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Abstract

The success of supervised machine learning relies on the availability of a large
amount of annotated training data from different domains, which is often cost-
ineffective to collect, and unrealistic in many scenarios. Unsupervised domain
adaptation (UDA) aims to overcome this problem by transferring predictive
models trained on a labelled source domain to an unlabelled target domain,
with the difficulty of resolving distributional shift between domains. To bridge
this distribution gap, recent advances in deep learning focus on learning repre-
sentations that are invariant across domains. However, such an approach may
fail to generalize well to target domains and may even considerably deteriorate
adaptability, due to the existence of an inherent trade-off between adaptability
and invariance. Building on advances in deep generative models, this thesis
aims to relax the learning of invariant representations, and to develop efficient
algorithms for UDA.

This thesis comprises two parts. The first part introduces the problem of learn-
ing invariant representations. In particular, we mathematically derive a lower
bound on the joint probability distribution of the source and target domains as
a framework for UDA and theoretically discuss how this bound can be used to
relax the invariance in representation learning. Following this motivation, in the
second part, we design a simple, yet efficient algorithm to address the challenges
of forcing too much invariance in domain distributional matching. We empiri-
cally show how the trade-off between adaptability and invariant representation
can be mitigated with an invertible architecture between the representation and
predictor models while learning the invariant representation. The experiments
are run on public benchmark problems and the results show that the proposed
method relaxes the excessive invariance effectively and outperforms the existing
domain adaptation approaches.
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Chapter 1

Introduction

1.1 Overview and Research Problem

In recent years, machine learning (ML) has produced powerful methods that
enable computers to observe the world, learn from that observation, and ulti-
mately perform automated decision making. Deep learning (DL) models are
currently the most widespread and successful methodology in ML. In fact, deep
learning is an advanced method in ML for computational learning of high-level
concepts using deep hierarchical neural networks (LeCun, Bengio, and Hinton,
2015). DL models have demonstrated outstanding performance on challenging
ML tasks, such as the ImageNet recognition task (Krizhevsky, Sutskever, and
Hinton, 2012), the board game Go (Silver et al., 2017), the Stanford question
answering competition (Rajpurkar et al., 2016), medical imaging (Zeng et al.,
2019), biological sequence analysis (Iuchi et al., 2021), and self-driving cars (Yue
et al., 2018). They have also caught the attention of many industry commu-
nities. For instance, Google leverages deep learning for image search (Szegedy
et al., 2015), Facebook utilizes deep learning for automatic tagging, and Ama-
zon develops deep learning methods for product recommendations (Goodfellow
et al., 2016).

Despite these tremendous advances, training deep models heavily rely on the
availability of large-scale, labelled dataset. In many cases, obtaining a suffi-
cient amount of annotated data tends to require a massive amount of com-
putational and human resources, constraining the type of problems that can
be addressed. Hence, leveraging another, but related labelled training dataset
becomes a promising solution. With the explosive growth of various sources
of data on the Internet, an incredibly large number of labelled datasets can be
readily exploited. In this case, it makes sense to train a model with multi-source
web data and translate it to the target data. A prevailing issue, however, is
the distribution mismatch between the source and target domains, which can
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severely undermine the model performance. This is due to the fact that the
source and target data are not independent and identically distributed (i.i.d),
thus violating the assumption that these datasets come from the same distribu-
tion, and models fail to generalize well to new testing domains. As an example,
in medical imaging, clinicians manually annotate tissues and abnormalities to
form training data for computer-aided-diagnosis (CAD) systems. But, owing
mostly to the calibration, the mechanical and electrical configuration, and ac-
quisition protocol of scanners, there are wide variations between data sets from
different medical centres. Consequently, CAD systems trained by a dataset ac-
quired from centre A, typically performs poorly on test datasets obtained from
centre B. Even slight deviations between training distributions can give rise to
significant performance deterioration. This problem is crucial in computer vi-
sion applications, as datasets can be significantly different because of a variety
of factors, such as camera pose, object scale, illumination, camera character-
istics, labeling process, image selection process, and so on. This inability to
generalize out of the training distribution hinders the safe deployment of DL
models in real-world, high-stakes settings such as medical diagnosis, criminal
justice, and autonomous vehicles. Transfer learning (TL) has been introduced
to cope with the generalization problem stemming from distributional shift. TL
works by finding a transformation from the labelled training data, referred to
as source domain, to the test data of interest, called target domain.

Mathematically, this distributional shift between source domain and target do-
main is characterized by the difference in joint probability distribution pt(x, y) 6=
ps(x, y), where x as input image and y as label represent samples of two random
variables x, y from spaces X , Y . Depending on the availability of labels, the
consistency between the feature spaces of the two domains, and the availability
of target domain during training, several scenarios are defined and conceptu-
alized in TL. One of these well-studied scenarios is domain adaptation (DA),
where the assumption is that the feature spaces of two domains are the same,
and the target domain samples, whether unlabelled or partially labelled, and
labelled source domain samples are available during training. The objective of
DA in this thesis is the learning of a classifier using unlabelled samples from
the target domain by leveraging labelled source domain samples–this problem
is called unsupervised domain adaptation (UDA).

To tackle the UDA problem, classes of algorithms under different assumptions,
and based on well-studied theoretical bounds, have been proposed (Ben-David
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et al., 2007; Ben-David et al., 2010; Le et al., 2018; Zhang et al., 2019c; Zhao et
al., 2019). Most modern DL approaches to UDA are based on an optimization
that minimizes an empirical estimate of some distance between two domains,
which leads to learning an intermediate representation that is invariant to the
changes between source and target domains (i.e. invariant representation). In
other words, the classifier trained on representations of source labelled data will
work similarly for the unlabelled target data. This approach may increase the
transferability of features, as high transferability is close to an invariant rep-
resentation whereas low transferability implies features that are more domain
specific. Nevertheless, transferability comes at a cost, i.e. it can hurt the dis-
criminability of the representation (adaptability). Note that, discriminability
refers to the ability of the model to capture information that is relevant to
discriminate the classes. To be more specific, there is a fundamental trade-off
between invariance of learned representations and their adaptability in the pres-
ence of label shift. Thus, invariant representation learning most likely fails to
guarantee a good generalization for the target domain (low target risk). By way
of illustration, consider the setting of binary classification with non-overlapping
support. Suppose we have two classes of human/vehicle for the source and tar-
get domains. As illustrated in Figure 1.1, in input space, it is easy to find a
classifier that achieves 100% accuracy on each domain, separately. However,
under a translation between two distributions that achieves a perfect alignment
(i.e. an invariant transformation), the classifier trained in one domain works
poorly on the other domain. In other words, the lower the source error, the
higher the target error.

Figure 1.1. Failure case of invariant representation learning.
The Colored rectangles denote categories, fill patterns denote

class-types.
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While most previous works deal with this trade-off through i.i.d. assumptions
and data augmentation, in this thesis, we address that by relaxing domain in-
variance.

1.2 Aims and Objectives

The overall aim of this thesis is to address a crucial problem in the field of ma-
chine learning and computer vision: domain adaptation, which in this context
means the robustness to the data shift between the source and target domains.
We will exploit flow-based deep generative models to address the generalization
under the unsupervised domain adaptation paradigm (UDA). To achieve this
goal, we set the following research objectives.

1. Review the advances of deep UDA methodologies, and discuss the essen-
tial problems and the technical challenges of UDA. We identify and critically
review a broad solution of UDA proposed by researchers. This review helps
us to comprehensively understand the research problem, research status, and
theoretical arguments.

2. Demonstrate the need for relaxing the invariance assumption, and formalize
a lower bound on the joint probability distribution of source and target domains
as a unified framework for UDA. We theoretically discuss how this bound helps
to relax the invariance in representation learning. Although not empirically
evaluated, this lower bound provides us with a new insight into UDA.

3. Develop an efficient algorithm for UDA through a relaxed version of dis-
tribution matching that addresses the trade-off between adaptability and in-
variance of learned representation. The proposed model is expected to enhance
the adaptability (expressed as minimal joint error), by relaxing the domain-
invariance. Our method is flexible and easy to implement, and can be deployed
as a component of existing DL models to improve both transferability and dis-
criminability of representations. We empirically demonstrate the benefit of our
proposed model on public benchmark datasets.

1.3 Thesis Outline

The rest of the thesis is organised as follows:
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In Chapter 2, we provide an overview of UDA covering a preliminary con-
cept of UDA (formal definition, notation, and assumptions), which is utilized
for unsupervised representation learning, and for theoretical bounds. We also
review related, recent papers on single-source, single-target UDA, in which we
have one labelled source domain and one unlabelled target domain.

In Chapter 3, the necessity for relaxing invariance on learned representation
is discussed and a general relaxed-invariance framework for UDA is introduced
accordingly. To this end, the variational inference learning is employed to ef-
fectively approximate the intractable joint probability distribution. The in-
tractability stems from the inaccessibility of the target labels.

In Chapter 4, we present a relaxed-invariance version of standard domain ad-
versarial learning for domain adaptation, which incorporates both weighted and
invariant representation. The proposed method relies on the meaningful and
inductive design of weights on representation invariance. An empirical illus-
tration of our method is provided on benchmark datasets, which validates its
performance, effectiveness and versatility.

Chapter 5 concludes the thesis by summarizing the contributions and presenting
future work.
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Chapter 2

Background and Literature Review

In this chapter, we aim to provide a general review of unsupervised domain
adaptation. To this end, we first provide a background on unsupervised repre-
sentation learning in Sec. 2.1.1, basic concepts of transfer learning in Sec. 2.1.2,
and formal definition and categorization of domain adaptation, which can be
recognized as a special type of transfer learning, in Sec. 2.1.3. We then define
the UDA problem in Sec. 2.2.1, review prominent theoretical bounds in Sec
2.2.2, and review UDA methods proposed by researchers in Sec. 2.2.3.

2.1 Background

2.1.1 Unsupervised Representation Learning

Representation learning from unlabelled data is a well studied problem in ma-
chine learning. The classical methods to unsupervised representation learning
are based on clustering on the data manifold (for example using c-means)–
these clusters are then used to improve classification accuracy (Radford, Metz,
and Chintala, 2015). In the context of computer vision, hierarchical clustering
(Coates and Ng, 2012) and auto-encoders (Vincent et al., 2010) have been used
to learn powerful representations for high-dimensional images. Another way
that enables us to learn powerful image representation in an unsupervised man-
ner is by using a deep generative model (DGM). DGMs are designed to encode
the underlying probability distributions over data manifolds. The development
of DGM has enabled unprecedented performance in a vast range of machine
learning tasks such as density estimation, unsupervised representation learning,
distribution alignment, image-to-image translation, synthesis, and many other
tasks. Mathematically, DGMs aim at estimating an approximation to the gen-
erative model by minimizing the distance between the generative distribution
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and the data distribution under a certain measure or divergence D,

min
θ

D(pdata(x)||pmodel(x; θ)), (2.1)

where pdata is approximated with empirical data distribution pdata(x) = 1
N

∑N
i=1

δxi(x) based on observations {xi}Ni=1, with δxi(x) defined as:

δxi(x) =

{
1 if x = xi

0 otherwise
(2.2)

One of the most common statistical divergence measure for probability distri-
bution is Kullback-Leibler (KL) divergence. In practice, the minimization of
KL divergence approximates the maximization of the log-likelihood:

min
θ

KL(pdata(x)||pmodel(x; θ)) = min
θ

Ex∼pdata

[
log

pdata(x)

pmodel(x; θ)

]
,

≈ max
θ

Ex∼pdata log pmodel(x; θ).

(2.3)

Numerous types of algorithms have been proposed in the literature to learn
the model pmodel(x; θ). In this section, we discuss the following deep generative
models: (i) Variational Autoencoders (VAEs) (Kingma and Welling, 2013);
(ii) Generative Adversarial Networks (GANs) (Goodfellow et al., 2014); and
(iii) Normalizing Flows (NFs) (Dinh, Krueger, and Bengio, 2014; Rezende and
Mohamed, 2015).

2.1.1.1 Variational Autoencoder (VAE)

Latent variables refer to those variables that are included in the model, but
not observable. In the case of unconditional modelling of observed variable
x, the Bayesian graphical model then represents a joint distribution over both
the observed variable x and the latent variable z. The marginal probability
distribution over the observed variables pθ(x) can be defined as:

pθ(x) =

∫
pθ(x, z) dz. (2.4)

The most common latent variable model is specified as factorization with the
following probabilistic structure:

pθ(x, z) = pθ(x|z)pθ(z), (2.5)
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where p(z) is called prior distribution. The goal of generative modeling is to
maximize the log-likelihood of the marginal probability of data,

log pθ(x) = log

∫
pθ(x|z)pθ(z) dz, (2.6)

but this integral is intractable, which leads to the intractability of the posterior
distribution pθ(z|x) because of the following identity

pθ(z|x) =
pθ(x, z)

pθ(x)
. (2.7)

Thus, a tractable posterior pθ(z|x) needs a tractable marginal likelihood pθ(x)

and vice versa. Approximate inference uses another distribution qφ(z|x) that
makes the computation of the integral in Equation 2.6 tractable and has small
approximation error to the exact integral. For any choice of inference model
qφ(z|x) with parameters φ, the following equation can be derived:

log pθ(x) = Eqφ(z|x)

[
log pθ(x)

]
(2.8)

= Eqφ(z|x)

[
log

[
pθ(x, z)

pθ(z|x)

]]
(2.9)

= Eqφ(z|x)

[
log

[
pθ(x, z)

qφ(z|x)

qφ(z|x)

pθ(z|x)

]]
(2.10)

= Eqφ(z|x)

[
log

[
pθ(x, z)

qφ(z|x)

]]
︸ ︷︷ ︸

=Lθ,φ(x)

+Eqφ(z|x)

[
log

[
qφ(z|x)

pθ(z|x)

]]
︸ ︷︷ ︸

KL(qφ(z|x)||pθ(z|x))

, (2.11)

where the second term in Equation 2.11 is the KL divergence between true
posterior pθ(z|x) and variational posterior qφ(z|x), which is non-negative. From
Equation 2.11 we have:

Lθ,φ(x) = log pθ(x)−KL(qφ(z|x)||pθ(z|x)) ≤ log pθ(x). (2.12)

The first term in Equation 2.11, labelled as Lθ,φ, is the variational lower bound,
also called evidence lower bound (ELBO).

There are various ways of optimizing the ELBO loss, but for continuous z

this could be done efficiently through the reparametrization of variational pos-
terior qφ(z|x), which leads to the variational autoencoder method (Kingma and
Welling, 2013).
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2.1.1.2 Generative Adversarial Network (GAN)

Another recently developed framework for learning a generative model is based
on the Generative Adversarial Networks (GANs) (Goodfellow et al., 2014).
Specifically, GAN involves a generator network G, and a discriminator net-
work D, where the generator is trained to map random noise from an arbitrary
latent distribution to the data samples, while the discriminator’s purpose is to
distinguish between real and generated (fake) samples. Indeed, the generator’s
purpose is to "fool" the discriminator by producing samples that are as similar
to the real data as possible. Mathematically, the GAN objective seeks to find
a Nash equilibrium to a two-player (G-D) min-max problem,

min
G

max
D

Ex∼p(x)

[
logD(x)

]
+ Ez∼p(z)

[
log (1−D(G(z))

]
, (2.13)

where p(x) denotes the true distribution of data, and z ∈ Rdz is a latent vari-
able sampled from the known distribution p(z) such as U [−1, 1] or N (0, I).
The generator G implicitly learns how to generate samples from p(x) using
samples z ∼ p(z). If the generator G is fixed, the optimal discriminator
is D∗(x) = p(x)

pg(x)+p(x)
. When the assumption of an optimal discriminator is

true, the generator minimizes the Jensen-Shannon divergence between pg(x)

and p(x). The global equilibrium can be met if p(x) = pg(x), and the optimal
value of Equation 2.13 is -2 log 2.

