
Multi-Document Summarisation
from Heterogeneous Software

Development Artefacts

Mahfouth Ahmad Alghamdi

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

The University of Adelaide

School of Computer Science

Supervisors: A/Prof. Markus Wagner and Dr. Christoph

Treude

February 2, 2022

iii

Contents

Abstract xi

Declaration of Authorship xiii

Acknowledgements xv

1 Introduction 1
1.1 Problem Description . 1
1.2 Research Goal, Motivation, and Challenges 2
1.3 Contributions of This Thesis . 4
1.4 Thesis Outline . 5

2 Background 7
2.1 Introduction . 7
2.2 Automatic Text Summarisation 7

2.2.1 Extractive summaries vs. abstractive summaries 9
2.2.2 Single document vs. multi-document summarisation . . . 11
2.2.3 Generic vs. domain-specific summarisation 12
2.2.4 Evaluation methods . 12

2.3 Automatic Summarisation in Software Engineering 13

3 Creating Resources for Summarising Multi-document Software
Artefacts 17
3.1 Introduction . 17
3.2 Creating and Characterising Gold-standard Summaries 18

3.2.1 Gold-standard summaries 18
3.2.2 Characteristics of gold-standard summaries 19

3.3 Software Artefacts Describing Developers’ Activities 27
3.3.1 Identifying software artefacts 28
3.3.2 Relationships between software artefacts 32

3.4 Validation and Characterisation through Large-Scale Analysis . 35
3.4.1 Validating the existence of software artefacts 36
3.4.2 Characteristics of GitHub artefacts 38

iv

3.5 Characteristics of Source Code Comments 41
3.6 Threats to Validity . 46
3.7 Implications . 47
3.8 Conclusion . 47

4 Multi-document Summarisation of Heterogeneous Software Arte-
facts 49
4.1 Introduction . 49
4.2 Data Preparation . 51
4.3 Methodology . 54

4.3.1 Summaries based on word similarity and feature vector
similarity . 55

4.3.2 Cosine similarity . 57
4.3.3 Algorithmic approaches 57

4.4 Experimental Results and Discussion 62
4.5 Expert Annotation . 69
4.6 Threats to Validity . 73
4.7 Conclusion . 73

5 The Potential of Code Comments for use in Summarisation 77
5.1 Introduction and Motivation . 77
5.2 Research Questions . 79
5.3 Detecting Documented Variables 81

5.3.1 Preprocessing . 81
5.3.2 Lexical matching . 81
5.3.3 Advanced matching . 82
5.3.4 Union of matching approaches 84

5.4 Study Design . 84
5.4.1 Data collection . 84
5.4.2 Data analysis . 89

5.5 Findings . 93
5.5.1 RQ1: To what extent can different techniques detect vari-

ables in comments? . 93
5.5.2 RQ2: What types of knowledge do comments provide

about the variables? . 94
5.5.3 RQ3: How frequently are primitive variables documented

in comments? . 97
5.5.4 RQ4: What are the distributions of documented variables

by their scope of declarations? 98

v

5.5.5 RQ5: What are the types of comments associated with
the scopes of the documented variables? 99

5.6 Threats to Validity . 101
5.7 Related Work . 101
5.8 Implications . 103

6 Conclusion and Future Work 105

Bibliography 109

vii

List of Figures

1.1 Summarising multi-document software artefacts containing het-
erogeneous data for a given time frame. 3

2.1 Typical architecture of a summarisation system. 8

3.1 Characteristics of the student summaries using statistical analy-
sis of text features. 20

3.2 Characteristics of the student summaries based on text features
and grouped by courses. 23

3.3 Characteristics of the student summaries based on text features
and grouped by teams. 25

3.4 Characteristics of the student summaries based on text features
and grouped by weeks. 26

3.5 Artefacts and sub-artefacts related to students’ development ac-
tivities. 29

3.6 Distribution of number of matches between text in each of soft-
ware artefacts and student summaries. 31

3.7 Pearson product-moment correlation between pair of software
artefacts. 33

3.8 Total number of rules that can be generated from the summaries. 34
3.9 Number of software artefacts found in engineered and non-engineered

software projects. 36
3.10 Shannon’s entropy and Flesch reading ease scores for artefacts

texts. 40
3.11 Text characteristics of source code comments and compared to

other 14 types of software artefacts. 44
3.12 Text characteristics of source code comments grouped by file types. 45

4.1 Overview of the proposed multi-document summaries of hetero-
geneous software artefacts. 49

4.2 An example of student summary linked to different software arte-
facts. 50

viii

4.3 Cosine similarity based on word co-occurrence of the generated
summaries. 63

4.4 Running time of each of the algorithms required to generate sum-
maries. 64

4.5 Success rate of generating non-empty summaries. 65
4.6 Average contribution of artefacts to summaries, aggregated across

the two similarity measures. 66
4.7 Average contribution of artefacts to summaries, aggregated across

all algorithms. 66
4.8 Cosine similarities when all or subset of artefacts are used to

generate the summaries. 68
4.9 Ratings by our annotators of different approaches. 71

5.1 Overview of our study. 84
5.2 Percentage of documented, undocumented variables in comments,

and those did not have comments. 97
5.3 Percentage of variable data types declared in each scope. 99

ix

List of Tables

3.1 Features used to analyse the text properties. 21
3.2 Number of software artefacts created per project and the number

of times referenced in the student summaries. 30
3.3 Top 10 association rules generated using a support value of 0.1.

and a confidence value of 0.6. 35
3.4 Number of randomly sampled projects from both data sets. . . . 36
3.5 Number of artefacts found in engineered software projects data

set. 39
3.6 Number of comments extracted from 980 engineered software

projects written in seven programming languages. 42

4.1 The extracted sentences from the student summaries per project
over 14 weeks. 53

4.2 Total number of artefacts per type and number of extracted sen-
tences for each type. 53

4.3 Features used to represent each sentence. 56
4.4 Average rating from each annotator for output produced by the

different approaches. 70
4.5 Comparing summary written by human with generated summaries. 71

5.1 Used variables for our detection approaches. 85
5.2 Number of primitive and other variables. 85
5.3 Evaluation sample. 87
5.4 Annotation questions. 90
5.5 Accuracy of different matching techniques. 93
5.6 Types of knowledge documented with each data type of variables

in comments. 95
5.7 Relationship between groups of data types of variables with re-

spect to knowledge types. 96
5.8 Percentage of the variables of different data types documented

with different types of comments in each scope. 100

xi

Abstract

Software engineers create a vast number of artefacts during project development;
activities, consisting of related information exchanged between developers. Sift-
ing a large amount of information available within a project repository can be
time-consuming. In this dissertation, we proposed a method for multi-document
summarisation from heterogeneous software development artefacts to help soft-
ware developers by automatically generating summaries to help them target
their information needs. To achieve this aim, we first had our gold-standard
summaries created; we then characterised them, and used them to identify the
main types of software artefacts that describe developers’ activities in GitHub
project repositories. This initial step was important for the present study, as
we had no prior knowledge about the types of artefacts linked to developers’ ac-
tivities that could be used as sources of input for our proposed multi-document
summarisation techniques. In addition, we used the gold-standard summaries
later to evaluate the quality of our summarisation techniques. We then de-
veloped extractive-based multi- document summarisation approaches to auto-
matically summarise software development artefacts within a given time frame
by integrating techniques from natural language processing, software reposi-
tory mining, and data-driven search-based software engineering. The generated
summaries were then evaluated in a user study to investigate whether experts
considered that the generated summaries mentioned every important project
activity that appeared in the gold-standard summaries. The results of the user
study showed that generating summaries from different kinds of software arte-
facts is possible, and the generated summaries are useful in describing a project’s
development activities over a given time frame. Finally, we investigated the
potential of using source code comments for summarisation by assessing the
documented information of Java primitive variables in comments against three
types of knowledge. Results showed that the source code comments did contain
additional information and could be useful for summarisation of developers’
development activities.

xiii

Declaration of Authorship
I certify that this work contains no material which has been accepted for the

award of any other degree or diploma in my name, in any university or other
tertiary institution and, to the best of my knowledge and belief, contains no
material previously published or written by another person, except where due
reference has been made in the text. In addition, I certify that no part of this
work will, in the future, be used in a submission in my name, for any other
degree or diploma in any university or other tertiary institution without the
prior approval of the University of Adelaide and where applicable, any partner
institution responsible for the joint-award of this degree.

I acknowledge that copyright of published works contained within this thesis
resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available
on the web, via the University’s digital research repository, the Library Search
and also through web search engines, unless permission has been granted by the
University to restrict access for a period of time.

Mahfouth Ahmad Alghamdi

September 2021

xv

Acknowledgements
First and foremost, I thank Allah for enabling me to complete my studies

and for guiding me through the difficult times of my PhD journey. Praise be to
Allah.

I express deep gratitude to my principal supervisor, Associate Professor
Markus Wagner, and co-supervisor, Dr Christoph Treude, for making my PhD
experience the best it could be. I would not have been able to complete this
degree without their technical and moral support. Having their support and
guidance throughout my PhD has been an absolute honour. They have al-
ways helped me overcome any obstacles and to keep stepping forwards. I am
appreciative of everything, including the weekly scientific discussions and the
continuous encouragement to challenge myself. They allowed me to make mis-
takes, develop into the role of researcher, and learn deeply about my research
subject.

I am grateful to Professor Takashi Kobayashi and Associate Professor Shin-
pei Hayashi for hosting me at the Tokyo Institute of Technology in Japan and
for supporting me in so many ways. It was a pleasure to meet them, and I will
always remember the good times I spent with them.

Heartfelt thanks are also due to my family members, who have all played a
unique role in my own life. I especially thank my mother, whose supplications
were key to my success. Certainly, I would be unable to achieve academic
success without the help of my wife, who constantly encouraged me during my
research and provided wonderful support and guidance. I appreciated her help
and endless patience with me during this journey.

My children Adeeb and Elias have brought joy and pleasure into my life,
and I know these last few years have been difficult for them. I wish them all
the best in their future lives.

Finally, I would like to thank the Institute of Public Administration in the
Kingdom of Saudi Arabia for funding my studies and my editor Ms Valerie
Mobley for copy editing the text of this thesis in accordance with the Australian
Standards for Editing Practice.

1

Chapter 1

Introduction

1.1 Problem Description

The proliferation of openly available software and source code and increased
focus on collaborative development are facilitated by code repository services.
GitHub is the leading collaborative development platform, with more than 61
million users1 and more than 235 million repositories2 hosted, making it the
largest source code hosting service in the world. There are multiple reasons for
GitHub’s success over other collaborative platforms but the main reason is that
GitHub offers more than a simple source code hosting service. It also provides
developers and researchers with a dynamic and collaborative environment that
supports peer review, commenting, and discussion (Dabbish et al., 2012).

In the course of project development, software developers create a large
number of artefacts. Managing the huge amount of associated data in a soft-
ware project becomes more difficult with every new artefact introduced. It
is also challenging to find the relevant information exchanged between devel-
opers among the vast amount of information available within a single project
repository.

The GitHub project repository provides several ways to retrieve desired in-
formation about development activities; one obvious way is to use the GitHub
search engine. GitHub has introduced a built-in search engine to allow devel-
opers to search within a project repository. This can help developers get an
overview of their project activity in order to progress their work. However,
a search phrase will give results typically containing a large amount of het-
erogeneous text from many different software artefacts. The developer is still
compelled to read through a large bank of returned artefacts to understand

1User search, https://github.com/search?q=type:user&type=Users, accessed on June
17, 2021.

2Github number of repositories, https://github.com/search, accessed on June 17, 2021.

 https://github.com/search?q=type:user&type=Users
https://github.com/search

2 Chapter 1. Introduction

it and find the answers they need. This is extremely difficult to do when the
developer is working under time constraints.

An alternative is to automatically generate summaries from existing soft-
ware artefacts. Such summaries can help developers quickly understand the
software development activities in any given time frame. In recent years, sev-
eral methods have been developed for summarising software artefacts, such
as bug reports (Rastkar, Murphy, and Murray, 2014), code elements in Stack
Overflow (Rigby and Robillard, 2013), code fragments in Eclipse FAQ (Nazar
et al., 2016; Ying and Robillard, 2013), classes (Moreno et al., 2013), and meth-
ods (Haiduc et al., 2010). All of these techniques have mostly focused on sum-
marising a single type of artefact, and they have not taken into consideration
the production of summaries of content in a given time frame. In addition, sum-
maries may need to include different kinds of heterogeneous software artefacts
that have been created or updated during the software development process. In
a GitHub repository, a developer can create many other types of software arte-
facts, such as pull requests, commits and issues other than bug reports, source
code or code fragments. Also, it is worth noting that these artefacts are rather
heterogeneous and that any one artefact can include a mixture of source code,
human language, and other types of information.

1.2 Research Goal, Motivation, and Challenges

Our goal is to support developers during the software development life-cycle.
In this present study we take several steps towards this goal by seeking to
provide developers with multi-document summaries that can be produced from
heterogeneous software artefacts and within a given time frame.

The complexity of summarising multi-document software artefacts is due to
1) the sheer variety of artefacts that are continuously created and updated by
developers and 2) deciding which information needs to be selected from these
artefacts for inclusion in summaries. We centred our main interest on determin-
ing which types of artefacts should be used as sources for our summariser, and
on selecting information from these artefacts that best describes the developers’
activities within a given time frame.

Given the nature of the software development process, which generally re-
quires developers to understand what has been done within a particular period
(e.g., a week) to progress their projects, producing such a summary may have
to reference different types of heterogeneous software artefacts that describe
the developer’s development activities. For example, a new developer joins

1.2. Research Goal, Motivation, and Challenges 3

Wiki:
Project focused has changed massively.
We are now going to focus almost
exclusively on improving the Confluence
search.

Pull Request:
Confluence search for the same search
query, allowing users to compare results
for the same search easily. Adds link to
confluence search for same query #145.

Issue#16:
Customer has indicated that having the
Maptek wiki searchable by Saucygen
would be useful as well. Maptek use
Confluence as their wiki service: See this
corporate video for a quick intro what
Confluence provides.

Commit:
Merge pull request #17 from serp2017/ft-
scrape wiki implement basic confluence
wiki scraper. Add html parser for
processing local html pages.

Multi-document
summarisation

We are now going to focus almost

exclusively on improving the

Confluence search. Confluence search

for the same search query, allowing

users to compare results for the same

search easily. See this corporate video

for a quick intro what Confluence

provides.

Summary:

Doc-1

Doc-2

Doc-3

.
Doc-n

Figure 1.1. Summarising multi-document software artefacts
containing heterogeneous data for a given time frame.

a project team and wants to get an idea about the team’s activities over a
particular week. The newly joining member need to collect information from
different software artefacts to understand the extent of the team’s activities in
that week. These artefacts can contain information from source code, issues,
and other artefacts, all of which can help the new developer seek and extract
the desired information.

Similarly, to create an automatic summary from these artefacts, a successful
summarisation approach should focus on extracting the most important sen-
tences from a collection of related artefacts that describe the developers’ activ-
ities. As an example of a summary, Figure 1.1 shows developers’ development
activities linked to various artefacts (on the left) and the potential automatic
produced summary (on the right) that shows the important development activ-
ities in that particular week. In the example, team members want to improve
the confluence search in their project. For this task, the team members discuss
such changes using different artefacts, such as wiki, pull request, issues and
commits. An automatic summary would help a team member who is not aware
of the changes that happened in the project during that week to get an overview
of the essential development activities discussed by the team members in less
time. Hence, save the time and the effort to obtain the desired information
from different software artefacts.

4 Chapter 1. Introduction

1.3 Contributions of This Thesis

• Creation of gold-standard summaries and identify the types of software
artefacts. To better understand what summaries of time windowed soft-
ware development should look like, we first created our own gold-standard
summaries (human-written summaries). We then used these summaries
to understand the ideal properties of summaries of software development
activities related to heterogeneous software artefacts. Additionally, these
summaries provided us with a better understanding of the common types
of software artefacts created in the context of developers’ activities. The
results of this empirical study showed that there were 14 types of software
artefacts in GitHub repositories linked to the gold-standard summaries,
and this information could then be used as input to create multi-document
summaries of developers’ development activities. We then investigated
whether GitHub’s developers actually used the previously identified arte-
facts (i.e., the 14 types of software artefacts) by conducting a large-scale
analysis of 1,038 software-engineered projects. A full explanation of our
empirical study for the creation of the gold-standard summaries, identi-
fying the types of software artefacts related to them, and the potential of
the use of these artefacts in the GitHub repositories is included here in
Chapter 3.

• Human-Like Summaries from Heterogeneous and Time-Windowed Soft-
ware Development Artefacts. We proposed the first framework for sum-
marising multi-document software artefacts containing heterogeneous data
within a given time frame. We used the 15 software artefacts as input
sources and the gold-standard summaries as target vectors (described in
Chapter 3) to identify which sentences from which artefacts should be
selected for summarisation approach. We utilised various optimisation
heuristics algorithms to extract text from the software artefacts so that
the resulting summaries are similar in style to those found in gold-standard
summaries and so that they describe the developers’ activities. We em-
ployed cosine similarity and 26 text-based metrics related to readability
metrics, lexical features, and information-theoretic entropy to guide the
optimisation approaches to generate multi-document summaries. We then
evaluated the generated summaries in a user case study. We describe our
approaches and their evaluation in Chapter 4.

• Characterising the Knowledge about Primitive Variables in Java Code

1.4. Thesis Outline 5

Comments. Developers produce various kinds of documentation. One
form of this documentation represents source code, such as code com-
ment, while other kinds may refer to external documentation, such as
wikis. Studies have shown that source code comments can help improve
the readability of source code (Tenny, 1988; Tenny, 1985), while in other
studies, researchers expressed the view that code comments are an essen-
tial part of software maintenance (Hartzman and Austin, 1993; Jiang and
Hassan, 2006). We became interested in assessing the code comments
as part of developers’ activities because we saw no clear evidence that
the gold-standard summaries contained any reference to source code files.
This meant that source code artefacts were not included in the artefacts
we used as input sources for our summarisation approaches. Source code
comments are considered to be an essential source of information about
a project, as they can be used to describe the developers’ development
activities. We therefore wanted to assess the potential of source code
comments to be considered as an input source for our multi-document
summarisation approach. To achieve this aim, we proposed the first study
to investigate the role of primitive variable identifiers in comments, espe-
cially how commonly these identifiers are documented in accompanying
comments and what type of additional information the comments sup-
ply about these variables. We developed lexical and advanced matching
techniques to capture the identifiers of primitive variables in Java source
code comments, and then evaluated these approaches using a manually
curated benchmark of six well-commented project repositories hosted on
GitHub. We manually classified the documented information used to de-
scribe the variable identifiers in the comments into three types of knowl-
edge: purpose, concept and directives. Finally, a large-scale analysis of
2,491 engineered Java software repositories hosted on GitHub was carried
out to provide an insight into how developers document these variables in
the form of source code comments. We describe our approaches and their
evaluation in Chapter 5.

1.4 Thesis Outline

The rest of this thesis is organised as follows. In Chapter 2, we give an overview
of natural language summarisation techniques and their applications in software
engineering.

6 Chapter 1. Introduction

The core of this thesis starts in Chapter 3, where we create our own gold-
standard summaries, characterise them and identify the types of software arte-
facts in GitHub projects’ repositories linked to the developers development ac-
tivities, and investigate how commonly developers use them in GitHub project
repositories.

In Chapter 4 we introduce our first framework for summarising multi-document
software artefacts containing heterogeneous data within a given time frame.
This approach integrates techniques from natural language processing, software
repository mining and data-driven search-based software engineering to auto-
matically generate summaries in extractive setting from 15 types of software
artefacts within a given time frame.

In Chapter 5 we present the first study that analyses a bank of documented
information for primitive variables in source code comments and then charac-
terise these findings into different types of knowledge.

Finally, in Chapter 6, we conclude the thesis by summarising its main con-
tributions and by outlining the potential for future work in this research area.

7

Chapter 2

Background

2.1 Introduction

The exponential growth of the internet has given rise to information overload, a
problem with which many researchers and users still struggle. Sources of infor-
mation such as newspapers, opinion articles, emails, and microblogs increasingly
overwhelm users who seek to use them in their personal or professional lives.
Similarly, the growth of big data from bulk sources, such as scientific databases,
compounds the problem of information overload. These trends have triggered
the desire for a summarisation system capable of alleviating this problem. Re-
searchers have spent considerable time and resources in developing summari-
sation systems that condense information from one or more documents, using
natural languages.

The software engineering community has taken an huge interest in summari-
sation systems in recent years as software developers have created voluminous
information related to system development. The variety of software artefacts
that these developers create daily includes documentation, bug reports, and
source codes. They also generate pull requests and make wiki entries to de-
scribe processes of system development. The automatic summarising of these
software artefacts has recently become a dominant concept in software engi-
neering research, with many studying how they can best minimise information
overload in this field.

In this chapter we present a general overview of summarisation techniques in
Section 2.2. We then discuss automatic summarisation in software engineering
research in Section 2.3.

2.2 Automatic Text Summarisation

The origins of automatic text summarisation as a research discipline date back
to the seminal work of Hans Peter Luhn (Luhn, 1958). Since then, researchers

8 Chapter 2. Background

have developed numerous techniques for extracting key information from a col-
lection of source documents to create automatic summaries (Gupta and Lehal,
2010; Nenkova, McKeown, et al., 2011; Saggion and Poibeau, 2012). The aim
of automatic text summarisation is to produce a short representation of original
text while preserving the overall meaning, as well as other essential information.
Over the years, researchers have produced different definitions of a summary
based on individual perspectives, as highlighted in the three examples below.

Figure 2.1. Typical architecture of a summarisation sys-
tem (Torres-Moreno, 2014)

.

1. According to Jones (Jones et al., 1999), a summary is a “reductive trans-
formation of source text to summary text through content reduction by
selection and generalisation on what is important in the source.”

2. Saggion and Lapalme described a summary as “a condensed version of
a source document having a recognisable genre and a very specific pur-
pose: to give the reader an exact and concise idea of the contents of the
source.” (Saggion and Lapalme, 2002)

3. Hovy and Marcu (Hovy and Marcu, 2005) defined a summary as “a text
that is produced from one or more texts, that convey important informa-
tion in the original text(s) and that is no longer than half of the original
text (s) and usually significantly less than that.”

A careful review of the definitions above reveals that they have three crucial
aspects in common:

2.2. Automatic Text Summarisation 9

• The summaries can be generated from one or more documents.

• The summaries should preserve crucial information such as key informa-
tion content and overall meaning of the original texts.

• The summaries should be concise.

Automatic text summarisation systems can be categorised into several dif-
ferent types (Nenkova and McKeown, 2012; Saggion and Poibeau, 2013). The
dimensions of text summarisation can be generally categorised based on in-
put type (single or multi-document), purpose (generic or domain specific) and
output type (extractive or abstractive). A simplified abstracting process for a
summarisation system is depicted in Figure 2.1.

Text summarisation based on input, is either single or multi-document. Text
summaries based on purpose are either domain-specific or generic. Lastly, text
summarisation based on form of outcome is either abstractive or extractive.

In the next subsection we give an overview of each of these categories and
their overall relation to the present study.

2.2.1 Extractive summaries vs. abstractive summaries

The summarisation of tasks based on outputs can be either abstractive or ex-
tractive. Extractive summarisation refers to the selection of essential sentences
or paragraphs from source documents to form a summary. The linguistic and
statistical features of the sentences can determine the importance for inclu-
sion (Gupta and Lehal, 2010). Likewise, extraction based on statistical features
of sentences focuses on shallow characteristics of text such as their position
within the source document (Ouyang et al., 2010), sentence length (Kupiec,
Pedersen, and Chen, 1995), sentence centrality (Erkan and Radev, 2004), cue
phrases (Edmundson, 1969) and word frequency (Luhn, 1958). Extractive sum-
marisation techniques calculate the significance of sentences based on these
features to generate summaries.

Unlike statistics-based extraction, summaries based on linguistic properties
focus on the semantics of terms and their relationships to each other. The lin-
guistic approach evaluates the relationships between terms based on analysis of
grammar, the usage of thesaurus, and Part of Speech (POS) tagging. Several
researchers, including (Tayal, Raghuwanshi, and Malik, 2017; Ferreira et al.,
2014) analysed the impact of combining various shallow text features on the
quality of generated summaries. These researchers tested the hypothesis that
the combination of these features, based on context, would provide a rich source

10 Chapter 2. Background

for summaries compared to purely linguistics-based summarisation approaches.
Their findings suggest that statistics-based summaries allow more efficient com-
putation, while linguistics-based methods can generate better summaries.

In contrast to the extractive approach, abstractive summarisation focuses
on the comprehension of the main concepts within source documents before
summarising them in understandable natural language (Erkan and Radev, 2004;
Hahn and Romacker, 2001). The abstractive summarisation technique is either
structure-based or semantic-dependent. According to some scholars, structured-
based methods break down and assess texts to find new concepts that they may
use to generate summaries from source documents (Kikuchi et al., 2014; Hirao
et al., 2015). Others have used semantic-dependent techniques for examining
and interpreting texts to find new expressions that they may use to convey key
information content from original documents (Sarda and Kulkarni, 2015; Reeve
Lawrence et al., 2006).

Generating abstractive summaries is a more challenging task because it ne-
cessitates the semantic representation of texts. In addition, it requires extrac-
tors to generate natural languages while keeping inference rules (Balaji, Geetha,
and Parthasarathi, 2016). Abstractive summaries also face the challenge of
accurately “understanding” natural language, as natural language generation
techniques are still an emerging field. In fact, extractive techniques have been
thought to produce better summaries than abstractive techniques (Allahyari
et al., 2017; Mishra and Gayen, 2018). Although extractive summaries are
relatively easier to create than sophisticated abstractive summaries, extract-
ing salient information from the original text to form summaries still poses
numerous challenges to researchers. For instance, researchers need to identify
preprocessing steps for matching collected datasets and selecting appropriate
features to improve summarising performance. Similarly, researchers need to
apply feature engineering to learn how to exploit existing features for better
summaries. Lastly, they need to find an appropriate technique for linking one
approach to another to enhance the quality of the produced summaries.

In this thesis we used an extractive technique to summarise development
activities from a collection of software artefacts (Chapter 4). In addition, unlike
previous work, which used statistics-based shallow features to determine the
most salient sentence in a text, we defined our own features to extract the
salient sentence.

2.2. Automatic Text Summarisation 11

2.2.2 Single document vs. multi-document summarisa-

tion

Input documents to a summarisation system is classified as either single or
multiple-document. A single document generates a summary from one source
that includes content about a similar topic (Radev, Blair-Goldensohn, and
Zhang, 2001). In contrast, a multi-document summarisation produces sum-
maries from numerous sources or documents but still about a similar topic (Qiang
et al., 2016; Widjanarko, Kusumaningrum, and Surarso, 2018). Single-document
summarisation has been the subject of extensive research, particularly around
sentence extraction methods. There has been less work done on multi-document
summarisation, but it has recently gained more attention from researchers be-
cause of its advantages over single-document summaries in the following re-
spects:

• It summarises a topic by offering a domain overview, which highlights
information that is often mentioned across various documents.

