roughness, flatness and 

optima dispersion obtained for the experiments conducted is shown in Figure 

4.8, which shows a column chart with the primary category as the model type, 

and the secondary category as the error metric. As can be seen, there is a general 

increase in the relative roughness of the error surface as catchment wetness 

increases. In contrast, increasing catchment wetness generally results in a 

decrease in the relative degree of optima dispersion.  As was the case for the 

influence of model complexity, there appear to be no clear trends for the impact 

of catchment climate condition on the relative flatness of the error surface, with 

increases in flatness for some models and error metrics, and decreases for the 

three simplest models when the WLS error metric is used. 
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Figure 4.8 Change in features of error surface from dry to wet catchments: 

(a) Change in Relative Roughness; (b) Change in Relative Flatness; (c) 

Change in Relative Optima Dispersion. 

(a) 
 

(b) 
 

(c) 
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Based on inference, the above results suggest that optimisation efficiency is 

likely to decrease with increasing catchment wetness (Figure 4.9). This is in 

agreement with Thyer et al. (1999), who found that the number of function 

evaluations required for an SCE-UA algorithm to converge when calibrating a 

modified SFB model for the wetter Allyn River catchment was 7,000, while 

this number was only 4,000 for the dryer Scott Creek catchment. 

 

 
Figure 4.9 Impact of degree of catchment wetness on optimisation efficiency 

and parameter uniqueness based on the result of the application of the 

proposed metrics for quantifying error surface roughness and optima 

dispersion, as well as relevant previous studies confirming these findings 

 

As the results in Figure 4.8(c) indicate that, for the experiments conducted, 

parameter dispersion decreases for wetter catchments, it can be inferred that 

parameter wetness should increase accordingly (Figure 4.9), which is in 
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agreement with the findings of a number of previous studies. For example, 

Liden and Harlin (2000) found that for dry catchments, it was not possible to 

identify unique values of parameters related to baseflow, but that unique 

parameter values could be identified for a wet catchment. When calibrating a 

modified SFB model for twenty-five Australian catchments with different 

climates, Sumner et al. (1997) found that unique parameters sets could be 

identified for wet catchments. However, this was not the case for semi-arid 

catchments. When examining plots of the error surface for wet and dry 

catchments for the same CRR model, Thyer et al. (1999) found that the error 

surface for the dry catchment had multiple local optima, thereby providing an 

explanation for the difficulty in finding unique parameter values for such 

catchments. Similar results were found by Xiong and O’Connor (2000), who 

visualized error surfaces for catchments in a humid region in Japan and a semi-

arid region in Tanzania, where the error surfaces for the semi-arid catchment 

had more optima that were more widely dispersed. The reason why so many 

studies have similar findings (i.e. that catchment wetness results in an increase 

in parameter uniqueness) is likely because many commonly-used rainfall-

runoff models demonstrate a trade-off between fitting high and low flows (i.e. 

there is insufficient flexibility in the model structure or error model). In a dry 

catchment, the ability to model behaviour associated with baseflow is much 

more important than in wet catchments. In wet catchments, the inability to 

reproduce this behaviour might manifest itself as “roughness” rather than 

dispersion of optima.  
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4  Summary and Conclusions 
 

The calibration of conceptual rainfall-runoff (CRR) models has been the 

subject of a large number of research papers. While the impact of attributes 

such as model structure and complexity, catchment climate conditions, error 

metrics and calibration data length (and properties), as well as the optimisation 

method used, has received significant attention in these studies, there has been 

a lack of focus on systematic approaches to quantifying how the features of the 

error surface are affected by these attributes. This makes it difficult to provide 

a transparent, objective and repeatable assessment of the impact model 

structures, catchment climate conditions, error metrics and calibration data 

properties have on calibration efficiency, difficulty and parameter uniqueness. 

In order to address this shortcoming, three exploratory landscape analysis 

(ELA) metrics are proposed in this chapter as a way to quantify key features of 

the error surfaces of CRR models. The metrics were applied to 420 error 

surfaces of CRR models consisting of different combinations of model 

structures of varying complexity, catchments with different climate conditions, 

error metrics and calibration data sets of different length and composition. 

Results show that, in the experiments conducted, there are clear differences in 

error surface roughness and optima dispersion between different models and 

catchments with different levels of wetness. More complex models are shown 

to have higher roughness and optima dispersion, while wetter catchments have 

higher roughness but lower optima dispersion. However, the generality of these 

findings needs to be tested using a wider range of models and conditions.  The 

primary contribution of this chapter is the presentation of an alternative 
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approach to identify useful information to support decisions that have to be 

made during the development of CRR models, such as the selection of an 

appropriate model structure, the selection of an appropriate optimisation 

algorithm and the selection of appropriate values that control the searching 

behaviour (e.g. relative degree of exploration and exploitation) of the selected 

optimisation algorithm. 

 

The results for the experiments conducted also provide valuable insight into 

how optimisation efficiency, optimisation difficulty and parameter uniqueness 

can be affected by different models and the degree of catchment wetness 

(Figure 4.10). For the experiments conducted, the results suggested that more 

complex models applied to wet catchments have low optimisation efficiency, 

medium optimisation difficulty and medium parameter uniqueness. However, 

when such models were applied to dry catchments, there was an increase in 

optimisation efficiency, an increase in optimisation difficulty and a decrease in 

parameter uniqueness.  Irrespective of whether catchments were wet or dry, the 

results indicated that reducing model complexity for the models used in this 

study resulted in an improvement in all three performance measures. However, 

as mentioned above, the generality of these results need to be tested using a 

larger number of experiments. 

The fact that the three ELA metrics proposed in this chapter  are able to 

identify key features of the error surfaces of CRR models, including relative 

roughness, relative flatness and relative optima dispersion, creates 

opportunities for determining and comparing the features of the error surfaces 
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of a broad range of CRR models under a wide range of conditions, in an 

effective and efficient manner, providing insight into how these features change 

in response to different attributes.  Consequently, as mentioned above, future 

studies should apply the approach introduced in this chapter to a larger number 

of combinations of CRR models, catchments and error metrics in order to test 

the generality of the findings of this study and to potentially provide high-level 

guidance on the selection of CRR models and optimisation approaches for 

different types of catchments.  It could also guide the development of novel 

CRR models that can be calibrated more easily and efficiently and have more 

well-defined parameters. 

 

 

Figure 4.10 Impact of model complexity and catchment climate condition on 

model calibration difficulty, efficiency and parameter uniqueness, based on 

the results in this study 
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Chapter 5 Conclusions 

 

 

1 Research Contributions 
 

Optimisation algorithms are used extensively for the calibration of 

environmental models and the identification of solutions to environmental 

problems. How well a particular algorithm performs on a given problem is a 

function of both algorithm behaviour and the characteristics of the problem 

being solved, as represented by the fitness landscape. While significant 

attention has been given to the development of algorithms with different 

behaviours, little effort has been devoted to better understanding problem 

characteristics, generally resulting in a brute-force approach to identifying 

algorithms and parameterisations that perform acceptably for a particular 

problem. This is despite the fact that a number of metrics have been developed 

to assist with identifying features of fitness landscapes, such as their global 

structure, their degree of multimodality and the presence of plateaus, the 

identification of which would assist in the selection of appropriate optimisation 

algorithms and parameterisations without the need for a brute-force approach. 

 

The most likely reason for the lack of adoption of fitness landscape metrics in 

practice is that the calculation of these metrics is based on samples from the 
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fitness landscape, which can be computationally expensive to generate for real-

world environmental problems, as they are often require the running of 

complex and highly-dimensional simulation models. However, this research 

shows that not all of these metrics have high dependence on problem 

dimensionality and sample size. In this thesis, these metrics are identified 

through a large number of computational experiments and are shown to assist 

with the identification of optimisation difficulty and efficiency for two typical 

environmental modelling problems. 

 

In Chapter 2, the degree of dependence on problem dimensionality and sample 

size of 110 fitness landscape metrics was assessed. Each metric was calculated 

for 72,000 different sets of fitness landscape samples obtained from 2,400 

fitness landscapes derived from commonly used benchmark functions, and 

their degree of dependence on problem dimensionality and sample size was 

assessed. Results show that 39 of the 110 metrics have low dependence on 

dimensionality and sample size, 34 of which are considered suitable for 

application to environmental problems. 

 

The low degree of dependence on problem dimensionality and sample size of 

these 34 metrics was tested on a number of real-world environmental modelling 

problems, corresponding to 7,590 sets of fitness landscape samples from 390 

fitness landscapes. Results indicate that 28 of the 34 aforementioned fitness 

landscape metrics also have low dependence on problem dimensionality and 

sample size for the real-world environmental modelling problems, often 
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requiring fewer than 500 fitness landscape samples for convergence. These 28 

metrics cover a wide range of fitness landscape features, including their global 

structure, multimodality, separability, search space and basin size homogeneity 

and the presence of plateaus. 

 

In Chapter 3, 5 ELA metrics shown to have low dependence on problem 

dimensionality and sample size in Chapter 2 are used to better understand the 

features of the error surfaces of multi-layer perceptron (MLP) ANNs of varying 

complexity. Based on the results of four water quantity and quality case studies 

from the literature (Kentucky Runoff, Murray Salinity, Myponga Chlorine, SA 

Turbidity), it has been demonstrated that MLPs with a smaller number of 

hidden nodes and parameters are easier to calibrate, as they have a more well-

defined overall shape that is able to guide optimisation algorithms to better 

regions in the error surface more easily. Additionally, the error surface of 

smaller MLPs is smoother, so that it is harder for algorithms to become trapped 

in local optima. In contrast, the generally flatter error surface of MLPs with 

more parameters and hidden nodes provides limited information to guide the 

search to better regions in the error surface. In addition, the higher level of 

multimodality / roughness of larger MLPs can also make it more difficult to 

identify the global optimum, especially for optimisation algorithms with 

limited exploration capacity, such as gradient-based methods. 

 

On the other hand, as error surfaces of larger MLPs are more convex than those 

of smaller MLPs, which results in better-defined gradient information in local 
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regions, it should be easier to converge to the local optima of larger MLPs. 

However, this is also likely to lead to premature convergence to local optima, 

rather than the identification of the global optimum. In addition, the presence 

of these widely distributed, narrow and deep local optima in the error surfaces 

of more complex MLPs means that hybrid approaches to calibration are likely 

to result in better performance. This is because such approaches use algorithms 

with higher degrees of exploration, such as metaheuristics, in the initial stages 

of the calibration to find good regions in the error surface, followed by 

algorithms with a higher degree of exploitation, such as gradient methods, in 

the latter stages of calibration, enabling good locally optimal, or globally 

optimal, solutions to be identified. 

 

In Chapter 4, 3 ELA metrics with low dependence on problem dimensionality 

and sample size, and related to roughness, flatness and optima dispersion are 

used to understand the features of error surfaces of different CRR models.  

 

According to the results for error surfaces for fitness landscapes for different 

combinations of 4 models of different complexity (AWBM, GR4J, IHACRES 

and Sacramento), 5 catchments in different regions (Burnie, Darwin, Adelaide, 

Wagga Wagga, and Alice Springs) in Australia with climate condition varying 

from wet to dry, 3 different error metrics (NS, LOGNS and WLS) and 7 

different groups of data with different lengths (3 groups of 1-year data, 3 groups 

of 5-year data, 1 group on 10-year data), which corresponds to total of 420 

different error surfaces, model structure have the largest influence on the 
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features of error surface, with a clear difference shown in relative roughness 

and optima dispersion for different models (in this study, complex models are 

shown to have higher relative roughness and higher optima dispersion). 

 

Climate conditions of catchments also appear to have a marked influence on 

relative roughness and optima dispersion, with wetter catchments resulting in 

rougher error surfaces, but with optima that are less dispersed.  In contrast, the 

impact of different error metrics on error surface characteristics is confined to 

particular metrics, model structures and catchment climate conditions. The 

most pronounced influence is associated with the application of the WLS 

metric to simpler models, especially for wetter catchments. Error surface 

roughness increases when the WLS metric is used for models with a small 

number of parameters, such as AWBM, as use of this metric results in a 

significant relative increase in the number of parameters. In contrast, use of the 

WLS metric reduces the error surface flatness and optima dispersion for 

simpler models, especially for wetter catchments, resulting in more well-

defined regions of attraction in parameter space. On the other hand, the results 

show that there is no pronounced impact of calibration data length on error 

surface characteristics. 

