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Abstract—One of the most prominent and widely-used
blockchain privacy solutions are zero-knowledge proof (ZKP)
mixers operating on top of smart contract-enabled blockchains.
ZKP mixers typically advertise their level of privacy through
a so-called anonymity set size, similar to k-anonymity, where a
user hides among a set of k other users.

In reality, however, these anonymity set claims are mostly
inaccurate, as we find through empirical measurements of the
currently most active ZKP mixers. We propose five heuristics
that, in combination, can increase the probability that an ad-
versary links a withdrawer to the correct depositor on average
by 51.94% (108.63%) on the most popular Ethereum (ETH) and
Binance Smart Chain (BSC) mixer, respectively. Our empirical
evidence is hence also the first to suggest a differing privacy-
predilection of users on ETH and BSC. We further identify 105
Decentralized Finance (DeFi) attackers leveraging ZKP mixers
as the initial funds and to deposit attack revenue (e.g., from
phishing scams, hacking centralized exchanges, and blockchain
project attacks).

State-of-the-art mixers are moreover tightly intertwined with
the growing DeFi ecosystem by offering “anonymity mining”
(AM) incentives, i.e., mixer users receive monetary rewards for
mixing coins. However, contrary to the claims of related work,
we find that AM does not always contribute to improving the
quality of an anonymity set size of a mixer, because AM tends
to attract privacy-ignorant users naively reusing addresses.

I. INTRODUCTION

It is well-known that non-privacy focussed permission-
less blockchains, such as Bitcoin, offer pseudonymity rather
than anonymity [15], [25]. Every blockchain transaction dis-
closes the transferred amount, time, transaction fees, and user
addresses. While privacy-preserving blockchains [33], [42],
[27] successfully protect their users’ privacy, retrofitting a
blockchain with privacy has proven challenging and remains
an active research area [32], [23], [22], [47], [26], [43], [39],
[40], [31]. The solution space can be broadly divided into (i)
privacy-by-design blockchains and (ii) add-on privacy solu-
tions, which are retrofitted, e.g., as a decentralized application
(dApps) on top of non-privacy-preserving blockchains.

One of the most widely-used add-on privacy solutions,
undoubtedly inspired by Zerocash [42], are zero-knowledge
proof-based (ZKP) mixers, where users deposit a fixed amount
of coins into a pool and later withdraw these coins to a
new address [6], [9], [7], [8], [1]. If used carefully, such
decentralized mixer should break the linkability between a
deposit and a new withdrawal address. ZKP mixers are dApps
on smart contract-enabled blockchains (e.g., ETH and BSC).

One of the most active ZKP mixers, Tornado.Cash reports an
anonymity set size of 12,189 for its largest pool (i.e., 1 ETH
pool), by counting the unique deposit addresses on November
1st, 2021. This anonymity set suggests that, given a withdrawal
transaction, the corresponding depositor can be hidden among
the 12,189 addresses.

ZKP mixers typically focus only on the linkability of
addresses on the blockchain layer and leave the remaining
operational and privacy-relevant decisions to the user. Users
are therefore entrusted to follow the best privacy practices,
e.g., no address/wallet re-use, clean browser cache/cookies,
preventing browser fingerprinting, VPN/proxy services, etc.

In this work, we however find that the mixer privacy
depends on several factors, such as the anonymity set of the
mixer pool and crucially, the behavior of other pool users.
We perform an empirical analysis of the most active mixers
by analyzing the mixer usage over time, the behavior of
depositors, withdrawers, and the pre- and post-mixer flow of
funds. We then present five heuristics to accurately quantify
the anonymity set when considering the user behavior, such
as deposit and withdrawal addresses, the asset flow, etc. We
attempt to validate the heuristics by synthesizing a candidate
ground truth dataset from privacy-exposing side-channels. Fur-
thermore, we identify how adversaries launder coins through
ZKP mixers. Finally, we analyze the impact of Anonymity
Mining (AM) [30] on a mixer’s privacy and discover counter-
intuitive results.

We summarize our contributions as follows:

1. Empirical Analysis of Existing Mixers: We empirically
analyze the usage of the two most popular ZKP mixers,
Tornado.Cash (TC) and Typhoon.Network (TN). We find that
at least 18 malicious addresses directly withdraw ETH from TC
as adversarial source of funds, while 87 malicious addresses
deposit 372.1M USD (4.1% of the total deposit volume) into
TC, with the likely attempt to hide their traces. We find that
the average deposit volume of malicious addresses is 10.7×
larger than the average deposit volume of a TC user.

2. Measuring the Anonymity Set Size: We propose five
heuristics leveraging on-chain data to derive a more accurate
mixer pool anonymity set size, than the naive enumeration
of its deposit addresses. Combining heuristics proves pow-
erful, as our evaluation shows that the probability that an
adversary links a withdrawer to the correct depositor rises on
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average by 51.94% (108.63%) on Tornado.Cash (on ETH) and
Typhoon.Network (on BSC) respectively. We are hence the
first to provide quantitative evidence that may indicate a user
behavior difference w.r.t. privacy on two different blockchains.
Our results may also support the hypothesis that the biggest
anonymity set continues to attract privacy-aware users, similar
to how liquidity attracts liquidity in financial exchanges.
3. Anonymity Mining’s Impact on Privacy: We are the first
to study and empirically evaluate the impact of AM in ZKP
mixers. Contrary to the claims of related work [30], we find
that AM does not always increase a mixer’s anonymity set size
quality, because AM appears to attract privacy-ignorant users,
primarily interested in mining rewards. After applying our first
heuristic measuring the TC pools’ anonymity set, we find that
the relative increase of the probability that an adversary links
a withdrawer to the correct depositor rises from 7.00% (before
AM launch) to 13.50% (after AM launch) on average.
4. Heuristic Validation: We extract three orthogonal privacy-
exposing side-channels that help to validate our heuristics
based on data from, (i) airdrops [48], (ii) the Ethereum Name
Service and (iii) the DeFi explorer Debank. From these
side-channels, we build a candidate ground truth dataset,
which we plan to open source, and which allows validating
privacy-exposing heuristics. Given our reproducible dataset,
we find that our heuristics yield an average F1 score of 0.55.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of blockchain and existing DeFi
mixers. We outline our system and threat model along with
the considered privacy metrics in Section III. In Section IV
we present our empirical measurements of ZKP mixer pools.
In Section V, we provide our heuristics to measure the
realistic anonymity set size. We study the novel phenomena
of incentivized mixer pools in Section VI. In Section VII, we
attempt to gather candidate ground truth data to validate our
linking results in mixers. We discuss the implications of our
work in Section VIII. We outline related works in Section IX
and conclude the paper in Section X.

II. BACKGROUND

In this section, we outline the required background for mixer
pools on non-privacy-preserving blockchains.

A. Blockchain and Smart Contracts

Permissionless blockchains act as a distributed ledger on
top of a peer-to-peer (P2P) network [36]. Smart contracts are
quasi Turing-complete programs that typically execute within
a virtual machine and allow users to construct various appli-
cations [49]. For instance, Decentralized Finance is a financial
ecosystem that runs autonomously on smart-contracts-enabled
blockchains. The total locked value in DeFi has reached
over 93B USD at the time of writing. Many DeFi applications
are inspired and mirrored by traditional centralized finance
systems, such as asset exchanges, lending and borrowing plat-
forms, margin trading systems, and derivatives. A blockchain
transaction can be used to transfer blockchain tokens or to

TABLE I: Comparison of ZKP mixers on ETH, BSC, and
Polygon on November 1st, 2021.

Mixers Chain TVL (USD) Total USD
deposited # Pools # depositors # withdrawers

TC [6] ETH 1.11B 9.12B 19 23,529 32,860

TP [7] ETH 678K 96.58M 24 1,217 1,174

TN [8]
BSC 0.86M 35.26M 13 4,811 6,318

Polygon 546 3,683 4 31 41

Cyclone [1]

ETH 4.00M 70.94M 5 91 79

BSC 2.36M 41.22M 5 550 524

Polygon 15K 32.80K 3 11 7
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Fig. 1: Number of unique mixer depositors over time.
23,529 (79.75%) and 4,842 (16.41%) depositors appear in
Tornado.Cash and Typhoon.Network, respectively.

trigger the execution of smart contract functions. The sender
of a transaction usually pays for the cost of the entire smart
contract execution caused by that transaction. For a more
thorough background on blockchains and smart contracts, we
refer the interested reader to the relevant surveys [21], [16].

B. Mixing Services for DeFi

Mixing services allow users to mix their coins with other
users in an effort to break the linkability of addresses (i.e.,
whether two addresses belong to the same entity). The lit-
erature features various proposals of mixing service designs,
which can be centralized [22], [47], [26], [43] or governed by
smart contracts [6], [30], [9], [7].