• It identifies unique content within each document.

• It shows relationships between information contained in separate docu-
ments (Ou, Khoo, and Goh, 2006).

Multi-document summarisation presents numerous challenges, as opposed
to single-document summarisation (Goldstein et al., 2000). The problems are
attributed to the varied and often inconsistent data contained in multiple doc-
uments. In addition, the number of documents is typically large, and the link
between documents can be quite sophisticated. Due to the large number of
documents that may also be lengthy, they can overlap, conflict with, or comple-
ment each other, making it challenge for systems to extract the key content from
input texts to generate non-redundant, coherent, and readable summaries (Tas
and Kiyani, 2007; Peyrard, 2019). Therefore, the complexity of multi-document
summarisation requires sophisticated models to assess, identify and merge de-
pendable data. Moreover, the computation power required for multi-document
summarisation is extensive because of the increasing number of parameters used
in language models and the large volume of related datasets. The use of power-
ful statistical and optimisation techniques, however, can resolve some of these
issues (Rautray and Balabantaray, 2017).

In this thesis we define our problem for summarising software development
artefacts as multi-document summarisation. In Chapter 3 we identify the types

12 Chapter 2. Background

of software artefacts as input documents and we then in Chapter 4 explain
how we generated summaries of their content. It is important to note that the
artefacts in the input collection are heterogeneous in nature, that is, they do
not necessarily contain related information.

2.2.3 Generic vs. domain-specific summarisation

The majority of abstractive and extractive summarisation approaches tackle
the challenge from a generic vantage point. They attempt to create a system
that does not take any assumption about the characteristics of input documents
such as their content or structure. Hence, the outcome is a summary that works
seamlessly with any new document. Contrarily, domain-specific summarisation
focus on specific characteristics that they use to identify the important con-
tent precisely. For example, the specific format or characteristics of texts are
attributes of domain-specific summaries such as medical document (Afantenos,
Karkaletsis, and Stamatopoulos, 2005), legal document (Grover, Hachey, and
Korycinski, 2003), and scientific document (Qazvinian and Radev, 2008).

The approach proposed in this thesis (see Chapter 4) to summarise software
artefacts falls into the category of domain-specific summarisation, as it makes
use of the particular content of input data (i.e., the textual artefacts).

2.2.4 Evaluation methods

Evaluating the quality of summaries produced by automatic systems is neces-
sarily subjective and is an extremely difficult task to implement. It is subjective
because the perfect summary does not exist. Indeed, evaluating summaries is
an open problem to which the scientific community has responded with various
partial solutions (Torres-Moreno, 2014).

Despite the challenges of the task, several strategies have been proposed to
evaluate and compare different summarisation techniques. The quality of pro-
duced summaries can be assessed through extrinsic or intrinsic evaluation (Stein-
berger and Jezek, 2009). Intrinsic evaluation encompasses internal attributes,
such as the content and quality of the text, which is difficult to automate,
since human interactions are involved. Human evaluators typically assess so-
phisticated characteristics such as cohesion, grammar, readability, or coherence,
which may offer evidence of text quality. However, the automatic assessment of

2.3. Automatic Summarisation in Software Engineering 13

content summaries using gold-standard approaches can suit comparative meth-
ods of assessment. For example, the content of automatically generated sum-
maries can be evaluated using precision, recall to the ideal gold-standard sum-
maries.

On the other hand, extrinsic techniques assess the influence of the summaries
related to a particular activity. Typically, this assessment comprises the human
evaluation of tasks to determine summarisation systems that support real-life
tasks significantly. According to (Mani et al., 1999), the TIPSTER (text sum-
marisation evaluation) method was an early attempt at evaluating summaries
to identify their relevance to tasks of particular interest. Another study inves-
tigated the impact of providing a group of participants with summaries and
asking them to write reports on specific topic (McKeown et al., 2005). The
researchers noted that the participants wrote quality reports and were greatly
satisfied with their efforts.

In this thesis we used extrinsic evaluation techniques to assess the summaries
automatically generated from software artefacts (Chapter 4). We conducted a
user study to extrinsically evaluate the summaries by asking expert developers
whether each summary mentioned all important project activities in the gold-
standard (human-created) summaries.

2.3 Automatic Summarisation in Software Engi-

neering

In the course of a software life-cycle, software developers create multiple arte-
facts. (Souza, Anquetil, and Oliveira, 2005) reported on 34 artefacts that are
used to determine the requirements of software systems. Such artefacts can
help assess, design, code, as well as test the systems. Other artefacts created
by developers are also used to assist in evolving, maintaining, and understand-
ing software tasks, including communication logs and defect reports, commits,
and pull requests. Researchers have proposed automated summarisation sys-
tems to aid developers in searching for specific information from the artefacts.
These summaries are beneficial at the phase of software development because
retrieving necessary information from collection of artefacts is tedious and time-
consuming.

Researchers have paid attention, in recent years, to summarising various
types of software artefacts, including source codes, bug reports, commits and
pull requests. Concerning the source codes, (Moreno et al., 2013) proposed the

14 Chapter 2. Background

use of JSummarizer, a technique that identifies stereotyped classes by adapting
the regulations of method distribution to the class stereotypes. Distinguish-
ing between templates of various classes and methods helps create a range of
templates for generating summaries. In another effort, (Moreno et al., 2014) at-
tempted to generate release notes automatically by reutilising the JSummarizer
to produce a description of newly created classes. Similarly, (Hu et al., 2018)
proposed a tool, DeepCom, to generate comments from learned features of a
massive code corpus using the natural language processing (NLP) technique.
Afterwards, they utilised recurrent neural networks and long short-term mem-
ory (LSTM) neural networks to evaluate the suitability of the Java framework
for methods to generate better comments.

In similar effort, Huang et al. (Huang et al., 2020) proposed a method,
RL-BlockCom, to generate a block comment for code snippets. They first uses
heuristic rules and machine learning algorithms to identify the scope of the block
comment and then they apply the RL-BlockCom method that automatically
generating block comment. Recently, Wang et al. (Wang et al., 2021) proposed
a tool, CRASOLVER, that could generate summaries from given solutions of
the crash traces discussed by developers on the Q&A website, such as Stack
Overflow. Ruyun et al. (Wang et al., 2020), proposed a model called Fret, which
used the functional reinforcer and Bert embedding to generate code comments.
Adding the learning code functionalities to the model, they generated summaries
for code comments that could describe the code functionalities.

In bug reports, (Jiang et al., 2017) utilised byte-level n-grams in replicat-
ing the authorship attribute properties of open-source projects. The authors
sought to understand similarities in the interaction between normalised sim-
plified profiles by generating short summaries from descriptions and comments
within specific bug reports. In similar attempts (Mani et al., 2012; Lotufo,
Malik, and Czarnecki, 2015) proposed unsupervised approaches based on noise
reducer and heuristic rules to summarise bug reports.

As for summarising commits, (Buse and Weimer, 2010) proposed DELTA-
DOC, a technique for summarising a commit. They first used symbolic exe-
cution and path predicate analysis to produce the behavioural difference and
then applied heuristic transformations in generating descriptions of natural lan-
guage. Likewise, (Cortés-Coy et al., 2014) created the ChangeScribe tool to
identify stereotypes from commits in abstract syntax trees. Then, they used
predefined patterns and filters in generating descriptive commit messages. In
other work, (Liu et al., 2019) proposed an approach to generate pull request

2.3. Automatic Summarisation in Software Engineering 15

summaries from commit messages and added code comments in the pull re-
quests. They used attentional encoder-decoder models with pointer generators
to generate these summaries.

Most of these approaches considered the production of summaries from a
single software artefact, such as only from bug reports, only from classes, and
so on. In contrast to these, our approach generates summaries for a given time
frame from multi-document software artefacts that contain heterogeneous data.
Our focus was on summarisation approaches that consider the natural language
content of software artefacts to generate text-based summaries (see Chapter 4).
We then studied the potential of using code comment artefact for summarisation
by assessing the domain knowledge they contain (see Chapter 5).

16 Chapter 2. Background

A large portion of Section 3.2 in the next chapter has been previously
published (Alghamdi, Treude, and Wagner, 2019) and presented in the Genetic

and Evolutionary Computation Conference Companion (GECCO’19). I
contributed to the design, implementation, and evaluation of the proposed

approach.

17

Chapter 3

Creating Resources for
Summarising Multi-document
Software Artefacts

3.1 Introduction

Researchers working on automatic summarisation require resources to compare
their work to other researchers when evaluating the quality and performance
of their summarising approaches. These resources consist of 1) a collection of
documents used as an input to the summariser tool and 2) a collection of human
written (gold-standard) summaries. The gold-standard summaries are those
created by human summarisers to compare against the automatically generated
summaries. In the context of this thesis, the gold-standard summaries are those
summaries created by students developers on a weekly basis to describe their
development activities in their projects.

When our work in this thesis started, there were no gold-standard summaries
or publicly available summaries of developmental activities that occurred within
a given time frame. Therefore, it was necessary to create our gold-standard
summaries for three reasons:

1. To identify the types of software artefacts for the generation of multi-
document summaries that describe developers’ development activities over
a given time frame.

2. To better understand the general properties of human-written summaries
of developers’ development activities in order to produce automatic sum-
maries close in style to human summaries.

3. To finally quality-compare our multi-document generated summaries against
the gold-standard summaries (human-written summaries).

18
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

This chapter describes the creation of resources for the multi-document sum-
marisation. In Section 3.2 we describe the process of creating the gold- standard
summaries and understanding the characteristics of the texts. In Section 3.3
we describe the process of identifying the collection of artefacts for our multi-
document summarisation. Section 3.4 describes how we conducted a large anal-
ysis to determine whether GitHub’s developers utilised these artefacts during
their software developments. Section 3.5 describes our investigation of other
types of artefacts that could be used for summarisation purposes. Finally, we
conclude the chapter in Section 3.8.

3.2 Creating and Characterising Gold-standard

Summaries

3.2.1 Gold-standard summaries

To the best of our knowledge, there is no existing approach, in the context of
software engineering, to create multi-document summaries from heterogeneous
software artefacts within a given time frame. However, past work has shown
that developers desire such an approach (Treude, Figueira Filho, and Kulesza,
2015). Therefore, as our first step toward the goal of generating human-like
summaries from heterogeneous software artefacts in a given time frame, we cre-
ated our gold-standard summaries. The summaries were generated by 53 stu-
dent developers over 14 weeks and related to 15 (university-internal) GitHub
capstone projects. These projects were set during three courses taught to the
students in 2017 and 2018. The students worked in teams of three or four on
their undergraduate (Bachelor) projects with clients from local industry (43
students) or with clients from academia on projects toward their Master’s de-
grees (10 students). While the students were working on their projects, they
were asked to write summaries that described their development activities. The
students wrote their summaries in response to the question: If a team member
had been away, what would they need to know about what happened this week
in your project?. We used a Slack bot to automatically ask this question on a
weekly basis and to record the responses. We collected a total of 545 responses
where each response constituted a summary. The median number of the col-
lected summaries over the 14 weeks and from all the students’ projects was 11
summaries, indicating that each student wrote almost one summary per week.

3.2. Creating and Characterising Gold-standard Summaries 19

3.2.2 Characteristics of gold-standard summaries

Using quantitative indicators of the text complexity features, such as text
length, the number of sentences, text readability and the amount of informa-
tion in these summaries can help us to understand the general properties of
summaries containing software development activities. In addition, knowing
such characteristics of the student summaries can guide us to automatically
generate summaries with text features close in style to the text features of the
gold-standard summaries. Toward this aim, we identified 27 text-based features
to capture different aspects of the summaries based on lexical features, read-
ability metrics, and information-theoretic entropy. The 27 features are listed in
Table 3.1.

Each of the gold-standard summaries first underwent text cleansing before
we calculated its features. We split each summary into paragraph. We then
removed all non-ASCII characters, special characters (e.g. exclamation marks,
brackets, single/double quotes), URLs, file paths and file extensions and re-
placed these with single white spaces. We then split each paragraph into sen-
tences and then tokens using the Apache OpenNLP toolkit.

Figure 3.1 illustrates the text characteristics of our gold-standard summaries.
The distribution of the summaries based on word count shows that most of the
summaries contained between 30 and 90 words. In addition, calculating the
unique words used (i.e., words appearing only once in each summary) shows
that most of the students used around 30 to 60 unique words in their summaries.
We also calculated the incidence of difficult words in the summaries. Difficult
words are those words that do not belong to the Dale list of 3,000 familiar
words (Dale and Chall, 1948). The median result of difficult words was 19
words per summary. Calculating the unique and difficult words reflected that
the students performed a wide range of development activities, and thus, they
needed to use specific words to describe their activities. In addition, the median
of sentences for the summaries shows that most of the students tended to use 3
sentences per summary.

Next, we calculated the Flesch reading ease score (Flesch, 1948) for each
summary to understand how readable these summaries were. The Flesch read-
ing ease test is widely used. For example, the US military uses Flesch to check
the readability of technical documents. The basic concept behind Flesch is to
measure two distinct ratio elements: 1) the word to sentence ratio and 2) the
syllable to word ratio. It then converts the ratios into a score that can be used
to describe a text’s readability. The resulting readability score can give negative

20
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

0

50

100

150

200

250

W
o

rd
c

o
u

n
ts

0

20

40

60

80

100

120

140

U
n

iq
u

e
w

o
rd

s

0

20

40

60

80

100

D
if

fi
c

u
lt

w
o

rd
s

0

2

4

6

8

10

12

14

16

18

20

N
u

m
b

er
o

f
se

n
te

n
ce

s

-150

-100

-50

0

50

100

F
le

s
c

h
re

a
d

in
g

e
a

s
e

0

2

4

6

8

E
n

tr
o

p
y

Figure 3.1. Characteristics of the student summaries using
statistical analysis of text features.

3.2. Creating and Characterising Gold-standard Summaries 21

Table 3.1. Features used to analyse the text properties.

No. Feature

F1. Word count
F2. Chars count including spaces
F3. Chars without spaces
F4. No. of syllables in a word
F5. Sentence length
F6. Paragraph length
F7. Unique words
F8. Avg. word length (chars)
F9. Avg. sentence Length (words)
F10. No. of monosyllabic words
F11. No. of polysyllabic words
F12. Syllables per word
F13. Difficult words
F14. No. of short words (≤ 3 chars)
F15. No. of long words (>= 7 chars)
F16. Longest sentence (chars)
F17. Longest words (chars)
F18. Longest words by number of syllables
F19. Estimated reading time
F20. Estimated speaking time
F21. Dale-Chall readability index
F22. Automated readability index
F23. Coleman-Liau index
F24. Flesch reading ease score
F25. Flesch-Kincaid grade level
F26. Gunning fog index
F27. Shannon entropy

22
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

or positive values. Lower values indicate that the text is very difficult to read,
and the higher values indicate the text is easy to read. The formula to obtain
the readability score is illustrated in Equation 3.1. Figure 3.1 shows the distri-
bution of the summaries based on the Flesch readability score. The distribution
shows that the student summaries scored 46.5 based on median value, which
indicates that the summaries are difficult to read and can only be understood
by college students or above1. This result is not unexpected as these summaries
were created by undergraduate and graduate students.

206.835 − 1.015
(

total words
total sentences

)
− 84.6

(
total syllables
total words

)
(3.1)

Lastly, we measured the amount of information in each summary using Shan-
non’s entropy (Shannon, 1948). The Shannon entropy was calculated for each
summary using Equation 3.2, where ? is the probability of word G8 appeared
in the summary. The distribution of the summaries based on the entropy val-
ues shows that most of the summaries included a large amount of information
(median value = 5.33).

� = −
=∑
8=1

?(G8) log2 ?(G8) (3.2)

A brief summary: We created our gold-standards summaries to help us
to identify software artefacts that describe developers’ development activities
as cited in the summaries. We analysed these summaries using quantitative
indicators of the text complexity features to reveal the general properties of
human-written summaries, which can guide us to then generate summaries
with text features close in style to the textual features of the gold-standard
summaries. For example, we found that students tended to use three sen-
tences per summary. Based on the median value of readability, the summaries
were considered to be difficult to read, and most summaries included a lot of
information (Entropy’s median value is 5.33).

Insights per grouping:

As the student summaries are intended to guide us in our creation of auto-
mated human-like summaries (Chapter 4), we investigated our dataset for pos-
sible hidden biases and also for changes over time; note that both are purely
observational. First, we calculated for each of the 545 summaries generated

1Flesch-Kincaid readability tests: https://en.wikipedia.org/wiki/Flesch%E2%80%
93Kincaid_readability_tests, accessed on July 25, 2021.

https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests
https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests

3.2. Creating and Characterising Gold-standard Summaries 23

(a)

W
ord

co
unt

Char
s

co
unt in

cl
udin

g
sp

ac
es

Char
s

with
out sp

ac
es

No. o
f sy

lla
ble

s
in

a
word

Sen
te

nce
le

ngth

Uniq
ue

word
s

Avg
. w

ord
le

ngth
(c

har
s)

Avg
. s

en
te

nce
Len

gth
(w

ord
s)

No. o
f m

onosy
lla

bic
word

s

No. o
f poly

sy
lla

bic
word

s

Syl
la

ble
s

per
word

Diff
ic

ult
word

s

No. o
f sh

ort
word

s
(3

ch
ar

s)

No. o
f lo

ng
word

s
(>

=7
ch

ar
s)

Longes
t se

nte
nce

(c
har

s)

Longes
t word

s
(c

har
s)

Longes
t word

s
by

num
ber

of sy
lla

ble
s

Est
im

at
ed

re
ad

in
g

tim
e

Est
im

at
ed

sp
ea

ki
ng

tim
e

Dal
e-

Chal
l r

ea
dab

ili
ty

in
dex

Auto
m

at
ed

re
ad

ab
ili

ty
in

dex

Cole
m

an
-L

ia
u

in
dex

Fle
sc

h
re

ad
in

g
ea

se
sc

ore

Fle
sc

h-K
in

ca
id

gra
de

le
ve

l

Gunnin
g

fo
g

in
dex

Shan
non

en
tro

py
0.1

1

10

100

1000

L
o

g
10

(a
v

e
ra

g
e

va
lu

e
s

)

Course#1

Course#3

Course#2

Features

(b)

Figure 3.2. (a): 27 text-based features of the students sum-
maries grouped by courses and projected into 2D using t-SNE.
The axes do not have any particular meaning in projections like

these. (b): The average feature values for each course.

24
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

by 53 students in 14 weeks 27 features (see again Table 3.1) related to read-
ability metrics, lexical features, and information theoretic entropy to analyse
all summaries. We then visually inspected the resulting 27-dimensional charac-
terisation. To enable this, we used t-distributed stochastic neighbour embed-
ding (t-SNE) (Maaten and Hinton, 2008) to project the data-points into 2D.
The t-SNE reduction process attempts to preserve the distances in the high-
dimensional space as much as possible.

To facilitate the interpretation, we added (before employing t-SNE) to each
grouping the respective Euclidean average as each group’s centre. Consequently,
the projections unavoidably vary slightly. We highlight a few interesting obser-
vations as follow:

Grouping by students’ courses: The student summaries grouped by courses
are shown in Figure 3.2a. These courses are taught to graduate students (Course
#2) and undergraduate students (Course #1 and Course #3). Also, the student
projects involved in these courses are categorised as either industrial projects
(Course #1 and Course #3) or non-industrial projects (Course #2). It is ap-
parent from the distribution of the summaries that Course #2 sits apart at
the bottom and far from other groups while the two other courses are close
to each other at the top. The distribution of these courses reveals that the
summaries generated by the graduate students (with projects categorised as
non-industrial) have different text properties while the two other courses have
similar text properties as depicted in Figure 3.2b. For example, the majority of
the average textual features of the students summaries from Course#2 had fewer
features values, such as word count, sentence length, and summary readability,
compared to average features values calculated from the students summaries
from Course#1 and Course#3. This variation in the summary properties can
be attributed to many factors, including type of project (industrial/non- indus-
trial projects), education level (undergraduate/graduate students), and writing
style (students in Course #2 are less likely to be native English speakers).

Grouping by project teams: As shown in Figure 3.3a, the summaries are
grouped by teams from each course. Summaries produced by Teams #5 and
#6 have similar text properties. In the same manner, Teams #4, #11, and #14
have similar text properties, but they belong to two different courses (Course #1
and Course #3, respectively—although these courses are different instances of
the same course offered in different years). Teams #8 and #5 have the highest
and lowest average values, respectively, across all teams in terms of some of
the features calculated as depicted in Figure 3.3b . A review of the members

3.2. Creating and Characterising Gold-standard Summaries 25

(a)

W
ord

co
unt

Char
s

co
unt in

cl
udin

g
sp

ac
es

Char
s

with
out sp

ac
es

No. o
f sy

lla
ble

s
in

a
word

Sen
te

nce
le

ngth

Uniq
ue

word
s

Avg
. w

ord
le

ngth
(c

har
s)

Avg
. s

en
te

nce
Len

gth
(w

ord
s)

No. o
f m

onosy
lla

bic
word

s

No. o
f poly

sy
lla

bic
word

s

Syl
la

ble
s

per
word

Diff
ic

ult
word

s

No. o
f sh

ort
word

s
(3

ch
ar

s)

No. o
f lo

ng
word

s
(>

=7
ch

ar
s)

Longes
t se

nte
nce

(c
har

s)

Longes
t word

s
(c

har
s)

Longes
t word

s
by

num
ber

of sy
lla

ble
s

Est
im

at
ed

re
ad

in
g

tim
e

Est
im

at
ed

sp
ea

ki
ng

tim
e

Dal
e-

Chal
l r

ea
dab

ili
ty

in
dex

Auto
m

at
ed

re
ad

ab
ili

ty
in

dex

Cole
m

an
-L

ia
u

in
dex

Fle
sc

h
re

ad
in

g
ea

se
sc

ore

Fle
sc

h-K
in

ca
id

gra
de

le
ve

l

Gunnin
g

fo
g

in
dex

Shan
non

en
tro

py
0.1

1

10

100

1000

L
o

g
10

(a
v

e
ra

g
e

va
lu

e
s

)

Team#1 Team#2 Team#3 Team#4 Team#5 Team#6 Team#7 Team#8

Team#9 Team#10 Team#11 Team#12 Team#13 Team#14 Team#15

Features

(b)

Figure 3.3. (a): 27 text-based features of the students sum-
maries grouped by teams and projected into 2D using t-SNE.
The axes do not have any particular meaning in projections like

these. (b): The average feature values for each team.

26
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

(a)

W
ord

co
unt

Char
s

co
unt in

cl
udin

g
sp

ac
es

Char
s

with
out sp

ac
es

No. o
f sy

lla
ble

s
in

a
word

Sen
te

nce
le

ngth

Uniq
ue

word
s

Avg
. w

ord
le

ngth
(c

har
s)

Avg
. s

en
te

nce
Len

gth
(w

ord
s)

No. o
f m

onosy
lla

bic
word

s

No. o
f poly

sy
lla

bic
word

s

Syl
la

ble
s

per
word

Diff
ic

ult
word

s

No. o
f sh

ort
word

s
(3

ch
ar

s)

No. o
f lo

ng
word

s
(>

=7
ch

ar
s)

Longes
t se

nte
nce

(c
har

s)

Longes
t word

s
(c

har
s)

Longes
t word

s
by

num
ber

of sy
lla

ble
s

Est
im

at
ed

re
ad

in
g

tim
e

Est
im

at
ed

sp
ea

ki
ng

tim
e

Dal
e-

Chal
l r

ea
dab

ili
ty

in
dex

Auto
m

at
ed

re
ad

ab
ili

ty
in

dex

Cole
m

an
-L

ia
u

in
dex

Fle
sc

h
re

ad
in

g
ea

se
sc

ore

Fle
sc

h-K
in

ca
id

gra
de

le
ve

l

Gunnin
g

fo
g

in
dex

Shan
non

en
tro

py
0.1

1

10

100

1000

L
o

g
10

(a
v

e
ra

g
e

va
lu

e
s

)

Week#1 Week#2 Week#3 Week#4 Week#5 Week#6 Week#7 Week#8

Week#9 Week#10 Week#11 Week#12 Week#13 Week#14

Features

(b)

Figure 3.4. (a): 27 text-based features of the students sum-
maries grouped by weeks and projected into 2D using t-SNE.
The axes do not have any particular meaning in projections like

these. (b): The average feature values for each week.

3.3. Software Artefacts Describing Developers’ Activities 27

of Team #5 found that most of the team are non-native English speakers,
unlike those in Team #8, and thus certain features calculated, such as word
count, average sentence length, and unique words, are less compared to the
same features calculated for members of Team #8.

Grouping by weeks: Figure 3.4a shows that summaries written in later parts
of the semester appear to have different textual features compared to the initial
weeks. In the initial weeks, students have to do considerable work to develop
their projects compared to the advanced weeks, where the students are close
from finalising their projects, resulting in less development activities performed
in their projects. This observation can be seen in the features calculated (Fig-
ure 3.4b) from their summaries which shows that the majority of the features
values have less average values compared to the initial weeks. Besides, sum-
maries created by the students who belonged to different teams seem to exhibit
similar text properties in different weeks. For example, weeks #1 and #2 have
text properties that are very close to each other. We noted the same behaviour
in weeks #10 and #13.

A brief summary: Utilising t-SNE to interpret the student summary data
at different grouping levels, using the 27 features, shows that features of the
text depend on many factors, such as the type of project, education level,
and the weeks in which the summaries were written. Each of these factors
therefore influences text features, such as average sentence length, unique
words used and the amount of information the summaries may contain.

3.3 Software Artefacts Describing Developers’

Activities

We defined our gold-standard summaries and characterised them in the previous
section (Section 3.2) to understand their general textual properties. However,
generating automatic summarisation also requires a collection of documents as
input. Therefore, we first needed to identify suitable artefacts for generating
multi-document summaries from heterogeneous software artefacts in a given
time frame. In particular, we searched for the types of software artefacts that
best described developers’ development activities to use as input sources for
the summarisation approach. Hence we inspected the student summaries for
content related to the GitHub artefacts (Section 3.3.1). Then we investigated

28
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

the relationship between different artefacts to determine how commonly they
related to the developers’ activities in the summaries (Section 3.3.2).

3.3.1 Identifying software artefacts

As mentioned in Section 3.2.1, our gold-standard summaries were collected from
three different instances of the three courses taught to students in two consec-
utive years (2017 and 2018). Because some courses were still running or going
to be taught when we started identifying the software artefacts (in Semester
2, 2017), we used the available 209 summaries collected from the students in
Semester 1 of 2017. The 209 student summaries were produced by 22 students
working on six capstone projects. The students were working in teams of three
or four towards their Bachelor degree (15 students in total) or towards their
Masters degree (7 students in total).