 

2 Scope of Future Work 
 

The recommendations for future work related to understanding the problem 

structure of real-world environmental optimisation problems are given below. 
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In this thesis, features of fitness landscapes of two typical environmental 

optimisation problems are assessed and it is shown that ELA metrics can 

successfully interpret the calibration difficulty and efficiency of the two kinds 

of models. As a result, it is worth investigating if ELA metrics can also be 

successfully applied to other environmental models. In this thesis, only CRR 

and one kind of ANN (i.e. MLP) models are considered. However, there are 

many different kinds of models, including data-driven models such as 

geomorphology-based artificial neural network (GANN) (Zhang and 

Govindaraju, 2003) and wavelet neural network (WNN) (Feng et al., 2016), 

and process-driven models for other cases such as groundwater simulation 

(Belmans et al., 1983) and water quality estimation (Abbaspour et al., 2007). 

Apart from model calibration problems, a range of other environmental 

optimisation problems, such as land use management (Emirhüseyinoğlu and 

Ryan, 2020; Newman et al., 2020), wastewater treatment (Hamed et al., 2004) 

and irrigation scheduling (Nguyen et al., 2017; Sedighkia et al., 2021) are also 

worth assessing, as long as the fitness landscapes of these problems are 

continuous.  The application to multi- or many-objective optimisation problems 

would also be of interest. 

 

The other promising future work related to this thesis should be the prediction 

of algorithm performance on different kinds of environmental optimisation 

problems. As the prediction of algorithm performance has been successful for 

benchmark problems through a machine learning framework (Munoz and 

Smith-Miles, 2017), it is worth duplicating the success in environmental 
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optimisation problems. This opens the door to developing evidence-based 

approaches to tailoring optimisation methods and parameterisations (see Wang 

et al., 2020; Zheng et al., 2017) for a range of optimisation problems, such as 

for calibrating ANN models of different types and complexity based on the 

knowledge of error surface features, rather than relying on a brute-force 

approach to using a range of optimisation approaches and picking the one that 

performs best for the problem at hand. 
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Appendices of Chapter 2 (Paper 1) 
Appendix A: Detailed Outline of Methodology 

 

 
* Maximum sample length for local search class metrics is restricted to 3,000 due to high 

computational effort. 

Figure A.1 Detailed Outline of Methodology 
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Appendix B: Details of Benchmark Functions 
 

Table B.1 Detailed Features of Benchmark Functions (adapted from Mersmann et al., 2010) 

Function 
Multi-

Modality 

Global 

Structure 

Separa-

bility 

Variable 

Scaling 

Space 

Homoge-

neity 

Basin 

Homoge-

neity 

Global 

to local 

Contrast 

1 none none high none high none none 

2 none none high high high none none 

3 high strong none low high low low 

4 high strong high low high med low 

5 none none high none high none none 

6 none none high low med none none 

7 none none high low high none none 

8 low none none none med low low 

9 low none none none med low low 

10 none none none high high none none 

11 none none none high high none none 

12 none none none high high none none 

13 none none none low med none none 

14 none none none low med none none 

15 high strong none low high low low 

16 High med none med high med low 

17 high med none low med med high 

18 high med none high med med high 

19 high strong none none high low low 

20 med weak none none high low low 

21 med none none med high med low 

22 low none none med high med med 

23 high none none none high low low 

24 high weak none low high low low 
*As plateaus is not specified in BBOB suite, it is not included in this table.  
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Appendix C: Details of ELA Metrics 
 

A summary of the ELA metrics used is given in Table C.1 and details of how 

different groups of metrics are calculated and how they assist with the 

characterisation of different fitness landscape features are given below. 

 

Table C.1 Summary of ELA Metrics used 

No. Metric Cluster* Class 

1 ela_conv.conv_prob 1 Convexity 

2 ela_conv.lin_prob 1 Convexity 

3 ela_conv.lin_dev.orig 1 Convexity 

4 ela_conv.lin_dev.abs 1 Convexity 

5 ela_distr.skewness 1 Y-Distribution 

6 ela_distr.kurtosis 1 Y-Distribution 

7 ela_distr.number_of_peaks 2 Y-Distribution 

8 ela_level.mmce_lda_10 2 Level Set 

9 ela_level.mmce_qda_10 3 Level Set 

10 ela_level.mmce_mda_10 2 Level Set 

11 ela_level.lda_qda_10 3 Level Set 

12 ela_level.lda_mda_10 1 Level Set 

13 ela_level.qda_mda_10 3 Level Set 

14 ela_level.mmce_lda_25 2 Level Set 

15 ela_level.mmce_qda_25 3 Level Set 

16 ela_level.mmce_mda_25 2 Level Set 

17 ela_level.lda_qda_25 3 Level Set 

18 ela_level.lda_mda_25 2 Level Set 

19 ela_level.qda_mda_25 3 Level Set 

20 ela_level.mmce_lda_50 2 Level Set 

21 ela_level.mmce_qda_50 3 Level Set 

22 ela_level.mmce_mda_50 2 Level Set 

23 ela_level.lda_qda_50 3 Level Set 

24 ela_level.lda_mda_50 2 Level Set 

25 ela_level.qda_mda_50 3 Level Set 

26 ela_meta.lin_simple.adj_r2 1 Meta Model 

27 ela_meta.lin_simple.intercept 1 Meta Model 

28 ela_meta.lin_simple.coef.min 1 Meta Model 

29 ela_meta.lin_simple.coef.max 1 Meta Model 

30 ela_meta.lin_simple.coef.max_by_min 1 Meta Model 

31 ela_meta.lin_w_interact.adj_r2 2 Meta Model 
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32 ela_meta.quad_simple.adj_r2 1 Meta Model 

33 ela_meta.quad_simple.cond 2 Meta Model 

34 ela_meta.quad_w_interact.adj_r2 3 Meta Model 

35 nn.ic.h.max 1 ICoFS 

36 nn.ic.eps.s 1 ICoFS 

37 nn.ic.eps.max 1 ICoFS 

38 nn.ic.eps.ratio 1 ICoFS 

39 nn.ic.m0 1 ICoFS 

40 rand.ic.h.max 1 ICoFS 

41 rand.ic.eps.s 1 ICoFS 

42 rand.ic.eps.max 1 ICoFS 

43 rand.ic.eps.ratio 1 ICoFS 

44 rand.ic.m0 1 ICoFS 

45 ela_curv.grad_norm.min 4 Curvature 

46 ela_curv.grad_norm.lq UC Curvature 

47 ela_curv.grad_norm.mean UC Curvature 

48 ela_curv.grad_norm.med UC Curvature 

49 ela_curv.grad_norm.uq UC Curvature 

50 ela_curv.grad_norm.max 4 Curvature 

51 ela_curv.grad_norm.sd UC Curvature 

52 ela_curv.grad_norm.nas 1 Curvature 

53 ela_curv.grad_scale.min 4 Curvature 

54 ela_curv.grad_scale.lq UC Curvature 

55 ela_curv.grad_scale.mean UC Curvature 

56 ela_curv.grad_scale.med UC Curvature 

57 ela_curv.grad_scale.uq UC Curvature 

58 ela_curv.grad_scale.max 4 Curvature 

59 ela_curv.grad_scale.sd UC Curvature 

60 ela_curv.grad_scale.nas 1 Curvature 

61 ela_curv.hessian_cond.min 4 Curvature 

62 ela_curv.hessian_cond.lq UC Curvature 

63 ela_curv.hessian_cond.mean UC Curvature 

64 ela_curv.hessian_cond.med UC Curvature 

65 ela_curv.hessian_cond.muq UC Curvature 

66 ela_curv.hessian_cond.max 1 Curvature 

67 ela_curv.hessian_cond.sd UC Curvature 

68 ela_curv.hessian_cond.nas 1 Curvature 

69 ela_local.n_loc_opt.abs 5 Local Search 

70 ela_local.n_loc_opt.rel 2 Local Search 

71 ela_local.best2mean_contr.orig 5 Local Search 

72 ela_local.best2mean_contr.ratio 5 Local Search 

73 ela_local.center.dist_min 5 Local Search 
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74 ela_local.center.dist_lq 1 Local Search 

75 ela_local.center.dist_mean 1 Local Search 

76 ela_local.center.dist_median 1 Local Search 

77 ela_local.center.dist_uq 1 Local Search 

78 ela_local.center.dist_max 5 Local Search 

79 ela_local.center.dist_sd 1 Local Search 

80 ela_local.basin_sizes.avg_best 5 Local Search 

81 ela_local.basin_sizes.avg_non_best 5 Local Search 

82 ela_local.basin_sizes.avg_worst 5 Local Search 

83 ela_local.fun_evals.min 1 Local Search 

84 ela_local.fun_evals.lq 1 Local Search 

85 ela_local.fun_evals.mean 1 Local Search 

86 ela_local.fun_evals.median 1 Local Search 

87 ela_local.fun_evals.uq 1 Local Search 

88 ela_local.fun_evals.max 1 Local Search 

89 ela_local.fun_evals.sd 1 Local Search 
*UC in Cluster column represents metrics not classified in this study. 

 

 

 

C1. Convexity Metrics:  

As can be seen in Table 2.3, convexity metrics are able to provide information 

on a number of fitness landscape features, including global structure, 

multimodality and search space homogeneity.  Their calculation requires 

implementation of the following general steps: 

(i) Select random pairs of points (𝑥𝑖 , 𝑥𝑗) from the total number of samples 

of the fitness landscape considered (i.e. 100 to 120,000 samples, see 

Figure 2.1). To ensure most of the samples are included in the 

calculation, we use n random pairs of points in this study, where n is 

the number of initial samples. 

 

(ii) Calculate a linear combination of ( 𝑥𝑖, 𝑥𝑗)  to select a new point 𝑥𝑛 

between the two points, where 
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𝑥𝑛 = 𝑤 ∙ 𝑥𝑖 + (1 − 𝑤) ∙ 𝑥𝑗                                                             (𝐶1) 

 

where 𝑤 is a random number between 0 and 1. Calculate the fitness value 𝑦𝑛  

of 𝑥𝑛 based on the corresponding test function. 

 

(iii)Calculate the fitness values ( 𝑦𝑖 , 𝑦𝑗)  of ( 𝑥𝑖, 𝑥𝑗)   based on the 

corresponding test function. Use linear regression to calculate the 

approximated linear fitness value 𝑦𝑛
′  at 𝑥𝑛,  

 

𝑦𝑛
′ = 𝑤 ∙ 𝑦𝑖 + (1 − 𝑤) ∙ 𝑦𝑗                                                             (𝐶2) 

 

where 𝑤 is the same 𝑤 as in (ii). 

 

(iv) Calculate the difference (∆) between 𝑦𝑛 and 𝑦𝑛
′  by ∆= 𝑦𝑛 -𝑦𝑛

′ . 

 

a. If ∆  is negative, the landscape between the selected two points is 

convex, providing good gradient information to guide the search 

in this region of the fitness landscape. 

b. If  ∆ is positive, the landscape between the selected two points is 

not convex, providing poor gradient information to guide the search 

in this region of the fitness landscape. 

 

(v) In total, 4 convexity metrics are considered, which differ in terms of 

statistics methods to summarise the results of ∆ obtained from 𝑛 pairs 

of samples. They are the probability of convexity 

(ela_conv.conv_prob), which relates to the probability of negative ∆; 

probability of linearity (ela_conv.lin_prob), which relates to the 

probability of ∆= 0; mean original deviation (ela_conv.lin_dev.orig), 
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which relates to the mean value of ∆ from 𝑛 pairs of samples; mean 

absolute deviation (ela_conv.lin_dev.abs), which relates to the mean 

value of |∆| from 𝑛 pairs of samples. 

 

Convexity metrics are able to provide information on the global structure of 

fitness landscapes as they present information about the general shape of fitness 

landscapes and can therefore provide information on whether fitness 

landscapes have a clear structure to guide searching or not. They are also able 

to provide information on search space homogeneity and multimodality as they 

take the probability of convexity into account. A high or low convexity rate 

indicates fitness landscapes maintain the same trend and shape in most areas of 

the fitness landscape, which is representative of greater homogeneity and 

reduced multimodality. In contrast, middle-range values of the convexity rate 

indicate that fitness landscapes have different trends and shapes in different 

areas, increasing changes of inhomogeneity and multi-modality. 

 

B2. y-Distribution Metrics:  

As can be seen in Table 2.3, y-distribution metrics are able to provide 

information on a number of fitness landscape features, including global 

structure, multimodality and search space homogeneity. Their calculation 

requires implementation of the general following steps: 

(i) Generate the PDF of the fitness values 𝑌𝑠of samples  𝑋𝑠. 

 

(ii) In total, 3 y-distribution metrics were considered, which relates to the 

properties of the PDF of 𝑌𝑠 including skewness (ela_distr.skewness), 
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kurtosis (ela_distr.kurtosis), and the number of peaks 

(ela_distr.number_of_peaks). 