The recent research has concentrated on modifications to the GAN procedure
by improving the generator (Radford, Metz, and Chintala, 2015), discriminator
(Zhao, Mathieu, and LeCun, 2016; Peng et al., 2018), objective loss (Arjovsky,
2017; Lim and Ye, 2017), or the training stability (Salimans et al., 2016; Adler
and Lunz, 2018). More recently, within the adversarial learning paradigm, re-
searchers (Dumoulin et al., 2016; Donahue, Krähenbühl, and Darrell, 2016) used
a bidirectional network structure, which tries to match the joint distributions
of two domains. However, the non-identifiability issues for joint distribution
matching are raised by Li et al. (2017). These problems are alleviated in Disco-
GAN (Kim et al., 2017), and Cycle-GAN (Zhu et al., 2017) via additional l1,
l2, or adversarial losses.

2.1.1.3 Normalizing Flow (NF)

The normalizing flow (Dinh, Sohl-Dickstein, and Bengio, 2016) is a likelihood-
based generative model defined as an invertible mapping, f : X → Z from
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the observed space X to the latent space Z. The distribution of the observed
variable can be modeled by applying a chain of invertible transformations, which
is composed of a sequence of invertible functions g = g1 ◦ g2 ◦ ... ◦ gL : Rd → Rd

with inverse f = g−1, on random latent variables with known distribution z ∼
pZ(z). Based on the change of variables formula, the probability distribution of
transformed random variable can be written as follows:

pX (x) = pZ(f(x))
∣∣∣ det(Jf (x))

∣∣∣ = pZ(f(x))
L∏
l=1

∣∣∣ det(Jfl(hl))
∣∣∣, (2.14)

where Jf (x) = ∂f(x)/∂x is the Jacobian of f with respect to x, det(.) denotes
the determinant, and hl denotes the output of intermediate mapping gl, with
h1 = x and hL = gL(z). The mapping f(x) is characterized by a neural
network with an architecture that is designed to ensure the invertibility and
efficient computation of determinants. We train the model by computing the
negative log-likelihood of the training data D = {xi}Ni=1 with respect to the
parameters η.

η∗ = argmax
η
L, L = − 1

|D|
∑
x∈D

log p(x; η) (2.15)

2.1.2 Transfer Learning (TL)

Two paramount problems facing machine learning are concerned with data-
efficiency and generalization. The former one assumes the model should be able
to learn from only a few datapoints, while the latter refers to the robustness to
data shifts (distributional shift) (Kingma and Dhariwal, 2018). As for gener-
alization, intelligent systems equipped with machine learning algorithms often
perform poorly when training and testing datapoints are drawn from different
probability distributions (Zhao et al., 2019). By way of illustration, a prognosis
system trained by the labelled data collected from an Australian hospital, may
not work well on the data samples acquired from a European hospital. The sys-
tem, therefore, is required to be either trained from scratch, or fine-tuned using
labelled data from the new domain, which is costly to acquire. This generaliz-
ability problem has given rise to a new research problem in machine learning
characterized as transfer learning. Inspired from human being’s adaptability to
new domains, transfer learning aims at generalizing by transferring knowledge
across distributions. This is accomplished with the use of knowledge from do-
mains with abundant labels to train a predictor for the domain with insufficient
labels.
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In what follows, we introduce the essential preliminary definitions that for-
malize the concept of transfer learning.

Definition 2.1. (Domain) Domain corresponds to the marginal distribu-
tion D on the input space X ⊂ Rd, and a labelling function f : X → C that
maps the input space to the classes C = {1, ..., C}.

Definition 2.2. (Transfer Learning) Let us consider 〈Ds, fs〉 and 〈Dt, ft〉
to be the source and target domains, respectively. Transfer learning aims at
improving the target labelling function ft by using Ds, Dt, and fs.

According to the aforementioned definitions, several possible learning settings
based on the label-setting, consistency between the feature spaces of two do-
mains, and the availability of target domain during training can be defined in
transfer learning. A complete list of these learning settings is categorized and
presented by Zhang et al. (2019a).

2.1.3 Domain Adaptation (DA)

A particularly interesting subfield of transfer learning is domain adaptation,
where we assume that the feature space in both source and target domains and
the label space in their corresponding learning tasks remain stationary. The
objective in domain adaptation is to learn a predictor in the presence of a shift
between the source (training) and target (test) data distributions. Depending
on the number of available labelled samples in the target domain, the label space
differences across domains, and the number of source and target domains, vari-
ous scenarios are considered in the literature of domain adaptation (You et al.,
2019; Cao et al., 2018; Motiian et al., 2017; Saito et al., 2019).

Let the number of samples in the target domain be Nt and the number of
those samples that are labelled be Ntl; then, DA can be categorized into: (i)
semi-supervised DA, when Ntl < Nt, (ii) unsupervised DA when Ntl = 0, (iii)
few-shot DA when we have Ntl < Nt, and Ntl < 20.

Let Cs and Ct be the the set of labels for the source and target domains re-
spectively; then, domain adaptation can be categorized into: (i) closed-set DA,
when Cs = Ct; (ii) open-set DA, when Cs ⊂ Ct, that is, when source label set is
a proper subset of target label set; (iii) partial DA, when Ct ⊂ Cs, that is, when
target label set is a subset of source label set; and (iv) universal DA, where the
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prior knowledge of the label sets is unavailable.

Furthermore, suppose the number of source domains and target domains is
Ks, and Kt respectively. Then, the DA tasks can be categorized into: (i) single-
source DA, when Ks = 1; (ii) multi-source DA, if Ks > 1. (iii) single-target
DA, when Kt = 1; (iv) multi-target DA, if Kt > 1.

More recently, several other real-world scenarios of DA have been introduced.
For instance, Liu et al. (2019a) proposed wildly UDA, a realistic problem setting
where predictors are forced to be trained with noisy labeled data from source
domain and unlabeled data from target domain. Peng, Wu, and Ernst (2018)
developed zero-shot domain adaptation, a setting where only task-irrelevant
target-domain data is available during training. Moreover, Wang, He, and
Katabi (2020) introduced continuously indexed domain adaptation, where the
label space is continuously changing.

In this thesis, we concentrate on unsupervised domain adaptation (UDA) un-
der closed-set, single-source, and single-target settings. UDA is one of the most
challenging scenarios for domain adaptation, a problem setup where samples
from the target domain are available, but none of them have been labelled.
In what follows, we introduce the notations, a formal definition of UDA, and
existing assumptions in UDA in Sec 2.2.1. Then, we provide a review of the
prominent generalization bounds for domain adaptation in Sec. 2.2.2. The ex-
isting research on unsupervised deep domain adaptation applied to computer
vision applications is presented in Sec. 2.2.3.

2.2 Literature Review

2.2.1 Preliminary

NotationsWe use X and Y to denote the input and output spaces respectively.
Accordingly, we use x, y as random variables from spaces X , Y .

Definition 2.3. (Classification) Classification is a machine learning task
that aims to learn a function using labeled datapoints to map input samples
to an output space Y , defined by h : X → Y , where function h (hypothesis)
belongs to the set of all possible functions H called hypothesis space. Given
a loss l : Y × Y → R, the error of a hypothesis h with respect to the true
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labeling function f : X → Y under joint probability distribution p(x,y), known
as the hypothesis risk, is defined as: ε(h) = εl(h, f) := E(x,y)∼p(x,y)

[
l(h(x),y)

]
.

If f and h are binary functions, then we let Y = {0, 1}, and l be the zero-one
loss, l(h, f) = 1

[
h 6= f

]
. Due to the access to only a finite number of samples,

{xi, yi}Ni=1, in practice, the expected value of hypothesis risk with respect to the
joint distribution of data and labels is approximated by the sample average,
called empirical risk ε̂(h) = 1

N

∑N
i=1

[
l(h(xi),yi)

]
.

Definition 2.4. (UDA) Given Ns labeled samples of source domain {(xi, yi)|
xi ∈ Xs, yi ∈ Ys, i = 1, 2, ...Ns}, distributed according to density ps(x,y), and
unlabelled samples of target domain {(xi)|xi ∈ Xt, i = 1, 2, ...Nt}, distributed
according to density pt(x), UDA aims to transfer the knowledge learned from
the source domain to the target domain. Formally, if we let ε̂s(h) to be the
empirical source risk h, and similarly, we use εt(h) and ε̂t(h) to mean the true
risk and the empirical risk on the target domain respectively, the problem of
domain adaptation can be stated as: under what conditions and by what al-
gorithms can we guarantee that a small source empirical error ε̂s(h) implies a
small true target (test) error εt(h)? The true target error can be defined by

εt(h) = E(x,y)∼pt(x,y)

[
l(h(x),y)

]
=

1

|Y|
∑
y∈Y

∫
X

[
l(h(x),y)

pt(x,y)

ps(x,y)
ps(x,y)dx

]
.

(2.16)

In traditional machine learning, we assume that pt(x,y)
ps(x,y)

= 1, which implies that
both training and testing data are drawn from the same distribution. Domain
adaptation relaxes this assumption to some extent. However, still further as-
sumptions should be considered to simplify pt(x,y)

ps(x,y)
. Depending on sources of

variations between source and target domains, the following assumptions are
considered in the literature:

1. Covariate shift, when ps(y|x) = pt(y|x) for all x, and ps(x) 6= pt(x).
2. Label shift, when ps(x|y) = pt(x|y) for all y, and ps(y) 6= pt(y).
3. Concept drift, when ps(x) = pt(x), and ps(y|x) 6= pt(y|x).

Under covariate shift scenario, it is assumed that the shift between the source
and target domains are merely caused by inconsistency in the feature space
(pt(x) 6= ps(x)). Importance Sampling is employed by Shimodaira (2000)
to bridge the distributional gap via a weighting mechanism (w(x) = pt(x)

ps(x)
).
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However, the shift between two domains with high dimensional data, such
as texts or images, stems from non-overlapping supports, thus requiring un-
bounded weights. Ben-David et al. (2007) theoretically analyzed that the non-
overlapping supports can be reconciled by learning invariant representations.
This led to numerous algorithms to solve domain adaptation, which primarily
aligns the source and target domains in the representation space.

2.2.2 Probability Divergences and Generalization bound

The prerequisite for a deep understanding and practical development of unsu-
pervised domain adaptation algorithms is to consider the possibility of general-
ization across probability distributions. In this part, we provide the fundamen-
tal domain adaptation generalization bounds (GB) introduced in the literature.
These bounds rely on the divergence measures between the probability distri-
butions.

2.2.2.1 L1-distance-based GB

From a theoretical perspective, the problem of domain adaptation was initially
studied by Ben-David et al. (2007). The authors first proposed L1 distance as
a measure of divergence between two probability distributions.

Definition 2.5. Let A be a set of measurable subsets under the marginal
probability distributions Ds and Dt. The L1 distance or divergence between
two domains can be defined as:

d(Ds,Dt) = 2 sup
A∈A

∣∣∣∣PrDs(A)− PrDt(A)

∣∣∣∣. (2.17)

Then based on the L1 distance, the first generalization bound was proposed by
the same authors (Ben-David et al., 2007) as follows.

Theorem 2.1 (Ben-David et al., 2007). Given two domains Ds and Dt over
X × Y , and a hypothesis function h, the following holds.

εt(h) ≤ εs(h)+d(Ds,Dt)+min

{
Ex∼Ds

[∣∣∣fs(x)−ft(x)
∣∣∣],Ex∼Dt

[∣∣∣ft(x)−fs(x)
∣∣∣]},

(2.18)
where fs(x) and ft(x) are the source and target true labeling functions. The gen-
eralization upper bound is decomposed into three parts: the true source error,
the empirical L1-distance, and the shift between labelling functions. However,
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the tightness of this bound is infeasible to evaluate, as the L1 distance cannot
be estimated from finite samples for arbitrary probability distributions.

2.2.2.2 H-divergence-based GB

Definition 2.6. (Ben-David et al., 2010). Let us assume Ds and Dt to be
the marginal distributions of source and target domains over the input space
X respectively. Let H be a hypothesis class on X and denote by I(h) the set
for which h ∈ H is the characteristic function; that is, x ∈ I(h) ⇔ h(x) = 1.
Then, the H-divergence between Ds and Dt is defined as:

dH(Ds,Dt) = 2 sup
h∈H

∣∣∣∣PrDs(I(h))− PrDt(I(h))

∣∣∣∣. (2.19)

An estimation of divergence from finite samples can be drawn using the follow-
ing lemma.

Lemma 2.1. (Ben-David et al., 2010) Let Us and Ut be sets of unlabelled
samples of size m each, drawn from Ds and Dt respectively, and H be a hypoth-
esis space of V C dimension d then for any δ ∈ (0, 1), the following holds with
probability of at least 1− δ

dH(Ds,Dt) ≤ d̂H(Us,Ut) + 4

√
d log(2 m) + log(2

δ
)

m
, (2.20)

where the estimated divergence between the unlabelled samples can be approx-
imated with:

d̂H(Us,Ut) = 2

(
1−min

h∈H

[
1

m

∑
x∈{x|h(x)=0}

I
[
x ∈ Us]

]
+

1

m

∑
x∈{x|h(x)=1}

I
[
x ∈ Ut]

]])
,

(2.21)
with I[x] being the indicator function, which returns 1 if x is true, 0 otherwise.
Ben-David et al. (2010) showed that the empirical H-divergence given above is
the error of the best classifier for the binary classification problem for the source
and target samples.

2.2.2.3 H4H-divergence-based GB

Definition 2.6. (Ben-David et al., 2010). Let us assume Ds and Dt to be
the marginal distributions of source and target domains over the input space X
respectively. Let H be a hypothesis class, and let H4H represents symmetric
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difference hypothesis space defined as the following for (h, h
′
) ∈ H2

r ∈ H4H ⇔ r(x) = h(x)⊕ h′(x), (2.22)

where ⊕ is XOR operation. The H4H-divergence between two marginal prob-
ability distribution Ds and Dt is defined as follows:

dH∆H(Ds,Dt) = 2 sup
(h,h′)∈H2

∣∣∣∣εs(h, h′)− εt(h, h′)∣∣∣∣, (2.23)

where εs(h, h′) and εt(h, h′) are the disagreement between two hypotheses h and
h′ on the source and target domains respectively.

Theorem 2.2. (Ben-David et al., 2010) Let H be a hypothesis space of VC
dimension VC (H). If Us and Ut are unlabeled samples of size m each, which
are drawn independently from Ds and Dt respectively, then for any δ ∈ (0, 1)

with probability of at least 1 − δ (over the choice of the samples), and for all
h ∈ H we have

εt(h) ≤ εs(h)+
1

2
dH∆H(Us,Ut)+4

√
2 VC(H) log(2 m) + log(2

δ
)

m
+Ψ(h∗), (2.24)

where the optimal joint hypothesis h∗ is defined as h∗ = arg min
h∈H

εt(h
∗) + εs(h

∗),

and its corresponding combined error is Ψ(h∗) = εt(h
∗) + εs(h

∗).

The presence of the trade-off between source risk, divergence, and capability
to adapt is a very important phenomenon in domain adaptation. Indeed, it
shows that the reduction in the divergence between the samples can be insuf-
ficient when there is no hypothesis that can achieve a low error on both the
source and target samples.