The 209 summaries were manually annotated to identify the types of soft-
ware artefacts they referred to. To do this, we matched the text in the sum-
maries provided by the students week by week with the text found in the soft-
ware artefacts of the corresponding student projects. The matching process
considered the time relation between each summary’s creation and the cor-
responding creation time of the software artefacts. For example, summaries
generated in week one were matched with corresponding text in the software
artefacts for that week. However, as the students often used different terms
in their summaries to those found in the artefacts’ text, it was sometimes im-
possible to exactly match the text found in the summaries with the text in
the artefacts. To solve this issue, we determined the overall meaning of each
sentence in the student summaries and matched it with text found in the cor-
responding software artefacts. After inspecting all of the summaries provided,
six types of software artefacts were found to be related to the development ac-
tivities described in the student summaries. These were issues, pull requests,
milestones, README files, wikis, and commits.

The annotation process undertaken to determine the types of artefacts also
took into account texts found in the sub-artefacts of each of the aforementioned
six types of artefacts. For example, each issue (GitHub’s bug tracker) created by
a developer may result in two different kinds of artefacts (along with the initial
creation of the issue): the issue body that describes what the issue is about, and
feedback from other developers on this issue in the form of comments. Similarly,
pull requests, which allow developers to submit their contributions to an open
project’s development, may result in four different kinds of artefacts in response.
These are the pull requests bodies, comments on each pull request, reviews of

3.3. Software Artefacts Describing Developers’ Activities 29

GitHub Software Artefacts

Issues

Titles

Bodies

Bodies’
Comments

Pull
Requests

Titles

Bodies

Bodies'
comments

Reviews

Reviews'
comments

Commits

Messages

Comments

Milestones

Titles

Description

README
Files Wikis Files

Entries

Figure 3.5. Artefacts and sub-artefacts related to students’
development activities.

the pull requests changes, and subsequent comments on the reviews. Figure 3.5
shows a complete list of the six artefacts and their related sub-artefacts. In total
there are 14 types of artefact that reflect the students’ development activities
included in 209 summaries. These types, as shown in the figure, are issues
(titles, bodies, and comments), pull requests (titles, bodies, comments, reviews,
and review comments), commits (messages and comments), milestones (titles
and descriptions), README files, and wiki entries.

Table 3.2 shows the total number of artefacts created by students in their
projects and the number of times the content of each artefact was referenced
in the student summaries. For example, the first row in the table shows that
four students created 101 issues artefacts, including issue titles, issue bodies,
and issue comments, while developing their project over 14 weeks. During that
time, the students produced a total of 40 summaries. Inspecting the text in the
40 summaries for matches yielded 103 issues that referenced the students’ devel-
opment activities. Here we should note that a single artefact can be referenced
more than once in the student summaries. For example, sentences in summaries
created in a particular week can reference a text in a particular artefact more
than once. Therefore, some cases in the table (e.g., issue: # of matches = 103)
show that the number of the linked artefacts to the summaries is greater than
the total number of artefacts (e.g., total issues = 101) created in a project.

Table 3.2 illustrates that contents found in issues were more referenced in
the student summaries, followed by commits, pull requests, wikis, milestones,

30
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

T
a
bl

e
3.

2.
N
um

be
r
of

so
ft
w
ar
e
ar
te
fa
ct
s
cr
ea
te
d
pe

r
pr
oj
ec
t
an

d
th
e
nu

m
be

r
of

ti
m
es

re
fe
re
nc

ed
in

th
e
st
ud

en
t
su
m
m
ar
ie
s.

P
ro
je
ct

#
of

S
tu
d
en
ts

#
of

S
u
m
m
ar
ie
s

(1
4
W
ee
ks
)

Is
su
es

P
u
ll
R
eq
u
es
ts

M
il
es
to
n
es

R
E
A
D
M
E

W
ik
is

C
om

m
it
s

T
ot
al

#
M
at
ch
es

T
ot
al

#
M
at
ch
es

T
ot
al

#
M
at
ch
es

T
ot
al

#
M
at
ch
es

T
ot
al

#
M
at
ch
es

T
ot
al

#
M
at
ch
es

1
4

40
10

1
10

3
74

92
8

15
1

5
17

31
34

4
11

9
2

4
37

12
2

84
34

30
11

37
1

4
30

33
14

5
39

3
3

36
79

56
53

35
7

35
1

0
41

26
30

9
57

4
4

30
13

3
69

96
29

8
13

1
2

20
31

31
6

53
5

3
28

19
5

16
1

19
7

80
6

24
1

1
31

27
61

7
98

6
4

38
96

82
61

26
6

41
1

0
36

43
22

3
51

T
ot
al

22
20

9
72

6
55

5
51

5
29

2
46

16
5

6
12

17
5

19
1

1,
95

4
41

7

3.3. Software Artefacts Describing Developers’ Activities 31

Figure 3.6. Distribution of number of matches between text in
each of software artefacts and student summaries.

and README files. However, to validate this conclusion, we tested whether the
differences between these artefacts are statistically significant using Wilcoxon
signed-rank test. The Wilcoxon test assesses whether the mean rank between
two matched samples is statistically different. Based on the Wilcoxon test, we
found that all differences between pairs of artefacts are statistically significant
(p-values < 0.05). Figure 3.6 illustrates the distribution of the number of text
matches between each of the artefacts and the student summaries over 14 weeks
and for six projects. The figure shows that most of the students’ development
activities related to issues (mean = 2.65) followed by commits (mean = 1.99)
and pull requests (mean = 1.39).

Issues artefacts are typically used to keep track of a project’s tasks, enhance-
ments, and to fix bugs. Thus, it is not surprising that the content of issues-type
artefacts was extensively used in student summaries at their projects’ develop-
ment stage. Pull requests are commonly used in a project to allow for collab-
oration between team members. For example, developers can use pull requests
to tell their team members about changes made to a project repository. The
pull requests are used to authorise other team members to discuss potential
changes before these changes are implemented. However, the content of the
student summaries was less related to pull requests than to issues artefacts.

32
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

This may indicate that changes made to their projects were discussed less by
the students and thus explain the lower amount of content matched for pull
requests compared with issues in the student summaries.

In addition, milestone artefacts appeared to be less attractive to students
than either issues, pull requests or commits in the content of their summaries.
Developers use milestones to track progress on groups of issues or pull requests
and to provide short information, such as the milestone’s description and its
due dates; this may explain the fewer instances of matched content within the
summaries.

Finally, a GitHub repository project includes a wiki section where developers
can create various documents to share information about the project, including
how the project was designed or to explain its core principles. On the other
hand, a README file can be created automatically during a project setup; it
allows the developer to briefly gives an overview of the project and to explain
how other developers can use and contribute to the project. Rather than using
README files, the students often used the wikis entries as a meeting-area
where they could discuss and regularly document their development activities,
making it a useful source when creating their summaries.

A brief summary: 209 of the summaries in gold-standard, which were
manually annotated for the type of artefacts, revealed 14 types of artefacts
describing developers’ development activities, which could be used as input
sources for our multi-document summarisation. These types are issues (ti-
tles, bodies, and comments), pull requests (titles, bodies, comments, reviews,
and reviews’ comments), commits (messages and comments), milestones (ti-
tles and descriptions), README files, and wiki entries. Among these types
of artefacts, we found that most of the student summaries linked to issues,
followed by commits and then pull requests.

3.3.2 Relationships between software artefacts

Investigating the relationship between the contents of pairs of software arte-
facts can give insight into common development activities between artefacts,
as referenced in the 209 student summaries. This will help us to then develop
techniques to produce multi-document summaries from heterogeneous artefacts.
For example, developers may use one artefact to describe briefly some develop-
ment activity and then give additional information about the same activity in
another artefact. On the other hand, there might be cases where no common

3.3. Software Artefacts Describing Developers’ Activities 33

development activities are shared between different artefacts. Therefore, we as-
sumed that the artefacts that share common activities would provide summaries
containing more details about the same development activity, while adding con-
tent from another artefact that has no such common activity may introduce new
content and add diversity to the automatic summaries.

The correlation between pairs of these artefacts was calculated using Pearson
product-moment correlation and results are presented in Figure 3.7. In each cell
we show the Pearson p-value and the correlation coefficient, respectively. The
relationship between some pairs of artefacts is statistically significant (p < 0.05).
For example, there is some degree of positive correlation between the content
of issues and the content of each of other artefacts referenced in the student
summaries, with the exception of the README files where no relationship was
shown to exist. Similarly, a strong positive correlation between pull requests
and commits indicates that the students commonly discussed the same activities
that were performed in a particular week in these artefacts and usually referred
to contents of these artefacts when writing their summaries.

Figure 3.7. Pearson product-moment correlation between pair
of software artefacts.

34
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

We further analysed the association between the software artefacts to extract
useful information from the 209 summaries by using association rule mining. We
used the Apriori algorithm and the arules (Revelle and Revelle, 2015) library
to find the frequent item set that could describe the rule between the set of
software artefacts and the related student summaries. The association rule
takes the form of � => �, where � ∈ �, � ∈ �, � ∩ � = ∅, and � is the set of
items. The support of the rule � => � determines the probability that A and
B occur in all of the observations, while the confidence determines how often
A and B appear in an observation that contains A. As the rules generated by
the Apriori algorithm are dependent on the input parameters of support and
confidence, choosing these inputs is a matter of trade-off.

Figure 3.8. Total number of rules that can be generated from
the summaries, based on different values of support and confi-

dence.

Therefore, sliding confidence and support values were used, starting at 0.1,
as shown in Figure 3.8. As the data used in this work were sparse, a minimum
support value was taken as 0.1, and the confidence value was taken as 0.6 in
the analysis. This provided us with a satisfactory number of rules (77 rules).

The partial result of the relationship between the software artefacts and the
student summaries is shown in Table 3.3. The rules were sorted in decreasing
order based on the confidence value. Association rule mining reveals informa-
tion about the relationship between the content of different software artefacts
in student summaries. For example, the first rule in Table 3.3 identifies a high

3.4. Validation and Characterisation through Large-Scale Analysis 35

Table 3.3. Top 10 association rules generated using a support
value of 0.1. and a confidence value of 0.6.

Rules Support Confidence Count
{1} {Commits,Milestone,Wiki} => {Issues} 0.335 0.985 66
{2} {Commits,Milestone,PullRequests,Wiki} => {Issues} 0.324 0.984 64
{3} {Milestone,PullRequests,Wiki} => {Issues} 0.345 0.971 68
{4} {Commits,Milestone,Wiki} => {PullRequests} 0.329 0.970 65
{5} {Commits,Issues,Milestone,Wiki} => {PullRequests} 0.324 0.969 64
{6} {Commits,PullRequests,Wiki} => {Issues} 0.416 0.964 82
{7} {Commits,Milestone} => {PullRequests} 0.370 0.960 73
{8} {Commits,Issues,Milestone} => {PullRequests} 0.350 0.958 69
{9} {Commits,Wiki} => {Issues} 0.441 0.956 87
{10} {PullRequests,Wiki} => {Issues} 0.477 0.949 94

probability of selecting content from issue artefacts to form a summary if such
content was also selected from commits, milestones, and wiki entries. Con-
versely, with a low probability, rule #5 shows that content from pull requests
could take part in summary formation if the content from commits, milestones,
and wiki entries was also selected.

A brief summary: Investigating the relationship between pairs of 14 arte-
facts referenced in the gold-standard summaries can reveal the common devel-
opment activities. We found strong positive correlation between pull requests
and commits indicates that students frequently discussed the common activi-
ties in these artefacts during a given week and frequently refer to the contents
of these artefacts when writing their summaries. In addition, analysing the
association between the software artefacts using association rule mining, we
found that selecting content from issue artefacts to form a summary is highly
associated with content being selected from commits, milestones, and wikis
entries.

3.4 Validation and Characterisation through

Large-Scale Analysis

We discussed in Section 3.3.1 the types of software artefacts that reflect the
development activities in the student summaries, which could then be used as
input sources to automatically generate multi-document summaries in a given
time frame. Then, using large-scale analysis of GitHub repositories, we first
tested whether GitHub developers commonly use these types of artefacts during
their projects’ developmental life-cycles (Section 3.4.1). We then investigated
the textual characteristics of the artefacts (Section 3.4.2).

36
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

3.4.1 Validating the existence of software artefacts

Our previously identified software artefacts contain README files and wikis
entries. README files are often automatically set by the GitHub developers,
while wiki files represent external sources of information. As a consequence,
README and wiki files may not reflect any of the project development ac-
tivities. Therefore, we needed to validate that the GitHub developers utilise
the six artefacts and their sub-artefacts, including README files and wikis
entries, by performing a large-scale analysis of how commonly developers use
these artefacts.

Table 3.4. Number of randomly sampled projects from both
data sets.

Type of projects Population Sample
(Conf.95% , Conf. inter. 1%)

Engineered software projects 446,863 (24%) 9,402
Non-engineered software projects 564,467 (30%) 9,443

Is
su

es

Pull
Req

ues
ts

Com
m

its

READM
E

M
ile

st
ones

W
ik

is
0

5000

10000

15000

20000

Software Artefacts

N
u

m
b

er
o

f
A

rt
ef

ac
ts

Engineered software projects

Non-engineered software projects

100%

100%

5.32%

96.39%

6.81%

98.33%

48.33%

98.55% 0.43%

29.30%

1.24%

33.52%

Figure 3.9. Number of software artefacts found in engineered
and non-engineered software projects.

To select repositories for our study, we utilised the RepoReaper tool (Mu-
naiah et al., 2017). The purpose of building the tool was to predict whether a
project is an engineered software project or a noise project (i.e., non-engineered

3.4. Validation and Characterisation through Large-Scale Analysis 37

software projects) using two classifiers: Random Forest classifier and Score-
based classifier. The two classifiers were trained with organisation and utility
data sets. As we aimed at knowing whether GitHub developers commonly
use our defined types of artefacts during their project development, we formed
two data sets, and for each data set, we randomly selected projects from the
RepoReaper dataset, which contains 1853,207 projects. The first data set we
formed included engineered software projects predicted by the Random Forest
classifier, and the second data set contained noise projects predicted by both
the classifiers. We selected the engineered software projects classified by the
Random Forest classifier because its precision scores, when trained with utility
and organisation data sets, scored higher values compared to the score-based
classifier trained with the same data sets (Kalliamvakou et al., 2014). Table 3.4
shows the population of both data sets and the sample size.

To determine whether a project in each data set (engineered or non-engineered
projects) contains a particular type of artefact, we built our web crawler tool.
The tool counts the number of issues, pull requests, commits, README files,
milestones and wikis found in each project in each dataset. The variance in the
number of artefacts between the two data sets can confirm whether developers
interact with these artefacts to develop software applications. For example,
software developers usually use the issue artefacts to track bugs in their ap-
plications. On the other hand, non-engineered projects are noise projects (i.e.
assignment projects), and developers usually do not interact with such artefacts
enough to provide information about their development activities. Therefore,
we needed to track such variance as we particularly wanted to generate multi-
document summaries from software artefacts that described the developers’
development activities.

Our result, depicted in Figure 3.9, reveals that the types of software artefacts
that reflected developers’ development activities in the summaries were found
more in engineered software projects than in non-engineered software projects.
We thus conclude that these artefacts and their sub-artefacts can be utilised as
input sources to generate our automatically multi-document summaries describ-
ing the developers’ development activities. Note: both types of projects have
the same amount of commit artefacts because every project hosted in GitHub
has an initial commit, an activity always introduced by the developer to start
a new project.

A brief summary: Our result shows that developers of engineered software

38
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

projects do interact with the six artefacts and their sub-artefacts. This con-
firms that these artefacts can be used as input sources to generate summaries
including information about developers’ development activities.

3.4.2 Characteristics of GitHub artefacts

To study the characteristics of artefacts text, we first randomly selected 1,038
projects (confidence level 99% and confidence interval 4%) out of the engineered
software projects (see Table 3.4) to form the sample data set. Then, we collected
the content found in six artefacts and their sub-artefacts using GitHub REST
API2 and our web crawler, which was used to collect the wikis’ contents. The
types of artefacts we collected were issues (titles, bodies, and comments), pull
requests (titles, bodies, comments, reviews, and reviews’ comments), commits
(messages and comments), milestones (titles and descriptions), wiki entries, and
README files.

We first explored our collected 1,038 engineered software projects (see Ta-
ble 3.5) to reveal the number of artefacts that the developers used during their
projects’ development life-cycle. Table 3.5 illustrates that developers used the
commit artefact in all the projects, followed by README files (100% and
85.55% respectively). In addition, issues and pull requests artefacts were used
almost equally (36% for each artefact) by developers across all the projects.
Wikis and milestones were the least used among the artefacts (7.04% and 6.75%,
respectively). The low percentage of wiki use could show that developers usu-
ally do not share information about the project’s design or explain its main
principles. In addition, the low percentage of milestones could indicate that
developers rarely track the progress of issues or pull requests in their projects.

We noted that developers usually provide descriptions for the issues they en-
counter in their projects and commonly discuss them by providing comments.
For example, we found that 10,902 (92.36%) of the issues have descriptions (i.e.,
issue bodies) and, on average, 2.68 of comments were provided per issue. Sim-
ilarly, 6,041 (92.24%) of collected pull requests had descriptions (pull requests
bodies), and each pull request had one comment on average. Hence, developers
use pull requests bodies and comments to discuss their proposed features and
receive feedback from collaborators. Before a pull requests is merged into a
project, pull requests reviews can also be used to allow collaborators to discuss
and comment on the changes proposed in a pull requests, approve these changes,
or even request further changes. Across the 1,038 collected projects, 5.49% of

2GitHub API REST: https://docs.github.com/en/rest, accessed on September 3, 2018

 https://docs.github.com/en/rest

3.4. Validation and Characterisation through Large-Scale Analysis 39

T
a
bl

e
3.

5.
N
um

be
r
of

ar
te
fa
ct
s
fo
un

d
in

en
gi
ne

er
ed

so
ft
w
ar
e
pr
oj
ec
ts

da
ta

se
t.

S
of
tw

ar
e
ar
te
fa
ct

P
ro
je
ct
s
h
av
e
ar
te
fa
ct

#
of

ar
te
fa
ct

P
ro
je
ct
s
d
o

n
ot

h
av
e
ar
te
fa
ct

Is
su
e
T
it
le
s

36
.8
1%

11
80

3
63
.1
9%

Is
su
e
B
od

ie
s

-
10
90

2
-

Is
su
e
C
om

m
en
ts

-
31

74
6

-
P
ul
lR

eq
ue
st

T
it
le
s

36
.0
4%

65
49

63
.9
6%

P
ul
lR

eq
ue
st
s
B
od

ie
s

-
60

41
-

P
ul
lR

eq
ue
st
s
C
om

m
en
ts

-
87

71
-

P
ul
lR

eq
ue
st

R
ev
ie
w
s

-
36

0
-

P
ul
lR

eq
ue
st

R
ev
ie
w
s’

C
om

m
en
ts

-
12

52
-

M
ile
st
on

e
T
it
le
s

6.
75

%
28

3
93

.2
5%

M
ile
st
on

e
D
es
cr
ip
ti
on

-
10

9
-

C
om

m
it
M
es
sa
ge
s

10
0%

27
23

20
0%

C
om

m
it
C
om

m
en
ts

-
12

54
-

W
ik
iF

ile
s

7.
04

%
29

1
92

.9
6%

R
E
A
D
M
E

F
ile

s
85

.5
5%

88
8

14
.4
5%

40
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

the pull requests had reviews and each review artefact received on average 3.47
comments.

0

1

2

3

4

5

6

7

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

Re
ad

ab
ili

ty
 S

co
re

Flesch Reading Ease Score
Shannon's Entropy

En
tr

op
y

Sc
or

e

8th to 12th grade
(13 to 18 years old)

A lot of
information

Little
information

Very
easy

Very
difficult

Figure 3.10. Shannon’s entropy and Flesch reading ease scores
for artefacts texts.

Next, we analysed the text in our collected artefacts (as shown in Table 3.5),
looking for two features: entropy and readability. To calculate readability of the
artefacts’ texts we used the Flesch reading ease metric. We applied Shannon’s
entropy to gauge the amount of information in each artefact’s text. For the
purpose of achieving rich multi-document summarisation, we are interested in
identifying and including artefact texts that are easy to read and that contain
lots of information.

Figure 3.10 shows the median values of the Flesch reading ease scores and
Shannon’s entropy values for each of the software artefacts. For example, the
Flesch metric test found that texts within issue and pull requests comments,
issue and pull requests bodies, pull requests reviews’ comments, and commit
comments ranged from easy to read to fairly difficult to read and could thus be
understood by 13-year-old to 18-year-old students (readability median values
ranged from 53.4 to 64.8). Comparing the median of readability scores of the
artefact texts with the median value of the student summaries (median value
= 46.5, see Figure 3.1), we could conclude that the text in the artefacts would
be easier to read and understand.

Similarly, the entropy test applied to these aforementioned artefacts gave
median values between 3.35 and 5.36. In comparison, the median score of the
student summaries was 5.33, which is a bit higher than some of the artefacts’

3.5. Characteristics of Source Code Comments 41

scores, indicating that the student summaries contained a lot of information.
Further analysis showed an opposite trend between entropy and readability in
wikis and milestone titles across all the artefacts. The wikis texts scored a
median value of 36.2 (i.e., difficult to read) on the readability metric, while
they scored 5.31 (contained much information) on the entropy metric. On the
other hand, milestone titles scored the lowest median value (1.00) on the entropy
metric, while their readability scored the highest median value (i.e., very easy to
read). The wiki contents contained lengthy text with median values of 78 words,
1.9 syllables per word, 13 sentences and 46 unique words; this was favourable
for their entropy but not for readability. On testing milestone titles, these
were found to be quite short (median values: 3 words, 1 syllables per word, 1
sentence, and 2 unique words). Therefore, there was negative impacts on the
amount of information they contained but not for readability.

A brief summary: Analysing the artefacts produced within 1,038 engi-
neered software projects, we found that commits and README files were
the most used artefacts; 100% and 85.55% of the projects contained these
artefacts, respectively. In addition, 36% of the projects included issues and
pull requests, while wikis and milestones were used less by developers: Wikis
and milestones were included in only 7.04% and 6.75% of the projects, respec-
tively. In analysing text quality of our collected artefacts, using Shannon’s
entropy and Flesch reading ease metric, we found that issue and pull requests
comments, issue and pull requests bodies, pull requests reviews’ comments,
and commit comments were easier to read than those of the student sum-
maries and contained a reasonable amount of information. Therefore, for
our summarisation approaches, selecting contents from these artefacts shows
the potential to generate readable summaries contain a reasonable amount of
information.

3.5 Characteristics of Source Code Comments

Section 3.3.1 discussed the types of software artefacts contributed in the forma-
tion of the student summaries. However, there was no clear evidence that the
student summaries referenced information from comments in the source code.
Code comments are an essential part of the maintenance and the development
of software because they assist developers in comprehending programs (Takang,
Grubb, and Macredie, 1996; Roehm et al., 2012). This has led researchers to en-
deavour to automatically generate comments for source code, that is, to convert

42
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

the code into a natural language descriptor that describes a program’s function-
ality (Haiduc, Aponte, and Marcus, 2010; Sridhara et al., 2010). We conjecture
that functionality implemented in source code would play an important role
in a summary of developer activity, and we therefore investigate whether the
characteristics of code comments are suitable for them to be considered as a
source for the summaries as well.

As we are not aware of any related work that analyses comments manually
written by developers in a detailed way, we studied the potential of code com-
ments to be used in summarisation by assessing the comments in Java source
code against three types of knowledge about primitive variables (see chapter 5).
This section provides a descriptive analysis of code comments extracted from
980 software engineered projects, written in seven common programming lan-
guages: C/C++, C#, Java, JavaScript, Python, PHP and Ruby. The analysis
will provide an understanding of the comment text properties using 26 text-
based features.

To select repositories for our study, we used 1,038 that were classified as
engineered software projects (discussed in section 3.4.2). We then filtered out
58 projects that had no source code files written using these programming lan-
guages, or else had been made private. We then extracted the source code
comments from the remaining 980 projects using the “Comment Lister“ tool3,
which was built to automatically extract code comments that support the afore-
mentioned seven programming languages (Hata et al., 2019). The total number
of comments extracted was 1,868,073 from 115,405 files.

Table 3.6. Number of comments extracted from different types
of files found in 980 engineered software projects written in seven

programming languages.

No. File type Total number
of files

Total number
of comments

Total number
of projects

1 C/C++4 21,407 643,031 190
2 Java 37,838 423,989 230
3 PHP 23,084 294,154 195
4 JavaScript 10,612 221,206 236
5 Python 13,982 170,190 262
6 C# 3,649 76,860 49
7 Ruby 4,833 38,643 181
Total 7 115,405 1,868,073 1,343

3Comment extractor tool: https://github.com/takashi-ishio/CommentLister, ac-
cessed on 6 July 2021

4File types, including .c, .cc, .cp, .cx, .cxx, .c+, .c++, .h, .hh, .hxx, .h+, .h++, .hp, and
.hpp

https://github.com/takashi-ishio/CommentLister

3.5. Characteristics of Source Code Comments 43

Table 3.6 shows the number of extracted comments from the source code
file found in 980 projects. The first column of the table shows the file type
from which the comments were extracted. The second column, shows the total
number of files for that file type. The third column shows the total number of
comments extracted from all the files for that file type. The last column shows
the number of projects containing the file type. Note that a single project can
have files written in one or more languages, which can explain why the total
numbers of projects (1,343) is not equal to the total projects collected (980
projects). From the table, we can see that across all the projects, developers
most often provided comments for code written in C/C++ followed by Java
programming languages.

We next analysed the texts of the comments to explore their textual features
compared to other software artefacts, as depicted in figures 3.11a and 3.11b.
Figure 3.11b includes fewer features than Figure 3.11a because not all feature
values can be plotted on a log scale. In addition, we plotted the median values
in both figures since the median values are less sensitive to outliers.

From the Figure 3.11, it is clear that most artefacts’ texts share common
textual properties. For example, developers tend to write comments consisting
of a single sentence. Comparing the median number of sentences in comments
to the number of sentences found in other artefacts, we found that issue titles,
pull requests titles, and milestone descriptions were generally one sentence in
length. This was expected as these artefacts usually contain only brief texts. In
contrast, all the other artefacts were found to consist of 2 to 3 sentences, except
issue bodies, wikis, and README files, which were found to usually consist of
7, 13, and 24 sentences, respectively. This is because the nature of these arte-
facts would require developers to provide more details about their development
activities. Concerning the average sentence length by the number of words, we
found code comments, pull requests comments and milestone descriptions had
median value of 6 words per sentence. The highest number of words per sen-
tence was found in pull requests reviews’ comments, issue comments (median
values of 8 words and 7.9 words, respectively). In contrast, milestone titles had
the lowest average sentence length—the comments tended to be single words
only.