 

Y-distribution metrics are able to provide information on the global structure 

of fitness landscapes, for example, if the skewness of the PDF is negative, most 

of the obtained 𝑦  are small, indicating that the bottom region of a fitness 

landscape is bigger than the top region, referring to a bigger “bowl” bottom 

than for a fitness landscapes with a positive skewness. They are also able to 

provide information on multimodality, as a multi-modal fitness landscapes are 

likely to have several peaks in their PDFs, which refers to different bottom 

regions of the fitness landscape. Additionally, y-distribution metrics are able to 

provide information on the prevalence of plateaus within the landscape, as 

plateau-like landscapes contain region(s) with the same fitness values, as a 

result, they would tend to have high kurtosis values, which indicates that most 

of the fitness values have no significant difference. 

C3. Level Set Metrics: 

As can be seen in Table 2.3, level set metrics are able to provide information 

concerning a number of fitness landscape features, including global structure, 

multimodality and plateaus. Their calculation requires implementation of the 

following steps: 

(i) Split all the samples to high-quality and low-quality ones based on a 

given quantile threshold of their fitness values 𝑌𝑠. In this study, 10%, 

25% and 50% quantiles are used as thresholds. 

(ii) Linear (LDA), quadratic (QDA) and mixture (MDA) discriminant 

analysis are used to predict whether the fitness values 𝑌𝑠 are high or 
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low-quality. The number of 𝑌𝑠 which are classified to a wrong quality 

group are recorded. 

(iii)Calculate the mean misclassification error (MMCE), which refers to 

the probability of misclassification of 𝑌𝑠 by using corresponding 

discriminant analysis methods. 

(iv) In total, 18 level set metrics are considered, which differ in terms of 

quantile thresholds and discriminant analysis methods (i.e. 

ela_level.mmce_{lda, qda, mda}_{10, 25, 50}). The quotient of 

MMCE of LDA divided by MMCE of QDA (ela_level.lda_qda}_{10, 

25, 50}), the quotient of MMCE of LDA divided by MMCE of MDA 

(ela_level.lda_mda}_{10, 25, 50}), and the quotient of MMCE of QDA 

divided by MMCE of MDA (ela_level.qda_mda}_{10, 25, 50}) are 

also included in the metrics, as they can show the differences of MMCE 

between simple models (LDA and QDA) and complex models (MDA). 

 

Level set metrics are able to provide information on global structure and 

multimodality, as through the MMCE of different discriminant analysis, the 

distribution of fitness values can be determined. For example, if MMCEs of 

LDA and QDA are low and MMCEs of MDA are high, fitness values on fitness 

landscapes can be easily classified by these two simple models, indicating high-

quality values and low-quality values are not located in the same region, so that 

high-quality values can be easily identified, as finding these values will not be 

interrupted by low-quality values in this case. As differences between fitness 

values are not big in the small region, the landscapes should not contain 

multiple optima. In contrast, if MMCEs of LDA and QDA are high, the global 
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structure of a fitness landscape is likely to be complex, as this indicates that 

there are no clear “top” and “bottom” regions of the fitness landscapes, but very 

frequent variation in fitness values. This can also result in a high level of 

multimodality of fitness landscapes. Furthermore, if MMCEs of MDA are also 

high, the structure of fitness landscapes can be quite complex and multi-modal.  

Level set metrics are also able to provide information on plateaus.  As plateau-

like landscapes have many similar fitness values, the threshold of high and low-

quality values is not clear for such problems. As a result, plateau-like 

landscapes are more likely to have high MMCEs for all discriminant analysis 

methods. 

C4. Meta Model Metrics: 

As can be seen in Table 2.3, meta model metrics are able to provide information 

on a number of fitness landscape features, including global structure, 

multimodality, plateaus and variable scaling. Their calculation requires 

implementation of the general following steps: 

(i) Build the corresponding regression models between samples 𝑋𝑠 and 

corresponding fitness values 𝑌𝑠. Four regression models are built in 

this study, which are: 

Simple linear regression: 

�̅� = ∑ 𝑎𝑖𝑣𝑖

𝑛

𝑖=1

                                                                      (𝐶3) 

where 𝑎𝑖 is the coefficient of corresponding variable 𝑣𝑖. 

Interacted linear regression: 

 

�̅� = ∑ 𝑎𝑖𝑣𝑖
𝑛
𝑖=1 +∑ ∑ 𝑏𝑘𝑣𝑖

𝑛
𝑗=1 𝑣𝑗

𝑛
𝑖=1                                                (𝐶4) 
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where 𝑏𝑘is the coefficient of corresponding variable 𝑣𝑖𝑣𝑗. 

Simple quadratic regression: 

 

�̅� = ∑ 𝑎𝑖𝑣𝑖
𝑛
𝑖=1 +∑ 𝑐𝑖𝑣𝑖

2𝑛
𝑖=1                                                                  (𝐶5) 

where 𝑐𝑖 is the coefficient of corresponding variable 𝑣𝑖
2, which is the square 

of 𝑣𝑖. 

Interacted quadratic regression:  

�̅� = ∑ 𝑎𝑖𝑣𝑖
𝑛
𝑖=1 +∑ 𝑐𝑖𝑣𝑖

2 +𝑛
𝑖=1 ∑ ∑ 𝑏𝑘𝑣𝑖

𝑛
𝑗=1 𝑣𝑗

𝑛
𝑖=1 + ∑ ∑ 𝑡𝑘𝑣𝑖

𝑛
𝑗=1 𝑣𝑗

2𝑛
𝑖=1  

+∑ ∑ 𝑙𝑘𝑣𝑖
2𝑛

𝑗=1 𝑣𝑗
2𝑛

𝑖=1                                                        (𝐶6) 

where 𝑡𝑘and 𝑙𝑘  are the coefficient of corresponding variable 𝑣𝑖𝑣𝑗
2 and 𝑣𝑖

2𝑣𝑗
2, 

respectively. 

 

(ii) In total, 9 meta model metrics are considered, which are related to 

adjusted coefficients of determination R2 

(ela_meta.{lin,quad}_{simple,w_interact}.adj_r2) of four regression 

models, maximum, minimum and intercept coefficients of simple linear 

regression models (ela_meta.lin_simple.{coef.max, coef.min, 

intercept}) and the quotient between maximum and minimum 

coefficients (ela_meta.{lin,quad}_simple.cond) of simple linear and 

simple quadratic regression models. 

 

Meta model metrics are able to provide information on the global structure and 

multimodality of fitness landscapes as adjusted R2 can show how well global 

structure matches the corresponding models, and a goodness-of-fit shown by 

R2 also indicates models with a low-level of multimodality, as all these 

regression models are not multi-modal. They are also able to provide 

information on separability as separate fitness landscapes are likely to have 
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higher adjusted R2 as they are likely to be represented more easily by simpler 

models. Additionally, meta model metrics are able to provide information on 

variable scaling, as shown by the maximum and minimum of coefficients of 

the models. Low-degree variable scaling fitness landscapes should have models 

with maximum and minimum coefficients the values of which are close to each 

other, indicating that all variables make similar contributions to the fitness 

values. On the other hand, High-degree variable scaling fitness landscapes 

should have models with significant different maximum and minimum 

coefficients, indicating that the contributions of different variables to the fitness 

values are not the same. 

C5. Local Search Metrics: 

As can be seen in Table 2.3, local search metrics are able to provide information 

on a number of fitness landscape features including multimodality, global to 

local optima contrast, basin size homogeneity and search space homogeneity. 

Their calculation requires implementation of the general following steps: 

(i) Use a gradient algorithm to find local optima starting from initial 

samples 𝑋𝑠. In this study, the L-BFGS-B algorithm (Zhu et al., 1997) 

was used due to its capacity to setup the range of calculation to avoid 

the identified local optima being beyond the range of the fitness 

landscape. 

(ii) Use of hierarchical clustering to cluster identified local optima in (i). 

Local optima within a given Euclidean distance 𝑒 are included in the 

same cluster, which refers to a corresponding local basin. In this 

study, 𝑒 is 5% of total Euclidean distance length of the whole fitness 
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landscape, as this distance performs well in distinguishing different 

clusters without resulting in a computational burden that results in 

intractability (if 𝑒 is too small, a larger number of clusters is likely to 

be generated by hierarchical clustering, which increases complexity 

and the computational requirements of subsequent calculations). 

(iii)Calculate the centroid 𝑋𝑐 of each local basin identified in (ii), based 

on the local optima in the corresponding basin. Calculate the fitness 

value 𝑌𝑐 of all centroids. 

(iv) In total, 21 local search metrics are considered, which relates to the 

number of identified local basins (ela_local.n_loc_opt.{abs, rep}), 

fitness value differences between high-quality basins (global optima) 

and low-quality basins (local optima) 

(ela_local.best2mean_contr.{orig, ratio}), basin size difference 

between high, average and low-quality basins (i.e. difference between 

number of optima in high and low-quality basins) 

(ela_local.basin_sizes.{avg_best, avg_non_best, avg_worst}), 

statistics of basin centroids Euclidean distances and statistics of 

number of evaluated functions to find optima from initial samples (i.e. 

minimum, maximum, lower quantile, median, mean, upper quantile 

and standard deviation of basin centroids Euclidean distances and 

number of evaluated functions) (ela_local.{center.dist, 

fun_evals}_{min, max, lq, median, mean, uq, sd}). 

Local search metrics are able to provide information on multimodality, as the 

level of multimodality is highly related to the identified number of optima by 
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using a gradient algorithm. They are also able to provide information on global 

to local optima contrast, as fitness landscapes with a high degree of global and 

local contrast are likely to have significantly different fitness values between 

global and local basins/optima and vice versa. Additionally, local search 

metrics are able to provide information on basin size homogeneity, as they can 

present the size difference between high and low-quality basins, in order to 

check whether basins have the same quality. On the other hand, the evaluated 

number of functions can also show the depth of different basins. Finally, they 

are able to provide information on search space homogeneity, as they are able 

to show the distribution of centroids on fitness landscapes. The distance 

between centroids can indicate whether basins are converged to a small region 

or widely distributed on the whole fitness landscape, referring to whether 

different regions in search space have the same feature. 

C6. Curvature Metrics: 

As can be seen in Table 2.3, curvature metrics are able to provide information 

on a number of fitness landscape features including plateaus and variable 

scaling.  Their calculation requires implementation of the general following 

steps: 

(i) Calculate the gradient information  

 

𝑓′(𝑥𝑖) =  𝑑𝑓(𝑥𝑖)/𝑑𝑥                                                     (𝐶7) 

where 𝑓(𝑥) is the fitness function and 𝑓′(𝑥𝑖) is the first order derivative of f 

at the variable 𝑥𝑖. Based on 𝑓′(𝑥) in all directions, the total gradient length 𝐿 

of a sample is calculated as 
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𝐿 = √∑(𝑓′(𝑥𝑖))
2

𝑛

𝑖=1

                                                            (𝐶8) 

where 𝑛 is the number of variables (dimensions) of the fitness function. The 

gradient condition 𝐶𝐺 of a sample is calculated as 

 

𝐶𝐺  = max{𝑓′(𝑥)}/min {𝑓′(𝑥)}                                     (𝐶9) 

(ii) Calculate the Hessian matrix  

 

𝐻(𝑋) = 𝜕2𝑓(𝑥)/𝜕𝑥𝑖𝜕𝑥𝑗                                                 (𝐶10) 

 

so the eigenvalues 𝝀 of 𝐻(𝑋) can be calculated from 

𝐻(𝑋) −  𝝀 ∙ 𝑰𝑛 = 𝟎                                                          (𝐶11) 

 

where 𝑰𝑛 is the identity matrix with size 𝑛. The Hessian condition 𝐶𝐻 of a 

sample is calculated as 

𝐶𝐻 = max{𝝀}/min{𝝀}                                                      (𝐶12) 

 

(iii)In total, 24 curvature metrics are considered, which differ in terms 

of 8 statistics of  𝐿, 𝐶𝐺 and 𝐶𝐻 of all samples, which are the 

minimum, maximum, lower quantile, median, mean, upper 

quantile, standard deviation and proportion of samples with no  𝐿, 

𝐶𝐺 and 𝐶𝐻 (i.e. ela_curv.{grad_norm, grad_scale, 

hessian_cond}.{min, max, lq, med, mean, uq, sd, nas}) 

Curvature metrics are able to provide information on the plateaus of fitness 

landscapes, as they refer to the gradient information of fitness landscapes. 

Plateau-like fitness landscapes contain limited gradient information, resulting 

in small 𝐿 of all samples in general.  They are also able to provide information 

on variable scaling, as 𝐶𝐺  and 𝐶𝐻  can show the differences of contribution 

between variables to the fitness values. Large 𝐶𝐺  and 𝐶𝐻  values generally 



192 

Appendices  

   

 

indicate that there are variables which have very small contributions to the 

fitness values, prviding little guidance to the search algorithm. 