As DeFi adoption increases and all transactions, balances,
senders and recipients are public, the demand for privacy in the
DeFi ecosystem has led to the launch of ZKP mixers. To date,
the largest mixing service on Ethereum is Tornado.Cash [6].
TC is an autonomous and decentralized ZKP mixer, launched
in December 2019. TC operates four ETH pools (i.e., 0.1, 1, 10
and 100 ETH pool) which support the deposit and withdrawal
of a fixed amount of ETH. When a user deposits a fixed amount
of ETH into a TC pool, the user should safely backup a deposit
note; to withdraw, the user should provide the deposit note,
which needs to be verified by the TC smart contract. TC also
supports the mixing of other tokens (e.g., DAI, USDC, USDT,
etc.), but most users appear to be mixing ETH. The total ETH
deposited in TC reached over 2.05M ETH (9.11B USD)1 at
the time of writing.

AMR [30] is a new mixer design similar to TC, but
additionally rewards its users for their participation in the
system. Such incentivization of paying rewards is similar to the
currently popular liquidity mining, also called “DeFi farming”,

1We adopt the prices of coins on CoinMarketCap on November 1st, 2021
to convert them to USD, e.g., 1 ETH = 4,300 USD, 1 BNB = 530 USD.

2

https://etherscan.io/address/0x12d66f87a04a9e220743712ce6d9bb1b5616b8fc
https://etherscan.io/address/0x47CE0C6eD5B0Ce3d3A51fdb1C52DC66a7c3c2936
https://etherscan.io/address/0x910cbd523d972eb0a6f4cae4618ad62622b39dbf
https://etherscan.io/address/0xa160cdab225685da1d56aa342ad8841c3b53f291
https://coinmarketcap.com/


TABLE II: System Model Definitions

Name Definition Eq.

coin transfer tr = (bn,from,to, amt,coin) where from coin−−−→ to (1)

coin flow F = (tr1, ..., trn) where
tri−1.to = tri.from and tri−1.bn ≤ tri.bn

(2)

Link LINK(a1, a2) = 1 ⇔ a1 is linked to a2 (3)

Cluster C = {a1, .., an}, ∀ai ∈ C, ∃aj ∈ C \ {ai},
satisfies LINK(ai, aj) = 1

(4)

Mixer Pool P (5)

Fixed currency
denomination p of coin (6)

Pool depositors DP(t) = {d | d deposits coin into P before t} (7)

Pool withdrawers WP(t) = {w | w withdraws coin from P before t} (8)

Address Balance bala(t) = ua(t)× p− va(t)× p, where ua(t) and va(t) are
the numbers of a’s deposit and withdrawal, respectively. (9)

Pool State SP(t) = {(a,bala(t)) | a ∈ DP(t) ∪WP(t)} (10)

Merge MERGE (SP(t), (a1, a2)) = {(a,bala(t))|a ∈ DP(t) ∪WP(t)
∧a 6= a1 ∧ a 6= a2} ∪ {(a1,bala1 (t) + bala2 (t))}

(11)

Simplified Pool
State

SIMP(SP(t),S) = SIMP
(

MERGE(SP(t), (ai, ai+1)),S
′
)

where S is a set of linked addresses and S′
= S \ {(ai, ai+1)}

(12)

Depositors
Extension D(n)

P (t) = {a | ∃a1 ∈ D(n−1)
P (t), a

coin−−−→ a1 before t} (13)

Withdrawers
Extension W(n)

P (t) = {a | ∃a1 ∈ W(n−1)
P (t), a1

coin−−−→ a before t} (14)

Observed
Anonymity Set OASP(t) = DP(t) (15)

True
Anonymity Set TASP(t) = {a | (a,bala(t)) ∈ SP(t) ∧ bala(t) > 0} (16)

Simplified
Anonymity Set SASP(t) (17)

an attempt to attract more users. More users should translate
to a larger anonymity set size, as AMR proclaims. Blender [9]
appears to be an instance of an AMR mixer by depositing the
users’ ETH into Aave (a DeFi lending platform) [13] and then
redistributing the interests earned to users. Soon after AMR,
TC was updated in December 2020 to support anonymity
mining [44]. Anonymity mining incentivizes users to keep
their deposited ETH in mixer pools for a longer time period. A
user can receive rewards through a “shielded liquidity mining
protocol” (cf. Section VI).

ZKP mixers such as TC can be implemented on smart
contract-enabled blockchains, e.g., Typhoon.Cash (TP) [7] on
Ethereum, Typhoon.Network [8] and Cyclone [1] on BSC and
Polygon. Table I and Figure 1 provide a comparison of ZKP
mixers to date. We observe that TC accumulates the largest
total deposited USD and the number of depositors.

III. SYSTEM AND THREAT MODEL

In this section, we outline our system and threat model.

A. System Model

Users have at least one public/private key-pair (correspond-
ing to their address), which controls cryptocurrency assets on
a permissionless blockchain. To transfer or trade an asset, the
user signs a transaction with its private key. Each transaction
corresponds to an event with various publicly readable fea-
tures, such as the time of day and the transaction fees.

We summarize in Table II the definitions of this work to
further describe the system model: (1) the “movement” of

 Mixer Pool...
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Fig. 2: System Model, where DP(t) = {d1, ..., dm} and
WP(t) = {w1, ..., ws}. ‘−→’ represents a transfer of coin,
and ‘L99’ represents a transfer of note. When a user u deposits
coin into pool P (Step 1), u receives a note from P (Step
2); To withdraw, u needs to provide note to P (Step 3) and
will receive coin after P verifies note (Step 4). A user u can
control multiple addresses. An address can be used to deposit
or withdraw multiple times.

cryptocurrency assets between addresses (Eq. 1–2), (2) the
linkability of addresses (Eq. 3–4) and (3) the notations of a
mixer pool (Eq. 5–16).

Definition 1: (Transfer of coin – Eq. 1) A transfer of
coin is a tuple tr = (bn,from,to,amt,coin), where bn
is the block number (i.e., timestamp), amt is the amount of
coin that is transferred from the address from to to.

Definition 2: (Flow of coin – Eq. 2) A flow of coin is
a chain of transfers of coin between addresses.

Definition 3: (Link – Eq. 3) If two addresses a1 and a2
belong to the same user, then a1 and a2 are linked.

Definition 4: (Cluster – Eq. 4) A cluster is a set of
mutually-linked addresses.

Definition 5: (Mixer Pool – Eq. 5–8) A mixer pool is an
aggregation of cryptocurrency assets governed by a smart con-
tract (cf. Figure 2). Users can only deposit and withdraw a spe-
cific cryptocurrency coin. To avoid that deposit/withdrawal
asset amounts leak privacy, mixer pools typically only accept
a fixed currency denomination. A depositor is an address to
deposit coin into P, and a withdrawer is an address to receive
coin from P.

The proper use of a mixer pool P, requires choosing one
address aD to deposit and another ideally unlinkable address
aW to withdraw.

Definition 6: (Address Balance – Eq. 9) The amount of
coin that an address holds in a pool at a time t.

Definition 7: (Pool State – Eq. 10) The set of tuples
constituted by all depositors, withdrawers, and their balances
in P, at time t.

A pool P’s state is determined by users’ balances.
For instance, if d1 deposits once, d2 deposits twice,
and w1 withdraws once in a 100 coin pool P100

before time t, then P100’s pool state is SP100(t) =
{(d1, 100), (d2, 200), (w1,−100)}.
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Fig. 3: Extended model of a mixer pool. ‘−→’ represents a
transfer of coin. mn is the size of the distance-n depositors
set D(n)

P , and sn is the size of the distance-n withdrawers set
W(n)

P . d(n)jn
is a depositor in D(n)

P and jn ∈ [1,mn]. w
(n)
in

is
a withdrawer in W(n)

P and in ∈ [1, sn]. Here we suppose the
time t is fixed and omit it for simplicity.

If there exists a link between a depositor and a with-
drawer in a pool P, we can simplify the pools’ state (cf.
Definition 8). For instance, in the previous example P100,
if LINK(d1, w1) = 1, then we can simplify the state as
SIMP (SP100

(t), (d1, w1)) = {(d2, 200)}.
Definition 8: (Simplified Pool State – Eq. 12) Given a

pool’s state SP and a set S consisting of linked address pairs,
we compute the Simplified Pool State by merging the balances
of linked addresses.

To help track a user’s transfers of coin before and after
the user interacts with a mixer pool, we extend the depositor
and withdrawer set as follows.

Definition 9: (Depositors Extension – Eq. 13) At time t,
we let DP(t) = D(1)

P (t) and define the depositors in distance
n(n > 1), D(n)

P (t), as the set of addresses that transfer coin
to the addresses in D(n−1)

P (t).
Definition 10: (Withdrawers Extension – Eq. 14) At time

t, we let WP(t) = W(1)
P (t) and define the withdrawers in

distance n(n > 1), W(n)
P (t), as the set of addresses that

receive coin from the addresses in W(n−1)
P (t).