We next explored the number of difficult words (i.e., words not belonging to
the Dale list of 3,000 familiar words) found in the text of the artefacts. Thirty
percent of words in pull requests comments, issue comments, milestone titles,
pull requests reviews’ bodies, commit comments, and issue bodies were found
to contain difficult words, compared to 50% to 60% of words found in code

44
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

W
ord

co
unt

Char
s

co
unt in

cl
udin

g
sp

ac
es

Char
s

with
out sp

ac
es

No. o
f sy

lla
ble

s
in

a
word

Sen
te

nce
le

ngth

Uniq
ue

word
s

Avg
. w

ord
le

ngth
(c

har
s)

Avg
. s

en
te

nce
Len

gth
(w

ord
s)

No. o
f m

onosy
lla

bic
w

ord
s

No. o
f poly

sy
lla

bic
word

s

Syl
la

ble
s

per
w
ord

Diff
ic

ult
word

s

No. o
f sh

ort
word

s
(3

ch
ar

s)

No. o
f lo

ng
word

s
(>

=7
ch

ar
s)

Longes
t se

nte
nce

(c
har

s)

Longes
t word

s
(c

har
s)

Longes
t word

s
by

num
ber

of sy
lla

ble
s

Est
im

at
ed

re
ad

in
g

tim
e

Est
im

at
ed

sp
ea

ki
ng

tim
e

Dal
e-

Chal
l r

ea
dab

ili
ty

in
dex

Auto
m

at
ed

re
ad

ab
ili

ty
in

dex

Cole
m

an
-L

ia
u

in
dex

Fle
sc

h
re

ad
in

g
ea

se
sc

ore

Fle
sc

h-K
in

ca
id

gra
de

le
ve

l

Gunnin
g

fo
g

in
dex

Shan
non

en
tro

py

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050
1100
1150
1200

Q
Q Q

Q Q Q Q Q Q Q Q Q Q Q
Q

Q Q Q Q Q Q Q
Q

Q Q Q

V
a

lu
e

s
(M

e
d

ia
n

)

Commit CommentsIssue Titles

Issue Bodies

Issue Comments MilestoneTitlesMilestone Description

Pull Requests Titles

Pull Requests Bodies

Pull Requests CommentsQ

Pull Requests Reviews' Bodies

Pull Requests Review Comments

README FilesWikis FilesSource Code Comments

Commit Messages

(a)

W
ord

co
unt

Char
s

co
unt in

cl
udin

g
sp

ac
es

Char
s

with
out sp

ac
es

No. o
f sy

lla
ble

s
in

a
word

Sen
te

nce
le

ngth

Uniq
ue

word
s

Avg
. w

ord
le

ngth
(c

har
s)

Avg
. s

en
te

nce
Len

gth
(w

ord
s)

No. o
f m

onosy
lla

bic
w

ord
s

Syl
la

ble
s

per
w
ord

Diff
ic

ult
word

s

No. o
f sh

ort
word

s
(3

ch
ar

s)

Longes
t se

nte
nce

(c
har

s)

Longes
t word

s
(c

har
s)

Longes
t word

s
by

num
ber

of sy
lla

ble
s

Est
im

at
ed

re
ad

in
g

tim
e

Est
im

at
ed

sp
ea

ki
ng

tim
e

Dal
e-

Chal
l r

ea
dab

ili
ty

in
dex

Fle
sc

h
re

ad
in

g
ea

se
sc

ore

Gunnin
g

fo
g

in
dex

Shan
non

en
tro

py
0.01

0.1

1

10

100

1000

10000

Q

Q Q

Q

Q

Q

Q Q
Q

Q

Q Q

Q

Q

Q

Q Q

Q

Q

Q
Q

L
o

g
10

(m
e

d
ia

n
v

a
lu

e
s

)

Commit CommentsIssue Titles

Issue Bodies

Issue Comments MilestoneTitlesMilestone Description

Pull Requests Titles

Pull Requests Bodies

Pull Requests CommentsQ

Pull Requests Reviews' Bodies

Pull Requests Review Comments

README FilesWikis FilesSource Code Comments

Commit Messages

(b)

Figure 3.11. Text characteristics of source code comments and
compared to other 14 types of software artefacts. (a): Median
values of 26 text features. (b): Log10 of the median values of 21
text features—features with median values less than or equal to

zero were excluded.

3.5. Characteristics of Source Code Comments 45

comments, README files, wikis entries, milestone descriptions, issue titles,
commit messages, and pull requests titles. This variance in the percentage of
difficult words may be because developers used specific words related to their
activities to describe their projects’ development activities.

W
ord

co
unt

Char
s

co
unt in

cl
udin

g
sp

ac
es

Char
s

with
out sp

ac
es

No. o
f sy

lla
ble

s
in

a
word

Sen
te

nce
le

ngth

Uniq
ue

word
s

Avg
. w

ord
le

ngth
(c

har
s)

Avg
. s

en
te

nce
Len

gth
(w

ord
s)

No. o
f m

onosy
lla

bic
w

ord
s

No. o
f poly

sy
lla

bic
word

s

Syl
la

ble
s

per
w
ord

Diff
ic

ult
word

s

No. o
f sh

ort
word

s
(3

ch
ar

s)

No. o
f lo

ng
word

s
(>

=7
ch

ar
s)

Longes
t se

nte
nce

(c
har

s)

Longes
t word

s
(c

har
s)

Longes
t word

s
by

num
ber

of sy
lla

ble
s

Est
im

at
ed

re
ad

in
g

tim
e

Est
im

at
ed

sp
ea

ki
ng

tim
e

Dal
e-

Chal
l r

ea
dab

ili
ty

in
dex

Auto
m

at
ed

re
ad

ab
ili

ty
in

dex

Cole
m

an
-L

ia
u

in
dex

Fle
sc

h
re

ad
in

g
ea

se
sc

ore

Fle
sc

h-K
in

ca
id

gra
de

le
ve

l

Gunnin
g

fo
g

in
dex

Shan
non

en
tro

py
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

V
al

u
es

(m
ed

ia
n

)

C/C++Java PHP JavaScript PythonC#Ruby

Figure 3.12. Text characteristics of source code comments
grouped by file types.

In addition, the median of the entropy values and the Flesch reading ease
scores indicates that the comments contained little information (entropy: 2.58)
and that the readability of text was easy to read. Comparing the entropy value
of the comments to those of the other artefacts, we found that pull requests
titles (median: 2.32), issue titles (median: 2.75), and commit messages (median:
2.80) were the artefacts that shared the closest entropy values with the source
code comments. This could be because these artefacts share a common number
of words (issue titles and comment messages had a median score of 7 words and
pull requests titles had a median score of 5 words), the number of unique words
(issue titles and comment messages had a median of 7 unique words and pull
requests titles had a median of 5 unique words), and the number of sentences
(issue and pull requests titles had a median score of one sentence, and comment
messages had a median score of 2 sentences). On the other hand, README
Files scored the highest entropy value (median: 6.20) where the milestone titles
(median: 1) scored the lowest value among all the artefacts. Furthermore,

46
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

concerning the readability of comments, we found that the comments scored
60.82 on the Flesch reading ease metric and comparing this value with the
readability of other artefacts, we found that issue comments and pull requests
comments were also classed as easy to read.

Grouping the comments by file types to investigate the characteristics of
the comments based on their text features is depicted in Figure 3.12. From the
figure, we can see that the majority of comments share the same text features,
such as average word length by the number of characters, average sentence
length by the number of words, indicating that the developers’ style in writing
the comments is similar among the seven programming languages.

A brief summary: Analysing 1,868,073 comments extracted from source
codes written by seven programming languages reveals that the comments
share text features, such as the number of sentences, the average number of
words per sentence, difficult words, entropy and readability, to those features
of other artefacts. Code comments had a median of one sentence, containing
an average of 6 words per sentence; 30% of words in the comments were
considered difficult; they contained less information (entropy: 2.58) but were
easy to read and understand. In addition, developers’ writing styles did not
differ much with any of the programming languages when documenting the
source code.

3.6 Threats to Validity

Our gold-standard summaries were created by students (undergraduate and
graduate students) who may not have experience in software development.
Therefore, involving professional developers to create gold-standard summaries
may reveal different types of artefacts or different characteristics of the sum-
maries compared to our results discussed in Section 3.3.

Considering the duration of each course in which the students are involved,
which is usually a semester, the students can gain good acknowledge of inter-
acting with the GitHub platform and gain a good experience about software
development. Therefore, creating gold-standard summaries using students de-
velopers should have no effect on our results for identifying the software artefacts
referenced in these summaries.

In addition, our results shown Figure 3.2 revealed some variance of the sum-
maries characteristics that were written by 43 undergraduate students (Course#1

3.7. Implications 47

and Course#3), and those summaries characteristics written by 10 graduate stu-
dents (Course#3). Due to the low number of students involved in Course#2,
our results drawn from Figure 3.1 should be valid.

3.7 Implications

Our gold-standard summaries were created by undergraduate and graduate stu-
dents involved in different courses towards their capstone projects. A careful
look at Figure 3.2, the summaries have different text characteristics, suggesting
that determining the ideal characteristics of the gold-standard summaries are
subject to various factors, including the participants’ educational background
and the types of the projects. Therefore, developers need to be aware of these
factors to generate automatic summaries whose properties close in style to the
human-written summaries, such as the length and the readability of summaries.

3.8 Conclusion

Gold-standard creation plays a vital role in multi-document summarisation. To
the best of our knowledge, there are no resources available that can generate
multi-document summarisation from heterogeneous software development arte-
facts. In this chapter, we created our gold-standard summaries, studied their
textual features, and then used them to manually identify a collection of soft-
ware artefacts recording developers’ development activities. In addition, we
validated the existence of the identified software artefacts through undertaking
a large-scale analysis of engineered software projects. Following that, as the
gold-standard summaries did not contain evidence that developers referenced
source code, we explored the features of those textual artefacts (i.e., the source
code comments) written in seven programming languages. These findings pro-
vided us with the necessary resources for our study that is reported in the
following chapters of this thesis.

48
Chapter 3. Creating Resources for Summarising Multi-document Software

Artefacts

The next chapter was published (Alghamdi, Treude, and Wagner, 2020) and
presented in the 16th International Conference on Parallel Problem Solving

from Nature (PPSN 2020).The conference ranked (A) based on the Australian
CORE ranking system. I contributed to the design, implementation, and

evaluation of the proposed approach.

49

Chapter 4

Multi-document Summarisation of
Heterogeneous Software Artefacts

4.1 Introduction

In Chapter 3 we identified the types of software artefacts and we also showed
that the these are common types used by developers during the development
of their projects using the GitHub platform. In this chapter, we present a first
framework to create multi-document summaries from heterogeneous software
artefacts within a given time frame. In particular, we aimed at an extractive
approach, which generates a new summary from documents without creating
new sentences. Figure 4.1 provides an overview of the proposed approach.

14 GitHub projects

Group artefacts’ text
and summaries by 14

weeks

Extract artefact data
per type

15 types of artefact

Issues
Commits

Pull requests

- Sentence
segmentation

- Tokenization
- Stop words

removal
- Stemming

503 summaries
(Gold-standard)

SingleSubsetAll

Artefacts’ input scenarios

Preprocessing

Multi-document extractive
summarisationFeature extraction

Summary
(single artefact)

Summary
(subset of artefacts)

Summary
(all artefacts)

,
(1)

1
21
.
.
9

3
8
.
.
2

7
11
.
.
63

1
21
.
.
9

15
12
.
.
6

,
(2)

11
7
.
.
6

5
7
.
.
3

8
16
.
.
33

11
0
.
.
5

6
51
.
.
18

Week No.
,

Week No.,

,

Week No.,

Week No.

Week No.
,

(1) Bag of words
(2) 26-text-based features

(1) Optimisation algorithms
(2) Random selection approach

Artefact Gold-standard

Preprocessed sentences

Feature vectors

Figure 4.1. Overview of the proposed multi-document sum-
maries of heterogeneous software artefacts.

50
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

We can illustrate our problem in summarising developers’ artefacts by look-
ing at an example of a summary written by a student software developer, along-
side the various artefacts that contain parts of the information conveyed in this
manually written summary (Figure 4.2).

Let us consider two possible scenarios using the aforementioned example:
(1) a developer has been on holiday during this period and would like to be
updated, and (2) a new developer joins the team and would like to know what
has happened recently in the current software project. In both cases, going
through many related artefacts and collecting the most useful information from
them can be tedious and time-consuming. It is scenarios like these that we are
targeting in our study, as solutions to these problems can ultimately increase the
productivity of software developers and reduce information overload (Treude,
Figueira Filho, and Kulesza, 2015).

Figure 4.2. An example of an anonymised student summary
(left) linked to the content of related software artefacts (right).

To devise solutions in such cases, we used a combination of methods from
data-driven search-based software engineering (DSE) (Nair et al., 2018). DSE
combines insights from mining software repositories (MSR) and search-based
software engineering (SBSE). While MSR formulates software engineering prob-
lems as data mining problems, SBSE reformulates such problems as optimisa-
tion problems and uses meta-heuristic algorithms to solve them. Both MSR and
SBSE share the common goal of constantly advancing software engineering. In
this study, we suggest to improve software engineering – in particular the cre-
ation of software development activities – by mining the created artefacts for
summaries.

4.2. Data Preparation 51

As discussed in Chapter 2.3, several approaches have been studied for sum-
marising heterogeneous software artefacts. These approaches have mostly fo-
cused on summarising a single type of artefact, and they have not taken into
consideration the production of summaries in a given time frame. We therefore
decided to focus on those two elements: the production of automatic multi-
document summaries from heterogeneous software artefacts within a given time
frame.

The remainder of this chapter is structured as follows. First, Section 4.2
describes the data sources and preprocessing steps for this study. Section 4.3
defines the problem of summary-generation as an optimisation problem based
on cosine similarity and 26 text-based metrics. Sections 4.4 and 4.5 include the
results of our computational study and expert annotation of the results. Threats
to validity are discussed in Section 4.6 and our conclusions are presented in
Section 4.7.

4.2 Data Preparation

To better understand what human-written summaries of time-windowed soft-
ware development artefacts look like, it was necessary to create our own gold-
standard (described in Section 3.2). The basis of this gold-standard was a total
of 503 summaries that were produced (mostly) on a weekly basis by 50 students
over 14 weeks and for 14 (university-internal) GitHub projects1. The students
were working in teams of three or four on their capstone projects, toward a
Bachelor degree, with clients from local industry (43 students in total) or to-
ward their Masters degree, with clients from academia (7 students in total).
To ensure the usefulness of the student summaries, each student summary was
assessed as part of their course assessments during the particular semester. The
summaries were anonymised before conducting this work to ensure confidential-
ity and anonymity of the students.

We examined these summaries, as discussed in Section 3.2.2, to understand
the general properties of human-written summaries, such as a summary’s typical
length and the amount of information we could expect each summary to contain.
Additionally, the student summaries could provide us with an understanding of
the common types of artefacts related to development activities and would help

1One of the student projects, which involved three students, was unavailable for data col-
lection when our summarisation approach was built. Therefore, the number of gold-standard
summaries was reduced by 42 summaries compared to the projected number of gold-standard
summaries mentioned in Chapter 3.2.1.

52
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

Algorithm 1: Cleansing artefacts text(T) and the text of student
summaries (S)
Input: T - Artefacts text
Output: �C - Cleaned T

1. Remove code blocks, tables, and images.
2. Split text into paragraphs.
3. Remove embedded URLs, file paths, file extensions, and non-ASCII

characters if they formed a paragraph.
4. Replace special characters (e.g., exclamation marks, brackets, single or

double quotes) with single white spaces.
5. If a paragraph contains only one sentence ending with a comma or

semicolon, connect this paragraph to the next one.
6. Split the paragraph into sentences using Apache OpenNLP sentence

detector.
7. Discard any sentences that contain only URLs, file paths, and

punctuation. This is needed as the textual artefacts are not well-formed
and inconsistent in style.

8. Tokonise each sentences using OpenNLP tokenizer tool.
9. Apply word stemming using Snowball steaming tool and stop word

removal.
10. return �C

Input: S - Text of student summaries
Output: �B - Cleaned S

1. Split text into paragraphs.
2. Remove embedded URLs, file paths, file extensions, and non-ASCII

characters if they formed a paragraph.
3. Replace special characters (e.g., exclamation marks, brackets, single or

double quotes) with single white spaces.
4. Split the paragraph into sentences using Apache OpenNLP sentence

detector.
5. Tokonise each sentence using the OpenNLP tokeniser tool.
6. Apply word stemming using Snowball steaming tool and stop word

removal.
7. return �B

4.2. Data Preparation 53

Table 4.1. The extracted sentences from the student summaries
per project over 14 weeks.

Project No. Number of
Students

Number of
Summaries in 14 Weeks

Number of
Sentences

1 3 35 100
2 3 3 38
3 4 38 42
4 4 40 101
5 4 37 104
6 4 30 80
7 3 32 141
8 3 11 36
9 4 46 165
10 4 44 141
11 3 38 150
12 4 46 142
13 3 27 105
14 4 51 264
Total 50 503 1,609

Table 4.2. Total number of artefacts per type and number of
extracted sentences for each type.

Type Number of
Artefacts

Number of
Sentences

Issue titles (IT) 1,885 1,885
Issue bodies (IB) 1,885 5,650
Issue body comments (IBC) 3,280 8,754
Pull requests titles (PRT) 1,103 1,103
Pull requests bodies (PRB) 1,103 5,176
Pull requests body comments (PRBC) 897 1,811
Pull requests reviews (PRRv) 2,019 2,762
Pull requests reviews’ comments (PRRvC) 1,286 1,737
Commit messages (CM) 4,562 7,856
Commit comments (CMC) 30 55
Milestone titles (MT) 103 103
Milestone description (MD) 103 142
README files (RMe) 14 2,678
Wiki files (Wiki) 492 16,436
Releases (Rel) 1 4
Total 18,763 56,152

54
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

us identifying which sentences from which artefacts should be selected for our
extractive summarisation approach.

To automatically collect the summaries, we used a Slack bot that asked
the students to write summaries on a weekly basis to record their project de-
velopment activity. The written summaries were automatically recorded and
collected in response to the question: "If a team member had been away, what
would they need to know about what happened this week in your project?".
Figure 4.2 shows an example: the question and the student’s summary are in
the left column, and the relevant artefacts are in the right column. Note that
the students only provided the summary; that is, they did not provide a list of
the relevant artefacts.

We then used 15 types of textual artefacts in the GitHub repositories as in-
put sources for our multi-document summarisation techniques. These artefacts
are issues (titles, bodies, and comments), pull requests (titles, bodies, com-
ments, reviews, and reviews’ comments), commits (messages and comments),
milestones (titles and descriptions), releases2, wiki entries, and README files.
As discussed in Section 3.3, the selection of these artefacts was based on how
much information they provided about developers’ development activities, as
also found in our gold-standard summaries.

GitHub is generally characterised as an unstructured and informal means of
communication, even though best practice guides might be in place at times.
Consequently, the documents to be summarised as well as the summaries them-
selves needed to first undergo various preprocessing steps to eliminate noisy
data, as these would otherwise negatively affect the eventual evaluation of our
summarisation approaches. These preprocessing steps included sentence split-
ting, stop word removal, and stemming. Also, we removed source code blocks
from the software artefacts due to lack of evidence that the student summaries
cited code from actual files. Algorithm 1 describes our data cleaning process
for texts of both the artefacts and the summaries. The number of sentences
remaining in the artefact texts and the student summaries, after the cleansing
process, are shown in Table 4.2 and Table 4.1, respectively.

4.3 Methodology

In our approach, we sought to extract text from a set of heterogeneous software
artefacts so that the resulting summaries would be similar in style to those

2Release artefacts were added in this study because we found that these were used by
students in their projects, and formed part of their own project development activities.

4.3. Methodology 55

found in the gold-standard summaries.
In the next sections, we introduce two ways of measuring similarity (Sec-

tion 4.3.1), we revisit the definition of cosine similarity in Section 4.3.2, and we
define the iterative search heuristics in Section 4.3.3.

4.3.1 Summaries based on word similarity and feature

vector similarity

Historically, the selection of important sentences for inclusion in a summary
is based on various features represented in the sentences such as sentence posi-
tion (Ouyang et al., 2010), sentence length (Kupiec, Pedersen, and Chen, 1995),
sentence centrality (Erkan and Radev, 2004), and word frequency (Luhn, 1958).
Determining these features in the selection of important sentences is not sim-
ple and depends largely on the type of documents to be summarised (Torres-
Moreno, 2014).

We considered two ways of characterising sentences: (1) based on the simi-
larity of words, and (2) based on the similarity of feature vectors. In both cases,
the goal was to select sentences from the collection of software artefacts so that
the characteristics of the resulting summary would be close to the characteristics
of a target.

First, word similarity between two texts was defined by the number of times
a term occurred in both texts, after text cleansing was performed (See algo-
rithm 1). To achieve this, we used a vector-based representation, where each
element denoted the number of times a particular word occurred in the sentence.

Second, as an alternative to word similarity and for situations where a ref-
erence text is unavailable, we considered 26 text-based features of sentences
that can capture different aspects of readability metrics, information-theoretic
entropy and other lexical features (see Table 4.3). Each sentence is represented
as a 26-dimensional vector of the feature values. For an initial characterisation
of this high-dimensional dataset, we refer the interested reader to (Alghamdi,
Treude, and Wagner, 2019).

56
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

Table 4.3. Features used to represent each sentence.

No. Feature

F1. Word count
F2. Chars count including spaces
F3. Chars without spaces
F4. No. of syllables in a word
F5. Sentence length
F6. Unique words
F7. Avg. word length (chars)
F8. Avg. sentence Length (words)
F9. No. of monosyllabic words
F10. No. of polysyllabic words
F11. Syllables per word
F12. Difficult words
F13. No. of short words (≤ 3 chars)
F14. No. of long words (>= 7 chars)
F15. Longest sentence (chars)
F16. Longest words (chars)
F17. Longest words by number of syllables
F18. Estimated reading time
F19. Estimated speaking time
F20. Dale-Chall readability index
F21. Automated readability index
F22. Coleman-Liau index
F23. Flesch reading ease score
F24. Flesch-Kincaid grade level
F25. Gunning fog index
F26. Shannon entropy

4.3. Methodology 57

4.3.2 Cosine similarity

The most popular similarity measure used in the field of text summarisation is
cosine similarity (Manning, Raghavan, and Schütze, 2008) as it has advanta-
geous properties for high-dimensional data (Sohangir and Wang, 2017).

To measure the cosine similarity between two sentences G and H – respec-
tively their representation as a vector of word counts or the 26-dimensional
representation – we first normalised the respective feature values (each inde-
pendently) based on the observed minimum and maximum values, and then
calculated the cosine similarity:

cos(x, y) = xy

‖x‖‖y‖ =
∑=
8=1 x8y8√∑=

8=1 (x8)2
√∑=

8=1 (y8)2
(4.1)

We used cosine similarity in our optimisation algorithms as the fitness func-
tion to guide the search toward summaries that are close to the target vector.

4.3.3 Algorithmic approaches

Extractive multi-document summarisation can be seen as an optimisation prob-
lem, where the source documents form a collection of sentences, and the task is
to select an optimal subset of the sentences under a length constraint (Peyrard
and Eckle-Kohler, 2016). In this study, we aimed to generate summaries with
up to five sentences, as this was approximately the length of the gold-standard
summaries that the students had written.

We now present our optimisation algorithms to automatically produce sum-
maries from heterogeneous artefacts within a given time frame. We utilised
five algorithms, and we also created summaries at random to estimate a lower
performance bound. We used cosine similarity as the scoring function in order
to compute either the word similarity or the feature similarity with respect to
a given target. In our case, the targets are the gold-standard summaries. By
doing so, we aim at capturing the developers’ activities described in the soft-
ware artefacts that were created or updated within the given time frame and
that were then cited in the gold-standard summaries in order to generate new
human-like summaries.

Our first approach was to use a brute force algorithm (Algorithm 2). The al-
gorithm keeps track of the best combination in a given set of artefacts’ sentences
to serve as an automatic summary. The summaries in each of the generated
combinations were limited a maximum of five sentences. We used this as a

58
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

performance reference, because we did not know a-priori what good cosine sim-
ilarity values might be. The algorithm starts with an empty set (�() that
makes up the potential automatic summary generated from a set of artefacts’
sentences (�(). The algorithm then creates all the possible combinations (��)
of five sentences from (�(). In steps 4 to 7, the algorithm iterates over all the
combinations to select the best combination that maximises the cosine similar-
ity between each combination (��8) and the student summary (((). Finally,
the algorithm returns this combination (�() as an automatically produced sum-
mary.

Algorithm 2: Brute force algorithm
Input: �(- artefacts’ sentences, ((- student summary, and)!�(-

targeted length of the generated summary.
Output: GS – generated summary
1: �(←Ø
2: ��← 2A40C4�;;�><18=0C8>=B(�(,)!�()
3: for all (��8 ∈ ��) do
4: if 2>B(8<8;0A8CH(��8, (() ≥ 2>B(8<8;0A8CH(�(, (() then
5: �(← ��8
6: end if
7: end for
8: return �(

The second algorithm is a Greedy approach (see Algorithm 3). The algo-
rithm iteratively builds up a summary sentence-by-sentence so that the cosine
similarity between the potential automatic generated summary and the student
summary is optimal. In step 1, the algorithm creates up to five sentences to
form the summary. In each iteration, the algorithm compares each of the arte-
facts’ sentences (�() to the student summary ((() to determine the best single
sentence whose cosine similarity to the ((() is better than other sentences in
(�(). Then it adds this sentence to the potential produced summary (�() as
shown in steps 5-9. The algorithm in steps 10-12 checks whether adding the
best single sentence in each iteration (14BC) to the (�() would increase the
cosine similarity value compared to the sentence added to (�() in the previous
iteration. If so, the (14BC) would be removed from the (�(), and a new iteration
will start with an addition of a new sentence to (�(). Finally, the algorithm
stops if the (�() reaches five sentences or the new additional sentence in an
iteration would result in a worsening of the cosine similarity between (�() and
((().

4.3. Methodology 59

Algorithm 3: Greedy algorithm
Input: �(- artefacts’ sentences, ((- student summary, and)!�(-

targeted length of the generated summary.
Output: GS – generated summary
1: �(←Ø
2: while (;4=(�() ≤)!�() do
3: ←Ø{ : unused sentences in �(}
4: 14BC ←Ø{best single sentence to add in this iteration}
5: for all (8 ∈) do
6: if 2>B(8<8;0A8CH(�(+ 8, (() ≥ 2>B(8<8;0A8CH(�(+ 14BC , (() then
7: 14BC ← 8
8: end if
9: end for
10: if 2>B(8<8;0A8CH(�(+ 14BC , (() < 2>B(8<8;0A8CH(�(, (() then
11: return �({do not add 14BC if it worsens the similarity}
12: end if
13: end while
14: return �(

Algorithm 4: Random Local Search with unrestricted summary
length (RLS-unrestricted)
Input: �(- artefacts’ sentences and ((- student summary
Output: GS – generated summary
1: �(←Ø
2: while (running time < 10 seconds) do
3: select a sentence �(A from �(uniformly at random
4: �(C4<? ← �(

5: if �(?>B ∉ �(then
6: �(C4<? ← �(C4<? + �(A
7: else
8: �(C4<? ← �(C4<? − �(A
9: end if
10: if 2>B(8<8;0A8CH(�(C4<?, (() ≥ 2>B(8<8;0A8CH(�(, (() then
11: �(← �(C4<?
12: end if
13: end while
14: return �(

60
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

In addition to brute force and Greedy algorithms, we used three variations
of random local search (RLS) algorithms. First, RLS-unrestricted (see Algo-
rithm 4) can create summaries without being restricted by a target length.
Within 10 seconds, the algorithm starts by randomly selecting a new sentence
from the collection of artefacts’ sentences (�() to form the potential summary
(�(). Then, in steps 4-9, the algorithm checks the inclusion status of the ran-
domly selected sentence. That is, if the randomly selected sentence is already
included in the summary (�(), this sentence will be removed, otherwise added
to (�(). Steps 10-11 ensure that the included/removed sentence would increase
the cosine similarity value between the (�() and the student summary ((().
Finally, the algorithm returns the best collection of sentences created within
the specified time from artefacts to serve as a summary.

