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Considering hormone-sensitive cancers as a single
disease in the UK biobank reveals shared aetiology
Muktar Ahmed 1,2,3,4✉, Ville-Petteri Mäkinen 1,5, Anwar Mulugeta1,3,4, Jisu Shin 1,6, Terry Boyle1,4,6,

Elina Hyppönen 1,3,4,7 & Sang Hong Lee 1,4,6,7✉

Hormone-related cancers, including cancers of the breast, prostate, ovaries, uterine, and

thyroid, globally contribute to the majority of cancer incidence. We hypothesize that

hormone-sensitive cancers share common genetic risk factors that have rarely been inves-

tigated by previous genomic studies of site-specific cancers. Here, we show that considering

hormone-sensitive cancers as a single disease in the UK Biobank reveals shared genetic

aetiology. We observe that a significant proportion of variance in disease liability is explained

by the genome-wide single nucleotide polymorphisms (SNPs), i.e., SNP-based heritability on

the liability scale is estimated as 10.06% (SE 0.70%). Moreover, we find 55 genome-wide

significant SNPs for the disease, using a genome-wide association study. Pair-wise analysis

also estimates positive genetic correlations between some pairs of hormone-sensitive can-

cers although they are not statistically significant. Our finding suggests that heritable genetic

factors may be a key driver in the mechanism of carcinogenesis shared by hormone-sensitive

cancers.
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Cancer continues to dominate as one of the major global
public health problems with increasing incidence1 and
multiple aetiologies2. The risk of cancer is in part mod-

ifiable, and demographic and lifestyle factors have been reported
to explain some of the variability in cancer3. There is also a
genetic component to cancer, evidenced from twin and sibling
studies4,5. Large-scale genomic studies have also identified
germline variants (single-nucleotide polymorphism [SNPs]) that
are linked with the susceptibility to various types of cancer, using
population samples6,7.

Cancer is a broad term for a heterogeneous group of diseases,
all sharing an uncontrolled cell growth. However, there is also
evidence for shared mechanisms; for example, hormonal path-
ways affect the development of several types of cancer8. Group of
cancers that share a characteristic mechanism of carcinogenesis
that involves hormones, namely breast, uterine, prostate, ovary,
testis, osteosarcoma, and thyroid cancers, are termed as hormone-
sensitive cancers9. The role of common target genes and tran-
scriptional cofactor has received a considerable attention in the
biology of hormone-sensitive cancers. For example, the expres-
sion of fibroblast growth factor (FGF-2) gene is a signalling
molecule with fundamental roles in tumour growth and pro-
gression associated with breast, ovarian, thyroid, prostate, and
uterine cancers10–14. Furthermore, Michailidou et al., (2013)15

reported that multiple genomic regions flanking common target
genes, such as telomerase reverse transcriptase (TERT) and the
POU domain class 5 transcription factor 1B (POU5F1B), inclu-
ded susceptibility loci that were common to breast, prostate and
ovarian cancers, supporting the hypothesis of a common genetic
aetiology among these cancer types16–18. Cancers sensitive to
hormones also involve the activation of G protein-coupled
receptor and nuclear-mediated receptors that triggers multiple
cellular signalling events to cause the disease. For example, the G
protein-coupled estrogen receptor (GPER) plays an important
role in cancer of both male and female reproductive systems19.
Studies also highlighted the binding of nuclear receptors to their
respective DNA target motifs across the genome, playing a critical
role in the development and progression of cancer20–22.

This growing evidence for the role of common gene and invol-
vement of transmembrane and nuclear mediated signalling in
tumorigenesis leads to the proposal of a combined analysis of
multiple hormone-sensitive cancers (e.g., treating them as a single
disease) to investigate the common genetic aetiology and identify
new risk loci underlying the common pathway. However, human
genomic studies of hormone-sensitive cancers have been limited to
investigating site-specific cancers independently. While a few
genome-wide association studies (GWASs) have provided evidence
for a shared genetic basis between a limited number of cancer types
(i.e., breast, prostate, endometrial and ovarian cancer)23–25, it is
unclear if the common germline genetic factors play a significant
role in the shared mechanism of carcinogenesis5,26.

Estimating SNP-based heritability can quantify the proportion
of variance in disease liability explained by the genome-wide
SNPs. When treating multiple hormone-sensitive cancers as a
single disease, estimated SNP-based heritability can inform if the
common germline variants contribute to the carcinogenic risk
shared between hormone-sensitive cancers. Furthermore, ana-
lyses of shared heritability between the disease and other
hormone-related phenotypes such as IGF-1, oestradiol and sex
hormone binding globulin (SHBG) may provide information
about the relationships between modifiable environmental risk
factors and the risk of hormone-sensitive cancers.

The aim of this study is to estimate the SNP-based heritability for
grouped hormone-sensitive cancers, using a broad definition
including breast, prostate, uterine, ovarian, and thyroid cancers,
among 15,197 hormone-sensitive cancer cases in a total of 288,837

participants in the UK Biobank (UKB). We also examine the genetic
correlation between hormone-sensitive cancers and other non-
cancer traits, with a view of establishing genome-wide level inter-
actions. In this study, we show that a significant proportion of
variance in hormone-sensitive cancers is explained by heritable
genetic variants. Through the identification of genome-wide sig-
nificant SNPs and analysis of genetic correlation, we uncovered
molecular evidence of shared aetiology in hormone-sensitive cancers.

Results
The characteristics of participants stratified by a group of
cancer diagnoses are shown in Table 1. A total of 250,709
white Europeans were analysed in this study; including 15,197
(6.06%) hormone-sensitive cancer cases. In summary, 53.8%
(n= 155,392) of the study samples were women, 93.48%
(n= 270,014) were current alcohol drinkers, 42.5% (n= 122,628)
were overweight, 54.59% (n= 157,690) had never smoked and
35.2% (n= 101,521) were previous smokers. There was a total of
21,973 incident cancer cases [diagnosed with cancer after baseline
during follow-up] with a median follow-up year of 7.7 years
(interquartile range [IQR]= 7.08–8.4) and 24,438 prevalent
cancer cases (diagnosed with cancer before baseline assessment).

SNP-based Heritability (SNP-h2) for Groups of Cancers. All
grouped cancer (prevalent and incident) cases were included for
the estimation of SNP-based heritability using individual-level
data27,28. Here, we used a Genomic Restricted Maximum Like-
lihood (GREML) analysis, which is a statistical method that
estimates the proportion of variance on one or more phenotypes
attributed by all genetic polymorphisms using individual-level
data to estimate the variance explained by all genetic poly-
morphisms (SNP-based heritability). We also used GWAS sum-
mary statistics to estimate SNP-based heritability, applying
summary-level data29. In both approaches, the estimated herit-
ability was transformed from the observed scale to the liability
scale28, assuming that the population lifetime prevalence of the
group of cancers was the same as the proportion of cases in the
sample used in this study. From the estimates in Fig. 1, it is
apparent that the SNP-based heritability estimated in GREML for
hormone-sensitive cancers was the highest (h2= 10.06% (se=
0.70%), P= 2.11E-46). In addition, the SNP-based heritability
was examined for overall cancers and by grouping those cancer
related to obesity. Significant heritability estimates for other
cancer subgroupings was also observed, e.g., obesity-related
cancer (h2= 5.26% (se= 0.47%), P= 4.56E-28); overall cancer
(h2= 4.38% (se= 0.31%), P= 3.27E-44); non-hormone-sensitive
cancer (h2= 3.06% (se= 0.72%), P= 2.15E-05); and non-
obesity-related cancers (h2= 1.69% (se= 0.48%), P= 4.66E-04).
The SNP-based heritability estimate using summary-level data
shows a similar pattern of heritability estimates for all the sub-
groupings of cancer (Supplementary Tables 1–5).