Note that based on Definitions 9 and 10, the mixer pool
model in Figure 2 can be extended to a model in Figure 3, to
cover depositors and withdrawers in longer distances.

B. Privacy Mechanisms

Knowing the set of depositors DP(t) and the state of a pool
P at time t, we define the observed anonymity set and the true
anonymity set of the pool P.

Definition 11: (Observed Anonymity Set – Eq. 15) At
time t, the observed anonymity set OASP(t) of a pool P is
the set of unique addresses used to deposit, i.e., DP(t).

Definition 12: (True Anonymity Set – Eq. 16) At time t,
the true anonymity set TASP(t) of a pool P is the set of
addresses with a positive balance, i.e., the set of depositors
that are still in the pool P.

Note that the true anonymity set might not be apparent from
observing the blockchain data, because it is the mixer’s inten-
tion to obfuscate the addresses with positive mixer balances.
However, an adversary can leverage on-chain data to compute
a more “realistic” anonymity set (cf. Def 13), which can be
more representative than OASP(t).

Definition 13: (Simplified Anonymity Set – Eq. 17) Given
a mixer pool P at time t, the simplified anonymity set
SASP(t) is the set of depositors with a positive balance,
which is computed by leveraging on-chain data to simply the
pool state. Note that SASP(t) ⊆ OASP(t).

Privacy Metric. The probability that an adversary without
prior knowledge links a withdrawer (who withdraws at time
t) to the correct depositor is:

AdvoA(t) = 1/ |OASP(t)| (18)

If we assume that the adversary can link a withdrawer
w (who withdraws at time t), to a target set of depositors
SASP(t), then the probability that the adversary links w to
the correct depositor is:

AdvsA(t) = 1/ |SASP(t)| (19)

Using Eq. 18 and Eq 19, we define RAdv as the increase
of AdvsA(t) over AdvoA(t), to represent the relative increase
of the probability that an adversary links a withdrawer to the
correct depositor:

RAdv =
AdvsA(t)− AdvoA(t)

AdvoA(t)
(20)

C. Threat Model: Public L1 Mixer Attacker

In this work, the goal of the adversary is to link the deposit
addresses of the same user or entity, with the true withdrawal
address(es) of the mixer. Hence, the privacy of a user is
quantified with the ability of the adversary to successfully link
a deposit address with a withdrawal address. We assume that
the adversary possesses the following prior knowledge:
Mixer Functionality: We assume that the adversary is fully
aware of how the mixer operates, and has access to the source
code of the involved smart contract.
Transparent Mixer Input and Output: We assume that the
adversary can record the input and output of the mixer, e.g.,
has access to all the deposit and withdrawal transactions, their
addresses, timestamps, etc.
User Trading Activity: We further assume that the adversary
has access to the full transaction record of users in DeFi,
amounting to the transaction sender, recipient, amounts, in-
volved smart contracts, and DeFi platforms.

4



TABLE III: Number of deposits and withdrawals in four TC
ETH and TN BNB pools on November 1st, 2021.

Pool # Deposits # Withdrawals # Depositors # Withdrawers

TC 0.1 ETH 17,075 13,821 6,939 7,499

TC 1 ETH 30,290 24,774 9,733 12,189

TC 10 ETH 24,678 23,012 8,865 11,286

TC 100 ETH 18,479 16,718 4,108 5,762

TN 0.1 BNB 6,400 5,947 2,850 3,225

TN 1 BNB 8,417 8,226 2,618 3,064

TN 10 BNB 3,729 3,699 1,265 1,505

TN 50 BNB 417 410 156 203
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Fig. 4: Daily activity in TC ETH and TN BNB pools.

We further assume that the adversary cannot be a relayer,
and cannot monitor the network layer to record depositors’
and withdrawers’ IP addresses.

Note that a public L1 mixer attacker model is expressly dif-
ferent from an attacker in the context of a permissioned chain
or a private chain, or an L2 protocol with data availability
limits, such as StarkWare [12]. Note also that the attack model
for L2s such as StarkWare, where validators or availability
committee members get to see more of execution is different
from what is presented here. However, our attacker model can
also be applied to an L2 protocol without data availability
limits, e.g., Rollups [5].

IV. EMPIRICAL MIXER ACTIVITY

To gather empirical insights into the activities of exist-
ing DeFi mixers, we crawl the deposit, withdrawal events
and transactions of the 73 pools on four ZKP mixers: Tor-
nado.Cash, Typhoon.Cash, Typhoon.Network and Cyclone,
from December 16th, 2019 (i.e., the inception time of TC)
to November 1st, 2021. Figure 1 shows the number of unique
depositors in mixers over time. We observe that 96.16% of
the mixer users deposit assets into TC and TN, and that the
number of TP depositors did not change since February, 2021.
Therefore, in the following, we focus on analyzing the two
most active mixers, TC and TN.

We analyze the top four active pools in TC (0.1, 1,
10 and 100 ETH pools) and TN (0.1, 1, 10 and 50 BNB
pools). For TC, we crawl the deposit and withdrawal events
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Fig. 5: The number of depositors and withdrawers in TC ETH
pools over time. TC 0.1 ETH pool has the most depositors and
withdrawers before November 1st, 2021.
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Fig. 6: The number of depositors and withdrawers in TN BNB
pools over time.

data from the Ethereum block 9,116,966 (December 16th,
2019) to 13,530,000 (November 1st, 2021). The TC 1
ETH pool is the most active (30,290 deposits and 24,774
withdrawals), while the TC 100 ETH pool has the small-
est depositor and withdrawer set (4,108 deposit and 5,762
withdraw addresses). The TC pools accumulate deposits of
2,126,677.5 ETH (9.12B USD). Moreover, from TN’s in-
ception at BSC block 5,230,899 (February 27th, 2021) until
block 12,271,000 (November 1st, 2021), we find that 4,811
addresses generate 18,963 deposits in the four BNB pools,
accumulating 67,197 BNB (35.26M USD).

A. Daily Activity in Mixer Pools

We plot the daily deposited and withdrawn ETH and BNB in
TC and TN pools from December 16th, 2019 to November 1st,
2021 in Figure 4. We observe that the graphs of daily deposits
and withdrawals seem to be approximately symmetrical.

Figure 5 shows the growth of the number of depositors
|DP(t)| and withdrawers |WP(t)| in the four TC ETH pools
over time. We notice that |DP0.1

(t)| is superior compared to
|DPj (t)|, where j ∈ {1, 10, 100}, before the 1st of October
2020, but |DPj (t)| increases faster than |DP0.1(t)| after the 1st
of October 2020. We speculate that this is because first-time
TC users tend to try the 0.1 ETH pool for testing purposes
before attempting other pools. We also observe that |DPp

(t)|
and |WP(t)| grow approximately linearly before July 2020,
and faster afterwards. We conjecture that this growth change
is likely due to the announcement of the Tornado Fund Launch
in June 2020 [45]. Additionally, for TN, we observe that the
pools with the smaller denomination have more depositors and
withdrawers (cf. Figure 6). Notably, this is similar to the early
stages of TC, where users prefer to try the TN 0.1 BNB pool
for testing purpose.
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Fig. 7: Venn diagram of depositors and withdrawers in four TC
ETH and TN BNB pools, given t on November 1st, 2021. 199
depositors and 60 withdrawers appear in the four TC pools. 45
depositors and 29 withdrawers appear in the four TN pools.

B. Depositors and Withdrawers

The four TC ETH pools contain |
⋃

pDPETH
p
(t)| = 22,589

unique depositors and |
⋃

pWPETH
p
(t)| = 31,915 unique with-

drawers (given p ∈ {0.1, 1, 10, 100}), depositing 94.15 ETH
(400k USD) and withdrawing 60.41 ETH (260k USD) on
average. In each pool, the number of withdrawers is greater
than depositors, indicating that a user may adopt multiple
addresses to withdraw but fewer address to deposit.

Because a mixer pool only supports a fixed currency de-
nomination, users may utilize multiple pools to mix arbitrary
amounts of assets. Figure 7 shows that 199 depositors utilize
all four TC pools, and 5,552 (24.58%) deposit in more than
one pool. Additionally, 60 users withdraw from all four pools,
and 4,106 (12.87%) use more than one pool to withdraw.
Likewise, for TN, we observe a slight increase in overlaps on
both depositors (31%) and withdrawers (24%) appearing in at
least two pools. The overlap of pools may help an adversary
to link addresses (cf. Section V-A).

C. Relayers

Relayers help users to withdraw coins from a pool towards
a new address by paying for the transaction fees in the
native blockchain currency (e.g., ETH and BNB). Relayers in
exchange receive a share of the withdrawn coins [6]. As shown
in Table IV, we identify 192 unique relayers, and 102 relayers
operate on the four TC ETH pools. Furthermore, 68.21% of
the withdrawal transactions are performed with the help of a
relayer, and more than 92.47% of withdrawers use relayers.
Contrarily, although TN aims to add more relayers [46],
currently, it only uses a single relayer and substantially fewer
users withdraw funds using a relayer (less than 60%).