Algorithm 5: Random Local Search with restricted summary length
(RLS-restricted)
Input: �(- artefacts’ sentences, ((- student summary, and)!�(-

targeted length of the generated summary.
Output: GS – generated summary
1: �(←Ø
2: while (running time < 10 seconds) do
3: select a sentence �(A from �(uniformly at random
4: �(C4<? ← �(

5: if �(?>B ∉ �(and �(C4<? <)!�(then
6: �(C4<? ← �(C4<? + �(A
7: else
8: �(C4<? ← �(C4<? − �(A
9: end if

10: if 2>B(8<8;0A8CH(�(C4<?, (() ≥ 2>B(8<8;0A8CH(�(, (() then
11: �(← �(C4<?
12: end if
13: end while
14: return �(

Second, RLS-restricted algorithm (5) is like RLS-unrestricted, but it can
only generate summaries of at most a given target length.

Third, RLS-unrestricted-subset algorithm (6) runs RLS-unrestricted first,
but it then runs the brute force approach to find the best summary of at most
a given target length.

These algorithms share common characteristics, such as the execution time
limit and the ability to explore the search space by including or excluding sen-
tences. One notable characteristic of RLS-unrestricted is that it can produce

4.3. Methodology 61

Algorithm 6: RLS-unrestricted with subset selection (RLS-
unrestricted subset)
Input: �(- artefacts’ sentences, ((- student summary, and)!�(-

targeted length of the generated summary.
Output: GS – generated summary
1: �(←Ø
2: �(* ← '!(− D=A4BCA82C43 (�(, ((,)!�()
3: �(← �ADC4�>A24(�(*, ((, ;4=(�(*))
4: return �(

summaries that exceed the target length. We investigated this to show whether
five sentences were enough to create close summaries.

As the sixth approach, we used a random search (Algorithm 7) as a naive
approach to provide a lower performance bound. This approach iteratively
creates, within 10 seconds, a set of potential summaries (�(C4<?) of five unique
sentences () selected from the collection of artefacts’ sentences (�(), as shown
in steps 2-5. The algorithm then iterates over each of the potential summaries
in (�(C4<?) to calculate the cosine similarity. Finally, the algorithm returns the
best randomly created five-sentence summary (�().

Note that the student summary (((), which is used as an input in all ap-
proaches could either be an actual summary (i.e., in words) in which case the
co-occurrence was calculated, or it could be a summary in the form of a feature
vector in the high-dimensional feature space.

Algorithm 7: Baseline summary based on Random selection algorithm
Input: �(- artefacts’ sentences and ((- student summary.
Output: GS – generated summary
1: �(←Ø
2: while (running time < 10 seconds) do
3: randomly select subset of five unique sentences from �(uniformly at

random
4: �(C4<? ←

5: end while
6: �(14BC ←Ø
7: for (∀�(8 ∈ �(C4<?) do
8: �(� ← cosSimilarity(�(8,(()
9: end for
10: sort GSC in descending order and return the best randomly created

summary
11: �(14BC ← �(�0

12: �(← �(�14BC
13: return �(

62
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

Lastly, to investigate the impact of the individual artefacts on the sum-
maries, we considered three scenarios as input sources to generate summaries,
with each of the algorithms, in a given time window. These scenarios were as
follows:

1. Single artefacts – In this approach, each of the 15 artefacts listed in Table
4.2 is considered as individual source, and the goal of our summariser algo-
rithms is to generate summaries based on each of these sources separately,
given the time window and the project.

2. All artefacts – Here, all sentences from a project during the relevant time
window are considered, and there is no limitation on the type of artefact.

3. Most relevant artefacts – Assuming we know a developer’s preferences
for particular types of artefacts, we only considered sentences from those
types.

Implementation note. We removed a-posteriori all instances where we en-
countered at least one empty summary for two reasons: (1) word similarity
between a generated summary and the student’s summary can be zero, and (2)
we encountered co-linear vectors even in the 26-dimensional space. Generat-
ing summaries from all artefacts as an input source, we detected 670 and 1065
empty summaries generated from all algorithms using word similarity and fea-
ture similarity, respectively. On the other hand, we found 845 and 980 empty
summaries generated by all algorithms using word similarity and feature simi-
larity, respectively, when the most relevant artefacts were considered as an input
source.

4.4 Experimental Results and Discussion

In our experiments, we considered the 503 summaries written by students, 6
algorithms, and three scenarios (i.e., the sentences’ sources).

For both similarity measures, we used the gold-standard as the target, i.e.,
the students’ original summaries, either as bag of words or as high-dimensional
feature vectors. An alternative to feature similarity was to use the average
vector across all students, to aim at an “average style“; however, then it would
no longer be clear if it could be approximated. As this is the first such study,
and in order to study the problem and the behaviour of the algorithms in
this extractive setting under laboratory conditions, we aimed for the solutions
defined in the gold-standard.

4.4. Experimental Results and Discussion 63

A comparison with brute force.

To better understand what quality we could expect from our five randomised
approaches, we compared these approaches with the brute force approach to
extractive summarisation. The artefact type for this first investigation is “issue
title“. The maximum number of sentences here per project and summary com-
bination was 35. For our brute force approach, this resulted in a manageable
number of 324, 632 + 52, 360 + 6, 545 + 595 + 35 = 384, 167 subsets of up to five
sentences for that particular week. The computational budget that we give each
RLS variant was 10 seconds.

Figure 4.3. Cosine similarity based on word co-occurrence of
the generated summaries.

Comparing the results obtained by these algorithms (see Figure 4.3), we ob-
served that the Greedy algorithm was able to generate summaries whose over-
all distribution was close to the distribution of summaries generated by brute
force3. Similarly, the two RLS-unrestricted approaches also produced compara-
ble summaries. The RLS-restricted performed worse, but still better than the
Random selection approach.4. From this first comparison, we concluded that

3Based on a two-sided Mann-Whitney U test, there is no statistically significant difference
at p=0.05 between Greedy and brute force.

4Note that random selection is not limited to producing only one summary, but returns
many until the time limit is reached, and it then returns the best.

64
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

Greedy is a very good approach, as it achieved a performance comparable to
that of brute force (which was our upper performance bound), and it required
only 0.49 seconds on average to form a summary compared to other algorithms
(see Figure 4.4). We can moreover conclude that a maximum summary length
of five sentences is acceptable, as the RLS-unrestricted subset did not perform
differently from the others, which were restricted.

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 50 100 150 200 250 300 350

Lo
g1

0
(s

ec
on

ds
)

Number of summaries (all weeks)
Brute force Greedy RLS-restricted

RLS-unrestriced RLS-unrestricted subset Random selection

Figure 4.4. Running time of each of the algorithms re-
quired to generate summaries – ;>610 was used for better vi-
sualising the results. The average running time per algorithm
(in seconds) to generate a summary is, brute force: 151.92,
Greedy: 0.49, RLS_restricted: 10.0, RLS_unrestricted: 10.0,
RLS_unrestricted subset: 10.20, Random selection: 6.67 sec-

onds.

To explain Greedy’s performance, and that the performance of Greedy and
of some of the RLS variants was very comparable, we conjectured that the
problem of maximising the cosine similarity w.r.t. a target vector given a set of
vectors is largely equivalent to a submodular pseudo-Boolean function without
many local optima. A formal proof of this, however, remains future work.

Ability to generate non-empty summaries.

As mentioned above, the heuristics can produce empty summaries. Figure 4.5
shows the success rate of generating non-empty summaries using the various
approaches (except brute force). As one might expect, the algorithms are more
often successful when sentences can be taken from all artefacts. Also, when the
high-dimensional feature similarity is used, more runs are successful, as feature

4.4. Experimental Results and Discussion 65

similarity does not encounter the issue of having no word overlap between sen-
tences and the target summary. Both similarity measures have, however, the
challenge of being unable to deal with co-linear vectors, which we did encounter
even in the 26-dimensional space, and which explains why the success rate is
not 100%.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Greedy RLS-restricted RLS-unrestricted RLS-unrestricted
subset

Random
selection

All Artefacts (word similarity) All Artefacts (feature similarity)
Single Artefacts (word similarity) Single Artefact (feature similarity)

Figure 4.5. Success rate of generating non-empty summaries.

Used types of artefacts.

Next, we used each algorithm in turn to create a weekly summary for all cases
where we had student summaries. In particular, we investigated from which
artefact types the sentences were taken in these generated summaries. In total,
there were 22,313 (39.73% of the total) sentences found in the source input
linked to the student summaries. Note that while this number appears to be
very large, it includes the very large summaries produced by RLS-unrestricted
(average length 29.6), and that we were aiming at hundreds of different tar-
get summaries for one-week time-windows, which thus appear to require very
different sentences from the artefacts.

Figure 4.6 shows that the summaries generated by each of the algorithms
are composed of sentences from almost all of the artefact types. In particular,
we can note that sentences from wiki pages are most prevalent. Possible reasons
for this include that (1) wiki pages make up the largest fraction of the source
sentences, and (2) developers might have described their activities best on the
wiki pages.

66
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

Pe
rc

en
ta

ge

Type of the artefact

Greedy RLS-restricted RLS-unrestricted
RLS-unrestricted subset Random Selection

Figure 4.6. Average contribution of artefacts to summaries,
aggregated across the two similarity measures.

0%

5%

10%

15%

20%

25%

30%

Pe
rc

en
ta

ge

Type of artefact

 Word similarity Feature similarity

Figure 4.7. Average contribution of artefacts to summaries,
aggregated across all algorithms.

4.4. Experimental Results and Discussion 67

Figure 4.7 illustrates that content from wiki artefacts contributed around
27% to the summaries generated by all algorithms. Also, sentences found in
issue bodies (IB), issue body comments (IBC), and commit messages (CM)
contributed between 13% and 17%. On the other hand, artefacts such as pull
request reviews (PRRv), pull request titles (PRT) and milestone titles (MT)
had the lowest contributions, which indicates that the students did not com-
monly use these artefacts, or at least did not mention their content, during their
project’s development life-cycle.

Generating summaries based on the most relevant artefacts.

By generating summaries based on the most relevant artefacts found in the
students’ original summaries, we aimed to generate more human-like summaries
that better reflect the developers’ preferences for certain artefact types.

To achieve this, we considered the generated summaries as a starting point,
as each of them was generated to be similar to a particular student summary,
and hence it could indirectly reflect a student’s preferences. Then, we identified
the most relevant ones by using the median as the cut-off (i.e., based on Fig-
ure 4.7). This selection process revealed that the eight most commonly referred
to artefacts were (from most common to least common): wiki, issue title, issue
bodies, issue body comments, commit messages, pull request bodies, README
files, and pull requests reviews. In total, this reduced the number of candidate
sentences by 10.5%, to 50,246.

We next investigated the performance of the subset of artefacts in terms of
its ability to generate good summaries. Figure 4.8 shows the cosine word co-
occurrence similarity and feature similarity achieved by each of the algorithms.
Blue violin plots show the distributions of similarities achieved when all 15
artefacts were considered, and the red violin plots show the same for the eight
most relevant artefacts. As we can see, focusing on only eight artefact types
appeared to have little to no negative impact.

68
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

Figure 4.8. Similarities: when all artefacts are used (blue,
overall average 0.266) and when only the relevant eight are used

(red, overall average 0.258).

4.5. Expert Annotation 69

4.5 Expert Annotation

To evaluate the extent to which the summaries that the different approaches
generate matched the summaries written by the students in the perception of
software developers, we asked two expert annotators to evaluate the results.
Both were in their first year of study toward a Computer Science PhD, and
neither was affiliated with this study. Both annotators indicated that developing
software is part of their job, and they claimed four to six years of software
development experience. Annotator 1 stated that they had one to two years of
experience using GitHub for project development; Annotator 2 claimed two to
four years of experience with GitHub.

The selection of algorithms to be used for expert annotation was based on
the highest median value of the cosine similarities between the gold-standard
summaries and the summaries generated from each of the algorithms. Therefore,
summaries generated by the Greedy algorithm were chosen for annotation.

For the study, we randomly selected ten out of the total of fourteen weeks,
and for each week, we randomly selected one project. For each of these ten, we
then produced six different summaries in relation to the gold standard (i.e., the
summaries written by the students):

1. The best summary based on word similarity between sentences contained
in all artefacts in the input data (issues, pull requests, etc.) and the gold
standard student summary,

2. Same as (1), but only using the eight most relevant artefacts as input
data,

3. The best summary based on feature similarity between sentences con-
tained in all artefacts in the input data and the gold standard student
summary,

4. Same as (3), but only using the eight most relevant artefacts as input
data,

5. A random baseline by randomly selecting five sentences from all artefacts,

6. Same as (5), but only using the eight most relevant artefacts as input
data.

We created a questionnaire that asked the annotators first to produce a
summary for the ten selected weeks after inspecting the corresponding GitHub

70
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

repositories (to ensure that annotators were familiar with the projects), and then
to rate each generated summary on a Likert-scale from 1 (strongly disagree) to
5 (strongly agree) in response to the question “Please indicate your agreement
with the following statement: The summary mentions all important project
activities present in the gold-standard summary“.

Table 4.4. Average rating from each annotator for output pro-
duced by the different approaches.

Approach Annotator 1 Annotator 2

Word (all) 3.7 3.3
Word (subset) 3.8 3.5
Feature (all) 3.7 2.0
Feature (subset) 3.7 2.0
Random (all) 3.5 1.8
Random (subset) 3.0 1.8

Table 4.4 shows the results, separately per annotator. While it is apparent
from the data that Annotator 1 generally gave out higher scores than Annota-
tor 2, both annotators perfectly agreed on the (partial) order of the different
approaches: Word (subset) ≥ Word (all) ≥ Feature (subset) ≥ Feature (all)
≥ Random (all) ≥ Random (subset). In Table 4.5, we show an example of a
student summary and the summaries generated by the Greedy approach using
different scenarios as input sources and for a particular week. We can observe
that 1) using all artefacts or a subset produced the same summary, 2) less infor-
mation related to developers’ activities in the student’s summary was captured
in the summary that was randomly produced compared to summaries generated
by the Greedy algorithm.

Figure 4.9 shows box plots for each approach, also indicating that the ap-
proaches based on text similarity achieve the best result in terms of human
perception, followed by approaches based on feature similarity, and then ran-
dom baselines.

4.5. Expert Annotation 71

Figure 4.9. Ratings by our annotators of different approaches.

Table 4.5. Comparing summary written by human with gen-
erated summaries.

Student Summary
Change of direction for the project as a result of Monday’s client meeting
discussion and survey feedback, wiki integration is now priority so we’ve
needed to look into the Confluence REST API to fetch wiki pages and
spaCy for Natural Language Processing. We met with <redacted> again
and discussed the change of project direction and details on the wiki pages
with <redacted>. Much work has been done this week in writing the wiki
parser and the search-by-category feature has been implemented
Approach Generated summaries
Word (All) Progress: Have extracted paragraphs and headers from

a <redacted> wiki page, and this is the result. TLDR;
Project focused has changed massively, we are now going
to focus almost exclusively on improving the Confluence
search. When running the parser it extracted this content
(from the Hello World wiki page available on your drives).
The results of the survey indicate that most developers
are unsatisfied with the wiki searching, but are mostly
satisfied with their own code search tools (IDE, grep).
Week-7:-Team-Meeting-Weekly-Log.

72
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

Feature (All) Our very first transaction is going to just display the text
"Hello World" in a dialog window of the Eureka appli-
cation, but lets assume we are wanting to calculate the
centroid of a point selection and outputting the result to
the report window. As the call for a page and a pages
content are seperate, the wiki structure can be traversed
and only new content requested if it has been modified
(last modified available in the response header). Request
home page from some wiki.atlassian.com address (conflu-
ence).

Word (subset) Progress: Have extracted paragraphs and headers from
a <redacted> wiki page, and this is the result. TLDR;
Project focused has changed massively, we are now going
to focus almost exclusively on improving the Confluence
search. When running the parser it extracted this content
(from the Hello World wiki page available on your drives).
The results of the survey indicate that most developers
are unsatisfied with the wiki searching, but are mostly
satisfied with their own code search tools (IDE, grep).
Week-7:-Team-Meeting-Weekly-Log.

Feature (subset) Our very first transaction is going to just display the text
"Hello World" in a dialog window of the Eureka appli-
cation, but lets assume we are wanting to calculate the
centroid of a point selection and outputting the result to
the report window. As the call for a page and a pages
content are seperate, the wiki structure can be traversed
and only new content requested if it has been modified
(last modified available in the response header). Request
home page from some wiki.atlassian.com address (conflu-
ence).

Random (All) The prefix for the sdp library is SDP. To run the Eu-
reka application in the workbench: The workbench will
be opened. We use a text object called serC_Text to
put any user facing strings. Fix search overlap and result
count problem. Thursday.

4.6. Threats to Validity 73

Random (subset) To create a dialog window we will need to add a transac-
tion to the Eureka application. This patch adds selectable
toggles to the search template page that will enable the
user to do just that. So for this exercise we will use the
sdpServer. The second argument is the struct in which
the data from the user is stored, and the third is the class
which is run in the place of the struct. <redacted> has
made significant progress on API scraper.

4.6 Threats to Validity

Our study, like many other studies, has a number of threats that may affect the
validity of our results.

First, our research subjects involved summaries written by graduate and un-
dergraduate students with good knowledge about interacting with the GitHub
platform. Although, using professional developers to create the gold-standard
summaries, the results may have been different. However, the students sum-
maries’ quality should not be considered a limitation because each student sum-
mary was evaluated as part of their course assessments during the particular
semester. The evaluation of the students summaries took into account the stu-
dents’ development activities that happened for a particular week.

Our results, illustrated in Table 4.4, show that the eight most relevant arte-
facts were found to be sufficient to generate summaries containing developers’
activities. These types – such as issues, pull requests, and commits – are all es-
sential elements of a GitHub repository. However, as these are essential elements
of probably any software repository, we expect this finding to be transferable
to other repositories.

Also, evaluating the automatically generated summaries relies on human
judgement. Subjectivity and bias are likely to be issues when the number of
human experts involved is small, as in the present study. Hence, we plan, for
future work, to include more experts to mitigate these issues.

4.7 Conclusion

Software engineering projects produce many artefacts over time, ranging from
wiki pages, to pull request and issue comments. Summarising these can be
helpful to a developer, for example, when they return from a holiday, or when

74
Chapter 4. Multi-document Summarisation of Heterogeneous Software

Artefacts

they need to gain an overview of a project’s background in order to move forward
with their team.

In this chapter, we have presented the first framework to automatically sum-
marise heterogeneous artefacts produced during a given time window. We have
defined our own gold standard and devised ways of measuring similarity at a
text-based level. Then we compared various optimisation heuristics using differ-
ent input scenarios, and found that a Greedy algorithm can generate summaries
that are close to the human-written summaries in less running time than other
algorithms. Our study then found that experts preferred the combination that
used word similarity to generate summaries based on the eight most relevant
artefacts. Interestingly, the generated summaries have been found useful, even
though the optimisation approaches have not yet considered temporal connec-
tions between the sentences and also not yet the actual meaning; this will involve
future work to improve the quality of the generated summaries.

As mentioned previously in this chapter, the student summaries lack evi-
dence of citing the source codes from actual files. Consequently, none of the
generated summaries contained information about the source code. In the next
chapter, we report our investigation into the potential for including textual arte-
facts (i.e., code comments) in the source codes for later use in summarisation.

4.7. Conclusion 75

The next chapter was published (Alghamdi et al., 2021a) and presented in the
18th IEEE/ACM International Conference on Mining Software Repositories
(MSR21). The conference ranked (A) based on the Australian CORE ranking
system. This publication resulted from collaboration with Professor Takashi
Kobayashi and Associate Professor Shinpei Hayashi, Tokyo Institute of

Technology, Japan, during my research trip in Japan. I contributed to the
design, implementation, and evaluation of the proposed approach. Prof.
Takashi and A/Prof Shinpei contributed to the approach evaluation.

77

Chapter 5

The Potential of Code Comments
for use in Summarisation

5.1 Introduction and Motivation

In Chapter 4 we explored different techniques and scenarios to generate au-
tomatic summaries of developers’ development activities relating to different
software artefacts. In addition, we saw that neither the generated summaries
nor the gold-standard summaries referenced any information from the source
code files. However, source code files can also contain lots of natural language
text, such as code comments, which could be included in summaries.

Using source code comments has several advantages. For example, code
comments can provide additional information to help developers perform a wide
range of software engineering tasks. For instance, code comments can be used
for bug detection (Rubio-González and Liblit, 2010; Silva and Ribeiro, 2003;
Subramanian, Inozemtseva, and Holmes, 2014), specification inference (Blasi
et al., 2018; Pandita et al., 2012) and testing (Goffi et al., 2016; Wong et al.,
2015).

This chapter reports on our investigation into the role of primitive variable
identifiers in comments, in particular to see how commonly these identifiers are
documented in accompanying comments and what type of additional informa-
tion the comments might contain about these variables.

To lay a foundation for understanding the role of primitive variables and
their documentation in Java source code, our preliminary findings showed that
the occurrence of primitive data types (in 2,491 Java repositories from GitHub)
was dominant, with 60.10% (8,646,435), compared to non-primitive data types
at 39.90% (5,741,380).

We also noted that while non-primitive types tended to have their inten-
tion encoded in the name of the type, primitive types did not allow for the
encoding of information such as the variable’s purpose, concepts and directives.

78 Chapter 5. The Potential of Code Comments for use in Summarisation

The introduction of Generics in Java has made many more type names self-
explanatory (e.g., List<File> instead of List), while similar advantages are not
available for primitive variables; hence a developer often has to guess what a
String or float might contain. This motivated us to study the available knowl-
edge about primitive variables in Java code comments. For instance, Listing 5.1
shows a comment that is not informative with respect to the local variable “ry“.
It would therefore take developers quite some effort to understand the purpose,
concepts or directives related to this identifier in the source code. There were
two reasons for this: 1) the developer did not explicitly mention the identifier
in the comment nor followed the naming conventions to encode such types of
knowledge in the variable’s identifier, and 2) the lack of additional information
about it in the comment. As a consequence, this can make program comprehen-
sion more difficult and ultimately impact the developer’s productivity. Cases
like the example shown in Listing 5.1 are what we are targeting in our work, in
an effort to identify knowledge types related to the variables’ identifiers in their
accompanying comments.

// CURVE -INSIDE

final float ry = t * (t * Ay + By);

Listing 5.1. Comment with respect to local variable
“ry“ (JogAmp Community, 2021).

Here we introduce the first empirical study to detect primitive variables’
identifiers in comments using two levels of matching techniques, to characterise
the knowledge they contain. We contributed with the following:

1. We developed lexical and advanced matching techniques to capture the
identifiers of primitive variables in Java source code comments, and then
evaluated these approaches using a manually curated benchmark of six
well-commented project repositories (Alghamdi et al., 2021b) hosted on
GitHub.

2. We manually classified the documented information, used to describe the
variable identifiers in comments, into three types of knowledge: purpose,
concept and directives.

3. A large-scale analysis of 2,491 engineered Java software repositories (Al-
ghamdi et al., 2021b) hosted on GitHub was carried out to provide an
insight into how developers document these variables in the form of source
code comments.

5.2. Research Questions 79

The remainder of this chapter is structured as follows. We introduce our
research questions in Section 5.2. Our detection techniques are described in
detail in Section 5.3. In Section 5.4, we describe our study design as well as
the methods used for data collection and analysis. Our findings are reported
separately for each of our research questions in Section 5.5. We then discuss
threats to validity in Section 5.6 and related work in Section 5.7. Finally, we
conclude the chapter and outline future work in Section 5.8.

5.2 Research Questions

Our ultimate goal in this study was to reveal the nature of the documented
information for variables in source code comments. We define documented vari-
ables as those variables that have comments above their declaration, and where
the developers mention the identifiers in their accompanying comments. To
analyse the documented variables’ information, we had to capture code com-
ments that include the variables’ information, using lexical matching. However,
lexical matching (i.e., exact matching) may not be considered the best choice
of method to detect an identifier in a comment (see Listing 5.2) because the
variable’s identifier may not explicitly appear in the comments: for example,
developers might use abbreviations for the identifier or explain it with different
terms. To address this problem, we developed a detection method consider-
ing lexical and advanced matching, which has the ability to capture the exact
identifier and its meaning in a comment.

/**

Writes a message into the database table.

Throws an exception , if an database -error occurs !

*/

public void append(String _msg) throws Exception {

Listing 5.2. Example to show the inability of lexical matching
to detect variables’ identifiers in a comment (The Apache

Software Foundation, 2021a).

To the best of our knowledge, there is no guideline to detect a variable’s
identifier in a comment, although researchers have tried different techniques
in the past (Chen et al., 2019). Therefore, we proposed and evaluated two
detection techniques for detecting the variables’ identifiers in comments, with
a manually annotated benchmark of six well-commented project repositories
hosted on GitHub, and we then investigated the nature of the documentation

80 Chapter 5. The Potential of Code Comments for use in Summarisation

of the variables. The creation of the manual evaluation data set was necessary
to evaluate our approaches, as a reference data set does not currently exist in
the literature. To assess the quality of our detection approaches, we asked our
first research question.

• RQ1: To what extent can different techniques detect variables in com-
ments?

– RQ1.1: To what extent is the lexical matching technique able to
detect the variable names in the comments?

– RQ1.2: To what extent are different advanced matching techniques
able to detect the meaning of variable names in the comments?

Answers to RQ1 would confirm the quality of our detection approaches to
be used for large-scale analyses, in order to then answer RQs 3 to 5.

As the identifiers of primitive variables require developers to provide addi-
tional information to explain the functionality of the variables in the comments,
we need to then ask the following question:

• RQ2: What types of knowledge do comments provide about the variables?

The method used to answer RQ2 was inspired by previous work (Maalej
and Robillard, 2013). As far as we know, the types of knowledge relevant to
variables have not yet been reported in the literature. To remedy this lack, we
identify three knowledge types that are closely related to the variable’s domain
significance and that, based on previous work, can meet our purpose to answer
this question.

Since there is little known about the prevalence of primitive variables and
their documentation, as used by developers, we sought to investigate how these
variables are used and documented in source code comments by asking the
following questions.

• RQ3: How frequently are primitive variables documented in comments?