We also restricted the analysis to incident cancer cases only
in the UKB. Similarly, heritability estimates in the liability
scale for hormone-sensitive cancers were consistently higher than
any other group of cancers when using incident cases only
(h2= 5.92%, se= 1.10%, P= 7.84E-08 for GREML and
h2= 5.60%, se= 1.58%, P= 3.94E-04 for LDSC) (Supplementary
Table 5). The heritability estimates for non-obesity related
cancers were not statistically significant in both methods
(h2= 0.43%, se= 0.75%, P= 5.67E-01 for GREML and
h2= 0.97%, se= 2.50%, P= 6.98E-01 for LDSC). In contrast,
we observed a significant but lower heritability estimates for
incident overall cancer cases (h2= 3.1%, se= 0.48%, P= 9.29E-
11 for GREML and h2= 1.84%, se= 0.72%, P= 1.06E-02 for
LDSC) (Supplementary Fig. 1).
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Genome-wide common SNPs association study (GWAS) for
hormone-sensitive cancers. The heritability estimates for
hormone-sensitive cancers were consistently shown to be sig-
nificant and higher than the other cancer subgroups across all

methods applied in the liability scale for both scenarios (i.e., all
cancer cases and incident cancer cases only). This clearly suggests
that a significant proportion of phenotypic variation in hormone-
sensitive cancer is explained by the aggregated effects of inherited

Table 1 Descriptive statistics for overall cancer, obesity-related and hormone-sensitive cancers in the UK Biobank
(N= 276,028).

Characteristics Controls*, N (%)
235,512

Overall cancer cases,
N (%)

Obesity related cancer
cases⁑, N (%)

Hormone-sensitive cancer
cases‡ N (%)

Sex
Male 110,150 (86.8) 16,725 (13.2) 12,504 (9.4) 5730 (4.3)
Female 125,362 (84.1) 23,791 (15.9) 13,602 (8.8) 9467 (6.0)

Age at initial assessment
39–49 years 56,854 (24.1) 4595 (11.3) 1615 (2.4) 666 (0.98)
50–59 years 81,500 (34.6) 11,580 (28.6) 7976 (7.9) 4696 (4.7)
60–73 years 97,158 (41.2) 24,341 (60.0) 20,970 (15.6) 12,481 (10.0)

BMI (kg/m2)
Underweight[<18.5 kg/m2] 1189 (0.5) 230 (0.5) 132 (8.8) 75 (5.0)
Normal[18.5–25 kg/m2] 77,882 (33.0) 13,0551 (32.2) 7841 (8.2) 4818 (5.0)
Overweight[25–30 kg/m2] 99,872 (42.4) 17,153 (42.3) 11,408 (9.3) 6575 (5.4)
Obese[≥30 kg/m2] 55,833 (23.7) 9929 (24.5) 6638 (9.7) 3688 (5.4)
Missing 736 (0.3) 149 (0.3) 87 (9.0) 41 (4.2)

Smoking status
Never 130,787 (55.5) 19,867 (49.0) 12,944 (8.2) 8113 (5.1)
Former 80,716 (34.2) 16,032 (39.6) 10,624 (10.5) 5833 (5.8)
Current 23.255 (9.9) 4432 (11.0) 2416 (8.5) 1189 (4.2)
Missing 754 (0.3) 185 (0.4) 122 (11.8) 62 (6.0)

Alcohol consumption
Never 7070 (3.0) 1355 (3.3) 916 (10.4) 590 (6.7)
Former 7746 (3.3) 1622 (4.0) 1007 (10.4) 512 (5.3)
Current 220,529 (93.6) 37,526 (92.6) 24,171 (8.9) 14,091 (5.2)
Missing 167 (0.07) 23 (0.06) 12 (4.7) 4 (1.5)

Educational status
None 36,048 (15.3) 8174 (20.2) 5464 (11.7) 3010 (6.5)
NVQ/CSE/A-levels 107,162 (45.5) 17,548 (43.3) 10,974 (8.4) 6339 (4.9)
Degree/professional 90,481 (38.4) 14,400 (35.5) 9385 (8.5) 5693 (5.2)
Missing 1821 (0.7) 394 (0.9) 283 (11.9) 155 (6.5)

BMI Body Mass Index
*Controls are individuals without any cancer record in the cancer registry and who have had no self-report of cancer.
⁑Obesity-related cancer includes postmenopausal breast cancer, prostate cancer, colon & rectal cancer, liver, stomach, pancreatic, oesophagus, thyroid, gallbladder, meningioma, ovary, uterus, kidney
and multiple myeloma.
‡Hormone-sensitive cancers are those hormones sensitive cancers that include breast, prostate, uterine, ovarian, and thyroid cancers.

Fig. 1 Estimated SNP-based heritability of grouped cancers using greml approach in the UKB. It is shown that the h2 for hormone-sensitive cancers is
the highest among the other groups of cancers. The error bars are the 95% confidence interval of the estimates. The y axis shows the heritability estimates
for each grouped cancer in x-axis.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03554-y ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:614 | https://doi.org/10.1038/s42003-022-03554-y |www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


genetic factors. We further carry out GWAS using genome-wide
common SNPs, to identify genetic variants that are associated
with hormone-sensitive cancer risk (see method).

We combined heterogeneous cancers that share a character-
istics mechanism of carcinogenesis that involve hormones into a
single phenotype of hormone-sensitive cancer, totalling 15,197
cases (combined prevalent and incident) and 235,512 controls.
The number for each type of hormone-sensitive cancer is in
Supplementary Table 6. Interestingly, our primary GWAS of
grouped hormone-sensitive cancer uncovered 55 genome-wide
significant variants that are associated with the risk of hormone-
sensitive cancer at the genome-wide significant level of
p < 5 × 10−8 (Fig. 2). This analysis demonstrated the existence
of shared genetic variants across the different cancer types
grouped as hormone-sensitive cancers. For these genetic variants,
we replicated 36 independent SNPs associated with the risk of a
specific type of cancer, such as breast, prostate, uterine or ovarian
cancer, which were identified in previous GWAS30–36. Significant
signals for each independent hormone-sensitive cancer involves
8q24.1, 10q26.13, 11q13.3, 16q12.1, and 17q12 genomic regions,
of which 12 were for breast, 18 for prostate, 2 for uterine cancer,
and 1 for ovarian cancer corresponded to previously identified as
causal variants involved in the components of hormone-sensitive
cancer (Supplementary Table 7). Overall, we found 12 indepen-
dent association signals at chromosome 2, 8, 10, 11, 16, 17, and 19
out of the 55 genome-wide significant variants. A summary of
these genome-wide significant independent loci for hormone-
sensitive cancers association results for the 12 lead SNPs is
provided in Table 2 and the LD heatmap in Supplementary
Fig. 2a.

In a GWAS analysis restricted to 7038 incident hormone-
sensitive cancer cases only (i.e., excluding prevalent cases), we
found that significant associations were reduced from 55 to
33 significant SNPs. For these significant loci, 16 SNPs were
located in already known susceptibility regions for hormone-
sensitive cancers among the white European population, but they
were independent of previously reported variants. The remaining
17 SNPs were in regions previously found to be associated with
hormone-sensitive cancers among white Europeans. A list of

SNPs identified from GWAS in hormone-sensitive cancers can be
found in Supplementary Table 8. For incident hormone-sensitive
cancers, we found 8 independent loci (Supplementary Fig. 2b)
and the list is provided in Supplementary Table 9. It was noted
that genomic inflation factors were close to 1 for both GWAS
analyses with all cases and incident hormone-sensitive cancer
cases (λ1000(all cases)= 1.003 and λ1000(incident cases)= 1.003)
(Supplementary Fig. 3).