TABLE IV: Relayers usage in TC ETH and TN BNB pools
before November 1st, 2021.

Pool # relayers # withdrawals with relayer # withdrawers using relayer

TC P0.1 139 9,362 (67.74%) 6,974 (93.00%)
TC P1 158 19,739 (79.68%) 11,751 (96.41%)
TC P10 152 20,276 (88.11%) 10,699 (94.80%)
TC P100 141 11,404 (68.21%) 5,328 (92.47%)

# total TC relayers 192

TN P0.1 1 3,438 (57.81%) 1,899 (56.30%)
TN P1 1 5,051 (61.40%) 1,921 (59.07%)
TN P10 1 1,027 (52.10%) 696 (44.30%)
TN P50 1 214 (52.20%) 107 (50.23%)

# total TN relayers 1

Note that when users withdraw funds without a relayer,
they may incautiously adopt their deposit address to initiate
the withdrawal transaction, revealing that the deposit and
withdrawal addresses belong to the same user. Therefore, an
adversary can link the addresses to reduce the OASP(t) of
the mixer (cf. Section V-A).

D. Coin Flow of ZKP Mixer Pools
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Fig. 8: Coin Flow of TC ETH Pools before block 13,530,000
(November 1st, 2021). The shown bandwidth of each flow
represents the magnitude of the aggregate ETH transferred
from depositors in distance 2 to the TC pools (via depositors
in distance 1), or from TC pools to withdrawers in distance 2
(via withdrawers in distance 1).

In addition to immediate depositors and withdrawers, we
are also interested in coins’ wider flow to get their origins
and destinations. For example, users move their coins from
exchanges or DeFi platforms via temporary addresses into and
outside of the mixer. Analyzing the flow of coins (cf. Def. 2)
could thus reveal information about users’ trading activities.

To track where the deposited ETH in TC are transferred
from and where the withdrawn ETH are transferred to, we
extend our pool model to cover depositors and withdrawers in
distance 2 (cf. Def. 9 and 10). We crawl the direct and internal
transaction2 history of the 22,589 TC depositors and 31,915
withdrawers before block 13,530,000.

2An internal transaction is a transaction triggered by a smart contract as a
result of one or more previous transactions.
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For each depositor of d(1) in a TC p ETH pool, we extract
the most recent transfers of p ETH that d(1) receives before
depositing into TC, where we can obtain the depositors in
distance 2 that transfer ETH to d(1). Similarly, we obtain
the withdrawers in distance 2 by extracting the most recent
transfers of p ETH that the withdrawers in distance 1 send
after withdrawing from TC. Then, we tag the depositors
and withdrawers in distance 2 using manually crawled labels
from Etherscan. We finally cluster the addresses into different
platforms based on their tags.

Figure 8 visualizes the flow of ETH via four TC pools, from
the depositors in distance 2 to the withdrawers in distance 2.
We observe that the top 10 clusters in distance 2 cover 45.13%
of the total deposit volume, and transfers from Uniswap
alone amount to 253,674 ETH (11.93% of the total deposit
volume). Uniswap is also the most popular DeFi platform to
which TC users transfer their withdrawn ETH; i.e., 11.71%
of the total withdrawal volume are transferred to Uniswap.
We also observe that 13.58% of the total deposit volume are
re-deposited into TC.

Cross-chain Mixers Usage. Users on other blockchains
(e.g., BSC, Polygon) can also leverage TC to enhance their
privacy. To do so, they convert their funds to ETH through
decentralized bridges (e.g., Anyswap [10]) and then deposit
ETH into TC. Figure 8 shows that 0.79% (16,853.9 ETH)
of the TC deposited volume comes from the Anyswap BSC
bridge. We find that 61 addresses have transferred funds from
BSC through this bridge and deposited ETH into TC. Those
preliminary results indicate that due to the largest OAS (cf.
Table I), TC can attract privacy-seeking users from other
blockchains.

E. Malicious Addresses

Because mixers break the linkability between addresses,
malicious actors may choose mixers to hide their traces.
To gain initial insights into how malicious users adopt TC,
we first crawl 6,340 phishing and hack-related addresses
from Etherscan and CryptoScamDB3. We denote the 6,340
addresses as malicious addresses and analyze whether they
appear in the set of TC depositors and withdrawers.

Malicious Addresses in Distance 1. We identify 47 ma-
licious addresses, depositing 62,548.2ETH (2.94%) into TC,
and 36 malicious addresses withdrawing 851.7ETH from the
four TC pools. Through manual transaction inspection, we
find that 18 addresses withdraw ETH from the TC pools, then
launch an attack (e.g., phishing scams, hacking centralized
exchanges, etc.), before re-depositing the resulting profit to the
mixer (cf. Table V). For instance, the xToken Exploiter
withdraws 10 ETH from TC as the source of funds to launch
an attack while re-depositing 5,855 ETH into TC.

Malicious Addresses in Distance 2. After extending the
coin flow of TC pools, we identify 40 malicious addresses
in distance 2 (cf. Def. 9) from a TC pool, transferring
23,986.4 ETH to depositors in distance 1. We investigate

3https://etherscan.io/accounts/label and https://cryptoscamdb.org/scams

TABLE V: Malicious addresses withdrawing initial funds from
TC and re-depositing funds into TC.

Address Labels/References Total Deposit Total Withdrawal

0x079...758 Compounder.Finance: Deployer 14,012.0 ETH 13.0 ETH
0x07E...c3e xToken Exploiter 5,855.0 ETH 10.0 ETH
0xCB3...233 Rari Capital Exploiter 4,004.0 ETH 100.0 ETH
0x56E...628 AFKSystem 3,223.0 ETH 0.1 ETH
0x905...B57 Alpha Homora V2 Exploiter 2,320.0 ETH 10.0 ETH
0xb62...212 Furucombo Hacker 2,000.0 ETH 1.0 ETH
0x1D5...72B Punk Protocol Exploiter 968.0 ETH 0.2 ETH
0x903...678 KORE Vault: Deployer 600.0 ETH 2.0 ETH
0x8b1...B5B Fake Phishing4583 348.4 ETH 10.0 ETH
0x8eD...597 Fake Phishing4518 300.0 ETH 220.0 ETH
0x30e...83f Fake Phishing4166 200.0 ETH 1.0 ETH
0x5Eb...d5F FinNexus Hacker 153.4 ETH 1.0 ETH
0xdA2...708 Fake Phishing4946 120.0 ETH 100.0 ETH
0xeBc...C40 Warp.Finance Hacker 100.3 ETH 1.0 ETH
0xE29...4dD Force Vault Hacker 3 34.3 ETH 15.3 ETH
0x24F...594 Fake Phishing4640 30.0 ETH 1.0 ETH
0xcE7...3A2 Fake Phishing4540 21.0 ETH 12.0 ETH
0xEda...113 ChainSwap Hacker 20.0 ETH 10.0 ETH

two examples as follows: (1) the KuCoin Hacker transfers
11,520 ETH to an address 0x34a...c6b in distance 1, then
this address deposits all funds into the TC 100 ETH pool. (2)
the Abyss Hacker transfers 57.1 ETH to three addresses
0x28A...B3d, 0x030...75b and 0xAc8...71e, then
the three addresses deposit funds into the TC 10 ETH pools.
The three addresses likely belong to the Abyss Hacker.

In total, we find that 87 malicious addresses deposit
86,534.6 ETH (372.1M USD) into TC, i.e., 4.1% of the total
deposit volume. The average deposit volume of malicious
addresses (i.e., 4.28M USD) is 10.7× larger than the average
deposit volume of TC users (i.e., 400k USD).

V. MEASURING ANONYMITY SET SIZE

In the following, we propose five heuristics to compute a
mixer pool’s anonymity set size (SAS

((1...5))
P (t)), which is

more representative than the naive OASP(t). The heuristics
leverage on-chain data and insights from our empirical study
(Section IV) to link addresses and prune the OASP(t). Note
that our heuristics are best-effort methods and subject to
known limitations (cf. Section V-D).

A. Heuristics

1) H1 - Deposit Address Reuse:
Observation: We observe that an address can be reused

to both deposit and withdraw (cf. Section IV), which leaks
privacy and is incautious behavior [18], [48].

Heuristic: If an address appears both in the depositor
and the withdrawer set, we assume that the deposits and
withdrawals of this address are conducted by the same user
(cf. Figure 9(a)). Therefore, we apply Equation 9 to compute
a depositor’s balance. We then extract the depositors with a
positive balance to evaluate the anonymity set (cf. Eq. 21).

SAS
(1)
P (t) = {a | a ∈ DP(t) ∧ bala(t) > 0} (21)

Results: On TC pools, Heuristic 1 reduces the anonymity
set by an average of 11.92% from the reported OASP(t)
(cf. Table VI). For instance, in the TC 100 ETH pool
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(a) Heuristic 1. (b) Heuristic 2. (c) Heuristic 3. (d) Heuristic 4. (e) Heuristic 5.

