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A B S T R A C T

Diagnostic, prognostic and therapeutic decision-making of cancer in pathology clinics can now be carried out
based on analysis of multi-gigapixel tissue images, also known as whole-slide images (WSIs). Recently, deep
convolutional neural networks (CNNs) have been proposed to derive unsupervised WSI representations; these
are attractive as they rely less on expert annotation which is cumbersome. However, a major trade-off is that
higher predictive power generally comes at the cost of interpretability, posing a challenge to their clinical
use where transparency in decision-making is generally expected. To address this challenge, we present a
handcrafted framework based on deep CNN for constructing holistic WSI-level representations. Building on
recent findings about the internal working of the Transformer in the domain of natural language processing,
we break down its processes and handcraft them into a more transparent framework that we term as the
Handcrafted Histological Transformer or H2T. Based on our experiments involving various datasets consisting
of a total of 10,042 WSIs, the results demonstrate that H2T based holistic WSI-level representations offer
competitive performance compared to recent state-of-the-art methods and can be readily utilized for various
downstream analysis tasks. Finally, our results demonstrate that the H2T framework can be up to 14 times
faster than the Transformer models.
1. Introduction

Visual assessment of tissue specimens under the microscope remains
the gold standard for diagnosis of cancer and used for the purposes of
prognostication and therapeutic planning (Gurcan et al., 2009; Abels
et al., 2019). With the advancement in digitization, current pathol-
ogy workflows increasingly use multi-gigapixel tissue images, now
commonly known as whole slide images (WSIs), in a wide range of
settings. These WSIs also enable pathologists to view the tissue samples
remotely. Computational analysis of WSIs offers the promise for the
detection of known diseases and, perhaps, the discovery of new disease
subtypes.

In recent years, several machine learning approaches have been
proposed for identifying nuclei, glandular structures or tumor-rich
regions in histology images (Graham et al., 2019, 2020; Verma et al.,
2021; Kather et al., 2019). There are currently two major approaches
for WSI-level analysis. The first one is to construct features based
on classification, detection or segmentation of the tissue components.
These features are typically designed based on our knowledge from
biological findings (Gentles et al., 2015), such as the co-localization of

∗ Correspondence to: Department of Computer Science, University of Warwick, UK.
E-mail address: n.m.rajpoot@warwick.ac.uk (N. Rajpoot).

lymphocytes surrounding cancerous epithelium (Shaban et al., 2019) or
the deformation of glands in colon samples (Awan et al., 2017). Despite
their effectiveness in prognosis and providing interpretability, there
are several drawbacks during the construction of such pipelines. First
and foremost, they rely mostly on annotated samples which are often
intensive in terms of expert pathologists’ time and effort (Amgad et al.,
2019; Kromp et al., 2020). In addition, the pathologists are well-known
to have high discordance on how a tissue sample or its constituents are
labeled (Azam et al., 2021; Wahab et al., 2021).

In contrast, recent approaches have focused more on improving the
discriminative power of the features (Lu et al., 2021; Li et al., 2021)
rather than on the mechanism to derive a generic representation at the
WSI-level. Although these approaches have achieved promising results,
as with most deep learning based methods, they lack transparency and
interpretability for their predictions. To mitigate this, recent techniques
have utilized the attention mechanism to output a heatmap to indicate
which instances the models rely on for making predictions (Ilse et al.,
2018; Lu et al., 2021).
vailable online 19 January 2023
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In this paper, we propose a novel way to obtain unsupervised holis-
tic WSI-level representations based on a set of data-driven histological
patterns, which we term as the histological prototypical patterns. The
proposed representations, which we term as the handcrafted histolog-
ical transformer (H2T) representations, are inspired by the attention
mechanism of the well-known Transformers in natural language pro-
cessing (NLP) (Vaswani et al., 2017) and attempt to model the attention
mechanism in a handcrafted manner. We show that the proposed
H2T representations are discriminative and can be readily utilized for
various downstream analysis tasks with significantly reduced amount of
effort. These representations are mined from the pixel data in WSIs and
handcrafted from deep feature based representations or co-localization
of histological pattern maps that commonly appear throughout the
WSIs while indirectly incorporating the attention mechanism. Sim-
ilar to the features constructed from tissue components which are
considered to be highly interpretable, these patterns also facilitate
tractability and interpretability of our derived WSI representations
compared to other methods. We demonstrate that such interpretations
can be achieved either through visual assessment or by retrieving
closest image patches to the prototypical patterns. We evaluate the
capacity of the derived prototypical patterns and the resulting H2T
representations using two large publicly available WSI datasets: The
Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumour Analysis
Consortium (CPTAC).

The main contributions of this work are as follows:

• We present a novel paradigm, termed as the handcrafted histolog-
ical transformer (H2T), for deriving holistic WSI-level representa-
tions;

• We show how the proposed H2T representations can be con-
structed from histological prototypical patterns that are mined
from WSIs in an unsupervised manner; in addition, we show how
the prototypical patterns can be interpreted biologically and later
utilized for discovery purposes;

• We provide a baseline Transformer model for WSI-level analysis,
the first of its kind to the best of our knowledge;

• We show that the H2T representations are as predictive as the
recent state-of-the-art methods (including the aforementioned
Transformer model) while being computationally much cheaper,
based on results from experiments on 6 datasets consisting of a
total of 10,042 WSIs.

• We provide the code and the intermediate data (deep features
and associated patterns) at https://github.com/vqdang/H2T to
facilitate future investigation efforts.

2. Related work

2.1. Handcrafting representations for cytology and histology images

From the clinical and biological findings thus far, the morphology
and distribution of tissue components such as gland or nuclei are
recognized as strong indicators for cancer patient survival (Elston and
Ellis, 1991; Goldstraw et al., 2016; Gentles et al., 2015). In lung tissue
for instance, micropapillary and solid pattern are related to cancer with
high degree of aggressiveness (Solis et al., 2012; Cao et al., 2016).

Early automated systems attempted to utilize the above information
to differentiate tumor from normal tissue images. Hamilton et al.
(1994) proposed a Bayesian network using the amount of nuclei, nu-
clear size, mucinous area, etc. quantified by cytologists as features
for prediction. Keenan et al. (2000) developed a primitive automated
nuclei detection method and then employed Delaunay triangulation to
characterize the spatial distribution of detected nuclei. In their work,
the resulting statistics of edges, vertices and triangles were features for
predicting cervical intraepithelial neoplasia.

With the increase in compute power, automated methods which
2

were previously restricted to just small images were then extended to
tissue microarray (TMAs) and WSIs. Tabesh et al. (2007), Kwak and
Hewitt (2017) utilized morphological and textural features obtained
from image patches for stratifying tumor grades of TMA cores. On the
other hand, (Sertel et al., 2009) utilized a multi-resolution approach
and extracted textural features at all resolution levels and then utilized
them for making and refining prediction on WSIs in a coarse-to-fine
manner.

Nonetheless, even with deep learning, processing large images by
and large is still achieved by breaking them down into smaller parts
(i.e., patches). In Hou et al. (2016), the authors first employed convo-
lutional neural networks (CNNs) to classify image patches. Later, they
either utilized the resulting histogram or fused features from patches to
make predictions for an entire WSI. Around the same time, new clinical
findings indicated that a large number of lymphocytes infiltrating deep
within the tumor sites carry prognostic significance (Shield et al.,
2017). Shortly after, Shaban et al. (2019) proposed an automated
method to obtain a single score to measure the amount of tumor-
infiltrating lymphocytes (TILs) that is predictive of patient survival.
This involves robustly identifying the tissue types of all image patches
within a large cohort of WSIs. This form of analysis is taken further
in later works. Diao et al. (2021) extracted multiple statistics of tissue
components and demonstrated that these features still correlate well
with recently established tumor microenvironment markers as well as
molecular signatures.

2.2. Learning WSI representations

While handcrafted WSI features like the above remain a potent way
to predict disease status (Amgad et al., 2019; Kromp et al., 2020),
the methods for obtaining those representation are often laborious and
time-consuming. To lessen the burden of annotation, the medical image
processing analysis community turned to multiple instance learning
(MIL) to predict the label of a bag of instances without needing to iden-
tify the labels of the constituent parts (or instances) (Dietterich et al.,
1997; Andrews et al., 2002). In computational pathology, each instance
is a feature vector of an image patch. These vectors are assumed to
be highly compact while still being discriminative enough for major
tissue patterns. Due to this assumption and heavy reliance on deep
feature representation of a patch, a majority of the techniques have
focused more on improving the discriminative power of the features (Lu
et al., 2021; Li et al., 2021; Kalra et al., 2021; Abbet et al., 2020). In
particular, several methods applied weakly supervised learning while
treating the WSIs as bags of instances (image patches) with respect to
a specific task, such as classification of WSIs (Campanella et al., 2019;
Bilal et al., 2021).

While such systems could allow us to do away with a large amount
of human a priori knowledge, finding and attributing which instances
are important to the prediction remains difficult (Kandemir and Ham-
precht, 2015). Without being able to localize down to the instance-
level, interpretation of the model could not be made for clinical set-
tings. In order to resolve this, recent works like (Campanella et al.,
2019) utilized visualization techniques to increase the interpretability
of their results. Specifically, while they used a recurrent neural network
(RNN) for prediction, they applied t-SNE (Van der Maaten and Hinton,
2008), a manifold mapping, on their input instances to extract their
placements within the model decision space.

Recently, neural networks with attention mechanism came forth as a
powerful tool for the medical image analysis community. In particular,
they can not only learn a discriminative bag-level representation but
also provide interpretable and relatable instance-level attributions (Ilse
et al., 2018). In order to apply this method to WSI-level analysis,
WSIs are commonly split into patches where each is passed through
a pretrained CNN for feature extraction. The resulting set of feature
vectors is then input to a proposed neural network for training and
making predictions (Lu et al., 2021; Li et al., 2021; Kalra et al., 2021;

Hashimoto et al., 2020) while each image patch is considered as an

https://github.com/vqdang/H2T
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instance in the MIL setting. Because the patch-level representation
is the most critical building-block for these methods, many works
focus on designing a scheme to enrich this representation. MS-DA-
MIL (Hashimoto et al., 2020) employed adversarial training to enrich
the instance-level features before inputting them into a multi-scale
attention model. More recently, CLAM (Lu et al., 2021) utilized a
loss to pull the representation of patches within a specific label closer
together. DSMIL-LC (Li et al., 2021) proposed using SimCLR (Chen
et al., 2020) (self-supervised contrastive learning) to derive patch-
level representations and a scheme to combine instance-level prediction
with bag-level prediction. FocAtt-MIL (Kalra et al., 2021) refined the
patch-level features by training the feature extractor with hierarchy of
instance labels.