We meta-analysed the single-traits GWAS for each hormone-
sensitive cancer to gain a detailed understanding of potential
genome-wide significant variant overlap. The analysis identified
37 variants associated with the risk of hormone-sensitive cancer
at the prespecified significant level (Supplementary Table 10 and
Supplementary Fig. 4), which was less than the number of SNPs
found in the analysis with combined hormone-sensitive cancers
as a single disease. Furthermore, upon repeating the meta-analysis
of single-traits GWAS for incident cases of hormone-sensitive
cancers, no genome-wide significant SNPs were found. This
supports the conceptual premise for combining hormone-
sensitive cancers as a single disease, which is likely to be more
powerful to gain insight on molecular evidence of shared
aetiology than the meta-analysis of single trait GWAS.

Phenotypic correlation between hormone-sensitive cancer and
non-cancer traits. For better understanding of the genetic basis of
hormone-sensitive cancer, we first quantify the phenotypic cor-
relation with non-cancer traits known to be associated with
cancer risk. The non-cancer traits were glycaemic traits [blood
glucose level, HbA1c, type 2 diabetes (T2D)]; anthropometric
traits [Waist-Hip Ratio (WHR), body mass index (BMI), WHR-
adj-BMI, Waist Circumference (WC), Height-standing, body fat
percentage,)]; metabolic traits and lipid profiles [cholesterol, tri-
glyceride, high density lipoprotein (HDL), low density lipoprotein
(LDL), apolipoprotein A and B]; menstrual factors [menopausal
status]; behavioural-lifestyle factors [alcohol consumption,
smoking, educational status and Townsend deprivation index
(TDI)]; and cardiac traits [systolic blood pressure, diastolic blood
pressure, C-reactive protein (CRP), cardiovascular disease status
as binary trait and vitamin D].

Fig. 2 Manhattan plot for the GWAS analysis of the combined hormone-sensitive cancers in the UKB. The plot shows on the Y-axis the negative log-
base-10 of the P value for each of the SNPs positioned along the X axis in genomic order by chromosomal position. The red line shows the threshold for
genome-wide significance (P < 5 × 10−8). SNPs with the lowest P value of significance (i.e., highest association with hormone-sensitive cancer) are
positioned at the top of the graph. a The genome wide significant SNPs for all cases of hormonal cancers [incident and prevalent cases included]. b The
panel is for incident cancer cases only. The list of genetic markers for each analysis is attached in the supplementary files (Supplementary Tables 7 and 8).
The genomic inflation factor (λ) was rescaled for an equivalent study of 1000 cases/1000 controls (λ1000 (all cases)= 1.003 and λ1000 (incident
cases)= 1.003).
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We observed a modest phenotypic correlation in selected
glycaemic, cardiovascular and anthropometric traits. For exam-
ple, there was a positive phenotypic correlation (rp) between
standing height and hormone-sensitive cancer (rp= 0.0130,
se= 0.0020, P= 1.78E-10) and WC (rp= 0.0106, se= 0.0020, P=
2.36E-07). Further to this, we observed a significant positive
correlation for disease traits that involves T2D (rp= 0.0084,
se= 0.0020, P= 4.49E-05) and negative correlation with cardi-
ovascular disease (rp=−0.0090, se= 0.0020, P= 9.64E-06). For
the cancer related traits, a negative correlation was observed
between hormone-sensitive cancers and oestradiol level (rp=
−0.0190, se= 0.0022, P= 2.20E-16); SHBG (rp=−0.0059, se=
0.0022, P= 7.35E-03).
The most striking result to emerge from the phenotypic

correlation data is that although there were similar patterns of
significant correlations with most of the non-cancer traits in the
analysis restricted to incident cases, some estimates were
substantially changed. For example, we observed a substantially
reduced positive phenotypic correlation between incident
hormone-sensitive cancers and oestradiol level (rp= 0.0025,
se= 0.0022, P= 2.68E-01). Interestingly, a significant negative
phenotypic correlation observed between incident hormone-
sensitive cancers and APOA1 (rp=−0.0065, se= 0.0022, P=
3.83E-03). The results of these analyses are summarised in
Table 3.

Genetic correlation between group hormone-sensitive cancers
and non-cancer traits. In further analysis to explain the shared
genetic architecture of grouped hormone-sensitive cancers, we
estimated the genetic correlation with the six non-cancer sub-
group traits using GWAS summary statistics (Supplementary
Table 11) for bivariate LDSC which is a fast and robust
method37 as a quick scan in the dataset and for those nominally
significant traits using individual-level measurement in bivariate
GREML. We estimate the genetic correlation between grouped
hormone-sensitive cancers and some non-cancer traits using
individual-level genotype data analysed in bivariate GREML.
Interestingly, significant positive genetic correlations were
observed between IGF-1 (rg= 8.43%, se= 1.38%, P= 1.10E-09);
standing height (rg= 4.32%, se= 1.31%, P= 9.59E-04) and
hormone-sensitive cancer that provides a suggestive clue to
cancer aetiology wherein an increase in IGF-1 level and height
confers a higher risk of hormone-sensitive cancer. Moreover, a
marginally significant inverse genetic correlations were observed
between hormone-sensitive cancers and three other non-cancer
traits, namely serum oestradiol (rg=−40.86%, se= 8.60%, P=
2.02E-06); calculated free oestradiol (rg=−6.68%, se= 1.60%,
P= 3.15E-05); SHBG (rg=−3.33%, se= 1.92%, P= 8.20E-02)

and diastolic blood pressure (DBP) (rg=−4.40%, se= 0.02116,
P= 3.74E-02) (Fig. 3).
In an analysis restricted to incident cancer cases, we observed a

non-significant but positive genetic correlation for serum
oestradiol (rg= 17.08%, se= 14.56%, P= 2.41E-01) (Fig. 4)
contrary to the negative genetic correlation estimate obtained
when all combined cases were analysed together (Fig. 3). This
suggests that the genetic effects of oestradiol may be positively
correlated with the genetic risk of incidence of hormone-sensitive
cancer38, however, after the onset of hormone-sensitive cancer,
the genetic association may be driven by a totally different
mechanism, resulting in a negative genetic correlation. For
standing height (rg= 9.01%, se= 1.97%, P= 4.93E-06) and IGF-1
(rg= 12.13%, se= 2.50%, P= 1.31E-06), the direction of esti-
mated genetic correlation is consistent and always positive
whether using all cases (Fig. 3) or incident cases only (Fig. 4).
Apolipoprotein A (rg= 11.16%, se= 2.58%, P= 1.55E-05)
appeared to have a significant negative genetic correlation when
using incident cases only, which was different from the result
obtained with all cases, implying tumour suppressive role of
Apolipoprotein A in the incidence of hormone-sensitive cancer
development. Compared to all cases, we further noted a slightly
significant and higher estimate of negative genetic correlation in
calculated free oestradiol (rg=−8.86%, se= 2.80%, P= 1.57E-
03); SHBG (rg=−8.78%, se= 2.73%, P= 1.32E-03) and educa-
tional status (rg=−11.95%, se= 4.85%, P= 1.39E-02) for
incident cases. For diastolic blood pressure (rg=−2.06%, se=
2.82%, P= 4.62E-01) a similar non-significant negative genetic
correlation was observed even though the analyses for non-cancer
traits were restricted to individuals who did not have cancer at
baseline (Fig. 4).

In the analyses of genetic correlation using summary statistics
in the UKB, though not statistically significant the estimates are
mostly agreed with the individual level data estimates. The
estimates for genetic correlation using summary statistics in
bivariate LDSC are summarised and presented in Supplementary
Table 11.

Genetic correlation between cancers. We further quantified the
genetic correlation among the specific types of cancers in the
group of hormone-sensitive cancers to see their shared genetic
architecture. We used bivariate LDSC that is computationally
efficient and not biased by sample overlap in two sets of case-
control data between which controls are common37. In the pair-
wise comparison, we observed a positive genetic correlation
between colorectal cancer and cancer of the kidney (rg= 0.3712,
se= 0.2965); women breast cancer and uterine cancer (rg=
0.3211, se= 0.1990) although they were not significantly

Table 2 Independent loci LD for genome wide significant SNPs of hormone-sensitive cancers GWAS in the UKB.