C7. ICoFS Metrics: 

As can be seen in Table 2.3, ICoFS metrics are able to provide information on 

a number of fitness landscape features, including global structure, 

multimodality and plateaus. Their calculation requires implementation of the 

following general steps: 

(i) Firstly sort all samples into a sequence. In this study, two 

sampling ordering methods are used to generate different ICoFS 

metrics: (1) nearest neighbouring (nn), as part of which the 

following sample 𝑥𝑖+1 of one sample 𝑥𝑖 is the closest sample to 

the corresponding by Euclidean distance; (2) random (rand) order, 

as part of which the following sample 𝑥𝑖+1 of one sample 𝑥𝑖 is 

randomly selected from the entire set of samples. 

(ii) Build a symbol sequence ∅(𝜖) by using the following rule: 

∅𝑖 = {

−1, 𝑖𝑓 𝑦𝑖+1 − 𝑦𝑖 < −𝜖

0, 𝑖𝑓 | 𝑦𝑖+1 − 𝑦𝑖| <
1, 𝑖𝑓 𝑦𝑖+1 − 𝑦𝑖 >  𝜖

𝜖                                       (𝐶13) 

 

where 𝜖 ≥ 0 is the accuracy parameter of the symbol sequence and 𝑦𝑖 is the 

fitness value of sample 𝑥𝑖. It can be seen that ∅(𝜖) is controlled by the value 

of 𝜖. If 𝜖 is small, ∅(𝜖) can be quite sensitive and contain frequent symbol 

changes in the sequence (for example sequence [-1, 1, 1, -1, 1]). If 𝜖 is big, on 

the other hand, ∅(𝜖) can be insensitive and contain many 0 values in the 

sequence (for example sequence [0, 0, 0, 0, 0]). 

(iii)Calculate the information content 𝐻(𝜖) of the sequence based on 
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the definition: 

𝑯(𝝐) = − ∑ 𝑷𝒂𝒃𝒍𝒐𝒈𝟔𝑷𝒂𝒃                                                        (𝑪𝟏𝟒)

𝒂≠𝒃

 

where 𝑎, 𝑏 ∈ {−1, 0, 1} and 𝑃𝑎𝑏 is the probability that two neighboured 

symbols 𝑎, 𝑏 are different. 

(iv) Build a new sequence ∅′(𝜖) by removing all 0 values in ∅(𝜖), and 

calculate the partial information content 𝑀(𝜖), which is defined 

as: 

𝑴(𝝐) = |∅′|/(𝒏 − 𝟏)                                                                   (𝑪𝟏𝟓) 

where 𝑛 is the length of sequence ∅(𝜖). 

(v) In total, 10 ICoFS metrics are considered and both of two sample 

orders contain 5 metrics. The typical result curves of 𝐻(𝜖) and 

𝑀(𝜖) against 𝜖are shown in Figure C.1. Munoz et al., (2015b) 

provides 5 metrics to summarise the curves, which are  

𝐻𝑚𝑎𝑥 = max{𝐻(𝜖)}                                                                    (𝐶16) 

 

𝜖𝑚𝑎𝑥 = 𝑙𝑜𝑔10𝜖 , 𝑤ℎ𝑒𝑟𝑒 𝐻(𝜖) = 𝐻𝑚𝑎𝑥                                    (𝐶17) 

 

𝜖𝑠 = 𝑙𝑜𝑔10 min(𝜖) , 𝑤ℎ𝑒𝑟𝑒 𝐻(𝜖) < 0.05                              (𝐶18) 

 

𝑀0 = 𝑀(𝜖 = 0)                                                                           (𝐶19) 

 

𝜖𝑟𝑎𝑡𝑖𝑜 = 𝑙𝑜𝑔10 max{𝜖} , 𝑤ℎ𝑒𝑟𝑒 𝑀(𝜖) > 0.5𝑀0                    (𝐶20) 

 

The detailed dot plots of the 5 metrics are also shown in Figure C.1. The total 

10 metrics are shown as format {nn, rand}.ic.{h.max, eps.max, eps.s, m0, 

eps.ratio}. 
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Figure C.1 Typical Results of ICoFS 

ICoFS metrics are able to provide information on multimodality, as the 

symbols in the sequence represent information about the smoothness of fitness 

landscapes. Rough landscapes are likely to have high values of 𝐻𝑚𝑎𝑥 and 𝑀0, 

and if landscapes are rough, they have the potential to have a high-degree of 

multimodality. Additionally, they are able to provide information on plateaus 

and global structure, as plateau-like landscapes should contain many 0s in their 

symbol sequence. Even when 𝜖 is very small, this is likely to return a small 𝜖𝑠, 

𝜖𝑚𝑎𝑥 and 𝜖𝑟𝑎𝑡𝑖𝑜for a plateau-like landscape. In contrast, fitness landscapes with 

good global structure should have a level of scaling in terms of fitness values, 

as a result, small 𝜖𝑠, 𝜖𝑚𝑎𝑥 and 𝜖𝑟𝑎𝑡𝑖𝑜 should be bigger than those for flat fitness 

landscapes. 
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Appendix D: Slopes and Coefficients of Determination 

(r2) of Benchmark Test for All Tested Metrics 
 

Table D.3 Slope of dimension, sample size and r2 of plane regression for all 

metrics in different classes and clusters (unclassified metrics are not 

included) 

 

Metric 
Number 

Metric 
Slope 

of 
Dim 

Slope 
of 

Sample 
Size 

Plane 
r2 

Cluster Class 

1 ela_conv.conv_prob 0.00 0.02 0.39 1 Convexity 

2 ela_conv.lin_prob 0.01 0.00 0.41 1 Convexity 

3 ela_conv.lin_dev.orig 0.01 0.01 0.11 1 Convexity 

4 ela_conv.lin_dev.abs 0.00 0.01 0.12 1 Convexity 

5 ela_distr.skewness 0.02 0.05 0.70 1 Y-Distribution 

6 ela_distr.kurtosis 0.05 0.07 0.79 1 Y-Distribution 

7 ela_distr.number_of_peaks 0.13 0.08 0.70 2 Y-Distribution 

8 ela_level.mmce_lda_10 0.12 0.10 0.66 2 LevelSet 

9 ela_level.mmce_qda_10 0.26 0.12 0.85 3 LevelSet 

10 ela_level.mmce_mda_10 0.12 0.12 0.70 2 LevelSet 

11 ela_level.lda_qda_10 0.27 0.12 0.84 3 LevelSet 

12 ela_level.lda_mda_10 0.05 0.08 0.57 1 LevelSet 

13 ela_level.qda_mda_10 0.27 0.11 0.82 3 LevelSet 

14 ela_level.mmce_lda_25 0.13 0.11 0.76 2 LevelSet 

15 ela_level.mmce_qda_25 0.24 0.13 0.84 3 LevelSet 

16 ela_level.mmce_mda_25 0.12 0.16 0.86 2 LevelSet 

17 ela_level.lda_qda_25 0.25 0.12 0.82 3 LevelSet 

18 ela_level.lda_mda_25 0.08 0.13 0.81 2 LevelSet 

19 ela_level.qda_mda_25 0.25 0.10 0.73 3 LevelSet 

20 ela_level.mmce_lda_50 0.13 0.11 0.80 2 LevelSet 
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21 ela_level.mmce_qda_50 0.24 0.10 0.80 3 LevelSet 

22 ela_level.mmce_mda_50 0.12 0.15 0.86 2 LevelSet 

23 ela_level.lda_qda_50 0.28 0.09 0.80 3 LevelSet 

24 ela_level.lda_mda_50 0.08 0.12 0.82 2 LevelSet 

25 ela_level.qda_mda_50 0.24 0.09 0.82 3 LevelSet 

26 ela_meta.lin_simple.adj_r2 0.01 0.04 0.49 1 MetaModel 

27 ela_meta.lin_simple.intercept 0.00 0.01 0.16 1 MetaModel 

28 ela_meta.lin_simple.coef.min 0.08 0.08 0.79 1 MetaModel 

29 ela_meta.lin_simple.coef.max 0.08 0.05 0.74 1 MetaModel 

30 ela_meta.lin_simple.coef.max_by_min 0.07 0.07 0.78 1 MetaModel 

31 ela_meta.lin_w_interact.adj_r2 0.13 0.10 0.62 2 MetaModel 

32 ela_meta.quad_simple.adj_r2 0.02 0.05 0.46 1 MetaModel 

33 ela_meta.quad_simple.cond 0.16 0.09 0.83 2 MetaModel 

34 ela_meta.quad_w_interact.adj_r2 0.19 0.11 0.79 3 MetaModel 

35 nn.ic.h.max 0.01 0.06 0.42 1 ICoFS 

36 nn.ic.eps.s 0.07 0.08 0.54 1 ICoFS 

37 nn.ic.eps.max 0.03 0.06 0.50 1 ICoFS 

38 nn.ic.eps.ratio 0.06 0.06 0.42 1 ICoFS 

39 nn.ic.m0 0.03 0.04 0.24 1 ICoFS 

40 rand.ic.h.max 0.03 0.08 0.81 1 ICoFS 

41 rand.ic.eps.s 0.01 0.02 0.19 1 ICoFS 

42 rand.ic.eps.max 0.01 0.01 0.14 1 ICoFS 

43 rand.ic.eps.ratio 0.00 0.03 0.22 1 ICoFS 

44 rand.ic.m0 0.00 0.01 0.11 1 ICoFS 

45 ela_curv.grad_norm.min 0.01 0.12 0.69 4 Curvature 

50 ela_curv.grad_norm.max 0.01 0.12 0.64 4 Curvature 

52 ela_curv.grad_norm.nas 0.00 0.00 NA 1 Curvature 

53 ela_curv.grad_scale.min 0.01 0.12 0.68 4 Curvature 
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58 ela_curv.grad_scale.max 0.01 0.11 0.64 4 Curvature 

60 ela_curv.grad_scale.nas 0.04 0.00 0.70 1 Curvature 

61 ela_curv.hessian_cond.min 0.01 0.12 0.68 4 Curvature 

66 ela_curv.hessian_cond.max 0.00 0.06 0.41 1 Curvature 

68 ela_curv.hessian_cond.nas 0.01 0.01 0.41 1 Curvature 

69 ela_local.n_loc_opt.abs 0.17 0.04 0.70 5 LocalSearch 

70 ela_local.n_loc_opt.rel 0.06 0.12 0.62 2 LocalSearch 

71 ela_local.best2mean_contr.orig 0.14 0.05 0.61 5 LocalSearch 

72 ela_local.best2mean_contr.ratio 0.12 0.06 0.30 5 LocalSearch 

73 ela_local.center.dist_min 0.15 0.05 0.70 5 LocalSearch 

74 ela_local.center.dist_lq 0.07 0.04 0.33 1 LocalSearch 

75 ela_local.center.dist_mean 0.08 0.04 0.36 1 LocalSearch 

76 ela_local.center.dist_median 0.08 0.04 0.35 1 LocalSearch 

77 ela_local.center.dist_uq 0.07 0.04 0.34 1 LocalSearch 

78 ela_local.center.dist_max 0.15 0.05 0.73 5 LocalSearch 

79 ela_local.center.dist_sd 0.09 0.02 0.30 1 LocalSearch 

80 ela_local.basin_sizes.avg_best 0.16 0.03 0.73 5 LocalSearch 

81 ela_local.basin_sizes.avg_non_best 0.17 0.03 0.70 5 LocalSearch 

82 ela_local.basin_sizes.avg_worst 0.18 0.04 0.76 5 LocalSearch 

83 ela_local.fun_evals.min 0.10 0.07 0.69 1 LocalSearch 

84 ela_local.fun_evals.lq 0.02 0.03 0.35 1 LocalSearch 

85 ela_local.fun_evals.mean 0.01 0.00 0.01 1 LocalSearch 

86 ela_local.fun_evals.median 0.00 0.02 0.30 1 LocalSearch 

87 ela_local.fun_evals.uq 0.00 0.02 0.18 1 LocalSearch 

88 ela_local.fun_evals.max 0.02 0.07 0.33 1 LocalSearch 

89 ela_local.fun_evals.sd 0.00 0.02 0.11 1 LocalSearch 
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Figure D.4 Reject rate plots of metrics with low r2  
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Appendices of Chapter 4 (Paper 3) 
Appendix A – Details of CRR Models 

 

 
Figure A.1 – Model Structure of AWBM (adapted from Boughton et al., (2004))

  
Figure A.2 – Model Structure of GR4J (adapted from Perrin et al., (2003)) 
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Figure A.3 – Model Structure of IHACRES-CMD (adapted from Croke and 

Jackman (2004) and Jackman et al., (1990)) 

 

 
Figure A.4 – Model Structure of Sacramento (adapted Uliana et al., 2019)  
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Table A.1 CRR Model Parameters and Corresponding Ranges 

 

Model Parameter Description Range 

AWBM 

cap.ave average soil water storage capacity (mm) 1—1000  

emult multiplier for the PET 0.01—1  

GR4J 

x1 

maximum capacity of the production store (mm) 100—

1200  

x2 groundwater exchange coefficient (mm) -5—3  

x3 

one day ahead maximum capacity of the routing store 

(mm) 