Concurrent to the above developments, natural language processing
(NLP) recently experienced tremendous breakthrough via the adoption
of Transformer models (Vaswani et al., 2017) which were pretrained
on large NLP datasets such as GPT-3 (Brown et al., 2020). Although
Transformer is also an attention-based neural network at its core,
we consider it as a more generalized form of attention mechanism
compared to the methods mentioned previously. Since its inception,
Transformers have been adopted by other fields with great success. For
instance, using a Transformer-based architecture, AlphaFold achieved
a significant improvement compared to all other methods on a 50 years
old grand challenge (Jumper et al., 2021) in predicting the protein
folding structure. In natural image analysis, Vision Transformers have
achieved comparable performance against ResNet (Dosovitskiy et al.,
2020). Furthermore, in some cases, Transformer-based networks have
shown to be more robust than CNNs (Hendrycks et al., 2021). In com-
putational pathology, Myronenko et al. (2021) have recently adopted
Transformer for predicting Gleason grades of WSIs.

2.3. Transformers and context-based image retrieval

Recent theoretical analysis and empirical evidence on Transformer
families (i.e., those utilizing multi-head self-attention mechanism) have
demonstrated that they have strong capability for retrieving informa-
tion (Chen et al., 2022b). Specifically, the theoretical analysis by Ram-
sauer et al. (2020) showed that MHA can directly use raw images for
querying and/or storing other raw images (i.e. acting like code books
in term of dictionary learning) without any training. On the other
hand, Tan et al. (2021) and Mari et al. (2022) extended the Transformer
architecture so that it can extract more efficient descriptors for image
retrieval problems.

With these evidence, we consider Transformer as one of the most
powerful context-based image retrieval (CBIR) techniques in the cur-
rent times for representing WSIs.

2.4. Unsupervised learning

Traditionally, unsupervised learning methods are defined as tech-
niques that do not rely on labels to obtain the data underlying represen-
tation. Prime examples include clustering methods and other traditional
dimensionality reduction techniques like Principal Component Analy-
sis, k-means clustering, UMAP (McInnes et al., 2018) or t-SNE (Van der
Maaten and Hinton, 2008). However, in the current literature, by relax-
ing the definition of ‘‘no label’’ to ‘‘no human supervisory signals’’ (Do-
rsch and Zisserman, 2017), unsupervised learning can be framed as
elf-supervised learning. Thus, self-supervised learning is a subset of
nsupervised learning where the guidance signals for the training pro-
ess can be obtained by directly interacting with the data itself. Typical
elf-supervised learning supervisory signals include filling in image
oles, solving jigsaw puzzles made from image patches, predicting
ovement in videos or more (Kim et al., 2019; Chen et al., 2020).
mpirically, relaxing the conditions about the label origins have led to
he discoveries of much more general and robust representations (Caron
t al., 2020; Chen et al., 2020).
3

In relation to H2T, while our proposed framework’s performance
elies on the deep features, which can be obtained either by self-
upervised learning or supervised learning, its internal mechanism
onsists of only clustering methods and operations that do not rely on
ny human labels. Thus, we consider that our proposed framework fits
ell in the traditional category of unsupervised learning as described
reviously.

.5. Representation of image patches

Several applications, not limited to medical image processing, have
tilized CNNs pretrained on ImageNet in a supervised manner for
arious different tasks. However, recent advancements in computer
ision have again emphasized the importance of obtaining a strong
epresentation. In particular, Hendrycks et al. (2019), Djolonga et al.
2021), Koohbanani et al. (2021) have demonstrated that represen-
ations derived from self-supervised learning are more robust than
hose obtained solely from supervised learning. Many recently proposed
echniques like SimCLR (Chen et al., 2020) are also rapidly closing
he gap between self-supervised learning and supervised learning. In
articular, SWAV (Caron et al., 2020) surpassed the performance of
esNets which were trained on ImageNet in a supervised manner. In
omputational pathology, Ciga et al. (2020) recently assessed SimCLR
n a large cohort and showed that self-supervised training small CNNs
n histopathology images is more beneficial for downstream tasks
ompared to those pretrained on ImageNet with supervised learning.

. Methodology

Recent automated methods not only require much less human an-
otation but also can be more predictive compared to their more
raditional counterparts. However, as a trade-off for their improvement
n predictive power, their internal processes are difficult to interpret to
uman operators. Moreover, their computational cost can sometimes
e prohibitively expensive. Herein, we propose a method that is more
nterpretable and computationally cheaper without compromising on
redictive power.

.1. Handcrafted histological transformer (H2T)

Inspired by the Transformer and the recent works that unravel
ts mechanism, we breakdown Transformer operation and re-construct
hem in a handcrafted manner for histology-related tasks. We refer
o the proposed framework as Handcrafted Histological Transformer
H2T). As shown in Fig. 1, there are two stages of the H2T for rep-
esentation learning:

a. Construction of the prototypical patterns;
b. Projection against these patterns.

In the first stage, we extract a set of prototypical patterns from a set
of reference WSIs (later referred to as the reference cohort). In order to
obtain the most representative patterns, it is crucial to utilize a large
enough and representative repository of WSIs from multiple sources.
In the second stage, new WSIs are projected against the prototypical
patterns and are summarized based on the relationship between their
constituent instances and their assigned patterns. In the final stage, we
utilize the resulting representation of WSIs for subsequent analysis.

We demonstrate that the resulting representations are highly dis-
criminative and can be readily used with relative ease. Owing to the
relatively low computational requirements, the predictive power of
their representations and many unsupervised steps within, we show
that the proposed framework can also be used for data discovery
purposes such as out of distribution detection.

In the remainder of this section, we first describe the key mechanism
behind the Transformer attention. We then describe in depth how
H2T representations are formulated in a similar fashion but without
employing an explicit attention module.
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Fig. 1. Our proposed Handcrafted Histological Transformer (H2T) framework. The framework revolves around the extraction and the utilization of the prototypical patterns. By
projecting a new WSI against this set of prototypical patterns, we derive highly discriminative WSI representations that are readily usable for other downstream tasks. In the
feature vector images (the stacks of blue images), each pixel corresponds to a patch in the WSI and the depth corresponds to the features from a CNN. Throughout the framework,
these features are extracted using the same pretrained CNN. In our case, this can either be from ResNet50 pretrained on ImageNet or ResNet50 pretrained by SWAV self-supervised
learning method (Caron et al., 2020). The Pattern Association Weights are described in Eq. (6).
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3.2. Multi head self-attention

The multi head (self) attention (MHA or MHSA) architecture and
its powerful modeling capacity was popularized via the Transformer
architecture (Vaswani et al., 2017). The core of the Transformer, or
the MHA to be exact, is centered around the following formulation:

�̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

1
√

𝑑𝑘
𝑄𝐾𝑇

)

𝑉

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

1
√

𝑑𝑘
𝑄𝑊𝑄𝑊

𝑇
𝐾 𝐾

𝑇

)

𝑉 𝑊𝑉

(1)

ere, �̂� is the attention output of a single head while 𝐾, 𝑄 and 𝑉 are
ommonly referred to as the key, query and value inputs. We denote the
ssociated dimensions of their features as 𝑑𝑘, 𝑑𝑞 and 𝑑𝑣. Additionally,
𝐾 ∈ R𝑑𝑘×𝑑𝑒 , 𝑊𝑄 ∈ R𝑑𝑞×𝑑𝑒 and 𝑊𝑉 ∈ R𝑑𝑣×𝑑𝑒 are learnable weights for

rojecting each input feature into a common space with dimensionality
𝑒.

By constructing multiple such modules and selecting features within
̂ from each head ℎ together, we obtain the renowned MHA architec-
ure:

𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(�̂�1,… , �̂�ℎ)𝑊𝐿 (2)

here ℎ is the total number of heads and the projection weight matrix
𝐿 ∈ Rℎ𝑑𝑒×𝑑𝑣 is learnable.
According to Ramsauer et al. (2020), by using the same input 𝑌 for

and 𝑉 and by renaming the input 𝑄 as 𝑅, Eq. (1) can take the form:

̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥( 1
√

𝑑𝑘
𝑄𝑊𝑄𝑊

𝑇
𝐾 𝐾

𝑇 )𝑉 𝑊𝑉

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽𝑅𝑊𝑄𝑊
𝑇
𝐾 𝑌

𝑇 )𝑌𝑊𝑉

(3)

where 𝛽 is a scaling factor.
Under the above formulation, Ramsauer et al. (2020) proved that

MHA is closely related to Hopfield neural network. Additionally, they
identified several interesting properties. First of all, the above equation
is synonymous with finding the association between inputs 𝑅 and 𝑌 ,
using 𝑅 as reference. Secondly, the scaling factor 𝛽 =

√

1∕𝑑𝑘 is of
particular importance as it controls the degree of memorization and
association capacity of the architecture. Finally, if we take a step further
and consider that 𝑅 is trainable, we effectively obtain an architecture
that learns a set 𝑃 of prototypical patterns from the training set.
Accordingly, this is synonymous to letting the network learn how all
instances within the input are related to a prototypical pattern 𝑝. Once
he set of patterns are identified, the network then performs weighted
verage pooling over input instances to derive a representation of the
nput sequence. Furthermore, by stacking multiple attention heads,
t becomes possible for the network to derive multiple prototypical
atterns.

.3. Positional encoding

Another component that is often used together with MHA is the po-
itional encoding. It is apparent from Eq. (1) that MHA is permutation
nvariant with respect to the ordering (or position) of input instances.
s such, in cases where positions are of extreme importance, it is crucial

or us to incorporate this information within the network design. At
he moment, this is commonly achieved via sine-encoding (or Fourier-
ncoding) where they are either added or concatenated together with
he instance features. In computer vision, using positional encoding
akes a significant difference in performance for methods using MHA
ithin their solution (Carion et al., 2020).