No CHR BP SNP A1 P BETA STAT NMISS

1 2 217905832 rs13387042 G 1.550E-08 −0.003852 −5.656 237,570
2 8 128011937 rs10086908 C 1.671E-10 −0.00476 −6.389 236,744
3 8 128093297 rs1016343 T 2.511E-08 0.004711 5.573 237,567
4 8 128107153 rs16901949 C 1.875E-08 0.01064 5.623 237,553
5 8 128407443 rs10505477 G 3.035E-08 −0.003777 −5.540 237,573
6 8 128517573 rs4242382 A 1.292E-08 0.006406 5.687 237,573
7 10 51549496 rs10993994 T 2.434E-09 0.004161 5.966 237,568
8 10 123334457 rs10736303 G 7.971E-12 0.004688 6.839 236,037
9 11 68973970 rs4255548 A 3.927E-09 −0.004171 −5.887 231,722
10 16 52538040 rs17271951 C 4.424E-11 0.005219 6.589 234,844
11 17 36098040 rs4430796 G 2.362E-08 −0.003817 −5.583 237,530
12 19 51361757 rs17632542 C 2.668E-10 −0.008252 −6.317 237,572
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different from zero. We also found a negative, but non-sig-
nificant, genetic correlation between prostate cancer and color-
ectal cancers (rg=−0.1073, se= 0.1314); uterine cancer and
multiple myeloma (rg=−0.1474, se= 0.5053) (Fig. 5). Although
none of the estimated genetic correlations were significantly dif-
ferent from zero i.e., showing there is not a significant linear
correlation to one another, most estimates were significantly
different from 1 or −1, indicating that these types of cancers are
genetically heterogeneous.

Leave-one-out (LOO) analysis approach for hormone-sensitive
cancers. We conducted an iterative leave-one-out (LOO) analysis
that involves a different combination of hormone-sensitive can-
cers (Supplementary Fig. 5). There was a significant modest
genetic correlation in the leave-one-out analysis between each
component of the hormone-sensitive cancers. For example, we
observed a modest positive genotypic correlation between female
breast cancer and grouped hormone-sensitive cancer without
female breast cancer (rg= 0.1662, se= 0.0930); prostate cancer

and grouped hormone-sensitive cancer excluding prostate cancer
(rg= 0.2209, se= 0.1101); uterine cancer (rg= 0.3487, se=
0.1889) and grouped hormone-sensitive cancers without uterine
cancer. For ovarian and thyroid cancer, since the number of cases
was not sufficient for bivariate LDSC regression analysis, we
excluded the two hormone-sensitive cancers from the leave-one-
out analysis (Table 4).

We further carried out genetic correlation analyses into
grouped hormone-sensitive cancers and other obesity-related
non-hormone-sensitive cancers in the UKB (namely colorectal,
renal, and multiple myeloma) to gain more detailed under-
standing of the complexities of hormone-cancer phenomena.
Hormone-sensitive cancers appeared to have a negative genetic
correlation with cancer of kidney (rg=−0.0786, se= 0.2362);
positive genetic correlation with colorectal cancer (rg= 0.1551,
se= 0.1254) and multiple myeloma (rg= 0.1129, se= 0.2056)
(Table 4).

The genetic correlation between multiple myeloma and
hormone-sensitive cancers excluding breast cancers demon-
strated a positive genetic correlation (rg= 0.1926, se= 0.2295).

Table 3 Phenotypic correlation between hormone-sensitive cancers and other non-cancer traits in the UKB.

Traits All hormone-sensitive cancer cases combined
(incident and prevalent)

Incident hormonal cancers cases

Phenotypic correlation Phenotypic correlation

rp SE p-value rp SE p-value

Glycaemic traits
T2D 0.0084 0.0020 4.49E-05* 0.0072 0.0021 9.33E-04*

Glucose 0.0022 0.0022 3.13E-01 −0.0050 0.0022 2.85E-02*

HbA1c −0.0015 0.0021 4.50E-01 −0.0075 0.0021 4.89E-04*

Anthropometric traits
BMI 0.0059 0.0020 4.05E-03* 0.0054 0.0020 8.91E-03*

WHR 0.0064 0.0020 1.78E-03* 0.0033 0.0021 1.14E-01
WHRadjBMI 0.0053 0.0020 9.68E-03* 0.0028 0.0021 1.70E-01
WC 0.0106 0.0020 2.36E-07* 0.0068 0.0020 1.01E-03*

Height (standing) 0.0130 0.0020 1.78E-10* 0.0089 0.0021 2.11E-05*

Body fat percentage 0.0058 0.0021 5.04E-03* 0.0045 0.0021 3.41E-02*

Lipid profile
Cholesterol 0.0045 0.0021 3.28E-02* −0.0037 0.0021 8.26E-02
Triglyceride 0.0067 0.0021 1.45E-03* −0.0059 0.0021 5.23E-03*

HDL −0.0051 0.0022 2.10E-02* −0.0054 0.0022 2.68E-02*

LDL 0.0051 0.0021 1.39E-02* −0.0014 0.0021 5.30E-01
APOA1 −0.0005 0.0022 8.21E-01 −0.0065 0.0022 3.83E-03*

APOB 0.0050 0.0021 1.61E-02* −0.0017 0.0021 4.08E-01
Behavioural-lifestyle
Alcohol 0.0004 0.0080 8.22E-01 −2.48E-11 0.0021 1.00E+00
Smoking −0.0001 0.0020 9.32E-01 2.24E-11 0.0021 1.00E+00
Education 0.0013 0.0020 5.16E-01 6.80E-11 0.0021 1.00E+00
Townsend −1.28E-05 0.0020 9.95E-01 −1.00E-11 0.0020 1.00E+00

Cardiac traits
Systolic Blood Pressure 0.0018 0.0021 4.00E-01 −0.0015 0.0021 4.93E-01
Diastolic Blood Pressure 0.0067 0.0021 1.48E-03* 0.0023 0.0021 2.74E-01
Cardiovascular Disease −0.0090 0.0020 9.64E-06* −0.0061 0.0021 3.35E-03*

C-reactive Protein 0.0080 0.0021 1.46E-04* −0.0005 0.0021 8.16E-01
Vitamin D 0.0048 0.0021 2.40E-02* 0.0048 0.0021 2.68E-02*

Menstrual factors
Menopausal Status 0.0009 0.0035 7.97E-01 0.0077 0.0036 3.48E-02*

Cancer-related
SHBG −0.0059 0.0022 7.35E-03* −0.0086 0.0022 1.20E-04*

Testosterone −0.0050 0.0022 2.13E-02* 0.0068 0.0022 2.15E-03*

Oestradiol −0.0190 0.0022 2.20E-16* 0.0025 0.0022 2.68E-01
IGF-1 0.0094 0.0021 7.30E-06* 0.0102 0.0021 2.00E-06*

An asterisk indicates significance with P < 0.05 using two tailed hypothesis test and normal distribution of the Fischer transformed correlation coefficient. The estimates are reported with their respective
standard error.
rp phenotypic correlation, rg genotypic correlation, SE standard error, T2D type II diabetes, HbA1c glycate haemoglobin, BMI body mass index, WHR waist to hip ratio, WC waist circumference, HDL high
density lipoprotein, LDL low density lipoprotein, ApoA1 apolipoprotein A 1, ApoB apolipoprotein B, SHBG Sex hormone binding globulin.
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We observed a higher genetic correlation between hormone-
sensitive cancer without prostate cancer and colorectal cancer
(rg= 0.3061, se= 0.1597). Hormone-sensitive cancers without
uterine cancer demonstrated a higher genetic correlation with
colorectal cancer (rg= 0.1666, se= 0.1229). None of the genetic
correlations estimated in these analyses were statistically
significant probably due to lack of power. Taken together, while
these estimated genetic correlations suggest a common pathway
in the aetiology of hormone-sensitive cancer, there is significant
evidence of genetic heterogeneity among the cancer types
(Table 4).