Fig. 9: Heuristics 1-5: (a) Deposit Address Reuse: User applies the same address d for deposit and withdrawal in P.
(b) Improper Withdrawal Sender: A user adopts a deposit address d to provide a deposit note to P and adopts another
address w to receive the withdrawn coin.
(c) Related Deposit-Withdrawal Address Pair: A user adopts two addresses d and w to deposit and withdraw in P. d and
w are different; however, w transfers (receives) tokens to (from) d through a transaction tx.
(d) Intermediary Deposit Address: An address d

(2)
1 in distance 2 controls 3 intermediary addresses d

(1)
j (j = 1, 2, 3) in the

distance 1, to deposit coin in P.
(e) Cross-pool Deposit: A user adopts an address d to deposit 0.1 coin in P0.1, 1 coin in P1 and 10 coin in P10, and
uses address w to withdraw the same amount of coin from P0.1, P1 and P10.

TABLE VI: Heuristics 1-5 applied to TC ETH and TN BNB pools on November 1st, 2021. |SAS
(n)
P (t)| represents the

Anonymity Set Size after applying Heuristic n. The percentages in the parentheses show the difference between SAS
(n)
P (t)

and OASP(t).

Pool |OASP(t)| |SAS
(1)
P (t)| |SAS

(2)
P (t)| |SAS

(3)
P (t)| |SAS

(4)
P (t)| |SAS

(5)
P (t)|

TC 0.1 ETH 6,939 6,108 (−11.98%) 6,914 (−0.36%) 5,130 (−26.07%) 6,610 (−4.74%) 6,884 (−0.79%)

TC 1 ETH 9,733 8,850 (−9.07%) 9,695 (−0.39%) 7,771 (−20.16%) 9,284 (−4.61%) 9,658 (−0.77%)

TC 10 ETH 8,865 7,868 (−11.25%) 8,843 (−0.25%) 7,397 (−16.56%) 8,430 (−4.91%) 8,789 (−0.86%)

TC 100 ETH 4,108 3,476 (−15.38%) 4,087 (−0.51%) 3,419 (−16.77%) 3,866 (−5.89%) 4,060 (−1.17%)

TN 0.1 BNB 2,843 1,840 (−35.28%) 2,592 (−8.83%) 1,581 (−44, 39%) 2,842 (−0.04%) 2,816 (−0.95%)

TN 1 BNB 2,598 1,719 (−33.83%) 2,357 (−9.28%) 1,428 (−45.03%) 2,591 (−0.27%) 2,566 (−1.23%)

TN 10 BNB 1,257 777 (−38.19%) 1,190 (−5.33%) 705 (−43.91%) 1,256 (−0.08%) 1,227 (−2.39%)

TN 50 BNB 155 147 (−5.16%) 147 (−5.16%) 136 (−12.26%) 155 (0%) 142 (−8.39%)

P100, there are 4,108 unique depositors, but only 3,476
depositors have a positive balance, and therefore contribute
to the anonymity set. Consequently, SAS

(1)
P (t) of P100 is

15.38% less than the respective OASP(t) (cf. Table VI).
On TN pools, we find that on average 71.89% of the
depositors have a positive balance. Henceforth, SAS

(1)
P (t) of

TN pools is reduced by an average of 28.11% from OASP(t).

2) H2 - Improper Withdrawal Sender:
Observation: Incautious users maybe adopt a deposit ad-

dress ad to issue a withdrawal transaction, while assign-
ing another address aw to receive the withdrawn funds (cf.
Section IV-C). This action infers that ad and aw are likely
controlled by the same user.

Heuristic: Therefore, we assume that given a depositor-
withdrawer pair (ad, aw) in a pool, where ad is not a relayer,
if ad generates a withdrawal and assigns aw to receive the
withdrawn coins, then ad and aw belong to the same user (cf.
Figure 9(b)), i.e., LINK(ad, aw) = 1.

Let SntP (t) be the set of linked address pairs in a pool P.
Given SntP (t), we merge the balance of the linked addresses
to simplify the pool state, and then compute the anonymity
set (cf. Eq. 22).

SAS
(2)
P (t) = {a | bala(t) > 0 ∧

(a,bala(t)) ∈ SIMP(SP(t),SntP (t))}
(22)

Results: Heuristic 2 reduces the TC pools’ OASP(t) by an
average of 0.38% (cf. Table VI). For instance, in the TC 100
ETH pool, there are 37 depositor-withdrawer pairs; meaning
Heuristic 2 reduces the OASP(t) to 4,087. Interestingly, we
observe that there are more users (i.e., 766) in TN who do
not perform withdrawals correctly. By applying Heuristic 2 to
the TN pools, we reduce the OASP(t) by 7.15% on average.

3) H3 - Related Deposit-Withdrawal Address Pair:
Observation: To withdraw coins, users are encouraged to

choose a new address with no links to the deposit address.
However, we observe that, users may adopt different deposit
and withdrawal addresses, which are directly linked through a
coin transfer.

Heuristic: We assume that, given two addresses ad ∈ DP(t)
and aw ∈ WP(t), if ad transferred (received) coins or tokens
to (from) aw before time t, then ad and aw are related and
under the control of the same user (cf. Figure 9(c)), i.e.,
LINK(ad, aw) = 1.
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Let StxP (t) be the set of related depositor-withdrawer pairs
in a pool P. We simplify the pool state and compute the
anonymity set (cf. Eq. 23).

SAS
(3)
P (t) = {a | bala(t) > 0 ∧

(a,bala(t)) ∈ SIMP(SP(t),StxP (t))}
(23)

Results: Heuristic 3 reduces the TC pools’ OASP(t) by
an average of 19.89%. For instance, in the TC 100 ETH pool,
there are 1,607 depositor-withdrawer linked address pairs.
Hence, H3 reduces the OASP(t) to 3,419 (i.e., reduced by
16.77%). By applying H3 to the TN pools, we reduce the
OASP(t) by 36.40% on average.

4) H4 - Intermediary Deposit Address:
Observation: From the flow of coins, we observe that

there are multiple depositors in distance 1 whose coins are all
transferred from the same depositor in distance 2. Hence, these
depositors in distance 1 are likely temporary addresses and are
only used to transfer funds into a mixer (cf. Figure 9(d)).

Heuristic: We hence assume that given two addresses
d(1) ∈ D(1)

P (t) and d(2) ∈ D(2)
P (t), if all d(1)’s coins are

transferred from d(2) and d(2) is a user account4, then d(1)

and d(2) belong to the same user, i.e., LINK(d(1), d(2)) = 1.
We denote d(1) as an intermediary deposit address, B(1)P (t)

as the set of intermediary deposit address, and B(2)P (t) as the
set of user accounts in distance 2 who transfer coins to an
address in B(1)P (t). For each address d(1) in B(1)P (t), we replace
it by the address in B(2)P (t) which transfers coins to d(1). We
then compute the pool’s anonymity set (cf. Eq. 24).

SAS
(4)
P (t) = {a | bala(t) > 0 ∧

a ∈ B(2)P (t) ∪ D(1)
P (t) \ B(1)P (t)}

(24)

Results: Heuristic 4 reduces the TC pools’ OASP(t)
by 5.04% on average (cf. Table VI). For instance, 233
intermediary deposit addresses are controlled by 53 user
accounts in B(2)P100

(t). Hence, H4 reduces the OASP(t) to
3,866 (i.e., reduced by 5.89%). However, only 14 intermediary
deposit addresses appear in the TN BNB pools. Hence, the
TN pools’ OASP(t) can only be reduced by 0.1% on average.

5) H5 - Cross-pool Deposit:
Observation: Current mixer pools only support the deposit

and withdrawal of a fixed coin denomination. When a user
aims to mix an arbitrary amount of coins, the user needs to
interact with multiple pools and may not change the respective
deposit (or withdrawal) address (cf. Figure 9(e)).

Heuristic: Given a depositor-withdrawer pair (ad, aw), we
assume that ad and aw belong to the same user if: (i) ad and aw
are both in m pools where m > 1, (ii) in each pool, ad’s total

4We denote a user account as an Externally Owned Account which is not
a labeled exchange address, i.e., we exclude contract addresses and exchange
addresses that are labeled on Etherscan and Bscsan, such as Binance.

TABLE VII: Heuristic Combinations applied to TC ETH and
TN BNB pools on November 1st, 2021. The percentages show
the reduction on the Observed Anonymity Set size |OASP(t)|
after applying heuristics.