20—300  

x4 time base of unit hydrograph UH1 (time steps) 1.1—2.9 

IHACRES 

f CMD stress threshold as a proportion of d 0.01—3  

e temperature to PET conversion factor 0.01—1.5 

d CMD threshold for producing flow 50—550  

vs fractional volumes for the slow flow 0—1  

𝝉𝒔 time base of unit hydrograph of slow flow 10—350  

𝝉𝒒 time base of unit hydrograph of quick flow 0.5—10  

Sacramento 

uztwm upper zone tension water maximum capacity (mm) 1—150  

uzfwm upper zone free water maximum capacity (mm) 1—150  

uzk 

lateral drainage rate of upper zone free water expressed 

as a fraction of contents per day 

0.1—0.5  

pctim 

the fraction of the catchment which produces impervious 

runoff during low flow conditions 

10-6—0.1 
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adimp 

the additional fraction of the catchment which exhibits 

impervious characteristics when the catchment's tension 

water requirements are met 

0—0.4 

zperc maximum percolation rate coefficient 1—250  

rexp 

the rate of change of the percolation rate with changing 

lower zone water contents 

0—5  

lztwm lower zone tension water maximum capacity (mm) 1—500  

lzfsm 

lower zone supplemental free water maximum capacity 

(mm) 

1—1000  

lzfpm lower zone primary free water maximum capacity (mm) 1—1000  

lzsk 

lateral drainage rate of lower zone supplemental free 

water 

0.01—

0.25  

lzpk lateral drainage rate of lower zone primary free water 10-4—0.25 

pfree 

direct percolation fraction from upper to lower zone free 

water 

0—0.6 

  

 

 

 

 

 

 

 

 



203 

                                                                                                    Appendices  

 

Appendix B – Results of Clustering of ELA Metrics 

for the 420 Error Surfaces Considered 
 

Table B.1 Metric results of Hmax (metric related to roughness) and 

corresponding degree of relative roughness and score (cluster) for all error 

surfaces (as cases with same data length have very close results, the average 

of 1-year and 5-year data length results of corresponding cases are 

presented instead of each single case) 

 

Catchment 
Location 

Model 
Data 

Length 
Error 

Metric 
Metric 
Result 

Degree of 
Relative 

Roughness 

Score 
(Cluster) 

Burnie AWBM 1_year NS 0.64 Low 2 

Burnie AWBM 5_year NS 0.71 Medium 3 

Burnie AWBM 10_year NS 0.72 Medium 3 

Darwin AWBM 1_year NS 0.65 Low 2 

Darwin AWBM 5_year NS 0.67 Low 2 

Darwin AWBM 10_year NS 0.70 Low 2 

Adelaide AWBM 1_year NS 0.59 Very Low 1 

Adelaide AWBM 5_year NS 0.59 Very Low 1 

Adelaide AWBM 10_year NS 0.59 Very Low 1 

Wagga Wagga AWBM 1_year NS 0.57 Very Low 1 

Wagga Wagga AWBM 5_year NS 0.54 Very Low 1 

Wagga Wagga AWBM 10_year NS 0.54 Very Low 1 

Alice Springs AWBM 1_year NS 0.59 Very Low 1 

Alice Springs AWBM 5_year NS 0.58 Very Low 1 

Alice Springs AWBM 10_year NS 0.56 Very Low 1 

Burnie AWBM 1_year LOGNS 0.74 Medium 3 

Burnie AWBM 5_year LOGNS 0.67 Low 2 

Burnie AWBM 10_year LOGNS 0.65 Low 2 

Darwin AWBM 1_year LOGNS 0.65 Low 2 

Darwin AWBM 5_year LOGNS 0.62 Very Low 1 

Darwin AWBM 10_year LOGNS 0.64 Low 2 

Adelaide AWBM 1_year LOGNS 0.61 Very Low 1 

Adelaide AWBM 5_year LOGNS 0.58 Very Low 1 

Adelaide AWBM 10_year LOGNS 0.56 Very Low 1 

Wagga Wagga AWBM 1_year LOGNS 0.64 Low 2 

Wagga Wagga AWBM 5_year LOGNS 0.62 Very Low 1 

Wagga Wagga AWBM 10_year LOGNS 0.62 Very Low 1 

Alice Springs AWBM 1_year LOGNS 0.62 Very Low 1 

Alice Springs AWBM 5_year LOGNS 0.61 Very Low 1 

Alice Springs AWBM 10_year LOGNS 0.64 Low 2 
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Burnie AWBM 1_year WLS 0.73 Medium 3 

Burnie AWBM 5_year WLS 0.73 Medium 3 

Burnie AWBM 10_year WLS 0.74 Medium 3 

Darwin AWBM 1_year WLS 0.75 Medium 3 

Darwin AWBM 5_year WLS 0.73 Medium 3 

Darwin AWBM 10_year WLS 0.71 Medium 3 

Adelaide AWBM 1_year WLS 0.73 Medium 3 

Adelaide AWBM 5_year WLS 0.73 Medium 3 

Adelaide AWBM 10_year WLS 0.74 Medium 3 

Wagga Wagga AWBM 1_year WLS 0.73 Medium 3 

Wagga Wagga AWBM 5_year WLS 0.73 Medium 3 

Wagga Wagga AWBM 10_year WLS 0.75 Medium 3 

Alice Springs AWBM 1_year WLS 0.70 Low 2 

Alice Springs AWBM 5_year WLS 0.72 Medium 3 

Alice Springs AWBM 10_year WLS 0.73 Medium 3 

Burnie GR4J 1_year NS 0.78 High 4 

Burnie GR4J 5_year NS 0.79 High 4 

Burnie GR4J 10_year NS 0.80 High 4 

Darwin GR4J 1_year NS 0.78 High 4 

Darwin GR4J 5_year NS 0.78 High 4 

Darwin GR4J 10_year NS 0.78 High 4 

Adelaide GR4J 1_year NS 0.74 Medium 3 

Adelaide GR4J 5_year NS 0.77 High 4 

Adelaide GR4J 10_year NS 0.75 Medium 3 

Wagga Wagga GR4J 1_year NS 0.76 Medium 3 

Wagga Wagga GR4J 5_year NS 0.77 High 4 

Wagga Wagga GR4J 10_year NS 0.78 High 4 

Alice Springs GR4J 1_year NS 0.76 Medium 3 

Alice Springs GR4J 5_year NS 0.72 Medium 3 

Alice Springs GR4J 10_year NS 0.72 Medium 3 

Burnie GR4J 1_year LOGNS 0.81 Very High 5 

Burnie GR4J 5_year LOGNS 0.80 High 4 

Burnie GR4J 10_year LOGNS 0.78 High 4 

Darwin GR4J 1_year LOGNS 0.80 High 4 

Darwin GR4J 5_year LOGNS 0.79 High 4 

Darwin GR4J 10_year LOGNS 0.81 Very High 5 

Adelaide GR4J 1_year LOGNS 0.76 High 4 

Adelaide GR4J 5_year LOGNS 0.78 High 4 

Adelaide GR4J 10_year LOGNS 0.78 High 4 

Wagga Wagga GR4J 1_year LOGNS 0.78 High 4 

Wagga Wagga GR4J 5_year LOGNS 0.79 High 4 

Wagga Wagga GR4J 10_year LOGNS 0.79 High 4 



205 

                                                                                                    Appendices  

 

Alice Springs GR4J 1_year LOGNS 0.75 Medium 3 

Alice Springs GR4J 5_year LOGNS 0.76 Medium 3 

Alice Springs GR4J 10_year LOGNS 0.77 High 4 

Burnie GR4J 1_year WLS 0.79 High 4 

Burnie GR4J 5_year WLS 0.78 High 4 

Burnie GR4J 10_year WLS 0.77 High 4 

Darwin GR4J 1_year WLS 0.78 High 4 

Darwin GR4J 5_year WLS 0.76 High 4 

Darwin GR4J 10_year WLS 0.80 High 4 

Adelaide GR4J 1_year WLS 0.77 High 4 

Adelaide GR4J 5_year WLS 0.78 High 4 

Adelaide GR4J 10_year WLS 0.79 High 4 

Wagga Wagga GR4J 1_year WLS 0.76 Medium 3 

Wagga Wagga GR4J 5_year WLS 0.77 High 4 

Wagga Wagga GR4J 10_year WLS 0.78 High 4 

Alice Springs GR4J 1_year WLS 0.74 Medium 3 

Alice Springs GR4J 5_year WLS 0.76 Medium 3 

Alice Springs GR4J 10_year WLS 0.75 Medium 3 

Burnie IHACRES 1_year NS 0.82 Very High 5 

Burnie IHACRES 5_year NS 0.83 Very High 5 

Burnie IHACRES 10_year NS 0.83 Very High 5 

Darwin IHACRES 1_year NS 0.81 Very High 5 

Darwin IHACRES 5_year NS 0.82 Very High 5 

Darwin IHACRES 10_year NS 0.84 Very High 5 

Adelaide IHACRES 1_year NS 0.71 Medium 3 

Adelaide IHACRES 5_year NS 0.76 Medium 3 

Adelaide IHACRES 10_year NS 0.76 Medium 3 

Wagga Wagga IHACRES 1_year NS 0.74 Medium 3 

Wagga Wagga IHACRES 5_year NS 0.75 Medium 3 

Wagga Wagga IHACRES 10_year NS 0.74 Medium 3 

Alice Springs IHACRES 1_year NS 0.70 Low 2 

Alice Springs IHACRES 5_year NS 0.75 Medium 3 

Alice Springs IHACRES 10_year NS 0.75 Medium 3 

Burnie IHACRES 1_year LOGNS 0.83 Very High 5 

Burnie IHACRES 5_year LOGNS 0.82 Very High 5 

Burnie IHACRES 10_year LOGNS 0.82 Very High 5 

Darwin IHACRES 1_year LOGNS 0.81 High 4 

Darwin IHACRES 5_year LOGNS 0.81 Very High 5 

Darwin IHACRES 10_year LOGNS 0.82 Very High 5 

Adelaide IHACRES 1_year LOGNS 0.74 Medium 3 

Adelaide IHACRES 5_year LOGNS 0.76 High 4 

Adelaide IHACRES 10_year LOGNS 0.77 High 4 
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Wagga Wagga IHACRES 1_year LOGNS 0.77 High 4 

Wagga Wagga IHACRES 5_year LOGNS 0.78 High 4 

Wagga Wagga IHACRES 10_year LOGNS 0.77 High 4 

Alice Springs IHACRES 1_year LOGNS 0.68 Low 2 

Alice Springs IHACRES 5_year LOGNS 0.76 Medium 3 

Alice Springs IHACRES 10_year LOGNS 0.70 Low 2 

Burnie IHACRES 1_year WLS 0.79 High 4 

Burnie IHACRES 5_year WLS 0.78 High 4 

Burnie IHACRES 10_year WLS 0.78 High 4 

Darwin IHACRES 1_year WLS 0.81 Very High 5 

Darwin IHACRES 5_year WLS 0.79 High 4 

Darwin IHACRES 10_year WLS 0.79 High 4 

Adelaide IHACRES 1_year WLS 0.79 High 4 

Adelaide IHACRES 5_year WLS 0.78 High 4 

Adelaide IHACRES 10_year WLS 0.78 High 4 

Wagga Wagga IHACRES 1_year WLS 0.78 High 4 

Wagga Wagga IHACRES 5_year WLS 0.78 High 4 

Wagga Wagga IHACRES 10_year WLS 0.78 High 4 

Alice Springs IHACRES 1_year WLS 0.73 Medium 3 

Alice Springs IHACRES 5_year WLS 0.77 High 4 

Alice Springs IHACRES 10_year WLS 0.74 Medium 3 

Burnie Sacramento 1_year NS 0.78 High 4 

Burnie Sacramento 5_year NS 0.80 High 4 

Burnie Sacramento 10_year NS 0.79 High 4 

Darwin Sacramento 1_year NS 0.81 High 4 

Darwin Sacramento 5_year NS 0.82 Very High 5 

Darwin Sacramento 10_year NS 0.83 Very High 5 

Adelaide Sacramento 1_year NS 0.79 High 4 

Adelaide Sacramento 5_year NS 0.80 High 4 

Adelaide Sacramento 10_year NS 0.80 High 4 

Wagga Wagga Sacramento 1_year NS 0.80 High 4 

Wagga Wagga Sacramento 5_year NS 0.78 High 4 

Wagga Wagga Sacramento 10_year NS 0.78 High 4 

Alice Springs Sacramento 1_year NS 0.79 High 4 

Alice Springs Sacramento 5_year NS 0.78 High 4 

Alice Springs Sacramento 10_year NS 0.79 High 4 

Burnie Sacramento 1_year LOGNS 0.85 Very High 5 

Burnie Sacramento 5_year LOGNS 0.85 Very High 5 

Burnie Sacramento 10_year LOGNS 0.86 Very High 5 

Darwin Sacramento 1_year LOGNS 0.84 Very High 5 

Darwin Sacramento 5_year LOGNS 0.84 Very High 5 

Darwin Sacramento 10_year LOGNS 0.85 Very High 5 
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Adelaide Sacramento 1_year LOGNS 0.85 Very High 5 