2.2.2.4 H̃-divergence-based GB

Lemma 2.2. (Zhao et al., 2019) Let H ⊆ [0, 1]X , h, h′ ∈ H, 0 ≤ t ≤ 1, and
H̃ :=

{
sgn
(∣∣h(x) − h

′
(x)
∣∣ − t

)∣∣}, where sgn denotes the sign function, then
H̃-distance is defined as follows

dH̃(Ds,Dt) = 2 sup
(h,h′ )∈H

sup
t∈[0,1]

∣∣∣∣PrDs(∣∣h(x)−h′(x)
∣∣ > t

)
−PrDt

(∣∣h(x)−h′(x)
∣∣ > t

)∣∣∣∣.
(2.25)
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Theorem 2.3. (Zhao et al., 2019) Let
〈
Ds, fs

〉
,
〈
Dt, ft

〉
be the source and target

true distributions. For any function class H ⊆ [0, 1]X , and ∀h ∈ H, the target
error can then be bounded by the source error εs(h), the discrepancy between
marginal distributions dH̃(Ds,Dt), and the distance between the optimal source
and target labeling functions of fs : X → [0, 1], and ft : X → [0, 1] respectively,
as in

εt(h) ≤ εs(h) + dH̃(Ds,Dt) + min

{
EDs

[∣∣∣fs − ft∣∣∣],EDt[∣∣∣fs − ft∣∣∣]}. (2.26)

The upper bound in Equation 2.26 no longer relies on Ψ, as in Equation 2.24.
Zhao et al. (2019) also developed an information-theoretic lower bound for tar-
get error.

Theorem 2.4 (Zhao et al., 2019) Let y = f(x) ∈ {0, 1} be the labeling func-
tion, y′ = h(g(x)) ∈ {0, 1} be the prediction function, which is the predicted
random variable of interest, suppose the Markov chain x

g−→ z
h−→ y

′ and condi-
tion dJS(Dy

s ,D
y
t ) ≥ dJS(Dz

s ,Dz
t ) holds, then the following equation provides a

lower bound on the joint source and the target error.

εs(h ◦ g) + εt(h ◦ g)︸ ︷︷ ︸
1○

≥ 1

2

(
dJS(Dy

s ,D
y
t )︸ ︷︷ ︸

2○

− dJS(Dz
s ,Dz

t )︸ ︷︷ ︸
3○

)2
. (2.27)

The lower bound in Equation 2.27 provides us with a necessary condition on
the success of any domain adaptation approach based on learning invariant
representations: if the marginal label distributions are significantly different
between source and target domains, that is, term 2○ is high, then minimizing
term 3○ together with the source error εs(h ◦ g), will only increase the target
error εs(h◦g). In other words, if the term 2○ is high, in order to achieve a small
joint error (term 1○), the distribution divergence in representation space (term
3○) has to be high as well, which means that the invariance goal needs to be
relaxed.

Summary

In this section, we presented several theoretical results including those proposed
by Ben-David et al. (2010) and Zhao et al. (2019) that establish the conditions
under which a UDA problem can be solved efficiently. Following these theoreti-
cal insights, we design a new algorithm for UDA based on relaxing the excessive
invariance.
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2.2.3 Critical Review on UDA

The development of deep neural networks has enabled unprecedented perfor-
mance in a wide variety of computer vision tasks. However, one of the major
obstacles to deep learning, which prevented it from becoming a safely deployable
machine learning algorithm, is its inability to generalize well to new domains.
Even slight deviation from the training domain can give rise to significant per-
formance deterioration (Ben-David et al., 2007). Technically, not only can the
underlying issue stem either from the scarcity or unavailability of labeled data
for the new domain, but also from the covariate, prior probability, or concept
shift in data distribution (Zhang et al., 2019a). UDA aims to overcome these la-
belled data availability and distributional discrepancy problems by transferring
knowledge from an available richly-labelled domain (i.e. source domain) to a
target domain without labelled data. To tackle this, classes of algorithms under
different assumptions, and based on well-studied theoretical bounds (Ben-David
et al., 2007; Ben-David et al., 2010; Le et al., 2018; Zhang et al., 2019c; Zhao et
al., 2019), have been proposed in the literature. In this section, given the exten-
sive literature on UDA, we review researches that are most relevant to our thesis.
Hence, we categorize distinct lines of research into different groups, and in each
group, we highlight the most relevant papers. These include semi-supervision-
based methods, distribution matching methods, intermediate representations,
and architecture design. In addition, self-supervision-based methods (Ghifary
et al., 2016; Sun et al., 2019), and causality-based methods (Magliacane et al.,
2017), have been explored by researchers, which are beyond the scope of this
thesis.

A. Semi-supervision-based Methods

Unsupervised domain adaptation (UDA) and Semi-Supervised Learning (SSL)
are closely related; in both cases, we are given labeled and unlabeled data,
with the core objective of learning a classifier capable of generalizing to the
unlabeled data and unseen examples. However, in SSL, both the labeled and
unlabeled data come from the same distribution, while in UDA, the target and
source distributions differ. SSL methods, such as consistency regularization
(Temporal Ensembling (Laine and Aila, 2016), Mean teachers (Tarvainen and
Valpola, 2017), Virtual Adversarial Training (Miyato et al., 2018), Adversarial
Dropout (Park et al., 2018), Interpolation Consistency Training (Zhang et al.,
2017)), proxy-label methods (Pseudo-labeling (Arazo et al., 2020), Co-training
(Blum and Mitchell, 1998), Tri-Training (Zhou and Li, 2005)), Graph-based
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methods (e.g., Label propagation (Zhur and Ghahramani, 2002)), and entropy
minimization methods (Grandvalet, Bengio, et al., 2005) demonstrated their
effectiveness in domain adaptation. In this section, we highlight those papers
that tackled UDA problem via SSL techniques without distribution matching
techniques, which we also call non-invariant representation learning.

It has long been recognized that an ensemble of several neural networks gener-
ally produces better predictions than a single neural network does (Laine and
Aila, 2016) . This idea has been exploited in unsupervised learning for generat-
ing predictions on unlabelled data, a technique called self-ensembling. In fact,
self-ensembling is to use only a single model but running it under different op-
erating conditions (such as inserted noise) that may produce different outputs;
the unsupervised learning then aims for consistency between the self ensembles.
This has been accomplished by either averaging over past predictions for each
example, also known as Temporal Ensemble (Laine and Aila, 2016), or directly
averaging over past network weights instead of predictions, also known as Mean
Teacher (Tarvainen and Valpola, 2017). The latter strategy has been extended
for domain adaptation problem (French, 2017). The input images augmented
by various data augmentation techniques are passed through two networks with
different mechanism of learning: a student network, which is trained with gra-
dient descent, and a teacher network whose weights are an exponential moving
average (EMA) of the student network’s weights. At each step, the student
network evaluates images from the source domain and computes derivatives via
a task loss based on the ground truth. The unlabelled target domain images
are used to compute the consistency loss by comparing predictions from both
student and teacher models.

Pseudo-labelling can be seen as an equivalent implementation of entropy mini-
mization that enables supervised training on unlabeled data. By iterative learn-
ing, the pseudo-labeling is expected to be gradually more accurate until conver-
gence. Sener et al. (2016) proposed label learning by using k-nearest neighbors
between unlabeled target samples and labelled source samples. This method
jointly learns the transferable domain-specific representations and estimate the
labels of the unsupervised data points. Saito, Ushiku, and Harada (2017) em-
ployed a target-specific classifier to extract discriminative target features by
using pseudo-labelling, which is acquired confidently through two other classi-
fiers on source and target representations.
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Lee et al. (2019b) proposed drop to adapt (DTA), where a combination of SSL
losses namely adversarial dropout loss (Miyato et al., 2018), virtual adversar-
ial training loss (Tarvainen and Valpola, 2017), and entropy minimization loss
(Grandvalet, Bengio, et al., 2005) have been used to extract the discriminative
representation for unsupervised domain adaptation.

Critical point: in general, non-invariant representation methods learns dis-
criminative representations, but they rely on domain-specific data augmenta-
tion strategies, in which case they may fail to generalize to the target domains
far away from the source domain given that they do not consider the domain
shift issue.

B. Distribution Matching Methods

Currently, the most prominent UDAmethods are based on distributional match-
ing (DM). DM has been applied either in the representation space, known as
domain-invariant representation, or in the pixel space, which is called domain-
mapping. DM methods are divided into three categories based on genera-
tive/discriminative settings. In what follows, we review the relevant papers
in each category.

B.1. Domain-invariant Representation

A prevalent approach acting as a major component in numerous proposed algo-
rithms for UDA is the estimation of domain-invariant representation . Its
main idea is to reduce the divergence between two domains to obtain domain-
invariant distribution such that a predictor trained by source samples can be
directly employed to the target data. Two domains can be invariant to the
domain shift by learning features that have the same distribution regardless
of their true underlying domains. The main hypothesis behind these methods
is that such a common latent feature representation exists, and the label dis-
tributions do not differ significantly. Under this motivation, methods, such as
statistical matching using kernelized training (Tzeng et al., 2014; Long et al.,
2017; Sun and Saenko, 2016; Courty et al., 2017; Damodaran et al., 2018), and
adversarial matching using adversarial training (Tzeng et al., 2014), have been
proposed.
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B.1.1. Statistical Matching

These approaches reduce the domain shift by minimizing some domain discrep-
ancy metrics such as maximum mean discrepancy (MMD), correlation align-
ment loss, contrastive domain discrepancy (CDD), and the Wasserstein dis-
tance. In this stage we review statistical matching based deep domain adapta-
tion methods.

Tzeng et al. (2014) proposed the deep domain confusion (DDC), where an adap-
tation layer derived from a pre-trained model is embedded into the last layers of
a feature extractor and a confusion discrepancy loss based on maximum mean
discrepancy is enforced on this layer across the source and target distributions.
Tzeng et al. (2015) extended the previous work by introducing soft label dis-
tribution matching loss. Long et al. (2015) proposed to reduce the marginal
distribution discrepancy across domains by transferring features of the top lay-
ers called task-specific layers to a Reproducing Kernel Hilbert Space (RKHS),
where the the multi kernel MMD (MK-MMD) was utilized to match two do-
mains onto each other. This idea was further developed by joint adaptation
networks (JAN) (Long et al., 2017), which used a unified MMD called joint
MMD (JMMD) to learn transferable features by matching the joint distribu-
tion of multiple domain-specific layers.

In previous approaches, the source classifier and target classifier are assumed to
be the same. Long et al. (2016) relaxed the shared-hypothesis space assumption
and related two classifiers from two domains by a residual function, which is a
small perturbation function. Then, adaptation is enabled for the target classifier
by learning this residual function and exploiting the entropy minimization that
supports the low-density boundary assumption. The aforementioned MMD-
based DA approaches failed to take the changes in prior class distributions into
account. In fact, MMD is unable to compensate for class weight discrimination
and results in reduced domain adaptation performance. To address this issue, a
weighted model is proposed by Yan et al. (2017), where class specific auxiliary
weights are implemented with the original MMD. In contrast to the methods
mentioned above, Yan et al. (2017) proposed central moment discrepancy that
minimizes the domain-specific features representations directly in the hidden
activation space.

Correlation alignment (CORAL), designed by Sun and Saenko (2016), used
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second-order statistical criteria (covariances) in loss function to reduce the dis-
crepancies between two domains. The idea is similar to (DDC)(Tzeng et al.,
2014), except that instead of MMD the CORAL loss is used to minimize dis-
crepancy. Other distances for correlation alignment have been used. For in-
stance, Zhang et al. (2018b) proposed to use a Euclidean distance in mapped
correlation alignment (MCA), and Morerio, Cavazza, and Murino (2017) used
geodesic distances. Contrastive domain discrepancy (CDD) proposed by Kang
et al. (2019) exploited kernelized training, but looks at conditional distribu-
tions to incorporate label distribution. It proposes a contrastive adaptation
network (CAN), which performs alternating optimization between adaptation
of feature representations by backpropagation and updating the target labeling
function by clustering for class-conditional alignment. When optimizing CDD,
intra-class discrepancy is minimized while inter-class margin is maximized. The
Wasserstein distance has been employed by Shen et al. (2017) to measure the
distances between distributions. To align feature and label distributions with
this distance, Courty et al. (2017) proposed the joint distribution optimal trans-
port (JDOT). Damodaran et al. (2018) proposed DeepJDOT to incorporate this
into a deep neural network.

Critical point. All the aforementioned statistical approaches are consid-
ered to be problem-specific and hard to design. Furthermore, minimizing non-
parametric statistical distances, such as maximum mean discrepancy, fails to
capture the structure of complex real-world distributions and restricts the no-
tion of similarity to enable closed-form estimation.

B.1.2. Adversarial Matching

Inspired by the generative adversarial networks (GAN) (Goodfellow et al.,
2014), adversarial training has been successfully employed to learn domain-
invariant representation. In adversarial training strategy, the minimization
of the domain discrepancy encourages domain confusion in the representation
space, where the discriminator (a parameterized binary classifier) cannot dis-
tinguish whether the sample comes from the source or from the target domain.
A general network setup of adversarial domain-invariant strategy for domain
adaptation is illustrated in Figure 2.1.

Motivated to minimize the domain discrepancy measured by H-divergence of
(Ben-David et al., 2007), Ganin and Lempitsky (2014) proposed the first strat-
egy of the domain-adversarial training of neural networks (DANN), where a
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Figure 2.1. General network setup for adversarial domain-
invariant representation learning. Dashed lines denote shared

feature extractor.

binary classifier is adopted as the domain discriminator, and the domain diver-
gence is minimized by learning representations of the two domains in an adver-
sarial manner to the domain discriminator. Adversarial domain adaptation is
achieved by adding an effective gradient reversal layer to the standard archi-
tecture, which reverses the discriminator’s gradient during back-propagation by
multiplying it with a negative scalar. Gradient reversal layer confirms that the
representations over both source and target distributions are similarly gener-
ated (as the domain classifier will not be able to classify those representations),
leading to the domain-invariant features. Tzeng et al. (2017) proposed adversar-
ial discriminative domain adaptation (ADDA), where different from Ganin and
Lempitsky (2014) and Tzeng et al. (2014), who used true minimax objective
and domain confusion objective, respectively, ADDA utilized standard GAN
loss (Goodfellow et al., 2014) to deal with the gradient vanishing problem. The
discriminator tries to distinguish the source domain features from the target do-
main features whereas the feature extractor tries to confuse the discriminator
to generate or extract domain invariant or domain independent features. After
matching source and target representations, a task-specific classifier trained on
the source distributions is applied directly to the target distributions. DANN
uses a common feature extractor whereas ADDA uses two feature extractor
to extract discriminative features for both domain and it solves the gradient
vanishing problem. Volpi et al. (2018) improved ADDA by introducing data
augmentation in the feature space where domain alignment is held as an ADDA
objective.
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Critical point. Drawbacks can be highlighted with the standard domain adver-
sarial training. First, they suffer from the multi-modality bottleneck. Indeed,
the discriminator can fail to capture multimodal structures of data distribu-
tions. Second, they make two domains closer to each other under domain-
invariance constraint without considering the capacity of feature extraction
function. Third, they are based on the assumption that the existence of one
optimal hypothesis for two domains is guaranteed. Finally, the relationship be-
tween unlabeled samples and the decision boundary is ignored, which results
in poor generalization of the target domain. The methods below have been
proposed to address these issues.