Pool
Heuristic Combinations

H1 +H2 H1 +H2 +H3
H1 +H2

+H3 +H4

H1 +H2

+H3 +H4 +H5

TC PETH
0.1 −12.28% −36.72% −40.01% −40.58%

TC PETH
1 −9.47% −28.03% −31.39% −31.99%

TC PETH
10 −11.52% −25.79% −29.75% −30.37%

TC PETH
100 −15.90% −28.33% −32.94% −33.79%

TN PBNB
0.1 −41.54% −63.45% −63.52% −64.16%

TN PBNB
1 −37.49% −59.31% −59.64% −60.55%

TN PBNB
10 −40.73% −55.29% −55.45% −57.12%

TN PBNB
50 −10.32% −18.71% −18.71% −26.45%

deposit amount equals aw’s total withdrawal amount, and (iii)
for each aw’s withdrawal transaction txw, at least one deposit
transaction txd is generated earlier than txw.

Let Scu be the set of address pairs (ad, aw) that satisfy the
above conditions. Given Scu, we simplify the state of a pool
P, and then compute the anonymity set (cf. Eq. 25).

SAS
(5)
P (t) = {a | bala(t) > 0 ∧

(a,bala(t)) ∈ SIMP(SP(t),ScuP (t))}
(25)

Results: Heuristic 5 reduces the TC pools’ OASP(t) by
0.90% on average. For instance, in the TC 100 ETH pool,
24 depositor-withdrawer address pairs are linked. Hence, H5

reduces the OASP(t) to 4,060 (i.e., reduced by 1.17%). By
applying H5 to the TN pools, we reduce the OASP(t) by
3.24% on average.

Heuristic Combinations. Table VI shows the SASP(t) of
mixer pools after applying each heuristic individually, while
we can further reduce the OASP(t) by combining two or
more heuristics (cf. Table VII). Combining all heuristics yields
the largest reduction of OASP(t): after applying Heuristics
1-5 to the TC (TN) pools, an adversary can reduce the
the reported OASP(t) on average by 34.18% (52.07%).
Therefore, the probability that an adversary links a withdrawer
(who withdraws at time t) to the correct depositor rises by
51.94% (108.63%) on average (cf. Eq. 20 and Eq. 26).

RAdv =
AdvsA(t)− AdvoA(t)

AdvoA(t)

=
1/ |SASP(t)| − 1/ |OASP(t)|

1/ |OASP(t)|
=

1
|SASP(t)|
|OASP(t)|

− 1

=
1

1− 34.18% (52.07%)
− 1 = 51.94% (108.63%)

(26)

B. Linking Results

Through Heuristics 2-5, we can link 20,695 TC and 9,127
TN address pairs, which form 4,931 and 1,345 clusters (cf.
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Fig. 10: Number of addresses per TC cluster. 45.57% of the
TC 4,931 clusters only have two addresses.

Def. 4), respectively. Figures 10 and 11 visualize the distri-
bution of TC and TN clusters over the number of addresses
in a cluster. 2,094 (42.74%) TC and 1,345 (47.18%) TN
clusters only have two addresses. Interestingly, we find that
the distribution of clusters is similar to previous works on
Bitcoin address clustering (e.g., Figure 9(a) in [29]).

C. User Privacy Behavior

Our heuristics appear to function better on the Binance
Smart Chain mixer (TN) than on the Ethereum mixer (TC).
While our study should be repeated once the other mixers grow
on both chains (e.g., Cyclone and TP), our empirical evidence
is the first to suggest a differing privacy-focus of users on
Ethereum and Binance Smart Chain. One could also argue
that privacy-aware users want the best available anonymity
set, and will therefore use TC and follow all best practices.
As such, a suitable assumption is that anonymity set attracts
anonymity set, i.e., the biggest anonymity set will inherently
attract more users, and particularly those that worry about
privacy (which is analogous to how liquidity attracts liquidity
in financial exchanges).

D. Limitations

We would like to point out that our heuristics are best-effort
methods and may yield false positives and negatives, a known
challenge of related works [15], [48], [38]. For Heuristic 1, it
is likely that our assumptions are accurate: When an address
a is under control of a user u, a’s deposits or withdrawals
in a mixer pool should be generated by u. Unfortunately,
for Heuristics 2–5, we have no ground truth to verify that
two different addresses belong to the same user. Hence, we
investigate in Section VII possible side-channels which can
form a candidate ground truth dataset from public sources that
can be used to validate the results of Heuristics 2–5. Moreover,
other potential side-channel information could also be applied
to link depositors and withdrawers (e.g., transaction gas price,
timestamps, etc.), which could be explored in future work.

VI. INCENTIVIZED ZKP MIXER POOLS

Spearheaded by the introduction of incentivized mixer pools
by AMR [30], we have witnessed a number of real-world
mixer pools [9], [7], [44] (cf. Section II-B) introducing re-
warding governance tokens through Anonymity Mining. In this
section, we analyze how AM affects user privacy.
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Fig. 11: Number of addresses per TN cluster. 47.18% of the
TN 1,345 clusters only have two addresses.

A. Anonymity Mining in TC Pools

TC incentivizes users to maintain their assets in TC pools
through Anonymity Mining [44]. Users receive TORN tokens
through a so-called shielded liquidity mining protocol consist-
ing of four steps (cf. Figure 12).

(1) Deposit: A user deposits ETH into a TC pool using
addresses addrd, and receives a deposit note.

(2) Withdraw: When the user withdraws ETH from a TC
pool, the deposit note becomes a spent note.

(3) Claim: After withdrawing from a TC pool, the user can
submit the spent note to the TC pool to claim the Anonymity
Points AP. Because AP is determined by the amounts of
deposited ETH and the deposited duration (both of which are
private information), the user stores AP privately on a shielded
account5.

(4) Swap: A user can convert the shielded AP to public
TORN tokens using a dedicated TC Automated Market Maker
(AMM) exchange. The user receives the TORN tokens in an
address addrr that can be different from the user’s deposit or
withdrawal address.

Equation 27 from TC outlines the amount of AP a user u is
entitled to at time t, where Weightp is a predefined parameter
to calculate a user’s AP in various pools6. vp corresponds
to the number of withdrawals in the Pp pool before time t.
tdp,i and twp,i are the block numbers of u’s i-th deposit and
withdrawal, 0 ≤ i ≤ vp.

APu(t) =
∑

p∈{0.1,1,10,100}

Weightp ·
vp∑
i=1

(
twp,i − tdp,i

)
(27)

For instance, let’s assume that a user u deposits twice 1 ETH
into P1 at block 11,476,000 and 11,476,100, and deposits
10 ETH into the P10 pool at block 11,476,000. If u then
withdraws all the deposited funds at block 11,476,200, u’s
AP becomes 20× (100 + 200) + 400× 200 = 86,000.

B. Linking User’s Addresses through Anonymity Mining

AM aims to attract users depositing more coins over a
longer timeframe. However, AM also increases the required

5According to [44], a shielded account is a secret key newly generated by a
user, which is used to encrypt and submit claim and withdrawal data without
revealing the user’s identity. For recoverability, the user encrypts this secret
key using his ETH public key and stores the encrypted result on-chain.

6Weightp is predefined as 10, 20, 50 and 400 in TC 0.1, 1, 10, and 100
ETH pools, respectively.
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Fig. 12: Overview of the TC Anonymity Mining.

user interactions with mixers (e.g., a claim action to receive
rewards), and may thus provoke the leakage of privacy-
compromising information. We explore how to link users’
withdrawals and deposits by solving Equation 27.

We first identify the addresses that received TORN tokens
from TC pools. From block 11,474,710 (December 18th,
2020) to 13,530,000 (November 1st, 2021), we identify 13,751
swap events7, and find that 1,709 addresses received TORN.
We then extract the converted AP value in swap events.

Receive Rewards with Deposit Address. In the following,
we demonstrate how re-using a deposit address to receive
rewards can deteriorate a user’s privacy.

We discover that among the 1,709 addresses receiving
TORN, 1,027 are depositors. We extract their deposit time, re-
ceiving TORN time, and the converted values of AP. Based on
the data, we divide the 1,027 depositors into three categories:

• 1 deposit/1 claim/1 pool: Out of the 1,027 depositors, 224
only deposited once in one TC pool and only received
TORN tokens from AP with one transaction. In this case,
Equation 27 can be simplified as APu(t) = Weightp ·
(twp,1 − tdp,1). Because APu(t) and tdp,1 are known, we
can resolve the value of twp,1 and search if there is a
withdrawal transaction in block twp,1. In total, we find
the withdrawals for 50 depositors. For the remaining
174 depositors, we speculate that we cannot find their
withdrawals because they have likely not yet converted
all their AP.

• n deposits/1 claim/1 pool: 194 addresses deposited more
than once in one TC pool but only received TORN once.
Equation 27 can be simplified as APu(t) = Weightp ·∑vp

i=1 (t
w
p,i − tdp,i). In this case, we find the possible

withdrawals for 67 depositors.
• n deposits/n claims/n pools: For the remaining 609

depositors receiving TORN more than once or using
multiple pools, it is challenging to find their withdrawals,
because we are not sure if they have claimed all AP
and Equation 27 is hard to solve. However, we would
suggest TC users avoid reusing deposit addresses to
receive TORN. The reason is simple: One conversion of
AP for a depositor shows that this depositor has already
(partly or entirely) withdrawn the deposits from TC.