• RQ4: What are the distributions of documented variables by their scope
of declarations?

• RQ5: What are the types of comments associated with the scopes of the
documented variables?

5.3. Detecting Documented Variables 81

5.3 Detecting Documented Variables

In this section, we present our techniques to detect variables’ identifiers in com-
ments. To this end, several detection approaches were developed, using lexical
matching, advanced matching and the union of lexical and advanced matching.

5.3.1 Preprocessing

Preprocessing variables’ identifiers and comments is an essential step for our
detection approaches. For this purpose, we partly followed the steps proposed
by Ratol and Robillard (Ratol and Robillard, 2017) for preprocessing both
variables’ identifiers and the text of comments, while we also created our own
preprocessing steps to suit our particular matching techniques. We present
these steps as following:

Identifiers. We split an identifier based on its typographical conventions
as either a single term or multiple terms (i.e., compound terms), using the
camelCase rules and other rules we designed based on common conventions (for
example, splitting the identifier using an underscore). We then converted each
term to its root using the Lemmatiser of the Stanford Core NLP library (Man-
ning et al., 2014) while retaining the original term for later use. As a result,
each term then had a dictionary entry 〈term, lemma〉.

Comments. We processed the comments by first splitting them into sen-
tences, using the sentence detector model in the OpenNLP library. Each sen-
tence was then further split into tokens using the same library. Tokens that are
detected to be compound terms were further split into one or more terms in the
same way that the identifiers were split. After tokenisation, we removed stop
words such as “the“ and “or“ from the list of tokens obtained, unless these stop
words were part of the variables’ identifier. Finally, we generated a dictionary
entry 〈token, lemma〉 for each token in the list.

Implementation note. Lemmatisation is only applied to the variables’
identifiers and comments’ tokens, to comply with lemma and metaphonic ad-
vanced matching techniques.

5.3.2 Lexical matching

Our approach to lexical matching was to search for exact (i.e., literal) match-
ing of variables’ identifiers in the head comments. For example, in Listing 5.3,
lexical matching can detect the variable identifier ignore in the accompanying

82 Chapter 5. The Potential of Code Comments for use in Summarisation

comment. Lexical matching may present some issues, such as spelling or ty-
pographical errors, that may degrade its detecting performance, but it can be
useful to show how often developers have documented the variable’s identifier
in comments with its exact form.

//if ignore is true , this column will be ignored by building

sql -statements.

boolean ignore = false;

Listing 5.3. Example of matching using lexical technique (The
Apache Software Foundation, 2021b).

5.3.3 Advanced matching

To tackle the lexical matching problem indicated in the previous section (Sec-
tion 5.3.2), we introduced a new method of detection; i.e., capturing the mean-
ing of the variable’s identifier through the wording in the comment. This ad-
vanced matching technique involves lemmas matching, metaphonic matching
and SEthesaurus matching.

A) Lemmas matching

Lemmatisation is the process of grouping together the different inflected forms of
a word into a single term. Our lemmas matching approach works by lemmatising
the variable’s identifier and the words in the text of the comment. It then looks
for the presence of each identical lemma term between the identifier and the
token in the text of a comment. If all lemmas of the identifier are found, it can
be concluded that the variable was documented in the comments. For instance,
in Listing 5.4, the comment contains two lemma terms, matching the two lemma
terms of the identifier.

// Make sure at least one connection for this protocol succeeds (if

expected to)

boolean connectionSucceeded = false;

Listing 5.4. Example of advanced matching using lemma
technique (Huß, 2021).

5.3. Detecting Documented Variables 83

B) Metaphonic matching

Our second advanced detection approach is based on the Double Metaphone en-
coding algorithm (Philips, 2000). This algorithm is a search technique that can
overcome matching problems encountered due to misspelling of given keywords.
It works by taking two input strings and returns true if they phonetically match;
i.e., the algorithm takes into consideration similar sounds produced by different
characters. The encoding of a misspelled word will often match the encoding
of the word that was intended. For example, in Listing 5.5, the Double Meta-
phone algorithm encodes the identifier configured and the term configuration
which appears in the comment with code “KNFK“ because they phonetically
match. In contrast, using the same example for the detection of the variable
name in the comment using lemma and SEthesaurus matching techniques would
yield no matches.

//A flag to indicate configuration status

private boolean configured = false;

Listing 5.5. Example of advanced matching using Metaphonic
technique (The Apache Software Foundation, 2021c).

C) SEthesaurus matching

The final matching technique used for the detection of the meaning of variable’s
identifier in the head comment is based on the SEthesaurus (Chen, Xing, and
Ximing, 2017). SEthesaurus covers a large set of software-specific terms (52,645
terms), counting 4,773 abbreviations and 14,006 synonym groups, with high
accuracy. This can be useful, in our case, to detect such abbreviations and
the synonyms between the variables’ identifiers and terms in the text of the
comments.

/**

* TRACE level integer value.

*

* @since 1.2.12

*/

public static final int TRACE_INT = 5000;

Listing 5.6. Example of advanced matching using SEthesaurus
technique (The Apache Software Foundation, 2021d).

84 Chapter 5. The Potential of Code Comments for use in Summarisation

For instance, in Listing 5.6, the variable’s identifier TRACE_INT consists
of two terms: 1) TRACE and 2) INT, where the second part of the identifier
INT is an abbreviation of its full form integer, which appears in the comment.
It is worth noting that lemmas and metaphonic matching can fail to detect
variables’ identifiers in the text of the comments in similar situations.

5.3.4 Union of matching approaches

As each detection approach has its own advantages, we considered using a union
of lexical and advanced matching approaches to overcome performance limita-
tions and provide high detection coverage of the identifiers in the comments.
We considered using two ways to unify these approaches: 1) a union of the
three advanced approaches (i.e., lemmas, metaphone and SEthesaurus) and 2)
a union of all the approaches (i.e., lexical and advanced approaches).

5.4 Study Design

5.4.1 Data collection

This section outlines the data set used to evaluate our approaches, the data set
used for large-scale analysis, and the types of variables, comments, and scopes
of the variables’ declarations.

2491 Projects

SrcML parsing

Java XML

Variable extraction
per scope

14,387,815 variable
declaration sites

8,646,435 primitive
variables declaration sites

Detect and preprocess
pairs of variables and

comments Filter by
type

Commented variables
(1,703,234 pairs)

Matching techniques

Lexical Documented variables
(1,147,947 pairs)

Manual
Annotation

RQ1, RQ2

RQ3, RQ4, RQ5

Sampling

Project Selection
þ Engineered Java Projects
þ 1+ starred
þ Contains Readme and Java files

…
int i = 0; // index
…

…
int i = 0; // index
…

,

,
AdvancedAdvancedAdvancedAdvanced

Figure 5.1. Overview of our study.

5.4. Study Design 85

A) Repositories

Our repository preparation considers the data set used to evaluate our detec-
tion approaches and to study common characteristics of the documentation of
primitive variables using large-scale quantitative analysis.

Table 5.1. Used variables for our detection approaches.

Data Evaluation data set Large-scale data set
types # vars # commented # vars # commented
boolean 1,161 261 (4.91%) 733,294 125,598 (17.13%)
byte 2,755 181 (11.65%) 187,432 32,762 (17.48%)
char 158 29 (0.67%) 54,116 9,833 (18.17%)
int 7,592 1,952 (32.12%) 2,505,266 424,265 (16.93%)
short 58 12 (0.25%) 30,703 6,792 (22.12%)
long 4,715 976 (19.95%) 640,504 83,088 (12.97%)
float 76 26 (0.32%) 134,263 26,868 (20.01%)
double 669 160 (2.83%) 291,384 56,707 (19.46%)
String 6,456 1,501 (27.31%) 4,069,473 937,321 (23.03%)
Total 23,640 5,098 (21.57%) 8,646,435 1,703,234 (19.70%)

Table 5.2. Number of primitive and other variables.

Primitive variables Other variables
Fields 1,697,033 537,067
Local variables 3,020,165 3,693,085
Parameters 3,929,237 1,511,228
Total 8,646,435 (60.1%) 5,741,380 (39.9%)

Dataset used for large-scale analysis. Motivated by previous work on
the promises and perils of mining GitHub (Kalliamvakou et al., 2014), which
concluded that many repositories on GitHub do not contain engineered software
projects, we used the RepoReaper framework (Munaiah et al., 2017) to obtain
repositories for this work. RepoReaper was developed to differentiate between
repositories with engineered software projects and those with noise (e.g., as-
signment projects). This is an important step, as noise projects could lead to
incorrect conclusions in our study.

To select repositories for our study, we first obtained 17,243 Java projects
that had at least one star and were classified as containing engineered software
projects by the Random Forest classification of RepoReaper. We then elim-
inated 680 projects that no longer existed on GitHub (e.g., deleted or made
private). For the remaining projects (16,563), we filtered out 1,441 projects
that did not have README files and those projects (12,578) that did not
have the word documentation in their README files. This step was necessary

86 Chapter 5. The Potential of Code Comments for use in Summarisation

as we wanted to obtain only well-documented projects. From the remaining
projects (2,544) we removed 53 projects that did not contain any Java files.
Finally, in total, 1,040,026 Java files were collected from 2,491 projects to be
used in this study.

Dataset used for evaluation. Six project repositories were used to eval-
uate our proposed approaches, motivated by previous work of Ratol and Robil-
lard (Ratol and Robillard, 2017) to detect fragile comments. These projects (see
Table 5.3) were selected because they were previously used in Ratol and Ro-
billard’s work (Ratol and Robillard, 2017) and had several advantages, such as
their availability as open-source, a diversity of application domains, and being
well-commented. To allow further investigation, the six projects were cloned
locally to ease the process to analysis.

The same study (Ratol and Robillard, 2017) was followed to determine our
sample size (i.e., we utilised stratified random sampling strategy to achieve di-
versity of variables in our sample). Stratified random sampling can prevent bias
while ensuring that all classes of interest are covered in a sampled population.
Following the procedure in this strategy, we randomly selected 100 variables
from each of the six projects, in proportion to the number of variables declared
in each scope (i.e., fields, local variables and methods’ parameters) from the
target population. We defined the target population as the primitive variables
that have at least one comment above their declaration, and ones where the
identifier appeared in the comment. For each project (see Table 5.3), we pro-
vided the total number of variables in a given scope, followed by the number of
variables (in column Pop) of this scope for which our approach can detect the
variable name in the comment above those variables’ declarations. In column
Smp we indicated the number of variables in this scope that were selected for
the sample. For example, for the project Chronicle Map, the total number of
variables detected in the field scope was 452, and there were ten variables for
which our approaches could find a match in the comments above their decla-
ration. Finally, the total number of variable identifiers that our advanced and
lexical approaches detected with associated comments in the Chronicle Map
project was 137.

B) Types of variables, comments and scopes

The source code in any programming language is divided into small pieces of
code elements, for example, classes, methods, fields, etc. According to the
syntax of the Java programming language, there are four types of comments:

5.4. Study Design 87

T
a
bl

e
5.

3.
E
va
lu
at
io
n
sa
m
pl
e.

P
ro
je
ct
s

F
ie
ld
s

L
oc
al

va
ri
ab

le
s

P
ar
am

et
er
s

T
ot
al

N
am

e
V
er
si
on

T
ot
al

P
op

.
S
m
p
.

T
ot
al

P
op

.
S
m
p
.

T
ot
al

P
op

.
S
m
p
.

P
op

.
S
m
p
.

C
hr
on

ic
le

M
ap

3.
19

.4
2

45
2

10
7

1,
35

9
16

12
1,
49

4
11

1
81

13
7

10
0

Jo
da

ti
m
e

2.
10

.6
84

7
82

5
2,
23

0
26

2
3,
55

9
1,
39

2
93

1,
50

0
10

0
JU

ni
t

4.
13

29
2

1
0

32
0

0
0

72
1

20
1

10
0

20
2

10
0

Lo
g4

j
1.
9.
0

81
3

12
6

28
1,
05

3
12

2
1,
33

0
31

3
70

45
1

10
0

Sp
ri
ng

D
at
a
R
ed
is

1.
2.
18

53
9

5
1

1,
07

6
2

0
4,
91

0
92

4
99

93
1

10
0

JF
le
x

2.
3.
1

75
5

10
9

27
98

9
31

7
90

1
26

9
66

40
9

10
0

To
ta
l

—
3,
69

8
33

3
68

7,
02

7
87

23
12

,1
95

3,
21

0
50

9
3,
63

0
60

0

88 Chapter 5. The Potential of Code Comments for use in Summarisation

1) inline comment (i.e., // shown in the same line where the variable is de-
clared), 2) line comment (i.e., // shown above variable declarations), 3) block
comment (i.e., /* · · · */), and 4) Javadoc comment (i.e., /** · · · */).

In the present study, we focused on detecting the identifiers of primitive
variables: boolean, byte, char, int, long, float, double and String, that are
documented in these three types of comments (i.e., line and inline, block and
Javadoc), declared in three categories of program elements (i.e., fields, local
variables found in methods’ bodies, and parameters of the methods). We con-
sidered the String as a primitive data type in Java source code, motivated by
the fact that it is a primitive type in other languages, such as Python. As the
first step, we collected all variables (1,703,234) that had at least one comment
above their declarations (Table 5.1), and we then used our detection approaches
to identify these identifiers within their associated comments.

C) Detecting documented variables in source code

We developed two approaches and then combined these two approaches to detect
the variables’ identifiers in the source code comments. These approaches are
based on lexical or advanced matching (see Section 5.3) to capture variables’
identifiers in their accompanying comments. In lexical matching, our matching
technique captures exact matches (i.e., case sensitive) of these identifiers in
the comments, while advanced matching captures the meaning of the identifier
in the comments by applying lemmas, metaphonic and SEthesaurus matching
techniques.

Our approach to detect the documented variables in their associated com-
ments is shown in Figure 5.1. It is worth noting that projects used in our input
source are classified as engineered software projects based on the RepoReaper
tool (Munaiah et al., 2017), which was developed to distinguish between en-
gineered projects and other projects. We make use of RepoReaper’s Random
Forest classification, trained with organisation and utility data sets.

After cloning the targeted projects from GitHub and removing all non-Java
files, we employed of srcML (Collard, Decker, and Maletic, 2011) to convert the
source code of each .java file into its XML representation. The advantage of
using srcML is its ability to perfectly preserve the format of the original source
at different levels, such as lexical, documentary (e.g., comments, white space),
structural (e.g., classes, methods) and syntactic (e.g., statement).

Each of the XML versions was then used to facilitate the detection and the
extraction of the variables with their head comments (i.e., comments that ap-
peared immediately above the variables’ declaration) and their scopes in which

5.4. Study Design 89

they appeared. Note: the white-spacing between the variables’ declarations and
their head comments were ignored. Finally, out of 14,387,815 variables obtained
from 2,491 projects, we extracted 60.10% (8,646,435) as primitive variables (see
Table 5.2). Of these primitive variables, 19.70% (1,703,234) had comments
above their declarations, as shown in Table 5.1, to be used as input sources for
our detection approaches.

5.4.2 Data analysis

In this section, we outline the data analysis methods used to answer the research
questions.

A) Accuracy of detection approaches

To evaluate the accuracy of our lexical and advanced matching approaches, four
authors of this study manually annotated 600 variables to investigate the pres-
ence of the variables’ identifiers in the text of the comments. We considered the
union of these techniques (lexical and advanced matching) to capture the vari-
ables in comments, and we evaluated the accuracy of each of these approaches
individually. To calculate inter-rater agreement between the annotators, the an-
notators were split into six pairs (i.e., each of the four authors was paired with
each of the other authors), where each pair annotated 100 randomly selected
variables. Each pair of annotators proceeded to annotate each of the identifiers
with their related comments to evaluate the accuracy of the matching tech-
niques, and the presence of the additional information (see Table 5.4). We then
measured the agreement reliability between pairs of annotators using Cohen’s
Kappa metric. We noted that the kappa reported is the average kappa value
across all annotator pairs for each annotation question, which shows substan-
tial to almost perfect agreement (Landis and Koch, 1977). We further studied
the disagreements between pairs of annotators and resolved all conflicts to en-
hance the kappa agreement values for each question, that is with almost perfect
agreement.

Table 5.4 shows our annotation questions, the answer options for each one,
a description that shows how to answer each of these questions, and the aver-
age kappa value across all the annotators’ pairs. Each pair of annotators used
AQ1 and AQ3 to evaluate the lexical and advanced matching techniques perfor-
mance, respectively. AQ1 investigates whether a variable identifier is literally
documented in the comment, whereas AQ3 queries whether the meaning of the

90 Chapter 5. The Potential of Code Comments for use in Summarisation

T
a
bl

e
5.

4.
A
nn

ot
at
io
n
qu

es
ti
on

s.

Q
u
es
ti
on

A
n
sw

er
D
es
cr
ip
ti
on

av
g.
^

A
Q
1

W
as

th
e
va
ri
ab

le
na

m
e
m
en
-

ti
on

ed
in

th
e
co
m
m
en
t?

Y
es

/
N
o

N
/A

0.
93

A
Q
2

D
id

th
e
co
m
m
en
t
ad

d
ad

-
di
ti
on

al
in
fo
rm

at
io
n

ot
he
r

th
an

ju
st

m
en
ti
on

ed
th
e

va
ri
ab

le
na

m
e?

Y
es

/
N
o

N
/A

0.
82

A
Q
2.
1

D
id

th
e

co
m
m
en
t

pr
ov

id
e

an
y

ad
di
ti
on

al
kn

ow
le
dg

e
ty
pe

ab
ou

t
th
e
pu

rp
os
e
or

pa
tt
er
ns

of
th
e
va
ri
ab

le
?

Y
es

/
N
o

E
xp

la
na

ti
on

ab
ou

t
th
e
lif
ec
yc
le

of
th
e
va
ri
-

ab
le

in
th
e
co
m
m
en
t;
ho

w
to

be
re
fe
rr
ed
/d

e-
fin

ed
.

T
hi
s
m
ig
ht

be
a

pa
rt

of
th
e
po

st
-

co
nd

it
io
ns

of
a
m
et
ho

d.
In

ad
di
ti
on

,t
he

de
-

sc
ri
pt
io
n
of

th
e
in
it
ia
lis
at
io
n
pr
oc
es
s
of

th
e

fie
ld

va
ri
ab

le
ca
n
be

tr
ea
te
d
as

th
is
ca
te
go

ry
.

0.
72

A
Q
2.
2

D
id

th
e

co
m
m
en
t

pr
ov

id
e

an
y

ad
di
ti
on

al
kn

ow
le
dg

e
ty
pe

s
ab

ou
t
th
e
co
nc
ep
t
of

th
e
va
ri
ab

le
?

Y
es

/
N
o

E
xp

la
na

ti
on

ab
ou

t
th
e
co
nt
en
t
of

th
e
va
ri
-

ab
le

in
th
e
co
m
m
en
t.

So
m
et
im

es
,
th
e
va
ri
-

ab
le
’s

id
en
ti
fie
r
is

en
ou

gh
to

be
ex
pl
ai
ne
d.

0.
72

A
Q
2.
3

D
id

th
e

co
m
m
en
t

pr
ov

id
e

an
y

ad
di
ti
on

al
kn

ow
le
dg

e
ty
pe

s
ab

ou
t
th
e
di
re
ct
iv
e
of

th
e
va
ri
ab

le
?

Y
es

/
N
o

E
xp

la
na

ti
on

ab
ou

t
th
e

va
ri
ab

le
’s

do
m
ai
n,

ty
pe

or
nu

lla
bi
lit
y

as
a

pa
rt

of
th
e

pr
e-

re
qu

is
it
e
fo
r
a
m
et
ho

d.

0.
85

A
Q
3

W
as

th
e

va
ri
ab

le
m
ea
ni
ng

m
en
ti
on

ed
in

th
e
co
m
m
en
t?

Y
es

/
N
o

E
xp

la
na

ti
on

ab
ou

t
th
e
va
ri
ab

le
’s
id
en
ti
fie
r
in

te
rm

of
th
e
m
ea
ni
ng

,w
hi
ch

us
ed

to
de
sc
ri
be

th
e
va
ri
ab

le
in

th
e
co
m
m
en
t.

0.
75

5.4. Study Design 91

identifier is documented in the comment. Finally, AQ2 investigates the exis-
tence of any type of knowledge regarding purpose, concept and directives found
in the comment, associated with the identifiers and based on each answer to
the sub-questions.

To annotate a variable’s identifier based on AQ1, which is used to evaluate
the performance of the lexical matching, we differentiated between variable
identifiers by their typographical conventions; for example, an identifier consists
of a single term or multiple terms, as described in Section 5.3.1. In case of an
identifier composed of multiple terms, each annotator searches for all terms in
the identifier and the corresponding words with the exact wording of each term
in the text of the comment. The manual annotation process involved using the
same sequence for the comment in which the terms appeared in the identifier
while white-spacing between these terms was ignored. In the case of an identifier
containing only a single term, the annotator looked for a literal match between
the identifier and its corresponding word in the comment.

The performance of each of our matching techniques was then separately
measured using the commonly used evaluation measures: recall, precision, and
the F-score. Recall measures the degree of absence of false negatives, while
precision measures the degree of absence of false positives. For example, perfect
recall reported for an approach can indicate that the technique was able to
detect all the variables’ identifiers in their comments, which were also detected
by manual inspection. It is worth mentioning that “recall“, as used in our
study, is an approximation, as a theoretical value of recall cannot be computed
precisely because it would take too much effort to manually annotate the data.

B) Knowledge types present in comments

Since there is no existing taxonomy of information in the comments which
would provide additional information around the variable identifiers, we es-
tablished three types of knowledge, inspired by previous work of Maalej and
Robillard (Maalej and Robillard, 2013). The description of these types was
only applicable to API documentation. However, we identified three types of
knowledge from their work, which was applicable in our context with some
adjustments, namely purpose, concept and directives, and we then provided
a description for each one of those types to fit our purpose, as illustrated in
AQ2.1, 2.2 and 2.3 in Table 5.4.

Each pair of annotators then inspected each identifier and its accompanying
comment to determine the existence of identifiers’ purpose, concept and direc-
tives. We then quantitatively analysed how many of the variables’ identifiers

92 Chapter 5. The Potential of Code Comments for use in Summarisation

were documented in their accompanying comments with one or more of these
types of knowledge.

C) Number of times variables’ identifiers commented in source code

To investigate how frequently primitive variables are commented in the source
code, we first obtained all the variables that have at least one comment (1,703,234
variables). Then, we quantitatively analysed the variables documented using
the best matching approach, resulting from RQ1, to determine how many of
the variables’ identifiers are mentioned in their comments in different scopes of
declaration.

D) Distribution of documented variables by their scopes of declara-
tion

Our investigation in this study takes into account both the type of documented
identifier and the scope in which they are declared. We hypothesise that some
data types of variables tend to be documented in the comments in particu-
lar scopes more than other data types. Thus, to explore the distribution of
these identifiers, we quantitatively analysed these variables by their scopes of
declaration.

E) Types of comments associated with the documented variables by
scope

We further investigated the types of comments associated with the documented
data types of variables. For example, we investigated the scopes of the variables
in which they are declared, the data types of these variables and the types of
comments associated with these variables. We then analysed the descriptive
statistics of our data set.

5.5. Findings 93

5.5 Findings

In this section we present our findings individually for each of the research
questions.

5.5.1 RQ1: To what extent can different techniques detect

variables in comments?

To understand the performance of lexical and advanced techniques used to
detect variables’ identifiers in the comments, we present our results of the eval-
uation of the lexical and the advanced matching in Table 5.5. The evaluation of
these techniques was based on 600 variables manually annotated, as shown in
Table 5.3, and using the annotation questions (i.e., AQ3), shown in Table 5.4,
to assess the performance of all techniques. As a result of the evaluation pro-
cess, we found that 584 variables’ identifiers were correctly detected by our ap-
proaches along with their accompanying comments, whereas only 16 variables
were not detected correctly.

Table 5.5. Accuracy of different matching techniques.

Matching techniques Recall Precision F-score
Lexical Matching 0.896 0.994 0.942
Advanced Matching (Lemmas) 0.985 0.985 0.985
Advanced Matching (Metaphone) 0.995 0.973 0.984
Advanced Matching (SEthesaurus) 0.462 0.985 0.629
Union of all advanced matchings 1.000 0.973 0.986
Union of lexical and advanced matching 1.000 0.973 0.986

The overall performance based on the F-score for each of the techniques
used to detect variables’ identifiers, across all the scopes, showed that the abil-
ity of lemmas’ and metaphonic matching techniques to capture the variables’
identifiers in the comments were superior to the performances of the lexical
and SEthesaurus approaches; that is, the F-score measures for lexical, lemmas,
metaphonic and SEthesaurus were 0.942, 0.985, 0.984, and 0.629, respectively.

In terms of recall, SEthesaurus scored very low as compared to other ap-
proaches, and this can be attributed to the limited vocabulary in its dictionary,
which was used to capture the abbreviations and synonyms of the identifiers
in the text of comments. On the other hand, the recall of metaphonic match-
ing, which can catch the spelling and pronunciation of the identifiers in the
comments, scored the highest.

94 Chapter 5. The Potential of Code Comments for use in Summarisation

Furthermore, combining lexical and advanced matching resulted in a slight
improvement (4.3%) of the F-score value, due to few false positives instances
being detected when the metaphonic matching technique was used.

The main observation we can draw from these results is that the F-score
value of advanced matching techniques to detect the identifiers in the comments
is higher than for lexical matching. This means that advanced matching can
detect the identifiers with 5% more true positive instances than lexical match-
ing (555 true positive instances), which has ultimately impacted the value of
the F-score of the union approach.

The ability of the advanced matching to detect the variables’ identifier in
comments based on F-score scored a higher value (0.986), compared to lexical
matching, which scored 0.942.

5.5.2 RQ2: What types of knowledge do comments pro-

vide about the variables?

The answer to RQ2 reveals the types of additional information in comments
about documented variables found in the 600 variables manually annotated.
Table 5.6 shows three types of knowledge—purpose, concept and directive—
that the developer might use to describe the identifiers in the comment. As
shown in the table, the documented variables were grouped into scopes, and it
shows the number of documented variables with any of these types of knowledge
and percentages of the additional information of these knowledge types captured
in the comment to describe the identifier.

For instance, our result revealed that 60.00% (6/10) of the boolean variables,
declared in the field scope, have information in their accompanying comments
that could explain the variable’s concept. In contrast, 88.46% (23/26) of the
String variables, declared in the field scope, were documented with their con-
cept. We also observed that all variables declared in the parameters of the meth-
ods were documented with additional information covering the three knowledge
types. This indicates that parameter variables are crucial elements in source
code, to allow developers to provide additional information about their concept,
purpose or directives in their accompanying comments.

In addition, combining the numbers of each data type of variables, from all
the scopes can show how often variables with a particular data type were doc-
umented in comments with their concept, purpose or directives. In general, we
can see only 20.67% (124) of these variables are documented in comments with

5.5. Findings 95

T
a
bl

e
5.