With 𝑑𝜓 as the number of features (or embedding dimensions)
ithin the vector representing the image patch (or instance), for 2D
imensions with 𝑥 and 𝑦 respectively as the instance positions along the
and 𝑦 axes within the WSI, we use the following position encoding
5

function (PE) to encode the position of each instance 𝜓 for a given
embedding dimension 𝑗:

𝑃𝐸(𝑥, 𝑦, 𝑗) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑃𝐸𝑠𝑖𝑛(𝑥, 4𝑗), 𝑃𝐸𝑐𝑜𝑠(𝑥, 4𝑗 + 1),

𝑃𝐸𝑠𝑖𝑛(𝑦, 4𝑗 + 2), 𝑃𝐸𝑐𝑜𝑠(𝑦, 4𝑗 + 3))
(4)

𝑃𝐸𝑠𝑖𝑛(𝑥, 4𝑗) = 𝑠𝑖𝑛
(

𝑥
𝜖4𝑗∕𝑑𝜓

)

𝑃𝐸𝑐𝑜𝑠(𝑥, 4𝑗 + 1) = 𝑐𝑜𝑠
(

𝑥
𝜖(4𝑗+1)∕𝑑𝜓

)

𝑃𝐸𝑠𝑖𝑛(𝑦, 4𝑗 + 2) = 𝑠𝑖𝑛
(

𝑦
𝜖(4𝑗+2)∕𝑑𝜓

)

𝑃𝐸𝑐𝑜𝑠(𝑦, 4𝑗 + 3) = 𝑐𝑜𝑠
(

𝑦
𝜖(4𝑗+3)∕𝑑𝜓

)

(5)

Here, 𝜖 = 10000 is the assumed maximum value of 𝑥 and 𝑦 along the
corresponding axes within the WSI. From the above equation, there
are four components derived for a given embedded dimension 𝑗. In
order to ensure that the resulting positional encoding vector maintains
the same dimensionality as the feature vector 𝜓 , we further define
𝑗 ∈ {0,… , 𝑑𝜓∕4}.

In our case, while the width and height of a WSI can reach hundred
thousands pixels, in practice, we can normalize the patch locations
into relative positioning. For example, by extracting patches of size
512 × 512 and stride of 512 × 512 from a WSI of 51200 × 51200, we
can effectively denote each patch belonging to a 100 × 100 canvas. The
𝑥 and 𝑦 positions of each image patch are thus ensured to be smaller
than the 𝜖 limit defined in Eq. (4).

3.4. Handcrafted prototypical patterns

Recently, features based on co-localization of specific nuclei types
such as TILs have been shown to be robust and prognostic (Shaban
et al., 2019). In addition, there is recent evidence to suggest that
morphology of tissue components can also be predictive (Diao et al.,
2021).

Given the formulation in Eq. (1), the importance of encoding posi-
tional information and the successes so far of its less general variants on
WSI prediction tasks, we first assume that the resulting representation
vector from MHA is highly discriminative. In addition, it also contains
information on the variation within instance features (or instance-
level patterns) and how these variations co-occur with each other
(instance-level co-localization patterns). Under this formulation, H2T
representation of WSIs offers the following:

• We can disentangle the features related to instance-level patterns
from those for co-localization of patterns;

• Instead of learning prototypical patterns in a supervised manner,
as in some of the recent works, we can provide our own set of
reference patterns;

• Rather than learning the attribution of each instance for compos-
ing the WSI representation, we can derive an effective attribution
ourselves;

• Similarly, we can also devise the co-localization in a handcrafted
manner.

Going forward, we use instance 𝜓 to denote an image patch’s feature
vector within a WSI. This image patch can be of arbitrary size and from
an arbitrary magnification level.

3.4.1. Representations from histological patterns
Prototypical patterns of a set of image patches (or strictly speaking,

their feature vectors) can be obtained via clustering. While there are
many clustering techniques, not many of them scale well when process-
ing millions of input samples, as in our case. Therefore, given the large
amount of image patches and the high-dimensionality of their feature

vectors, we use 𝑘-means clustering. Utilization of 𝑘-means and nearest
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Fig. 2. Step by step illustration of how 8 is utilized to calculate the pattern co-localization matrix (PCM). Here, each pattern (or type 𝑡𝑘) is denoted in a different color. It is
worth noting that the pattern counting does not include the type of entry (or the central) cell.
neighbors has been noted to be particularly effective for tasks on the
same magnitude of difficulties (Wang et al., 2019). For this usage, it
is crucial to normalize the feature vector of each image patch with
𝐿2-norm.

As a result, the (prototypical) histological patterns 𝑝 ∈ 𝑃 are also
the resulting centroids obtained from the clustering process. With 𝜓
denoting the feature vector of an image patch, we therefore reformulate
Eq. (3) into the following form,

𝐻𝑖 =
1

|𝛷𝑖|
∑

∀𝜓𝑗∈𝛷𝑖

𝑓 (𝑝𝑖, 𝜓𝑗 )⊙ 𝜓𝑗 (6)

𝐻 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻0,… ,𝐻𝑁 ) (7)

where 𝐻𝑖 is representation when projecting the WSI against the 𝑖th
prototypical histological pattern 𝑝𝑖 and 𝛷𝑖 is the set of image patches
assigned to 𝑝𝑖. Specifically, a patch 𝜓 is assigned to a pattern 𝑝𝑖 when
the distance between their representations is the smallest compared to
all other patterns. In Eq. (6), 𝑓 (𝑝𝑖, 𝜓𝑗 ) is an attribution function that
measures the similarity between 𝑝𝑖 and 𝜓𝑗 and ⊙ denotes the element-
wise multiplication of two vectors. The resulting 𝐻 is, therefore, the
WSI representation when projected against a derived set of histological
prototypical patterns 𝑃 . We refer to 𝐻 as weighted average pooling
(WAP) features in Fig. 1.

There are several ways to derive the attribution of each instance
𝜓 (image patch) with respect to their assigned prototypical pattern 𝑝𝑖.
Assuming that both 𝑝𝑖 and 𝜓𝑗 have already been normalized by 𝐿2-norm
and 𝑑(𝑝𝑖, 𝜓𝑗 ) is their Euclidean distance, we investigate the following
attribution function 𝑓 (𝑝𝑖, 𝜓𝑗 ):

1. 𝐻 : Average pooling of all assigned 𝜓𝑗 , we effectively set
𝑓 (𝑝𝑖, 𝜓𝑗 ) = 1 in this scenario.

2. 𝐻-w : Weighted pooling of the assigned 𝜓𝑗 . Here, the weights
are the inverse distance between 𝑝𝑖 and its 𝜓𝑗 . Thus, we define
𝑓 (𝑝𝑖, 𝜓𝑗 ) = 1 − 𝑑(𝑝𝑖, 𝜓𝑗 ).

3. 𝐻-t[X] : Similar to #1, with 𝛷𝑖 further filtered such that only
patches having 𝑑(𝑝𝑖, 𝜓𝑗 ) ⩾ 𝑋 are selected for aggregation.

4. 𝐻-k[X] : Similar to #1, with 𝛷𝑖 further filtered such that only
top X instances that are the closest to 𝑝𝑖 are selected for aggre-
gation.

5. 𝐻-fk[X] : Similar to #1, with 𝛷𝑖 further filtered such that only
top X-th instances that are the furthest to 𝑝𝑖 are selected for
aggregation.
6

3.4.2. Representations from co-localization of patterns
Inspired by how features describing co-localization of different nu-

clei types can be constructed (Abbet et al., 2020), we define the pattern
co-localization matrix (PCM) as follows,

𝑐𝑖,𝑗𝛾 = 1
|𝛷𝑖,𝑗

𝛾 |

∑

𝜓∈𝛷𝑖,𝑗𝛾

𝑢𝑖,𝑗𝛾

𝐶(𝛾) =
⎡

⎢

⎢

⎣

𝑐1,1𝛾 𝑐1,𝑗𝛾

𝑐𝑖,1𝛾 𝑐𝑖,𝑗𝛾

⎤

⎥

⎥

⎦

(8)

where 𝛷𝑖,𝑗
𝛾 is a set of patches where each instance not only belongs to

pattern 𝑝𝑖 but is also surrounded by patches of pattern 𝑝𝑗 within the
radius 𝛾. We additionally denote 𝑢𝑖,𝑗𝛾 as the number of patches assigned
to pattern 𝑝𝑗 within the neighborhood of patch 𝜓 ∈ 𝛷𝑖,𝑗

𝛾 . With these
definitions, 𝑐𝑖,𝑗𝛾 can be understood as the average occurrence of pattern
𝑝𝑗 around pattern 𝑝𝑖 within the distance 𝛾. Meanwhile, 𝐶(𝛾) is the
average pattern co-localization (PCM) matrix of all patterns within the
WSI. Finally, we only study the 8 immediate neighbors in this paper.
This calculation is illustrated in Fig. 2.

While we can extend the number of 𝛾 for assessment and stack many
resulting 𝐶(𝛾) together for a more detailed representation, they still
only reflect one aspect of the co-localization distribution, which is their
mean. It would become unscalable when trying to incorporate longer
distance and/or other distribution measurements.

To resolve this issue, we can employ CNNs (or graph neural net-
works for a more general form) to learn the patterns of co-occurrence.
Specifically, with a set of patches 𝛷𝑖 assigned to each pattern 𝑝𝑖
from Eq. (6), because we know the position of each patch within the
original WSI, we can therefore project such assignments back to their
2D relative positioning. By repeating this process for all prototypical
patterns, we obtain an image which we denote as the Pattern Assign-
ment Map (PAM). It is worth noting that this projection is akin to a
coarse segmentation process i.e. patch-wise classification rather than
pixel-wise classification. It is expected that a neural network trained
on this image can therefore learn the patterns of co-occurrence.

In the case of using CNNs, the prototypical PAM is not the same as
a normal image where each pixel value is a category rather than the
raw pixel intensity. We are therefore encouraged to encode and train
the CNNs on such encoding rather than learning the PAM directly. For
categorical values like ours, one-hot encoding is an exceptionally cheap
and effective way for such modeling. To differentiate with the hand-
crafted co-occurrence features from 8, we term the features obtained
from training CNNs as Deep PAM features and denote them as 𝐶.
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Table 1
Summary of the main datasets used in our experiments. It is worth noting that the Normal WSIs utilized here are adjacent to the Tumor WSIs within the biopsy
samples. Additionally, TCGA-Lung (NSCLC) is a combination of tumorous WSIs within TCGA-LUAD and TCGA-LUSC dataset.