Adelaide Sacramento 5_year LOGNS 0.83 Very High 5 

Adelaide Sacramento 10_year LOGNS 0.82 Very High 5 

Wagga Wagga Sacramento 1_year LOGNS 0.83 Very High 5 

Wagga Wagga Sacramento 5_year LOGNS 0.84 Very High 5 

Wagga Wagga Sacramento 10_year LOGNS 0.85 Very High 5 

Alice Springs Sacramento 1_year LOGNS 0.83 Very High 5 

Alice Springs Sacramento 5_year LOGNS 0.85 Very High 5 

Alice Springs Sacramento 10_year LOGNS 0.85 Very High 5 

Burnie Sacramento 1_year WLS 0.83 Very High 5 

Burnie Sacramento 5_year WLS 0.80 High 4 

Burnie Sacramento 10_year WLS 0.79 High 4 

Darwin Sacramento 1_year WLS 0.80 High 4 

Darwin Sacramento 5_year WLS 0.81 Very High 5 

Darwin Sacramento 10_year WLS 0.84 Very High 5 

Adelaide Sacramento 1_year WLS 0.80 High 4 

Adelaide Sacramento 5_year WLS 0.83 Very High 5 

Adelaide Sacramento 10_year WLS 0.79 High 4 

Wagga Wagga Sacramento 1_year WLS 0.81 Very High 5 

Wagga Wagga Sacramento 5_year WLS 0.80 High 4 

Wagga Wagga Sacramento 10_year WLS 0.78 High 4 

Alice Springs Sacramento 1_year WLS 0.79 High 4 

Alice Springs Sacramento 5_year WLS 0.79 High 4 

Alice Springs Sacramento 10_year WLS 0.80 High 4 
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Table B.2 Metric results of the epsilon ratio of information content (metric 

related to flatness) and corresponding degree of relative flatness and score 

(cluster) for all error surfaces (as cases with same data length have very 

close results, the average of 1-year and 5 year data length results of 

corresponding cases are presented instead of each single case) 
 

 

Catchment 
Location 

Model 
Data 

Length 
Error 

Metric 
Metric 
Results 

Degree of 
Relative 
Flatness 

Score 
(Cluster) 

Burnie AWBM 1_year NS -1.18 Medium 3 

Burnie AWBM 5_year NS -0.85 Medium 3 

Burnie AWBM 10_year NS -0.90 Medium 3 

Darwin AWBM 1_year NS -1.04 Medium 3 

Darwin AWBM 5_year NS -0.97 Medium 3 

Darwin AWBM 10_year NS -1.04 Medium 3 

Adelaide AWBM 1_year NS -0.56 Low 2 

Adelaide AWBM 5_year NS -0.32 Low 2 

Adelaide AWBM 10_year NS -0.20 Low 2 

Wagga Wagga AWBM 1_year NS -0.99 Medium 3 

Wagga Wagga AWBM 5_year NS -0.28 Low 2 

Wagga Wagga AWBM 10_year NS -0.40 Low 2 

Alice Springs AWBM 1_year NS -0.26 Low 2 

Alice Springs AWBM 5_year NS -1.32 Medium 3 

Alice Springs AWBM 10_year NS -1.20 Medium 3 

Burnie AWBM 1_year LOGNS -1.74 High 4 

Burnie AWBM 5_year LOGNS -1.58 High 4 

Burnie AWBM 10_year LOGNS -1.62 High 4 

Darwin AWBM 1_year LOGNS -1.74 High 4 

Darwin AWBM 5_year LOGNS -1.72 High 4 

Darwin AWBM 10_year LOGNS -1.84 High 4 

Adelaide AWBM 1_year LOGNS -1.15 Medium 3 

Adelaide AWBM 5_year LOGNS -1.01 Medium 3 

Adelaide AWBM 10_year LOGNS -0.84 Medium 3 

Wagga Wagga AWBM 1_year LOGNS -1.42 Medium 3 

Wagga Wagga AWBM 5_year LOGNS -1.07 Medium 3 

Wagga Wagga AWBM 10_year LOGNS -1.00 Medium 3 

Alice Springs AWBM 1_year LOGNS -0.43 Low 2 

Alice Springs AWBM 5_year LOGNS -1.60 High 4 

Alice Springs AWBM 10_year LOGNS -1.60 High 4 

Burnie AWBM 1_year WLS -0.72 Low 2 

Burnie AWBM 5_year WLS 0.02 Very Low 1 

Burnie AWBM 10_year WLS 0.27 Very Low 1 

Darwin AWBM 1_year WLS -0.70 Low 2 
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Darwin AWBM 5_year WLS -0.02 Very Low 1 

Darwin AWBM 10_year WLS 0.37 Very Low 1 

Adelaide AWBM 1_year WLS -1.23 Medium 3 

Adelaide AWBM 5_year WLS -0.43 Low 2 

Adelaide AWBM 10_year WLS -0.08 Very Low 1 

Wagga Wagga AWBM 1_year WLS -1.00 Medium 3 

Wagga Wagga AWBM 5_year WLS -0.26 Low 2 

Wagga Wagga AWBM 10_year WLS 0.07 Very Low 1 

Alice Springs AWBM 1_year WLS -2.01 High 4 

Alice Springs AWBM 5_year WLS -0.78 Low 2 

Alice Springs AWBM 10_year WLS -0.52 Low 2 

Burnie GR4J 1_year NS -1.94 High 4 

Burnie GR4J 5_year NS -2.02 High 4 

Burnie GR4J 10_year NS -2.06 Very High 5 

Darwin GR4J 1_year NS -2.01 High 4 

Darwin GR4J 5_year NS -1.99 High 4 

Darwin GR4J 10_year NS -1.98 High 4 

Adelaide GR4J 1_year NS -1.84 High 4 

Adelaide GR4J 5_year NS -1.96 High 4 

Adelaide GR4J 10_year NS -1.96 High 4 

Wagga Wagga GR4J 1_year NS -1.99 High 4 

Wagga Wagga GR4J 5_year NS -1.97 High 4 

Wagga Wagga GR4J 10_year NS -2.02 High 4 

Alice Springs GR4J 1_year NS -2.25 Very High 5 

Alice Springs GR4J 5_year NS -2.48 Very High 5 

Alice Springs GR4J 10_year NS -2.38 Very High 5 

Burnie GR4J 1_year LOGNS -1.95 High 4 

Burnie GR4J 5_year LOGNS -2.08 Very High 5 

Burnie GR4J 10_year LOGNS -2.06 Very High 5 

Darwin GR4J 1_year LOGNS -2.18 Very High 5 

Darwin GR4J 5_year LOGNS -2.27 Very High 5 

Darwin GR4J 10_year LOGNS -2.30 Very High 5 

Adelaide GR4J 1_year LOGNS -1.71 High 4 

Adelaide GR4J 5_year LOGNS -1.82 High 4 

Adelaide GR4J 10_year LOGNS -1.80 High 4 

Wagga Wagga GR4J 1_year LOGNS -1.70 High 4 

Wagga Wagga GR4J 5_year LOGNS -1.70 High 4 

Wagga Wagga GR4J 10_year LOGNS -1.76 High 4 

Alice Springs GR4J 1_year LOGNS -2.16 Very High 5 

Alice Springs GR4J 5_year LOGNS -2.13 Very High 5 

Alice Springs GR4J 10_year LOGNS -1.96 High 4 

Burnie GR4J 1_year WLS -1.17 Medium 3 
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Burnie GR4J 5_year WLS -0.50 Low 2 

Burnie GR4J 10_year WLS -0.26 Low 2 

Darwin GR4J 1_year WLS -1.33 Medium 3 

Darwin GR4J 5_year WLS -0.62 Low 2 

Darwin GR4J 10_year WLS -0.30 Low 2 

Adelaide GR4J 1_year WLS -1.44 Medium 3 

Adelaide GR4J 5_year WLS -0.72 Low 2 

Adelaide GR4J 10_year WLS -0.36 Low 2 

Wagga Wagga GR4J 1_year WLS -1.16 Medium 3 

Wagga Wagga GR4J 5_year WLS -0.49 Low 2 

Wagga Wagga GR4J 10_year WLS -0.22 Low 2 

Alice Springs GR4J 1_year WLS -2.44 Very High 5 

Alice Springs GR4J 5_year WLS -0.96 Medium 3 

Alice Springs GR4J 10_year WLS -0.66 Low 2 

Burnie IHACRES 1_year NS -1.71 High 4 

Burnie IHACRES 5_year NS -1.68 High 4 

Burnie IHACRES 10_year NS -1.66 High 4 

Darwin IHACRES 1_year NS -1.81 High 4 

Darwin IHACRES 5_year NS -1.74 High 4 

Darwin IHACRES 10_year NS -1.78 High 4 

Adelaide IHACRES 1_year NS -0.90 Medium 3 

Adelaide IHACRES 5_year NS -1.28 Medium 3 

Adelaide IHACRES 10_year NS -1.24 Medium 3 

Wagga Wagga IHACRES 1_year NS -1.32 Medium 3 

Wagga Wagga IHACRES 5_year NS -1.26 Medium 3 

Wagga Wagga IHACRES 10_year NS -1.22 Medium 3 

Alice Springs IHACRES 1_year NS -0.58 Low 2 

Alice Springs IHACRES 5_year NS -1.80 High 4 

Alice Springs IHACRES 10_year NS -2.02 High 4 

Burnie IHACRES 1_year LOGNS -1.63 High 4 

Burnie IHACRES 5_year LOGNS -1.36 Medium 3 

Burnie IHACRES 10_year LOGNS -1.32 Medium 3 

Darwin IHACRES 1_year LOGNS -1.55 High 4 

Darwin IHACRES 5_year LOGNS -1.41 Medium 3 

Darwin IHACRES 10_year LOGNS -1.42 Medium 3 

Adelaide IHACRES 1_year LOGNS -0.89 Medium 3 

Adelaide IHACRES 5_year LOGNS -1.06 Medium 3 

Adelaide IHACRES 10_year LOGNS -1.00 Medium 3 

Wagga Wagga IHACRES 1_year LOGNS -1.02 Medium 3 

Wagga Wagga IHACRES 5_year LOGNS -0.92 Medium 3 

Wagga Wagga IHACRES 10_year LOGNS -0.96 Medium 3 

Alice Springs IHACRES 1_year LOGNS -0.47 Low 2 
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Alice Springs IHACRES 5_year LOGNS -1.39 Medium 3 

Alice Springs IHACRES 10_year LOGNS -1.58 High 4 

Burnie IHACRES 1_year WLS -1.02 Medium 3 

Burnie IHACRES 5_year WLS -0.18 Low 2 

Burnie IHACRES 10_year WLS 0.11 Very Low 1 

Darwin IHACRES 1_year WLS -1.14 Medium 3 

Darwin IHACRES 5_year WLS -0.23 Low 2 

Darwin IHACRES 10_year WLS 0.09 Very Low 1 

Adelaide IHACRES 1_year WLS -1.06 Medium 3 

Adelaide IHACRES 5_year WLS -0.27 Low 2 

Adelaide IHACRES 10_year WLS 0.11 Very Low 1 

Wagga Wagga IHACRES 1_year WLS -0.94 Medium 3 

Wagga Wagga IHACRES 5_year WLS -0.17 Low 2 

Wagga Wagga IHACRES 10_year WLS 0.15 Very Low 1 

Alice Springs IHACRES 1_year WLS -1.61 High 4 

Alice Springs IHACRES 5_year WLS -0.59 Low 2 

Alice Springs IHACRES 10_year WLS -0.16 Low 2 

Burnie Sacramento 1_year NS -0.77 Low 2 

Burnie Sacramento 5_year NS -1.62 High 4 

Burnie Sacramento 10_year NS -2.00 High 4 

Darwin Sacramento 1_year NS -1.58 High 4 

Darwin Sacramento 5_year NS -2.11 Very High 5 

Darwin Sacramento 10_year NS -2.32 Very High 5 

Adelaide Sacramento 1_year NS 0.47 Very Low 1 

Adelaide Sacramento 5_year NS -0.96 Medium 3 

Adelaide Sacramento 10_year NS -1.16 Medium 3 

Wagga Wagga Sacramento 1_year NS -0.04 Very Low 1 

Wagga Wagga Sacramento 5_year NS -0.65 Low 2 

Wagga Wagga Sacramento 10_year NS -1.04 Medium 3 

Alice Springs Sacramento 1_year NS 1.96 Very Low 1 

Alice Springs Sacramento 5_year NS -0.77 Low 2 

Alice Springs Sacramento 10_year NS -1.14 Medium 3 

Burnie Sacramento 1_year LOGNS -1.81 High 4 

Burnie Sacramento 5_year LOGNS -2.43 Very High 5 

Burnie Sacramento 10_year LOGNS -2.54 Very High 5 

Darwin Sacramento 1_year LOGNS -2.24 Very High 5 

Darwin Sacramento 5_year LOGNS -2.38 Very High 5 

Darwin Sacramento 10_year LOGNS -2.38 Very High 5 

Adelaide Sacramento 1_year LOGNS -1.01 Medium 3 

Adelaide Sacramento 5_year LOGNS -1.78 High 4 

Adelaide Sacramento 10_year LOGNS -1.88 High 4 

Wagga Wagga Sacramento 1_year LOGNS -1.24 Medium 3 
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Wagga Wagga Sacramento 5_year LOGNS -1.84 High 4 