6.
T
yp

es
of

kn
ow

le
dg

e
of

pu
rp
os
e
(P

),
co
nc

ep
t
(C

),
an

d
di
re
ct
iv
es

(D
)
do

cu
m
en
te
d
w
it
h
ea
ch

da
ta

ty
pe

of
va
ri
ab

le
s

in
co
m
m
en
ts
.

D
at
a
ty
p
e

F
ie
ld
s

L
oc
al

va
ri
ab

le
s

P
ar
am

et
er
s

C
om

b
in
ed

C
ou

nt
P

(%
)

C
(%

)
D

(%
)
C
ou

nt
P

(%
)

C
(%

)
D

(%
)
C
ou

nt
P

(%
)

C
(%

)
D

(%
)
C
ou

nt
P

(%
)

C
(%

)
D

(%
)

bo
ol
ea
n

10
50

.0
0

60
.0
0

0.
00

1
10

0.
00

10
0.
00

0.
00

26
65

.3
8

46
.1
5

0.
00

37
62

.1
6

51
.3
5

0.
00

by
te

0
N
/A

N
/A

N
/A

0
N
/A

N
/A

N
/A

17
64

.7
1

58
.8
2

47
.0
6

17
64

.7
1

58
.8
2

47
.0
6

ch
ar

1
0.
00

0.
00

10
0.
00

0
N
/A

N
/A

N
/A

1
10

0.
00

10
0.
00

0.
00

2
50

.0
0

50
.0
0

50
.0
0

in
t

25
28

.0
0

72
.0
0

4.
00

14
42

.8
6

42
.8
6

0.
00

13
4

74
.6
3

74
.6
3

19
.4
0

17
3

65
.3
2

71
.6
8

15
.6
1

sh
or
t

0
N
/A

N
/A

N
/A

0
N
/A

N
/A

N
/A

1
10

0.
00

10
0.
00

0.
00

1
10

0.
00

10
0.
00

0.
00

lo
ng

6
33

.3
3

83
.3
3

0.
00

3
33

.3
3

33
.3
3

0.
00

88
80

.6
8

72
.7
3

17
.0
5

97
76

.2
9

72
.1
6

15
.4
6

flo
at

0
N
/A

N
/A

N
/A

0
N
/A

N
/A

N
/A

10
10

0.
00

80
.0
0

10
10

10
0.
00

80
.0
0

10
.0
0

do
ub

le
1

0.
00

10
0.
00

0.
00

3
0.
00

10
0.
00

0.
00

32
68

.7
5

81
.2
5

9.
38

36
61

.1
1

83
.3
3

8.
33

St
ri
ng

26
34

.6
2

88
.4
6

11
.5
4

2
50

.0
0

50
.0
0

0.
00

19
9

64
.8
2

51
.2
6

33
.1
7

22
7

61
.2
3

55
.5
1

30
.4
0

N
um

er
ic

32
28

.1
3

75
.0
0

3.
13

20
35

.0
0

50
.0
0

0.
00

28
2

76
.2
4

74
.1
1

18
.7
9

33
4

69
.1
6

72
.7
5

16
.1
7

St
ri
ng

an
d
ch
ar

27
33

.3
3

85
.1
9

14
.8
1

2
50

.0
0

50
.0
0

0.
00

20
0

65
.0
0

51
.5
0

33
.0
0

22
9

61
.1
4

55
.4
6

30
.5
7

To
ta
l

69
33

.3
3

76
.8
1

7.
25

23
39

.1
3

52
.1
7

0.
00

50
8

71
.2
6

63
.7
8

23
.4
3

60
0

65
.6
7

64
.8
3

20
.6
7

96 Chapter 5. The Potential of Code Comments for use in Summarisation

directive information, compared to variables documented with their purpose
65.67% (394) or concept 64.83% (389)—developers rarely documented primi-
tive variables with any directive information.

Table 5.7. Relationship between groups of data types of vari-
ables with respect to knowledge types.

Data type of variables Types of knowledge
P C D

1 Numeric 0.0484 0.0001 0.0001String and char

2 Numeric 0.3846 0.0067 0.0081boolean

3 String and char 0.9053 0.6413 0.0001boolean

We further grouped the data types of the primitive variables into numeric
(i.e., byte, int, long, short, float and double), String and char, and booleans to
investigate whether data types of variable identifiers would affect the amount
of additional information regarding purpose, concept and directives associated
with variables that was documented in comments. We found that only 55.46%
(127/229) of the identifiers of Strings and chars were documented in the com-
ments with their concept, compared to 72.75% (243/334) of identifiers of nu-
meric types.

Table 5.7 shows the associations between the groups of identifiers of type
String and char vs. numeric to test the association between these groups. We
found that the difference in documenting the concept of an identifier is statis-
tically significant between numeric types and String/char using the Chi-square
test with ? = 0.0001. Numeric types were well documented in terms of their
concept as compared to String and char; that is to say, numeric was more often
conceptualised with meaning.

Additionally, we found that the information of type directives is strongly
related to the data types of numeric, String and char, and boolean variables,
with ? < 0.05. For instance, we found that boolean identifiers are not docu-
mented in terms of directives (0/37), as expected, because their range is only
two elements. In contrast, developers tend to provide additional information
that describes the directives of identifiers of strings and chars more than nu-
meric variables, 30.57% and 16.17%, respectively. This is likely because String
variables are well directive-documented due to extra information, such as “nul-
lability” that is usually documented with identifiers in the comment.

5.5. Findings 97

Developers documented the variables’ identifiers of numeric data type with
their purpose (69.16%) and concept (72.75%), more often than those of type
String, which were documented for purpose (61.14%) and concept (55.46%).

5.5.3 RQ3: How frequently are primitive variables docu-

mented in comments?

10.8 11.1 10.5 8.3 11.6 8.3 11.9 11.6 17.9
6.3 6.4 7.7 8.6

10.5
4.6

8.1 7.9
5.2

82.9 82.5 81.8 83.1 77.9
87.0

80.0 80.5 77.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

boolean byte char int short long float double String

Documented variables Undocumented variables Variables do not have comments

Figure 5.2. Percentage of variables documented, or r undoc-
umented in the comment, and the percentage of variables that

did not have comments.

Next, we used our large-scale data set which contains 1,703,234 (19.70%)
commented variables (i.e., developers wrote a comment above the declaration
of the variable) out of a total of 8,646,435 primitive variables (see Table 5.1), to
investigate how often developers documented the variables’ identifiers in com-
ments, that is, developers mentioned the variables’ identifiers in the associated
comments. Out of 1,703,234 commented variables, our matching approaches
were able to detect 67.40% (1,147,947) of the identifiers that were documented
in their related comments, using the union approach, as its F-score scored the
best value (0.986) among all detecting approaches (see RQ1). We used 1,147,947
documented variables to answer RQ3 and subsequent research questions, RQ4
and RQ5. We now report on findings in answer to RQ3.

Figure 5.2 shows for each of the data types 1) the percentage of the variables
that have comments and are documented in their accompanying comments, 2)
the percentage of the variables that have comments but are undocumented (i.e.,
not mentioned in their accompanying comments), and 3) the percentage of
variables that do not have comments.

98 Chapter 5. The Potential of Code Comments for use in Summarisation

We can see from the figure that the percentage of documented variables in
the comments compared to undocumented variables is high except for the int
data type where the opposite was observed. Moreover, 17.9% of String variables
were documented in their comments compared to undocumented (5.2%), which
showed the highest ratio among all the documented variables, followed by byte,
boolean and float. This can be explained, as developers tend to document the
identifiers of String more than other data types, due to its capability to store any
data ranging from textual information to symbols and numbers, which might be
required by the developers to provide additional information of type directive
to describe the content of the String variables. In addition, 80.30% (6,943,201)
of the primitive variables were found to be uncommented, where the long data
type showed the highest ratio of uncommented variables among other primitive
types. The String data type, on the other hand, showed the lowest ratio of
uncommented variables compared to other primitive variables.

80.30% of the variables did not have comments, and among those commented
variables, 13.28% of the variables were documented in their comment, while
6.42% of the variables were undocumented.

5.5.4 RQ4: What are the distributions of documented

variables by their scope of declarations?

As reported in Section 5.5.3, 13.29% (1,147,947) of the variables were docu-
mented in their related comments. For these 1,147,947 variables, Figure 5.3
illustrates the distribution of variable data types in their accompanying com-
ments in each scope. Identifiers of the String data type, as declared in methods’
parameters, were usually documented (67.02%) in their associated comments.
In contrast, identifiers of the data types of int and boolean were most often
documented in local and field scopes (33.70% and 10.95%, respectively).

Comparing data types of each variable with their declaration scopes, we
found that String 63.39% (727,631), int 19.12% (208,058), and boolean 6.91%
(79,283) data types were frequently used and documented across all the scopes.

On the other hand, the lowest number of variables documented in the com-
ments were short (0.31%), char (0.49%), float (1.39%) and double (2.93%) data
types across all the scopes of declaration.

Variables declared in methods’ parameters were more documented (85.32%)
in their comments than those declared in the scopes of field (10.98%) and meth-
ods’ bodies (3.70%). The high number of documented variables in parameters

5.5. Findings 99

0

10

20

30

40

50

60

70

80

Fields Local variables Parameters

Pe
rc

en
ta

ge

boolean byte char int short long float double String

Total fields = 126,093 Total local variables = 42,450

Total parameters = 979,404

Figure 5.3. Percentage of variable data types declared in each
scope.

might be because comments were automatically generated by Javadoc and usu-
ally mentioned the variables’ identifiers in the comment. In contrast, the lower
numbers of the variables documented in the methods’ bodies were due to their
smaller scope, where developers tend not to document these identifiers in the
comments.

Across all scopes, developers often use and document variable identifiers of
type String (63.39%), int (19.12%) and boolean (6.91%) in their accompany-
ing comments more than other primitive data types. Variables declared in
methods’ parameters were more documented in their comments than those
declared in scopes of field and methods’ bodies.

5.5.5 RQ5: What are the types of comments associated

with the scopes of the documented variables?

Finally, we report our result that reveal the types of comments associated with
the documented variables in each scope, as shown in Table 5.8. The results can
be interpreted in the same way as those in Figure 5.3, except that in this case,
we show the types of comments (e.g., inline, line, block and Javadoc) associated
with these data types and variables per scope. Our result reveals that a vast
majority of the variables declared in the methods’ parameters were documented
in a comment of type Javadoc 99.04% (969,976), followed by block 0.5% (4,878).

100 Chapter 5. The Potential of Code Comments for use in Summarisation

T
a
bl

e
5.

8.
P
er
ce
nt
ag
e
of

th
e
va
ri
ab

le
s
of

di
ffe

re
nt

da
ta

ty
pe

s
do

cu
m
en
te
d
w
it
h
di
ffe

re
nt

ty
pe

s
of

co
m
m
en
ts

in
ea
ch

sc
op

e.

D
at
a
T
yp

e
F
ie
ld
s

L
oc
al

va
ri
ab

le
s

P
ar
am

et
er

va
ri
ab

le
s

In
li
n
e

L
in
e

B
lo
ck

Ja
va
d
oc

In
li
n
e

L
in
e

B
lo
ck

Ja
va
d
oc

In
li
n
e

L
in
e

B
lo
ck

Ja
va
d
oc

bo
ol
ea
n

0.
57

1.
43

0.
24

8.
71

0.
66

7.
51

0.
42

0.
10

0.
00

0.
03

0.
03

6.
26

by
te

1.
04

0.
48

0.
04

1.
40

0.
17

3.
28

0.
16

0.
02

0.
00

0.
01

0.
02

1.
55

ch
ar

0.
02

0.
05

0.
02

0.
58

0.
04

0.
45

0.
04

0.
00

0.
00

0.
00

0.
01

0.
46

in
t

1.
53

2.
66

0.
47

25
.7
5

2.
95

28
.8
2

1.
58

0.
33

0.
00

0.
14

0.
18

15
.5
4

sh
or
t

0.
02

0.
03

0.
02

0.
92

0.
04

0.
27

0.
00

0.
00

0.
00

0.
00

0.
00

0.
22

lo
ng

0.
26

0.
75

0.
15

4.
98

0.
41

4.
48

0.
23

0.
07

0.
00

0.
02

0.
02

4.
40

flo
at

0.
07

0.
12

0.
02

1.
58

0.
21

1.
60

0.
05

0.
03

0.
00

0.
01

0.
01

1.
29

do
ub

le
0.
38

0.
26

0.
06

1.
92

0.
82

5.
84

0.
63

0.
05

0.
00

0.
04

0.
02

2.
72

St
ri
ng

0.
96

2.
96

0.
63

38
.9
3

1.
76

35
.3
0

1.
45

0.
19

0.
00

0.
20

0.
22

66
.6
0

5.6. Threats to Validity 101

Similarly, out of 126,093 variables declared in field scope, we found that
84.77% of these variables were documented using Javadoc, followed by line
comment (8.76%). Finally, 87.55% of local variables were documented using
line comment, followed by inline comment (7.08%).

97.41% of the variables declared in field and parameter scopes were docu-
mented in Javadoc comments, while 87.55% of local variables were docu-
mented using line comments.

5.6 Threats to Validity

As with any empirical study, for our study, there are a number of threats that
may affect our results’ validity.

First, the taxonomy used to categorise the documentation of variables was
based on three types of knowledge inspired by Maalej and Robillard (Maalej and
Robillard, 2013), and adapted to fit our purpose. Future work should explore
other dimensions of these types of knowledge.

Second, the number of primitive variables used to evaluate our detection
approaches was small, which could introduce bias, but this limitation was nec-
essary due to the laborious task of manual annotation. As well, the recall value
referred to in this work is an approximation, as a theoretical value of the re-
call was not computed precisely, because again, a great deal of effort would be
required to manually annotate the data.

Finally, our work may not generalise to other programming languages, espe-
cially those that are loosely typed. Therefore, we cannot claim that our findings
are generalisable beyond the evaluation data set used for this work.

5.7 Related Work

In this section, we discuss literature related to approaches for the detection of
code comment inconsistencies and taxonomies of knowledge types.

Automatic assessment of comment quality: Researchers have devel-
oped tools and metrics to measure the quality of code comments. For exam-
ple, Khamis et al. (Khamis, Witte, and Rilling, 2010) developed a tool called
JavadocMiner based on natural language processing (NLP) to assess the quality
of Javadoc comments by evaluating the “quality“ of the language used in the
comment as well as its consistency with the source code. The quality of the lan-
guage is assessed using readability metrics such as the Gunning Fog Index and

102 Chapter 5. The Potential of Code Comments for use in Summarisation

combined with the several heuristics, e.g., checking whether the comment uses
well-formed sentences, including nouns and verbs. Furthermore, the consistency
between code and comments is checked with a heuristic-based approach. For
example, a method having a return type and parameters is expected to have
these elements documented in the Javadoc with @return and @param.

In another work, Steidl et al. (Steidl, Hummel, and Juergens, 2013) proposed
a machine learning model for comment quality analysis and assessment based
on various comment categories including header comments, member comments,
in-line comments, section comments, code comments and task comments. The
model described the quality attributes in terms of coherence, consistency, com-
pleteness, and usefulness, and assessed two quality metrics. The validity of the
model was then evaluated with a survey among 16 experienced developers.

Similarly, Sun et al. (Sun et al., 2016) extended the work of Steidl et al. by
evaluating code comments in jdk8.0 and jEdit to provide comprehensive com-
ment assessment and recommendation. The study consists of header comment
analysis and method comment analysis that highlights the correlation between
method’s name and comment.

Hata et al. (Hata et al., 2019) investigate the role of links contained in source
code comments. They find that licenses, software homepages, and specifications
are among the most prevalent types of link targets, and that links are often used
to provide metadata or attribution.

Hao (He, 2019) carried out an approach to understand comments in source
code, investigating whether projects practice commenting differently and what
may cause the differences. They chose five programming languages including
JavaScript, Java, C++, Python and Go. They found that the most commented
project was a Java design patterns project and that comments in Java and
Python were more prevalent than in C++.

Other studies have mainly focused on the automatic detection of code-
comment inconsistencies such as the work presented by Tan and colleagues (Tan
et al., 2007; Tan et al., 2012). In their work, they presented iComment (Tan
et al., 2007) which combined program analysis, a technique using NLP and ma-
chine learning to detect code-comment inconsistencies. iComment can detect
inconsistencies related to the usage of locking mechanisms in code and their de-
scription in comments. They also presented @TCOMMENT in their follow-up
work (Tan et al., 2012). @TCOMMENT is an approach which is able to test
the consistency between Javadoc comments related to null values and exceptions
with the behaviour of the related method’s body.

A rule-based approach named Fraco was proposed by Ratol et al. (Ratol and

5.8. Implications 103

Robillard, 2017) to detect code-comment inconsistencies resulting from rename
refactoring operations performed on identifiers. Their evaluation shows the
superior performance achieved by Fraco as compared to the rename refactoring
support implemented in Eclipse. Our work, while not related to the automatic
assessment of comments quality, provides an empirical study on how developers
tend to document identifiers of primitive variables in source code comments.

Taxonomy of knowledge types: Padioleau et al. (Padioleau, Tan, and
Zhou, 2009) proposed a taxonomy based on meanings of comments and manu-
ally classifiers 1,050 comments. They found that 52.6% of these comments can
be leveraged to improve software reliability and increase developer productiv-
ity. Monperrus et al. (Monperrus et al., 2012) empirically studied API directives
which are constraints about usages of APIs and they built a corresponding tax-
onomy. Maalej and Robillard (Maalej and Robillard, 2013) leveraged grounded
methods and analytical approaches to build a taxonomy of knowledge types in
API reference documentation and manually classified 5,574 randomly sampled
documentation units to assess the knowledge they contain. In contrast to those
studies, we developed a taxonomy of knowledge types for identifiers detected
in the code comments, as existing taxonomies did not fit the purpose of our
particular study.

5.8 Implications

A) Documenting primitive variables in Java source code

Primitive variable data types are fundamental elements in any programming
language. Because of the nature of these variables, which requires developers
to inject meaning in the accompanying comments, their role might be diffi-
cult to understand if not sufficiently explained in code comments, which could
ultimately reduce the productivity of developers.

Our results indicate which variables in what context tend to be documented
and which do not. Knowing which primitive variables (i.e., most of the variables
in our data set) tend to be documented and what knowledge this documentation
contains are first steps towards raising awareness among developers about what
should be documented and what is often missing. This can provide a pathway
towards integrated automated tooling to assess the presence of knowledge types
and to potentially issue recommend changes in cases of lack of knowledge types
in comments related to the variables’ identifiers. We plan similar work on non-
primitive variables and are considering expanding the taxonomy of knowledge

104 Chapter 5. The Potential of Code Comments for use in Summarisation

types regarding variables’ identifiers documented in comments to cover more
knowledge types, which could help reveal additional information linked to these
identifiers.

B) The potential of code comments for summarisation:

Our results, reported in Section 5.5.2, showed the amount of additional informa-
tion (i.e., knowledge types: purpose, concept, and directive) that the comments
could contain to explain the use of primitive variables in source code. To enrich
the automatic summaries with information involved in the developers’ develop-
ment activities, we needed, as the first step, to assess the knowledge types of
primitive variables that comments can contain.

Assessing the information contained in the comments is an essential step to-
wards knowing whether inclusion of these comments in summaries would benefit
the developers’ understanding of their development activities—given that the
source code is regarded as one of the most important artefacts for creation of
software applications and the code comment is a primary way of documenting
the source code. However, comments can be fragile items that may not pro-
vide additional information about the variables in the source code. Therefore,
assessing the knowledge types contained in comments could reveal additional
information about the developers’ development activities in their projects, thus
enriching the automatically generated summaries.

Our results (Table 5.6) reveal the types of knowledge found in the comments
in our evaluation data set. The table shows that 65.67% of the variables were
documented with information related to purpose; 64.83% were documented with
information relating to concepts; and 20.67% of the variables were documented
with directives. These results highlight that the developers provided additional
information about how the variables could be used, what they contained, and
their domains. Thus, including source code comments as an additional artefact
beside the 15 types of artefacts (see Chapter 4.2) to the process of summarisation
would add to our knowledge about the developers’ development activities.

105

Chapter 6

Conclusion and Future Work

The automatic generation of multi-document summaries from heterogeneous
software artefacts is a promising research direction in the software engineering
field, as demonstrated by this present contribution. Prior to the work described
in this thesis, there was little known about summarising heterogeneous data
from different kinds of software artefacts in a given time frame. Previous stud-
ies looked at automated summary production from only one single type of arte-
fact, and they did not consider the process in terms of a time dimension. In
this thesis, we proposed to address this gap in the research in order to help soft-
ware developers better understand their projects’ development activities and to
meet their growing information needs. In addition, we evaluated comments con-
tained in Java source code files for the types of knowledge they contained about
primitive variables. These findings showed that the source code comments did
contain additional information about developers’ activities that could be used
for summarisation purposes.

This dissertation makes the following specific contributions:

• We created our gold-standard summaries, investigated their text proper-
ties and then used these summaries to identify which types of software
artefacts reflected the developers’ development activities. We then inves-
tigated whether GitHub developers actually used these software artefacts
in their projects by conducting a large-scale analysis of 1,038 software en-
gineered projects. Our results indicated that our identified software arte-
facts were commonly used by GitHub developers working on engineered
software projects: hence, they could be useful inputs for our summarisa-
tion techniques.

• We proposed, implemented and evaluated our first framework for sum-
marising multi-document software artefacts containing heterogeneous data
within a given time frame. We used a variety of optimisation heuristics
algorithms to extract text from the software artefacts in such a way that

106 Chapter 6. Conclusion and Future Work

the resulting summaries were similar in style to those found in the gold-
standard summaries. The generated summaries were then extrinsically
evaluated by means of a user study. This indicated that experts found
the generated summaries useful in identifying all of the key project activ-
ities listed in the gold-standard summaries.

• We noted that the gold-standard summaries showed no clear evidence that
the student developers cited information related to the source code files.
However, source codes are considered one of the most important artefacts
in the development of software applications, and comments are a primary
source of information for documenting the source code. We decided to
assess source code comments for their potential for summarisation, divid-
ing them into three types of knowledge: purpose, concept, and directive.
We then designed and conducted a study to ascertain how often devel-
opers document variable identifiers in their related comments, and what
additional information the comments provide with respect to these iden-
tifiers. Our findings showed that there is potential for including source
code comments for summarisation as an additional source of information
about developers’ activities.

There are several directions that future studies could take. For example, we
found 15 types of software artefacts mentioned in the student summaries (gold-
standard summaries) in describing their development activities. However, due
to the low number of summaries produced by the students, it is unclear whether
our findings can be generalised to other GitHub repository projects. For ex-
ample, we found no clear evidence that the source code artefact was leveraged
in the student summaries. In future work we could include source code com-
ments and other types of artefacts that describe developmental activities. In
addition, because we started with a base of only a few hundred summaries,
creating reliable machine learning-based summaries was difficult. So the con-
struction of standard large-scale summarisation datasets will be an important
future direction to advance this field of research.

In addition, we employed cosine similarity in our optimisation algorithms as
the fitness function to compute the similarity between the artefacts’ sentences
and the sentences in our target vectors (i.e., the gold-standard summaries) using
either a bag of words or high-dimensional feature vectors. However, when com-
paring two sentences closely connected, but with no words in common, a bag
of words representation does not allow for dealing with the semantic similari-
ties between concepts. We plan to improve our similarity measure by applying

Chapter 6. Conclusion and Future Work 107

word embeddings (e.g., Word2Vec (Mikolov et al., 2013) or Glove (Pennington,
Socher, and Manning, 2014)) to capture the semantic word relationships, to
attempt to improve the quality of the automatic generated summaries.

Another dimension for future work could be to generate automatic sum-
maries without relying on gold-standard summaries. The present summarisa-
tion approach has demonstrated the effectiveness of automatically generated
summaries in assisting developers to understand their development activities
within a given time frame. We plan to build on this by developing machine-
learning based extractive and abstractive summarisation systems in practical
settings to provide developers with instant summaries.

Finally, the summarisation systems could be enhanced by involving user
interactions in the summarisation process to provide the developers with cus-
tomised summaries. For example, a user could modify the input parameters,
such as type of software artefact and the time duration the developers choose
for summary generation (e.g., number of days or weeks), and thus summaries
could be automatically constructed and updated based on a series of adjusted
parameters.

109

Bibliography

Afantenos, Stergos, Vangelis Karkaletsis, and Panagiotis Stamatopoulos (2005).
“Summarization from medical documents: a survey”. In: Artificial intelli-
gence in medicine 33.2, pp. 157–177.

Alghamdi, Mahfouth, Shinpei Hayashi, Takashi Kobayashi, and Christoph Treude
(2021a). “Characterising the Knowledge about Primitive Variables in Java
Code Comments”. In: 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), pp. 460–470. doi: 10.1109/MSR52588.
2021.00058.

Alghamdi, Mahfouth, Shinpei Hayashi, Takashi Kobayashi, and Christoph Treude
(2021b). Online Appendix of “Characterising the Knowledge about Primitive
Variables in Java Code Comments”. Zenodo. https://doi.org/10.5281/
zenodo.4626387.

Alghamdi, Mahfouth, Christoph Treude, and Markus Wagner (2019). “Toward
Human-like Summaries Generated from Heterogeneous Software Artefacts”.
In: Genetic and Evolutionary Computation Conference Companion. Prague,
Czech Republic: ACM, 1701–1702. isbn: 9781450367486.

Alghamdi, Mahfouth, Christoph Treude, and Markus Wagner (2020). “Human-
Like Summaries from Heterogeneous and Time-Windowed Software Devel-
opment Artefacts”. In: International Conference on Parallel Problem Solving
from Nature. Springer, pp. 329–342.

Allahyari, Mehdi, Seyedamin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth D
Trippe, Juan B Gutierrez, and Krys Kochut (2017). “Text Summarization
Techniques: A Brief Survey”. In: International Journal of Advanced Com-
puter Science and Applications (ijacsa) 8.10.

Balaji, J, TV Geetha, and Ranjani Parthasarathi (2016). “Abstractive sum-
marization: A hybrid approach for the compression of semantic graphs”. In:
International Journal on Semantic Web and Information Systems (IJSWIS)
12.2, pp. 76–99.

Blasi, Arianna, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael
D Ernst, Mauro Pezzè, and Sergio Delgado Castellanos (2018). “Translat-
ing code comments to procedure specifications”. In: Proceedings of the 27th

https://doi.org/10.1109/MSR52588.2021.00058
https://doi.org/10.1109/MSR52588.2021.00058
https://doi.org/10.5281/zenodo.4626387
https://doi.org/10.5281/zenodo.4626387

110 Bibliography

ACM SIGSOFT International Symposium on Software Testing and Analy-
sis, pp. 242–253.

Buse, Raymond PL andWestley RWeimer (2010). “Automatically documenting
program changes”. In: Proceedings of the IEEE/ACM international confer-
ence on Automated software engineering, pp. 33–42.

Chen, Chunyang, Zhenchang Xing, and Wang Ximing (2017). “Unsupervised
Software-Specific Morphological Forms Inference from Informal Discussions”.
In: Proceedings of the 39th International Conference on Software Engineer-
ing, pp. 450–461.