Datasets Tissue type/Organ FFPE WSIs Frozen WSIs Total WSIs Total patients

CPTAC-LUAD Lung 0 1048 1048 111
Normal 0 374 374 –
Tumor (Adenocarcinoma) 0 674 674 –

CPTAC-LUSC Lung 0 1025 1025 108
Normal 0 363 363 –
Tumor (Squamous Cell Carcinoma) 0 662 662 –

TCGA-LUAD Lung 531 1067 1598 522
Normal 0 244 244 –
Tumor (Adenocarcinoma) 531 823 1354 –

TCGA-LUSC Lung 512 1200 1712 504
Normal 0 347 347 –
Tumor (Squamous Cell Carcinoma) 512 853 1365 –

TCGA-Lung (NSCLC) Lung — Non-Small Cell Carcinoma 1043 1676 2719 1026
Adenocarcinoma 531 823 1354 522
Squamous Cell Carcinoma 0 662 662 504

TCGA-Breast (BRCA) Breast — Carcinoma 992 1317 2309 975
Invasive Ductal 791 1090 1881 776
Lobular 201 227 428 199

TCGA-Kidney (RCC) Kidney — Renal Cell Carcinoma 909 1441 2350 926
Clear Cell 504 1062 1566 523
Papillary Cell 296 236 532 290
Chromophobe Cell 109 143 252 113

Total (Unique) Lung, Breast, Kidney 2944 7098 10042 3048
4. Experimental results

4.1. Datasets

For this study, we utilized 6 different datasets consisting of a
total of 10,042 unique WSIs from 3048 unique patients from The Can-
cer Genome Atlas (TCGA) and Clinical Proteomic Tumour Analysis
Consortium (CPTAC). The number of WSIs and the distribution of
associated labels within each dataset are summarized in Table 1. We
constructed TCGA-Lung (NSCLC) dataset by using only tumorous WSIs
within TCGA-LUAD and TCGA-LUSC dataset.

For the same patient, in addition to the tissue slides that contain tu-
morous area, there are also normal adjacent tissue slides. Thus, for lung
tissue, there are 3 WSI-levels: Normal, Lung Adenocarcinoma (LUAD)
and Lung Squamous Cell Carcinoma (LUSC). For breast tissue, there are
2 WSI-level labels: Invasive Ductal (IDC) and Lobular Carcinoma (ILC).
Lastly, for kidney, there are 3 WSI-level labels: Clear Cell, Papillary, and
Chromophobe Renal Cell Carcinoma (CCRCC, PRCC, CHRCC). Although
there are slides that may come from the same patient, for simplicity, in
this study we treated each WSI as an independent sample.

Aside from the TCGA and CPTAC cohorts, we also utilized 2 WSIs
from the ACDC (Li et al., 2020) dataset for rough qualitative assess-
ment.

4.2. Evaluation

Our H2T framework is a handcrafted approximation of the inner
working of the Transformer. Therefore, it is of interest to determine
how closely H2T approximates the performance of the original Trans-
former architecture. In order to assess this, we specifically trained two
Transformer models as baseline: transformer-1 with only one multi
head attention (MHA) layer for the final aggregation; and transformer-2
with one multi head self-attention (MHSA) layer and one MHA layer for
the final aggregation.

We linearly probe the discriminative power of our resulting WSI-
level representation on a series of classification tasks. This is a widely
utilized technique in the computer vision community for assessing fea-
ture representation obtained from self-supervised learning (Chen et al.,
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2020; Caron et al., 2020; Zhang et al., 2016). Specifically, the features
are considered to be usable only if they are highly discriminative out-
of-the-box. In other words, the degree of their discriminative power
is reflected by their linear-separability. In our case, the discriminative
power of the resulting WSI-level H2T representations directly correlates
with the usability of the prototypical patterns utilized to construct
them. Finally, this probing is achieved by inputting the features through
a single linear layer for making the prediction.

In subsequent experiments, we used either CPTAC or TCGA as the
discovery set, namely being training and validation set. On the other
hand, we kept the entire other cohort as evaluation set (independent
testing set). Within the discovery set, we split the cohort across both
labels and the subset (such as CPTAC-LUAD and CPTAC-LUSC) into 5
folds in a stratified manner. For each fold, we then selected the best
model and validated it on the testing cohort. Subsequently, we reported
the mean and standard deviation obtained from each fold from both the
discovery and evaluation cohort.

We evaluate our representation on several classification tasks: Nor-
mal vs Tumor of lung tissue (LUAD and LUSC are combined to make
Tumor label), LUAD vs LUSC, Normal vs LUAD vs LUSC of lung
tissue, CCRCC vs PRCC vs CHRCC, or IDC vs ILC. To be in line with
existing methods that have been applied for the Normal vs Tumor
and cancer sub-typing tasks, we use area under the receiver operating
characteristic (AUROC) as the evaluation metric. However, due to
the skewed distribution of labels within the dataset, we additionally
calculate average precision (AP), which is another way to compute
the area under the precision–recall curve (AUPRC), for each label and
report their mean (mAP).

Aside from assessing the predictive power of our proposed WSI-
level representation, we are also interested in how prototypical patterns
which originate from different source tissue (the reference cohort)
would impact downstream analysis. In this study, we consider two
scenarios: tissue coming from different centers and/or different tissue
types. Throughout the main text, we focus on the first scenario: using
all available tissue within TCGA or CPTAC when one of them is the
discovery cohort. For example, with LUAD vs LUSC, when TCGA is used
as the discovery cohort, all prototypical patterns are extracted using
only TCGA data whereas CPTAC data are kept intact as independent
testing set. On the other hand, the Supplementary Material explores the
latter case: using only Normal tissue within TCGA or CPTAC when one
of them is the discovery cohort.
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Fig. 3. Comparison of pattern assignment maps (PAMs) against the annotations from the pathologists on lung tissue. PAMs were constructed using 16 prototypical patterns. By
using SWAV-ResNet50 patch-level features, these patterns were derived from all WSIs within the TCGA cohort. The sample WSIs in the figure are from ACDC cohort and the
overlaid areas with dark shade are tumorous regions provided by pathologists. We visually identify that prototypical patterns with ocean blue color (6) or deep red color (16)
are closely related to Normal tissue areas; patterns with yellow (1) or pink (13) colors are related to tumorous area in LUAD; and pattern with green color (15) is related to
LUSC. When selecting out areas having these tumorous patterns and quantitative measuring them against the pathologist annotations, we obtained 0.6879 (𝑝 ≪ 0.0001) and 0.8407
(𝑝 ≪ 0.0001) in Pearson correlation coefficient for LUAD and LUSC respectively. The same set of prototypical patterns were later utilized for Fig. 4.
4.3. Implementation details

We extracted patches of shape 512 × 512 with 256 × 256 degree
of overlapping out from each WSI. To avoid redundant information,
we focused on patches coming mostly from tissue area. Afterward, we
applied a pretrained ResNet50 on each patch to derive their repre-
sentations. Depending on each experimental setup described further
8

below, these patches are either at 0.25 or 0.50 μm per pixel (mpp),
corresponding to 40× or 20× magnification respectively.

For the Transformer baseline models, we constructed both MHSA
and MHA with 8 attention heads. For the aggregation layer in particu-
lar, according to Eq. (3), it has 𝑅 of shape 16 × 2048. In other words, in
each attention head, there are 16 learnable prototypical patterns each
of which is described by a 2048-dimensional feature vector. We trained
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Fig. 4. Visual comparison of the pattern assignment maps (PAMs) of lung tissue between the reference cohort (all WSIs in TCGA) and other cohorts (all WSIs in CPTAC). PAMs
were constructed using 16 prototypical patterns. In turn, using SWAV-ResNet50 patch-level features, these patterns were derived based on all WSIs within the TCGA cohort.
Overlapping regions have their colors averaged for illustration. Locations whose colors do not align with established color code indicate the transition between assigned patterns.
Note that patterns having the same color but were derived from different clustering may not be semantically similar. The colors in Fig. 3 denote the same assignments as this
figure. The color assignment is for assessing the consistency within this figure only.
each Transformer model for 50 epochs using Adam optimizer with a
learning rate of 0.001. We provide more details about their formulation
in the Supplementary Material (Appendix A1).

For experiments related to learning the co-localization of prototypi-
cal patterns, we utilized a reduced version of ResNet50 with 34 layers.
9

To differentiate this from the usual ResNet34, this version uses full
bottleneck (3 consecutive convolutional layers with kernel size of 1,
3 and 1) instead of 2 convolutional layers where each has kernel size
of 3. Similarly, we also trained this model for 50 epochs using Adam
optimizer with a learning rate of 0.001.
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Fig. 5. Visualization of prototypical patterns extracted using solely lung tissue. Four closest patches to each prototypical pattern. There are 16 prototypical patterns derived using
SWAV-ResNet50 patch-level features from only Normal WSIs, only LUAD WSIs, only LUSC WSIs or all available WSIs (Normal+LUAD+LUSC) within the TCGA cohort. Within each
set of reference tissue (WSIs), the patterns are arranged in a 1 × 16 (height×width) grid where each cell contains 4 closest patches.
Regarding linear probing, we trained all the linear layers, which
are also known as fully connected layers, for 50 epochs using Adam
optimizer with a learning rate of 0.001.

Finally, although we compare our proposal against methods that
utilized patch-level features obtained from ResNet34 or ResNet18 pre-
trained on histological images, we utilized only patch-level features
based on ImageNet to assess our proposal. There are two primary
reasons for this decision: (a) models based on ImageNet are widely
used and therefore have been extensively assessed, (b) recent research
has also shown that models pretrained on histological images may
not always provide better performance compared to those trained on
10
ImageNet, especially for deeper neural networks like ResNet50 (Ciga
et al., 2020).

4.4. Prototypical patterns

Before diving deeper into further assessments, it is important to
conduct a sanity check on the sets of prototypical patterns we derived
from a histological perspective. We constructed 4 sets of prototyp-
ical patterns using solely Normal, LUAD, LUSC and all WSIs (Nor-
mal+LUAD+LUSC) in the TCGA cohort as reference. Using patch-level
representations obtained from SWAV-ResNet50 (Caron et al., 2020), we
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extracted 16 prototypical patterns for each set. While the number of
prototypical patterns can be different, results from our ablation studies
(as reported in Appendix A3.1) have shown that 16 are generally
enough to obtain discriminative WSI-level representation.