While these estimates suggest that there is significant genetic
heterogeneity among these cancers, the estimated SNP-based
heritability of the overall hormone-sensitive cancer coded as a
single disease shows that the phenotypic variance explained by
the common genetic factors is significantly different from zero
(Fig. 1).

Gene-environment interaction (GxE) for selected environ-
mental traits. Finally, we investigated the gene-environment

interaction, using the hormone-sensitive cancers as the main
phenotypes and metabolic health-related traits as environmental
variables. Note that we used incident cases only for this gene-
environment interaction analysis. The hormone-sensitive cancer
phenotype status was adjusted for multiple variables that include
assessment centre, batch effect, birthplace, age, sex, educational
status, the first 10 principal components, smoking status, alcohol
consumption, and TDI. Given the characteristics of these envir-
onmental variables, we have applied the bivariate GREML or
GxEsum method39. The baseline BMI measurement is categorised
as normal and higher based on the World Health Organisation
(WHO) BMI threshold recommendations40; metabolic markers
classified as favourable and unfavourable metabolic environment
from the metabolic subgroup analysis in the UKB using machine-
learning data-driven analysis41 and sex as a discrete variable were
analysed in bivariate GREML. This bivariate GREML analysis was
applied to detect the interaction using individual-level measure-
ment in the UKB.

In the bivariate GREML analysis that requires individual-level
genotype data, sex, BMI, and metabolic environment were
included as an environment to detect their role in the aetiology

Fig. 3 Genetic correlation between all hormone-sensitive cancers [Prevalent and Incident] and non-cancer traits using bivariate GREML in the UK
Biobank. The values are in percentage. SHBG Sex Hormone Binding Globulin, IGF-1 Insulin Like growth factor. The error bars are indicating the 95% CI of
the estimates.

Fig. 4 Genetic correlation between incident hormone-sensitive cancers and non-cancer traits using bivariate GREML in the UK Biobank. The values are
in percentage. SHBG Sex Hormone Binding Globulin, IGF-1 Insulin Like growth factor. The error bars are indicating the 95% CI of the estimates.
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of hormone-sensitive cancers. In using the GREML method for
BMI classified as normal and higher, significant evidence for GxE
interaction was found as the genetic risk of hormone-sensitive
cancer was heterogeneous between the two environments.
Estimated genetic correlation was significantly different from 1
(P= 6.00E-05 in Table 5). Likewise, the estimated genetic
correlation between favourable and unfavourable metabolic
environments was also significantly different from 1 (P-value=
1.87E-03), indicating a significant GxE interaction. Although
there is significant heterogeneity between males and females in
the genetic risk of hormone-sensitive cancers when sex is
included as environment, the observed genetic heterogeneity
may not be because of the gene by sex (GxSex) interaction, given
the diversified nature of distinct cancer types, each of which
included is predominantly female or male-only cancer. Therefore,
the finding reflects the genetic heterogeneity between sex-specific
cancers (as shown in Table 5) as a result of diversified cancers,
and it is not conclusive that the genetic risk of hormone-sensitive
cancers is modulated by sex as an environment.

Further for quantitative environmental traits that include
central obesity measured by WC, TDI, Apolipoprotein B, IGF-1,
and physical activity measured in minutes per week were analysed
using the GxEsum method based on GWAS summary statistics39.
In the analyses, we did not find any significant GxE variance
(Supplementary Table 12).

Discussion
A growing number of population-based genomic studies have
emphasised the role of hormones and their metabolites in mod-
ifying gene-phenotype pathways of cancers8. In the current study,
we conducted a comprehensive analysis to estimate SNP-based
heritability, a GWAS that focused on grouped hormone-sensitive

cancer and estimated the phenotypic and genetic correlation with
other non-cancer traits in a large contemporary cohort. This
study confirms that genome-wide common SNPs contribute to a
substantial proportion of the phenotypic variance of hormone-
sensitive cancers. In contrast, a relatively small proportion of
phenotypic variance is captured by genome-wide common SNPs
for non-hormonal cancers. A cross-cancer GWAS approach was
applied to hormone-sensitive cancers in which we identified
multiple genome-wide significant SNPs that had common effects
shared between hormone-sensitive cancers. Interestingly, there
was also significant genetic heterogeneity among hormone-
sensitivity cancers, i.e., estimated genetic correlation for a pair
of hormone-sensitivity cancers was significantly different from 1.
We also found that the hormone-sensitive cancer status was
significantly associated with non-cancer traits, e.g., IGF-1 and
height signifying the suggestive role of these non-cancer traits in
the complex biology of cancer.

In the current study, we applied GREML and LDSC methods of
estimating heritability in which the GREML estimates were
higher than LDSC. The variation demonstrated wherein the
GREML analysis in the liability scale showed a 10% of phenotypic
variability in hormone-sensitive cancer is due to genetics, further
suggesting the existence of shared underlying biology for the
combined hormone-sensitive cancers. This further suggests that
previous site-specific independent cancer heritability estimates
explain a small fraction of the shared heritability, and a fraction of
this heritability can be explained by genome-wide common SNPs
without the need for other variants such as structural and rare
variants in whole-exome and whole-genome sequencing. In
contrast to earlier findings, however, our heritability estimate is
substantially lower than summary statistics-based estimates for
each component of site-specific hormone-sensitive cancer that
ranges from 7% (ovarian) to 27% (prostate) on a liability scale42.

Fig. 5 Estimation of pair-wise genetic correlation among obesity-related cancers in which breast, prostate and uterine cancers are hormone-sensitive
cancers. The positive genetic correlations are colorectal cancer with cancer of the kidney, women breast cancer with uterine cancer. The negative genetic
correlation includes prostate cancer with colorectal cancer, uterine cancer with multiple myeloma. The estimates with the standard error (rg ± se) are
obtained applying the bivariate LDSC method. Ovarian and thyroid cancers were not estimable, which was probably due to the fact that the number of
cases was not sufficient for LDSC in the analysis of these diseases.
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There are two likely causes for the discrepancy between herit-
ability estimates in the current study and previous studies. First,
the difference could be attributed to the genetic heterogeneity of
the combined cancers as evidenced in our genetic correlation
estimates between cancers. Therefore, a reduced heritability is
expected when these genetically heterogeneous cancers are
grouped as a single trait. Second, the discrepancy can be
explained in part by the difference in the level of information
used wherein individual-level data from the UKB is used in our
estimate whereas previous studies used GWAS summary statistics
with a greater number of cases owing to higher heritability esti-
mates. Although the estimates are low as compared to previous
site-specific cancer components, our finding, however, provides a
comprehensive analysis suggesting a through reconsideration of
cancer classification for shared biological mechanism of
carcinogenesis.

The analytical performance of GWAS is highly dependent
upon the size of the cohort and the degree of phenotypic simi-
larity of the combined traits43. Therefore, cross-trait GWAS
recently adapted to identify common factors of interest in pre-
cision medicine that involves identification of genetic suscept-
ibility loci for inflammatory bowel disease, mostly shared between
Crohn’s disease and Ulcerative colitis44, and among five major
psychiatric disorders generating quantified molecular evidence for
the need to investigate common pathophysiology for related
disorders45,46. Despite overwhelming success in other medical
fields, cross-traits analysis has not been widely applied in cancer
genetics. Furthermore, based on the GWAS to date on cancer,
many independent cancer susceptibility variants have been
identified. When these variants are combined into polygenic risk
scores, they explain a small fraction of the heritability of cancer
and show differential associations by tumour subtypes. However,
it is only a few studies have combined some site-specific hor-
mone-sensitive cancers23,25. Therefore, when cross-trait effects
exist, the current study has important implications to system-
atically integrate the phenome-wide data available for genetic
association analysis with improved statistical power in detecting
significant genetic loci for meaningful biological interpretation.
Moreover, our hypothesis of common shared aetiology is sup-
ported by the finding that multiple SNPs in the FGFR-2 and
POU5F1B gene region are associated with hormone-sensitive
cancers implying the presence of commonly expressed genomic
regions. Evidence suggests that gene overexpression may lead to
increased angiogenesis and autocrine stimulation of cancer
cells47. For example, there is strong evidence that FGF-2 ligand
and FGFR-2 receptors are important in breast cancerT
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Table 5 GREML based GxE interaction estimates for incident
hormone-sensitive cancers using baseline measured traits.