• Multimodal Alignment. Motivated to capture the multimodal struc-
tures underlying data distributions when aligning domains, Long et al.
(2018) developed a conditional domain adversarial network (CDAN), where
a multilinear map function was employed to integrate the predictor’s out-
put and the feature representation to jointly learn the domain discrimina-
tor. Pei et al. (2018) proposed the multi-adversarial domain adaptation
(MADA) approach for minimizing the domain discrepancy using multiple
domain classifiers to address the mode collapse issue. In MADA, the soft
pseudo-label of a target sample is used to determine how much this sam-
ple should be attended by different class-specific domain discriminators.
Zhang et al. (2018a) proposed a collaborative adversarial network where
multiple feature extractors and multiple domain discriminators are used
to decrease the domain disparity.

• Target-discriminative Representation. The existing techniques in
semi-supervised learning (SSL) algorithms have been implemented to im-
prove the classifier for the target samples. These techniques capture target
structures by entropy minimization (Sener et al., 2016; Long et al., 2016;
French, 2017; Shu et al., 2018; Liang et al., 2018), pseudo-labelling (Saito,
Ushiku, and Harada, 2017; Zhang et al., 2018a), consistency regulariza-
tion (Saito et al., 2017; Saito et al., 2018; Kumar et al., 2018), and a
combination of these methods (Kang et al., 2019; Chen et al., 2019b).
The smoothness assumption has been applied on the classifier’s predic-
tion by penalizing inconsistent prediction between the perturbed version
of the samples and original ones. To this end, Shu et al. (2018) relied
on virtual adversarial training (VAT) (Miyato et al., 2018) to adjust the
decision boundary against locally and randomly perturbed samples. To
avoid overfitting to the unlabeled datapoints, the conditional entropy loss
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has been used in combination with VAT loss. Dirt-T model (Shu et al.,
2018) improved upon VADA by further penalizing a failure to meet the
cluster assumption (Chapelle and Zien, 2005), that the data distribution
tends to form separated clusters and that data points in the same cluster
are more likely to share the same class label. Deng, Luo, and Zhu (2019)
proposed cluster alignment with a teacher (CAT) where a teacher classifier
is implemented to predict the cluster alignments for target samples.

• Local Alignment. From an adversarial distribution matching perspec-
tive, UDA methods can be categorized into two groups: (i) Global Align-
ment (GA) methods, for example, the aforementioned methods (Ganin
et al., 2016; Shu et al., 2018; Pei et al., 2018) can be considered as GA
methods, and (ii) Local Alignment (LA) methods (Saito et al., 2018; Lee
et al., 2019a; Zhang et al., 2019b; Zhang et al., 2019c). GA methods tend
to ignore the local class decision boundary information during adaptation,
which leads to a sub-optimal performance on the target domain. Although
several recently proposed GA methods try to benefit from cluster assump-
tion to capture target-discriminative representation, they still suffer from
a fundamental drawback. The domain discriminator enables matching
the marginal feature distribution across domains by simply predicting the
domain label, but it fails to take the class information into account. LA
methods (Saito et al., 2018; Saito et al., 2017; Lee et al., 2019a) strive to
address this issue by playing adversarial games between feature extractor
and the disagreement of two classifiers on the target samples, as illus-
trated in Figure 2.2. Note that two task specific classifiers are initialized
differently to acquire different classifiers from the beginning of training.

More specifically, Maximum classifier discrepancy (MCD), proposed by
Saito et al. (2018), aims to find the target samples that are distant from
the source (outside the support of the source) by maximizing the L1-
distance between the outputs of two task-specific classifiers employed as
a discriminator, and minimizing this discrepancy to generate representa-
tions that are close to the source (inside the support of the source). In
other words, the discrepancy between two domains is measured by the dis-
agreement between two hypotheses. Indeed, it focuses on directly reshap-
ing the target data regions that need to be reshaped. Adversarial dropout
regularization (ADV) proposed by the same author (Saito et al., 2017)
also tried to achieve discriminative target representation for adversarial
domain adaptation via dropout regularization on discriminator. By doing
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Figure 2.2. General network setup for adversarial local align-
ment. Dashed lines denote shared feature extractor.

so, two specific classifiers are created, and then the posterior discrepancy
between the two classifiers is trained to be maximized while the generator
is enforced to output discriminative features, which are assumed to be in
high-density regions. Sliced Wasserstein discrepancy (SWD) proposed by
Lee et al. (2019a) supplanted the L1-distance in (Saito et al., 2018) with
the Wasserstein distance (Bonneel et al., 2015) to take advantage of its ge-
ometrical characterization. Zhang et al. (2019b) proposed SymNets where
the domain confusion and the domain discrimination are stacked upon a
classifier concatenated by two task-specific classifiers of source and target
domain to facilitate the domain-level and category-level feature distribu-
tion alignment. Zhang et al. (2019c) proposed MDD where two classifiers
are used asymmetrically to estimate conditional feature distributions with
margin loss; Cicek and Soatto (2019) proposed a joint domain-class dis-
criminator with the help of pseudo-labels instead of a binary discriminator
to make any classifier agnostic to domains.

• Other Methods. Adversarial learning has been recently explored by
other researchers (Wen et al., 2019; Zou et al., 2019; Chen et al., 2018;
Chen et al., 2019a) to achieve domain invariant representations. Inspired
by Arandjelovic et al. (2016), Wen et al. (2019) proposed to learn local
features along with holistic distribution matching. Wang et al. (2019b)
introduced an attention module with adversarial learning to minimize the
negative transfer learning especially when the source and target images
from the same category are very dissimilar. Zou et al. (2019) proposed con-
sensus adversarial domain adaptation, where model setup has four steps
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including training only with source data, training with source and target
data and domain alignment through adversarial learning, fine-tuning in
source domain with shared classifier, and testing in the target domain.
Chen et al. (2018) introduced re-weighted adversarial unsupervised do-
main adaptation network to discriminatively align the source and target
domains, and used optimal transport distance to tackle the issue of dis-
joint support. To alleviate mis-labeling issue in pseudo labeling technique,
Chen et al. (2019a) proposed progressive feature alignment network where
target samples with similarity scores higher than a threshold are selected
for pseudo-labeling and this threshold is updated after each iteration of
learning so that more unlabeled target samples can be selected.

B.2. Relaxed/Regularized Domain-invariant Representation

More recently, it was argued that invariant enforcement in the representation
space is too restrictive and can substantially deteriorate its adaptability (mini-
mal joint error of two domains) or discriminability (Wu et al., 2019; Johansson,
Ranganath, and Sontag, 2019; Zhao et al., 2019; Arjovsky et al., 2019; Bouvier
et al., 2019a). For instance, Wu et al. (2019) provided a theoretical analysis
on learning invariant representation when there is an insufficient joint support,
and showed that complete matching may increase target error. In Target Shift
setting, where only the change in label distribution needs to be addressed, Zhao
et al. (2019) showed that searching for invariance may damage adaptability. In
the context of Covariate Shift, where the typical assumption is that source and
target domains only differ in their feature distribution, Bouvier et al. (2019a)
takes the risk of compression into account when enforcing invariance on repre-
sentation, to control the adaptability. Bouvier et al. (2019b) proposed Hidden
Covariate Shift which matches a reweighted source joint distribution and an
estimated joint target distribution by imposing the invariance constraint on
conditional label distribution given the data representation. In a general case
of domain adaptation, Arjovsky et al. (2019) points out that it is not clear how
invariant-representation can help aligning two domains.

Based on the aforementioned theoretical contributions, some recent works (Cao,
Long, and Wang, 2018; Combes et al., 2020; Wu et al., 2019) systematically an-
alyze the issue with exact distribution matching resulted from label distribution
mismatch and proposed to either regularize or relax domain-invariance.

• Regularized-invariance Representation. Some other methods in UDA
are focused on modifying the feature properties, namely transferability
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(Chen et al., 2019c; Xu et al., 2019), and discriminability (Chen et al.,
2019c; Xu et al., 2019; Cui et al., 2020a; Jin et al., 2020) along with the
distribution matching. Chen et al. (2019c) proposed Spectral Batch Nor-
malization (BSP), where the largest singular values of the feature matrix
that are found to correspond to transferability, was penalized to enhance
the features discriminability. Xu et al. (2019) attributed the nature of
low transferability and model degradation to an extremely smaller norms
of the target-domain features with respect to that of the source domain,
and thus proposed parameter-free Adaptive Feature Norm (AFN) to en-
hance transferability by progressively equalising feature value ranges of
two domains, which allows features with initially low ranges to impact the
classification result more effectively. Cui et al. (2020a) proposed Batch
Nuclear-norm Maximization (BNM) to simultaneously improves the dis-
criminability and diversity of conditional prediction features. The nuclear-
norm of prediction features’ matrix is bounded by the Frobenius-norm of
the matrix, which is a measure of prediction features’ discriminability, and
approximates the matrix rank, which refers to prediction features’ diver-
sity. Maximizing nuclear-norm ensures large Frobenius- norm of the batch
matrix, leading to increased discriminability. Similarly, Jin et al. (2020)
proposed Versatile Domain Adaptation (VDA), which enhances the diver-
sity and discriminability of conditional prediction matrix through class
confusion minimization.

• Relaxed-invariance Representation. More recently, two works tried
to address the trade-off between transferablity and discriminability by re-
laxing domain invariance with weighted representations (Combes et al.,
2020; Wu et al., 2019). However, they considered hypotheses in their
methods that may fail to to be justified. For instance, Combes et al.
(2020) proposed generalized label shift under the hypothesis that the
probability of the latent space given the label in two domains is the same
(pt(z|y) = ps(z|y)), which ignores the intra-class feature distribution shift.
Another method proposed by Wu et al. (2019), attempted to address the
label distribution shift by asymmetrically relaxing the distribution align-
ment with hypothesis that the density ratios in representation space are
upperbounded by a certain constant ( pt(z)

ps(z)
≤ 1 + β, β > 0), which does

not take potential disjoint source-target supports into account. Therefore,
learning both transferable and discriminable representations remains an
open problem. Following this motivation, this thesis aims to introduce the
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limitation of invariant representation learning in chapter 3, and propose
efficient solution to relax excessive invaraince enforcement in chapter 4.

B.3. Domain Mapping

In comparison with the methods that align distributions in the feature space,
several methods align distributions in pixel space by translating source domain
to the target domain, and training the classifiers directly on the translated sam-
ples. This is accomplished through image-to-image (I2I) translation GAN. Liu
and Tuzel (2016) proposed to train a pair of GANs called CoGAN on two do-
mains of images. They use a GAN to generate corresponding images in multiple
domains and then employ all but the last layer of the discriminator as a feature
extraction function for classification. A recognized unsupervised I2I method is
CycleGAN, developed by Zhu et al. (2017). CycleGAN overcomes the under-
constrained nature of GAN, with a cycle-consistency enforcement. CycleGAN
has been employed to perform UDA. Liu, Breuel, and Kautz (2017) coupled
CoGAN with VAE (Kingma and Welling, 2013) to perform unsupervised I2I
translation. A shared latent space between source and target domains is in-
ferred to align the joint distributions of different domains.

However, such image-space adaptation methods cannot cope with large image
sizes and large domain shifts, which means that they do not necessarily preserve
the contents. To address these issues, Hoffman et al. (2017) proposed cycle-
consistent adversarial domain adaptation (CyCADA), which performs adapta-
tion at both the pixel-level and feature-level, enforces cycle-consistency, and
uses a semantic loss to preserve semantics under a large domain shift. Yet, the
advantage of the cycle-consistency loss is not demonstrated sufficiently, as this
loss is only applied on pixel-space, which is suitable for low-level features. Also,
this augmented semantic loss may fail to guarantee the semantic consistency at
higher levels of deep representations.

C. Intermediate Representations

Regardless of the strategy to align the source and target distributions, UDA
methods vary based on their choice of representation. Multiple UDA methods
utilize intermediate representations (sub-spaces) between the source and target
domains to reduce the domain shift. These methods avoid the domain-invariant
representation and explore domain-specific features to minimize the domain mis-
match through mapping one of the source or target domains to the other by mak-
ing gradual alteration to the training distribution (Gong et al., 2012; Chopra,
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Balakrishnan, and Gopalan, 2013; Fernando et al., 2013). The transferred repre-
sentations smoothly bridge the gap between source and target domains, thereby
facilitating the domain adaptation task. For instance, in the literature of shal-
low domain adaptation, Gong et al. (2012) regard two sub-spaces as two points
on a Grassmann manifold, and find points on a geodesic path between them
as a bridge between source and target sub spaces. Gopalan, Li, and Chellappa
(2011) represent each domain as a subspace or covariance matrix, and then
connect them on the corresponding manifold to model intermediate domains.
This asymmetric transformation of source domain to target domain has recently
led to numerous asymmetric UDA algorithms and is a promising approach, as
higher classification accuracy has been achieved (Elhadji-Ille-Gado, Grall-Maes,
and Kharouf, 2017; Thopalli et al., 2019). However, these methods cannot be
easily applied to deep networks.

Recently, the idea of bridging the representations between source and target
domains has been investigated in the field of domain adaptation (Gong et al.,
2019; Liu et al., 2019b; Cui et al., 2020b). Gong et al. (2019) proposed do-
main flow for adaptation (DLOW) to generate multiple intermediate domains
between source and target domains using normalizing flow to reduce the do-
main shift, as opposed to direct image-to-image translation (Zhu et al., 2017).
In this method, the geodesic transfer properties are enforced by reconstructing
input images. Gradually vanishing bridge (GVB) proposed by Cui et al. (2020b)
explicitly reduces the domain discrepancy via a gradual transferring process un-
dertaken on a geodesic domain flow along the data manifolds on both generator
and discriminator without completely reconstructing domain-specific inputs.
However, in these methods, input image reconstruction is imposed to enhance
the geodesic transferability, where removing the domain-specific properties from
domain-invariant features tends to be less accurate (Arjovsky et al., 2019). Liu
et al. (2019b) introduced transferable adversarial training (TAT), where trans-
ferable examples are generated to fill the domain gap, and are augmented to the
datasets. However, this method may fail to generalize to the target domains far
away from the source domain due to the ignorance of domain shift.

D. Architecture Design

Another line of research in domain adaptation involves architectural design, and
more specifically, the Batch Normalization (BN) layer (Ioffe and Szegedy, 2015)
design, which is fundamental to deep learning models and also an essential part
of domain adaptation. BN aims to stabilize the distribution of the minibatch
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inputs to a network layer during training by setting the mean and variance
of the distribution to be zero and one respectively. As with domain adapta-
tion, since the normalization statistics are different across domains, per-domain
batch normalization is proposed in the literature (Li et al., 2016; Carlucci et al.,
2017; Roy et al., 2019; Wang et al., 2019a). Li et al. (2016) proposed Adaptive
Batch Normalization (AdaBN) under the assumption that the domain-invariant
information is stored in the neural net layer weights, while the domain-specific
information is hidden in the statistics of the BN layer. AdaBN matches the
source and target representations by using different mean and variance terms
for the source and target domain when performing BN at test time. In other
words, AdaBN leverages target statistics at test time to reduce the domain dis-
crepancy. However, these statistics are excluded from the training procedure.
In fact, the target data are not used to learn the network weights but only for
adjusting the batch norm statistics during the test. Carlucci et al. (2017) pro-
posed automatic domain alignment layers (AutoDIAL), which are embedded in
different levels of the deep network before each BN layer to align the source
and the target features. AutoDIAL learns to inject a suitable combination of
the source and target features to BN layer at the training stage. Roy et al.
(2019) proposed domain-specific whitening transform (DWT), where the source
and target data distributions are aligned via their covariance matrices. Wang
et al. (2019a) proposed Transferable Normalization (TransNorm), where the
statistics of source and target data are calculated separately, while the channel
transferability is computed simultaneously. The normalized features are then
re-weighted by using a channel-wise distance operator, which is inversely pro-
portional to the channel transferability.