To validate whether the prototypical patterns and their resulting
assignments carry histologically meaningful information, we compare
the resulting PAMs against annotations of tumor regions provided
by pathologists in Fig. 3. Here, the sample WSIs are taken from the
ACDC dataset (Li et al., 2020) while the PAMs were based on patterns
obtained when using the entire TCGA lung cohort as the reference
cohort. We visually identify that prototypical pattern with ocean blue
color (color with code 6) or deep red (16) are closely related to
Normal tissue areas. Meanwhile, prototypical patterns with yellow (1)
or pink (13) colors are related to tumorous area in LUAD whereas green
color (15) is related to LUSC. When considering areas assigned with
these tumorous patterns and quantitatively measuring them against the
pathologist annotations, we obtained 0.6879 (𝑝 ≪ 0.0001) and 0.8407
(𝑝 ≪ 0.0001) in Pearson correlation coefficient for LUAD and LUSC,
respectively. As a side note, we restrict this quantitative measurement
only to the two sample WSIs provided above. We also note that the
existing annotations from the pathologists are rough. As evident from
the illustration in Fig. 3, often they circled an entire area that contains
not just tumorous components. Therefore, we only selected one WSI per
category that has the best localized annotation. For our purposes, the
annotation needs to be more fine-grained and localized. Future work
will involve further validation against better sources of ground truth
that satisfy such criteria.

Using the same set of prototypical patterns utilized in Fig. 4, we
further examine the PAMs between the reference cohort (TCGA) and
the unseen cohort (CPTAC) on 3 tissue types: LUAD, LUSC and Normal.
From the illustration, although the assignments in unseen cohorts
are less distinct compared to the reference set, we observe that the
assignments still maintain their consistency from a bird’s eye point of
view for major tissue components, such as tumorous or stromal regions
across WSIs in each cohort. Aligning with our previous observations
in Fig. 3, we also observe similar assignments in Fig. 4 for the sample
LUAD and LUSC WSIs. Specifically, in both TCGA and CPTAC cohort,
we notice that Tumor WSIs contain a large swath of yellow (0) or
brown color (14) compared to their normal counterparts. We provide
additional examples when using only Normal WSIs as reference set in
the Supplementary Materials (Fig. A4).

Since different source of reference tissue results in different set of
prototypical patterns, we additionally evaluate how the histological
meaning of these sets vary by examining the closest patches assigned
to each pattern in Fig. 5 when using Normal, LUAD, LUSC or all
WSIs (Normal+LUAD+LUSC) in the TCGA cohort as the reference
cohort. From the figure, we observe that patches assigned to the same
prototypical pattern are semantically similar.

In conclusion, through a brief visual assessment and a rough quanti-
tative measurement, we postulate that our derived prototypical patterns
are histologically meaningful. However, further research is necessary to
accurately validate the biological meaning of these sets of prototypical
patterns.

4.5. Comparative evaluation

Settings. It is expected that our proposed set of representations
should perform at least comparable to methods that are capable of
utilizing all patch-level features from the constituent parts (instances)
within the WSI, especially in comparison to the baseline Transform-
ers. In order to evaluate this, we restrict our comparison to other
multiple instance learning methods that do not involve majority vot-
ing of instance predictions within the WSI: MS-MIL-RNN (Campanella
et al., 2019), CLAM (Lu et al., 2021), MS-ABMIL (Hashimoto et al.,
2020), DSMIL-LC (Li et al., 2021), FocAttn-MIL (Kalra et al., 2021),
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H

HIPT (Chen et al., 2022a) and our two baselines Transformers as
described above.

We compared these methods with our proposed representations
that were derived by weighted pooling features of patches assigned to
each pattern (𝐻-w), average pooling features of the top 128 closest
atches assigned to each pattern (𝐻-k128), learned co-localization of
ne-hot-encoded PAM (𝐶-one-hot) or their combination. In addition

to that, we also extracted traditional features: proportion of assigned
prototypical patterns �̂� within PAM, the co-occurrence matrix 𝐶 from 8
or their combination as additional baselines. For this experiment, we
constructed these representations from 16 prototypical patterns when
using patch-level representations from SWAV-ResNet50.

Results. We respectively present our results for Normal vs Tumor
lassification and for LUAD vs LUSC using solely lung tissue in Ta-
le 2 and in Table 3. Here, the ‘‘Features’’ column in both tables
enotes the encoders for the patch-level representation: SUPERVISE-
esNet50, SWAV-ResNet50 or fine-tuned/retrained a CNN (Tuned). For

he last category, this was often performed on pathological dataset
ather than ImageNet (Li et al., 2021; Kalra et al., 2021). For WSI-level
2T representation, for simplicity, we only constructed them using
atch-level feature from SWAV-ResNet50. In this experiment, CPTAC-
UAD and CPTAC-LUSC were combined to make the CPTAC dataset
hereas TCGA-LUAD and TCGA-LUSC were combined to make the
CGA dataset.

In general, we observe that the Transformer models perform bet-
er than all recently published methods on both classification tasks.
urthermore, a full Transformer model (transformer-2) is more pow-
rful than its simplified counterpart (transformer-1). Other than that,
sing better patch-level representation often results in better perfor-
ance. This is evident with the model achieving the best performance,

ransformer-2. When moving from SUPERVISE-ResNet50 to SWAV-
esNet50, on average, its AUROC values for Normal vs Tumor were
espectively improved by 1.2% (0.963 vs 0.975) for TCGA-test and by
.63% (0.970 vs 0.976) for CPTAC-test. In case of LUAD vs LUSC, the
mprovement is 4.7% (0.796 vs 0.843) for TCGA-test and 1.2% (0.911
s 0.922) for CPTAC-test.

Interestingly, CLAM achieved comparable or slightly better re-
ults in comparison to the transformer-2 in some cases. When using
UPERVISE-ResNet50 for Normal vs Tumor, CLAM achieved higher
UROC on average compared to transformer-2 (0.979 vs 0.970) for
PTAC-test. In comparison to transformer-1, CLAM outperformed the
odel by 0.2% (0.955 vs 0.953) in AUROC on average for TCGA-

est. However, when using SWAV-ResNet50, CLAM performance was
lightly worse than the transformer-1 on average by 0.3% (0.972
s 0.970) in AUROC for TCGA-test. Similar phenomena can also be
bserved for LUAD vs LUSC. As shown in Table 3, when using SWAV-
esNet50, transformer-1 outperformed CLAM by 1.0% (0.928 vs 0.918)

n AUROC for CPTAC-test. This discrepancy in CLAM performance
hen switching the origin of patch-level features can be attributed

o the fact that CLAM was designed to tune the patch-level represen-
ations. As such, when the features are already highly discriminative
n case of SWAV, their proposed loss would reduce the representation
ower instead.

Regarding our proposed representations, for Normal vs Tumor,
hen cross-validating within TCGA cohort, 𝐻-w, 𝐻-k128 and 𝐻-w+𝐶-
ne-hot based on SWAV-ResNet50 achieved more than 0.99 in AUROC
nd surpassed DSMIL-LC (0.982). Amongst them, 𝐻-k128 is the most

discriminative representation. When being independently tested, 𝐻-
128 in particular achieved better performance compared to the best
odel on TCGA-test (transformer-2 based on SWAV-ResNet50) by 0.9%

0.984 vs 0.975); and comparable results compared to the best model
n CPTAC-test (CLAM based on SUPERVISE-ResNet50).

On LUAD vs LUSC, 𝐻-k128 achieved comparable performance in
omparison to the best model (transformer-2) when cross-validating.
owever, it is noticeably worse than other approaches that involves
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Table 2
Comparison study on classifying Normal vs Tumor WSIs using solely lung tissue. The proposed H2T representations (𝐻 and 𝐶) were derived based on 16 prototypical patterns.

hese patterns were obtained by using SWAV-ResNet50 patch-level features extracted from all WSIs within each discovery cohort. 𝐻-w is obtained by weighted summing patch
features assigned to a pattern; 𝐻-k128 is obtained by averaging features from the top 128 closest patches assigned to a pattern; 𝐶-one-hot is the representation obtained by training
CNN on the one-hot-encoded pattern assignment map (PAM); �̂� is the histogram of the patterns within PAM; 𝐶 is the co-localization matrix of patterns within PAM. Reported
results are mean ± standard deviation of AUROC taken across 5 stratified folds.

Features Method CPTAC-valid TCGA-test TCGA-valid CPTAC-test

Tuneda MS-MIL-RNNb (Campanella
et al., 2019)

– – 0.956 ± 0.000 –

Tuneda MS-ABMILb (Hashimoto
et al., 2020)

– – 0.979 ± 0.000 –

Tuneda DSMIL-LCb (Li et al., 2021) – – 0.982 ± 0.000 –

SUPERVISE-ResNet50
(He et al., 2016)

CLAMc (Lu et al., 2021) 0.992 ± 0.003 0.955 ± 0.007 0.997 ± 0.002 0.979 ± 0.002
transformer-1 0.987 ± 0.009 0.953 ± 0.009 0.992 ± 0.002 0.958 ± 0.005
transformer-2 0.993 ± 0.005 0.963 ± 0.004 0.996 ± 0.001 0.970 ± 0.003

SWAV-ResNet50
(Caron et al., 2020)

CLAMc (Lu et al., 2021) 0.994 ± 0.005 0.970 ± 0.003 0.995 ± 0.002 0.971 ± 0.004
transformer-1 0.993 ± 0.003 0.972 ± 0.009 0.996 ± 0.002 0.961 ± 0.006
transformer-2 0.992 ± 0.004 0.975 ± 0.002 0.996 ± 0.003 0.976 ± 0.004

SWAV-ResNet50
(Caron et al., 2020)

�̂� 0.950 ± 0.004 0.880 ± 0.003 0.946 ± 0.006 0.817 ± 0.010
𝐶 0.972 ± 0.002 0.939 ± 0.003 0.965 ± 0.004 0.906 ± 0.008
�̂� + 𝐶 0.979 ± 0.005 0.935 ± 0.002 0.967 ± 0.007 0.872 ± 0.009
𝐻-w 0.996 ± 0.003 0.975 ± 0.003 0.997 ± 0.001 0.954 ± 0.005
𝐻-k128 0.998 ± 0.002 0.984 ± 0.003 0.996 ± 0.004 0.978 ± 0.006
𝐶-one-hot 0.970 ± 0.010 0.937 ± 0.007 0.966 ± 0.007 0.923 ± 0.017
𝐻-w+𝐶-onehot 0.995 ± 0.004 0.972 ± 0.007 0.997 ± 0.002 0.957 ± 0.007

aPretrained CNN was further tuned before being used as a feature extractor by the authors in the original work.
bResults are taken from Table 2 in Li et al. (2021). The original work did not report the standard deviation, thus we set it to 0.
cResults are produced by us.
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more complicated neural networks. Most notably on TCGA-test, 𝐻-
128 based on SWAV-ResNet50 achieved only 0.8021 in AUROC in
omparison to the worst model under the same setup (0.835 in AUROC
f transformer-1 with SWAV-ResNet50).