Chen, Huanchao, Yuan Huang, Zhiyong Liu, Xiangping Chen, Fan Zhou, and
Xiaonan Luo (2019). “Automatically detecting the scopes of source code
comments”. In: Journal of Systems and Software 153, pp. 45–63.

Collard, Michael L, Michael J Decker, and Jonathan I Maletic (2011). “Lightweight
transformation and fact extraction with the srcML toolkit”. In: Proceedings
of the 11th IEEE International Working Conference on Source Code Analy-
sis and Manipulation, pp. 173–184.

Cortés-Coy, Luis Fernando, Mario Linares-Vásquez, Jairo Aponte, and Denys
Poshyvanyk (2014). “On automatically generating commit messages via sum-
marization of source code changes”. In: 2014 IEEE 14th International Work-
ing Conference on Source Code Analysis and Manipulation. IEEE, pp. 275–
284.

Dabbish, Laura, Colleen Stuart, Jason Tsay, and Jim Herbsleb (2012). “Social
coding in GitHub: transparency and collaboration in an open software repos-
itory”. In: Proceedings of the ACM 2012 conference on computer supported
cooperative work, pp. 1277–1286.

Dale, Edgar and Jeanne S Chall (1948). “A formula for predicting readability:
Instructions”. In: Educational research bulletin, pp. 37–54.

Edmundson, Harold P (1969). “New methods in automatic extracting”. In: Jour-
nal of the ACM (JACM) 16.2, pp. 264–285.

Erkan, Günes and Dragomir R Radev (2004). “Lexrank: Graph-based lexical
centrality as salience in text summarization”. In: Journal of artificial intel-
ligence research 22, pp. 457–479.

Ferreira, Rafael, Frederico Freitas, Luciano de Souza Cabral, Rafael Dueire Lins,
Rinaldo Lima, Gabriel França, Steven J Simske, and Luciano Favaro (2014).
“A context based text summarization system”. In: 2014 11th IAPR interna-
tional workshop on document analysis systems. IEEE, pp. 66–70.

Flesch, Rudolph (1948). “A new readability yardstick.” In: Journal of applied
psychology 32.3, p. 221.

Bibliography 111

Goffi, Alberto, Alessandra Gorla, Michael D Ernst, and Mauro Pezzè (2016).
“Automatic generation of oracles for exceptional behaviors”. In: Proceed-
ings of the 25th International Symposium on Software Testing and Analysis,
pp. 213–224.

Goldstein, Jade, Vibhu O Mittal, Jaime G Carbonell, and Mark Kantrowitz
(2000). “Multi-document summarization by sentence extraction”. In:NAACL-
ANLP 2000 Workshop: Automatic Summarization.

Grover, Claire, Ben Hachey, and Chris Korycinski (2003). “Summarising legal
texts: Sentential tense and argumentative roles”. In: Proceedings of the HLT-
NAACL 03 Text Summarization Workshop, pp. 33–40.

Gupta, Vishal and Gurpreet Singh Lehal (2010). “A survey of text summa-
rization extractive techniques”. In: Journal of emerging technologies in web
intelligence 2.3, pp. 258–268.

Hahn, Udo and Martin Romacker (2001). “The SynDiKATe Text Knowledge
Base Generator”. In: Proceedings of the First International Conference on
Human Language Technology Research.

Haiduc, Sonia, Jairo Aponte, and Andrian Marcus (2010). “Supporting program
comprehension with source code summarization”. In: 2010 acm/ieee 32nd
international conference on software engineering. Vol. 2. IEEE, pp. 223–
226.

Haiduc, Sonia, Jairo Aponte, Laura Moreno, and Andrian Marcus (2010). “On
the use of automated text summarization techniques for summarizing source
code”. In: 2010 17th Working Conference on Reverse Engineering. IEEE,
pp. 35–44.

Hartzman, Carl S and Charles F Austin (1993). “Maintenance productivity:
Observations based on an experience in a large system environment”. In:
Proceedings of the 3rd Conference of the Centre for Advanced Studies on
Collaborative Research: Software Engineering. Vol. 1, pp. 138–170.

Hata, Hideaki, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio
(2019). “9.6 million links in source code comments: Purpose, evolution, and
decay”. In: Proceedings of the 41st IEEE/ACM International Conference on
Software Engineering, pp. 1211–1221.

He, Hao (2019). “Understanding source code comments at large-scale”. In: Pro-
ceedings of the 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pp. 1217–1219.

Hirao, Tsutomu, Masaaki Nishino, Yasuhisa Yoshida, Jun Suzuki, Norihito Ya-
suda, and Masaaki Nagata (2015). “Summarizing a document by trimming

112 Bibliography

the discourse tree”. In: IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing 23.11, pp. 2081–2092.

Hovy, Eduard and Daniel Marcu (2005). “Automated text summarization”. In:
The Oxford Handbook of computational linguistics 583598.

Hu, Xing, Ge Li, Xin Xia, David Lo, and Zhi Jin (2018). “Deep code comment
generation”. In: 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC). IEEE, pp. 200–20010.

Huang, Yuan, Shaohao Huang, Huanchao Chen, Xiangping Chen, Zibin Zheng,
Xiapu Luo, Nan Jia, Xinyu Hu, and Xiaocong Zhou (2020). “Towards au-
tomatically generating block comments for code snippets”. In: Information
and Software Technology 127, p. 106373.

Huß, Roland (2021). jolokia. url: https://github.com/rhuss/jolokia/
blob/cd3a93fad780b5a0b073bef005c4427fae540402/agent/jvm/src/

test/java/org/jolokia/jvmagent/JolokiaServerTest.java#L301 (vis-
ited on 03/21/2021).

Jiang, He, Jingxuan Zhang, Hongjing Ma, Najam Nazar, and Zhilei Ren (2017).
“Mining authorship characteristics in bug repositories”. In: Science China
Information Sciences 60.1, pp. 1–16.

Jiang, Zhen Ming and Ahmed E Hassan (2006). “Examining the evolution of
code comments in PostgreSQL”. In: Proceedings of the 3rd International
Workshop on Mining Software Repositories, pp. 179–180.

JogAmp Community (2021). JOGL. url: https://github.com/sgothel/
jogl/blob/ecf6e499d3b582d651a28693c871ca14d6e8c991/src/jogl/

classes/jogamp/graph/geom/plane/Crossing.java#L200 (visited on
03/21/2021).

Jones, K Sparck et al. (1999). “Automatic summarizing: factors and directions”.
In: Advances in automatic text summarization, pp. 1–12.

Kalliamvakou, Eirini, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian (2014). “The promises and perils of mining
GitHub”. In: Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories, pp. 92–101.

Khamis, Ninus, René Witte, and Juergen Rilling (2010). “Automatic quality
assessment of source code comments: The JavadocMiner”. In: Proceedings
of the 15th International Conference on Application of Natural Language to
Information Systems, pp. 68–79.

https://github.com/rhuss/jolokia/blob/cd3a93fad780b5a0b073bef005c4427fae540402/agent/jvm/src/test/java/org/jolokia/jvmagent/JolokiaServerTest.java#L301
https://github.com/rhuss/jolokia/blob/cd3a93fad780b5a0b073bef005c4427fae540402/agent/jvm/src/test/java/org/jolokia/jvmagent/JolokiaServerTest.java#L301
https://github.com/rhuss/jolokia/blob/cd3a93fad780b5a0b073bef005c4427fae540402/agent/jvm/src/test/java/org/jolokia/jvmagent/JolokiaServerTest.java#L301
https://github.com/sgothel/jogl/blob/ecf6e499d3b582d651a28693c871ca14d6e8c991/src/jogl/classes/jogamp/graph/geom/plane/Crossing.java#L200
https://github.com/sgothel/jogl/blob/ecf6e499d3b582d651a28693c871ca14d6e8c991/src/jogl/classes/jogamp/graph/geom/plane/Crossing.java#L200
https://github.com/sgothel/jogl/blob/ecf6e499d3b582d651a28693c871ca14d6e8c991/src/jogl/classes/jogamp/graph/geom/plane/Crossing.java#L200

Bibliography 113

Kikuchi, Yuta, Tsutomu Hirao, Hiroya Takamura, Manabu Okumura, and Masaaki
Nagata (2014). “Single document summarization based on nested tree struc-
ture”. In: Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 315–320.

Kupiec, Julian, Jan Pedersen, and Francine Chen (1995). “A trainable document
summarizer”. In: Proceedings of the 18th annual international ACM SIGIR
conference on Research and development in information retrieval, pp. 68–73.

Landis, J Richard and Gary G Koch (1977). “The measurement of observer
agreement for categorical data”. In: Biometrics 33.1, pp. 159–174.

Liu, Zhongxin, Xin Xia, Christoph Treude, David Lo, and Shanping Li (2019).
“Automatic generation of pull request descriptions”. In: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE,
pp. 176–188.

Lotufo, Rafael, Zeeshan Malik, and Krzysztof Czarnecki (2015). “Modelling the
‘hurried’bug report reading process to summarize bug reports”. In: Empirical
Software Engineering 20.2, pp. 516–548.

Luhn, Hans Peter (1958). “The automatic creation of literature abstracts”. In:
IBM Journal of research and development 2.2, pp. 159–165.

Maalej, Walid and Martin P Robillard (2013). “Patterns of knowledge in API
reference documentation”. In: IEEE Transactions on Software Engineering
39.9, pp. 1264–1282.

Maaten, L. v. d. and G. Hinton (2008). “Visualizing data using t-SNE”. In:
Journal of Machine Learning Research 9, pp. 2579–2605.

Mani, Inderjeet, David House, Gary Klein, Lynette Hirschman, Therese Firmin,
and Beth M Sundheim (1999). “The TIPSTER SUMMAC text summariza-
tion evaluation”. In: Ninth Conference of the European Chapter of the As-
sociation for Computational Linguistics, pp. 77–85.

Mani, Senthil, Rose Catherine, Vibha Singhal Sinha, and Avinava Dubey (2012).
“Ausum: approach for unsupervised bug report summarization”. In: Proceed-
ings of the ACM SIGSOFT 20th International Symposium on the Founda-
tions of Software Engineering, pp. 1–11.

Manning, Christopher D, Prabhakar Raghavan, and Hinrich Schütze (2008).
Introduction to information retrieval. Cambridge University Press.

Manning, Christopher D, Mihai Surdeanu, John Bauer, Jenny Rose Finkel,
Steven Bethard, and David McClosky (2014). “The Stanford CoreNLP nat-
ural language processing toolkit”. In: Proceedings of 52nd Annual Meeting
of the Association for Computational Linguistics: System Demonstrations,
pp. 55–60.

114 Bibliography

McKeown, Kathleen, Rebecca J Passonneau, David K Elson, Ani Nenkova, and
Julia Hirschberg (2005). “Do summaries help?” In: Proceedings of the 28th
annual international ACM SIGIR conference on Research and development
in information retrieval, pp. 210–217.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean
(2013). “Distributed representations of words and phrases and their compo-
sitionality”. In: Advances in neural information processing systems, pp. 3111–
3119.

Mishra, Ritwik and Tirthankar Gayen (2018). “Automatic Lossless-Summarization
of News Articles with Abstract Meaning Representation”. In: Procedia Com-
puter Science 135, pp. 178–185.

Monperrus, Martin, Michael Eichberg, Elif Tekes, and Mira Mezini (2012).
“What should developers be aware of? An empirical study on the directives
of API documentation”. In: Empirical Software Engineering 17.6, pp. 703–
737.

Moreno, Laura, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pol-
lock, and K Vijay-Shanker (2013). “Automatic generation of natural lan-
guage summaries for java classes”. In: 2013 21st International Conference
on Program Comprehension (ICPC). IEEE, pp. 23–32.

Moreno, Laura, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, An-
drian Marcus, and Gerardo Canfora (2014). “Automatic generation of release
notes”. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pp. 484–495.

Munaiah, Nuthan, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan (2017).
“Curating GitHub for engineered software projects”. In: Empirical Software
Engineering 22.6, pp. 3219–3253.

Nair, Vivek, Amritanshu Agrawal, Jianfeng Chen, Wei Fu, George Mathew, Tim
Menzies, Leandro Minku, Markus Wagner, and Zhe Yu (2018). “Data-Driven
Search-Based Software Engineering”. In: 15th International Conference on
Mining Software Repositories (MSR). Gothenburg, Sweden: ACM, 341–352.
isbn: 9781450357166.

Nazar, Najam, He Jiang, Guojun Gao, Tao Zhang, Xiaochen Li, and Zhilei Ren
(2016). “Source code fragment summarization with small-scale crowdsourc-
ing based features”. In: Frontiers of Computer Science 10.3, pp. 504–517.

Nenkova, Ani and Kathleen McKeown (2012). “A SURVEY OF TEXT SUM-
MARIZATION TECHNIQUES”. In: Mining Text Data, p. 43.

Nenkova, Ani, Kathleen McKeown, et al. (2011). “Automatic Summarization”.
In: Foundations and Trends® in Information Retrieval 5.2–3, pp. 103–233.

Bibliography 115

Ou, Shiyan, Christopher SG Khoo, and Dion H Goh (2006). “Automatic multi-
document summarization for digital libraries”. In:

Ouyang, You, Wenjie Li, Qin Lu, and Renxian Zhang (2010). “A study on
position information in document summarization”. In: Coling 2010: Posters,
pp. 919–927.

Padioleau, Yoann, Lin Tan, and Yuanyuan Zhou (2009). “Listening to pro-
grammers—Taxonomies and characteristics of comments in operating sys-
tem code”. In: Proceedings of the 31st International Conference on Software
Engineering, pp. 331–341.

Pandita, Rahul, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit
Paradkar (2012). “Inferring method specifications from natural language API
descriptions”. In: Proceedings of the 34th International Conference on Soft-
ware Engineering, pp. 815–825.

Pennington, Jeffrey, Richard Socher, and Christopher DManning (2014). “Glove:
Global vectors for word representation”. In: Proceedings of the 2014 confer-
ence on empirical methods in natural language processing (EMNLP), pp. 1532–
1543.

Peyrard, Maxime (2019). “A Simple Theoretical Model of Importance for Sum-
marization”. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 1059–1073.

Peyrard, Maxime and Judith Eckle-Kohler (2016). “A general optimization
framework for multi-document summarization using genetic algorithms and
swarm intelligence”. In: 26th International Conference on Computational
Linguistics: Technical Papers (COLIN), pp. 247–257.

Philips, Lawrence (2000). “The double metaphone search algorithm”. In: C/C++
Users Journal 18.6, pp. 38–43.

Qazvinian, Vahed and Dragomir R Radev (2008). “Scientific paper summariza-
tion using citation summary networks”. In: arXiv preprint arXiv:0807.1560.

Qiang, Ji-Peng, Ping Chen, Wei Ding, Fei Xie, and Xindong Wu (2016). “Multi-
document summarization using closed patterns”. In: Knowledge-Based Sys-
tems 99.C, pp. 28–38.

Radev, Dragomir R, Sasha Blair-Goldensohn, and Zhu Zhang (2001). “Experi-
ments in single and multidocument summarization using MEAD”. In: First
document understanding conference. Citeseer, 1À8.

Rastkar, Sarah, Gail C Murphy, and Gabriel Murray (2014). “Automatic sum-
marization of bug reports”. In: IEEE Transactions on Software Engineering
40.4, pp. 366–380.

116 Bibliography

Ratol, Inderjot Kaur and Martin P Robillard (2017). “Detecting fragile com-
ments”. In: 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, pp. 112–122.

Rautray, Rasmita and Rakesh Chandra Balabantaray (2017). “Cat swarm opti-
mization based evolutionary framework for multi document summarization”.
In: Physica A: Statistical Mechanics and its Applications 477, pp. 174–186.

Reeve Lawrence, H, Han Hyoil, V Nagori Saya, C Yang Jonathan, A Schwim-
mer Tamara, and D Brooks Ari (2006). “Concept frequency distribution in
biomedical text summarization”. In: ACM 15th Conference on Information
and Knowledge Management (CIKM), Arlington, VA, USA.

Revelle, William and Maintainer William Revelle (2015). “Package ‘psych’”. In:
The comprehensive R archive network 337, p. 338.

Rigby, Peter C and Martin P Robillard (2013). “Discovering essential code el-
ements in informal documentation”. In: 2013 35th International Conference
on Software Engineering (ICSE). IEEE, pp. 832–841.

Roehm, Tobias, Rebecca Tiarks, Rainer Koschke, and Walid Maalej (2012).
“How do professional developers comprehend software?” In: 2012 34th In-
ternational Conference on Software Engineering (ICSE). IEEE, pp. 255–
265.

Rubio-González, Cindy and Ben Liblit (2010). “Expect the unexpected: Error
code mismatches between documentation and the real world”. In: Proceedings
of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, pp. 73–80.

Saggion, Horacio and Guy Lapalme (2002). “Generating indicative-informative
summaries with sumum”. In: Computational linguistics 28.4, pp. 497–526.

Saggion, Horacio and Thierry Poibeau (2012). “Automatic Text Summariza-
tion: Past, Present and Future”. In: Multi-source, Multilingual Information
Extraction and Summarization, p. 1.

Saggion, Horacio and Thierry Poibeau (2013). “Automatic Text Summariza-
tion: Past, Present and Future”. In: Multi-source, Multilingual Information
Extraction and Summarization, pp. 3–21.

Sarda, AT and AR Kulkarni (2015). “Text summarization using neural networks
and rhetorical structure theory”. In: International Journal of Advanced Re-
search in Computer and Communication Engineering 4.6, pp. 49–52.

Shannon, Claude Elwood (1948). “A mathematical theory of communication”.
In: The Bell system technical journal 27.3, pp. 379–423.

Bibliography 117

Silva, Catarina and Bernardete Ribeiro (2003). “The importance of stop word
removal on recall values in text categorization”. In: Proceedings of the Inter-
national Joint Conference on Neural Networks. Vol. 3, pp. 1661–1666.

Sohangir, Sahar and Dingding Wang (2017). “Improved sqrt-cosine similarity
measurement”. In: Journal of Big Data 4.1, p. 25.

Souza, Sergio Cozzetti B de, Nicolas Anquetil, and Káthia M de Oliveira (2005).
“A study of the documentation essential to software maintenance”. In: Pro-
ceedings of the 23rd annual international conference on Design of commu-
nication: documenting & designing for pervasive information, pp. 68–75.

Sridhara, Giriprasad, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker (2010). “Towards automatically generating summary comments for
java methods”. In: Proceedings of the IEEE/ACM international conference
on Automated software engineering, pp. 43–52.

Steidl, Daniela, Benjamin Hummel, and Elmar Juergens (2013). “Quality analy-
sis of source code comments”. In: Proceedings of the 21st International Con-
ference on Program Comprehension, pp. 83–92.

Steinberger, Josef and Karel Jezek (2009). “Evaluation measures for text sum-
marization”. In: Computing and Informatics 28.2, p. 251.

Subramanian, Siddharth, Laura Inozemtseva, and Reid Holmes (2014). “Live
API documentation”. In: Proceedings of the 36th International Conference
on Software Engineering, pp. 643–652.

Sun, Xiaobing, Qiang Geng, David Lo, Yucong Duan, Xiangyue Liu, and Bin Li
(2016). “Code comment quality analysis and improvement recommendation:
An automated approach”. In: International Journal of Software Engineering
and Knowledge Engineering 26.6, pp. 981–1000.

Takang, Armstrong A, Penny A Grubb, and Robert D Macredie (1996). “The
effects of comments and identifier names on program comprehensibility: an
experimental investigation”. In: J. Prog. Lang. 4.3, pp. 143–167.

Tan, Lin, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou (2007). “/*iComment:
Bugs or bad comments?*/”. In: Proceedings of the 21st ACM SIGOPS Sym-
posium on Operating Systems Principles, pp. 145–158.

Tan, Shin Hwei, Darko Marinov, Lin Tan, and Gary T Leavens (2012). “@tCom-
ment: Testing Javadoc comments to detect comment-code inconsistencies”.
In: Proceedings of the 5th IEEE International Conference on Software Test-
ing, Verification and Validation, pp. 260–269.

Tas, Oguzhan and Farzad Kiyani (2007). “A survey automatic text summariza-
tion”. In: PressAcademia Procedia 5.1, pp. 205–213.

118 Bibliography

Tayal, Madhuri A, Mukesh M Raghuwanshi, and Latesh GMalik (2017). “ATSSC:
Development of an approach based on soft computing for text summariza-
tion”. In: Computer Speech & Language 41, pp. 214–235.

Tenny, Ted (1985). “Procedures and comments vs. the banker’s algorithm”. In:
ACM SIGCSE Bulletin 17.3, pp. 44–53.

Tenny, Ted (1988). “Program readability: Procedures versus comments”. In:
IEEE Transactions on Software Engineering 14.9, pp. 1271–1279.

The Apache Software Foundation (2021a). log4j. url: https://github.com/
apache/log4j/blob/da17f661144500538274925a8f87c27fd5a4717b/contribs/

ThomasFenner/JDBCLogger.java#L67 (visited on 03/21/2021).
The Apache Software Foundation (2021b). log4j. url: https://github.com/

apache/log4j/blob/da17f661144500538274925a8f87c27fd5a4717b/contribs/

ThomasFenner/JDBCLogger.java#L415 (visited on 03/21/2021).
The Apache Software Foundation (2021c). log4j. url: https://github.com/

apache/log4j/blob/da17f661144500538274925a8f87c27fd5a4717b/contribs/

ThomasFenner/JDBCAppender.java#L190 (visited on 03/21/2021).
The Apache Software Foundation (2021d). log4j. url: https://github.com/

apache/log4j/blob/af689d1e2517b8b4f83159e7e96bb8ad59b00bec/src/

main/java/org/apache/log4j/Level.java#L61 (visited on 03/21/2021).
Torres-Moreno, Juan-Manuel (2014). Automatic text summarization. John Wi-

ley & Sons.
Treude, Christoph, Fernando Figueira Filho, and Uirá Kulesza (2015). “Sum-

marizing and measuring development activity”. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pp. 625–636.

Wang, Haoye, Xin Xia, David Lo, John Grundy, and Xinyu Wang (2021). “Au-
tomatic Solution Summarization for Crash Bugs”. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, pp. 1286–
1297.

Wang, Ruyun, Hanwen Zhang, Guoliang Lu, Lei Lyu, and Chen Lyu (2020).
“Fret: Functional reinforced transformer with BERT for code summariza-
tion”. In: IEEE Access 8, pp. 135591–135604.

Widjanarko, Agus, Retno Kusumaningrum, and Bayu Surarso (2018). “Multi
document summarization for the Indonesian language based on latent dirich-
let allocation and significance sentence”. In: 2018 International Conference
on Information and Communications Technology (ICOIACT). IEEE, pp. 520–
524.

Wong, Edmund, Lei Zhang, Song Wang, Taiyue Liu, and Lin Tan (2015). “Dase:
Document-assisted symbolic execution for improving automated software

https://github.com/apache/log4j/blob/da17f661144500538274925a8f87c27fd5a4717b/contribs/ThomasFenner/JDBCLogger.java#L67
https://github.com/apache/log4j/blob/da17f661144500538274925a8f87c27fd5a4717b/contribs/ThomasFenner/JDBCLogger.java#L67
https://github.com/apache/log4j/blob/da17f661144500538274925a8f87c27fd5a4717b/contribs/ThomasFenner/JDBCLogger.java#L67
https://github.com/apache/log4j/blob/da17f661144500538274925a8f87c27fd5a4717b/contribs/ThomasFenner/JDBCLogger.java#L415
https://github.com/apache/log4j/blob/da17f661144500538274925a8f87c27fd5a4717b/contribs/ThomasFenner/JDBCLogger.java#L415
https://github.com/apache/log4j/blob/da17f661144500538274925a8f87c27fd5a4717b/contribs/ThomasFenner/JDBCLogger.java#L415
https://github.com/apache/log4j/blob/da17f661144500538274925a8f87c27fd5a4717b/contribs/ThomasFenner/JDBCAppender.java#L190
https://github.com/apache/log4j/blob/da17f661144500538274925a8f87c27fd5a4717b/contribs/ThomasFenner/JDBCAppender.java#L190
https://github.com/apache/log4j/blob/da17f661144500538274925a8f87c27fd5a4717b/contribs/ThomasFenner/JDBCAppender.java#L190
https://github.com/apache/log4j/blob/af689d1e2517b8b4f83159e7e96bb8ad59b00bec/src/main/java/org/apache/log4j/Level.java#L61
https://github.com/apache/log4j/blob/af689d1e2517b8b4f83159e7e96bb8ad59b00bec/src/main/java/org/apache/log4j/Level.java#L61
https://github.com/apache/log4j/blob/af689d1e2517b8b4f83159e7e96bb8ad59b00bec/src/main/java/org/apache/log4j/Level.java#L61

Bibliography 119

testing”. In: Proceedings of the 37th IEEE/ACM International Conference
on Software Engineering. Vol. 1, pp. 620–631.

Ying, Annie TT and Martin P Robillard (2013). “Code fragment summariza-
tion”. In: 9th Joint Meeting on Foundations of Software Engineering (FSE),
pp. 655–658.

	Abstract
	Declaration of Authorship
	Acknowledgements
	Introduction
	Problem Description
	Research Goal, Motivation, and Challenges
	Contributions of This Thesis
	Thesis Outline

	Background
	Introduction
	Automatic Text Summarisation
	Extractive summaries vs. abstractive summaries
	Single document vs. multi-document summarisation
	Generic vs. domain-specific summarisation
	Evaluation methods

	Automatic Summarisation in Software Engineering

	Creating Resources for Summarising Multi-document Software Artefacts
	Introduction
	Creating and Characterising Gold-standard Summaries
	Gold-standard summaries
	Characteristics of gold-standard summaries

	Software Artefacts Describing Developers’ Activities
	Identifying software artefacts
	Relationships between software artefacts

	Validation and Characterisation through Large-Scale Analysis
	Validating the existence of software artefacts
	Characteristics of GitHub artefacts

	Characteristics of Source Code Comments
	Threats to Validity
	Implications
	Conclusion

	Multi-document Summarisation of Heterogeneous Software Artefacts
	Introduction
	Data Preparation
	Methodology
	Summaries based on word similarity and feature vector similarity
	Cosine similarity
	Algorithmic approaches

	Experimental Results and Discussion
	Expert Annotation
	Threats to Validity
	Conclusion

	The Potential of Code Comments for use in Summarisation
	Introduction and Motivation
	Research Questions
	Detecting Documented Variables
	Preprocessing
	Lexical matching
	Advanced matching
	Union of matching approaches

	Study Design
	Data collection
	Data analysis

	Findings
	RQ1: To what extent can different techniques detect variables in comments?
	RQ2: What types of knowledge do comments provide about the variables?
	RQ3: How frequently are primitive variables documented in comments?
	RQ4: What are the distributions of documented variables by their scope of declarations?
	RQ5: What are the types of comments associated with the scopes of the documented variables?

	Threats to Validity
	Related Work
	Implications

	Conclusion and Future Work
	Bibliography