7TC Reward Swap contract emits Swap (address indexed recipient, uint256
pTORN, uint256 TORN) events, where pTORN is the value of AP.

0
100
200
300
400
500
600

# 
W

ith
dr

aw
al

AM starting date
Daily Withdrawal
Withdrawal with reuse address

20
19

-1
2

20
20

-0
1

20
20

-0
2

20
20

-0
3

20
20

-0
4

20
20

-0
5

20
20

-0
6

20
20

-0
7

20
20

-0
8

20
20

-0
9

20
20

-1
0

20
20

-1
1

20
20

-1
2

20
21

-0
1

20
21

-0
2

20
21

-0
3

20
21

-0
4

20
21

-0
5

20
21

-0
6

20
21

-0
7

20
21

-0
8

20
21

-0
9

20
21

-1
0

20
21

-1
1

0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14

Ra
tio

RAdv after applying H1

Fig. 13: Daily withdrawal in the four TC ETH pools. The
AM launch does not increase the number of daily withdrawals
but attracts privacy-ignorant users. Heuristic 1 performs better
after AM started, i.e., the relative increase of the probability
that an adversary links a withdrawer to the correct depositor
(cf. Eq. 20) rises from 7.00% to 13.50%.

In total, we can find the possible withdrawal transactions
for 117 (11.39%) re-using addresses, indicating that re-using
a deposit address for AM can deteriorate a user’s privacy.

C. Does AM Contribute to the Anonymity Set?

As shown in Section VI-B, TC AM users tend to reuse
their deposit addresses to receive TORN rewards, ignoring their
privacy. To understand whether AM contributes to enlarging
a mixer pool’s AS, we plot the number of daily withdrawal
transactions and extract the withdrawals generated by reusing
deposit addresses in the four TC ETH pools (cf. Figure 13).

We observe that the number of daily withdrawals in TC
pools is not affected by AM as intended: the number started
increasing before AM launch on October 18th, 2020. However,
AM does attract more users reusing the deposit addresses to
withdraw. Such “reusing depositors” are likely interested in
mining TORN, but privacy-ignorant.

Heuristic 1 is specialized in identifying naive users that
reuse addresses. We observe that Heuristic 1 performs better
after AM started, i.e., the relative increase of the probability
that an adversary links a withdrawer to the correct depositor
(cf. Eq. 20) rises from 7.00% to 13.50% (cf. Figure 13).

In conclusion, contrary to the claims of related work [30],
we find that AM does not always contribute to the mixers’
anonymity set size as expected, because it attracts privacy-
ignorant users.

VII. HEURISTIC VALIDATION ATTEMPT

We observe the existence of a variety of publicly available
side-channels that may indicate whether two blockchain ad-
dresses belong to the same entity. In this section, we expand
on three of such side-channels, and then synthesize a candidate
ground truth dataset to validate the heuristics presented in
Section V.
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TABLE VIII: Validation attempt for TC linked address pairs. SHi
TC represents the linked address pairs obtained through Heuristic i.

For Heuristic 2, 3, and 5, Test Pairs = depositors in SGT (the Candidate Ground Truth data) × withdrawers in SGT. For Heuristic
4, Test Pairs = distance-2 depositors in SGT × distance-1 depositors in SGT.

Candidate Ground Truth SGT Heuristics Test Pairs tp = SGT ∩ SHiTC tn = SGT ∩ SHiTC fp = SGT ∩ SHiTC fn = SGT ∩ SHiTC precision recall F1

SAirdrop (35,081)

H2 931× 580 2 539,747 4 227 0.33 0.01 0.02

H3 931× 580 229 539,367 384 0 0.37 1.00 0.54

H5 931× 580 0 539,751 0 229 0.00 0.00 0.00

H2 +H3 +H5 931× 580 229 539,366 385 0 0.37 1.00 0.54

H4 710× 931 2 660,641 3 364 0.40 0.01 0.01

SENS (5,105)

H2 291× 213 1 61,928 2 52 0.33 0.02 0.04

H3 291× 213 50 61,854 76 3 0.40 0.94 0.56

H5 291× 213 0 61,930 0 53 0.00 0.00 0.00

H2 +H3 +H5 291× 213 50 61,854 76 3 0.40 0.94 0.56

H4 118× 291 0 34,311 0 27 0.00 0.00 0.00

A. Airdrop Side-Channel
A blockchain airdrop is a form of donation, where a coin

is given to a blockchain address without further explicit
expectation. Victor et al. [48] present the following privacy-
related airdrop approach: if a user receives an airdrop on
multiple addresses and aggregates those funds within a short
timeframe after the airdrop to one central address, this address
can be labeled as the user’s primary address. As such the first
side-channel we consider is the Airdrop approach.

In our evaluation, we consider two particular instances of
DeFi airdrops. First, the Uniswap airdrop and second, the
1inch airdrop. To apply Victor’s heuristic, we crawl transaction
data on the Ethereum network in the first seven days after an
airdrop took place.

Results. From the airdrop data we identify a total of 35,081
linked address pairs, denoted as SAirdrop.

B. Ethereum Name Service (ENS) Side-Channel
In the following, we propose two novel approaches to link

addresses using ENS [2] data. ENS is a decentralized naming
service on Ethereum [2], aiming to map human-readable
names (e.g., “alice.eth”) to blockchain addresses. Similar to
DNS, ENS proposes dot-separated hierarchical domains, and
a domain owner can create subdomains (e.g., “foo.alice.eth”).
To map a new name to an address a, a user registers the name
with a and sets its expiry time. Users can also transfer the
ownership of a name to another address, or assign subdomains
to addresses. For a more thorough background on ENS, we
refer the reader to related works [2], [4], [51].

Linking Addresses through ENS Usage. To cluster ENS
addresses, we provide two approaches:
• Name Ownership Transfers: Given two addresses a1 and

a2, if a1 transfers the ownership of an ENS name to a2,
before name expires, and a1 only transfers its name once,
then LINK(a1, a2) = 1.

• Subdomain Assignments: Given two addresses a1 and a2,
if a1 has an ENS name and assigns a subdomain of name
to a2, then LINK(a1, a2) = 1.

Results. To apply the Name Ownership Transfers approach,
we crawl all (372,756) Transfer events of the ENS registry

contract until November 1st, 2021. We extract the address pairs
(a1, a2), where a1 transfers a name to a2 and a1 only transfers
its name once. This approach can link 4,399 address pairs.

To apply the Subdomain Assignments approach, we crawl
all (900) NewOwner events emitted when a user directly calls
the ENS registry contract. We then extract the address pairs
(a1, a2), where a1 assigns subdomains to a2. We can identify
725 linked address pairs.

In total, from the ENS data, we can link 5,124 address pairs,
denoted as SENS.

C. Debank Side-Channel
Debank [11] is an online blockchain explorer for tracking

DeFi user portfolios. Users can log into Debank through a
wallet (e.g., MetaMask) and follow other addresses, similar to
a social network. We hence assume that a user is unlikely to
follow its own addresses and propose the following approach.
Note that this is the first side-channel we consider which yields
a negative signal on whether two addresses are linked.
• Debank Follower and Following Relationship: Given two

addresses a1 and a2, if a1 follows a2, or a1 is followed
by a2 on Debank, then LINK(a1, a2) 6= 1.

Results. For each TC depositor and withdrawer address, we
crawl the follower and following addresses on Debank before
November 1st, 2021, i.e. those Debank addresses that follow
the TC address or followed by TC users. Out of 54, 504 TC
addresses, we find that 655 + 258 = 913 addresses (1.8%)
have at least one follower or following address on Debank.

Let SDebank be the set of TC depositor-withdrawer pairs
(ad, aw), where ad follows aw, or ad is followed by aw
on Debank. Our results show that |SDebank| = 150, i.e.,
150 depositor-withdrawer pairs have a follower or following
relationship.

D. Validation Attempt
In the following, we attempt to validate the heuristics

presented in Section V, using SAirdrop, SENS and SDebank as
the candidate ground truth data. Note that we can only validate
the link of TC address pairs, not the link among deposit and
withdrawal transactions. We therefore omit Heuristic 1 from
the validation process, as H1 does not link addresses.
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1) SAirdrop + SENS: Table VIII shows the results of our
heuristic validation by applying the side-channels given by
SAirdrop and SENS. Unfortunately, H2, H4, and H5 appear
to perform rather poorly, when compared to H3. This result
appears plausible, when considering that H3 focuses on asset-
transfers, which also applies to the Airdrop and ENS side-
channel data. Luckily, heuristic 3 is the most potent heuristic
to reduce the anonymity set size, as shown in Table VIII.