Environment h2(se) rg(se) P-Value

Body Mass Index (BMI)
BMI Normal 8.31% (2.95%) 11.91% (21.95%) 6.00E-05*
BMI High 7.69% (1.37%)

Metabolic environment
Favourable 6.20% (1.61%) 29.78% (22.5%) 1.87E-03*
Unfavourable 14.40% (2.75%)

⁑Sex
Female 9.10% (0.89%) 14.82% (5.71%) 9.42E-03*
Male 22.37% (1.34%)

h2 heritability, rg genetic correlation, se standard error. The baseline BMI measurement is
categorised as normal 18.5–25 kg/m2 and higher BMI (≥25 kg/m2); baseline biomarkers and
anthropometric measurement as favourable and unfavourable to metabolic health
consequences. For BMI and metabolic health environment all incident cases are used.
⁑For sex as heterogeneous environment all hormone-sensitive cancer (incident and prevalent)
cases are included.
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tumorigenesis10,48. POU5F1B has been suggested to be involved
in prostate cancer pathogenesis17. It has been demonstrated that
hormones can express FGF-2 and POU5F1B genes and the level is
progressively elevated during initial phases of tumorigenesis, and
further its expression is higher in cancerous tissue in comparison
with adjacent normal tissue or benign ones12,14.

Most cancer genomics research is focused on somatic events,
such as acquired mutations; but increasing evidence suggests that
germline variants have been experimentally demonstrated to play
a significant role in cancer risk prediction49 and may also inform
decisions about cancer-directed therapy50. Therefore, in the
current study detecting common genetic variants across major
cancers that shared similar aetiologic pathways will facilitate our
understanding of the possible shared genetic basis of these can-
cers to develop more optimised diagnostic criteria. Our multi-
trait GWAS analysis can be used to look for germline variants and
understand how specific genetic variants may contribute to a
broad spectrum of illness and provide information about the
degree to which these disorders may have a shared genetic risk
factor. To the extent that these genes may have broad effects, they
could be potential targets for developing new treatments that
might help treat multiple cancer conditions. In agreement with
our findings, previous studies have implicated these genes in
liability to each site-specific cancer in different population51–54.
This supports the implementation of such combined analysis that
provides more insight in the complex pathway underlying
hormone-sensitive cancer biology with the expected molecular
evidence on shared genetic risk factors seen in previous studies of
major psychiatric and inflammatory disorders. This molecular
evidence of shared genetic influence in hormone-sensitive cancers
can be extended to design public health intervention addressing
multiple cancers at affordable cost in genetic screening.

Epidemiological studies have identified an association between
height, IGF-1, oestradiol, and cancer incidence to provide clues to
cancer aetiology. The risk of IGF-1 in cancer is further established
in deciphering the mechanism of height to cause cancer55,56. In
the current study, we found a positive genetic correlation in all
cases of hormone-sensitive cancers with IGF-1 and standing
height, which suggests there is an increased correlation in height
and IGF-1 concentration to develop hormone-sensitive cancer.
The observed correlation between standing height and caner
development might be explained by the increased standing height
that reflects more stem cells as a risk of acquiring mutations
during cell division over time, and further circulating level of
IGF-1 as the major determinants of height57. There can be,
however, other possible explanations. In contrast, serum oestra-
diol level showed a negative genetic correlation with all cases of
hormone-sensitive cancers suggesting the presence of lowered
risk. However, in the analysis restricted to incident hormone-
sensitive cancers cases, serum oestradiol exhibited a positive
genetic correlation (although not significant), suggesting that
exposure to ovarian steroids increases the risk of developing
hormone-sensitive cancers58. The current study further revealed
that the positive genetic correlation of height and IGF-1 with
cancer remained positively significant with incident cases sug-
gesting that the correlation is related to the commonality within
the combined cancers in their gene alteration and gene expression
pattern.

Contrary to expectations for the rest of the traits, this study did
not find a statistically significant genetic correlation between non-
cancer trait subgroups and hormone-sensitive cancers. From
previous epidemiological studies, it has been suggested that there
is a correlation between non-cancer traits and specific hormone-
sensitive cancers. This does not appear to be the case in our
analysis. The observed low correlation can be explained in part by
the underpowered nature of the current study to detect a

phenotypic and genetic correlation between hormone-sensitive
cancers and non-cancer traits. Therefore, non-genetic factors
could be a major reason, if not the only one, significantly
explaining the phenotype variance in cancer. Although the esti-
mated genetic correlations are low, they can still be used as a
training set in genomic risk prediction to improve the accuracy.
In genomic risk predictions when traits were combined as a single
trait, slightly increased prediction accuracy was observed59,60.
This suggests that substantial improvements in predictive power
are attainable using training sets of combined cancer with
molecular evidence of shared genetic contribution.

Apart from considering the correlation of variables, detecting
the interaction with the environment may have an important
implication in clinical care61,62. Globally, the incidence of cancer
has been steadily increasing for the past decades mirroring an
increase in the prevalence of obesity1. The genetic effects of
hormone-sensitive cancers can be modulated by obesity. There-
fore, we sought to estimate the gene-environment interaction to
shed light on the causal relationships of modifiable environmental
risk factor such as BMI and hormone-sensitive cancers. Further,
we found significant interaction between genetics and adiposity-
related factors as environment to interact with and modulate the
development of hormone-sensitive cancers. The nominally sig-
nificant GxSex interaction observed cannot be fully attributed to
the gene-interaction effect of sex since this might have occurred
as a result of unequal distribution of hormone-sensitive cases by
sex, i.e., majority of the grouped cancers are female dominated
cancer types. Although the combined cancers demonstrated a
shared aetiology, the pairwise genetic correlation comparison
evidenced that they are heterogeneous. i.e., the five hormone-
sensitive cancers have their unique pathogenic variants besides
the shared genes. There is also further heterogeneity within the
site-specific cancers. Endometrial cancer, for example, is a het-
erogeneous cancer that is believed to have two biologically dif-
ferent subtypes that exhibit a different mechanism of
tumorigenesis and disease progression63.

A major strength of the present study is that it constitutes a
greater number of hormone-sensitive cancers grouped to better
understand the complex underlying pathway of the disease biol-
ogy. Previous studies were focusing on each site-specific hor-
mone-sensitive cancer independently. Further, information on
non-cancer traits was used from the large dataset of the UKB.
This study offers significant insights into the heritability estimates
of hormone-sensitive cancer. However, our findings should be
interpreted in light of the limitations. First, participants in the UK
Biobank are restricted to middle and old age, which is not
representative of the general population on a variety of socio-
demographic, lifestyle, and health-related characteristics, with
evidence of a “healthy volunteer” selection bias64. Second, while
the total sample size was large for the grouped cancer, the number
of cases for some specific hormone-sensitive cancers (e.g., uterine
and thyroid) could be limited resulting in a large standard error
for genetic correlation analysis. Therefore, further studies with a
larger sample size for each cancer are warranted to validate our
results. Third, in our report of heritability in a liability scale, we
assumed the population level prevalence of the disease trait is
identical to the observed sample prevalence, but the disease
prevalence such as cancer in the UKB is often lower than
population prevalence as the dataset is not representative of the
UK population64. Further, we did not classify subtypes of breast
cancer, such as estrogen receptor [ER] positive/negative, proges-
terone receptor [PR] positive/negative, and triple-negative breast
cancers, in our analyses because no such information was avail-
able to us. Finally, the present study was conducted in a popu-
lation of European genetic ancestry, so the generalisability of our
findings to other ancestry populations is limited.
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In conclusion, we show that common genetic factors are a part
to play in the mechanism of carcinogenesis shared by hormone-
sensitive cancers, evidenced by the fact that SNP-based herit-
ability is substantial and there are 55 genome-wide significant
variants when combining multiple hormone-sensitive cancers as a
single disease. Albeit these common genetic factors, it is also
observed that there is significant genetic heterogeneity between
hormone-sensitive cancers. This finding will have an implication
in future research to investigate the complex biological pathways
of carcinogenesis that may result in a new opportunity for early
detection of hormone-sensitive cancers in precision health.