Meanwhile, although traditional features like �̂� , 𝐶 and �̂�+𝐶 could
chieve results above 0.90 AUROC in some cases in cross-validation for
ormal vs Tumor, they severely lack discriminative power on unseen
ohort and are out-competed by other methods. On the other hand,
espite showing better results compared to handcrafted features in
ome situations, in comparison to 𝐻-w and 𝐻-k128, representations

obtained from learning co-localization (𝐶) performed poorly when
being used alone in both tasks.

We further evaluated the performance of our proposed method
when sub-typing cancers for other tissue types from the same center.
We performed CCRCC vs PRCC vs CHRCC on kidney tissue using RCC
dataset and IDC vs ILC on breast tissue using BRCA dataset. We present
their results in Table 4. For completeness, we also provide results for
LUAD vs LUSC (i.e. using NSCLC dataset). Aside from HIPT, all other
methods utilized SWAV-ResNet50 features. Among comparative MIL
methods, transformer-2 remains the best performing model. We also
observe that our proposed methods remain competitive across different
tissue types. In RCC, 𝐻-w achieved similar performance as transformer-

for AUROC but it has higher mAP. Compared to HIPT, 𝐻-w AUROC
is 0.2% higher. Similarly, for BRCA, 𝐻-w outperformed transformer-2
by 0.3% and is significantly better than HIPT by 6.5%.

With these results, we demonstrate that the representations from
H2T can achieve results comparable to other state-of-the-art approaches.
To further understand the difference in performance of these meth-
ods, we also performed statistical analysis, the results and details are
provided in the Supplementary (Section 5).

4.6. Ablation study

Going along the framework in Fig. 1, we investigate various com-
ponents that are involved in the derivation of the prototypical patterns
and the construction of the subsequent WSI-level H2T representation.
Further experiments were conducted and described in Appendix A3.
12

t

4.6.1. Representations from co-localization
Settings. The co-localization of clinically-grounded patterns like

TILs has shown to be important for clinical settings. Additionally, our
results in Tables 2 and 3 suggest that such co-localization features still
remain somewhat predictive even when we compute them based on the
abstract patterns rather than the clinically-grounded entities (nucleus
types). Here, we investigate further on:

a. The effect of using one-hot encoding to aid the training process.
b. How the representations learned by CNN fare against their hand-

crafted counterpart across different sources of prototypical pat-
terns.

The evaluation was conducted by classifying Normal vs Tumor.
For this experiment, the prototypical patterns were obtained by us-
ing SWAV-ResNet50 features and from all WSIs within the discovery
cohort. Accordingly, we compare the discriminative power of: 𝐶 the
co-localization matrix of patterns within the pattern assignment map
(PAM); 𝐶-raw the representation obtained by training CNN on the
PAM; 𝐶-one-hot the representation obtained by training CNN on the
ne-hot-encoded PAM.

Results. From the results in Table 5, we identify that one-hot encod-
ng is critical for training CNNs when using PAMs as input. Regardless
f the number of prototypical patterns, without one-hot encoding, the
erformance would drop up to 0.14 in mAP. Interestingly, for this
articular task, representations learned by CNNs performed noticeably
etter than handcrafted features. However, when using 16 prototypical
atterns, the latter performed comparable to the former. This suggests
he results may vary for a more difficult task. We provide additional
tudy related to this within the Supplementary Material (Table A6)
hich further highlights this possibility.

.6.2. Pooling strategies
Settings. Despite their weaknesses on higher resolution (Table A1),

esults thus far indicate that our handcrafted formulation in Eq. (7) and
he H2T framework can be remarkably competitive compared to the
ransformer. We further investigate several different ways to derive
he set of weights for Eq. (7). For this experiment, we constructed
he WSI-level representation using 16 prototypical patterns and from
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Table 3
Comparison study on classifying LUAD vs LUSC WSIs. The proposed H2T representations (𝐻 and 𝐶) were derived based on 16 prototypical patterns. These patterns were obtained
by using SWAV-ResNet50 patch-level features extracted from all WSIs within each discovery cohort. 𝐻-w is obtained by weighted summing patch features assigned to a pattern;
𝐻-k128 is obtained by averaging features from the top 128 closest patches assigned to a pattern; 𝐶-one-hot is the representation obtained by training CNN on the one-hot-encoded
attern assignment map (PAM); �̂� is the histogram of the patterns within PAM; 𝐶 is the co-localization matrix of patterns within PAM. Reported results are mean ± standard
eviation of AUROC taken across 5 stratified folds.
Features Method CPTAC-valid TCGA-test TCGA-valid CPTAC-test

Tuneda FocAttn-MIL (Kalra et al.,
2021)

– – 0.920 ± 0.000 –

SUPERVISE-ResNet50
(He et al., 2016)

CLAMb (Lu et al., 2021) 0.967 ± 0.004 0.791 ± 0.008 0.927 ± 0.009 0.907 ± 0.007
transformer-1 0.960 ± 0.009 0.780 ± 0.005 0.912 ± 0.006 0.901 ± 0.009
transformer-2 0.978 ± 0.005 0.796 ± 0.005 0.927 ± 0.008 0.911 ± 0.008

SWAV-ResNet50
(Caron et al., 2020)

CLAMb (Lu et al., 2021) 0.977 ± 0.005 0.840 ± 0.003 0.938 ± 0.007 0.918 ± 0.003
transformer-1 0.979 ± 0.007 0.835 ± 0.008 0.937 ± 0.011 0.928 ± 0.006
transformer-2 0.983 ± 0.008 0.843 ± 0.005 0.943 ± 0.012 0.922 ± 0.003

SWAV-ResNet50
(Caron et al., 2020)

�̂� 0.745 ± 0.025 0.579 ± 0.001 0.661 ± 0.016 0.770 ± 0.005
𝐶 0.859 ± 0.016 0.638 ± 0.003 0.732 ± 0.020 0.791 ± 0.004
�̂� + 𝐶 0.861 ± 0.013 0.638 ± 0.003 0.728 ± 0.022 0.794 ± 0.005
𝐻-w 0.972 ± 0.009 0.788 ± 0.013 0.927 ± 0.016 0.903 ± 0.007
𝐻-k128 0.984 ± 0.004 0.802 ± 0.005 0.943 ± 0.010 0.924 ± 0.005
𝐶-onehot 0.863 ± 0.030 0.628 ± 0.013 0.704 ± 0.031 0.765 ± 0.011
𝐻-w+𝐶-onehot 0.983 ± 0.006 0.789 ± 0.009 0.919 ± 0.009 0.904 ± 0.006

aPretrained CNN was further tuned before being used as a feature extractor by the authors in the original work. The original work did not report the standard deviation, thus we
set it to 0.
bResults are produced by us.
Table 4
WSI-level cancer sub-typing for kidney (RCC), breast (BRCA), and lung (NSCLC). Reported results are mean ± standard deviation of AUROC and mAP taken across 5
stratified folds. For RCC sub-typing, we report the macro-averaged AUROC across the three subtypes. The results of NSCLC are partially copied from column TCGA-valid
in Table 3. Here, CLAM, transformer-1, transformer-2 and our proposed methods utilized SWAV-ResNet50 features.

Method RCC BRCA NSCLC

AUROC mAP AUROC mAP AUROC mAP

HIPTa (Chen et al.,
2022a)

0.980 ± 0.013 – 0.874 ± 0.060 – 0.952 ± 0.021 –

CLAMb (Lu et al.,
2021)

0.990 ± 0.001 0.972 ± 0.003 0.926 ± 0.012 0.891 ± 0.017 0.938 ± 0.007 0.936 ± 0.007

transformer-1 0.990 ± 0.001 0.972 ± 0.007 0.928 ± 0.012 0.891 ± 0.018 0.937 ± 0.011 0.936 ± 0.012
transformer-2 0.993 ± 0.002 0.981 ± 0.005 0.936 ± 0.011 0.905 ± 0.016 0.943 ± 0.012 0.944 ± 0.012

𝐶 0.926 ± 0.012 0.771 ± 0.027 0.749 ± 0.023 0.668 ± 0.021 0.732 ± 0.020 0.723 ± 0.022
�̂� 0.864 ± 0.008 0.677 ± 0.023 0.722 ± 0.023 0.635 ± 0.020 0.660 ± 0.015 0.647 ± 0.012
�̂� + 𝐶 0.927 ± 0.009 0.783 ± 0.029 0.768 ± 0.014 0.680 ± 0.017 0.728 ± 0.022 0.717 ± 0.024
𝐻-k128 0.993 ± 0.002 0.983 ± 0.005 0.924 ± 0.008 0.879 ± 0.018 0.943 ± 0.010 0.941 ± 0.011
𝐻-w 0.993 ± 0.002 0.983 ± 0.003 0.939 ± 0.005 0.899 ± 0.014 0.927 ± 0.016 0.926 ± 0.017

aResults are taken from the original paper.
bResults are produced by us.
Table 5
Ablation study on WSI-level H2T representations based on the co-localization of prototypical patterns by classifying Normal vs Tumor
using solely lung tissue. Using patch-level features from SWAV-ResNet50, all WSIs (Normal+LUAD+LUSC) within the discovery cohort
were utilized to derive each set of prototypical patterns. 𝐶-raw is the representation obtained by training CNN on the pattern assignment
map (PAM); 𝐶-one-hot is the representation obtained by training CNN on the one-hot-encoded PAM; 𝐶 is the co-localization matrix
of patterns within PAM. Reported results are mean ± standard deviation of mAP taken across 5 stratified folds.

# of clusters Method CPTAC-valid TCGA-test TCGA-valid CPTAC-test

8 𝐶 0.968 ± 0.002 0.809 ± 0.002 0.912 ± 0.008 0.882 ± 0.007
8 𝐶-raw 0.933 ± 0.019 0.764 ± 0.010 0.805 ± 0.036 0.909 ± 0.006
8 𝐶-one-hot 0.902 ± 0.008 0.952 ± 0.027 0.867 ± 0.018 0.916 ± 0.012

16 𝐶 0.971 ± 0.002 0.851 ± 0.004 0.915 ± 0.019 0.897 ± 0.008
16 𝐶-raw 0.934 ± 0.017 0.744 ± 0.021 0.799 ± 0.029 0.826 ± 0.006
16 𝐶-one-hot 0.971 ± 0.010 0.865 ± 0.009 0.928 ± 0.013 0.926 ± 0.016

32 𝐶 0.977 ± 0.003 0.826 ± 0.007 0.924 ± 0.025 0.884 ± 0.005
32 𝐶-raw 0.826 ± 0.087 0.667 ± 0.024 0.732 ± 0.043 0.862 ± 0.014
32 𝐶-one-hot 0.966 ± 0.012 0.836 ± 0.017 0.943 ± 0.009 0.906 ± 0.010
w
p
i
(

patch-level features extracted from using either SWAV-ResNet50 or
SUPERVISE-ResNet50.