2) Airdrop and ENS Side-Channel Intersection: To increase
our confidence on the side-channel data, we intersect the
candidate ground truth data sources: if an address pair (a1, a2)
are linked both in SAirdrop and SENS, then a1 and a2 are more
likely to be controlled by the same user. Nevertheless, we find
that the overlap size of the airdrop and the ENS data consists of
only 13 pairs. We hence refrain from applying the intersected
side-channel dataset to validate STC.

3) SDebank: We find that, out of the 150 depositor-
withdrawer pairs in SDebank, 34 (23%) pairs are linked through
Heuristics 2, 3, and 5. Therefore, if we regard the Debank
follower relationship data as the ground truth, then those 34
addresses cannot be owned by the same user; thus, we consider
them false positives.

4) Results Summary: In conclusion, by applying the airdrop
and ENS side-channels as candidate ground truth datasets,
our heuristics can achieve an average F1 score of 0.55 (cf.
Table VIII), whereas Heuristic 3 provides the strongest signal.
Our results suggest that validating the heuristics presented in
Section V is a challenging, but feasible task. Our methodology
can be further extended with additional side-channel data to
synthesize a larger candidate ground truth dataset (e.g., by
crawling Twitter data from testnet wallet validations, addi-
tional blockchain explorer labels, etc.).

VIII. DISCUSSION AND IMPLICATIONS

We now discuss several implications of our work, and how
our findings can help advance the understanding and design
of future DeFi mixers.

Towards a More Accurate Anonymity Set Size. The Ob-
served Anonymity Set (OAS – cf. Eq 15) presented by current
ZKP mixers counts the total amount of unique depositors in
a specific pool. Although it is challenging to compute the
True Anonymity Set (cf. Eq 16), in this work, we propose five
heuristics (cf. Section V) to calculate more realistic anonymity
set sizes based on public on-chain data. Our results show that,
on average, a more realistic anonymity set size for a TC pool
is reduced by 34.18% from its reported OAS. Therefore, we
argue that mixers should also report more realistic anonymity
sets of their pools on their websites along with the OAS. Our
findings further suggest that mixers should improve the UI,
warning users about privacy-compromising actions.

What Privacy-Impact Yields Anonymity Mining?
Anonymity mining attracts privacy-ignorant users primarily
interested in mining rewards. As a result, their deposits
do not contribute to the anonymity set size as expected
(Section VI-C). To enlarge the anonymity set size, AM can

be improved by incentivizing only the privacy-aware users,
e.g., providing rewards to users that interact with a mixer in
a privacy-conscious manner.

Using Mixers via Cross-chain Bridges. Among all ZKP
mixers, TC has the largest OAS (cf. Table I). Users on other
blockchains (e.g., BSC, Polygon) can also leverage TC to
enhance their privacy, i.e., users can convert their funds to ETH
through decentralized bridges (e.g., Anyswap [10]) and then
deposit ETH into TC. As shown in Figure 8, 0.79% and 0.72%
of TC deposited volume are from BSC and Polygon bridges.
Moreover, the economic cost (e.g., relayer fees, gas price, etc.)
may also affect users’ choice of mixer. These observations
could be the basis for future research endeavors on analyzing
cross-blockchain transactions of privacy seeker users.

Tracing Malicious Addresses. Although malicious addresses
can adopt DeFi mixers to launder money, achieving unlink-
ability requires the proper use of mixers. Our heuristics can
find the possible withdrawers for 5 (5.74%) out of the 87
labeled malicious addresses (cf. Section IV-E), which enables
us to trace their coin flow after withdrawing assets from mixers
until centralized exchanges. Furthermore, given an address’s
registration information on centralized exchanges, we could
link the user’s identity in the real world. For more details, we
refer the reader to our case studies in Appendix A.

IX. RELATED WORK

Mixers on Bitcoin: Mixers were originally applied in anony-
mous communications [24] and are also applied to enhance
Bitcoin users’ privacy. Mixcoin [22] and Blindcoin [47] are
centralized, trusted mixers that receive BTC from a user’s
address d and then return BTC to another address w of the
same user. CoinJoin [31] allows a user to find other mixing
partners to merge multiple transactions, thereby obfuscating
the link between senders and recipients. Although the design
of CoinJoin [31] is decentralized, its existing implementation,
such as Wasabi wallet, remains centralized but non-custodial.
CoinShuffle [39], CoinShuffle++ [41], and Xim [20] propose
to achieve better anonymity in a decentralized mixer. The
ecosystem and mixing mechanisms of Bitcoin mixing service
are also studied in recent work [37], [50].

Mixers on smart contract-enabled Blockchain: ZKP mixers
are inspired by Zerocash [42] to obfuscate the link between
the users’ deposit and withdrawal using zero-knowledge proof.
Several ZKP mixers attempt to operate on Ethereum, such as
Miximus [17] and Hopper [3]. AMR [30] proposes how to
reward users for participating in a mixer, and shortly after,
Blender [9] implements a mixer with a reward scheme. TC
follows by adding anonymity mining as a deposit reward
scheme for users [44]. Besides ZKP mixers [6], [7], [8], [1], a
notable mixer example that relies on linkable ring signatures
and the stealth addresses from Monero [14] is Möbius [32].

Analysis of blockchains privacy: Many researchers have
studied privacy on non-privacy-preserving blockchains (e.g.,
Bitcoin [15], [25], Ethereum [18], [48]), as well as on
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privacy-preserving blockchains (e.g., Monero [34], [35], Ze-
rocash [28], [19]). As ZKP mixers are inspired by Zerocash,
our heuristics 1 and 4 can also be applied to link shielded
and deshielded transactions in Zerocash, and can reduce the
anonymity set size of the shielded pool by 69.1% when
combining other heuristics presented in [28]. However, the
majority of the transactions (i.e., with 65.6% of the withdrawn
value) in [28] involve miners or founders, while this paper
investigates generic ZKP mixer users, and can be applied to
trace malicious addresses. Moreover, recent studies [52] have
also shown that users’ privacy may be leaked when using
cross-chain exchanges.

X. CONCLUSION

This paper empirically demonstrates that the advertised
anonymity set sizes of popular mixers (such as Tornado.Cash)
do not represent the true privacy offered to users. We propose
a methodology that can increase the probability that an adver-
sary links a withdrawer to the correct depositor on average by
51.94% (108.63%) on TC (on Ethereum) and TN (on Binance
Smart Chain) respectively. Worryingly, while previous work
suggests that incentivized mixers could improve the offered
mixer privacy, we find evidence that speculators are likely
to act in a privacy-ignorant manner, deteriorating the overall
anonymity set size. We measure that 60.09% (i.e., 1,027 out
of 1,709) of the reward claiming users are improperly using
the mixer, resulting in worse privacy than if they had ignored
the mixer reward coins. We hope that our work engenders
further research into user-friendly, backward-compatible, and
privacy-enhancing anonymity mining solutions.
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APPENDIX A
TRACING ADVERSARY USERS CASE STUDIES

In the following, we provide two examples in which we
apply our linking results in TC to trace malicious addresses.

Example 1: Upbit Hackers. On the 27th November 2019,
hackers stolen 342,000 ETH from Upbit, a South-Korean
cryptocurrency exchange. As shown in Figure 14, (1) A de-
positor 0xeFf...1A9 receives 1,526.95 ETH from address
0x5a8...857, which obtains the same amount of ETH
from four labeled Upbit Hacker addresses. (2) 0xeFf...1A9
then deposits 1,524 ETH into TC 1, 10, and 100 ETH pools
during block 11,971,221 and 11,972,040. (3) From our linking
results, we find that 0xD7D...b1f withdraws the same
amount from TC during block 11,971,270 and 11,972,098,
and then transfers 1,520 ETH to address 0x361...ac7,
which finally exchanges all ETH to fiat currency (e.g., USD) on
Houbi, a centralized exchange paltform. Given the address’s
registration information on Huobi, we can link the user’s
identity in the real world.

time

Fig. 14: Example of tracing Upbit Hackers.

Fake_Phishing 
4346

time

Fig. 15: Example of tracing Tomatos.Finance Fishing ad-
dresses.

Example 2: Tomatos.Finance Fishing. 0x917...3e3 is
a labeled fishing address (Fake_Phishing4346) which
was used to steal users’ funds on Tomatos.Finance. We
observe that this address leverages TC to launder money.
As shown in Figure 15, (1) Fake_Phishing4346 de-
posits 801.1 ETH into TC 0.1, 1, and 100 ETH pools dur-
ing block 10,944,566 and 10,944,735. (2) Through Heuris-
tic 4, we find that the address 0xB3D...2D4 withdraws
the same amount of ETH from the three TC pools af-
ter block 10,944,735. Then 0xB3D...2D4 is likely linked
with Fake_Phishing4346. (3) By manually checking the
transactions of 0xB3D...2D4, we find that this address
transfers 800 ETH to Eth2 Deposit Contract via 25
transactions, and 0.97 ETH to 0x642...Db1, which finally
transfers funds to Coinbase, a centralized exchange platform.
We can continue to trace the address given its information on
Coinbase.
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