Methods
Study design and cohort characteristics. We used data in the UK Biobank
(UKB) (http://www.ukbiobank.ac.uk). The UKB is a large prospective study that
aims to improve the diagnosis, treatment, and prevention of disease. Full details are
described elsewhere65. It includes more than 500,000 participants aged 37–73 years,
with baseline recruitment conducted between 2006 and 2010. Informed consent
was obtained during enrolment, as was permission to access medical and other
health-related data for research purposes. The UKB has approval from the
Northwest Multi-Centre Research Ethics Committee (MREC) and the National
Information Governance Board for Health and Social Care (11/NW/0382).

Cancer status was ascertained through linkage to national cancer registries66.
Information on cancer registration was available up to October 2016, which
includes the diagnoses code according to the International Classification of
Diseases (ICD; ninth and tenth editions). We mapped all cancer-related ICD codes
into “phecodes” which better reflect disease coding as relevant for clinical
practice67. We excluded participants who had self-reported having had cancer but
did not have a record in the cancer registry. For participants with multiple cancer
diagnoses, we included the first diagnosed cancer based on the date of diagnosis. As
controls, we used participants with no report of any type of cancer-based on self-
report, cancer registry, or hospital inpatient data, or benign or in situ tumours from
the cancer registry. The World Health Organisation International Agency for
Research on Cancer (WHO/IARC) identifies certain cancer sites linked to
overweight and obesity as obesity-related cancers68. As dysfunctional adiposity is
known to associate with hormonal changes, applying criteria previously used by
others9, we classified a subset of obesity-related cancers as “hormone-sensitive
cancers” (namely postmenopausal breast, uterine, ovary, prostate, and thyroid).
Our analyses included 235,512 controls and 15,197 hormone-sensitive cancer cases.
Incident cancer cases were defined as those diagnosed after the baseline assessment
and before the end of follow-up (October 2016) and prevalent cases were those
diagnosed before baseline assessment in the UKB. So, 7038 incident cases of
hormone-sensitive cancer were included. The detailed number of cases of
hormone-sensitive cancer is included in Supplementary Table 6. The basic
covariates and covariates used for statistical adjustments are described in detail in
the supplementary file (Supplementary method).

Genotypic data. To control for artifacts introduced to the data during genotyping,
initial standard quality control (QC) measures were applied to all data sets before
analyses. The genotype data in the UKB includes 92,693,895 SNPs genotyped from
488,377 study participants. The QC procedure for the genotypic data focused on
two levels i.e., at individual and SNP level. First, at the individual level, we exclude
individuals with a call rate of less than 95% and individuals who did not self-
identify as white British ancestry or who exhibited sex inconsistencies (sex mis-
match between self-reported phenotype sex and genotype determined sex data) and
had a putative sex chromosome aneuploidy (chromosomal anomalies). To check
identical genes shared through common ancestors, we randomly selected indivi-
duals from a pair and excluded those pairs in which their genomic relationship is
larger than 0.05. Furthermore, to avoid bias induced as a result of population
stratification and to ensure participants are taken from a relatively homogenous
population, we checked the population substructure in the Principal Component
(PC) analysis to the excluded individual as population outliers with the first or
second PC outside ±6 SD of the population mean. Based on the release of the UKB
genotype dataset, for those who were included in both the first and second, we
calculated the genotype discordance rate between imputed genotype of the two
versions for each SNP and each individual and exclude those with a genotype
discordance rate of more than 0.05. Secondly at the SNP level, genetic markers with
an INFO score <0.6, markers that deviate significantly from Hardy–Weinberg
equilibrium (HWE) (1.00E-07) or with a call rate <0.95, with MAF < 0.01 and
ambiguous or duplicated SNPs were excluded. Additional specific cohort-level
quality control measures can be found in the reference cohort-specific
publications69. To avoid systematic differences between cases and controls being
interpreted as genetic variance, a more stringent quality-control process was then
applied to the data. This included excluding individuals with incomplete phenotype
data and re-moving markers with a minor allele frequency of less than 1%. In this
study, we used high-quality SNPs from the International HapMap Project [Hap-
Map3] that were reliable in estimating genetic variance and covariance at the
genome-wide level, feasible for more complicated analyses and there was no

substantial difference between estimated genetic variance from HapMap3 and 1000
genome SNPs70. After QC, 1,217,312 HapMap3 SNPs with 288,837 study parti-
cipants have remained for the analyses.

Statistical information. For the Univariate heritability estimate, we assumed a
linear mixed model for the heritability analysis as follows:

y ¼ Xbþ Zaþ ε ð1Þ

where y is a vector of the response variable (cancer status); b is the vector of
regression coefficients for the fixed effects; a is additive genetic effects with var-
iance; ε is residual (environment effects) with variance and Z and X is the design of
matrix of the fixed effects27.

For the heritability estimate, the genomic relationship matrix (GRM) was
constructed using plink software71,72. To estimate the Univariate heritability of the
subgroups of cancers, two different methods were applied. First, we used the
genomic relationship matrix-restricted maximum likelihood (GREML) method,
which is based on the individual level genotype data. Second, as linkage
disequilibrium score (LDSC) regression method largely depends on summary level
genotype data, using the UKB individual genotype data, we computed the summary
statistics. We used the pre-computed LD score for white Europeans73 which is
considered suitable for standard LDSC analysis in European populations to use it
in a command-line tool of LDSC. For each method, we used both incident and
prevalent cases together in the dataset as cases. The analyses were repeated
restricting incident cancer cases only. With the use of the prevalence rate of the
subgroups of cancers, the observed scale estimates were transformed to liability
scale according to Lee et al using MTG2 software. We used χ2 which is distributed
following a chi-square distribution with 2 degrees of freedom and Wald tests.

The GREML method requires individual-level genotype data and is
computationally demanding71. The sample size of the UKB is large, therefore, we
randomly subdivided the dataset to shorten computing time and applied a meta-
analysis approach. We first divided the samples into two groups, UKBB1 (91,472
individuals from the first release) and the other samples except for UKBB1, named
as UKBB2. In UKBB2, 197,365 individuals with genotype data passed the QC. We
further randomly divided the UKBB2 into two groups of equal size (denoted as
UKB2A [n= 98,682] and UKB2B [n= 98,683]) and fitted all models mentioned
above for each group. We then meta-analysed the heritability and other related
estimates from UKB2A, UKB2B, and UKBB1 using the Fisher’s method74. For
UKBB2, we used the same variables for adjustment as UKBB1.