Results. Our results are provided in Table 6. We observe that the
source of prototypical patterns remains the utmost important aspect for
H2T and can result in a significant difference in performance. In par-
ticular, excluding 𝐻-fk, representations based on SUPERVISE-ResNet50
consistently performs worse than those based on SWAV-ResNet50.
13
Other than that, given a set of patches assigned to a prototypical pat-
tern, based on the results of 𝐻-t[X] (where ‘[X]’ is the threshold value),

e identify that selecting patches with distances to their assigned
rototypical pattern larger than or equal to ‘[X]’ offer no noticeable
mprovement in performance. In particular, when the threshold is 0.2
‘[X]’ = 0.2 or 𝐻-t0.2), the performance is equal to that of 𝐻 , which has

no filtering, across all categories. This suggests that no patches having
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Table 6
Ablation study on using different pooling strategies for Eq. (7) constructing WSI-level H2T representations. The task is classifying Normal vs LUAD vs LUSC using solely lung
tissue. All available (Normal+LUAD+LUSC) WSIs within the discovery cohort were utilized to derive 16 prototypical patterns. Reported results are mean ± standard deviation of
mAP taken across 5 stratified folds.

Method SWAV-ResNet50 SUPERVISE-ResNet50

CPTAC-valid TCGA-test TCGA-valid CPTAC-test CPTAC-valid TCGA-test TCGA-valid CPTAC-test

𝐻 0.974 ± 0.005 0.806 ± 0.008 0.939 ± 0.015 0.845 ± 0.006 0.961 ± 0.006 0.756 ± 0.004 0.900 ± 0.011 0.809 ± 0.008
𝐻-w 0.977 ± 0.002 0.809 ± 0.008 0.942 ± 0.015 0.858 ± 0.006 0.964 ± 0.007 0.762 ± 0.007 0.906 ± 0.008 0.817 ± 0.009

𝐻-t0.2 0.974 ± 0.005 0.806 ± 0.008 0.939 ± 0.015 0.845 ± 0.006 0.961 ± 0.006 0.756 ± 0.004 0.900 ± 0.011 0.809 ± 0.008
𝐻-t0.3 0.974 ± 0.006 0.805 ± 0.008 0.938 ± 0.016 0.844 ± 0.006 0.962 ± 0.005 0.759 ± 0.004 0.902 ± 0.010 0.806 ± 0.006
𝐻-t0.4 0.968 ± 0.007 0.793 ± 0.013 0.918 ± 0.011 0.820 ± 0.011 0.933 ± 0.010 0.727 ± 0.007 0.857 ± 0.010 0.747 ± 0.004
𝐻-t0.5 0.864 ± 0.014 0.685 ± 0.011 0.752 ± 0.023 0.680 ± 0.008 0.807 ± 0.008 0.543 ± 0.014 0.692 ± 0.020 0.575 ± 0.006
𝐻-t0.6 0.591 ± 0.030 0.429 ± 0.004 0.476 ± 0.022 0.501 ± 0.006 0.570 ± 0.008 0.413 ± 0.005 0.452 ± 0.024 0.463 ± 0.005
𝐻-t0.7 0.395 ± 0.006 0.369 ± 0.002 0.368 ± 0.008 0.375 ± 0.001 0.433 ± 0.022 0.366 ± 0.003 0.353 ± 0.005 0.390 ± 0.004

𝐻-k8 0.978 ± 0.006 0.813 ± 0.010 0.954 ± 0.012 0.871 ± 0.007 0.960 ± 0.009 0.743 ± 0.004 0.917 ± 0.009 0.805 ± 0.012
𝐻-k16 0.979 ± 0.005 0.820 ± 0.008 0.953 ± 0.016 0.883 ± 0.008 0.968 ± 0.008 0.752 ± 0.003 0.917 ± 0.019 0.821 ± 0.014
𝐻-k32 0.982 ± 0.005 0.819 ± 0.006 0.955 ± 0.016 0.892 ± 0.008 0.971 ± 0.008 0.763 ± 0.004 0.929 ± 0.021 0.839 ± 0.015
𝐻-k64 0.985 ± 0.004 0.825 ± 0.006 0.956 ± 0.017 0.893 ± 0.010 0.978 ± 0.006 0.769 ± 0.004 0.932 ± 0.020 0.848 ± 0.015
𝐻-k128 0.984 ± 0.004 0.825 ± 0.005 0.957 ± 0.014 0.890 ± 0.007 0.979 ± 0.005 0.775 ± 0.001 0.933 ± 0.019 0.855 ± 0.012

𝐻-fk8 0.902 ± 0.015 0.672 ± 0.006 0.832 ± 0.017 0.626 ± 0.012 0.873 ± 0.016 0.611 ± 0.010 0.807 ± 0.024 0.684 ± 0.009
𝐻-fk16 0.917 ± 0.015 0.690 ± 0.008 0.845 ± 0.018 0.642 ± 0.013 0.893 ± 0.007 0.621 ± 0.009 0.821 ± 0.023 0.705 ± 0.012
𝐻-fk32 0.929 ± 0.012 0.713 ± 0.005 0.863 ± 0.016 0.661 ± 0.013 0.902 ± 0.016 0.641 ± 0.006 0.852 ± 0.027 0.725 ± 0.012
𝐻-fk64 0.933 ± 0.013 0.725 ± 0.007 0.871 ± 0.012 0.688 ± 0.015 0.917 ± 0.015 0.662 ± 0.007 0.867 ± 0.030 0.744 ± 0.007
𝐻-fk128 0.946 ± 0.010 0.732 ± 0.010 0.887 ± 0.012 0.719 ± 0.015 0.930 ± 0.014 0.685 ± 0.010 0.893 ± 0.010 0.760 ± 0.007
distances smaller than 0.2. In addition to that, when the thresholds for
selection are larger than 0.2, the discriminative power of the resulting
WSI-level representation rapidly degrades in comparison to 𝐻 .

The results of 𝐻-t[X] suggest that patches within a certain distance
to their assigned prototypical patterns may be beneficial for the WSI-
level representation. This possibility becomes evident from the results
of 𝐻-k[X]. For this set of WSI-level representation, rather than selecting
all patches within a certain threshold, we select the ‘[X]’-th closest
patches to its assigned prototypical pattern. We identify that even when
using only the 8 closest patches to each pattern, which corresponds to
a maximum of 128 patches in total per WSI, it can offer noticeable
improvement in comparison to the generic 𝐻 and 𝐻-w. Furthermore,
aligning with previous observations in Tables 2 and 3, selecting the
top 32, 64 or 128 patches per pattern provide the most optimal per-
formance. Accordingly, this corresponds to selecting from 512 to 4096
patches at maximum per WSI. As a side note, the maximum here is the
theoretical limit because not all patterns have patches assigned to them.
This situation has been partially illustrated in Figs. 3 and 4. Therefore,
the actual number of selected patches may be less than the theoretical
limits.

In contrast to selecting the top closest strategy, selecting the top
furthest patch is detrimental to the representation discriminative power
in general in comparison to other method. Interestingly, the best 𝐻-
k[X] (with ‘[X]’ = 128) was able to achieved high cross-validation
esults. In case like using SUPERVISE-ResNet50, its TCGA-valid result
an approach that of 𝐻 .

On a more reserved note, although 𝐻-w does not offer the same
performance as selection-based methods, they maintain a relatively
good performance out-of-the-box compared to others while having no
tuning parameters.

4.7. Discovery experiments

Now that we have verified that the features from H2T are discrim-
inative enough for downstream analysis, we provide a brief demon-
stration on how they can be used for other tasks, such as discovering
anomalous WSIs.

In this experiment, we first considered TCGA as discovery cohort
and CPTAC as independent (evaluation) cohort. Furthermore, we as-
sumed to only know about the Normal WSIs within TCGA. Similar to
what we have done so far, we started by deriving the prototypical
14

patterns based on all WSIs that we have access to (the entire TCGA lung
cohort). Afterward, we generated the 𝐻-w WSIs level representation
for all WSIs in both TCGA and CPTAC dataset. Subsequently, we train
isolation forest (Liu et al., 2012), a simple machine learning method to
score anomaly, on these Normal WSI-level representations for scoring
all WSI-level representation in both datasets. Anomalous WSIs (or out
of distribution) have their scores lower than those considered to be in
distribution.

The results are shown in Fig. 6. Because the WSI-level features we
derived are high-dimensional (a matrix of 16 × 2048 at the very least),
for visualization purpose, we utilize UMAP (McInnes et al., 2018) to
project these 32768 features down to 2D plane for positioning each
WSI. From the TCGA plot, although there are LUAD and LUSC WSIs
which have their anomaly scores in orange range (around 0.8), Normal
WSIs still have their anomaly scores distinctly higher (dark deep red
or above 0.9). Despite that, there is a number of Normal WSIs having
anomaly score below 0.7. However, their positions in the figure are
noticeably different from the LUAD and LUSC WSIs, this is reflected by
a cluster of red dot on the left within the Embedding subplot. As for
the CPTAC subplot, the Normal WSIs have their anomaly scores clearly
lower compared to those in the TCGA. most of them have less than 0.8
anomaly score and their scores often concentrate around 0.5 ranges. In
spite of that, their scores are still noticeably higher than the majority
of LUAD and LUSC WSIs which concentrate below 0.3 spectrum. In
addition to the anomaly score, the positions of the Normal WSIs are
also distinguishable compared to the cluster of Tumor WSIs.

Other than the anomaly score, the unsupervised clustering of the
WSIs within Fig. 6 also shows that unsupervised separation of LUAD
and LUSC remains difficult. In TCGA, although the positions of LUAD
and LUSC WSIs separate into small clusters, these clusters highly in-
termixed. On CPTAC, LUAD and LUSC WSIs seem to occupy the same
space.

All in all, these observations indicate that while our proposed
representation can be used for discovery process, more research into
improving its discriminative power is necessary.