Wagga Wagga Sacramento 10_year LOGNS -2.00 High 4 

Alice Springs Sacramento 1_year LOGNS 0.35 Very Low 1 

Alice Springs Sacramento 5_year LOGNS -1.56 High 4 

Alice Springs Sacramento 10_year LOGNS -1.90 High 4 

Burnie Sacramento 1_year WLS -1.38 Medium 3 

Burnie Sacramento 5_year WLS -0.78 Low 2 

Burnie Sacramento 10_year WLS -0.44 Low 2 

Darwin Sacramento 1_year WLS -1.38 Medium 3 

Darwin Sacramento 5_year WLS -0.85 Medium 3 

Darwin Sacramento 10_year WLS -0.54 Low 2 

Adelaide Sacramento 1_year WLS -1.42 Medium 3 

Adelaide Sacramento 5_year WLS -0.98 Medium 3 

Adelaide Sacramento 10_year WLS -0.64 Low 2 

Wagga Wagga Sacramento 1_year WLS -1.34 Medium 3 

Wagga Wagga Sacramento 5_year WLS -0.72 Low 2 

Wagga Wagga Sacramento 10_year WLS -0.44 Low 2 

Alice Springs Sacramento 1_year WLS -1.56 High 4 

Alice Springs Sacramento 5_year WLS -1.06 Medium 3 

Alice Springs Sacramento 10_year WLS -0.88 Medium 3 

  

 

 

Table B.3 Metric results of the median basin centroidal distance (metric 

related to optima dispersion) and corresponding degree of relative flatness 

and score (cluster) for all error surfaces (as cases with same data length 

have very close results, the average of 1-year and 5-year data length results 

of corresponding cases are presented instead of each single case) 

 

Catchment 
Location 

Model 
Data 

Length 
Error 

Metric 
Metric 
Result 

Degree of 
Relative 
Optima 

Dispersion 

Score 
(Cluster) 

Burnie AWBM 1_year NS 10.45 Low 2 

Burnie AWBM 5_year NS 7.73 Low 2 

Burnie AWBM 10_year NS 2.88 Very Low 1 

Darwin AWBM 1_year NS 8.49 Low 2 

Darwin AWBM 5_year NS 6.22 Low 2 

Darwin AWBM 10_year NS 5.37 Low 2 

Adelaide AWBM 1_year NS 8.61 Low 2 

Adelaide AWBM 5_year NS 7.64 Low 2 
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Adelaide AWBM 10_year NS 7.31 Low 2 

Wagga Wagga AWBM 1_year NS 9.30 Low 2 

Wagga Wagga AWBM 5_year NS 8.68 Low 2 

Wagga Wagga AWBM 10_year NS 0.00 Very Low 1 

Alice Springs AWBM 1_year NS 10.81 Low 2 

Alice Springs AWBM 5_year NS 14.30 Medium 3 

Alice Springs AWBM 10_year NS 13.86 Medium 3 

Burnie AWBM 1_year LOGNS 9.64 Low 2 

Burnie AWBM 5_year LOGNS 7.53 Low 2 

Burnie AWBM 10_year LOGNS 8.55 Low 2 

Darwin AWBM 1_year LOGNS 7.94 Low 2 

Darwin AWBM 5_year LOGNS 8.73 Low 2 

Darwin AWBM 10_year LOGNS 4.10 Very Low 1 

Adelaide AWBM 1_year LOGNS 8.78 Low 2 

Adelaide AWBM 5_year LOGNS 5.41 Low 2 

Adelaide AWBM 10_year LOGNS 7.03 Low 2 

Wagga Wagga AWBM 1_year LOGNS 9.12 Low 2 

Wagga Wagga AWBM 5_year LOGNS 7.46 Low 2 

Wagga Wagga AWBM 10_year LOGNS 6.81 Low 2 

Alice Springs AWBM 1_year LOGNS 12.35 Low 2 

Alice Springs AWBM 5_year LOGNS 12.68 Low 2 

Alice Springs AWBM 10_year LOGNS 12.54 Low 2 

Burnie AWBM 1_year WLS 1.37 Very Low 1 

Burnie AWBM 5_year WLS 0.00 Very Low 1 

Burnie AWBM 10_year WLS 0.00 Very Low 1 

Darwin AWBM 1_year WLS 1.12 Very Low 1 

Darwin AWBM 5_year WLS 0.00 Very Low 1 

Darwin AWBM 10_year WLS 0.00 Very Low 1 

Adelaide AWBM 1_year WLS 12.46 Low 2 

Adelaide AWBM 5_year WLS 11.17 Low 2 

Adelaide AWBM 10_year WLS 0.00 Very Low 1 

Wagga Wagga AWBM 1_year WLS 5.44 Low 2 

Wagga Wagga AWBM 5_year WLS 0.00 Very Low 1 

Wagga Wagga AWBM 10_year WLS 0.00 Very Low 1 

Alice Springs AWBM 1_year WLS 12.03 Low 2 

Alice Springs AWBM 5_year WLS 10.19 Low 2 

Alice Springs AWBM 10_year WLS 10.66 Low 2 

Burnie GR4J 1_year NS 6.32 Low 2 

Burnie GR4J 5_year NS 7.61 Low 2 

Burnie GR4J 10_year NS 7.59 Low 2 

Darwin GR4J 1_year NS 8.39 Low 2 

Darwin GR4J 5_year NS 16.16 Medium 3 
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Darwin GR4J 10_year NS 15.69 Medium 3 

Adelaide GR4J 1_year NS 17.54 Medium 3 

Adelaide GR4J 5_year NS 3.38 Very Low 1 

Adelaide GR4J 10_year NS 0.00 Very Low 1 

Wagga Wagga GR4J 1_year NS 3.57 Very Low 1 

Wagga Wagga GR4J 5_year NS 5.64 Low 2 

Wagga Wagga GR4J 10_year NS 0.00 Very Low 1 

Alice Springs GR4J 1_year NS 14.22 Medium 3 

Alice Springs GR4J 5_year NS 15.51 Medium 3 

Alice Springs GR4J 10_year NS 0.00 Very Low 1 

Burnie GR4J 1_year LOGNS 0.72 Very Low 1 

Burnie GR4J 5_year LOGNS 0.69 Very Low 1 

Burnie GR4J 10_year LOGNS 2.25 Very Low 1 

Darwin GR4J 1_year LOGNS 6.84 Low 2 

Darwin GR4J 5_year LOGNS 0.00 Very Low 1 

Darwin GR4J 10_year LOGNS 0.00 Very Low 1 

Adelaide GR4J 1_year LOGNS 17.75 Medium 3 

Adelaide GR4J 5_year LOGNS 0.00 Very Low 1 

Adelaide GR4J 10_year LOGNS 0.00 Very Low 1 

Wagga Wagga GR4J 1_year LOGNS 18.98 Medium 3 

Wagga Wagga GR4J 5_year LOGNS 15.32 Medium 3 

Wagga Wagga GR4J 10_year LOGNS 12.50 Low 2 

Alice Springs GR4J 1_year LOGNS 18.39 Medium 3 

Alice Springs GR4J 5_year LOGNS 15.17 Medium 3 

Alice Springs GR4J 10_year LOGNS 20.90 High 4 

Burnie GR4J 1_year WLS 17.34 Medium 3 

Burnie GR4J 5_year WLS 8.75 Low 2 

Burnie GR4J 10_year WLS 3.89 Very Low 1 

Darwin GR4J 1_year WLS 10.72 Low 2 

Darwin GR4J 5_year WLS 12.07 Low 2 

Darwin GR4J 10_year WLS 11.48 Low 2 

Adelaide GR4J 1_year WLS 16.12 Medium 3 

Adelaide GR4J 5_year WLS 9.87 Low 2 

Adelaide GR4J 10_year WLS 8.76 Low 2 

Wagga Wagga GR4J 1_year WLS 15.83 Medium 3 

Wagga Wagga GR4J 5_year WLS 10.66 Low 2 

Wagga Wagga GR4J 10_year WLS 0.00 Very Low 1 

Alice Springs GR4J 1_year WLS 17.55 Medium 3 

Alice Springs GR4J 5_year WLS 14.53 Medium 3 

Alice Springs GR4J 10_year WLS 12.09 Low 2 

Burnie IHACRES 1_year NS 14.29 Medium 3 

Burnie IHACRES 5_year NS 10.16 Low 2 
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Burnie IHACRES 10_year NS 7.00 Low 2 

Darwin IHACRES 1_year NS 15.53 Medium 3 

Darwin IHACRES 5_year NS 16.46 Medium 3 

Darwin IHACRES 10_year NS 24.15 High 4 

Adelaide IHACRES 1_year NS 16.87 Medium 3 

Adelaide IHACRES 5_year NS 18.54 Medium 3 

Adelaide IHACRES 10_year NS 15.28 Medium 3 

Wagga Wagga IHACRES 1_year NS 18.73 Medium 3 

Wagga Wagga IHACRES 5_year NS 13.02 Low 2 

Wagga Wagga IHACRES 10_year NS 0.00 Very Low 1 

Alice Springs IHACRES 1_year NS 20.07 High 4 

Alice Springs IHACRES 5_year NS 19.53 Medium 3 

Alice Springs IHACRES 10_year NS 14.07 Medium 3 

Burnie IHACRES 1_year LOGNS 18.55 Medium 3 

Burnie IHACRES 5_year LOGNS 18.16 Medium 3 

Burnie IHACRES 10_year LOGNS 19.85 High 4 

Darwin IHACRES 1_year LOGNS 23.15 High 4 

Darwin IHACRES 5_year LOGNS 21.60 High 4 

Darwin IHACRES 10_year LOGNS 21.72 High 4 

Adelaide IHACRES 1_year LOGNS 16.90 Medium 3 

Adelaide IHACRES 5_year LOGNS 21.51 High 4 

Adelaide IHACRES 10_year LOGNS 22.15 High 4 

Wagga Wagga IHACRES 1_year LOGNS 21.17 High 4 

Wagga Wagga IHACRES 5_year LOGNS 10.88 Low 2 

Wagga Wagga IHACRES 10_year LOGNS 17.14 Medium 3 

Alice Springs IHACRES 1_year LOGNS 17.19 Medium 3 

Alice Springs IHACRES 5_year LOGNS 13.76 Medium 3 

Alice Springs IHACRES 10_year LOGNS 23.57 High 4 

Burnie IHACRES 1_year WLS 18.99 Medium 3 

Burnie IHACRES 5_year WLS 21.57 High 4 

Burnie IHACRES 10_year WLS 5.68 Low 2 

Darwin IHACRES 1_year WLS 18.62 Medium 3 

Darwin IHACRES 5_year WLS 17.11 Medium 3 

Darwin IHACRES 10_year WLS 14.54 Medium 3 

Adelaide IHACRES 1_year WLS 18.41 Medium 3 

Adelaide IHACRES 5_year WLS 18.50 Medium 3 

Adelaide IHACRES 10_year WLS 18.96 Medium 3 

Wagga Wagga IHACRES 1_year WLS 19.49 Medium 3 

Wagga Wagga IHACRES 5_year WLS 19.18 Medium 3 

Wagga Wagga IHACRES 10_year WLS 20.51 High 4 

Alice Springs IHACRES 1_year WLS 18.49 Medium 3 

Alice Springs IHACRES 5_year WLS 17.47 Medium 3 
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Alice Springs IHACRES 10_year WLS 18.41 Medium 3 