Genome-wide association (GWAS) analysis. Recent advances in computational
methods have facilitated the investigation of genetic variants and their effects on
multiple complex diseases, i.e., GWAS. After estimating heritability, we, therefore,
extend the analysis to estimate the effects of genome-wide SNPs associated with
causal genes on the group of hormone-sensitive cancers as a single trait GWAS,
using a logistic regression model. The phenotype used for the GWAS analysis is
similar to the SNP-based heritability estimate. In total, 15,197 hormone-sensitive
cancer cases, including breast cancer, prostate, uterine, ovarian, thyroid, and
223,207 controls were included in the GWAS analysis. The phenotype is similarly
adjusted to multiple variables to the heritability estimate to identify significant
SNPs using the list of common SNPs from HapMap3. We first computed the
statistical power of the study for hormone-sensitive cancers using the online
available software GAS Power calculator for genomic study75. The power calcu-
lation is conducted under the assumptions of genetic models (i.e., additive), 5%
minor allele frequencies (MAFs), pair-wise LD, a 6.34% disease prevalence, 1:1
case-to-control ratio, and 5% level of significance. We found the sample size of
hormone-sensitive cancers was sufficient to achieve 80% statistical power according
to the additive genetic model applied. The power curve is attached in the sup-
plementary file (Supplementary Fig. 6).

We performed post GWAS analyses that involves constructing a quantile-
quantile (QQ) plot for hormone-sensitive cancers in each case [all hormone-
sensitive cancers vs incident hormone-sensitive cancer cases only]. We further
quantified the degree of genomic inflation factor (λ) i.e., how best the observed data
points fit to the expected value. The QQ plots in each case showed the bulk of the
distribution is in the lower tail of the graph.

We identified genome-wide significant SNPs for hormone-sensitive cancers
using plink software72 to obtain the GWAS P-values that were used for the
Manhattan plot for qqman package in R. For the post GWAS analysis to see if the
genomic inflation factor is high, we plot QQ plot using QCEWAS package in R. λ is
the median of the resulting chi-square test statistics divided by the expected median
of the chi-square distribution. The median of a chi-squared distribution with one
degree of freedom is 0.4549364, i.e., [qchisq (0.5,1)= 0.4549364]. A λ value is
calculated from p-values in the output we have from the genome-wide association
analysis. Low significant results are removed (there are more significant results
than expected) to increase the λ value. To rescale the λ value to provide better
information, we use the following formula to rescale the λ calculated76.

λ1000 ¼ 1þ λ observed � 1ð Þ ´
1

n cases þ 1
n controls

� �
1

n cases;1000 þ 1
n controls;1000

� � ; ð2Þ
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where n is the study sample size for cases and controls respectively, and
ncases,1000 and ncontrols, 1000 is the target sample size of 1000.

Phenotypic correlation. Estimates of phenotypic and genetic correlation were
computed separately between hormone-sensitive cancer and each non-cancer trait.
The phenotypic correlation was estimated using Pearson correlations between each
pair of traits for complete observation in R. To examine the genetic architecture
further, we performed phenotypic correlation for components of hormone-
sensitive cancers using the leave-one-out analysis approach. The results are sum-
marised and presented in Table 3.

Genetic correlation analysis. As bivariate LDSC estimates are not biased with
sample overlap wherein controls are common in both traits and computationally
very efficient37, we run the genetic correlation to generate an overview of the
genetic relationship between hormone-sensitive cancers and the six non-cancer
subgroup traits. We then used the bivariate GREML approach to estimate the
genetic correlation between hormone-sensitive cancers and seven non-cancer traits.
Further, we examine the genetic correlation between each component of hormone-
sensitive cancers using a pair-wise comparison approach. The genetic correlation
(rg ± SE) is calculated using cross-trait LD Score regression method.

As most oestradiol hormone is bound to the serum protein sex-hormone
binding globulin (SHBG) and Albumin, i.e., biologically unavailable to exhibit its
physiologic effect, implying the need to compute the free hormone level, we
calculated the free concentration using serum oestradiol and the concentration of
SHBG and Albumin with their respective association constant K77.

cFO ¼ E2 � NTotal

� �
= NSHBG

� �� E2 þ NE2

� �� �
ð3Þ

where cFo= calculated free oestradiol; E2= serum oestradiol level;
NE2= 0.64 × 109*Albumin level +1; NSHBG= 5.55 × 104 *SHBG level; and
NTOTAL=NSHBG+NE2.

Leave-one-out (LOO) approach to determine the genetic correlation of
hormone-sensitive cancers. The iterative scheme of leave-one-out analysis is
carried out by using a different possible combination of hormone-sensitive cancers
in cross-trait LDSC regression. The grouped hormone-sensitive cancer comprised
of five distinct heterogeneous cancers, and we created a 5-fold leave-one-out
analysis that involves the different possible combinations of the hormone-sensitive
cancers. During each iterative step, we exclude data of one independent cancer at a
time and use the remaining cancer types as grouped hormone-sensitive cancers to
compute the genetic correlation in bivariate LDSC. These steps are iteratively
completed five times. The analysis sketch map demonstrating all the possible
combinations is summarised in Supplementary Fig. 5.

Gene-environment interaction. Finally, we checked the gene-environment
interaction for hormone-sensitive cancers with selected traits using bivariate
GREML and GxEsum techniques for traits with continuous level measurement.
The bivariate GREML approach is applied with the assumptions of gene-
environment interactions in contrast to the Univariate GREML model that assumes
the absence of GxE interactions. Here in this method, we stratified the hormone-
sensitive cancer phenotype by traits regarded as environments [i.e., BMI-normal vs
high; metabolic environment-favourable vs unfavourable; and sex-male vs female]
to look for interactions. Such approach allows us to test whether the genetic effects
are heterogeneous if individuals lie in the same environment thereby test for gene-
environment interaction.

A recently proposed alternative method for quantitative traits, called GxEsum is
able to estimate gene-environment interaction. This method is built on LDSC
approach by using GWAS summary statistics and suggested as computationally
efficient method39. For SNP effects modulated by quantitative environment, the
expected chi-square statistics (χj²) is

E χ2j j‘j
h i

¼
Nσ2g1
M

� ‘j þ 1þ 2 σ2g1 þ σ2τ1

� �
; ð4Þ

where N is the number of individuals, M is the number of SNPs, σ2g1 is the variance

due to GxE, σ2τ1 is the variance due to residual heterogeneity or scale effects caused
by residual-environment interaction (RxE), ‘j is the LD score at the variant j.

Software. We have used the well-established MTG227 software to conduct the
bivariate GREML analyses and estimate the genetic correlation coefficient between
each non-cancer trait and subgroups of cancer. For MTG2, the source code,
executive binary file, user manual, and toy examples for practice are readily
available for downloads using the link https://sites.google.com/sit/honglee0707/
mtg2. The GxEsum model is implemented in the script that is publicly available at
https://github.com/honglee0707/GxEsum. The version of source code used in the
manuscript is deposited with https://doi.org/10.5281/zenodo.4659681 at https://
zendo.org/record/4659681#.YGKZXc9xeUk. The rest statistical analyses were
performed using publicly available software that includes plink1.9, LDSC, and
analysis packages in R & Python.

Statistics and reproducibility. We used an appropriate linear mixed model of
GREML, and logistic regression based GWAS models as described in each section
of the manuscript. The P-value in this study is calculated by applying the Wald-test
with the assumption of the distribution of estimated genetic correlation was nor-
mal. The statistical significance level was set at p < 0.05 (2-tailed). We confirmed
the reproducibility of the main analyses by randomly splitting the UKB data into
two datasets as UKB1 and UKB2 fitted all statistical models.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data will be available to approved users of the UK Biobank upon application. The data
are not publicly available due to the contents related to information that could
compromise research participants’ privacy/consent. The authors state that all data
necessary for confirming the conclusions presented in the manuscript are represented
fully within the manuscript. Source data is provided as Supplementary Data 1.
Individual-level genotype data are available by application to the UK Biobank. The
GWAS summary statistics dataset that is generated during the current study and
supports the findings have been deposited in the NHGRI-EBI GWAS catalogue with the
accession codes GCST90102435, GCST90102436; GCST90102437; GCST90102438;
GCST90102439; GCST90102440; GCST90102441; (https://www.ebi.ac.uk/gwas/).
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