Critical point. Batch normalization layer design can improve the performance
of UDA methods. However, rare attention has been paid to the other aspects of
architectural design, such as number of layers, and more importantly, the type
of layers (e.g., convolutions, linear, or affine coupling layer), which are essential
parts of domain adaptation. In this thesis, we show how affine coupling blocks
can considerably improves UDA performance.

2.3 Chapter Summary

In this chapter we have first provided the readers with a background on un-
supervised representation learning, transfer learning, and domain adaptation.
In detail, we introduced three generative models, namely VAE, GAN, and NF,
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which are widely used as the backbone of UDA models. We have then presented
a clear definition of transfer learning and domain adaptation. In the second part
of this chapter, we have provided a comprehensive literature review of UDA,
where we mathematically defined UDA and described the required assumptions
to solve it. We have then provided an overview of the existing theoretical bounds
that have been proven for the domain adaptation problem. These theoretical
guarantees provide crucial insight into empirical results. We have also man-
aged to classify UDA methods related to this thesis into four categories (i.e.
semi-supervision-based methods, distribution matching methods, intermediate
representations, and architecture design), and summarized the representative
papers in each category. In the second category, we critically explained the
issues with the domain-invariant representation approach in dealing with UDA,
and pointed out the solutions proposed by other researchers. Additionally, we
placed and justified our research within this category.
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Chapter 3

Representation Invariance and
Theoretical Insights

Unsupervised domain adaptation (UDA) aims at enhancing the generalizability
of the classification model learned from the labelled source domain to an unla-
belled target domain. An established approach to UDA is to learn a domain-
invariant representation via the alignment of the feature distributions of both
domains. However, recent theoretical and empirical studies have revealed that
complete source and target distribution matching fails to guarantee a small
target error. To mitigate this issue and pave the way for designing an efficient
algorithm for UDA, which will be introduced in the next chapter, in this chapter
we first show how learning invariant representation may lead to an undesirable
performance. Then we formalize a framework to seek a relaxed version of invari-
ant representation learning. We also carefully characterize assumptions under
which our framework is mathematically principled.

3.1 Introduction

We attempt to alleviate the problem of the domain-invariant representation
learning by relaxing excessive invariance or regularizing the invariance mecha-
nism in representation learning.

The contribution of this chapter is as follows: first, by leveraging deep gen-
erative models, including variational autoencoder and normalizing flow, from
a probabilistic perspective, we formalize a lower bound on joint probability
distribution of source and target domains as a unified framework for domain
adaptation. MapFlow enables us (1) to model a more complex distribution for
the target domain for which the density can be modeled when the source latent
distribution is known, and (2) to model the relation between the two domains
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rather than enforcing them to follow a simple and strict constraint (e.g. to be
Gaussian distributed).

3.1.1 Limitations of Domain-Invariant Representations

Let X and Y denote the input and output spaces respectively. Z is the repre-
sentation space used by a feature transformation g : X → Z. We also define
an output labeling function ϕ : Z → Y , and a composite predictive transfor-
mation g ◦ ϕ : X → Y . Let H = {g ◦ ϕ : g ∈ G, ϕ ∈ Φ} be the hypothe-
sis space, where Φ and G are considered to be the set of representations and
predictive functions respectively. Given Ns labeled samples of source domain
{(xi, yi)|xi ∈ Xs, yi ∈ Ys, i = 1, 2, ...Ns}, with (x, y) ∼ ps(x,y), and Nt unla-
belled samples of target domain {(xi)|xi ∈ Xt, i = 1, 2, ...Nt}, with x ∼ pt(x),
UDA aims to transfer knowledge learned from the source domain to the target
domain.

The error of a predictor ϕ with respect to the true labelling function f un-
der distribution D with joint probability distribution p(x,y) is defined as:
ε(g, ϕ) := Ex∼D

[∣∣ϕ(g(x))− f(x)
∣∣]. Then for the target domain we have:

εt(h) =

∫
pt(x)

∣∣ϕ(g(x))− f(x)
∣∣dx, (3.1)

where r(x) =
∣∣ϕ(g(x))− f(x)

∣∣ is the risk for input x. Following the change of
variable rule (p(x)

p(z)
= dx

dz
), we then have

εt(h) =

∫
pt(z)|ϕ(z)− ft(z)|dz =

∫
pt(z)rt(z)dz. (3.2)

Similar to proof presented by Ben-David et al. (2010), εt(h) can be simply
redefined as follows:

εt(h) = εt(h) + εs(h)− εs(h)

= εs(h) +

∫
pt(z)|ϕ(z)− ft(z)|dz−

∫
ps(z)|ϕ(z)− fs(z)|dz

= εs(h) +

∫
pt(z)rt(z)dz−

∫
ps(z)rs(z)dz.

(3.3)
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Let
∫
pt(z)rs(z)dz add to and subtract from Equation 3.3,

εt(h) = εs(h) +

∫
pt(z)rt(z)dz−

∫
ps(z)rs(z)dz

+

∫
pt(z)rs(z)dz−

∫
pt(z)rs(z)dz,

(3.4)

then we have:

εt(h) = εs(h)︸ ︷︷ ︸
1○

+

∫
pt(z)(rt(z)− rs(z))dz︸ ︷︷ ︸

2○

+

∫
(pt(z)− ps(z))rs(z)dz︸ ︷︷ ︸

3○

.

(3.5)

The third term in Equation 3.5 is zero when pt(z) = ps(z), and the second term
can become zero when the labeling function on representation space remains
fixed between the source and target domains. Indeed, we have rt(z) − rs(z) =

|ϕ(z) − ft(z)| − |ϕ(z) − fs(z)| ≤ |ft(z) − fs(z)|. However, as we do not have
labels for the target domain, we have no control over the second term.

Wu et al. (2019) studied an upperbound to the third term of Equation 3.5,
as follows: ∫

(pt(z)− ps(z))rs(z)dz =

∫ (
pt(z)

ps(z)
− 1

)
ps(z)rs(z)dz

≤
(
supz∈Z

pt(z)

ps(z)
− 1

)
εs(h)

(3.6)

This upperbound shows that if εs(h) = 0, then the condition pt(z) = ps(z) is
no longer needed to make the third term in Equation 3.5 equal to zero. Note
that in domain-invariant representation learning we assume that the ratio pt(z)

ps(z)

is equal to 1. In addition, Zhao et al. (2019) provided a counter example that
shows if there is a label distribution mismatch, the condition of

(
εs(h) = 0,

and pt(z) = ps(z)
)
, leads to a positive error for target domain. Therefore, this

equality enforcement ( pt(z)
ps(z)

= 1) may deteriorate the adaptability. As a result,
we suggest to relax this equality by finding a relationship between pt(z) and
ps(z), or regularizing the invariant feature learning that will be explained in the
next chapter.
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3.2 A General Relaxed-Invariance Framework

The relationship between source and target domains can be captured by learn-
ing a transformation from source to target domain in the feature space. Instead
of enforcing equality in the density of source and target representations, which
is a major cause for inadaptability (Bouvier et al., 2019a), finding a relation-
ship between source and target domains in representation space by an invertible
neural network (INN) can be a solution. Accounting for the fact that a repre-
sentation space may be more suitable for the target domain than it is for the
source domain, invertible networks do not rely on strict domain invariance for
better feature learning in two domains, enabling us to explicitly learn the target
latent distribution. Explicit latent distribution modeling has been explored for
UDA (Liu, Breuel, and Kautz, 2017; Grover et al., 2019; Zhu et al., 2019) and
Semi-supervised domain adaptation (Pérez-Carrasco et al., 2019), where they
model source and target latent distribution as predefined parametric distribu-
tions. However, different from those methods, normalizing flow (NF), which is
a specific type of INN with an easily computable determinant of the Jacobian,
can be employed to model the likelihood of complex target latent distribution.

In this section, we propose MapFlow, a general framework to relax domain-
invariance. MapFlow framework (MFF) relies on normalizing flow to learn a
bijective, non-linear transformation between the encoded target distribution and
a flexible latent prior induced directly from the source latent space by variational
inference. MFF is able to learn domain-specific knowledge by efficiently regular-
izing the Jacobian. To clarify, the maximization of the determinant of Jacobian
helps to alleviate the distributional divergence, by establishing a geometrical
relationship between the source and target representations. In addition, despite
adversarial domain adaptation that may fail to achieve multimodal alignment,
MFF can capture and preserve the multimodal structure of target latent space,
which is suitable for having a discriminative mapping or alignment.

3.2.1 Framework for Joint Distribution

The learning of a joint distribution of source and target images has been stud-
ied and applied for domain adaptation (Liu, Breuel, and Kautz, 2017). How-
ever, those methods have a few limitations. First of all, they assume shared
latent space or cycle-consistency, which are both rather restrictive, as they im-
pose strict constraints while modeling complex distributions in the latent space.
Secondly, they fail to achieve multimodal alignment. Thirdly, these methods
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utilize adversarial training in representation spaces, which can be challenging
due mainly to its unstable training dynamics. To tackle these limitations, a
general framework is presented to infer the joint distribution from the marginal
ones without any additional assumption on the structure of the joint distri-
bution. In this framework, we generalize the relationship between source and
target representations by using an invertible neural network, through which the
distribution of the target representation can be modelled without enforcing a
strict constraint. We formulate the lower bound on the joint probability distri-
bution over data, which can be leveraged for the following multi-task learning
objectives: 1) image translation between two domains, 2) sampling, and 3) clas-
sification.

We define a joint probability distribution over image samples and associated
labels on both the source and target domains as follows: pψ(xt,xs,yt,ys). As-
suming the conditional independence between yt and xs given xt, and also the
conditional independence between ys and xt given xs, the joint distribution can
be factorized under the chain rule as follows:

pψ(xt,xs,yt,ys) = pγ(xt,xs)pβ(ys|xs)pα(yt|ys,xt), (3.7)

where ψ = {γ, β, α} represents the model parameters. The third term in Equa-
tion 3.7 can be interpreted as the probability of the model on target samples,
the second term is the classification model on source samples, and the first term
is the joint probability distribution over data samples, which can be defined as
follows, by considering zt and zs as the latent variables to model the source and
target distributions:

pγ(xt,xs) =

∫
pθ(xt,xs|zt, zs)pη(zt, zs)dztdzs, (3.8)

where finding the maximum likelihood of such joint distribution is generally
intractable. Thus, we leverage variational inference for jointly modeling distri-
butions. We assume joint variational posterior as qφ(zt, zs|xt,xs), then the joint
log-evidence lower bound (ELBO) can be derived as follows:

log pγ(xt,xs) ≥ Eqφ(zt,zs|xt,xs)
[

log pθ(xt,xs|zt, zs)
]

+ Eqφ(zt,zs|xt,xs)
[

log pη(zt, zs)
]

− Eqφ(zt,zs|xt,xs)
[

log qφ(zt, zs|xt,xs)
]
,

(3.9)
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where the first expectation term is a reconstruction error, the second one refers
to the joint prior distribution, and the third expectation term minimizes the
entropy of variational posterior. The reconstruction term can be factorized
pθ(xt,xs|zt, zs) = pθ(xt|zt)pθ(xs|zs) by assuming the conditional independence
between xt and xs given zt, and the conditional independence between xs

and zt, given zs. To simplify the third term on the right hand side (RHS)
of Equation 3.9, we formulate a factorized variational posterior of the form
qφ(zt, zs|xt,xs) = qφt(zt|xt)qφs(zs|xs), which is consistent with the conditional
independence assumption between latent space of one domain and the input
space of the other. Also, we define zt = f(zs), which leads to factorization of
joint prior as pη(zt, zs) = pηt(zt|zs)pηs(zs). Taking all these terms into account,
and using the chain rule along with Equation 3.9, we can derive the final ELBO
loss as follows (the further details about mathematical derivation of this loss
can be found in the Appendix A.1):

Lγ(θ, φs, φt, ηs, ηt) = λtrEqφs (zs|xs)

[
Epηt (zt|zs)

[
log pθ(xt|zt)

]]
+ λsrEqφs (zs|xs)

[
log pθ(xs|zs)

]
+ λklEqφs (zs|xs)

[
log pηs(zs)− log qφs(zs|xs)

]
− λfEqφt (zt|xt)

[
log p(f−1(zt))− log

∣∣∣ det
∂f−1

∂zt

∣∣∣],
(3.10)

where λ = (λsr, λtr, λkl, λf ) are regularization parameters. An illustration of our
general framework is provided in Figure 3.1. It consists of one feature extrac-
tor (encoder) gs(xs;φs) to learn posterior distribution for the source domain.
We rely on variational inference (VI) to find an approximation gs(xs;φs) =

qφs(zs|xs) for the true latent posterior distribution pθ(zs|xs), which is parametrized
by a deep neural network with parameters φs. Therefore, the representa-
tion space of the source domain is forced to be Gaussian with distribution
N (zs|µφs(xs), σ2

φs(xs)), which can be used as a prior to model target represen-
tation.

For the target domain, on the other hand, an invertible neural network con-
structed by affine coupling layers, which facilitates to compute the Jacobian
J = ∂f−1

∂zt
, has been utilized to estimate the density of target encoded samples

gt(xt;φt) = qφt(zt|xt).

Let zs with dimension d be the encoded latent variable for unit Gaussian dis-
tribution p(zs) and let zt ∈ Zt be an observation from an unknown target
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Figure 3.1. illustration of proposed unified framework for UDA

distribution zt ∼ p(zt). Given fη : zs → zt, we define a model pθ(zt) with
parameters θ on Zt, and we can compute the negative log likelihood (NLL) of
zt by the change of variable formula. For a single unlabeled target datapoint,
the unsupervised objective can be derived as follows:

− log pηt(zt) = Lf (fηt(zt)) = −
(

log pηs(f
−1
ηt (zt)) + log

∣∣∣ det(
∂f−1

ηt (zt)

∂zt
)
∣∣∣),
(3.11)

where pηs is the prior distribution for the source domain. The minimization of
this loss helps to generate a mapping of each unlabeled target sample into the
corresponding embedding space.

Lγ in Equation 3.10 has five terms including target reconstruction, source recon-
struction, a prior term for source domain, which can be learned with another
invertible network, entropy of source dataset, and a mapping objective from
target to source. The learning of such a complex objective requires us to regu-
larize each term with different weight. The second term in Equation 3.10 is a
predictive function on source datasets.

Assuming that pθ(zs|xs) can be approximated by the variational posterior qφs(zs|xs),
we have:

pβ(ys|xs) =

∫
pω(ys|zs)pθ(zs|xs)dzs ≈ Eqφs (zs|xs)[pω(ys|zs)]. (3.12)



42 Chapter 3. Representation Invariance and Theoretical Insights

The predictive function ϕω : Zs → Ys enforces separability between classes,

Lβ(ω; zs) = −Ezs∼qφs (zs|,xs)[y
T
s lnϕω(zs)]. (3.13)

Since we have no labels for the target domain, to learn a discriminative target
representation, we follow (Shu et al., 2018; Kumar et al., 2018). We apply low-
density and smoothness assumptions by assuming a conditional entropy (CE)
minimization and virtual adversarial training (VAT).