Burnie Sacramento 1_year NS 23.98 High 4 

Burnie Sacramento 5_year NS 23.97 High 4 

Burnie Sacramento 10_year NS 23.79 High 4 

Darwin Sacramento 1_year NS 26.53 Very High 5 

Darwin Sacramento 5_year NS NA NA NA 

Darwin Sacramento 10_year NS NA NA NA 

Adelaide Sacramento 1_year NS 22.46 High 4 

Adelaide Sacramento 5_year NS 22.23 High 4 

Adelaide Sacramento 10_year NS 21.26 High 4 

Wagga Wagga Sacramento 1_year NS 23.72 High 4 

Wagga Wagga Sacramento 5_year NS NA NA NA 

Wagga Wagga Sacramento 10_year NS 22.51 High 4 

Alice Springs Sacramento 1_year NS 19.59 Medium 3 

Alice Springs Sacramento 5_year NS 24.90 Very High 5 

Alice Springs Sacramento 10_year NS 26.10 Very High 5 

Burnie Sacramento 1_year LOGNS 23.05 High 4 

Burnie Sacramento 5_year LOGNS NA NA NA 

Burnie Sacramento 10_year LOGNS 22.85 High 4 

Darwin Sacramento 1_year LOGNS 21.23 High 4 

Darwin Sacramento 5_year LOGNS 19.52 Medium 3 

Darwin Sacramento 10_year LOGNS 19.91 High 4 

Adelaide Sacramento 1_year LOGNS 23.67 High 4 

Adelaide Sacramento 5_year LOGNS 23.02 High 4 

Adelaide Sacramento 10_year LOGNS 23.81 High 4 

Wagga Wagga Sacramento 1_year LOGNS NA NA NA 

Wagga Wagga Sacramento 5_year LOGNS NA NA NA 

Wagga Wagga Sacramento 10_year LOGNS 21.55 High 4 

Alice Springs Sacramento 1_year LOGNS 21.28 High 4 

Alice Springs Sacramento 5_year LOGNS NA NA NA 

Alice Springs Sacramento 10_year LOGNS NA NA NA 

Burnie Sacramento 1_year WLS 23.31 High 4 

Burnie Sacramento 5_year WLS 23.64 High 4 

Burnie Sacramento 10_year WLS 24.60 Very High 5 

Darwin Sacramento 1_year WLS 30.15 Very High 5 

Darwin Sacramento 5_year WLS 28.50 Very High 5 

Darwin Sacramento 10_year WLS 28.93 Very High 5 

Adelaide Sacramento 1_year WLS 24.93 Very High 5 

Adelaide Sacramento 5_year WLS 24.15 High 4 

Adelaide Sacramento 10_year WLS 22.66 High 4 

Wagga Wagga Sacramento 1_year WLS 21.65 High 4 

Wagga Wagga Sacramento 5_year WLS 19.43 Medium 3 
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Wagga Wagga Sacramento 10_year WLS 21.92 High 4 

Alice Springs Sacramento 1_year WLS 25.54 Very High 5 

Alice Springs Sacramento 5_year WLS 22.00 High 4 

Alice Springs Sacramento 10_year WLS 19.31 Medium 3 
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Appendix C – Influence of model structure / 

complexity on error surface features (Raw 

Results) 
 

    
(a) 

  
(b) 

 
(c) 

Figure C.1 Influence of model structure / complexity on error surface 

features (raw results): Roughness (a); Flatness (b); Optima Dispersion (c). 

The complexity of the CRR models increases from left to right: AWBM has 

2 parameters, GR4J has 4 parameters, IHACRES has 6 parameters and 

Sacramento has 13 parameters. 
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Supplementary Materials of Chapter 2  

(Paper 1) 
S1: Example R-code for calculating ELA metric 

results 
 

The code implementation should follow the following process:                  

1. install the packages listed in the script;                               

2. confirm the problem for fitness landscape analysis, this includes:       

        a. initial set up of problem dimension, sample size for the test;        

        b. problems/functions for the test (here use BBOB function as example); 

3. load the function for local search metric if the local search test is needed 

(i.e. running codes under the text annotation "Function of modified 

version of local search metric from FLACCO“);      

4. running the implementation codes for metric calculation (i.e. running 

codes under the text annotation “Metric calculation”).   
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# Package Install 

library(lhs) 

library(flacco) 

library(smoof) 

library(mlr) 

library(class) 

library(mda) 

 

# Initial setup 

Nsamp = 500 # Sample size 

dimNum = 2  # problem dimension 

funcNum = 20 # BBOB function ID, can be set up from 1 to 24 

funciid = 1 # BBOB function instance, any random positive value 

## initial sampling 

ini.sample = as.matrix(randomLHS(Nsamp,dimNum)) 

ini.sample = (ini.sample-0.5)*10 

## BBOB function setup 

fn = makeBBOBFunction(dimension = dimNum, fid = funcNum, iid = funciid) 

## Search space range setup 

low = replicate(dimNum, -5) 

upp = replicate(dimNum, 5) 

 

# Function of modified version of local search metric from FLACCO 

############################################################################## 

calculateLocalSearchFeatures1 = function(feat.object, low, upp, 

nor.clust.cutfun) { 

  measureTime(expression({ 

    f = initializeCounter(feat.object$fun) 

    X = extractFeatures(feat.object) 

    y = extractObjective(feat.object) 

    d = feat.object$dim 

    N=nrow(X) 

    opt.algo = "L-BFGS-B" 

    opt.algo.control = list() 

    if (!feat.object$minimize) { 

      y = -1 * y 

      opt.algo.control$fnscale = -1 

    } else { 

      opt.algo.control$fnscale = 1 

    } 

    id.seed = sample(1:1e6, 1) 

    clust.method = "single" 

    clust.cutfun = nor.clust.cutfun*sqrt(sum((upp-low)^2)) 

     

    calcOptim = function(par, ...) { 

      res = optim(as.numeric(par), fn, method = opt.algo, control = 

opt.algo.control, lower = low, upper = upp, ...) 

      return(list(par = res$par, counts = resetCounter(fn))) 

    } 

    set.seed(id.seed) 

    ids = sample(nrow(X), N)  

     

    fn = initializeCounter(f) 

    result = lapply(ids, function(i) calcOptim(drop(X[i,]))) 

     

    pars = t(vapply(result, function(i) i$par, double(d))) 

    fun.evals = vapply(result, function(i) i$counts, integer(1)) 
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    cl = hclust(dist(pars), clust.method) 

    clust = cutree(cl, h = clust.cutfun) 

     

    clust.size = tapply(clust, clust, length) 

    clust.size = clust.size / sum(clust.size) ## Normalize! 

     

    centers = t(vapply(seq_along(clust.size), 

                       function(i) colMeans(pars[clust == i, , drop = FALSE]), 

double(d))) 

    pdist.center=dist(centers) 

    centers.funvals = apply(centers, 1, f) 

    centers.best = which(centers.funvals == min(centers.funvals)) 

    centers.worst = which(centers.funvals == max(centers.funvals)) 

    list(ela_local.n_loc_opt.abs = max(clust), 

         ela_local.n_loc_opt.rel = max(clust) / N, 

         ela_local.best2mean_contr.orig = min(centers.funvals) / 

mean(centers.funvals), 

         ela_local.best2mean_contr.ratio = (mean(centers.funvals) - 

min(centers.funvals)) /  

           (max(centers.funvals) - min(centers.funvals)), 

         ## Metrics related to distance between local regions of attractions, 

which is not included in FLACCO 

         

############################################################################## 

         ela_local.center.dist_min=ifelse(length(pdist.center) == 0, 0, 

min(pdist.center)), 

         ela_local.center.dist_lq=ifelse(length(pdist.center) == 0, 0, 

as.numeric(quantile(pdist.center, 0.25))), 

         ela_local.center.dist_mean=ifelse(length(pdist.center) == 0, 0, 

mean(pdist.center)), 

         ela_local.center.dist_median=ifelse(length(pdist.center) == 0, 

0,median(pdist.center)), 

         ela_local.center.dist_uq=ifelse(length(pdist.center) == 0, 0, 

as.numeric(quantile(pdist.center, 0.75))), 

         ela_local.center.dist_max=ifelse(length(pdist.center) == 0, 0, 

max(pdist.center)), 

         ela_local.center.dist_sd=ifelse(length(pdist.center) == 0, 0, 

sd(pdist.center)), 

         

############################################################################## 

         ela_local.basin_sizes.avg_best = mean(clust.size[centers.best]), 

         ela_local.basin_sizes.avg_non_best = ifelse(length(clust.size[-

centers.best]) == 0L, 

                                                     0, mean(clust.size[-

centers.best])), 

         ela_local.basin_sizes.avg_worst = mean(clust.size[centers.worst]), 

         ela_local.fun_evals.min = min(fun.evals), 

         ela_local.fun_evals.lq = as.numeric(quantile(fun.evals, 0.25)), 

         ela_local.fun_evals.mean = mean(fun.evals), 

         ela_local.fun_evals.median = median(fun.evals), 

         ela_local.fun_evals.uq = as.numeric(quantile(fun.evals, 0.75)), 

         ela_local.fun_evals.max = max(fun.evals), 

         ela_local.fun_evals.sd = sd(fun.evals), 

         ela_local.costs_fun_evals = showEvals(f) 

    ) 

  }), "ela_local") 

} 
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initializeCounter = function(fn) { 

  force(fn) 

  count = 0L 

  structure(function(x, ...) { 

    count <<- count + if (is.matrix(x))  

      ncol(x) 

    else 1L 

    fn(x, ...) 

  }) 

} 

 

extractFeatures = function(feat.object) { 

  as.matrix(subset(feat.object$env$init, select = feat.object$feature.names)) 

} 

 

extractObjective = function(feat.object) { 

  feat.object$env$init[, feat.object$objective.name] 

} 

 

showEvals = function(fn) { 

  environment(fn)$count 

} 

 

resetCounter = function (fn) { 

  counts = environment(fn)$count 

  environment(fn)$count = 0L 

  counts 

} 

############################################################################## 

# Metric calculation 

feat.object = createFeatureObject(X = ini.sample, fun = fn) 

## ELA Convexity Metric 

convexityresult =  calculateFeatureSet(feat.object = feat.object, set = 

"ela_conv",  

                                       control = list(ela_level.parallel.cpus 

= 1,  

                                                      allow_cellmapping = 

FALSE,ela_conv.nsample = Nsamp)) 

## ELA Y_distribution Metric 

y_distributionresult = calculateFeatureSet(feat.object = feat.object, set = 

"ela_distr",  

                                           control = 

list(ela_level.parallel.cpus = 1, allow_cellmapping = FALSE)) 

## ELA Levelset Metric 

levelsetresult = calculateFeatureSet(feat.object = feat.object, set = 

"ela_level", control = list(ela_level.parallel.cpus = 1, allow_cellmapping = 

FALSE)) 

 

## ELA Meta Model Metric 

metamodelresult = calculateFeatureSet(feat.object = feat.object, set = 

"ela_meta", control = list(ela_level.parallel.cpus = 1, allow_cellmapping = 

FALSE)) 

 

## Information Content Metric Nearest Neighbouring Sampling Sequence 

nn_icofsresult = calculateFeatureSet(feat.object = feat.object, set = "ic", 

control = list(ela_level.parallel.cpus = 1, allow_cellmapping = FALSE, 

ic.sorting = "nn")) 
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## Information Content Metric random Sampling Sequence 

rand_icofsresult = calculateFeatureSet(feat.object = feat.object, set = "ic", 

control = list(ela_level.parallel.cpus = 1, allow_cellmapping = FALSE, 

ic.sorting = "random")) 

 

## ELA Curvature Metric 

curvaturresult = calculateFeatureSet(feat.object = feat.object, set = 

"ela_curv",  

                                    control = list(ela_level.parallel.cpus = 

1,  

                                                   allow_cellmapping = 

FALSE,ela_curv.sample_size = Nsamp)) 

 

## ELA Local Search Metric 

localsearchresult = calculateLocalSearchFeatures1(feat.object = feat.object, 

low = low, upp = upp, nor.clust.cutfun = 0.05) 
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S2: Example R-Code for dependency analysis 
 

The code implementation should follow the following process:                 

1. load the data for building the regression model. The data should be data 

frame with 3 columns, which are named as Dim (i.e. dimensionality), 

SampleSize (i.e. problem sample size), Result (i.e. corresponding ELA 

metric result). An example data is used in this script; 

2. build the regression model and calculate the slope of dimension,        

slope of sample size and r2 of the regression model for the output by   

running codes under the text annotation "regression model setup".       

 

library("rstudioapi") 

# Example data loading (RData file should be in the same directory with the 

script) 

setwd(dirname(getActiveDocumentContext()$path))   

load("exampledata.RData") 

 

# regression model setup 

regmodel = lm(Result ~ log(Dim) + log(SampleSize), data = RegresionMatrix) 

regsum = summary(regmodel) 

Dimslope =abs(regsum$coefficients[2, 1])  # slope of dimension 

SSSlope = abs(regsum$coefficients[3, 1])  # slope of sample size 

Rsquared = regsum$r.squared               # r-squared value of regression 

 

 