4.8. Runtime complexity

Given the data-hungry nature of deep learning and the increasingly
large amount of data that we have to deal with, it is desirable for
a method to be computationally cheap as much as possible while
still being strongly predictive. We have touched upon the impact of
reducing the time for preparing H2T framework (by using less epochs
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Fig. 6. Discovery study using solely lung tissue. WSI-level H2T representations are projected onto a 2D plane for exploration. The representation was computed based on the
prototypical patterns obtained from Normal WSIs (using SWAV-ResNet50 patch-level features) within TCGA (discovery cohort). Here, each data point represents 1 WSI. The
projection was done using UMAP, which was also trained by using only WSIs within TCGA. UMAP plots show the sample placements and their labels. Meanwhile, the other plots
show the out of distribution (anomaly) score assigned to each sample. The lower the score is, the higher the chance the sample is out of distribution (not Normal).
for clustering) in Fig. A3. Here, we further provide an estimate on the
runtime complexity for the Transformer models and our methods in Ta-
ble 7. We first emphasize that these numbers would vary depending on
the systems and should only be taken as reference. The measurements
in Table 7 were made using an NVIDIA-A100 GPU when there were
no other processes running. All the methods considered here utilized
patches at 𝑚𝑝𝑝 = 0.50 and TCGA as discovery cohort. The reported time
for training is the average time needed for training 1 single fold split
of the TCGA containing an average of 2,560 WSIs. The reported time
for feature extraction is the average time taken to finish extracting 1
WSI within the TCGA. On the other hand, the clustering and projection
time of H2T are shown for the entire TCGA lung dataset consisting of
3,210 WSIs.

Consistent with the reports in Vaswani et al. (2017), Transformer
models are notoriously memory demanding. From Table 7, it is clear
that utilizing a full Transformer (transformer-2) or a deeper Trans-
former (by stacking more multi head self-attention layers) is not pos-
sible for common workstation systems. In addition to that, even with
a 80 GB A100 GPU and a batch size of 1, it is not possible for us to
process many WSIs at 𝑚𝑝𝑝 = 0.25.

In contrast, even when accounting for the clustering times, our H2T
is still much cheaper computationally. When processing a single fold (a
fold within the stratified split of TCGA discovery cohort), H2T could be
2.6 to 3.6 times faster compared to the Transformer models. Further-
more, due to its small footprint on GPU memory, by running multiple
processes in parallel on the same GPU, it is possible to finish the entire
training for TCGA as discovery cohort even faster. In particular, with
its small footprint, we can fit 4 to 5 running processes within 12 GB of
GPU memory, thus bringing the overall differences in processing speed
to 10 or 14 times depending on the system. Nonetheless, just like other
methods based on patch-level features, feature extraction remains the
most time-consuming step.

5. Concluding remarks

Downstream analysis of histopathology images relies on efficient
and effective representation of whole slide images (WSIs). In this
paper, we proposed a new approach named Handcrafted Histological
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Transformer (H2T) for deriving holistic WSI-level representations. We
have demonstrated that our derived H2T representations can be readily
utilized in both supervised and unsupervised manners with relative
ease. In the former setting, we have demonstrated that our set of
H2T representations are just as predictive as those obtained from the
current best methods, namely the Transformer models. In addition to its
effectiveness in representing WSIs, the proposed H2T framework is also
more computationally efficient. To the best of our knowledge, H2T is
the first handcrafted framework that can compete with the Transformer
family while requiring less computational resources.

In general, machine learning systems also have trouble adapting to
data coming from different distributions, the so-called out of distribution
or OOD problem. In computational pathology, this can be particularly
challenging. Owing to staining and data acquisition practices that vary
from center to center, models trained on one center thus may not be
directly applicable to data from other centers. It is still an open question
as to how we can reliably detect the OOD samples and use them
to re-calibrate the system under clinical settings. Nonetheless, despite
being more automated and reproducible compared to pathologists,
these approaches are still far from being a fully automated system that
can discover and stratify diseases. We have also shown how anomaly
discovery can be made using the H2T representations in an unsuper-
vised manner. At its core, our method is a handcrafted interpretation
on how a black-box Transformer architecture actually performs, thus
providing better transparency on the decision-making process of the
model. Through the creation and subsequent usage of prototypical
patterns, it is also possible to further utilize our established clinical
knowledge rather than simply abstract patterns mined from the dataset.
We hypothesize that prototypical patterns obtained from clustering a
set of representative patches from pathologists can be as effective or
may be even more predictive compared to using all available patches.
As the WSI-level H2T representation is in a way a projection of a WSI
against the established knowledge (i.e., the prototypical patterns that
we extracted), it may be used to explore how the patterns evolve along
the progression of a disease (Vu et al., 2020).

In this paper, prototypical patterns are extracted from an initial
dataset and therefore bounded to a single dataset. A set of prototypical
patterns of lung tissue is meaningless for subtyping cancer in breast
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Table 7
Runtime complexity of the proposed H2T representation based model and Transformer models. Note that the values here are
for reference only as they vary across systems. For our case, the entire experiments were conducted on a single NVIDIA-A100
GPU when there were no other running processes. All the methods under measurement utilized patches at 0.5 μm per pixel
and TCGA as discovery cohort. The reported time for training is the average time needed for training 1 single fold split of
the TCGA (containing an average of 2,560 WSIs). The reported time for feature extraction is the average time taken to finish
extracting 1 WSI within the TCGA. On the other hand, the clustering and projection time of H2T were taken for the entire
TCGA dataset.

Metrics Steps transformer-1 transformer-2 H2T

Time

Features Extraction 2 min/WSI 2 min/WSI 2 min/WSI
Clustering – – 7 min
Projection – – 3 min
Training 110 min/fold 80 min/fold 14 min/fold

GPU Batch Size 8 4 32
Memory 40 GB 130 GB 2 GB
tissue. Even in the same tissue, a set of prototypical patterns extracted
from a subset of lung disease surely would not reflect another. One
would assume simply redoing the process using a larger dataset is
enough to amend the problem. However, it is not realistic to have data
for all diseases. In addition, the computation cost of such operation
would increase exponentially each time the dataset gets expanded.
To alleviate this problem, it is important to investigate how a set of
prototypical patterns from one dataset can be considered as ‘‘novel’’
compared to those extracted using another dataset as well as how we
can combine these sets of prototypical patterns together.

Parallel to the above, further investigations on how to automatically
and systematically obtain better prototypical patterns is also important.
In the scope of this work, we investigated the plausibility of our
proposal extensively by using k-means due to its simplicity. There
are better clustering techniques that are available. Dictionary learning
is another promising research direction given how the prototypical
patterns are obtained and utilized. Lastly, given the close relationship
between Transformer-based method and CBIR system, investigating on
the potential use of H2T as an approximation of a subset of Transform-
ers for a CBIR task may open new research directions in the nascent
area of computational pathology. Additionally, while the capability of
Transformer-based models for CBIR in natural images has been well
demonstrated (Chen et al., 2022b), it is relative unknown how well they
would fare on other medical image processing tasks and thus further
research is also required.

Given the robustness and representation power of massive Trans-
former models like GPT-3, it is also of interest to pretrain a Transformer
model end-to-end for computational pathology. However, the massive
scale of WSIs at high magnification level presents a huge technical
challenge for such an attempt. In light of this challenge, we consider
an intermediate compressed representation of a WSI (such as the H2T
representation) or multi-stage pretraining as in Chen et al. (2022a)
as two possible novel directions for end-to-end training for WSI-level
analysis.

Through the H2T framework, we have also shown how WSI-level
representation can be disentangled into instance-level patterns and
co-localization of instance-level patterns. This disentanglement thus
allows us to explore how each representation contributes toward the
overall predictive power of the final WSI-level representation. Given the
reduction in predictive power of co-localization representation in some
tasks, we hypothesize that a prototypical pattern that is a combination
of both patch co-localization and patch-level features can be a strong
alternative for a better WSI-level representation.

While we have successfully derived representations at WSI-level and
were able to use them to identify anomalous WSIs, identifying which
patches in each WSI that contribute in turning the WSI into an anomaly
remains difficult. Because these patches potentially indicate new tissue
phenotype, without a way to go from WSI-level back to patch-level,
explainable prediction and automated identification of disease may not
be possible as we still rely on pathologists for reviewing all possible
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anomalous WSI cases. In addition, so far we have only demonstrated
anomalous detection on a very narrow and easy scope of categories,
namely Normal vs Tumor in lung tissue. Our method is not yet able to
reliably highlight the cancer subtypes. Further research is required to
further enhance its discriminative power.

Meanwhile, although our framework can provide more transparency
compared to other methods, our prototypical patterns are still much
more abstract compared to known patterns, such as the number of
TILs. Within this study, while we have provided a high-level assessment
of the possible histological meaning associated with our prototypi-
cal patterns, this was conducted only on a small number of WSIs.
Therefore, in order to utilize our prototypical patterns and their WSI-
level representation for more clinically related tasks, it is necessary to
investigate their histological meaning on a larger scale.

We have uncovered and further confirmed existing practice in ma-
chine learning, namely keeping an independent testing set is extremely
important to correctly assess the results. Specifically, in the scope of our
dataset and tasks, despite each cohort containing thousands of WSIs,
we have shown that high cross-validation results within each cohort
may not be enough to identify good approaches. This is evident through
our ablation study on pooling strategies. Here, in spite of having high
performance on cross-validation, many of our models fall short on the
evaluation set.

Self-supervised learning in natural images has relied on the com-
plexity of ImageNet to measure progress in the field. Much of the
complexity associated with ImageNet can be partly attributed to its
size (millions of images) and the large number of present categories,
that are structured in a meaningful hierarchy. In comparison, although
the largest publicly available dataset in computational pathology also
contains thousands of WSIs (TCGA), there is less variation between
its categories. As a result, we believe curating a new dataset may be
necessary to further develop and investigate WSI-level representations
in computational pathology. Specifically, this dataset should be a large
collection of extensively stratified diseases (such as cancer grades of all
tissue types).

Finally, unlike image patch classification, localization of disease
sites as well as anomaly or novelty detection are intrinsically in-
tertwined for processing WSIs. Future work will involve performing
localization in an unsupervised manner and further validation on more
disease variations.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.media.2023.102743. The supplementary
contains additional ablation experiments which explore the effects of
various parameters within our proposed method. Additionally, we also
performed experiments on stratifying diseases using solely prototypical
patterns that were extracted from normal tissue.
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