Lce(zt;ω) = −Ezt∼qφt (zt|xt)[ϕω(zt)
T lnϕω(zt)] (3.14)

Lvat(zt;ω) = Ezt∼qφt (zt|xt)
[

max
‖r‖≤ε

DKL(ϕω(zt)||ϕω(zt + r))
]
. (3.15)

While the conditional entropy minimization (Equation 3.14) forces the predictor
to be confident on the unlabeled target data by pushing the decision bound-
aries away from the target data, VAT loss (Equation 3.15) enforces prediction
consistency within the neighborhood of training samples. Note that VAT can
be applied on both or either of the source and target distributions.

The overall objective of our proposed MFF to be minimized is given by:

min
θ,φs,φt,ηs,ηt,ω

Lγ(θ, φs, φt, ηs, ηt) + λsLβ(ω; zs) + λt(Lce(zt;ω) + Lvat(zt;ω)),

(3.16)
where µ = (θ, φs, φt, ηs, ηt, ω) are all parameters to be learned, and λ = (λsr, λtr,

λkl, λf , λs, λt) are regularization parameters.

3.3 Chapter Summary

In this chapter, we have analyzed the limitations of invariant-representation
learning for UDA. We argued that the prevalent approach for UDA relies on a
strict enforcement of the invariant representation for the underlying distribu-
tions, which can be too restrictive. Thus, we propose a general framework to
relax invariance enforcement in representation space by using normalizing flow.
Normalizing flow can be used to map the latent space of one domain to the
latent space of the other domain.
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Chapter 4

RIDA: Relaxed-Invariant
Distribution Alignment for
Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) aims at enhancing the generalizabil-
ity of the classification model learned from the labelled source domain to an
unlabelled target domain. An established approach to UDA is via domain-
adversarial training, which has shown promising results to learn a domain-
invariant representation. This is typically achieved by using a divergence mea-
sure to match the distribution of the representations of the source and tar-
get in a latent space. One major issue with this approach is that while one
can match the distribution of the target and source, the individual classes are
unidentifiable, i.e. the conditional distributions do not match. While this is
conventionally presumed to be the down-stream classifier’s task, the trade-off
between the invariant distribution learning and the conditional classifier’s loss
is not trivial and requires specific architectural choices or data augmentation
tricks. In this chapter we propose a simple, yet effective, solution to add an
invertible function between the invariant embedding space and the classifier to
learn a bijective transformation to facilitate classification. Intuitively if the in-
variant space is good enough for classification, this transformation is an identity
map leading to the same performance as the baseline. However, when domain-
invariant space is not conditionally identifiable, our transformation ensures each
sample is mapped to a point that is easily separable for the down-stream clas-
sifier. Empirical results demonstrate the superior performance of our proposed
algorithm compared to the relevant baselines without resorting to complicated
data augmentations or other tricks. The method is easy to implement and
generalizable to many neural network architectures.
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4.1 Introduction

Unsupervised domain adaptation (UDA) aims at transferring discriminative
features learned from labelled source domain to unlabelled target domain, with
the difficulty of addressing distributional shift. To achieve a successful domain
adaption, both transferability and discriminability in the feature learning should
be guaranteed.

To learn discriminative features for the target domain, several methods, which
we call non-invariant representation methods, focused exclusively on ex-
ploiting the techniques originally proposed in semi-supervised learning such as
conditional entropy minimization (Prabhu et al., 2020), proxy labels (Saito,
Ushiku, and Harada, 2017), consistency regularization (Liu et al., 2019b), and
a combination of them (Lee et al., 2019b; Deng, Luo, and Zhu, 2019). However,
these methods are unable to explicitly transfer the learned features, have no
theoretical guarantee, and may not be applicable in realistic scenarios where
large distribution gap between domains should be handled.

Feature transferability is most studied and predominantly enhanced by distribu-
tion matching in feature space, known as domain-invariant representation
learning. Invariant representations have been achieved via moment matching
(Sun and Saenko, 2016) and adversarial training (Ganin et al., 2016). One ma-
jor issue with domain invariant representation learning is that it merely matches
the distribution of the source and target domain in feature space without con-
sidering the discriminability of target features. Prior works address this by (i)
utilizing two task specific classifiers and measuring the disagreement between
their outputs on target samples as discrepancy between two domains (Saito et
al., 2018; Lee et al., 2019a; Zhang et al., 2019b), (ii) coupling the non-invariant
representation approaches with domain-invariant representation methods (Shu
et al., 2018; Chen et al., 2020; Jiang et al., 2020), and (iii) regularizing the norm
of invariant features (Chen et al., 2019c; Xu et al., 2019; Jin et al., 2020).

Nevertheless, more recently, it was argued that excessive invariance substan-
tially deteriorate the discriminability (Wu et al., 2019; Johansson, Ranganath,
and Sontag, 2019; Zhao et al., 2019). Indeed, the transferability of features
in domain-invariance learning is strengthened at the expense of their discrim-
inability. To tackle this trade-off, researchers attempted to relax the domain
invariance with weighted representations (Combes et al., 2020; Wu et al., 2019).
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However, they considered hypotheses in their methods that may fail to be justi-
fied. For instance, Combes et al. (2020) proposed generalized label shift under
the hypothesis that the probability of the latent space given the label in two
domains are the same (pt(z|y) = ps(z|y)), which ignores the intra-class feature
distribution shift. Wu et al. (2019) attempted to address the label distribution
shift by asymmetrically relaxing the distribution matching with hypothesis that
the density ratios in representation space are upperbounded by a certain con-
stant ( pt(z)

ps(z)
≤ 1+β, β > 0), which does not take potential disjoint source-target

supports into account.

Following this line of study and motivation, we propose to regularize the strict
invariance between source and target domains by meaningfully re-weighting
the invariant features. In fact, we empirically found that adding an invert-
ible function between embedding function gθ : X → Z and embedding classifier
ϕθ : Z → C helps to mitigate the trade-off between invariant representation and
discriminability. With that we ensure (1) the distribution of the transformed
space is as similar as possible to the invariant embedding space, and (2) the
features learnt are not degenerate since the transformation is bijective. In this
approach, we believe that not all representation spaces should be reweighted
equally. Therefore, by utilizing the invertible function, we automatically adjust
the aligned representation weights.

In this chapter, we propose RIDA, a simple, yet effective methodology to tackle
UDA. RIDA relies on normalizing flow to learn a bijective, non-linear trans-
formation between the invariant embedding space and the embedding classi-
fier. Avoiding any data augmentation techniques and consistency losses, RIDA
method is able to relax the domain-invariant representation by regularizing
the determinant of Jacobian. To elucidate, the maximization of the determi-
nant of Jacobian helps to alleviate the enforcement on distributional divergence
minimization, by establishing a geometrical relationship between invariant em-
bedding space and the input for the classifier.

The main contributions of this chapter are as follows:

• We propose RIDA, which uses normalizing flow to map the invariant fea-
tures to a space that is separable for the classifier.

• RIDA outperforms state-of-the-art results on several public UDA bench-
marks.
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4.2 Preliminary

4.2.1 Notation and Problem Definition

Let X and Y be the input and output space, respectively. Z is the representation
space generated from X by a feature transformation g : X → Z. Accordingly,
we use x, y, z as random variables from spaces X , Y , Z, and let lower-case
random variables x, y, and z denote the corresponding sample values respec-
tively. We also define an output labeling function ϕ : Z → Y and a composite
predictive transformation g ◦ ϕ. Given Ns labeled samples of source domain
{(xi, yi)|xi ∈ Xs, yi ∈ Ys, i = 1, 2, ...Ns}, with (x, y) ∼ ps(x,y), and unlabelled
samples of target domain {(xi)|xi ∈ Xt, i = 1, 2, ...Nt}, with x ∼ pt(x), UDA
aims to transfer the predictive knowledge learned from the source domain to
the target domain.

4.2.2 Normalizing Flow for transformation

The normalizing flow (Dinh, Sohl-Dickstein, and Bengio, 2016) is a likelihood-
based generative model defined as an invertible function f : X → Z that maps
the observed space X to the latent space Z. The distribution of the observed
variable can be modeled by applying a chain of invertible transformations, which
is composed of a sequence of invertible functions f−1 : Z → X on random latent
variables with known distribution z ∼ pZ(z). Based on the change of variables
formula, the negative log-likelihood of a single datapoint x can be computed as
follows:

− log pX (x) = −
(

log pZ(z) + log
∣∣∣ det(

∂f

∂x
)
∣∣∣), (4.1)

where the scalar value log
∣∣∣ det(∂f

∂x
)
∣∣∣ represents the expansion or contraction

of volume. The mapping f(x; η) is characterized by a deep neural network
with an architecture that is carefully designed to ensure the invertibility and
efficient computation of log-determinants, and a set of parameters η that can be
optimized. We follow (Kingma and Dhariwal, 2018) and adopt the three main
components of their model, that is, actnorm, random permutation, and affine
coupling layers, to form the flow function used in our model.

4.3 Limitations and Insights

We let Ds denote the joint distribution of source domain over input x and one-
hot label y, and let Xs denote the marginal input distribution. Similarly, we
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define (Dt, Xt) for the target domain. The learning theory of UDA was pro-
posed by Ben-David (Ben-David et al., 2010), and is summarized in Theorem 1.

Theorem 1 (Ben-David et al., 2010) Let H = {ϕ ◦ g : ϕ ∈ Φ, g ∈ G} be
the hypothesis space, where Φ and G are considered to be the set of representa-
tions and predictive functions respectively, and let ε(h) be the risk for h ∈ H,
and ε(h, h′) be the risk for (h, h′) ∈ H2.

εt(g ◦ ϕ) ≤ εs(g ◦ ϕ)︸ ︷︷ ︸
1○

+
1

2
dH∆H(Xs, Xt)︸ ︷︷ ︸

2○

+ Ψ(h)︸ ︷︷ ︸
3○

, (4.2)

where dH∆H in second term denotes H∆H distance between source and target
domains, Ψ(h) is the shared error of the ideal joint hypothesis, and

dH∆H(Xs, Xt) = 2 sup
(h,h′)∈H2

|εs(h, h′)− εt(h, h′)| (4.3)

Ψ(h) = inf
h∈H

εs(h) + εt(h). (4.4)

Motivated by this theory, domain adversarial training (Ganin et al., 2016) min-
imizes a weighted combination of two objectives. The first objective has to do
with learning feature discriminability in the source domain. This objective is
trained with the labeled source data using the cross-entropy loss:

Ly(θ;Ds) = −Ex,y∼Ds

[
yT lnϕθ(g(x))

]
. (4.5)

Along with the feature learning in the source domain, the next objective is to
learn transferable features by minimizing the divergence between source and
target representations, denoted by the loss

Ld(θ;Ds,Dt) = sup
D

Ex∼Ds

[
lnD(gθ(x))

]
+ Ex∼Dt

[
ln(1−D(gθ(x))

]
, (4.6)

where D : Z → {0, 1} is domain discriminator. Our adversarial domain adap-
tation minimizes the following objective:

min
θ
Ly(θ;Ds) + βLd(θ;Ds,Dt), (4.7)

where β is a weighting factor. In representation learning for UDA, minimizing
the distance between source and target domain, dH∆H(Xs, Xt), can be empiri-
cally achieved by minimizing the loss Ld, which enhances the transferability of
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features. However, separating domain-invariant information from the domain-
specific information without any control over features or sufficient knowledge,
may potentially deteriorate the discriminability, as original feature distribu-
tions are exposed to distortion. Discriminability can be defined as the capacity
of clustering in the feature manifold. For UDA, we seek a good discriminability
in both source and target domains simultaneously. As we typically employ a
shared feature extractor for two domains, improving discriminability is equiv-
alent to pursuing a better ideal joint hypothesis Ψ(h), as defined in Equation
4.2. Nevertheless, due to the lack of labels in target domain, we have only been
able to minimize the supervised loss of source domain, which consequently leads
the model to be biased toward source-learned discriminative features. Hence,
considering the limitations of domain adversarial training, we impose additional
constraints to achieve more reliable domain adaptation.

4.4 Relaxed-invariance Approach

We relax invariant features by adding an invertible network between embedding
space and embedding classifier, and then minimizing the determinant of input-
output Jacobian of this network, which leads to increased discriminability. An
illustration of our proposed idea is provided in Figure 4.1. As shown in the
Figure, our model consists of a shared feature extractor g : X → Z, a shared
invertible network f : Z → Zm, which maps the latent space Z to a new space
(Zm), a shared classifier ϕ : Zm → C, and a discriminator D. We consider a
composition of theses networks as classifier hθ = g ◦ f ◦ ϕ, parametrized by θ.
Based on the Equation 4.1, we have:

log pZ(z) = log pZm(f(z)) + log
∣∣∣ det(

∂f

∂z
)
∣∣∣. (4.8)

Additionally, for the classifier to exploit unlabeled data, we apply conditional
entropy minimization on the unlabeled data, which is a well-known regularizer
in semi-supervised learning (Chapelle and Zien, 2005). This loss forces the
decision boundaries not to be in the high-density region, causing the classifier
to learn more discriminative features.

Le(θ;Dt) = −Ex∼Dt

[
hθ(x)T lnhθ(x)

]
. (4.9)

The determinant of the Jacobian, det(
∂f

∂z
) at a given point z, describes the be-

havior of the differentiable function f near that point. The absolute value of the
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Figure 4.1. The network structure of proposed RIDA: invert-
ible network f between embedding space and classifier helps to
regularizes the invariant representation by penalizing the deter-
minant of Jacobian. LDJ denotes log determinant of Jacobian.

Jacobian determinant at point z, | det(
∂f

∂z
)|, is a measure of local volume change

in the neighborhood of that point. In other words, the expansion and contrac-
tion of volume, determines how much the function f is distorting the domain
locally. Note that the objective of normalizing flows is to maximize likelihood

log pZ(z) in Equation 4.8. Therefore, | det(
∂f

∂z
)| has an expansive effect on the

volume. However, we minimize this term, which correlates with generalization,
to keep the distribution of transformed space, pZm(zm), as similar as possible
to the distribution of invariant space, pZ(z), as follows:

Lm(θ;Dt) = log
∣∣∣ det(

∂f

∂z
)
∣∣∣. (4.10)

We will apply this loss both on the source and the target training data. The
invertible network can (1) ensure that the learnt features are not degenerate, 2)
geometrically reshape the invariant embedding space by meaningfully scaling
the features. Intuitively, weighting the embedding space via the determinant of
Jacobian renders the features more robust to distortion caused by adversarial
invariant learning.

Indeed, we maximize the absolute value of the Jacobian determinant of the

inverse function, | det(
∂f−1

∂z
)|. This is inversely equal to the production of all

the singular values of the Jacobian matrix, that is

log
∣∣∣ det(

∂f−1

∂z
)
∣∣∣ = log

N∏
i=1

(
1

σi
) =

N∑
i=1

log(
1

σi
), (4.11)
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where σ is the singular value, and N is the dimension of squared Jacobian
matrix. In addition, we know that the Frobenius norm of the Jacobian matrix
of f−1, can be written as

∣∣∣∣∣∣∂f−1

∂z

∣∣∣∣∣∣2
F

=
N∑
i=1

(
1

σi2
). (4.12)

Based on Equation 4.11, and Equation 4.13, and the fact that, log σ < σ2,
a lower bound and upper bound can be found for the Frobenius norm of the
Jacobian matrix of f−1, as follows:

log
∣∣∣ det(

∂f−1

∂z
)
∣∣∣ < ∣∣∣∣∣∣∂f−1

∂z

∣∣∣∣∣∣2
F
≤ 1

σ2
max

, (4.13)

where the σmax denotes the largest singular value. Although maximizing the
lower bound on the Frobenius norm of the Jacobian of f−1, does not necessarily
mean the minimization of the Frobenius norm of Jacobian matrix, we empiri-
cally found that this occurred when we added a Gaussian noise to the input of
invertible network. As such, minimizing the determinant of Jacobian ensures
small Frobenius norm of the Jacobian matrix, where the Frobenius norm of
Jacobian matrix estimates the sensitivity of output to an input perturbation as
follows:

E∆x

[
||f(x)− f(x + ∆x)||22

]
≈ E∆x

[
||J(x)∆x||22

]
= E∆x

[∑
i

(∑
j

Jijxj

)2]
=
∑

ijJ2
ijE∆x

[
x2
j

]
= ε||J(x)||2F ,

(4.14)

where ∆x ∼ N (0, εI) denotes a small Gaussian perturbation. Accordingly, the
loss in Equation 4.11, leads to the features that are more robust to distortion.
This will essentially control the adaptability or discriminability, allowing us to
minimize the target error. We will prove this claim in the empirical study.

The overall objective function of the proposed RIDA model is defined by:

min
θ
Ly(θ;Ds) + βdLd(θ;Ds,Dt) + βtLm(θ;Dt) + βsLm(θ;Ds) + βceLe(θ;Dt),

(4.15)
where (βd, βt, βs, βce) are the hyper-parameters that need to be estimated.
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4.5 Experiments

In this section, we first present the experimental setup, then we provide details of
the implementation of our model, followed by the results, where we compared
our model with the SOTA methods in UDA, and an ablation study of the
method.

4.5.1 Setup

Data Sets

To demonstrate the performance of our proposed method, we present our model
evaluation on three commonly used digit datasets for UDA: MNIST (LeCun,
1998), SVHN (Netzer et al., 2011), and USPS (Le Cun et al., 1990). For gen-
eral object classification tasks, we rely on CIFAR-10 (Krizhevsky, Hinton, et al.,
2009), STL-10 (Coates, Ng, and Lee, 2011), and office-31 (Saenko et al., 2010).
Additionally, we evaluate our model to adaptation task on large-scale dataset.
In particular, we test on VisDA-2017 (Peng et al., 2017) for image classification
task. Figure 4.2 illustrates the sample images of aforementioned datasets.

USPS→MNIST. Modified National Institute of Standards and Technology
(MNIST) is a binary handwritten digit dataset consisting of 70,000 samples
split into 60,000 training samples and 10,000 test samples with a size of 28×28.
Also, USPS dataset is handwritten digits scanned and segmented from envelopes
by the U.S. Postal Service. USPS images are centered, normalized and gray
scaled with 16 × 16 pixel. It has a training set of 7,291 images and 2,007
test images with various types of font styles. Moreover, in this adaptation task,
the dimension of MNIST is reduced to 16×16 to match the dimension of USPS.

MNIST↔SVHN. In this adaptation task, the distributional shift is esca-
lated. Whereas MNIST is composed of black and white handwritten digits,
SVHN comprises a collection of colored, street house numbers.

CIFAR-10↔STL-10. Both STL-10 and CIFAR-10 datasets are equally dis-
tributed in 10 classes, but they contain nine overlapping classes. Following
(Shu et al., 2018; Lee et al., 2019b), we redefine the adaptation task as a 9-class
classification problem by removing the non-overlapping classes. Moreover, we
reduce the dimension of STL from 96 × 96 to 32 × 32 to match the dimension
of CIFAR10.
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(a) The Digit datasets

(b) The CIFAR-10 and STL datasets

(c) Office-31 (d) VisDA-2017

Figure 4.2. Sample images of each dataset; a) Digit Datasets,
b) CIFAR-10 and STL datasets, c) Office-31 dataset images of
three domains d) VisDA-2017 dataset images of synthetic and

real domains.

Office-31. It is a widely used dataset for unsupervised domain adaptation,
which is comprised of 4, 110 images in 31 categories collected from three dif-
ferent domains: Amazon (A) from amazon.com, Webcam (W) taken by web
camera, and DSLR (D) taken by the digital SLR camera.

VisDA-2017. It is a large-scale dataset with 12 classes for challenging UDA
problem of adapting from synthetic images to real-world images. This dataset
is comprised of 152,397 synthetic 2D images rendered from 3D images as the
source domain. The target domain is composed of 55,388 real images taken
from the MS-COCO dataset (Lin et al., 2014).



4.5. Experiments 53

Baselines

We primarily compare our proposed RIDA with three baselines: ALDA (Chen
et al., 2020), MDD+Implicit (Jiang et al., 2020), and VADA (Shu et al., 2018).
We also show the results of several other recently proposed UDA models for
comparison including Maximum Classifier Discrepancy (MCD) (Saito et al.,
2018), Joint Adaptation Network (JAN) (Long et al., 2017), Self-Ensembling(S-
En) (French, 2017), and Conditional Domain Adversarial Networks (CDAN)
(Long et al., 2018). For fair comparison, the results are reported from the
original papers if available. For all the experiments, we will report the results
in terms of accuracy for each domain shift, repeating the experiments 3 times
and averaging the results.

4.5.2 Implementation

Architecture

In order to make fair comparisons, for digits and CIFAR10/STL datasets, we
adopt the architectural components including the classifier network, the feature
extractor, and the discriminator used in DIRT-T (Shu et al., 2018). Similarly,
we use a small architecture for the digits UDA tasks, and a larger architecture
for UDA experiments between CIFAR-10 and STL-10. For office-31 and VisDA
2017 datasets, we employ ResNet-50 (He et al., 2016), which is pre-trained on
ImageNet (Russakovsky et al., 2015), as the feature extractor. The discrimi-
nator network is composed of two fully connected layers with dropout (Ganin
et al., 2016).

Note that our architecture is slightly different as we include an invertible fea-
ture transform to the classifier network; however, the invertible network only
adds a small parameter overhead on the shared feature extractor and classifier
(less than 4%). For the invertible network applied on latent variables, we use
Glow architecture (Kingma and Dhariwal, 2018) with 4 affine coupling blocks,
where each block contains 3 fully connected layers each with 256 or 512 hidden
units depending on the dataset. The details of architectural components are
presented in Appendix A.2.
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Training Settings and Hyper-parameters

For digits and CIFAR10/STL datasests, we implement adversarial training via
alternating updates (Shu et al., 2018), and train the model using Adam opti-
mizer (Kingma and Ba, 2014) with learning rate 10−3 decaying by a factor of 2
after 200 epochs.

For office-31 and VisDA-2017 datasets, we follow (Chen et al., 2020), which
adopted gradient reversal layer (Ganin and Lempitsky, 2014) to optimize dis-
criminator, and follow all the protocols including optimizer, and learning rate
strategy. We optimize the model using Stochastic Gradient Descent (SGD) op-
timizer with momentum of 0.9 and an adjusted earning rate ηp = η0(1 + αq)γ,
where η0 = 0.01, α = 10, γ = 0.75, and q is the training progress linearly
decreasing from 1 to 0. Note that we set the learning rates of the classifier and
discriminator to be 10 times that of the generator.

As for hyper-parameters (βd, βt, βs, βce), we tune the values for each dataset
using cross validation. We observed that the extensive hyper-parameter tun-
ing is not required to obtain the top-performance results. A full list of the
hyper-parameter settings is provided in Appendix A.3.

4.5.3 Results

Table 4.1 summarizes the results of the average accuracy (%) on the standard
classification benchmarks for UDA such as digits, CIFAR-10, and STL data
sets, compared with SOTA methods. For fair comparison, we resize all images
to 32× 32× 3 (except in case of adaptation from USPS to MNIST) and apply
instance normalization (Shu et al., 2018) to input images. Note that all results
are achieved without applying any data augmentation. Below, we present a
brief analysis of the results in Table 4.1.

USPS→MNIST: although USPS contains smaller training set than MNIST,
domain discrepancy between these two datasets is relatively small, and we could
achieve a high performance in USPS → MNIST.

MNIST↔SVHN: for the adaptation task SVHN → MNIST, we modify the
dimension of MNIST to 32 × 32 of SVHN, with three channels. This adapta-
tion problem is easily solved When the proposed RIDA is applied. Our method
could demonstrate a performance similar to the SOTA DTA (Lee et al., 2019b)
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Source USPS MNIST SVHN CIFAR10 STL10
Target MNIST SVHN MNIST STL10 CIFAR10

DANN (Ganin et al., 2016) - 35.7 71.1 - -
UNIT (Liu, Breuel, and Kautz, 2017) 93.6 - 90.5 - -
CYCADA (Hoffman et al., 2017) 96.5 - 90.4 - -

Π-model (aug) (French, 2017) 97.3 71.4 92.0 76.3 64.2
CDAN (Long et al., 2018) - - - - -
MCD (Saito et al., 2018) 94.1 - 96.2 - -
VADA (Shu et al., 2018) - 73.3 97.9 80.0 73.5
Dirt-T (Shu et al., 2018) - 76.5 99.4 - 75.3

AlignFlow (Grover et al., 2019) 96.7 - 91.0 - -
DTA (Lee et al., 2019b) 99.1 - 99.2 82.6 72.8
ALDA (Chen et al., 2020) 98.4 - 98.7 - -

Source Only VADA (Shu et al., 2018) - 40.9 82.4 77.0 62.6
Source Only Ours 78.4 42.2 82.1 76.7 63.1

RIDA(Ours) 99.1 81.3 99.4 82.8 75.9

Table 4.1. Test accuracy (%) on standard domain adaptation
benchmarks. The model directly uses classifier trained on the

source. Baseline numbers are taken from the cited works.

on MNIST. The reverse problem, the adaptation task MNIST → SVHN, can
be regarded as the most challenging case in digit datasets, as MNIST has a
considerably lower dimensionality than SVHN. Experiments show that RIDA
could achieve state-of-the-art results on this adaptation task. On average, RIDA
achieved 4.8% improvements compared with the method of DIRT-T (Shu et al.,
2018). The improvement shows the importance of relaxed invariant representa-
tion.

CIFAR-10↔STL-10: in both adaptation directions, results in Table 4.1 show
that RIDA is slightly better than the SOTA, which we believe is due to the rel-
atively smaller training set for STL and the existing imbalance between two
datasets. It is important to note that we obtained this result without any SSL
techniques and gradient refinement mechanisms as employed by Shu et al. (2018)
and Lee et al. (2019b). Figure 4.3 illustrates the validation learning curve of
the target domain for the adaptation task CIFAR10 → STL.

The results in Table 4.2 show again the superiority of our approach compared
to other recently proposed methods on Office-31 datasets. We evaluate RIDA
across six UDA tasks: A → W, W → D, D → W, A → D, D → A, and
W → A. Our method surpasses the baselines in 3 out of 6 pairs of adaptation
tasks for Office-31. Figure 4.4 shows the learning curve of the target domain



56
Chapter 4. RIDA: Relaxed-Invariant Distribution Alignment for

Unsupervised Domain Adaptation

Figure 4.3. Learning curve of the target domain for the adap-
tation task CIFAR10 → STL

Method A→W D→W W→ D A→ D D→ A W→ A Avg

DANN (Ganin et al., 2016) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2

ADDA (Tzeng et al., 2017) 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9

JAN (Long et al., 2017) 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3

MADA (Pei et al., 2018) 90.0±0.1 97.4±0.1 99.6±0.1 87.8±0.2 70.3±0.3 66.4±0.3 85.2

MCD (Saito et al., 2018) 88.6±0.2 98.5±0.1 100.0± .0 92.2±0.2 69.5±0.1 69.7±0.3 86.5

CDAN (Long et al., 2018) 94.1±0.1 98.6±0.1 100.0± .0 92.9±0.2 71.0±0.3 69.3±0.3 87.7

MDD (Zhang et al., 2019c) 94.5±0.3 98.4±0.1 100.0± .0 93.5±0.2 74.6±0.3 72.2±0.1 88.9

ALDA (Chen et al., 2020) 95.6±0.5 97.7±0.1 100.0± 0.0 94.0±0.4 72.2±0.4 72.5±0.2 88.7

MDD + Implicit (Jiang et al., 2020) 90.3±0.2 98.7± 0.1 99.8±.0 92.1±0.5 75.3± 0.2 74.9±0.3 88.8

RIDA (Ours) 96.4± 0.2 97.8±0.2 99.8±0.1 94.5± 0.3 72.7±0.1 75.9± 0.1 89.4

Table 4.2. Test Accuracy (%) on Office-31 adaptation tasks for
unsupervised domain adaptation (ResNet-50).

accuracy for A → W task. We further demonstrate the generalization ability

Figure 4.4. Learning curve of the target domain for the adap-
tation task A → W (ResNet-50)

of the proposed method by conducting additional experiments on VisDA-2017.
In our experiments, we observed a gain of 0.4 points over the baseline (Chen
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et al., 2020), confirming the flexibility of RIDA and its applicability across UDA
tasks. The SOTA results with ResNet-50 are reported in Table 4.3.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg

CDAN (Long et al., 2018) - - - - - - - - - - - - 70.0

MCD (Saito et al., 2018) 90.3 62.6 84.8 71.7 85.9 72.9 93.7 71.9 86.8 79.1 81.6 14.3 74.6

MDD (Zhang et al., 2019c) - - - - - - - - - - - - 74.6

MDD+IA (Jiang et al., 2020) - - - - - - - - - - - - 75.8

DTA (Lee et al., 2019b) 93.1 70.5 83.8 87.0 92.3 48.3 91.9 86.4 93.1 71.0 82.0 15.3 76.2

ALDA (Chen et al., 2020) 87.0 61.3 78.7 67.9 83.7 89.4 89.5 71.0 95.4 71.9 89.6 33.1 76.5

RIDA (Ours) 88.2 61.2 78.1 70.1 84.3 90.2 91.1 71.7 94.7 72.7 89.9 31.6 76.9

Table 4.3. Test Accuracy (%) on VisDA-2017 for unsupervised
domain adaptation (ResNet-50).

4.5.4 Ablation Studies

To examine the relative contribution of augmented invertible network in RIDA,
we conduct several ablations on the adaptation tasks presented in Table 4.1,
with and without the log-determinant of Jacobian term (E.q 4.8). The results
are reported in Table 4.4, where “no-ldj” subscript denotes the removal of the
log determinant of Jacobian component. Also, Figure 4.5 illustrates the model
behavior for SVHN ↔ MNIST task with and without the log-determinant of
Jacobian. We observe that only adding invertible network with affine coupling
layers between embedding space and classifier (RIDAno−ldj) results in a higher
accuracy across tasks compared to standard adversarial training. Indeed, in-
vertible network plays the role of "inductive bias" to alleviate the unavailability
of labeled samples in the target domain. The term "inductive bias" refers
to a set of assumptions that enhances the generalization ability of a model
trained on empirical data distribution. As an example, a specific neural net-
work architecture or a well-defined regularization can be regarded as inductive
biases. Furthermore, when the loss including the term for the log determinant
of Jacobian is applied (RIDA), our method demonstrates a significant improve-
ment over RIDAno−ldj and previous works. These results demonstrate that log-
determinant of Jacobian does make the model more robust to distortion caused
by invariance enforcement.
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Source USPS MNIST SVHN CIFAR10 STL10
Target MNIST SVHN MNIST STL10 CIFAR10

VADAno−vat (Shu et al., 2018) - 66.8 83.1 79.1 68.6
RIDAno−ldj 96.2 73.3 92.5 80.2 71.4

DIRT-T (Shu et al., 2018) - 76.5 98.7 - 73.3
RIDA 99.1 81.3 99.4 82.8 75.9

Table 4.4. Test accuracy (%) on standard domain adapta-
tion benchmarks in ablation experiment. The “no-ldj” subscript
denotes models where the log-determinant of Jacobian loss is

removed.

(a) MNIST → SVHN (b) SVHN → MNIST

Figure 4.5. Comparing the behavior of RIDA model with and
without the log-determinant of Jacobian using the accuracy on
the target domain for a) MNIST → SVHN, and b) SVHN →

MNIST

4.5.5 Analysis

Qualitative Analysis

To further analyse the relaxed invariant representation, in Figure 4.6, we vi-
sualize the non-adapted and adapted feature representations generated from
the last hidden layer of the model on SVHN → MNIST UDA task using t-SNE
(Maaten and Hinton, 2008). As illustrated in Figure 4.6, source-only training or
Non-adapted model shows strong clustering of the SVHN samples and performs
poorly on MNIST (Figure 4.6a). RIDA delivers higher feature discriminability
in the target domain by keeping each class well separated without enforcing the
target clusters to be completely aligned with source domain (Figure 4.6b).



4.5. Experiments 59

(a) Non-adapted (b) Adapted

Figure 4.6. t-SNE visualization of the last hidden layer of
RIDA for SVHN → MNIST task a) Non-adapted, b) Adapted

Target Error Bound

We analyze the second term, domain discrepancy, and the third term, ideal joint
hypothesis error, of the target error bound, as formulated in Equation 4.2, on
SVHN → MNIST task.

(a) A-distance (b) Ψ

Figure 4.7. A-distance, and Ψ, evaluated on SVHN→ MNIST
task.

Domain Discrepancy. Domain discrepancy can be estimated approximately
by A-distance (Ben-David et al., 2010), defined as A = 2(1 − 2ε), where ε
denotes the error of a domain classifier trained to discriminate the source and
target representations. As illustrated in Figure 4.7a, RIDA minimizes domain
discrepancy more significantly than standard domain adversarial training, but
does not as much as VADA (Shu et al., 2018) method does, implying a relaxed
invariance.
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Ideal Joint Hypothesis. We evaluate the Ideal Joint Hypothesis by training
a MLP classifier with two layers on the adapted features from both target and
source domains, as suggested in (Chen et al., 2019c). As shown in Figure 4.7b,
RIDA reduces the joint error, which indicates that our method improves the
feature discriminability.

4.6 Chapter Summary

In this chapter, a novel relaxed invariant representation learning is presented
for unsupervised domain adaptation. In standard domain invariance learning,
the transferability of feature representations is enhanced at the expense of its
discriminability. Our method aims at preserving the discriminability by relax-
ing excessive invariance constraint. This is achieved by an invertible function
that maps invariant features to a space that is easily separable for the classi-
fier. Through extensive experiments, our approach demonstrates its superiority
to other methods based on invariant representations on several public UDA
datasets, validating our analysis.
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Conclusion and Future Work

The present thesis focused on unsupervised domain adaptation (UDA) that
aims to transfer the knowledge extracted from label-abundant source domain
to the unlabeled target domain. The difficulty is that it is not clear what specific
factors of the data distribution remain invariant or change across domains. A
representation of data that is invariant to domain changes is useful for reducing
potential biases in prediction problems and controlling the effects of covariate
shifts. Hence, learning invariant representations has recently attracted much
attention for reconciling a source and a target domain for UDA. However, the
domain-invariance learning may deteriorate the feature adaptability, though
it improves the transferability of features. To resolve this problem, in this
thesis, we investigated the limitation of invariant representation learning for
unsupervised domain adaptation and proposed methods to relax the excessive
invariance. In this chapter, we conclude the thesis by summarizing the main
contributions and indicating possible directions for future research.

5.1 Contributions

We firstly provided a comprehensive literature review and required background
on UDA algorithms related to image classification problems in Chapter 2. We
then presented new approaches to address the excessive invariance enforcement.

In Chapter 3, we provided a theoretical discussion about the necessity of re-
laxed invariant representation, and then proposed a general relaxed-invariance
framework for UDA. The framework relies on normalizing flow to learn a trans-
formation between the distribution of target and source domains in representa-
tion space. In fact, normalizing flow maps a complex target latent distribution
into a well-clustered latent source distribution through a sequence of invertible
functions. We mathematically derived a variational lower bound for the prob-
ability distribution changing across domains and showed the consistency of the
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lower bound with the relaxed invariance assumption. Although not empirically
evaluated, this lower bound provided us with a new insight into UDA.

In Chapter 4, we developed a novel relaxed-invariant representation learning
for unsupervised domain adaptation. This is achieved by adding an invertible
network between representation space and embedding classifier, and then mini-
mizing the log-determinant of the Jacobian of this network. Invertible networks
ensure that the learnt features are not degenerate, and geometrically reshapes
the invariant representation by scaling the features. Intuitively, weighting the
embedding space via the determinant of Jacobian renders the features more
robust to distortions caused by adversarial invariant learning. The extensive
evaluation of the proposed method on benchmark datasets has validated the
significance of the research direction by developing a simple methodology that
outperforms state-of-the-art framework.

5.2 Future Work

Several possible avenues of future work are outlined below:

• Arguably, invariant representation is the key subject for research in do-
main adaptation. Thus, it is crucial to identify its open question for future
investigation. In our proposed method, we have shown how adaptability
in UDA is improved when invariant representation is relaxed. However, it
is unclear what the general form of the adaptability-invariance trade-off
is. Hence, the task of computing Pareto set, a set of Pareto optimal solu-
tions, which expresses the trade-off between the conflicting objectives of
adaptability and invariance, arises. As future work, we intend to develop
Pareto-optimal algorithms for UDA by resorting to information-theoretic
inference procedures and the theory of invariant representation learning.

• Learning representations that exhibit invariance across domains is a chal-
lenging task. Existing top-performance methods cast the trade-off be-
tween invariance and task performance in an adversarial way. In standard
domain adversarial training (DAT), the discriminator (domain classifier),
classifies representations as either source (positive) or target representa-
tion (negative). This binary (positive-negative) classification was kept
fixed during the training process of the discriminator, without consider-
ing the fact that a representation of target might be extracted that may
not be distinguishable from source representation at times. Thus, it is
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better to treat the target representation as unlabeled, which can be ei-
ther positive or negative. Hence, as future work, we will study how the
positive-unlabelled learning role of discriminator affects the final predic-
tion performance.

• In this thesis, we considered a close-set setting for UDA, where the source
and the target distribution share the same class labels. However, if the
label space changes across domains, the method may experience per-
formance drop due to negative transfer learning, where transferring the
knowledge from the labelled source domain negatively affects the target
domain learner. Therefore, the proposed approach can be extended to the
open set or partial UDA problems, settings where the source and target
domains only share a subset of class labels, but not all class labels.

• The proposed domain adaptation method is evaluated in this thesis for
the image classification task. For future work, we will extend our model
to classification tasks that involve non-image data, and other domain-
adaptation tasks such as semantic segmentation.
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Appendices

A.1 Derivation of the ELBO

log p(xt,xs) = log

∫
p(xt,xs|zt, zs)p(zt, zs)dzsdzt

= log

∫
p(xt,xs|zt, zs)p(zt, zs)

q(zt, zs|xt,xs)
q(zt, zs|xt,xs)

dzsdzt

= logEq(zt,zs|xt,xs)
[
p(xt,xs|zt, zs)

p(zt, zs)

q(zt, zs|xt,xs)
]

≥ Eq(zt,zs|xt,xs)
[

log
(
p(xt,xs|zt, zs)

p(zt, zs)

q(zt, zs|xt,xs)

)]
= Eq(zt,zs|xt,xs)

[
log(p(xt,xs|zt, zs)) + log(p(zt, zs))

]
− Eq(zt,zs|xt,xs)

[
log(q(zt, zs|xt,xs))

]

(A.1)

The last result from the Equation A.1 is the ELBO of the the joint distribution.
We further assume the conditional independence between source and target
distribution:

q(zt, zs|xt,xs) = q(zt|xt)q(zs|xs),

p(xt,xs|zt, zs) = p(xt|zt, zs)p(xs|zs).
(A.2)

Therefore, we can derive the following result.

Eq(zt|xt)q(zs|xs)
[

log(p(xt|zt, zs)p(xs|zs)) + log(p(zt, zs))− log(q(zt|xt)q(zs|xs))
]

= Eq(zt|xt)q(zs|xs)
[

log(p(xt|zt, zs) + log(p(xs|zs)) + log(p(zt, zs))
]

− Eq(zt|xt)q(zs|xs)
[

log(q(zt|xt))− log(q(zs|xs))
]

= Eq(zt|xt)q(zs|xs)
[

log(p(xt|zt, zs)
]

+ Eq(zs|xs)
[

log(p(xs|zs))
]

+ Eq(zt|xt)q(zs|xs)
[

log(p(zt, zs))− log(q(zt|xt))− log(q(zs|xs))
]

= Eq(zt|xt)q(zs|xs)[log(p(xt|zt, zs)] + Eq(zs|xs)[log(p(xs|zs))]

+ Eq(zt|xt)q(zs|xs)[log(p(zt, zs))]− Eq(zs|xs)[log(q(zs|xs))]

− Eq(zt|xt)[log(q(zt|xt))].
(A.3)
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We rewrite the last result of Equation A.3.

= Eq(zt|xt)q(zs|xs)
[

log(p(xt|zt, zs)
]︸ ︷︷ ︸

(1)

+Eq(zs|xs)
[

log(p(xs|zs))
]︸ ︷︷ ︸

(2)

+ Eq(zt|xt)q(zs|xs)
[

log(p(zt, zs))
]︸ ︷︷ ︸

(3)

−Eq(zt|xt)
[

log(q(zt|xt)
]︸ ︷︷ ︸

(4)

− Eq(zs|xs)
[

log(q(zs|xs))
]︸ ︷︷ ︸

(5)

,

(A.4)

Nothing that

p(xt|zt, zs) =
p(zt, zs|xt)p(xt)

p(zt, zs)
(Bayes’ theorem)

=
p(zt|zs,xt)p(zs|xt)p(xt)

p(zt, zs)
(Chain rule)

=
p(zt|zs)p(zs|xt)p(xt)

p(zt, zs)

=
p(zt|zs)p(zs|xt)p(xt)

p(zt|zs)p(zs)

=
p(zs|xt)p(xt)

p(zs)
=
p(zs,xt)

p(zs)
=
p(xt|zs)p(zs)

p(zs)
= p(xt|zs),

(A.5)

then, the term (1) in Equation A.4 can be redefined as

(1) = Eq(zt|xt)q(zs|xs)
[

log(p(xt|zt, zs)
]

= Eq(zt|xt)q(zs|xs)
[

log(p(xt|zs))
]

= Eq(zs|xs)
[

log(p(xt|zs))
]

= Eq(zs|xs)
[

log(

∫
p(xt|zt)p(zt|zs)dzt)

]
≥ Eq(zs|xs)

[
Ep(zt|zs)[log(p(xt|zt))]

]
.

(A.6)

By assuming that

zt = f(zs) ⇒ p(zt|zs) = δ(zt − f(zs)), (A.7)

then, the term (3) in Equation A.4 can be redefined as

(3) = Eq(zt|xt)q(zs|xs)[log(p(zt|zs)p(zs))]

= Eq(zt|xt)q(zs|xs)[log(p(zt|zs))] + Eq(zt|xt)q(zs|xs)[log(p(zs))]

= constant + Eq(zt|xt)q(zs|xs)[log(p(zs)].

(A.8)
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we also have

− Eq(zt|xt)
[

log(q(zt|xt)] = −Eq(zt|xt)
[

log(p(f−1(zt)) + log
∣∣∣ det

∂f−1

∂zt

∣∣∣], (A.9)

Putting all them together we have the following final loss:

log(p(xt,xs)) ≥ L(θ),

where L(θ) = Eq(zs|xs)[Ep(zt|zs)[log(p(xt|zt))]] + Eq(zs|xs)[log(p(xs|zs))]

+Eq(zs|xs)[log(p(zs))− log(q(zs|xs))]

−Eq(zt|xt)[log(p(f−1(zt)) + log
∣∣∣ det

∂f−1

∂zt

∣∣∣]
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A.2 Network Architectures

In this section, we provide the details of the network architecture of the Figure
4.1. For the adaptation tasks presented in Table 4.1, the shared classifier and
encoder are adopted from DIRT-T (Shu et al., 2018). Table A.1 summarizes the
RIDA architecture. We implement all the algorithms using PyTorch (Paszke
et al., 2017).

Small Large

32× 32× 3 Image

3× 3 conv.64, BN, lReLU 3× 3 conv.64, BN, lReLU
3× 3 conv.64, BN, lReLU 3× 3 conv.64, BN, lReLU
3× 3 conv.64, BN, lReLU 3× 3 conv.64, BN, lReLU

2× 2 max-pool, stride 2
dropout, p=0.5

Gaussian noise, σ = 1

3× 3 conv.64, BN, lReLU 3× 3 conv.64, BN, lReLU
3× 3 conv.64, BN, lReLU 3× 3 conv.64, BN, lReLU
3× 3 conv.64, BN, lReLU 3× 3 conv.64, BN, IReLU

2× 2 max-pool, stride 2
dropout, p=0.5

Gaussian noise, σ = 1

4 affine coupling blocks 4 affine coupling blocks
3 FC Layer 6 FC Layer

256 unit 512 unit

2× 2 max-pool, stride 2
dropout, p=0.5

Gaussian noise, σ = 1

3× 3 conv.64, BN, lReLU 3× 3 conv.64, BN, lReLU
3× 3 conv.64, BN, lReLU 3× 3 conv.64, BN, lReLU
3× 3 conv.64, BN, lReLU 3× 3 conv.64, BN, IReLU

global average pool

10 dense, softmax

Table A.1. Small and large network archhitectures for different
adaptation tasks. Leaky ReLU parameter α = 0.1. All images

are resized to 32× 32× 3.

For office-31 and VisDA 2017 datasets, we employ ResNet-50 (He et al., 2016)
pre-trained on ImageNet (Russakovsky et al., 2015) as the feature extractor.
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The discriminator network consists of three fully connected layers with dropout
as other works (Ganin et al., 2016). The invertible network architecture is the
same as invertible layers of large architectures in Table 4.1.

A.3 Hyper-parameters

Table A.2 presents the hyper-parameters used in our experiments. We fol-
lowed a similar hyper-parameter selection strategy as in DIRT-T (Shu et al.,
2018), for digits and CIFAR10/STL datasets, and (Chen et al., 2020) for office-
31 and VisDA datasets. Hyper-parameter values are searched within the fol-
lowing predefined space: βd = {0, 1, 10−2}, βt = {1, 10}, βs = {0, 1}, and
βce = {0, 10−1, 10−2}.

Experiment βd βt βs βce

USPS→ MNIST 10−2 1 0 10−2

MNIST→ SVHN 10−2 1 1 10−2

SVHN→ MNIST 10−2 1 0 10−2

CIFAR10→ STL 10−2 1 0 10−1

STL→ CIFAR10 0 1 1 10−1

A→W 1 1 0 10−1

A→ D 1 1 1 10−1

W→ A 1 1 1 10−1

VisDA-2017 Classification 1 10 0 10−2

Table A.2. Hyper-parameters for the tasks in the experiments
with SOTA results.
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